src/cpu/sparc/vm/sparc.ad

Mon, 04 Nov 2013 21:59:54 +0100

author
roland
date
Mon, 04 Nov 2013 21:59:54 +0100
changeset 6067
208ebea980f8
parent 6030
b4aa8fc5d0d5
child 6184
9ecf408d4568
child 6485
da862781b584
permissions
-rw-r--r--

8027445: SIGSEGV at TestFloatingDecimal.testAppendToDouble()I
Summary: String.equals() intrinsic shouldn't use integer length input in pointer arithmetic without an i2l.
Reviewed-by: kvn, twisti

     1 //
     2 // Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 extern bool use_block_zeroing(Node* count);
   465 // Macros to extract hi & lo halves from a long pair.
   466 // G0 is not part of any long pair, so assert on that.
   467 // Prevents accidentally using G1 instead of G0.
   468 #define LONG_HI_REG(x) (x)
   469 #define LONG_LO_REG(x) (x)
   471 %}
   473 source %{
   474 #define __ _masm.
   476 // tertiary op of a LoadP or StoreP encoding
   477 #define REGP_OP true
   479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   481 static Register reg_to_register_object(int register_encoding);
   483 // Used by the DFA in dfa_sparc.cpp.
   484 // Check for being able to use a V9 branch-on-register.  Requires a
   485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   486 // extended.  Doesn't work following an integer ADD, for example, because of
   487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   489 // replace them with zero, which could become sign-extension in a different OS
   490 // release.  There's no obvious reason why an interrupt will ever fill these
   491 // bits with non-zero junk (the registers are reloaded with standard LD
   492 // instructions which either zero-fill or sign-fill).
   493 bool can_branch_register( Node *bol, Node *cmp ) {
   494   if( !BranchOnRegister ) return false;
   495 #ifdef _LP64
   496   if( cmp->Opcode() == Op_CmpP )
   497     return true;  // No problems with pointer compares
   498 #endif
   499   if( cmp->Opcode() == Op_CmpL )
   500     return true;  // No problems with long compares
   502   if( !SparcV9RegsHiBitsZero ) return false;
   503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   504       bol->as_Bool()->_test._test != BoolTest::eq )
   505      return false;
   507   // Check for comparing against a 'safe' value.  Any operation which
   508   // clears out the high word is safe.  Thus, loads and certain shifts
   509   // are safe, as are non-negative constants.  Any operation which
   510   // preserves zero bits in the high word is safe as long as each of its
   511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   512   // inputs are safe.  At present, the only important case to recognize
   513   // seems to be loads.  Constants should fold away, and shifts &
   514   // logicals can use the 'cc' forms.
   515   Node *x = cmp->in(1);
   516   if( x->is_Load() ) return true;
   517   if( x->is_Phi() ) {
   518     for( uint i = 1; i < x->req(); i++ )
   519       if( !x->in(i)->is_Load() )
   520         return false;
   521     return true;
   522   }
   523   return false;
   524 }
   526 bool use_block_zeroing(Node* count) {
   527   // Use BIS for zeroing if count is not constant
   528   // or it is >= BlockZeroingLowLimit.
   529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   530 }
   532 // ****************************************************************************
   534 // REQUIRED FUNCTIONALITY
   536 // !!!!! Special hack to get all type of calls to specify the byte offset
   537 //       from the start of the call to the point where the return address
   538 //       will point.
   539 //       The "return address" is the address of the call instruction, plus 8.
   541 int MachCallStaticJavaNode::ret_addr_offset() {
   542   int offset = NativeCall::instruction_size;  // call; delay slot
   543   if (_method_handle_invoke)
   544     offset += 4;  // restore SP
   545   return offset;
   546 }
   548 int MachCallDynamicJavaNode::ret_addr_offset() {
   549   int vtable_index = this->_vtable_index;
   550   if (vtable_index < 0) {
   551     // must be invalid_vtable_index, not nonvirtual_vtable_index
   552     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
   553     return (NativeMovConstReg::instruction_size +
   554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   555   } else {
   556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   557     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   559     int klass_load_size;
   560     if (UseCompressedClassPointers) {
   561       assert(Universe::heap() != NULL, "java heap should be initialized");
   562       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
   563     } else {
   564       klass_load_size = 1*BytesPerInstWord;
   565     }
   566     if (Assembler::is_simm13(v_off)) {
   567       return klass_load_size +
   568              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   569              NativeCall::instruction_size);  // call; delay slot
   570     } else {
   571       return klass_load_size +
   572              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   573              NativeCall::instruction_size);  // call; delay slot
   574     }
   575   }
   576 }
   578 int MachCallRuntimeNode::ret_addr_offset() {
   579 #ifdef _LP64
   580   if (MacroAssembler::is_far_target(entry_point())) {
   581     return NativeFarCall::instruction_size;
   582   } else {
   583     return NativeCall::instruction_size;
   584   }
   585 #else
   586   return NativeCall::instruction_size;  // call; delay slot
   587 #endif
   588 }
   590 // Indicate if the safepoint node needs the polling page as an input.
   591 // Since Sparc does not have absolute addressing, it does.
   592 bool SafePointNode::needs_polling_address_input() {
   593   return true;
   594 }
   596 // emit an interrupt that is caught by the debugger (for debugging compiler)
   597 void emit_break(CodeBuffer &cbuf) {
   598   MacroAssembler _masm(&cbuf);
   599   __ breakpoint_trap();
   600 }
   602 #ifndef PRODUCT
   603 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   604   st->print("TA");
   605 }
   606 #endif
   608 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   609   emit_break(cbuf);
   610 }
   612 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   613   return MachNode::size(ra_);
   614 }
   616 // Traceable jump
   617 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   618   MacroAssembler _masm(&cbuf);
   619   Register rdest = reg_to_register_object(jump_target);
   620   __ JMP(rdest, 0);
   621   __ delayed()->nop();
   622 }
   624 // Traceable jump and set exception pc
   625 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   626   MacroAssembler _masm(&cbuf);
   627   Register rdest = reg_to_register_object(jump_target);
   628   __ JMP(rdest, 0);
   629   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   630 }
   632 void emit_nop(CodeBuffer &cbuf) {
   633   MacroAssembler _masm(&cbuf);
   634   __ nop();
   635 }
   637 void emit_illtrap(CodeBuffer &cbuf) {
   638   MacroAssembler _masm(&cbuf);
   639   __ illtrap(0);
   640 }
   643 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   644   assert(n->rule() != loadUB_rule, "");
   646   intptr_t offset = 0;
   647   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   648   const Node* addr = n->get_base_and_disp(offset, adr_type);
   649   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   650   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   651   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   652   atype = atype->add_offset(offset);
   653   assert(disp32 == offset, "wrong disp32");
   654   return atype->_offset;
   655 }
   658 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   659   assert(n->rule() != loadUB_rule, "");
   661   intptr_t offset = 0;
   662   Node* addr = n->in(2);
   663   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   664   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   665     Node* a = addr->in(2/*AddPNode::Address*/);
   666     Node* o = addr->in(3/*AddPNode::Offset*/);
   667     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   668     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   669     assert(atype->isa_oop_ptr(), "still an oop");
   670   }
   671   offset = atype->is_ptr()->_offset;
   672   if (offset != Type::OffsetBot)  offset += disp32;
   673   return offset;
   674 }
   676 static inline jdouble replicate_immI(int con, int count, int width) {
   677   // Load a constant replicated "count" times with width "width"
   678   assert(count*width == 8 && width <= 4, "sanity");
   679   int bit_width = width * 8;
   680   jlong val = con;
   681   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   682   for (int i = 0; i < count - 1; i++) {
   683     val |= (val << bit_width);
   684   }
   685   jdouble dval = *((jdouble*) &val);  // coerce to double type
   686   return dval;
   687 }
   689 static inline jdouble replicate_immF(float con) {
   690   // Replicate float con 2 times and pack into vector.
   691   int val = *((int*)&con);
   692   jlong lval = val;
   693   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
   694   jdouble dval = *((jdouble*) &lval);  // coerce to double type
   695   return dval;
   696 }
   698 // Standard Sparc opcode form2 field breakdown
   699 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   700   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   701   int op = (f30 << 30) |
   702            (f29 << 29) |
   703            (f25 << 25) |
   704            (f22 << 22) |
   705            (f20 << 20) |
   706            (f19 << 19) |
   707            (f0  <<  0);
   708   cbuf.insts()->emit_int32(op);
   709 }
   711 // Standard Sparc opcode form2 field breakdown
   712 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   713   f0 >>= 10;           // Drop 10 bits
   714   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   715   int op = (f30 << 30) |
   716            (f25 << 25) |
   717            (f22 << 22) |
   718            (f0  <<  0);
   719   cbuf.insts()->emit_int32(op);
   720 }
   722 // Standard Sparc opcode form3 field breakdown
   723 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   724   int op = (f30 << 30) |
   725            (f25 << 25) |
   726            (f19 << 19) |
   727            (f14 << 14) |
   728            (f5  <<  5) |
   729            (f0  <<  0);
   730   cbuf.insts()->emit_int32(op);
   731 }
   733 // Standard Sparc opcode form3 field breakdown
   734 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   735   simm13 &= (1<<13)-1; // Mask to 13 bits
   736   int op = (f30 << 30) |
   737            (f25 << 25) |
   738            (f19 << 19) |
   739            (f14 << 14) |
   740            (1   << 13) | // bit to indicate immediate-mode
   741            (simm13<<0);
   742   cbuf.insts()->emit_int32(op);
   743 }
   745 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   746   simm10 &= (1<<10)-1; // Mask to 10 bits
   747   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   748 }
   750 #ifdef ASSERT
   751 // Helper function for VerifyOops in emit_form3_mem_reg
   752 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   753   warning("VerifyOops encountered unexpected instruction:");
   754   n->dump(2);
   755   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   756 }
   757 #endif
   760 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   761                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   763 #ifdef ASSERT
   764   // The following code implements the +VerifyOops feature.
   765   // It verifies oop values which are loaded into or stored out of
   766   // the current method activation.  +VerifyOops complements techniques
   767   // like ScavengeALot, because it eagerly inspects oops in transit,
   768   // as they enter or leave the stack, as opposed to ScavengeALot,
   769   // which inspects oops "at rest", in the stack or heap, at safepoints.
   770   // For this reason, +VerifyOops can sometimes detect bugs very close
   771   // to their point of creation.  It can also serve as a cross-check
   772   // on the validity of oop maps, when used toegether with ScavengeALot.
   774   // It would be good to verify oops at other points, especially
   775   // when an oop is used as a base pointer for a load or store.
   776   // This is presently difficult, because it is hard to know when
   777   // a base address is biased or not.  (If we had such information,
   778   // it would be easy and useful to make a two-argument version of
   779   // verify_oop which unbiases the base, and performs verification.)
   781   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   782   bool is_verified_oop_base  = false;
   783   bool is_verified_oop_load  = false;
   784   bool is_verified_oop_store = false;
   785   int tmp_enc = -1;
   786   if (VerifyOops && src1_enc != R_SP_enc) {
   787     // classify the op, mainly for an assert check
   788     int st_op = 0, ld_op = 0;
   789     switch (primary) {
   790     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   791     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   792     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   793     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   794     case Assembler::std_op3:  st_op = Op_StoreL; break;
   795     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   796     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   798     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   799     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
   800     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   801     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   802     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   803     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   804     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   805     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   806     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   807     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   808     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   810     default: ShouldNotReachHere();
   811     }
   812     if (tertiary == REGP_OP) {
   813       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   814       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   815       else                          ShouldNotReachHere();
   816       if (st_op) {
   817         // a store
   818         // inputs are (0:control, 1:memory, 2:address, 3:value)
   819         Node* n2 = n->in(3);
   820         if (n2 != NULL) {
   821           const Type* t = n2->bottom_type();
   822           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   823         }
   824       } else {
   825         // a load
   826         const Type* t = n->bottom_type();
   827         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   828       }
   829     }
   831     if (ld_op) {
   832       // a Load
   833       // inputs are (0:control, 1:memory, 2:address)
   834       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   835           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   836           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   837           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   838           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   839           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   840           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   841           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   842           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   843           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   844           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   845           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   846           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   847           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
   848           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
   849           !(n->rule() == loadUB_rule)) {
   850         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   851       }
   852     } else if (st_op) {
   853       // a Store
   854       // inputs are (0:control, 1:memory, 2:address, 3:value)
   855       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   856           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   857           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   858           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   859           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   860           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
   861           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   862         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   863       }
   864     }
   866     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   867       Node* addr = n->in(2);
   868       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   869         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   870         if (atype != NULL) {
   871           intptr_t offset = get_offset_from_base(n, atype, disp32);
   872           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   873           if (offset != offset_2) {
   874             get_offset_from_base(n, atype, disp32);
   875             get_offset_from_base_2(n, atype, disp32);
   876           }
   877           assert(offset == offset_2, "different offsets");
   878           if (offset == disp32) {
   879             // we now know that src1 is a true oop pointer
   880             is_verified_oop_base = true;
   881             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   882               if( primary == Assembler::ldd_op3 ) {
   883                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   884               } else {
   885                 tmp_enc = dst_enc;
   886                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   887                 assert(src1_enc != dst_enc, "");
   888               }
   889             }
   890           }
   891           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   892                        || offset == oopDesc::mark_offset_in_bytes())) {
   893                       // loading the mark should not be allowed either, but
   894                       // we don't check this since it conflicts with InlineObjectHash
   895                       // usage of LoadINode to get the mark. We could keep the
   896                       // check if we create a new LoadMarkNode
   897             // but do not verify the object before its header is initialized
   898             ShouldNotReachHere();
   899           }
   900         }
   901       }
   902     }
   903   }
   904 #endif
   906   uint instr;
   907   instr = (Assembler::ldst_op << 30)
   908         | (dst_enc        << 25)
   909         | (primary        << 19)
   910         | (src1_enc       << 14);
   912   uint index = src2_enc;
   913   int disp = disp32;
   915   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   916     disp += STACK_BIAS;
   918   // We should have a compiler bailout here rather than a guarantee.
   919   // Better yet would be some mechanism to handle variable-size matches correctly.
   920   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   922   if( disp == 0 ) {
   923     // use reg-reg form
   924     // bit 13 is already zero
   925     instr |= index;
   926   } else {
   927     // use reg-imm form
   928     instr |= 0x00002000;          // set bit 13 to one
   929     instr |= disp & 0x1FFF;
   930   }
   932   cbuf.insts()->emit_int32(instr);
   934 #ifdef ASSERT
   935   {
   936     MacroAssembler _masm(&cbuf);
   937     if (is_verified_oop_base) {
   938       __ verify_oop(reg_to_register_object(src1_enc));
   939     }
   940     if (is_verified_oop_store) {
   941       __ verify_oop(reg_to_register_object(dst_enc));
   942     }
   943     if (tmp_enc != -1) {
   944       __ mov(O7, reg_to_register_object(tmp_enc));
   945     }
   946     if (is_verified_oop_load) {
   947       __ verify_oop(reg_to_register_object(dst_enc));
   948     }
   949   }
   950 #endif
   951 }
   953 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   954   // The method which records debug information at every safepoint
   955   // expects the call to be the first instruction in the snippet as
   956   // it creates a PcDesc structure which tracks the offset of a call
   957   // from the start of the codeBlob. This offset is computed as
   958   // code_end() - code_begin() of the code which has been emitted
   959   // so far.
   960   // In this particular case we have skirted around the problem by
   961   // putting the "mov" instruction in the delay slot but the problem
   962   // may bite us again at some other point and a cleaner/generic
   963   // solution using relocations would be needed.
   964   MacroAssembler _masm(&cbuf);
   965   __ set_inst_mark();
   967   // We flush the current window just so that there is a valid stack copy
   968   // the fact that the current window becomes active again instantly is
   969   // not a problem there is nothing live in it.
   971 #ifdef ASSERT
   972   int startpos = __ offset();
   973 #endif /* ASSERT */
   975   __ call((address)entry_point, rtype);
   977   if (preserve_g2)   __ delayed()->mov(G2, L7);
   978   else __ delayed()->nop();
   980   if (preserve_g2)   __ mov(L7, G2);
   982 #ifdef ASSERT
   983   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   984 #ifdef _LP64
   985     // Trash argument dump slots.
   986     __ set(0xb0b8ac0db0b8ac0d, G1);
   987     __ mov(G1, G5);
   988     __ stx(G1, SP, STACK_BIAS + 0x80);
   989     __ stx(G1, SP, STACK_BIAS + 0x88);
   990     __ stx(G1, SP, STACK_BIAS + 0x90);
   991     __ stx(G1, SP, STACK_BIAS + 0x98);
   992     __ stx(G1, SP, STACK_BIAS + 0xA0);
   993     __ stx(G1, SP, STACK_BIAS + 0xA8);
   994 #else // _LP64
   995     // this is also a native call, so smash the first 7 stack locations,
   996     // and the various registers
   998     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
   999     // while [SP+0x44..0x58] are the argument dump slots.
  1000     __ set((intptr_t)0xbaadf00d, G1);
  1001     __ mov(G1, G5);
  1002     __ sllx(G1, 32, G1);
  1003     __ or3(G1, G5, G1);
  1004     __ mov(G1, G5);
  1005     __ stx(G1, SP, 0x40);
  1006     __ stx(G1, SP, 0x48);
  1007     __ stx(G1, SP, 0x50);
  1008     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1009 #endif // _LP64
  1011 #endif /*ASSERT*/
  1014 //=============================================================================
  1015 // REQUIRED FUNCTIONALITY for encoding
  1016 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1017 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1020 //=============================================================================
  1021 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
  1023 int Compile::ConstantTable::calculate_table_base_offset() const {
  1024   if (UseRDPCForConstantTableBase) {
  1025     // The table base offset might be less but then it fits into
  1026     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
  1027     return Assembler::min_simm13();
  1028   } else {
  1029     int offset = -(size() / 2);
  1030     if (!Assembler::is_simm13(offset)) {
  1031       offset = Assembler::min_simm13();
  1033     return offset;
  1037 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1038   Compile* C = ra_->C;
  1039   Compile::ConstantTable& constant_table = C->constant_table();
  1040   MacroAssembler _masm(&cbuf);
  1042   Register r = as_Register(ra_->get_encode(this));
  1043   CodeSection* consts_section = __ code()->consts();
  1044   int consts_size = consts_section->align_at_start(consts_section->size());
  1045   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1047   if (UseRDPCForConstantTableBase) {
  1048     // For the following RDPC logic to work correctly the consts
  1049     // section must be allocated right before the insts section.  This
  1050     // assert checks for that.  The layout and the SECT_* constants
  1051     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1052     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1053     int insts_offset = __ offset();
  1055     // Layout:
  1056     //
  1057     // |----------- consts section ------------|----------- insts section -----------...
  1058     // |------ constant table -----|- padding -|------------------x----
  1059     //                                                            \ current PC (RDPC instruction)
  1060     // |<------------- consts_size ----------->|<- insts_offset ->|
  1061     //                                                            \ table base
  1062     // The table base offset is later added to the load displacement
  1063     // so it has to be negative.
  1064     int table_base_offset = -(consts_size + insts_offset);
  1065     int disp;
  1067     // If the displacement from the current PC to the constant table
  1068     // base fits into simm13 we set the constant table base to the
  1069     // current PC.
  1070     if (Assembler::is_simm13(table_base_offset)) {
  1071       constant_table.set_table_base_offset(table_base_offset);
  1072       disp = 0;
  1073     } else {
  1074       // Otherwise we set the constant table base offset to the
  1075       // maximum negative displacement of load instructions to keep
  1076       // the disp as small as possible:
  1077       //
  1078       // |<------------- consts_size ----------->|<- insts_offset ->|
  1079       // |<--------- min_simm13 --------->|<-------- disp --------->|
  1080       //                                  \ table base
  1081       table_base_offset = Assembler::min_simm13();
  1082       constant_table.set_table_base_offset(table_base_offset);
  1083       disp = (consts_size + insts_offset) + table_base_offset;
  1086     __ rdpc(r);
  1088     if (disp != 0) {
  1089       assert(r != O7, "need temporary");
  1090       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1093   else {
  1094     // Materialize the constant table base.
  1095     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1096     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1097     AddressLiteral base(baseaddr, rspec);
  1098     __ set(base, r);
  1102 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1103   if (UseRDPCForConstantTableBase) {
  1104     // This is really the worst case but generally it's only 1 instruction.
  1105     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1106   } else {
  1107     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1111 #ifndef PRODUCT
  1112 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1113   char reg[128];
  1114   ra_->dump_register(this, reg);
  1115   if (UseRDPCForConstantTableBase) {
  1116     st->print("RDPC   %s\t! constant table base", reg);
  1117   } else {
  1118     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1121 #endif
  1124 //=============================================================================
  1126 #ifndef PRODUCT
  1127 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1128   Compile* C = ra_->C;
  1130   for (int i = 0; i < OptoPrologueNops; i++) {
  1131     st->print_cr("NOP"); st->print("\t");
  1134   if( VerifyThread ) {
  1135     st->print_cr("Verify_Thread"); st->print("\t");
  1138   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1140   // Calls to C2R adapters often do not accept exceptional returns.
  1141   // We require that their callers must bang for them.  But be careful, because
  1142   // some VM calls (such as call site linkage) can use several kilobytes of
  1143   // stack.  But the stack safety zone should account for that.
  1144   // See bugs 4446381, 4468289, 4497237.
  1145   if (C->need_stack_bang(framesize)) {
  1146     st->print_cr("! stack bang"); st->print("\t");
  1149   if (Assembler::is_simm13(-framesize)) {
  1150     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1151   } else {
  1152     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1153     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1154     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1158 #endif
  1160 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1161   Compile* C = ra_->C;
  1162   MacroAssembler _masm(&cbuf);
  1164   for (int i = 0; i < OptoPrologueNops; i++) {
  1165     __ nop();
  1168   __ verify_thread();
  1170   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1171   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1172   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1174   // Calls to C2R adapters often do not accept exceptional returns.
  1175   // We require that their callers must bang for them.  But be careful, because
  1176   // some VM calls (such as call site linkage) can use several kilobytes of
  1177   // stack.  But the stack safety zone should account for that.
  1178   // See bugs 4446381, 4468289, 4497237.
  1179   if (C->need_stack_bang(framesize)) {
  1180     __ generate_stack_overflow_check(framesize);
  1183   if (Assembler::is_simm13(-framesize)) {
  1184     __ save(SP, -framesize, SP);
  1185   } else {
  1186     __ sethi(-framesize & ~0x3ff, G3);
  1187     __ add(G3, -framesize & 0x3ff, G3);
  1188     __ save(SP, G3, SP);
  1190   C->set_frame_complete( __ offset() );
  1192   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
  1193     // NOTE: We set the table base offset here because users might be
  1194     // emitted before MachConstantBaseNode.
  1195     Compile::ConstantTable& constant_table = C->constant_table();
  1196     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1200 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1201   return MachNode::size(ra_);
  1204 int MachPrologNode::reloc() const {
  1205   return 10; // a large enough number
  1208 //=============================================================================
  1209 #ifndef PRODUCT
  1210 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1211   Compile* C = ra_->C;
  1213   if( do_polling() && ra_->C->is_method_compilation() ) {
  1214     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1215 #ifdef _LP64
  1216     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1217 #else
  1218     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1219 #endif
  1222   if( do_polling() )
  1223     st->print("RET\n\t");
  1225   st->print("RESTORE");
  1227 #endif
  1229 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1230   MacroAssembler _masm(&cbuf);
  1231   Compile* C = ra_->C;
  1233   __ verify_thread();
  1235   // If this does safepoint polling, then do it here
  1236   if( do_polling() && ra_->C->is_method_compilation() ) {
  1237     AddressLiteral polling_page(os::get_polling_page());
  1238     __ sethi(polling_page, L0);
  1239     __ relocate(relocInfo::poll_return_type);
  1240     __ ld_ptr( L0, 0, G0 );
  1243   // If this is a return, then stuff the restore in the delay slot
  1244   if( do_polling() ) {
  1245     __ ret();
  1246     __ delayed()->restore();
  1247   } else {
  1248     __ restore();
  1252 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1253   return MachNode::size(ra_);
  1256 int MachEpilogNode::reloc() const {
  1257   return 16; // a large enough number
  1260 const Pipeline * MachEpilogNode::pipeline() const {
  1261   return MachNode::pipeline_class();
  1264 int MachEpilogNode::safepoint_offset() const {
  1265   assert( do_polling(), "no return for this epilog node");
  1266   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1269 //=============================================================================
  1271 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1272 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1273 static enum RC rc_class( OptoReg::Name reg ) {
  1274   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1275   if (OptoReg::is_stack(reg)) return rc_stack;
  1276   VMReg r = OptoReg::as_VMReg(reg);
  1277   if (r->is_Register()) return rc_int;
  1278   assert(r->is_FloatRegister(), "must be");
  1279   return rc_float;
  1282 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1283   if( cbuf ) {
  1284     // Better yet would be some mechanism to handle variable-size matches correctly
  1285     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1286       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1287     } else {
  1288       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1291 #ifndef PRODUCT
  1292   else if( !do_size ) {
  1293     if( size != 0 ) st->print("\n\t");
  1294     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1295     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1297 #endif
  1298   return size+4;
  1301 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1302   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1303 #ifndef PRODUCT
  1304   else if( !do_size ) {
  1305     if( size != 0 ) st->print("\n\t");
  1306     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1308 #endif
  1309   return size+4;
  1312 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1313                                         PhaseRegAlloc *ra_,
  1314                                         bool do_size,
  1315                                         outputStream* st ) const {
  1316   // Get registers to move
  1317   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1318   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1319   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1320   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1322   enum RC src_second_rc = rc_class(src_second);
  1323   enum RC src_first_rc = rc_class(src_first);
  1324   enum RC dst_second_rc = rc_class(dst_second);
  1325   enum RC dst_first_rc = rc_class(dst_first);
  1327   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1329   // Generate spill code!
  1330   int size = 0;
  1332   if( src_first == dst_first && src_second == dst_second )
  1333     return size;            // Self copy, no move
  1335   // --------------------------------------
  1336   // Check for mem-mem move.  Load into unused float registers and fall into
  1337   // the float-store case.
  1338   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1339     int offset = ra_->reg2offset(src_first);
  1340     // Further check for aligned-adjacent pair, so we can use a double load
  1341     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1342       src_second    = OptoReg::Name(R_F31_num);
  1343       src_second_rc = rc_float;
  1344       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1345     } else {
  1346       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1348     src_first    = OptoReg::Name(R_F30_num);
  1349     src_first_rc = rc_float;
  1352   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1353     int offset = ra_->reg2offset(src_second);
  1354     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1355     src_second    = OptoReg::Name(R_F31_num);
  1356     src_second_rc = rc_float;
  1359   // --------------------------------------
  1360   // Check for float->int copy; requires a trip through memory
  1361   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1362     int offset = frame::register_save_words*wordSize;
  1363     if (cbuf) {
  1364       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1365       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1366       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1367       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1369 #ifndef PRODUCT
  1370     else if (!do_size) {
  1371       if (size != 0) st->print("\n\t");
  1372       st->print(  "SUB    R_SP,16,R_SP\n");
  1373       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1374       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1375       st->print("\tADD    R_SP,16,R_SP\n");
  1377 #endif
  1378     size += 16;
  1381   // Check for float->int copy on T4
  1382   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1383     // Further check for aligned-adjacent pair, so we can use a double move
  1384     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1385       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1386     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1388   // Check for int->float copy on T4
  1389   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1390     // Further check for aligned-adjacent pair, so we can use a double move
  1391     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1392       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1393     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1396   // --------------------------------------
  1397   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1398   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1399   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1400   // there.  Misaligned sources only come from native-long-returns (handled
  1401   // special below).
  1402 #ifndef _LP64
  1403   if( src_first_rc == rc_int &&     // source is already big-endian
  1404       src_second_rc != rc_bad &&    // 64-bit move
  1405       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1406     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1407     // Do the big-endian flop.
  1408     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1409     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1411 #endif
  1413   // --------------------------------------
  1414   // Check for integer reg-reg copy
  1415   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1416 #ifndef _LP64
  1417     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1418       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1419       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1420       //       operand contains the least significant word of the 64-bit value and vice versa.
  1421       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1422       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1423       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1424       if( cbuf ) {
  1425         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1426         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1427         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1428 #ifndef PRODUCT
  1429       } else if( !do_size ) {
  1430         if( size != 0 ) st->print("\n\t");
  1431         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1432         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1433         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1434 #endif
  1436       return size+12;
  1438     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1439       // returning a long value in I0/I1
  1440       // a SpillCopy must be able to target a return instruction's reg_class
  1441       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1442       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1443       //       operand contains the least significant word of the 64-bit value and vice versa.
  1444       OptoReg::Name tdest = dst_first;
  1446       if (src_first == dst_first) {
  1447         tdest = OptoReg::Name(R_O7_num);
  1448         size += 4;
  1451       if( cbuf ) {
  1452         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1453         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1454         // ShrL_reg_imm6
  1455         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1456         // ShrR_reg_imm6  src, 0, dst
  1457         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1458         if (tdest != dst_first) {
  1459           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1462 #ifndef PRODUCT
  1463       else if( !do_size ) {
  1464         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1465         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1466         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1467         if (tdest != dst_first) {
  1468           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1471 #endif // PRODUCT
  1472       return size+8;
  1474 #endif // !_LP64
  1475     // Else normal reg-reg copy
  1476     assert( src_second != dst_first, "smashed second before evacuating it" );
  1477     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1478     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1479     // This moves an aligned adjacent pair.
  1480     // See if we are done.
  1481     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1482       return size;
  1485   // Check for integer store
  1486   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1487     int offset = ra_->reg2offset(dst_first);
  1488     // Further check for aligned-adjacent pair, so we can use a double store
  1489     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1490       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1491     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1494   // Check for integer load
  1495   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1496     int offset = ra_->reg2offset(src_first);
  1497     // Further check for aligned-adjacent pair, so we can use a double load
  1498     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1499       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1500     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1503   // Check for float reg-reg copy
  1504   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1505     // Further check for aligned-adjacent pair, so we can use a double move
  1506     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1507       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1508     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1511   // Check for float store
  1512   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1513     int offset = ra_->reg2offset(dst_first);
  1514     // Further check for aligned-adjacent pair, so we can use a double store
  1515     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1516       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1517     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1520   // Check for float load
  1521   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1522     int offset = ra_->reg2offset(src_first);
  1523     // Further check for aligned-adjacent pair, so we can use a double load
  1524     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1525       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1526     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1529   // --------------------------------------------------------------------
  1530   // Check for hi bits still needing moving.  Only happens for misaligned
  1531   // arguments to native calls.
  1532   if( src_second == dst_second )
  1533     return size;               // Self copy; no move
  1534   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1536 #ifndef _LP64
  1537   // In the LP64 build, all registers can be moved as aligned/adjacent
  1538   // pairs, so there's never any need to move the high bits separately.
  1539   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1540   // all sorts of silly alignment problems.
  1542   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1543   // 32-bits of a 64-bit register, but are needed in low bits of another
  1544   // register (else it's a hi-bits-to-hi-bits copy which should have
  1545   // happened already as part of a 64-bit move)
  1546   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1547     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1548     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1549     // Shift src_second down to dst_second's low bits.
  1550     if( cbuf ) {
  1551       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1552 #ifndef PRODUCT
  1553     } else if( !do_size ) {
  1554       if( size != 0 ) st->print("\n\t");
  1555       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1556 #endif
  1558     return size+4;
  1561   // Check for high word integer store.  Must down-shift the hi bits
  1562   // into a temp register, then fall into the case of storing int bits.
  1563   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1564     // Shift src_second down to dst_second's low bits.
  1565     if( cbuf ) {
  1566       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1567 #ifndef PRODUCT
  1568     } else if( !do_size ) {
  1569       if( size != 0 ) st->print("\n\t");
  1570       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1571 #endif
  1573     size+=4;
  1574     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1577   // Check for high word integer load
  1578   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1579     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1581   // Check for high word integer store
  1582   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1583     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1585   // Check for high word float store
  1586   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1587     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1589 #endif // !_LP64
  1591   Unimplemented();
  1594 #ifndef PRODUCT
  1595 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1596   implementation( NULL, ra_, false, st );
  1598 #endif
  1600 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1601   implementation( &cbuf, ra_, false, NULL );
  1604 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1605   return implementation( NULL, ra_, true, NULL );
  1608 //=============================================================================
  1609 #ifndef PRODUCT
  1610 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1611   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1613 #endif
  1615 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1616   MacroAssembler _masm(&cbuf);
  1617   for(int i = 0; i < _count; i += 1) {
  1618     __ nop();
  1622 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1623   return 4 * _count;
  1627 //=============================================================================
  1628 #ifndef PRODUCT
  1629 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1630   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1631   int reg = ra_->get_reg_first(this);
  1632   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1634 #endif
  1636 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1637   MacroAssembler _masm(&cbuf);
  1638   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1639   int reg = ra_->get_encode(this);
  1641   if (Assembler::is_simm13(offset)) {
  1642      __ add(SP, offset, reg_to_register_object(reg));
  1643   } else {
  1644      __ set(offset, O7);
  1645      __ add(SP, O7, reg_to_register_object(reg));
  1649 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1650   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1651   assert(ra_ == ra_->C->regalloc(), "sanity");
  1652   return ra_->C->scratch_emit_size(this);
  1655 //=============================================================================
  1656 #ifndef PRODUCT
  1657 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1658   st->print_cr("\nUEP:");
  1659 #ifdef    _LP64
  1660   if (UseCompressedClassPointers) {
  1661     assert(Universe::heap() != NULL, "java heap should be initialized");
  1662     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1663     if (Universe::narrow_klass_base() != 0) {
  1664       st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
  1665       if (Universe::narrow_klass_shift() != 0) {
  1666         st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
  1668       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1669       st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
  1670     } else {
  1671       st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
  1673   } else {
  1674     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1676   st->print_cr("\tCMP    R_G5,R_G3" );
  1677   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1678 #else  // _LP64
  1679   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1680   st->print_cr("\tCMP    R_G5,R_G3" );
  1681   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1682 #endif // _LP64
  1684 #endif
  1686 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1687   MacroAssembler _masm(&cbuf);
  1688   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1689   Register temp_reg   = G3;
  1690   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1692   // Load klass from receiver
  1693   __ load_klass(O0, temp_reg);
  1694   // Compare against expected klass
  1695   __ cmp(temp_reg, G5_ic_reg);
  1696   // Branch to miss code, checks xcc or icc depending
  1697   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1700 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1701   return MachNode::size(ra_);
  1705 //=============================================================================
  1707 uint size_exception_handler() {
  1708   if (TraceJumps) {
  1709     return (400); // just a guess
  1711   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1714 uint size_deopt_handler() {
  1715   if (TraceJumps) {
  1716     return (400); // just a guess
  1718   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1721 // Emit exception handler code.
  1722 int emit_exception_handler(CodeBuffer& cbuf) {
  1723   Register temp_reg = G3;
  1724   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1725   MacroAssembler _masm(&cbuf);
  1727   address base =
  1728   __ start_a_stub(size_exception_handler());
  1729   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1731   int offset = __ offset();
  1733   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1734   __ delayed()->nop();
  1736   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1738   __ end_a_stub();
  1740   return offset;
  1743 int emit_deopt_handler(CodeBuffer& cbuf) {
  1744   // Can't use any of the current frame's registers as we may have deopted
  1745   // at a poll and everything (including G3) can be live.
  1746   Register temp_reg = L0;
  1747   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1748   MacroAssembler _masm(&cbuf);
  1750   address base =
  1751   __ start_a_stub(size_deopt_handler());
  1752   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1754   int offset = __ offset();
  1755   __ save_frame(0);
  1756   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1757   __ delayed()->restore();
  1759   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1761   __ end_a_stub();
  1762   return offset;
  1766 // Given a register encoding, produce a Integer Register object
  1767 static Register reg_to_register_object(int register_encoding) {
  1768   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1769   return as_Register(register_encoding);
  1772 // Given a register encoding, produce a single-precision Float Register object
  1773 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1774   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1775   return as_SingleFloatRegister(register_encoding);
  1778 // Given a register encoding, produce a double-precision Float Register object
  1779 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1780   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1781   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1782   return as_DoubleFloatRegister(register_encoding);
  1785 const bool Matcher::match_rule_supported(int opcode) {
  1786   if (!has_match_rule(opcode))
  1787     return false;
  1789   switch (opcode) {
  1790   case Op_CountLeadingZerosI:
  1791   case Op_CountLeadingZerosL:
  1792   case Op_CountTrailingZerosI:
  1793   case Op_CountTrailingZerosL:
  1794   case Op_PopCountI:
  1795   case Op_PopCountL:
  1796     if (!UsePopCountInstruction)
  1797       return false;
  1798   case Op_CompareAndSwapL:
  1799 #ifdef _LP64
  1800   case Op_CompareAndSwapP:
  1801 #endif
  1802     if (!VM_Version::supports_cx8())
  1803       return false;
  1804     break;
  1807   return true;  // Per default match rules are supported.
  1810 int Matcher::regnum_to_fpu_offset(int regnum) {
  1811   return regnum - 32; // The FP registers are in the second chunk
  1814 #ifdef ASSERT
  1815 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1816 #endif
  1818 // Vector width in bytes
  1819 const int Matcher::vector_width_in_bytes(BasicType bt) {
  1820   assert(MaxVectorSize == 8, "");
  1821   return 8;
  1824 // Vector ideal reg
  1825 const int Matcher::vector_ideal_reg(int size) {
  1826   assert(MaxVectorSize == 8, "");
  1827   return Op_RegD;
  1830 const int Matcher::vector_shift_count_ideal_reg(int size) {
  1831   fatal("vector shift is not supported");
  1832   return Node::NotAMachineReg;
  1835 // Limits on vector size (number of elements) loaded into vector.
  1836 const int Matcher::max_vector_size(const BasicType bt) {
  1837   assert(is_java_primitive(bt), "only primitive type vectors");
  1838   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  1841 const int Matcher::min_vector_size(const BasicType bt) {
  1842   return max_vector_size(bt); // Same as max.
  1845 // SPARC doesn't support misaligned vectors store/load.
  1846 const bool Matcher::misaligned_vectors_ok() {
  1847   return false;
  1850 // USII supports fxtof through the whole range of number, USIII doesn't
  1851 const bool Matcher::convL2FSupported(void) {
  1852   return VM_Version::has_fast_fxtof();
  1855 // Is this branch offset short enough that a short branch can be used?
  1856 //
  1857 // NOTE: If the platform does not provide any short branch variants, then
  1858 //       this method should return false for offset 0.
  1859 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1860   // The passed offset is relative to address of the branch.
  1861   // Don't need to adjust the offset.
  1862   return UseCBCond && Assembler::is_simm12(offset);
  1865 const bool Matcher::isSimpleConstant64(jlong value) {
  1866   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1867   // Depends on optimizations in MacroAssembler::setx.
  1868   int hi = (int)(value >> 32);
  1869   int lo = (int)(value & ~0);
  1870   return (hi == 0) || (hi == -1) || (lo == 0);
  1873 // No scaling for the parameter the ClearArray node.
  1874 const bool Matcher::init_array_count_is_in_bytes = true;
  1876 // Threshold size for cleararray.
  1877 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1879 // No additional cost for CMOVL.
  1880 const int Matcher::long_cmove_cost() { return 0; }
  1882 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
  1883 const int Matcher::float_cmove_cost() {
  1884   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
  1887 // Should the Matcher clone shifts on addressing modes, expecting them to
  1888 // be subsumed into complex addressing expressions or compute them into
  1889 // registers?  True for Intel but false for most RISCs
  1890 const bool Matcher::clone_shift_expressions = false;
  1892 // Do we need to mask the count passed to shift instructions or does
  1893 // the cpu only look at the lower 5/6 bits anyway?
  1894 const bool Matcher::need_masked_shift_count = false;
  1896 bool Matcher::narrow_oop_use_complex_address() {
  1897   NOT_LP64(ShouldNotCallThis());
  1898   assert(UseCompressedOops, "only for compressed oops code");
  1899   return false;
  1902 bool Matcher::narrow_klass_use_complex_address() {
  1903   NOT_LP64(ShouldNotCallThis());
  1904   assert(UseCompressedClassPointers, "only for compressed klass code");
  1905   return false;
  1908 // Is it better to copy float constants, or load them directly from memory?
  1909 // Intel can load a float constant from a direct address, requiring no
  1910 // extra registers.  Most RISCs will have to materialize an address into a
  1911 // register first, so they would do better to copy the constant from stack.
  1912 const bool Matcher::rematerialize_float_constants = false;
  1914 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1915 // needed.  Else we split the double into 2 integer pieces and move it
  1916 // piece-by-piece.  Only happens when passing doubles into C code as the
  1917 // Java calling convention forces doubles to be aligned.
  1918 #ifdef _LP64
  1919 const bool Matcher::misaligned_doubles_ok = true;
  1920 #else
  1921 const bool Matcher::misaligned_doubles_ok = false;
  1922 #endif
  1924 // No-op on SPARC.
  1925 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1928 // Advertise here if the CPU requires explicit rounding operations
  1929 // to implement the UseStrictFP mode.
  1930 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1932 // Are floats conerted to double when stored to stack during deoptimization?
  1933 // Sparc does not handle callee-save floats.
  1934 bool Matcher::float_in_double() { return false; }
  1936 // Do ints take an entire long register or just half?
  1937 // Note that we if-def off of _LP64.
  1938 // The relevant question is how the int is callee-saved.  In _LP64
  1939 // the whole long is written but de-opt'ing will have to extract
  1940 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1941 #ifdef _LP64
  1942 const bool Matcher::int_in_long = true;
  1943 #else
  1944 const bool Matcher::int_in_long = false;
  1945 #endif
  1947 // Return whether or not this register is ever used as an argument.  This
  1948 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1949 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1950 // arguments in those registers not be available to the callee.
  1951 bool Matcher::can_be_java_arg( int reg ) {
  1952   // Standard sparc 6 args in registers
  1953   if( reg == R_I0_num ||
  1954       reg == R_I1_num ||
  1955       reg == R_I2_num ||
  1956       reg == R_I3_num ||
  1957       reg == R_I4_num ||
  1958       reg == R_I5_num ) return true;
  1959 #ifdef _LP64
  1960   // 64-bit builds can pass 64-bit pointers and longs in
  1961   // the high I registers
  1962   if( reg == R_I0H_num ||
  1963       reg == R_I1H_num ||
  1964       reg == R_I2H_num ||
  1965       reg == R_I3H_num ||
  1966       reg == R_I4H_num ||
  1967       reg == R_I5H_num ) return true;
  1969   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1970     return true;
  1973 #else
  1974   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1975   // Longs cannot be passed in O regs, because O regs become I regs
  1976   // after a 'save' and I regs get their high bits chopped off on
  1977   // interrupt.
  1978   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1979   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1980 #endif
  1981   // A few float args in registers
  1982   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1984   return false;
  1987 bool Matcher::is_spillable_arg( int reg ) {
  1988   return can_be_java_arg(reg);
  1991 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1992   // Use hardware SDIVX instruction when it is
  1993   // faster than a code which use multiply.
  1994   return VM_Version::has_fast_idiv();
  1997 // Register for DIVI projection of divmodI
  1998 RegMask Matcher::divI_proj_mask() {
  1999   ShouldNotReachHere();
  2000   return RegMask();
  2003 // Register for MODI projection of divmodI
  2004 RegMask Matcher::modI_proj_mask() {
  2005   ShouldNotReachHere();
  2006   return RegMask();
  2009 // Register for DIVL projection of divmodL
  2010 RegMask Matcher::divL_proj_mask() {
  2011   ShouldNotReachHere();
  2012   return RegMask();
  2015 // Register for MODL projection of divmodL
  2016 RegMask Matcher::modL_proj_mask() {
  2017   ShouldNotReachHere();
  2018   return RegMask();
  2021 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2022   return L7_REGP_mask();
  2025 const RegMask Matcher::mathExactI_result_proj_mask() {
  2026   return G1_REGI_mask();
  2029 const RegMask Matcher::mathExactL_result_proj_mask() {
  2030   return G1_REGL_mask();
  2033 const RegMask Matcher::mathExactI_flags_proj_mask() {
  2034   return INT_FLAGS_mask();
  2038 %}
  2041 // The intptr_t operand types, defined by textual substitution.
  2042 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  2043 #ifdef _LP64
  2044 #define immX      immL
  2045 #define immX13    immL13
  2046 #define immX13m7  immL13m7
  2047 #define iRegX     iRegL
  2048 #define g1RegX    g1RegL
  2049 #else
  2050 #define immX      immI
  2051 #define immX13    immI13
  2052 #define immX13m7  immI13m7
  2053 #define iRegX     iRegI
  2054 #define g1RegX    g1RegI
  2055 #endif
  2057 //----------ENCODING BLOCK-----------------------------------------------------
  2058 // This block specifies the encoding classes used by the compiler to output
  2059 // byte streams.  Encoding classes are parameterized macros used by
  2060 // Machine Instruction Nodes in order to generate the bit encoding of the
  2061 // instruction.  Operands specify their base encoding interface with the
  2062 // interface keyword.  There are currently supported four interfaces,
  2063 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2064 // operand to generate a function which returns its register number when
  2065 // queried.   CONST_INTER causes an operand to generate a function which
  2066 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2067 // operand to generate four functions which return the Base Register, the
  2068 // Index Register, the Scale Value, and the Offset Value of the operand when
  2069 // queried.  COND_INTER causes an operand to generate six functions which
  2070 // return the encoding code (ie - encoding bits for the instruction)
  2071 // associated with each basic boolean condition for a conditional instruction.
  2072 //
  2073 // Instructions specify two basic values for encoding.  Again, a function
  2074 // is available to check if the constant displacement is an oop. They use the
  2075 // ins_encode keyword to specify their encoding classes (which must be
  2076 // a sequence of enc_class names, and their parameters, specified in
  2077 // the encoding block), and they use the
  2078 // opcode keyword to specify, in order, their primary, secondary, and
  2079 // tertiary opcode.  Only the opcode sections which a particular instruction
  2080 // needs for encoding need to be specified.
  2081 encode %{
  2082   enc_class enc_untested %{
  2083 #ifdef ASSERT
  2084     MacroAssembler _masm(&cbuf);
  2085     __ untested("encoding");
  2086 #endif
  2087   %}
  2089   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2090     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  2091                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2092   %}
  2094   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2095     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2096                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2097   %}
  2099   enc_class form3_mem_prefetch_read( memory mem ) %{
  2100     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2101                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2102   %}
  2104   enc_class form3_mem_prefetch_write( memory mem ) %{
  2105     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2106                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2107   %}
  2109   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2110     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2111     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2112     guarantee($mem$$index == R_G0_enc, "double index?");
  2113     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2114     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2115     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2116     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2117   %}
  2119   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2120     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2121     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2122     guarantee($mem$$index == R_G0_enc, "double index?");
  2123     // Load long with 2 instructions
  2124     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2125     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2126   %}
  2128   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2129   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2130     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2131     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2132   %}
  2134   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2135     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2136     if( $rs2$$reg != $rd$$reg )
  2137       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2138   %}
  2140   // Target lo half of long
  2141   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2142     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2143     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2144       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2145   %}
  2147   // Source lo half of long
  2148   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2149     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2150     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2151       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2152   %}
  2154   // Target hi half of long
  2155   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2156     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2157   %}
  2159   // Source lo half of long, and leave it sign extended.
  2160   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2161     // Sign extend low half
  2162     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2163   %}
  2165   // Source hi half of long, and leave it sign extended.
  2166   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2167     // Shift high half to low half
  2168     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2169   %}
  2171   // Source hi half of long
  2172   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2173     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2174     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2175       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2176   %}
  2178   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2179     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2180   %}
  2182   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2183     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2184     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2185   %}
  2187   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2188     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2189     // clear if nothing else is happening
  2190     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2191     // blt,a,pn done
  2192     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2193     // mov dst,-1 in delay slot
  2194     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2195   %}
  2197   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2198     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2199   %}
  2201   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2202     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2203   %}
  2205   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2206     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2207   %}
  2209   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2210     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2211   %}
  2213   enc_class move_return_pc_to_o1() %{
  2214     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2215   %}
  2217 #ifdef _LP64
  2218   /* %%% merge with enc_to_bool */
  2219   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2220     MacroAssembler _masm(&cbuf);
  2222     Register   src_reg = reg_to_register_object($src$$reg);
  2223     Register   dst_reg = reg_to_register_object($dst$$reg);
  2224     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2225   %}
  2226 #endif
  2228   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2229     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2230     MacroAssembler _masm(&cbuf);
  2232     Register   p_reg = reg_to_register_object($p$$reg);
  2233     Register   q_reg = reg_to_register_object($q$$reg);
  2234     Register   y_reg = reg_to_register_object($y$$reg);
  2235     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2237     __ subcc( p_reg, q_reg,   p_reg );
  2238     __ add  ( p_reg, y_reg, tmp_reg );
  2239     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2240   %}
  2242   enc_class form_d2i_helper(regD src, regF dst) %{
  2243     // fcmp %fcc0,$src,$src
  2244     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2245     // branch %fcc0 not-nan, predict taken
  2246     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2247     // fdtoi $src,$dst
  2248     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2249     // fitos $dst,$dst (if nan)
  2250     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2251     // clear $dst (if nan)
  2252     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2253     // carry on here...
  2254   %}
  2256   enc_class form_d2l_helper(regD src, regD dst) %{
  2257     // fcmp %fcc0,$src,$src  check for NAN
  2258     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2259     // branch %fcc0 not-nan, predict taken
  2260     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2261     // fdtox $src,$dst   convert in delay slot
  2262     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2263     // fxtod $dst,$dst  (if nan)
  2264     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2265     // clear $dst (if nan)
  2266     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2267     // carry on here...
  2268   %}
  2270   enc_class form_f2i_helper(regF src, regF dst) %{
  2271     // fcmps %fcc0,$src,$src
  2272     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2273     // branch %fcc0 not-nan, predict taken
  2274     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2275     // fstoi $src,$dst
  2276     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2277     // fitos $dst,$dst (if nan)
  2278     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2279     // clear $dst (if nan)
  2280     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2281     // carry on here...
  2282   %}
  2284   enc_class form_f2l_helper(regF src, regD dst) %{
  2285     // fcmps %fcc0,$src,$src
  2286     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2287     // branch %fcc0 not-nan, predict taken
  2288     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2289     // fstox $src,$dst
  2290     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2291     // fxtod $dst,$dst (if nan)
  2292     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2293     // clear $dst (if nan)
  2294     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2295     // carry on here...
  2296   %}
  2298   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2299   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2300   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2301   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2303   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2305   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2306   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2308   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2309     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2310   %}
  2312   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2313     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2314   %}
  2316   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2317     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2318   %}
  2320   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2321     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2322   %}
  2324   enc_class form3_convI2F(regF rs2, regF rd) %{
  2325     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2326   %}
  2328   // Encloding class for traceable jumps
  2329   enc_class form_jmpl(g3RegP dest) %{
  2330     emit_jmpl(cbuf, $dest$$reg);
  2331   %}
  2333   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2334     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2335   %}
  2337   enc_class form2_nop() %{
  2338     emit_nop(cbuf);
  2339   %}
  2341   enc_class form2_illtrap() %{
  2342     emit_illtrap(cbuf);
  2343   %}
  2346   // Compare longs and convert into -1, 0, 1.
  2347   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2348     // CMP $src1,$src2
  2349     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2350     // blt,a,pn done
  2351     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2352     // mov dst,-1 in delay slot
  2353     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2354     // bgt,a,pn done
  2355     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2356     // mov dst,1 in delay slot
  2357     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2358     // CLR    $dst
  2359     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2360   %}
  2362   enc_class enc_PartialSubtypeCheck() %{
  2363     MacroAssembler _masm(&cbuf);
  2364     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2365     __ delayed()->nop();
  2366   %}
  2368   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2369     MacroAssembler _masm(&cbuf);
  2370     Label* L = $labl$$label;
  2371     Assembler::Predict predict_taken =
  2372       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2374     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2375     __ delayed()->nop();
  2376   %}
  2378   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2379     MacroAssembler _masm(&cbuf);
  2380     Label* L = $labl$$label;
  2381     Assembler::Predict predict_taken =
  2382       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2384     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2385     __ delayed()->nop();
  2386   %}
  2388   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2389     int op = (Assembler::arith_op << 30) |
  2390              ($dst$$reg << 25) |
  2391              (Assembler::movcc_op3 << 19) |
  2392              (1 << 18) |                    // cc2 bit for 'icc'
  2393              ($cmp$$cmpcode << 14) |
  2394              (0 << 13) |                    // select register move
  2395              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2396              ($src$$reg << 0);
  2397     cbuf.insts()->emit_int32(op);
  2398   %}
  2400   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2401     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2402     int op = (Assembler::arith_op << 30) |
  2403              ($dst$$reg << 25) |
  2404              (Assembler::movcc_op3 << 19) |
  2405              (1 << 18) |                    // cc2 bit for 'icc'
  2406              ($cmp$$cmpcode << 14) |
  2407              (1 << 13) |                    // select immediate move
  2408              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2409              (simm11 << 0);
  2410     cbuf.insts()->emit_int32(op);
  2411   %}
  2413   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2414     int op = (Assembler::arith_op << 30) |
  2415              ($dst$$reg << 25) |
  2416              (Assembler::movcc_op3 << 19) |
  2417              (0 << 18) |                    // cc2 bit for 'fccX'
  2418              ($cmp$$cmpcode << 14) |
  2419              (0 << 13) |                    // select register move
  2420              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2421              ($src$$reg << 0);
  2422     cbuf.insts()->emit_int32(op);
  2423   %}
  2425   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2426     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2427     int op = (Assembler::arith_op << 30) |
  2428              ($dst$$reg << 25) |
  2429              (Assembler::movcc_op3 << 19) |
  2430              (0 << 18) |                    // cc2 bit for 'fccX'
  2431              ($cmp$$cmpcode << 14) |
  2432              (1 << 13) |                    // select immediate move
  2433              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2434              (simm11 << 0);
  2435     cbuf.insts()->emit_int32(op);
  2436   %}
  2438   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2439     int op = (Assembler::arith_op << 30) |
  2440              ($dst$$reg << 25) |
  2441              (Assembler::fpop2_op3 << 19) |
  2442              (0 << 18) |
  2443              ($cmp$$cmpcode << 14) |
  2444              (1 << 13) |                    // select register move
  2445              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2446              ($primary << 5) |              // select single, double or quad
  2447              ($src$$reg << 0);
  2448     cbuf.insts()->emit_int32(op);
  2449   %}
  2451   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2452     int op = (Assembler::arith_op << 30) |
  2453              ($dst$$reg << 25) |
  2454              (Assembler::fpop2_op3 << 19) |
  2455              (0 << 18) |
  2456              ($cmp$$cmpcode << 14) |
  2457              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2458              ($primary << 5) |              // select single, double or quad
  2459              ($src$$reg << 0);
  2460     cbuf.insts()->emit_int32(op);
  2461   %}
  2463   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2464   // the condition comes from opcode-field instead of an argument.
  2465   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2466     int op = (Assembler::arith_op << 30) |
  2467              ($dst$$reg << 25) |
  2468              (Assembler::movcc_op3 << 19) |
  2469              (1 << 18) |                    // cc2 bit for 'icc'
  2470              ($primary << 14) |
  2471              (0 << 13) |                    // select register move
  2472              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2473              ($src$$reg << 0);
  2474     cbuf.insts()->emit_int32(op);
  2475   %}
  2477   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2478     int op = (Assembler::arith_op << 30) |
  2479              ($dst$$reg << 25) |
  2480              (Assembler::movcc_op3 << 19) |
  2481              (6 << 16) |                    // cc2 bit for 'xcc'
  2482              ($primary << 14) |
  2483              (0 << 13) |                    // select register move
  2484              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2485              ($src$$reg << 0);
  2486     cbuf.insts()->emit_int32(op);
  2487   %}
  2489   enc_class Set13( immI13 src, iRegI rd ) %{
  2490     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2491   %}
  2493   enc_class SetHi22( immI src, iRegI rd ) %{
  2494     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2495   %}
  2497   enc_class Set32( immI src, iRegI rd ) %{
  2498     MacroAssembler _masm(&cbuf);
  2499     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2500   %}
  2502   enc_class call_epilog %{
  2503     if( VerifyStackAtCalls ) {
  2504       MacroAssembler _masm(&cbuf);
  2505       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2506       Register temp_reg = G3;
  2507       __ add(SP, framesize, temp_reg);
  2508       __ cmp(temp_reg, FP);
  2509       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2511   %}
  2513   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2514   // to G1 so the register allocator will not have to deal with the misaligned register
  2515   // pair.
  2516   enc_class adjust_long_from_native_call %{
  2517 #ifndef _LP64
  2518     if (returns_long()) {
  2519       //    sllx  O0,32,O0
  2520       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2521       //    srl   O1,0,O1
  2522       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2523       //    or    O0,O1,G1
  2524       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2526 #endif
  2527   %}
  2529   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2530     // CALL directly to the runtime
  2531     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2532     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2533                     /*preserve_g2=*/true);
  2534   %}
  2536   enc_class preserve_SP %{
  2537     MacroAssembler _masm(&cbuf);
  2538     __ mov(SP, L7_mh_SP_save);
  2539   %}
  2541   enc_class restore_SP %{
  2542     MacroAssembler _masm(&cbuf);
  2543     __ mov(L7_mh_SP_save, SP);
  2544   %}
  2546   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2547     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2548     // who we intended to call.
  2549     if (!_method) {
  2550       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2551     } else if (_optimized_virtual) {
  2552       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2553     } else {
  2554       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2556     if (_method) {  // Emit stub for static call.
  2557       CompiledStaticCall::emit_to_interp_stub(cbuf);
  2559   %}
  2561   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2562     MacroAssembler _masm(&cbuf);
  2563     __ set_inst_mark();
  2564     int vtable_index = this->_vtable_index;
  2565     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2566     if (vtable_index < 0) {
  2567       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2568       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  2569       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2570       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2571       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2572       __ ic_call((address)$meth$$method);
  2573     } else {
  2574       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2575       // Just go thru the vtable
  2576       // get receiver klass (receiver already checked for non-null)
  2577       // If we end up going thru a c2i adapter interpreter expects method in G5
  2578       int off = __ offset();
  2579       __ load_klass(O0, G3_scratch);
  2580       int klass_load_size;
  2581       if (UseCompressedClassPointers) {
  2582         assert(Universe::heap() != NULL, "java heap should be initialized");
  2583         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
  2584       } else {
  2585         klass_load_size = 1*BytesPerInstWord;
  2587       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2588       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2589       if (Assembler::is_simm13(v_off)) {
  2590         __ ld_ptr(G3, v_off, G5_method);
  2591       } else {
  2592         // Generate 2 instructions
  2593         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2594         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2595         // ld_ptr, set_hi, set
  2596         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2597                "Unexpected instruction size(s)");
  2598         __ ld_ptr(G3, G5_method, G5_method);
  2600       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2601       // However it may very well end up in handle_wrong_method if the
  2602       // method is abstract for the particular class.
  2603       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
  2604       // jump to target (either compiled code or c2iadapter)
  2605       __ jmpl(G3_scratch, G0, O7);
  2606       __ delayed()->nop();
  2608   %}
  2610   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2611     MacroAssembler _masm(&cbuf);
  2613     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2614     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2615                               // we might be calling a C2I adapter which needs it.
  2617     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2618     // Load nmethod
  2619     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
  2621     // CALL to compiled java, indirect the contents of G3
  2622     __ set_inst_mark();
  2623     __ callr(temp_reg, G0);
  2624     __ delayed()->nop();
  2625   %}
  2627 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2628     MacroAssembler _masm(&cbuf);
  2629     Register Rdividend = reg_to_register_object($src1$$reg);
  2630     Register Rdivisor = reg_to_register_object($src2$$reg);
  2631     Register Rresult = reg_to_register_object($dst$$reg);
  2633     __ sra(Rdivisor, 0, Rdivisor);
  2634     __ sra(Rdividend, 0, Rdividend);
  2635     __ sdivx(Rdividend, Rdivisor, Rresult);
  2636 %}
  2638 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2639     MacroAssembler _masm(&cbuf);
  2641     Register Rdividend = reg_to_register_object($src1$$reg);
  2642     int divisor = $imm$$constant;
  2643     Register Rresult = reg_to_register_object($dst$$reg);
  2645     __ sra(Rdividend, 0, Rdividend);
  2646     __ sdivx(Rdividend, divisor, Rresult);
  2647 %}
  2649 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2650     MacroAssembler _masm(&cbuf);
  2651     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2652     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2653     Register Rdst  = reg_to_register_object($dst$$reg);
  2655     __ sra( Rsrc1, 0, Rsrc1 );
  2656     __ sra( Rsrc2, 0, Rsrc2 );
  2657     __ mulx( Rsrc1, Rsrc2, Rdst );
  2658     __ srlx( Rdst, 32, Rdst );
  2659 %}
  2661 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2662     MacroAssembler _masm(&cbuf);
  2663     Register Rdividend = reg_to_register_object($src1$$reg);
  2664     Register Rdivisor = reg_to_register_object($src2$$reg);
  2665     Register Rresult = reg_to_register_object($dst$$reg);
  2666     Register Rscratch = reg_to_register_object($scratch$$reg);
  2668     assert(Rdividend != Rscratch, "");
  2669     assert(Rdivisor  != Rscratch, "");
  2671     __ sra(Rdividend, 0, Rdividend);
  2672     __ sra(Rdivisor, 0, Rdivisor);
  2673     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2674     __ mulx(Rscratch, Rdivisor, Rscratch);
  2675     __ sub(Rdividend, Rscratch, Rresult);
  2676 %}
  2678 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2679     MacroAssembler _masm(&cbuf);
  2681     Register Rdividend = reg_to_register_object($src1$$reg);
  2682     int divisor = $imm$$constant;
  2683     Register Rresult = reg_to_register_object($dst$$reg);
  2684     Register Rscratch = reg_to_register_object($scratch$$reg);
  2686     assert(Rdividend != Rscratch, "");
  2688     __ sra(Rdividend, 0, Rdividend);
  2689     __ sdivx(Rdividend, divisor, Rscratch);
  2690     __ mulx(Rscratch, divisor, Rscratch);
  2691     __ sub(Rdividend, Rscratch, Rresult);
  2692 %}
  2694 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2695     MacroAssembler _masm(&cbuf);
  2697     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2698     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2700     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2701 %}
  2703 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2704     MacroAssembler _masm(&cbuf);
  2706     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2707     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2709     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2710 %}
  2712 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2713     MacroAssembler _masm(&cbuf);
  2715     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2716     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2718     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2719 %}
  2721 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2722     MacroAssembler _masm(&cbuf);
  2724     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2725     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2727     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2728 %}
  2730 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2731     MacroAssembler _masm(&cbuf);
  2733     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2734     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2736     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2737 %}
  2739 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2740     MacroAssembler _masm(&cbuf);
  2742     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2743     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2745     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2746 %}
  2748 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2749     MacroAssembler _masm(&cbuf);
  2751     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2752     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2754     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2755 %}
  2757 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2758     MacroAssembler _masm(&cbuf);
  2760     Register Roop  = reg_to_register_object($oop$$reg);
  2761     Register Rbox  = reg_to_register_object($box$$reg);
  2762     Register Rscratch = reg_to_register_object($scratch$$reg);
  2763     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2765     assert(Roop  != Rscratch, "");
  2766     assert(Roop  != Rmark, "");
  2767     assert(Rbox  != Rscratch, "");
  2768     assert(Rbox  != Rmark, "");
  2770     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2771 %}
  2773 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2774     MacroAssembler _masm(&cbuf);
  2776     Register Roop  = reg_to_register_object($oop$$reg);
  2777     Register Rbox  = reg_to_register_object($box$$reg);
  2778     Register Rscratch = reg_to_register_object($scratch$$reg);
  2779     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2781     assert(Roop  != Rscratch, "");
  2782     assert(Roop  != Rmark, "");
  2783     assert(Rbox  != Rscratch, "");
  2784     assert(Rbox  != Rmark, "");
  2786     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2787   %}
  2789   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2790     MacroAssembler _masm(&cbuf);
  2791     Register Rmem = reg_to_register_object($mem$$reg);
  2792     Register Rold = reg_to_register_object($old$$reg);
  2793     Register Rnew = reg_to_register_object($new$$reg);
  2795     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2796     __ cmp( Rold, Rnew );
  2797   %}
  2799   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2800     Register Rmem = reg_to_register_object($mem$$reg);
  2801     Register Rold = reg_to_register_object($old$$reg);
  2802     Register Rnew = reg_to_register_object($new$$reg);
  2804     MacroAssembler _masm(&cbuf);
  2805     __ mov(Rnew, O7);
  2806     __ casx(Rmem, Rold, O7);
  2807     __ cmp( Rold, O7 );
  2808   %}
  2810   // raw int cas, used for compareAndSwap
  2811   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2812     Register Rmem = reg_to_register_object($mem$$reg);
  2813     Register Rold = reg_to_register_object($old$$reg);
  2814     Register Rnew = reg_to_register_object($new$$reg);
  2816     MacroAssembler _masm(&cbuf);
  2817     __ mov(Rnew, O7);
  2818     __ cas(Rmem, Rold, O7);
  2819     __ cmp( Rold, O7 );
  2820   %}
  2822   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2823     Register Rres = reg_to_register_object($res$$reg);
  2825     MacroAssembler _masm(&cbuf);
  2826     __ mov(1, Rres);
  2827     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2828   %}
  2830   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2831     Register Rres = reg_to_register_object($res$$reg);
  2833     MacroAssembler _masm(&cbuf);
  2834     __ mov(1, Rres);
  2835     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2836   %}
  2838   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2839     MacroAssembler _masm(&cbuf);
  2840     Register Rdst = reg_to_register_object($dst$$reg);
  2841     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2842                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2843     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2844                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2846     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2847     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2848   %}
  2851   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2852     Label Ldone, Lloop;
  2853     MacroAssembler _masm(&cbuf);
  2855     Register   str1_reg = reg_to_register_object($str1$$reg);
  2856     Register   str2_reg = reg_to_register_object($str2$$reg);
  2857     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2858     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2859     Register result_reg = reg_to_register_object($result$$reg);
  2861     assert(result_reg != str1_reg &&
  2862            result_reg != str2_reg &&
  2863            result_reg != cnt1_reg &&
  2864            result_reg != cnt2_reg ,
  2865            "need different registers");
  2867     // Compute the minimum of the string lengths(str1_reg) and the
  2868     // difference of the string lengths (stack)
  2870     // See if the lengths are different, and calculate min in str1_reg.
  2871     // Stash diff in O7 in case we need it for a tie-breaker.
  2872     Label Lskip;
  2873     __ subcc(cnt1_reg, cnt2_reg, O7);
  2874     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2875     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2876     // cnt2 is shorter, so use its count:
  2877     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2878     __ bind(Lskip);
  2880     // reallocate cnt1_reg, cnt2_reg, result_reg
  2881     // Note:  limit_reg holds the string length pre-scaled by 2
  2882     Register limit_reg =   cnt1_reg;
  2883     Register  chr2_reg =   cnt2_reg;
  2884     Register  chr1_reg = result_reg;
  2885     // str{12} are the base pointers
  2887     // Is the minimum length zero?
  2888     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2889     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2890     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2892     // Load first characters
  2893     __ lduh(str1_reg, 0, chr1_reg);
  2894     __ lduh(str2_reg, 0, chr2_reg);
  2896     // Compare first characters
  2897     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2898     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2899     assert(chr1_reg == result_reg, "result must be pre-placed");
  2900     __ delayed()->nop();
  2903       // Check after comparing first character to see if strings are equivalent
  2904       Label LSkip2;
  2905       // Check if the strings start at same location
  2906       __ cmp(str1_reg, str2_reg);
  2907       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2908       __ delayed()->nop();
  2910       // Check if the length difference is zero (in O7)
  2911       __ cmp(G0, O7);
  2912       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2913       __ delayed()->mov(G0, result_reg);  // result is zero
  2915       // Strings might not be equal
  2916       __ bind(LSkip2);
  2919     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
  2920     __ signx(limit_reg);
  2922     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2923     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2924     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2926     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2927     __ add(str1_reg, limit_reg, str1_reg);
  2928     __ add(str2_reg, limit_reg, str2_reg);
  2929     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2931     // Compare the rest of the characters
  2932     __ lduh(str1_reg, limit_reg, chr1_reg);
  2933     __ bind(Lloop);
  2934     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2935     __ lduh(str2_reg, limit_reg, chr2_reg);
  2936     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2937     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2938     assert(chr1_reg == result_reg, "result must be pre-placed");
  2939     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2940     // annul LDUH if branch is not taken to prevent access past end of string
  2941     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2942     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2944     // If strings are equal up to min length, return the length difference.
  2945     __ mov(O7, result_reg);
  2947     // Otherwise, return the difference between the first mismatched chars.
  2948     __ bind(Ldone);
  2949   %}
  2951 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2952     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2953     MacroAssembler _masm(&cbuf);
  2955     Register   str1_reg = reg_to_register_object($str1$$reg);
  2956     Register   str2_reg = reg_to_register_object($str2$$reg);
  2957     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2958     Register   tmp1_reg = O7;
  2959     Register result_reg = reg_to_register_object($result$$reg);
  2961     assert(result_reg != str1_reg &&
  2962            result_reg != str2_reg &&
  2963            result_reg !=  cnt_reg &&
  2964            result_reg != tmp1_reg ,
  2965            "need different registers");
  2967     __ cmp(str1_reg, str2_reg); //same char[] ?
  2968     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2969     __ delayed()->add(G0, 1, result_reg);
  2971     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  2972     __ delayed()->add(G0, 1, result_reg); // count == 0
  2974     //rename registers
  2975     Register limit_reg =    cnt_reg;
  2976     Register  chr1_reg = result_reg;
  2977     Register  chr2_reg =   tmp1_reg;
  2979     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
  2980     __ signx(limit_reg);
  2982     //check for alignment and position the pointers to the ends
  2983     __ or3(str1_reg, str2_reg, chr1_reg);
  2984     __ andcc(chr1_reg, 0x3, chr1_reg);
  2985     // notZero means at least one not 4-byte aligned.
  2986     // We could optimize the case when both arrays are not aligned
  2987     // but it is not frequent case and it requires additional checks.
  2988     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2989     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2991     // Compare char[] arrays aligned to 4 bytes.
  2992     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  2993                           chr1_reg, chr2_reg, Ldone);
  2994     __ ba(Ldone);
  2995     __ delayed()->add(G0, 1, result_reg);
  2997     // char by char compare
  2998     __ bind(Lchar);
  2999     __ add(str1_reg, limit_reg, str1_reg);
  3000     __ add(str2_reg, limit_reg, str2_reg);
  3001     __ neg(limit_reg); //negate count
  3003     __ lduh(str1_reg, limit_reg, chr1_reg);
  3004     // Lchar_loop
  3005     __ bind(Lchar_loop);
  3006     __ lduh(str2_reg, limit_reg, chr2_reg);
  3007     __ cmp(chr1_reg, chr2_reg);
  3008     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3009     __ delayed()->mov(G0, result_reg); //not equal
  3010     __ inccc(limit_reg, sizeof(jchar));
  3011     // annul LDUH if branch is not taken to prevent access past end of string
  3012     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  3013     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  3015     __ add(G0, 1, result_reg);  //equal
  3017     __ bind(Ldone);
  3018   %}
  3020 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3021     Label Lvector, Ldone, Lloop;
  3022     MacroAssembler _masm(&cbuf);
  3024     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3025     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3026     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3027     Register   tmp2_reg = O7;
  3028     Register result_reg = reg_to_register_object($result$$reg);
  3030     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3031     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3033     // return true if the same array
  3034     __ cmp(ary1_reg, ary2_reg);
  3035     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3036     __ delayed()->add(G0, 1, result_reg); // equal
  3038     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3039     __ delayed()->mov(G0, result_reg);    // not equal
  3041     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3042     __ delayed()->mov(G0, result_reg);    // not equal
  3044     //load the lengths of arrays
  3045     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3046     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3048     // return false if the two arrays are not equal length
  3049     __ cmp(tmp1_reg, tmp2_reg);
  3050     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3051     __ delayed()->mov(G0, result_reg);     // not equal
  3053     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3054     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3056     // load array addresses
  3057     __ add(ary1_reg, base_offset, ary1_reg);
  3058     __ add(ary2_reg, base_offset, ary2_reg);
  3060     // renaming registers
  3061     Register chr1_reg  =  result_reg; // for characters in ary1
  3062     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3063     Register limit_reg =  tmp1_reg;   // length
  3065     // set byte count
  3066     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3068     // Compare char[] arrays aligned to 4 bytes.
  3069     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3070                           chr1_reg, chr2_reg, Ldone);
  3071     __ add(G0, 1, result_reg); // equals
  3073     __ bind(Ldone);
  3074   %}
  3076   enc_class enc_rethrow() %{
  3077     cbuf.set_insts_mark();
  3078     Register temp_reg = G3;
  3079     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3080     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3081     MacroAssembler _masm(&cbuf);
  3082 #ifdef ASSERT
  3083     __ save_frame(0);
  3084     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3085     __ sethi(last_rethrow_addrlit, L1);
  3086     Address addr(L1, last_rethrow_addrlit.low10());
  3087     __ rdpc(L2);
  3088     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3089     __ st_ptr(L2, addr);
  3090     __ restore();
  3091 #endif
  3092     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3093     __ delayed()->nop();
  3094   %}
  3096   enc_class emit_mem_nop() %{
  3097     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3098     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3099   %}
  3101   enc_class emit_fadd_nop() %{
  3102     // Generates the instruction FMOVS f31,f31
  3103     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3104   %}
  3106   enc_class emit_br_nop() %{
  3107     // Generates the instruction BPN,PN .
  3108     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3109   %}
  3111   enc_class enc_membar_acquire %{
  3112     MacroAssembler _masm(&cbuf);
  3113     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3114   %}
  3116   enc_class enc_membar_release %{
  3117     MacroAssembler _masm(&cbuf);
  3118     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3119   %}
  3121   enc_class enc_membar_volatile %{
  3122     MacroAssembler _masm(&cbuf);
  3123     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3124   %}
  3126 %}
  3128 //----------FRAME--------------------------------------------------------------
  3129 // Definition of frame structure and management information.
  3130 //
  3131 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3132 //                             |   (to get allocators register number
  3133 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3134 //  r   CALLER     |        |
  3135 //  o     |        +--------+      pad to even-align allocators stack-slot
  3136 //  w     V        |  pad0  |        numbers; owned by CALLER
  3137 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3138 //  h     ^        |   in   |  5
  3139 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3140 //  |     |        |        |  3
  3141 //  |     |        +--------+
  3142 //  V     |        | old out|      Empty on Intel, window on Sparc
  3143 //        |    old |preserve|      Must be even aligned.
  3144 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3145 //        |        |   in   |  3   area for Intel ret address
  3146 //     Owned by    |preserve|      Empty on Sparc.
  3147 //       SELF      +--------+
  3148 //        |        |  pad2  |  2   pad to align old SP
  3149 //        |        +--------+  1
  3150 //        |        | locks  |  0
  3151 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3152 //        |        |  pad1  | 11   pad to align new SP
  3153 //        |        +--------+
  3154 //        |        |        | 10
  3155 //        |        | spills |  9   spills
  3156 //        V        |        |  8   (pad0 slot for callee)
  3157 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3158 //        ^        |  out   |  7
  3159 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3160 //     Owned by    +--------+
  3161 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3162 //        |    new |preserve|      Must be even-aligned.
  3163 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3164 //        |        |        |
  3165 //
  3166 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3167 //         known from SELF's arguments and the Java calling convention.
  3168 //         Region 6-7 is determined per call site.
  3169 // Note 2: If the calling convention leaves holes in the incoming argument
  3170 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3171 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3172 //         incoming area, as the Java calling convention is completely under
  3173 //         the control of the AD file.  Doubles can be sorted and packed to
  3174 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3175 //         varargs C calling conventions.
  3176 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3177 //         even aligned with pad0 as needed.
  3178 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3179 //         region 6-11 is even aligned; it may be padded out more so that
  3180 //         the region from SP to FP meets the minimum stack alignment.
  3182 frame %{
  3183   // What direction does stack grow in (assumed to be same for native & Java)
  3184   stack_direction(TOWARDS_LOW);
  3186   // These two registers define part of the calling convention
  3187   // between compiled code and the interpreter.
  3188   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
  3189   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3191   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3192   cisc_spilling_operand_name(indOffset);
  3194   // Number of stack slots consumed by a Monitor enter
  3195 #ifdef _LP64
  3196   sync_stack_slots(2);
  3197 #else
  3198   sync_stack_slots(1);
  3199 #endif
  3201   // Compiled code's Frame Pointer
  3202   frame_pointer(R_SP);
  3204   // Stack alignment requirement
  3205   stack_alignment(StackAlignmentInBytes);
  3206   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3207   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3209   // Number of stack slots between incoming argument block and the start of
  3210   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3211   // EPILOG must remove this many slots.
  3212   in_preserve_stack_slots(0);
  3214   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3215   // for calls to C.  Supports the var-args backing area for register parms.
  3216   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3217 #ifdef _LP64
  3218   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3219   varargs_C_out_slots_killed(12);
  3220 #else
  3221   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3222   varargs_C_out_slots_killed( 7);
  3223 #endif
  3225   // The after-PROLOG location of the return address.  Location of
  3226   // return address specifies a type (REG or STACK) and a number
  3227   // representing the register number (i.e. - use a register name) or
  3228   // stack slot.
  3229   return_addr(REG R_I7);          // Ret Addr is in register I7
  3231   // Body of function which returns an OptoRegs array locating
  3232   // arguments either in registers or in stack slots for calling
  3233   // java
  3234   calling_convention %{
  3235     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3237   %}
  3239   // Body of function which returns an OptoRegs array locating
  3240   // arguments either in registers or in stack slots for callin
  3241   // C.
  3242   c_calling_convention %{
  3243     // This is obviously always outgoing
  3244     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3245   %}
  3247   // Location of native (C/C++) and interpreter return values.  This is specified to
  3248   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3249   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3250   // to and from the register pairs is done by the appropriate call and epilog
  3251   // opcodes.  This simplifies the register allocator.
  3252   c_return_value %{
  3253     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3254 #ifdef     _LP64
  3255     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3256     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3257     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3258     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3259 #else  // !_LP64
  3260     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3261     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3262     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3263     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3264 #endif
  3265     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3266                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3267   %}
  3269   // Location of compiled Java return values.  Same as C
  3270   return_value %{
  3271     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3272 #ifdef     _LP64
  3273     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3274     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3275     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3276     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3277 #else  // !_LP64
  3278     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3279     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3280     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3281     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3282 #endif
  3283     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3284                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3285   %}
  3287 %}
  3290 //----------ATTRIBUTES---------------------------------------------------------
  3291 //----------Operand Attributes-------------------------------------------------
  3292 op_attrib op_cost(1);          // Required cost attribute
  3294 //----------Instruction Attributes---------------------------------------------
  3295 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3296 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3297 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
  3298 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3299                                    // non-matching short branch variant of some
  3300                                                             // long branch?
  3302 //----------OPERANDS-----------------------------------------------------------
  3303 // Operand definitions must precede instruction definitions for correct parsing
  3304 // in the ADLC because operands constitute user defined types which are used in
  3305 // instruction definitions.
  3307 //----------Simple Operands----------------------------------------------------
  3308 // Immediate Operands
  3309 // Integer Immediate: 32-bit
  3310 operand immI() %{
  3311   match(ConI);
  3313   op_cost(0);
  3314   // formats are generated automatically for constants and base registers
  3315   format %{ %}
  3316   interface(CONST_INTER);
  3317 %}
  3319 // Integer Immediate: 8-bit
  3320 operand immI8() %{
  3321   predicate(Assembler::is_simm8(n->get_int()));
  3322   match(ConI);
  3323   op_cost(0);
  3324   format %{ %}
  3325   interface(CONST_INTER);
  3326 %}
  3328 // Integer Immediate: 13-bit
  3329 operand immI13() %{
  3330   predicate(Assembler::is_simm13(n->get_int()));
  3331   match(ConI);
  3332   op_cost(0);
  3334   format %{ %}
  3335   interface(CONST_INTER);
  3336 %}
  3338 // Integer Immediate: 13-bit minus 7
  3339 operand immI13m7() %{
  3340   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3341   match(ConI);
  3342   op_cost(0);
  3344   format %{ %}
  3345   interface(CONST_INTER);
  3346 %}
  3348 // Integer Immediate: 16-bit
  3349 operand immI16() %{
  3350   predicate(Assembler::is_simm16(n->get_int()));
  3351   match(ConI);
  3352   op_cost(0);
  3353   format %{ %}
  3354   interface(CONST_INTER);
  3355 %}
  3357 // Unsigned (positive) Integer Immediate: 13-bit
  3358 operand immU13() %{
  3359   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3360   match(ConI);
  3361   op_cost(0);
  3363   format %{ %}
  3364   interface(CONST_INTER);
  3365 %}
  3367 // Integer Immediate: 6-bit
  3368 operand immU6() %{
  3369   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3370   match(ConI);
  3371   op_cost(0);
  3372   format %{ %}
  3373   interface(CONST_INTER);
  3374 %}
  3376 // Integer Immediate: 11-bit
  3377 operand immI11() %{
  3378   predicate(Assembler::is_simm11(n->get_int()));
  3379   match(ConI);
  3380   op_cost(0);
  3381   format %{ %}
  3382   interface(CONST_INTER);
  3383 %}
  3385 // Integer Immediate: 5-bit
  3386 operand immI5() %{
  3387   predicate(Assembler::is_simm5(n->get_int()));
  3388   match(ConI);
  3389   op_cost(0);
  3390   format %{ %}
  3391   interface(CONST_INTER);
  3392 %}
  3394 // Integer Immediate: 0-bit
  3395 operand immI0() %{
  3396   predicate(n->get_int() == 0);
  3397   match(ConI);
  3398   op_cost(0);
  3400   format %{ %}
  3401   interface(CONST_INTER);
  3402 %}
  3404 // Integer Immediate: the value 10
  3405 operand immI10() %{
  3406   predicate(n->get_int() == 10);
  3407   match(ConI);
  3408   op_cost(0);
  3410   format %{ %}
  3411   interface(CONST_INTER);
  3412 %}
  3414 // Integer Immediate: the values 0-31
  3415 operand immU5() %{
  3416   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3417   match(ConI);
  3418   op_cost(0);
  3420   format %{ %}
  3421   interface(CONST_INTER);
  3422 %}
  3424 // Integer Immediate: the values 1-31
  3425 operand immI_1_31() %{
  3426   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3427   match(ConI);
  3428   op_cost(0);
  3430   format %{ %}
  3431   interface(CONST_INTER);
  3432 %}
  3434 // Integer Immediate: the values 32-63
  3435 operand immI_32_63() %{
  3436   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3437   match(ConI);
  3438   op_cost(0);
  3440   format %{ %}
  3441   interface(CONST_INTER);
  3442 %}
  3444 // Immediates for special shifts (sign extend)
  3446 // Integer Immediate: the value 16
  3447 operand immI_16() %{
  3448   predicate(n->get_int() == 16);
  3449   match(ConI);
  3450   op_cost(0);
  3452   format %{ %}
  3453   interface(CONST_INTER);
  3454 %}
  3456 // Integer Immediate: the value 24
  3457 operand immI_24() %{
  3458   predicate(n->get_int() == 24);
  3459   match(ConI);
  3460   op_cost(0);
  3462   format %{ %}
  3463   interface(CONST_INTER);
  3464 %}
  3466 // Integer Immediate: the value 255
  3467 operand immI_255() %{
  3468   predicate( n->get_int() == 255 );
  3469   match(ConI);
  3470   op_cost(0);
  3472   format %{ %}
  3473   interface(CONST_INTER);
  3474 %}
  3476 // Integer Immediate: the value 65535
  3477 operand immI_65535() %{
  3478   predicate(n->get_int() == 65535);
  3479   match(ConI);
  3480   op_cost(0);
  3482   format %{ %}
  3483   interface(CONST_INTER);
  3484 %}
  3486 // Long Immediate: the value FF
  3487 operand immL_FF() %{
  3488   predicate( n->get_long() == 0xFFL );
  3489   match(ConL);
  3490   op_cost(0);
  3492   format %{ %}
  3493   interface(CONST_INTER);
  3494 %}
  3496 // Long Immediate: the value FFFF
  3497 operand immL_FFFF() %{
  3498   predicate( n->get_long() == 0xFFFFL );
  3499   match(ConL);
  3500   op_cost(0);
  3502   format %{ %}
  3503   interface(CONST_INTER);
  3504 %}
  3506 // Pointer Immediate: 32 or 64-bit
  3507 operand immP() %{
  3508   match(ConP);
  3510   op_cost(5);
  3511   // formats are generated automatically for constants and base registers
  3512   format %{ %}
  3513   interface(CONST_INTER);
  3514 %}
  3516 #ifdef _LP64
  3517 // Pointer Immediate: 64-bit
  3518 operand immP_set() %{
  3519   predicate(!VM_Version::is_niagara_plus());
  3520   match(ConP);
  3522   op_cost(5);
  3523   // formats are generated automatically for constants and base registers
  3524   format %{ %}
  3525   interface(CONST_INTER);
  3526 %}
  3528 // Pointer Immediate: 64-bit
  3529 // From Niagara2 processors on a load should be better than materializing.
  3530 operand immP_load() %{
  3531   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3532   match(ConP);
  3534   op_cost(5);
  3535   // formats are generated automatically for constants and base registers
  3536   format %{ %}
  3537   interface(CONST_INTER);
  3538 %}
  3540 // Pointer Immediate: 64-bit
  3541 operand immP_no_oop_cheap() %{
  3542   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3543   match(ConP);
  3545   op_cost(5);
  3546   // formats are generated automatically for constants and base registers
  3547   format %{ %}
  3548   interface(CONST_INTER);
  3549 %}
  3550 #endif
  3552 operand immP13() %{
  3553   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3554   match(ConP);
  3555   op_cost(0);
  3557   format %{ %}
  3558   interface(CONST_INTER);
  3559 %}
  3561 operand immP0() %{
  3562   predicate(n->get_ptr() == 0);
  3563   match(ConP);
  3564   op_cost(0);
  3566   format %{ %}
  3567   interface(CONST_INTER);
  3568 %}
  3570 operand immP_poll() %{
  3571   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3572   match(ConP);
  3574   // formats are generated automatically for constants and base registers
  3575   format %{ %}
  3576   interface(CONST_INTER);
  3577 %}
  3579 // Pointer Immediate
  3580 operand immN()
  3581 %{
  3582   match(ConN);
  3584   op_cost(10);
  3585   format %{ %}
  3586   interface(CONST_INTER);
  3587 %}
  3589 operand immNKlass()
  3590 %{
  3591   match(ConNKlass);
  3593   op_cost(10);
  3594   format %{ %}
  3595   interface(CONST_INTER);
  3596 %}
  3598 // NULL Pointer Immediate
  3599 operand immN0()
  3600 %{
  3601   predicate(n->get_narrowcon() == 0);
  3602   match(ConN);
  3604   op_cost(0);
  3605   format %{ %}
  3606   interface(CONST_INTER);
  3607 %}
  3609 operand immL() %{
  3610   match(ConL);
  3611   op_cost(40);
  3612   // formats are generated automatically for constants and base registers
  3613   format %{ %}
  3614   interface(CONST_INTER);
  3615 %}
  3617 operand immL0() %{
  3618   predicate(n->get_long() == 0L);
  3619   match(ConL);
  3620   op_cost(0);
  3621   // formats are generated automatically for constants and base registers
  3622   format %{ %}
  3623   interface(CONST_INTER);
  3624 %}
  3626 // Integer Immediate: 5-bit
  3627 operand immL5() %{
  3628   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
  3629   match(ConL);
  3630   op_cost(0);
  3631   format %{ %}
  3632   interface(CONST_INTER);
  3633 %}
  3635 // Long Immediate: 13-bit
  3636 operand immL13() %{
  3637   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3638   match(ConL);
  3639   op_cost(0);
  3641   format %{ %}
  3642   interface(CONST_INTER);
  3643 %}
  3645 // Long Immediate: 13-bit minus 7
  3646 operand immL13m7() %{
  3647   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3648   match(ConL);
  3649   op_cost(0);
  3651   format %{ %}
  3652   interface(CONST_INTER);
  3653 %}
  3655 // Long Immediate: low 32-bit mask
  3656 operand immL_32bits() %{
  3657   predicate(n->get_long() == 0xFFFFFFFFL);
  3658   match(ConL);
  3659   op_cost(0);
  3661   format %{ %}
  3662   interface(CONST_INTER);
  3663 %}
  3665 // Long Immediate: cheap (materialize in <= 3 instructions)
  3666 operand immL_cheap() %{
  3667   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3668   match(ConL);
  3669   op_cost(0);
  3671   format %{ %}
  3672   interface(CONST_INTER);
  3673 %}
  3675 // Long Immediate: expensive (materialize in > 3 instructions)
  3676 operand immL_expensive() %{
  3677   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3678   match(ConL);
  3679   op_cost(0);
  3681   format %{ %}
  3682   interface(CONST_INTER);
  3683 %}
  3685 // Double Immediate
  3686 operand immD() %{
  3687   match(ConD);
  3689   op_cost(40);
  3690   format %{ %}
  3691   interface(CONST_INTER);
  3692 %}
  3694 operand immD0() %{
  3695 #ifdef _LP64
  3696   // on 64-bit architectures this comparision is faster
  3697   predicate(jlong_cast(n->getd()) == 0);
  3698 #else
  3699   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3700 #endif
  3701   match(ConD);
  3703   op_cost(0);
  3704   format %{ %}
  3705   interface(CONST_INTER);
  3706 %}
  3708 // Float Immediate
  3709 operand immF() %{
  3710   match(ConF);
  3712   op_cost(20);
  3713   format %{ %}
  3714   interface(CONST_INTER);
  3715 %}
  3717 // Float Immediate: 0
  3718 operand immF0() %{
  3719   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3720   match(ConF);
  3722   op_cost(0);
  3723   format %{ %}
  3724   interface(CONST_INTER);
  3725 %}
  3727 // Integer Register Operands
  3728 // Integer Register
  3729 operand iRegI() %{
  3730   constraint(ALLOC_IN_RC(int_reg));
  3731   match(RegI);
  3733   match(notemp_iRegI);
  3734   match(g1RegI);
  3735   match(o0RegI);
  3736   match(iRegIsafe);
  3738   format %{ %}
  3739   interface(REG_INTER);
  3740 %}
  3742 operand notemp_iRegI() %{
  3743   constraint(ALLOC_IN_RC(notemp_int_reg));
  3744   match(RegI);
  3746   match(o0RegI);
  3748   format %{ %}
  3749   interface(REG_INTER);
  3750 %}
  3752 operand o0RegI() %{
  3753   constraint(ALLOC_IN_RC(o0_regI));
  3754   match(iRegI);
  3756   format %{ %}
  3757   interface(REG_INTER);
  3758 %}
  3760 // Pointer Register
  3761 operand iRegP() %{
  3762   constraint(ALLOC_IN_RC(ptr_reg));
  3763   match(RegP);
  3765   match(lock_ptr_RegP);
  3766   match(g1RegP);
  3767   match(g2RegP);
  3768   match(g3RegP);
  3769   match(g4RegP);
  3770   match(i0RegP);
  3771   match(o0RegP);
  3772   match(o1RegP);
  3773   match(l7RegP);
  3775   format %{ %}
  3776   interface(REG_INTER);
  3777 %}
  3779 operand sp_ptr_RegP() %{
  3780   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3781   match(RegP);
  3782   match(iRegP);
  3784   format %{ %}
  3785   interface(REG_INTER);
  3786 %}
  3788 operand lock_ptr_RegP() %{
  3789   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3790   match(RegP);
  3791   match(i0RegP);
  3792   match(o0RegP);
  3793   match(o1RegP);
  3794   match(l7RegP);
  3796   format %{ %}
  3797   interface(REG_INTER);
  3798 %}
  3800 operand g1RegP() %{
  3801   constraint(ALLOC_IN_RC(g1_regP));
  3802   match(iRegP);
  3804   format %{ %}
  3805   interface(REG_INTER);
  3806 %}
  3808 operand g2RegP() %{
  3809   constraint(ALLOC_IN_RC(g2_regP));
  3810   match(iRegP);
  3812   format %{ %}
  3813   interface(REG_INTER);
  3814 %}
  3816 operand g3RegP() %{
  3817   constraint(ALLOC_IN_RC(g3_regP));
  3818   match(iRegP);
  3820   format %{ %}
  3821   interface(REG_INTER);
  3822 %}
  3824 operand g1RegI() %{
  3825   constraint(ALLOC_IN_RC(g1_regI));
  3826   match(iRegI);
  3828   format %{ %}
  3829   interface(REG_INTER);
  3830 %}
  3832 operand g3RegI() %{
  3833   constraint(ALLOC_IN_RC(g3_regI));
  3834   match(iRegI);
  3836   format %{ %}
  3837   interface(REG_INTER);
  3838 %}
  3840 operand g4RegI() %{
  3841   constraint(ALLOC_IN_RC(g4_regI));
  3842   match(iRegI);
  3844   format %{ %}
  3845   interface(REG_INTER);
  3846 %}
  3848 operand g4RegP() %{
  3849   constraint(ALLOC_IN_RC(g4_regP));
  3850   match(iRegP);
  3852   format %{ %}
  3853   interface(REG_INTER);
  3854 %}
  3856 operand i0RegP() %{
  3857   constraint(ALLOC_IN_RC(i0_regP));
  3858   match(iRegP);
  3860   format %{ %}
  3861   interface(REG_INTER);
  3862 %}
  3864 operand o0RegP() %{
  3865   constraint(ALLOC_IN_RC(o0_regP));
  3866   match(iRegP);
  3868   format %{ %}
  3869   interface(REG_INTER);
  3870 %}
  3872 operand o1RegP() %{
  3873   constraint(ALLOC_IN_RC(o1_regP));
  3874   match(iRegP);
  3876   format %{ %}
  3877   interface(REG_INTER);
  3878 %}
  3880 operand o2RegP() %{
  3881   constraint(ALLOC_IN_RC(o2_regP));
  3882   match(iRegP);
  3884   format %{ %}
  3885   interface(REG_INTER);
  3886 %}
  3888 operand o7RegP() %{
  3889   constraint(ALLOC_IN_RC(o7_regP));
  3890   match(iRegP);
  3892   format %{ %}
  3893   interface(REG_INTER);
  3894 %}
  3896 operand l7RegP() %{
  3897   constraint(ALLOC_IN_RC(l7_regP));
  3898   match(iRegP);
  3900   format %{ %}
  3901   interface(REG_INTER);
  3902 %}
  3904 operand o7RegI() %{
  3905   constraint(ALLOC_IN_RC(o7_regI));
  3906   match(iRegI);
  3908   format %{ %}
  3909   interface(REG_INTER);
  3910 %}
  3912 operand iRegN() %{
  3913   constraint(ALLOC_IN_RC(int_reg));
  3914   match(RegN);
  3916   format %{ %}
  3917   interface(REG_INTER);
  3918 %}
  3920 // Long Register
  3921 operand iRegL() %{
  3922   constraint(ALLOC_IN_RC(long_reg));
  3923   match(RegL);
  3925   format %{ %}
  3926   interface(REG_INTER);
  3927 %}
  3929 operand o2RegL() %{
  3930   constraint(ALLOC_IN_RC(o2_regL));
  3931   match(iRegL);
  3933   format %{ %}
  3934   interface(REG_INTER);
  3935 %}
  3937 operand o7RegL() %{
  3938   constraint(ALLOC_IN_RC(o7_regL));
  3939   match(iRegL);
  3941   format %{ %}
  3942   interface(REG_INTER);
  3943 %}
  3945 operand g1RegL() %{
  3946   constraint(ALLOC_IN_RC(g1_regL));
  3947   match(iRegL);
  3949   format %{ %}
  3950   interface(REG_INTER);
  3951 %}
  3953 operand g3RegL() %{
  3954   constraint(ALLOC_IN_RC(g3_regL));
  3955   match(iRegL);
  3957   format %{ %}
  3958   interface(REG_INTER);
  3959 %}
  3961 // Int Register safe
  3962 // This is 64bit safe
  3963 operand iRegIsafe() %{
  3964   constraint(ALLOC_IN_RC(long_reg));
  3966   match(iRegI);
  3968   format %{ %}
  3969   interface(REG_INTER);
  3970 %}
  3972 // Condition Code Flag Register
  3973 operand flagsReg() %{
  3974   constraint(ALLOC_IN_RC(int_flags));
  3975   match(RegFlags);
  3977   format %{ "ccr" %} // both ICC and XCC
  3978   interface(REG_INTER);
  3979 %}
  3981 // Condition Code Register, unsigned comparisons.
  3982 operand flagsRegU() %{
  3983   constraint(ALLOC_IN_RC(int_flags));
  3984   match(RegFlags);
  3986   format %{ "icc_U" %}
  3987   interface(REG_INTER);
  3988 %}
  3990 // Condition Code Register, pointer comparisons.
  3991 operand flagsRegP() %{
  3992   constraint(ALLOC_IN_RC(int_flags));
  3993   match(RegFlags);
  3995 #ifdef _LP64
  3996   format %{ "xcc_P" %}
  3997 #else
  3998   format %{ "icc_P" %}
  3999 #endif
  4000   interface(REG_INTER);
  4001 %}
  4003 // Condition Code Register, long comparisons.
  4004 operand flagsRegL() %{
  4005   constraint(ALLOC_IN_RC(int_flags));
  4006   match(RegFlags);
  4008   format %{ "xcc_L" %}
  4009   interface(REG_INTER);
  4010 %}
  4012 // Condition Code Register, floating comparisons, unordered same as "less".
  4013 operand flagsRegF() %{
  4014   constraint(ALLOC_IN_RC(float_flags));
  4015   match(RegFlags);
  4016   match(flagsRegF0);
  4018   format %{ %}
  4019   interface(REG_INTER);
  4020 %}
  4022 operand flagsRegF0() %{
  4023   constraint(ALLOC_IN_RC(float_flag0));
  4024   match(RegFlags);
  4026   format %{ %}
  4027   interface(REG_INTER);
  4028 %}
  4031 // Condition Code Flag Register used by long compare
  4032 operand flagsReg_long_LTGE() %{
  4033   constraint(ALLOC_IN_RC(int_flags));
  4034   match(RegFlags);
  4035   format %{ "icc_LTGE" %}
  4036   interface(REG_INTER);
  4037 %}
  4038 operand flagsReg_long_EQNE() %{
  4039   constraint(ALLOC_IN_RC(int_flags));
  4040   match(RegFlags);
  4041   format %{ "icc_EQNE" %}
  4042   interface(REG_INTER);
  4043 %}
  4044 operand flagsReg_long_LEGT() %{
  4045   constraint(ALLOC_IN_RC(int_flags));
  4046   match(RegFlags);
  4047   format %{ "icc_LEGT" %}
  4048   interface(REG_INTER);
  4049 %}
  4052 operand regD() %{
  4053   constraint(ALLOC_IN_RC(dflt_reg));
  4054   match(RegD);
  4056   match(regD_low);
  4058   format %{ %}
  4059   interface(REG_INTER);
  4060 %}
  4062 operand regF() %{
  4063   constraint(ALLOC_IN_RC(sflt_reg));
  4064   match(RegF);
  4066   format %{ %}
  4067   interface(REG_INTER);
  4068 %}
  4070 operand regD_low() %{
  4071   constraint(ALLOC_IN_RC(dflt_low_reg));
  4072   match(regD);
  4074   format %{ %}
  4075   interface(REG_INTER);
  4076 %}
  4078 // Special Registers
  4080 // Method Register
  4081 operand inline_cache_regP(iRegP reg) %{
  4082   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4083   match(reg);
  4084   format %{ %}
  4085   interface(REG_INTER);
  4086 %}
  4088 operand interpreter_method_oop_regP(iRegP reg) %{
  4089   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4090   match(reg);
  4091   format %{ %}
  4092   interface(REG_INTER);
  4093 %}
  4096 //----------Complex Operands---------------------------------------------------
  4097 // Indirect Memory Reference
  4098 operand indirect(sp_ptr_RegP reg) %{
  4099   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4100   match(reg);
  4102   op_cost(100);
  4103   format %{ "[$reg]" %}
  4104   interface(MEMORY_INTER) %{
  4105     base($reg);
  4106     index(0x0);
  4107     scale(0x0);
  4108     disp(0x0);
  4109   %}
  4110 %}
  4112 // Indirect with simm13 Offset
  4113 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4114   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4115   match(AddP reg offset);
  4117   op_cost(100);
  4118   format %{ "[$reg + $offset]" %}
  4119   interface(MEMORY_INTER) %{
  4120     base($reg);
  4121     index(0x0);
  4122     scale(0x0);
  4123     disp($offset);
  4124   %}
  4125 %}
  4127 // Indirect with simm13 Offset minus 7
  4128 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4129   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4130   match(AddP reg offset);
  4132   op_cost(100);
  4133   format %{ "[$reg + $offset]" %}
  4134   interface(MEMORY_INTER) %{
  4135     base($reg);
  4136     index(0x0);
  4137     scale(0x0);
  4138     disp($offset);
  4139   %}
  4140 %}
  4142 // Note:  Intel has a swapped version also, like this:
  4143 //operand indOffsetX(iRegI reg, immP offset) %{
  4144 //  constraint(ALLOC_IN_RC(int_reg));
  4145 //  match(AddP offset reg);
  4146 //
  4147 //  op_cost(100);
  4148 //  format %{ "[$reg + $offset]" %}
  4149 //  interface(MEMORY_INTER) %{
  4150 //    base($reg);
  4151 //    index(0x0);
  4152 //    scale(0x0);
  4153 //    disp($offset);
  4154 //  %}
  4155 //%}
  4156 //// However, it doesn't make sense for SPARC, since
  4157 // we have no particularly good way to embed oops in
  4158 // single instructions.
  4160 // Indirect with Register Index
  4161 operand indIndex(iRegP addr, iRegX index) %{
  4162   constraint(ALLOC_IN_RC(ptr_reg));
  4163   match(AddP addr index);
  4165   op_cost(100);
  4166   format %{ "[$addr + $index]" %}
  4167   interface(MEMORY_INTER) %{
  4168     base($addr);
  4169     index($index);
  4170     scale(0x0);
  4171     disp(0x0);
  4172   %}
  4173 %}
  4175 //----------Special Memory Operands--------------------------------------------
  4176 // Stack Slot Operand - This operand is used for loading and storing temporary
  4177 //                      values on the stack where a match requires a value to
  4178 //                      flow through memory.
  4179 operand stackSlotI(sRegI reg) %{
  4180   constraint(ALLOC_IN_RC(stack_slots));
  4181   op_cost(100);
  4182   //match(RegI);
  4183   format %{ "[$reg]" %}
  4184   interface(MEMORY_INTER) %{
  4185     base(0xE);   // R_SP
  4186     index(0x0);
  4187     scale(0x0);
  4188     disp($reg);  // Stack Offset
  4189   %}
  4190 %}
  4192 operand stackSlotP(sRegP reg) %{
  4193   constraint(ALLOC_IN_RC(stack_slots));
  4194   op_cost(100);
  4195   //match(RegP);
  4196   format %{ "[$reg]" %}
  4197   interface(MEMORY_INTER) %{
  4198     base(0xE);   // R_SP
  4199     index(0x0);
  4200     scale(0x0);
  4201     disp($reg);  // Stack Offset
  4202   %}
  4203 %}
  4205 operand stackSlotF(sRegF reg) %{
  4206   constraint(ALLOC_IN_RC(stack_slots));
  4207   op_cost(100);
  4208   //match(RegF);
  4209   format %{ "[$reg]" %}
  4210   interface(MEMORY_INTER) %{
  4211     base(0xE);   // R_SP
  4212     index(0x0);
  4213     scale(0x0);
  4214     disp($reg);  // Stack Offset
  4215   %}
  4216 %}
  4217 operand stackSlotD(sRegD reg) %{
  4218   constraint(ALLOC_IN_RC(stack_slots));
  4219   op_cost(100);
  4220   //match(RegD);
  4221   format %{ "[$reg]" %}
  4222   interface(MEMORY_INTER) %{
  4223     base(0xE);   // R_SP
  4224     index(0x0);
  4225     scale(0x0);
  4226     disp($reg);  // Stack Offset
  4227   %}
  4228 %}
  4229 operand stackSlotL(sRegL reg) %{
  4230   constraint(ALLOC_IN_RC(stack_slots));
  4231   op_cost(100);
  4232   //match(RegL);
  4233   format %{ "[$reg]" %}
  4234   interface(MEMORY_INTER) %{
  4235     base(0xE);   // R_SP
  4236     index(0x0);
  4237     scale(0x0);
  4238     disp($reg);  // Stack Offset
  4239   %}
  4240 %}
  4242 // Operands for expressing Control Flow
  4243 // NOTE:  Label is a predefined operand which should not be redefined in
  4244 //        the AD file.  It is generically handled within the ADLC.
  4246 //----------Conditional Branch Operands----------------------------------------
  4247 // Comparison Op  - This is the operation of the comparison, and is limited to
  4248 //                  the following set of codes:
  4249 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4250 //
  4251 // Other attributes of the comparison, such as unsignedness, are specified
  4252 // by the comparison instruction that sets a condition code flags register.
  4253 // That result is represented by a flags operand whose subtype is appropriate
  4254 // to the unsignedness (etc.) of the comparison.
  4255 //
  4256 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4257 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4258 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4260 operand cmpOp() %{
  4261   match(Bool);
  4263   format %{ "" %}
  4264   interface(COND_INTER) %{
  4265     equal(0x1);
  4266     not_equal(0x9);
  4267     less(0x3);
  4268     greater_equal(0xB);
  4269     less_equal(0x2);
  4270     greater(0xA);
  4271     overflow(0x7);
  4272     no_overflow(0xF);
  4273   %}
  4274 %}
  4276 // Comparison Op, unsigned
  4277 operand cmpOpU() %{
  4278   match(Bool);
  4279   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4280             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4282   format %{ "u" %}
  4283   interface(COND_INTER) %{
  4284     equal(0x1);
  4285     not_equal(0x9);
  4286     less(0x5);
  4287     greater_equal(0xD);
  4288     less_equal(0x4);
  4289     greater(0xC);
  4290     overflow(0x7);
  4291     no_overflow(0xF);
  4292   %}
  4293 %}
  4295 // Comparison Op, pointer (same as unsigned)
  4296 operand cmpOpP() %{
  4297   match(Bool);
  4298   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4299             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4301   format %{ "p" %}
  4302   interface(COND_INTER) %{
  4303     equal(0x1);
  4304     not_equal(0x9);
  4305     less(0x5);
  4306     greater_equal(0xD);
  4307     less_equal(0x4);
  4308     greater(0xC);
  4309     overflow(0x7);
  4310     no_overflow(0xF);
  4311   %}
  4312 %}
  4314 // Comparison Op, branch-register encoding
  4315 operand cmpOp_reg() %{
  4316   match(Bool);
  4317   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4318             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4320   format %{ "" %}
  4321   interface(COND_INTER) %{
  4322     equal        (0x1);
  4323     not_equal    (0x5);
  4324     less         (0x3);
  4325     greater_equal(0x7);
  4326     less_equal   (0x2);
  4327     greater      (0x6);
  4328     overflow(0x7); // not supported
  4329     no_overflow(0xF); // not supported
  4330   %}
  4331 %}
  4333 // Comparison Code, floating, unordered same as less
  4334 operand cmpOpF() %{
  4335   match(Bool);
  4336   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4337             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4339   format %{ "fl" %}
  4340   interface(COND_INTER) %{
  4341     equal(0x9);
  4342     not_equal(0x1);
  4343     less(0x3);
  4344     greater_equal(0xB);
  4345     less_equal(0xE);
  4346     greater(0x6);
  4348     overflow(0x7); // not supported
  4349     no_overflow(0xF); // not supported
  4350   %}
  4351 %}
  4353 // Used by long compare
  4354 operand cmpOp_commute() %{
  4355   match(Bool);
  4356   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4357             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4359   format %{ "" %}
  4360   interface(COND_INTER) %{
  4361     equal(0x1);
  4362     not_equal(0x9);
  4363     less(0xA);
  4364     greater_equal(0x2);
  4365     less_equal(0xB);
  4366     greater(0x3);
  4367     overflow(0x7);
  4368     no_overflow(0xF);
  4369   %}
  4370 %}
  4372 //----------OPERAND CLASSES----------------------------------------------------
  4373 // Operand Classes are groups of operands that are used to simplify
  4374 // instruction definitions by not requiring the AD writer to specify separate
  4375 // instructions for every form of operand when the instruction accepts
  4376 // multiple operand types with the same basic encoding and format.  The classic
  4377 // case of this is memory operands.
  4378 opclass memory( indirect, indOffset13, indIndex );
  4379 opclass indIndexMemory( indIndex );
  4381 //----------PIPELINE-----------------------------------------------------------
  4382 pipeline %{
  4384 //----------ATTRIBUTES---------------------------------------------------------
  4385 attributes %{
  4386   fixed_size_instructions;           // Fixed size instructions
  4387   branch_has_delay_slot;             // Branch has delay slot following
  4388   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4389   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4390   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4391   instruction_fetch_units = 1;       // of 16 bytes
  4393   // List of nop instructions
  4394   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4395 %}
  4397 //----------RESOURCES----------------------------------------------------------
  4398 // Resources are the functional units available to the machine
  4399 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4401 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4402 // Pipeline Description specifies the stages in the machine's pipeline
  4404 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4406 //----------PIPELINE CLASSES---------------------------------------------------
  4407 // Pipeline Classes describe the stages in which input and output are
  4408 // referenced by the hardware pipeline.
  4410 // Integer ALU reg-reg operation
  4411 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4412     single_instruction;
  4413     dst   : E(write);
  4414     src1  : R(read);
  4415     src2  : R(read);
  4416     IALU  : R;
  4417 %}
  4419 // Integer ALU reg-reg long operation
  4420 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4421     instruction_count(2);
  4422     dst   : E(write);
  4423     src1  : R(read);
  4424     src2  : R(read);
  4425     IALU  : R;
  4426     IALU  : R;
  4427 %}
  4429 // Integer ALU reg-reg long dependent operation
  4430 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4431     instruction_count(1); multiple_bundles;
  4432     dst   : E(write);
  4433     src1  : R(read);
  4434     src2  : R(read);
  4435     cr    : E(write);
  4436     IALU  : R(2);
  4437 %}
  4439 // Integer ALU reg-imm operaion
  4440 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4441     single_instruction;
  4442     dst   : E(write);
  4443     src1  : R(read);
  4444     IALU  : R;
  4445 %}
  4447 // Integer ALU reg-reg operation with condition code
  4448 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4449     single_instruction;
  4450     dst   : E(write);
  4451     cr    : E(write);
  4452     src1  : R(read);
  4453     src2  : R(read);
  4454     IALU  : R;
  4455 %}
  4457 // Integer ALU reg-imm operation with condition code
  4458 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4459     single_instruction;
  4460     dst   : E(write);
  4461     cr    : E(write);
  4462     src1  : R(read);
  4463     IALU  : R;
  4464 %}
  4466 // Integer ALU zero-reg operation
  4467 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4468     single_instruction;
  4469     dst   : E(write);
  4470     src2  : R(read);
  4471     IALU  : R;
  4472 %}
  4474 // Integer ALU zero-reg operation with condition code only
  4475 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4476     single_instruction;
  4477     cr    : E(write);
  4478     src   : R(read);
  4479     IALU  : R;
  4480 %}
  4482 // Integer ALU reg-reg operation with condition code only
  4483 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4484     single_instruction;
  4485     cr    : E(write);
  4486     src1  : R(read);
  4487     src2  : R(read);
  4488     IALU  : R;
  4489 %}
  4491 // Integer ALU reg-imm operation with condition code only
  4492 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4493     single_instruction;
  4494     cr    : E(write);
  4495     src1  : R(read);
  4496     IALU  : R;
  4497 %}
  4499 // Integer ALU reg-reg-zero operation with condition code only
  4500 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4501     single_instruction;
  4502     cr    : E(write);
  4503     src1  : R(read);
  4504     src2  : R(read);
  4505     IALU  : R;
  4506 %}
  4508 // Integer ALU reg-imm-zero operation with condition code only
  4509 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4510     single_instruction;
  4511     cr    : E(write);
  4512     src1  : R(read);
  4513     IALU  : R;
  4514 %}
  4516 // Integer ALU reg-reg operation with condition code, src1 modified
  4517 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4518     single_instruction;
  4519     cr    : E(write);
  4520     src1  : E(write);
  4521     src1  : R(read);
  4522     src2  : R(read);
  4523     IALU  : R;
  4524 %}
  4526 // Integer ALU reg-imm operation with condition code, src1 modified
  4527 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4528     single_instruction;
  4529     cr    : E(write);
  4530     src1  : E(write);
  4531     src1  : R(read);
  4532     IALU  : R;
  4533 %}
  4535 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4536     multiple_bundles;
  4537     dst   : E(write)+4;
  4538     cr    : E(write);
  4539     src1  : R(read);
  4540     src2  : R(read);
  4541     IALU  : R(3);
  4542     BR    : R(2);
  4543 %}
  4545 // Integer ALU operation
  4546 pipe_class ialu_none(iRegI dst) %{
  4547     single_instruction;
  4548     dst   : E(write);
  4549     IALU  : R;
  4550 %}
  4552 // Integer ALU reg operation
  4553 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4554     single_instruction; may_have_no_code;
  4555     dst   : E(write);
  4556     src   : R(read);
  4557     IALU  : R;
  4558 %}
  4560 // Integer ALU reg conditional operation
  4561 // This instruction has a 1 cycle stall, and cannot execute
  4562 // in the same cycle as the instruction setting the condition
  4563 // code. We kludge this by pretending to read the condition code
  4564 // 1 cycle earlier, and by marking the functional units as busy
  4565 // for 2 cycles with the result available 1 cycle later than
  4566 // is really the case.
  4567 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4568     single_instruction;
  4569     op2_out : C(write);
  4570     op1     : R(read);
  4571     cr      : R(read);       // This is really E, with a 1 cycle stall
  4572     BR      : R(2);
  4573     MS      : R(2);
  4574 %}
  4576 #ifdef _LP64
  4577 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4578     instruction_count(1); multiple_bundles;
  4579     dst     : C(write)+1;
  4580     src     : R(read)+1;
  4581     IALU    : R(1);
  4582     BR      : E(2);
  4583     MS      : E(2);
  4584 %}
  4585 #endif
  4587 // Integer ALU reg operation
  4588 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4589     single_instruction; may_have_no_code;
  4590     dst   : E(write);
  4591     src   : R(read);
  4592     IALU  : R;
  4593 %}
  4594 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4595     single_instruction; may_have_no_code;
  4596     dst   : E(write);
  4597     src   : R(read);
  4598     IALU  : R;
  4599 %}
  4601 // Two integer ALU reg operations
  4602 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4603     instruction_count(2);
  4604     dst   : E(write);
  4605     src   : R(read);
  4606     A0    : R;
  4607     A1    : R;
  4608 %}
  4610 // Two integer ALU reg operations
  4611 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4612     instruction_count(2); may_have_no_code;
  4613     dst   : E(write);
  4614     src   : R(read);
  4615     A0    : R;
  4616     A1    : R;
  4617 %}
  4619 // Integer ALU imm operation
  4620 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4621     single_instruction;
  4622     dst   : E(write);
  4623     IALU  : R;
  4624 %}
  4626 // Integer ALU reg-reg with carry operation
  4627 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4628     single_instruction;
  4629     dst   : E(write);
  4630     src1  : R(read);
  4631     src2  : R(read);
  4632     IALU  : R;
  4633 %}
  4635 // Integer ALU cc operation
  4636 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4637     single_instruction;
  4638     dst   : E(write);
  4639     cc    : R(read);
  4640     IALU  : R;
  4641 %}
  4643 // Integer ALU cc / second IALU operation
  4644 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4645     instruction_count(1); multiple_bundles;
  4646     dst   : E(write)+1;
  4647     src   : R(read);
  4648     IALU  : R;
  4649 %}
  4651 // Integer ALU cc / second IALU operation
  4652 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4653     instruction_count(1); multiple_bundles;
  4654     dst   : E(write)+1;
  4655     p     : R(read);
  4656     q     : R(read);
  4657     IALU  : R;
  4658 %}
  4660 // Integer ALU hi-lo-reg operation
  4661 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4662     instruction_count(1); multiple_bundles;
  4663     dst   : E(write)+1;
  4664     IALU  : R(2);
  4665 %}
  4667 // Float ALU hi-lo-reg operation (with temp)
  4668 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4669     instruction_count(1); multiple_bundles;
  4670     dst   : E(write)+1;
  4671     IALU  : R(2);
  4672 %}
  4674 // Long Constant
  4675 pipe_class loadConL( iRegL dst, immL src ) %{
  4676     instruction_count(2); multiple_bundles;
  4677     dst   : E(write)+1;
  4678     IALU  : R(2);
  4679     IALU  : R(2);
  4680 %}
  4682 // Pointer Constant
  4683 pipe_class loadConP( iRegP dst, immP src ) %{
  4684     instruction_count(0); multiple_bundles;
  4685     fixed_latency(6);
  4686 %}
  4688 // Polling Address
  4689 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4690 #ifdef _LP64
  4691     instruction_count(0); multiple_bundles;
  4692     fixed_latency(6);
  4693 #else
  4694     dst   : E(write);
  4695     IALU  : R;
  4696 #endif
  4697 %}
  4699 // Long Constant small
  4700 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4701     instruction_count(2);
  4702     dst   : E(write);
  4703     IALU  : R;
  4704     IALU  : R;
  4705 %}
  4707 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4708 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4709     instruction_count(1); multiple_bundles;
  4710     src   : R(read);
  4711     dst   : M(write)+1;
  4712     IALU  : R;
  4713     MS    : E;
  4714 %}
  4716 // Integer ALU nop operation
  4717 pipe_class ialu_nop() %{
  4718     single_instruction;
  4719     IALU  : R;
  4720 %}
  4722 // Integer ALU nop operation
  4723 pipe_class ialu_nop_A0() %{
  4724     single_instruction;
  4725     A0    : R;
  4726 %}
  4728 // Integer ALU nop operation
  4729 pipe_class ialu_nop_A1() %{
  4730     single_instruction;
  4731     A1    : R;
  4732 %}
  4734 // Integer Multiply reg-reg operation
  4735 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4736     single_instruction;
  4737     dst   : E(write);
  4738     src1  : R(read);
  4739     src2  : R(read);
  4740     MS    : R(5);
  4741 %}
  4743 // Integer Multiply reg-imm operation
  4744 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4745     single_instruction;
  4746     dst   : E(write);
  4747     src1  : R(read);
  4748     MS    : R(5);
  4749 %}
  4751 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4752     single_instruction;
  4753     dst   : E(write)+4;
  4754     src1  : R(read);
  4755     src2  : R(read);
  4756     MS    : R(6);
  4757 %}
  4759 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4760     single_instruction;
  4761     dst   : E(write)+4;
  4762     src1  : R(read);
  4763     MS    : R(6);
  4764 %}
  4766 // Integer Divide reg-reg
  4767 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4768     instruction_count(1); multiple_bundles;
  4769     dst   : E(write);
  4770     temp  : E(write);
  4771     src1  : R(read);
  4772     src2  : R(read);
  4773     temp  : R(read);
  4774     MS    : R(38);
  4775 %}
  4777 // Integer Divide reg-imm
  4778 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4779     instruction_count(1); multiple_bundles;
  4780     dst   : E(write);
  4781     temp  : E(write);
  4782     src1  : R(read);
  4783     temp  : R(read);
  4784     MS    : R(38);
  4785 %}
  4787 // Long Divide
  4788 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4789     dst  : E(write)+71;
  4790     src1 : R(read);
  4791     src2 : R(read)+1;
  4792     MS   : R(70);
  4793 %}
  4795 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4796     dst  : E(write)+71;
  4797     src1 : R(read);
  4798     MS   : R(70);
  4799 %}
  4801 // Floating Point Add Float
  4802 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4803     single_instruction;
  4804     dst   : X(write);
  4805     src1  : E(read);
  4806     src2  : E(read);
  4807     FA    : R;
  4808 %}
  4810 // Floating Point Add Double
  4811 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4812     single_instruction;
  4813     dst   : X(write);
  4814     src1  : E(read);
  4815     src2  : E(read);
  4816     FA    : R;
  4817 %}
  4819 // Floating Point Conditional Move based on integer flags
  4820 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4821     single_instruction;
  4822     dst   : X(write);
  4823     src   : E(read);
  4824     cr    : R(read);
  4825     FA    : R(2);
  4826     BR    : R(2);
  4827 %}
  4829 // Floating Point Conditional Move based on integer flags
  4830 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4831     single_instruction;
  4832     dst   : X(write);
  4833     src   : E(read);
  4834     cr    : R(read);
  4835     FA    : R(2);
  4836     BR    : R(2);
  4837 %}
  4839 // Floating Point Multiply Float
  4840 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4841     single_instruction;
  4842     dst   : X(write);
  4843     src1  : E(read);
  4844     src2  : E(read);
  4845     FM    : R;
  4846 %}
  4848 // Floating Point Multiply Double
  4849 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4850     single_instruction;
  4851     dst   : X(write);
  4852     src1  : E(read);
  4853     src2  : E(read);
  4854     FM    : R;
  4855 %}
  4857 // Floating Point Divide Float
  4858 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4859     single_instruction;
  4860     dst   : X(write);
  4861     src1  : E(read);
  4862     src2  : E(read);
  4863     FM    : R;
  4864     FDIV  : C(14);
  4865 %}
  4867 // Floating Point Divide Double
  4868 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4869     single_instruction;
  4870     dst   : X(write);
  4871     src1  : E(read);
  4872     src2  : E(read);
  4873     FM    : R;
  4874     FDIV  : C(17);
  4875 %}
  4877 // Floating Point Move/Negate/Abs Float
  4878 pipe_class faddF_reg(regF dst, regF src) %{
  4879     single_instruction;
  4880     dst   : W(write);
  4881     src   : E(read);
  4882     FA    : R(1);
  4883 %}
  4885 // Floating Point Move/Negate/Abs Double
  4886 pipe_class faddD_reg(regD dst, regD src) %{
  4887     single_instruction;
  4888     dst   : W(write);
  4889     src   : E(read);
  4890     FA    : R;
  4891 %}
  4893 // Floating Point Convert F->D
  4894 pipe_class fcvtF2D(regD dst, regF src) %{
  4895     single_instruction;
  4896     dst   : X(write);
  4897     src   : E(read);
  4898     FA    : R;
  4899 %}
  4901 // Floating Point Convert I->D
  4902 pipe_class fcvtI2D(regD dst, regF src) %{
  4903     single_instruction;
  4904     dst   : X(write);
  4905     src   : E(read);
  4906     FA    : R;
  4907 %}
  4909 // Floating Point Convert LHi->D
  4910 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4911     single_instruction;
  4912     dst   : X(write);
  4913     src   : E(read);
  4914     FA    : R;
  4915 %}
  4917 // Floating Point Convert L->D
  4918 pipe_class fcvtL2D(regD dst, regF src) %{
  4919     single_instruction;
  4920     dst   : X(write);
  4921     src   : E(read);
  4922     FA    : R;
  4923 %}
  4925 // Floating Point Convert L->F
  4926 pipe_class fcvtL2F(regD dst, regF src) %{
  4927     single_instruction;
  4928     dst   : X(write);
  4929     src   : E(read);
  4930     FA    : R;
  4931 %}
  4933 // Floating Point Convert D->F
  4934 pipe_class fcvtD2F(regD dst, regF src) %{
  4935     single_instruction;
  4936     dst   : X(write);
  4937     src   : E(read);
  4938     FA    : R;
  4939 %}
  4941 // Floating Point Convert I->L
  4942 pipe_class fcvtI2L(regD dst, regF src) %{
  4943     single_instruction;
  4944     dst   : X(write);
  4945     src   : E(read);
  4946     FA    : R;
  4947 %}
  4949 // Floating Point Convert D->F
  4950 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4951     instruction_count(1); multiple_bundles;
  4952     dst   : X(write)+6;
  4953     src   : E(read);
  4954     FA    : R;
  4955 %}
  4957 // Floating Point Convert D->L
  4958 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4959     instruction_count(1); multiple_bundles;
  4960     dst   : X(write)+6;
  4961     src   : E(read);
  4962     FA    : R;
  4963 %}
  4965 // Floating Point Convert F->I
  4966 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4967     instruction_count(1); multiple_bundles;
  4968     dst   : X(write)+6;
  4969     src   : E(read);
  4970     FA    : R;
  4971 %}
  4973 // Floating Point Convert F->L
  4974 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4975     instruction_count(1); multiple_bundles;
  4976     dst   : X(write)+6;
  4977     src   : E(read);
  4978     FA    : R;
  4979 %}
  4981 // Floating Point Convert I->F
  4982 pipe_class fcvtI2F(regF dst, regF src) %{
  4983     single_instruction;
  4984     dst   : X(write);
  4985     src   : E(read);
  4986     FA    : R;
  4987 %}
  4989 // Floating Point Compare
  4990 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4991     single_instruction;
  4992     cr    : X(write);
  4993     src1  : E(read);
  4994     src2  : E(read);
  4995     FA    : R;
  4996 %}
  4998 // Floating Point Compare
  4999 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  5000     single_instruction;
  5001     cr    : X(write);
  5002     src1  : E(read);
  5003     src2  : E(read);
  5004     FA    : R;
  5005 %}
  5007 // Floating Add Nop
  5008 pipe_class fadd_nop() %{
  5009     single_instruction;
  5010     FA  : R;
  5011 %}
  5013 // Integer Store to Memory
  5014 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  5015     single_instruction;
  5016     mem   : R(read);
  5017     src   : C(read);
  5018     MS    : R;
  5019 %}
  5021 // Integer Store to Memory
  5022 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5023     single_instruction;
  5024     mem   : R(read);
  5025     src   : C(read);
  5026     MS    : R;
  5027 %}
  5029 // Integer Store Zero to Memory
  5030 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5031     single_instruction;
  5032     mem   : R(read);
  5033     MS    : R;
  5034 %}
  5036 // Special Stack Slot Store
  5037 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5038     single_instruction;
  5039     stkSlot : R(read);
  5040     src     : C(read);
  5041     MS      : R;
  5042 %}
  5044 // Special Stack Slot Store
  5045 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5046     instruction_count(2); multiple_bundles;
  5047     stkSlot : R(read);
  5048     src     : C(read);
  5049     MS      : R(2);
  5050 %}
  5052 // Float Store
  5053 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5054     single_instruction;
  5055     mem : R(read);
  5056     src : C(read);
  5057     MS  : R;
  5058 %}
  5060 // Float Store
  5061 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5062     single_instruction;
  5063     mem : R(read);
  5064     MS  : R;
  5065 %}
  5067 // Double Store
  5068 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5069     instruction_count(1);
  5070     mem : R(read);
  5071     src : C(read);
  5072     MS  : R;
  5073 %}
  5075 // Double Store
  5076 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5077     single_instruction;
  5078     mem : R(read);
  5079     MS  : R;
  5080 %}
  5082 // Special Stack Slot Float Store
  5083 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5084     single_instruction;
  5085     stkSlot : R(read);
  5086     src     : C(read);
  5087     MS      : R;
  5088 %}
  5090 // Special Stack Slot Double Store
  5091 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5092     single_instruction;
  5093     stkSlot : R(read);
  5094     src     : C(read);
  5095     MS      : R;
  5096 %}
  5098 // Integer Load (when sign bit propagation not needed)
  5099 pipe_class iload_mem(iRegI dst, memory mem) %{
  5100     single_instruction;
  5101     mem : R(read);
  5102     dst : C(write);
  5103     MS  : R;
  5104 %}
  5106 // Integer Load from stack operand
  5107 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5108     single_instruction;
  5109     mem : R(read);
  5110     dst : C(write);
  5111     MS  : R;
  5112 %}
  5114 // Integer Load (when sign bit propagation or masking is needed)
  5115 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5116     single_instruction;
  5117     mem : R(read);
  5118     dst : M(write);
  5119     MS  : R;
  5120 %}
  5122 // Float Load
  5123 pipe_class floadF_mem(regF dst, memory mem) %{
  5124     single_instruction;
  5125     mem : R(read);
  5126     dst : M(write);
  5127     MS  : R;
  5128 %}
  5130 // Float Load
  5131 pipe_class floadD_mem(regD dst, memory mem) %{
  5132     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5133     mem : R(read);
  5134     dst : M(write);
  5135     MS  : R;
  5136 %}
  5138 // Float Load
  5139 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5140     single_instruction;
  5141     stkSlot : R(read);
  5142     dst : M(write);
  5143     MS  : R;
  5144 %}
  5146 // Float Load
  5147 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5148     single_instruction;
  5149     stkSlot : R(read);
  5150     dst : M(write);
  5151     MS  : R;
  5152 %}
  5154 // Memory Nop
  5155 pipe_class mem_nop() %{
  5156     single_instruction;
  5157     MS  : R;
  5158 %}
  5160 pipe_class sethi(iRegP dst, immI src) %{
  5161     single_instruction;
  5162     dst  : E(write);
  5163     IALU : R;
  5164 %}
  5166 pipe_class loadPollP(iRegP poll) %{
  5167     single_instruction;
  5168     poll : R(read);
  5169     MS   : R;
  5170 %}
  5172 pipe_class br(Universe br, label labl) %{
  5173     single_instruction_with_delay_slot;
  5174     BR  : R;
  5175 %}
  5177 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5178     single_instruction_with_delay_slot;
  5179     cr    : E(read);
  5180     BR    : R;
  5181 %}
  5183 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5184     single_instruction_with_delay_slot;
  5185     op1 : E(read);
  5186     BR  : R;
  5187     MS  : R;
  5188 %}
  5190 // Compare and branch
  5191 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5192     instruction_count(2); has_delay_slot;
  5193     cr    : E(write);
  5194     src1  : R(read);
  5195     src2  : R(read);
  5196     IALU  : R;
  5197     BR    : R;
  5198 %}
  5200 // Compare and branch
  5201 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5202     instruction_count(2); has_delay_slot;
  5203     cr    : E(write);
  5204     src1  : R(read);
  5205     IALU  : R;
  5206     BR    : R;
  5207 %}
  5209 // Compare and branch using cbcond
  5210 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5211     single_instruction;
  5212     src1  : E(read);
  5213     src2  : E(read);
  5214     IALU  : R;
  5215     BR    : R;
  5216 %}
  5218 // Compare and branch using cbcond
  5219 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5220     single_instruction;
  5221     src1  : E(read);
  5222     IALU  : R;
  5223     BR    : R;
  5224 %}
  5226 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5227     single_instruction_with_delay_slot;
  5228     cr    : E(read);
  5229     BR    : R;
  5230 %}
  5232 pipe_class br_nop() %{
  5233     single_instruction;
  5234     BR  : R;
  5235 %}
  5237 pipe_class simple_call(method meth) %{
  5238     instruction_count(2); multiple_bundles; force_serialization;
  5239     fixed_latency(100);
  5240     BR  : R(1);
  5241     MS  : R(1);
  5242     A0  : R(1);
  5243 %}
  5245 pipe_class compiled_call(method meth) %{
  5246     instruction_count(1); multiple_bundles; force_serialization;
  5247     fixed_latency(100);
  5248     MS  : R(1);
  5249 %}
  5251 pipe_class call(method meth) %{
  5252     instruction_count(0); multiple_bundles; force_serialization;
  5253     fixed_latency(100);
  5254 %}
  5256 pipe_class tail_call(Universe ignore, label labl) %{
  5257     single_instruction; has_delay_slot;
  5258     fixed_latency(100);
  5259     BR  : R(1);
  5260     MS  : R(1);
  5261 %}
  5263 pipe_class ret(Universe ignore) %{
  5264     single_instruction; has_delay_slot;
  5265     BR  : R(1);
  5266     MS  : R(1);
  5267 %}
  5269 pipe_class ret_poll(g3RegP poll) %{
  5270     instruction_count(3); has_delay_slot;
  5271     poll : E(read);
  5272     MS   : R;
  5273 %}
  5275 // The real do-nothing guy
  5276 pipe_class empty( ) %{
  5277     instruction_count(0);
  5278 %}
  5280 pipe_class long_memory_op() %{
  5281     instruction_count(0); multiple_bundles; force_serialization;
  5282     fixed_latency(25);
  5283     MS  : R(1);
  5284 %}
  5286 // Check-cast
  5287 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5288     array : R(read);
  5289     match  : R(read);
  5290     IALU   : R(2);
  5291     BR     : R(2);
  5292     MS     : R;
  5293 %}
  5295 // Convert FPU flags into +1,0,-1
  5296 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5297     src1  : E(read);
  5298     src2  : E(read);
  5299     dst   : E(write);
  5300     FA    : R;
  5301     MS    : R(2);
  5302     BR    : R(2);
  5303 %}
  5305 // Compare for p < q, and conditionally add y
  5306 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5307     p     : E(read);
  5308     q     : E(read);
  5309     y     : E(read);
  5310     IALU  : R(3)
  5311 %}
  5313 // Perform a compare, then move conditionally in a branch delay slot.
  5314 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5315     src2   : E(read);
  5316     srcdst : E(read);
  5317     IALU   : R;
  5318     BR     : R;
  5319 %}
  5321 // Define the class for the Nop node
  5322 define %{
  5323    MachNop = ialu_nop;
  5324 %}
  5326 %}
  5328 //----------INSTRUCTIONS-------------------------------------------------------
  5330 //------------Special Stack Slot instructions - no match rules-----------------
  5331 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5332   // No match rule to avoid chain rule match.
  5333   effect(DEF dst, USE src);
  5334   ins_cost(MEMORY_REF_COST);
  5335   size(4);
  5336   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5337   opcode(Assembler::ldf_op3);
  5338   ins_encode(simple_form3_mem_reg(src, dst));
  5339   ins_pipe(floadF_stk);
  5340 %}
  5342 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5343   // No match rule to avoid chain rule match.
  5344   effect(DEF dst, USE src);
  5345   ins_cost(MEMORY_REF_COST);
  5346   size(4);
  5347   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5348   opcode(Assembler::lddf_op3);
  5349   ins_encode(simple_form3_mem_reg(src, dst));
  5350   ins_pipe(floadD_stk);
  5351 %}
  5353 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5354   // No match rule to avoid chain rule match.
  5355   effect(DEF dst, USE src);
  5356   ins_cost(MEMORY_REF_COST);
  5357   size(4);
  5358   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5359   opcode(Assembler::stf_op3);
  5360   ins_encode(simple_form3_mem_reg(dst, src));
  5361   ins_pipe(fstoreF_stk_reg);
  5362 %}
  5364 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5365   // No match rule to avoid chain rule match.
  5366   effect(DEF dst, USE src);
  5367   ins_cost(MEMORY_REF_COST);
  5368   size(4);
  5369   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5370   opcode(Assembler::stdf_op3);
  5371   ins_encode(simple_form3_mem_reg(dst, src));
  5372   ins_pipe(fstoreD_stk_reg);
  5373 %}
  5375 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5376   effect(DEF dst, USE src);
  5377   ins_cost(MEMORY_REF_COST*2);
  5378   size(8);
  5379   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5380             "STW    R_G0,$dst.lo" %}
  5381   opcode(Assembler::stw_op3);
  5382   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5383   ins_pipe(lstoreI_stk_reg);
  5384 %}
  5386 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5387   // No match rule to avoid chain rule match.
  5388   effect(DEF dst, USE src);
  5389   ins_cost(MEMORY_REF_COST);
  5390   size(4);
  5391   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5392   opcode(Assembler::stx_op3);
  5393   ins_encode(simple_form3_mem_reg( dst, src ) );
  5394   ins_pipe(istore_stk_reg);
  5395 %}
  5397 //---------- Chain stack slots between similar types --------
  5399 // Load integer from stack slot
  5400 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5401   match(Set dst src);
  5402   ins_cost(MEMORY_REF_COST);
  5404   size(4);
  5405   format %{ "LDUW   $src,$dst\t!stk" %}
  5406   opcode(Assembler::lduw_op3);
  5407   ins_encode(simple_form3_mem_reg( src, dst ) );
  5408   ins_pipe(iload_mem);
  5409 %}
  5411 // Store integer to stack slot
  5412 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5413   match(Set dst src);
  5414   ins_cost(MEMORY_REF_COST);
  5416   size(4);
  5417   format %{ "STW    $src,$dst\t!stk" %}
  5418   opcode(Assembler::stw_op3);
  5419   ins_encode(simple_form3_mem_reg( dst, src ) );
  5420   ins_pipe(istore_mem_reg);
  5421 %}
  5423 // Load long from stack slot
  5424 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5425   match(Set dst src);
  5427   ins_cost(MEMORY_REF_COST);
  5428   size(4);
  5429   format %{ "LDX    $src,$dst\t! long" %}
  5430   opcode(Assembler::ldx_op3);
  5431   ins_encode(simple_form3_mem_reg( src, dst ) );
  5432   ins_pipe(iload_mem);
  5433 %}
  5435 // Store long to stack slot
  5436 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5437   match(Set dst src);
  5439   ins_cost(MEMORY_REF_COST);
  5440   size(4);
  5441   format %{ "STX    $src,$dst\t! long" %}
  5442   opcode(Assembler::stx_op3);
  5443   ins_encode(simple_form3_mem_reg( dst, src ) );
  5444   ins_pipe(istore_mem_reg);
  5445 %}
  5447 #ifdef _LP64
  5448 // Load pointer from stack slot, 64-bit encoding
  5449 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5450   match(Set dst src);
  5451   ins_cost(MEMORY_REF_COST);
  5452   size(4);
  5453   format %{ "LDX    $src,$dst\t!ptr" %}
  5454   opcode(Assembler::ldx_op3);
  5455   ins_encode(simple_form3_mem_reg( src, dst ) );
  5456   ins_pipe(iload_mem);
  5457 %}
  5459 // Store pointer to stack slot
  5460 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5461   match(Set dst src);
  5462   ins_cost(MEMORY_REF_COST);
  5463   size(4);
  5464   format %{ "STX    $src,$dst\t!ptr" %}
  5465   opcode(Assembler::stx_op3);
  5466   ins_encode(simple_form3_mem_reg( dst, src ) );
  5467   ins_pipe(istore_mem_reg);
  5468 %}
  5469 #else // _LP64
  5470 // Load pointer from stack slot, 32-bit encoding
  5471 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5472   match(Set dst src);
  5473   ins_cost(MEMORY_REF_COST);
  5474   format %{ "LDUW   $src,$dst\t!ptr" %}
  5475   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5476   ins_encode(simple_form3_mem_reg( src, dst ) );
  5477   ins_pipe(iload_mem);
  5478 %}
  5480 // Store pointer to stack slot
  5481 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5482   match(Set dst src);
  5483   ins_cost(MEMORY_REF_COST);
  5484   format %{ "STW    $src,$dst\t!ptr" %}
  5485   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5486   ins_encode(simple_form3_mem_reg( dst, src ) );
  5487   ins_pipe(istore_mem_reg);
  5488 %}
  5489 #endif // _LP64
  5491 //------------Special Nop instructions for bundling - no match rules-----------
  5492 // Nop using the A0 functional unit
  5493 instruct Nop_A0() %{
  5494   ins_cost(0);
  5496   format %{ "NOP    ! Alu Pipeline" %}
  5497   opcode(Assembler::or_op3, Assembler::arith_op);
  5498   ins_encode( form2_nop() );
  5499   ins_pipe(ialu_nop_A0);
  5500 %}
  5502 // Nop using the A1 functional unit
  5503 instruct Nop_A1( ) %{
  5504   ins_cost(0);
  5506   format %{ "NOP    ! Alu Pipeline" %}
  5507   opcode(Assembler::or_op3, Assembler::arith_op);
  5508   ins_encode( form2_nop() );
  5509   ins_pipe(ialu_nop_A1);
  5510 %}
  5512 // Nop using the memory functional unit
  5513 instruct Nop_MS( ) %{
  5514   ins_cost(0);
  5516   format %{ "NOP    ! Memory Pipeline" %}
  5517   ins_encode( emit_mem_nop );
  5518   ins_pipe(mem_nop);
  5519 %}
  5521 // Nop using the floating add functional unit
  5522 instruct Nop_FA( ) %{
  5523   ins_cost(0);
  5525   format %{ "NOP    ! Floating Add Pipeline" %}
  5526   ins_encode( emit_fadd_nop );
  5527   ins_pipe(fadd_nop);
  5528 %}
  5530 // Nop using the branch functional unit
  5531 instruct Nop_BR( ) %{
  5532   ins_cost(0);
  5534   format %{ "NOP    ! Branch Pipeline" %}
  5535   ins_encode( emit_br_nop );
  5536   ins_pipe(br_nop);
  5537 %}
  5539 //----------Load/Store/Move Instructions---------------------------------------
  5540 //----------Load Instructions--------------------------------------------------
  5541 // Load Byte (8bit signed)
  5542 instruct loadB(iRegI dst, memory mem) %{
  5543   match(Set dst (LoadB mem));
  5544   ins_cost(MEMORY_REF_COST);
  5546   size(4);
  5547   format %{ "LDSB   $mem,$dst\t! byte" %}
  5548   ins_encode %{
  5549     __ ldsb($mem$$Address, $dst$$Register);
  5550   %}
  5551   ins_pipe(iload_mask_mem);
  5552 %}
  5554 // Load Byte (8bit signed) into a Long Register
  5555 instruct loadB2L(iRegL dst, memory mem) %{
  5556   match(Set dst (ConvI2L (LoadB mem)));
  5557   ins_cost(MEMORY_REF_COST);
  5559   size(4);
  5560   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5561   ins_encode %{
  5562     __ ldsb($mem$$Address, $dst$$Register);
  5563   %}
  5564   ins_pipe(iload_mask_mem);
  5565 %}
  5567 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5568 instruct loadUB(iRegI dst, memory mem) %{
  5569   match(Set dst (LoadUB mem));
  5570   ins_cost(MEMORY_REF_COST);
  5572   size(4);
  5573   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5574   ins_encode %{
  5575     __ ldub($mem$$Address, $dst$$Register);
  5576   %}
  5577   ins_pipe(iload_mem);
  5578 %}
  5580 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5581 instruct loadUB2L(iRegL dst, memory mem) %{
  5582   match(Set dst (ConvI2L (LoadUB mem)));
  5583   ins_cost(MEMORY_REF_COST);
  5585   size(4);
  5586   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5587   ins_encode %{
  5588     __ ldub($mem$$Address, $dst$$Register);
  5589   %}
  5590   ins_pipe(iload_mem);
  5591 %}
  5593 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5594 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5595   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5596   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5598   size(2*4);
  5599   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5600             "AND    $dst,$mask,$dst" %}
  5601   ins_encode %{
  5602     __ ldub($mem$$Address, $dst$$Register);
  5603     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5604   %}
  5605   ins_pipe(iload_mem);
  5606 %}
  5608 // Load Short (16bit signed)
  5609 instruct loadS(iRegI dst, memory mem) %{
  5610   match(Set dst (LoadS mem));
  5611   ins_cost(MEMORY_REF_COST);
  5613   size(4);
  5614   format %{ "LDSH   $mem,$dst\t! short" %}
  5615   ins_encode %{
  5616     __ ldsh($mem$$Address, $dst$$Register);
  5617   %}
  5618   ins_pipe(iload_mask_mem);
  5619 %}
  5621 // Load Short (16 bit signed) to Byte (8 bit signed)
  5622 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5623   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5624   ins_cost(MEMORY_REF_COST);
  5626   size(4);
  5628   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5629   ins_encode %{
  5630     __ ldsb($mem$$Address, $dst$$Register, 1);
  5631   %}
  5632   ins_pipe(iload_mask_mem);
  5633 %}
  5635 // Load Short (16bit signed) into a Long Register
  5636 instruct loadS2L(iRegL dst, memory mem) %{
  5637   match(Set dst (ConvI2L (LoadS mem)));
  5638   ins_cost(MEMORY_REF_COST);
  5640   size(4);
  5641   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5642   ins_encode %{
  5643     __ ldsh($mem$$Address, $dst$$Register);
  5644   %}
  5645   ins_pipe(iload_mask_mem);
  5646 %}
  5648 // Load Unsigned Short/Char (16bit UNsigned)
  5649 instruct loadUS(iRegI dst, memory mem) %{
  5650   match(Set dst (LoadUS mem));
  5651   ins_cost(MEMORY_REF_COST);
  5653   size(4);
  5654   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5655   ins_encode %{
  5656     __ lduh($mem$$Address, $dst$$Register);
  5657   %}
  5658   ins_pipe(iload_mem);
  5659 %}
  5661 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5662 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5663   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5664   ins_cost(MEMORY_REF_COST);
  5666   size(4);
  5667   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5668   ins_encode %{
  5669     __ ldsb($mem$$Address, $dst$$Register, 1);
  5670   %}
  5671   ins_pipe(iload_mask_mem);
  5672 %}
  5674 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5675 instruct loadUS2L(iRegL dst, memory mem) %{
  5676   match(Set dst (ConvI2L (LoadUS mem)));
  5677   ins_cost(MEMORY_REF_COST);
  5679   size(4);
  5680   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5681   ins_encode %{
  5682     __ lduh($mem$$Address, $dst$$Register);
  5683   %}
  5684   ins_pipe(iload_mem);
  5685 %}
  5687 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5688 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5689   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5690   ins_cost(MEMORY_REF_COST);
  5692   size(4);
  5693   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5694   ins_encode %{
  5695     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5696   %}
  5697   ins_pipe(iload_mem);
  5698 %}
  5700 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5701 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5702   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5703   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5705   size(2*4);
  5706   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5707             "AND    $dst,$mask,$dst" %}
  5708   ins_encode %{
  5709     Register Rdst = $dst$$Register;
  5710     __ lduh($mem$$Address, Rdst);
  5711     __ and3(Rdst, $mask$$constant, Rdst);
  5712   %}
  5713   ins_pipe(iload_mem);
  5714 %}
  5716 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5717 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5718   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5719   effect(TEMP dst, TEMP tmp);
  5720   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5722   size((3+1)*4);  // set may use two instructions.
  5723   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5724             "SET    $mask,$tmp\n\t"
  5725             "AND    $dst,$tmp,$dst" %}
  5726   ins_encode %{
  5727     Register Rdst = $dst$$Register;
  5728     Register Rtmp = $tmp$$Register;
  5729     __ lduh($mem$$Address, Rdst);
  5730     __ set($mask$$constant, Rtmp);
  5731     __ and3(Rdst, Rtmp, Rdst);
  5732   %}
  5733   ins_pipe(iload_mem);
  5734 %}
  5736 // Load Integer
  5737 instruct loadI(iRegI dst, memory mem) %{
  5738   match(Set dst (LoadI mem));
  5739   ins_cost(MEMORY_REF_COST);
  5741   size(4);
  5742   format %{ "LDUW   $mem,$dst\t! int" %}
  5743   ins_encode %{
  5744     __ lduw($mem$$Address, $dst$$Register);
  5745   %}
  5746   ins_pipe(iload_mem);
  5747 %}
  5749 // Load Integer to Byte (8 bit signed)
  5750 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5751   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5752   ins_cost(MEMORY_REF_COST);
  5754   size(4);
  5756   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5757   ins_encode %{
  5758     __ ldsb($mem$$Address, $dst$$Register, 3);
  5759   %}
  5760   ins_pipe(iload_mask_mem);
  5761 %}
  5763 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5764 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5765   match(Set dst (AndI (LoadI mem) mask));
  5766   ins_cost(MEMORY_REF_COST);
  5768   size(4);
  5770   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5771   ins_encode %{
  5772     __ ldub($mem$$Address, $dst$$Register, 3);
  5773   %}
  5774   ins_pipe(iload_mask_mem);
  5775 %}
  5777 // Load Integer to Short (16 bit signed)
  5778 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5779   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5780   ins_cost(MEMORY_REF_COST);
  5782   size(4);
  5784   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5785   ins_encode %{
  5786     __ ldsh($mem$$Address, $dst$$Register, 2);
  5787   %}
  5788   ins_pipe(iload_mask_mem);
  5789 %}
  5791 // Load Integer to Unsigned Short (16 bit UNsigned)
  5792 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5793   match(Set dst (AndI (LoadI mem) mask));
  5794   ins_cost(MEMORY_REF_COST);
  5796   size(4);
  5798   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5799   ins_encode %{
  5800     __ lduh($mem$$Address, $dst$$Register, 2);
  5801   %}
  5802   ins_pipe(iload_mask_mem);
  5803 %}
  5805 // Load Integer into a Long Register
  5806 instruct loadI2L(iRegL dst, memory mem) %{
  5807   match(Set dst (ConvI2L (LoadI mem)));
  5808   ins_cost(MEMORY_REF_COST);
  5810   size(4);
  5811   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5812   ins_encode %{
  5813     __ ldsw($mem$$Address, $dst$$Register);
  5814   %}
  5815   ins_pipe(iload_mask_mem);
  5816 %}
  5818 // Load Integer with mask 0xFF into a Long Register
  5819 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5820   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5821   ins_cost(MEMORY_REF_COST);
  5823   size(4);
  5824   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5825   ins_encode %{
  5826     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5827   %}
  5828   ins_pipe(iload_mem);
  5829 %}
  5831 // Load Integer with mask 0xFFFF into a Long Register
  5832 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5833   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5834   ins_cost(MEMORY_REF_COST);
  5836   size(4);
  5837   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5838   ins_encode %{
  5839     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5840   %}
  5841   ins_pipe(iload_mem);
  5842 %}
  5844 // Load Integer with a 13-bit mask into a Long Register
  5845 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5846   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5847   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5849   size(2*4);
  5850   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5851             "AND    $dst,$mask,$dst" %}
  5852   ins_encode %{
  5853     Register Rdst = $dst$$Register;
  5854     __ lduw($mem$$Address, Rdst);
  5855     __ and3(Rdst, $mask$$constant, Rdst);
  5856   %}
  5857   ins_pipe(iload_mem);
  5858 %}
  5860 // Load Integer with a 32-bit mask into a Long Register
  5861 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5862   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5863   effect(TEMP dst, TEMP tmp);
  5864   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5866   size((3+1)*4);  // set may use two instructions.
  5867   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5868             "SET    $mask,$tmp\n\t"
  5869             "AND    $dst,$tmp,$dst" %}
  5870   ins_encode %{
  5871     Register Rdst = $dst$$Register;
  5872     Register Rtmp = $tmp$$Register;
  5873     __ lduw($mem$$Address, Rdst);
  5874     __ set($mask$$constant, Rtmp);
  5875     __ and3(Rdst, Rtmp, Rdst);
  5876   %}
  5877   ins_pipe(iload_mem);
  5878 %}
  5880 // Load Unsigned Integer into a Long Register
  5881 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
  5882   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5883   ins_cost(MEMORY_REF_COST);
  5885   size(4);
  5886   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5887   ins_encode %{
  5888     __ lduw($mem$$Address, $dst$$Register);
  5889   %}
  5890   ins_pipe(iload_mem);
  5891 %}
  5893 // Load Long - aligned
  5894 instruct loadL(iRegL dst, memory mem ) %{
  5895   match(Set dst (LoadL mem));
  5896   ins_cost(MEMORY_REF_COST);
  5898   size(4);
  5899   format %{ "LDX    $mem,$dst\t! long" %}
  5900   ins_encode %{
  5901     __ ldx($mem$$Address, $dst$$Register);
  5902   %}
  5903   ins_pipe(iload_mem);
  5904 %}
  5906 // Load Long - UNaligned
  5907 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5908   match(Set dst (LoadL_unaligned mem));
  5909   effect(KILL tmp);
  5910   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5911   size(16);
  5912   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5913           "\tLDUW   $mem  ,$dst\n"
  5914           "\tSLLX   #32, $dst, $dst\n"
  5915           "\tOR     $dst, R_O7, $dst" %}
  5916   opcode(Assembler::lduw_op3);
  5917   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5918   ins_pipe(iload_mem);
  5919 %}
  5921 // Load Range
  5922 instruct loadRange(iRegI dst, memory mem) %{
  5923   match(Set dst (LoadRange mem));
  5924   ins_cost(MEMORY_REF_COST);
  5926   size(4);
  5927   format %{ "LDUW   $mem,$dst\t! range" %}
  5928   opcode(Assembler::lduw_op3);
  5929   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5930   ins_pipe(iload_mem);
  5931 %}
  5933 // Load Integer into %f register (for fitos/fitod)
  5934 instruct loadI_freg(regF dst, memory mem) %{
  5935   match(Set dst (LoadI mem));
  5936   ins_cost(MEMORY_REF_COST);
  5937   size(4);
  5939   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5940   opcode(Assembler::ldf_op3);
  5941   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5942   ins_pipe(floadF_mem);
  5943 %}
  5945 // Load Pointer
  5946 instruct loadP(iRegP dst, memory mem) %{
  5947   match(Set dst (LoadP mem));
  5948   ins_cost(MEMORY_REF_COST);
  5949   size(4);
  5951 #ifndef _LP64
  5952   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5953   ins_encode %{
  5954     __ lduw($mem$$Address, $dst$$Register);
  5955   %}
  5956 #else
  5957   format %{ "LDX    $mem,$dst\t! ptr" %}
  5958   ins_encode %{
  5959     __ ldx($mem$$Address, $dst$$Register);
  5960   %}
  5961 #endif
  5962   ins_pipe(iload_mem);
  5963 %}
  5965 // Load Compressed Pointer
  5966 instruct loadN(iRegN dst, memory mem) %{
  5967   match(Set dst (LoadN mem));
  5968   ins_cost(MEMORY_REF_COST);
  5969   size(4);
  5971   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5972   ins_encode %{
  5973     __ lduw($mem$$Address, $dst$$Register);
  5974   %}
  5975   ins_pipe(iload_mem);
  5976 %}
  5978 // Load Klass Pointer
  5979 instruct loadKlass(iRegP dst, memory mem) %{
  5980   match(Set dst (LoadKlass mem));
  5981   ins_cost(MEMORY_REF_COST);
  5982   size(4);
  5984 #ifndef _LP64
  5985   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5986   ins_encode %{
  5987     __ lduw($mem$$Address, $dst$$Register);
  5988   %}
  5989 #else
  5990   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5991   ins_encode %{
  5992     __ ldx($mem$$Address, $dst$$Register);
  5993   %}
  5994 #endif
  5995   ins_pipe(iload_mem);
  5996 %}
  5998 // Load narrow Klass Pointer
  5999 instruct loadNKlass(iRegN dst, memory mem) %{
  6000   match(Set dst (LoadNKlass mem));
  6001   ins_cost(MEMORY_REF_COST);
  6002   size(4);
  6004   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  6005   ins_encode %{
  6006     __ lduw($mem$$Address, $dst$$Register);
  6007   %}
  6008   ins_pipe(iload_mem);
  6009 %}
  6011 // Load Double
  6012 instruct loadD(regD dst, memory mem) %{
  6013   match(Set dst (LoadD mem));
  6014   ins_cost(MEMORY_REF_COST);
  6016   size(4);
  6017   format %{ "LDDF   $mem,$dst" %}
  6018   opcode(Assembler::lddf_op3);
  6019   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6020   ins_pipe(floadD_mem);
  6021 %}
  6023 // Load Double - UNaligned
  6024 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6025   match(Set dst (LoadD_unaligned mem));
  6026   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6027   size(8);
  6028   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6029           "\tLDF    $mem+4,$dst.lo\t!" %}
  6030   opcode(Assembler::ldf_op3);
  6031   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6032   ins_pipe(iload_mem);
  6033 %}
  6035 // Load Float
  6036 instruct loadF(regF dst, memory mem) %{
  6037   match(Set dst (LoadF mem));
  6038   ins_cost(MEMORY_REF_COST);
  6040   size(4);
  6041   format %{ "LDF    $mem,$dst" %}
  6042   opcode(Assembler::ldf_op3);
  6043   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6044   ins_pipe(floadF_mem);
  6045 %}
  6047 // Load Constant
  6048 instruct loadConI( iRegI dst, immI src ) %{
  6049   match(Set dst src);
  6050   ins_cost(DEFAULT_COST * 3/2);
  6051   format %{ "SET    $src,$dst" %}
  6052   ins_encode( Set32(src, dst) );
  6053   ins_pipe(ialu_hi_lo_reg);
  6054 %}
  6056 instruct loadConI13( iRegI dst, immI13 src ) %{
  6057   match(Set dst src);
  6059   size(4);
  6060   format %{ "MOV    $src,$dst" %}
  6061   ins_encode( Set13( src, dst ) );
  6062   ins_pipe(ialu_imm);
  6063 %}
  6065 #ifndef _LP64
  6066 instruct loadConP(iRegP dst, immP con) %{
  6067   match(Set dst con);
  6068   ins_cost(DEFAULT_COST * 3/2);
  6069   format %{ "SET    $con,$dst\t!ptr" %}
  6070   ins_encode %{
  6071     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6072       intptr_t val = $con$$constant;
  6073     if (constant_reloc == relocInfo::oop_type) {
  6074       __ set_oop_constant((jobject) val, $dst$$Register);
  6075     } else if (constant_reloc == relocInfo::metadata_type) {
  6076       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6077     } else {          // non-oop pointers, e.g. card mark base, heap top
  6078       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6079       __ set(val, $dst$$Register);
  6081   %}
  6082   ins_pipe(loadConP);
  6083 %}
  6084 #else
  6085 instruct loadConP_set(iRegP dst, immP_set con) %{
  6086   match(Set dst con);
  6087   ins_cost(DEFAULT_COST * 3/2);
  6088   format %{ "SET    $con,$dst\t! ptr" %}
  6089   ins_encode %{
  6090     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6091       intptr_t val = $con$$constant;
  6092     if (constant_reloc == relocInfo::oop_type) {
  6093       __ set_oop_constant((jobject) val, $dst$$Register);
  6094     } else if (constant_reloc == relocInfo::metadata_type) {
  6095       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6096     } else {          // non-oop pointers, e.g. card mark base, heap top
  6097       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6098       __ set(val, $dst$$Register);
  6100   %}
  6101   ins_pipe(loadConP);
  6102 %}
  6104 instruct loadConP_load(iRegP dst, immP_load con) %{
  6105   match(Set dst con);
  6106   ins_cost(MEMORY_REF_COST);
  6107   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6108   ins_encode %{
  6109     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6110     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6111   %}
  6112   ins_pipe(loadConP);
  6113 %}
  6115 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6116   match(Set dst con);
  6117   ins_cost(DEFAULT_COST * 3/2);
  6118   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6119   ins_encode %{
  6120     __ set($con$$constant, $dst$$Register);
  6121   %}
  6122   ins_pipe(loadConP);
  6123 %}
  6124 #endif // _LP64
  6126 instruct loadConP0(iRegP dst, immP0 src) %{
  6127   match(Set dst src);
  6129   size(4);
  6130   format %{ "CLR    $dst\t!ptr" %}
  6131   ins_encode %{
  6132     __ clr($dst$$Register);
  6133   %}
  6134   ins_pipe(ialu_imm);
  6135 %}
  6137 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6138   match(Set dst src);
  6139   ins_cost(DEFAULT_COST);
  6140   format %{ "SET    $src,$dst\t!ptr" %}
  6141   ins_encode %{
  6142     AddressLiteral polling_page(os::get_polling_page());
  6143     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6144   %}
  6145   ins_pipe(loadConP_poll);
  6146 %}
  6148 instruct loadConN0(iRegN dst, immN0 src) %{
  6149   match(Set dst src);
  6151   size(4);
  6152   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6153   ins_encode %{
  6154     __ clr($dst$$Register);
  6155   %}
  6156   ins_pipe(ialu_imm);
  6157 %}
  6159 instruct loadConN(iRegN dst, immN src) %{
  6160   match(Set dst src);
  6161   ins_cost(DEFAULT_COST * 3/2);
  6162   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6163   ins_encode %{
  6164     Register dst = $dst$$Register;
  6165     __ set_narrow_oop((jobject)$src$$constant, dst);
  6166   %}
  6167   ins_pipe(ialu_hi_lo_reg);
  6168 %}
  6170 instruct loadConNKlass(iRegN dst, immNKlass src) %{
  6171   match(Set dst src);
  6172   ins_cost(DEFAULT_COST * 3/2);
  6173   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
  6174   ins_encode %{
  6175     Register dst = $dst$$Register;
  6176     __ set_narrow_klass((Klass*)$src$$constant, dst);
  6177   %}
  6178   ins_pipe(ialu_hi_lo_reg);
  6179 %}
  6181 // Materialize long value (predicated by immL_cheap).
  6182 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6183   match(Set dst con);
  6184   effect(KILL tmp);
  6185   ins_cost(DEFAULT_COST * 3);
  6186   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6187   ins_encode %{
  6188     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6189   %}
  6190   ins_pipe(loadConL);
  6191 %}
  6193 // Load long value from constant table (predicated by immL_expensive).
  6194 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6195   match(Set dst con);
  6196   ins_cost(MEMORY_REF_COST);
  6197   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6198   ins_encode %{
  6199       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6200     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6201   %}
  6202   ins_pipe(loadConL);
  6203 %}
  6205 instruct loadConL0( iRegL dst, immL0 src ) %{
  6206   match(Set dst src);
  6207   ins_cost(DEFAULT_COST);
  6208   size(4);
  6209   format %{ "CLR    $dst\t! long" %}
  6210   ins_encode( Set13( src, dst ) );
  6211   ins_pipe(ialu_imm);
  6212 %}
  6214 instruct loadConL13( iRegL dst, immL13 src ) %{
  6215   match(Set dst src);
  6216   ins_cost(DEFAULT_COST * 2);
  6218   size(4);
  6219   format %{ "MOV    $src,$dst\t! long" %}
  6220   ins_encode( Set13( src, dst ) );
  6221   ins_pipe(ialu_imm);
  6222 %}
  6224 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6225   match(Set dst con);
  6226   effect(KILL tmp);
  6227   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6228   ins_encode %{
  6229       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6230     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6231   %}
  6232   ins_pipe(loadConFD);
  6233 %}
  6235 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6236   match(Set dst con);
  6237   effect(KILL tmp);
  6238   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6239   ins_encode %{
  6240     // XXX This is a quick fix for 6833573.
  6241     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6242     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6243     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6244   %}
  6245   ins_pipe(loadConFD);
  6246 %}
  6248 // Prefetch instructions.
  6249 // Must be safe to execute with invalid address (cannot fault).
  6251 instruct prefetchr( memory mem ) %{
  6252   match( PrefetchRead mem );
  6253   ins_cost(MEMORY_REF_COST);
  6254   size(4);
  6256   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6257   opcode(Assembler::prefetch_op3);
  6258   ins_encode( form3_mem_prefetch_read( mem ) );
  6259   ins_pipe(iload_mem);
  6260 %}
  6262 instruct prefetchw( memory mem ) %{
  6263   match( PrefetchWrite mem );
  6264   ins_cost(MEMORY_REF_COST);
  6265   size(4);
  6267   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6268   opcode(Assembler::prefetch_op3);
  6269   ins_encode( form3_mem_prefetch_write( mem ) );
  6270   ins_pipe(iload_mem);
  6271 %}
  6273 // Prefetch instructions for allocation.
  6275 instruct prefetchAlloc( memory mem ) %{
  6276   predicate(AllocatePrefetchInstr == 0);
  6277   match( PrefetchAllocation mem );
  6278   ins_cost(MEMORY_REF_COST);
  6279   size(4);
  6281   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6282   opcode(Assembler::prefetch_op3);
  6283   ins_encode( form3_mem_prefetch_write( mem ) );
  6284   ins_pipe(iload_mem);
  6285 %}
  6287 // Use BIS instruction to prefetch for allocation.
  6288 // Could fault, need space at the end of TLAB.
  6289 instruct prefetchAlloc_bis( iRegP dst ) %{
  6290   predicate(AllocatePrefetchInstr == 1);
  6291   match( PrefetchAllocation dst );
  6292   ins_cost(MEMORY_REF_COST);
  6293   size(4);
  6295   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6296   ins_encode %{
  6297     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6298   %}
  6299   ins_pipe(istore_mem_reg);
  6300 %}
  6302 // Next code is used for finding next cache line address to prefetch.
  6303 #ifndef _LP64
  6304 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6305   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6306   ins_cost(DEFAULT_COST);
  6307   size(4);
  6309   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6310   ins_encode %{
  6311     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6312   %}
  6313   ins_pipe(ialu_reg_imm);
  6314 %}
  6315 #else
  6316 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6317   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6318   ins_cost(DEFAULT_COST);
  6319   size(4);
  6321   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6322   ins_encode %{
  6323     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6324   %}
  6325   ins_pipe(ialu_reg_imm);
  6326 %}
  6327 #endif
  6329 //----------Store Instructions-------------------------------------------------
  6330 // Store Byte
  6331 instruct storeB(memory mem, iRegI src) %{
  6332   match(Set mem (StoreB mem src));
  6333   ins_cost(MEMORY_REF_COST);
  6335   size(4);
  6336   format %{ "STB    $src,$mem\t! byte" %}
  6337   opcode(Assembler::stb_op3);
  6338   ins_encode(simple_form3_mem_reg( mem, src ) );
  6339   ins_pipe(istore_mem_reg);
  6340 %}
  6342 instruct storeB0(memory mem, immI0 src) %{
  6343   match(Set mem (StoreB mem src));
  6344   ins_cost(MEMORY_REF_COST);
  6346   size(4);
  6347   format %{ "STB    $src,$mem\t! byte" %}
  6348   opcode(Assembler::stb_op3);
  6349   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6350   ins_pipe(istore_mem_zero);
  6351 %}
  6353 instruct storeCM0(memory mem, immI0 src) %{
  6354   match(Set mem (StoreCM mem src));
  6355   ins_cost(MEMORY_REF_COST);
  6357   size(4);
  6358   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6359   opcode(Assembler::stb_op3);
  6360   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6361   ins_pipe(istore_mem_zero);
  6362 %}
  6364 // Store Char/Short
  6365 instruct storeC(memory mem, iRegI src) %{
  6366   match(Set mem (StoreC mem src));
  6367   ins_cost(MEMORY_REF_COST);
  6369   size(4);
  6370   format %{ "STH    $src,$mem\t! short" %}
  6371   opcode(Assembler::sth_op3);
  6372   ins_encode(simple_form3_mem_reg( mem, src ) );
  6373   ins_pipe(istore_mem_reg);
  6374 %}
  6376 instruct storeC0(memory mem, immI0 src) %{
  6377   match(Set mem (StoreC mem src));
  6378   ins_cost(MEMORY_REF_COST);
  6380   size(4);
  6381   format %{ "STH    $src,$mem\t! short" %}
  6382   opcode(Assembler::sth_op3);
  6383   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6384   ins_pipe(istore_mem_zero);
  6385 %}
  6387 // Store Integer
  6388 instruct storeI(memory mem, iRegI src) %{
  6389   match(Set mem (StoreI mem src));
  6390   ins_cost(MEMORY_REF_COST);
  6392   size(4);
  6393   format %{ "STW    $src,$mem" %}
  6394   opcode(Assembler::stw_op3);
  6395   ins_encode(simple_form3_mem_reg( mem, src ) );
  6396   ins_pipe(istore_mem_reg);
  6397 %}
  6399 // Store Long
  6400 instruct storeL(memory mem, iRegL src) %{
  6401   match(Set mem (StoreL mem src));
  6402   ins_cost(MEMORY_REF_COST);
  6403   size(4);
  6404   format %{ "STX    $src,$mem\t! long" %}
  6405   opcode(Assembler::stx_op3);
  6406   ins_encode(simple_form3_mem_reg( mem, src ) );
  6407   ins_pipe(istore_mem_reg);
  6408 %}
  6410 instruct storeI0(memory mem, immI0 src) %{
  6411   match(Set mem (StoreI mem src));
  6412   ins_cost(MEMORY_REF_COST);
  6414   size(4);
  6415   format %{ "STW    $src,$mem" %}
  6416   opcode(Assembler::stw_op3);
  6417   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6418   ins_pipe(istore_mem_zero);
  6419 %}
  6421 instruct storeL0(memory mem, immL0 src) %{
  6422   match(Set mem (StoreL mem src));
  6423   ins_cost(MEMORY_REF_COST);
  6425   size(4);
  6426   format %{ "STX    $src,$mem" %}
  6427   opcode(Assembler::stx_op3);
  6428   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6429   ins_pipe(istore_mem_zero);
  6430 %}
  6432 // Store Integer from float register (used after fstoi)
  6433 instruct storeI_Freg(memory mem, regF src) %{
  6434   match(Set mem (StoreI mem src));
  6435   ins_cost(MEMORY_REF_COST);
  6437   size(4);
  6438   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6439   opcode(Assembler::stf_op3);
  6440   ins_encode(simple_form3_mem_reg( mem, src ) );
  6441   ins_pipe(fstoreF_mem_reg);
  6442 %}
  6444 // Store Pointer
  6445 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6446   match(Set dst (StoreP dst src));
  6447   ins_cost(MEMORY_REF_COST);
  6448   size(4);
  6450 #ifndef _LP64
  6451   format %{ "STW    $src,$dst\t! ptr" %}
  6452   opcode(Assembler::stw_op3, 0, REGP_OP);
  6453 #else
  6454   format %{ "STX    $src,$dst\t! ptr" %}
  6455   opcode(Assembler::stx_op3, 0, REGP_OP);
  6456 #endif
  6457   ins_encode( form3_mem_reg( dst, src ) );
  6458   ins_pipe(istore_mem_spORreg);
  6459 %}
  6461 instruct storeP0(memory dst, immP0 src) %{
  6462   match(Set dst (StoreP dst src));
  6463   ins_cost(MEMORY_REF_COST);
  6464   size(4);
  6466 #ifndef _LP64
  6467   format %{ "STW    $src,$dst\t! ptr" %}
  6468   opcode(Assembler::stw_op3, 0, REGP_OP);
  6469 #else
  6470   format %{ "STX    $src,$dst\t! ptr" %}
  6471   opcode(Assembler::stx_op3, 0, REGP_OP);
  6472 #endif
  6473   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6474   ins_pipe(istore_mem_zero);
  6475 %}
  6477 // Store Compressed Pointer
  6478 instruct storeN(memory dst, iRegN src) %{
  6479    match(Set dst (StoreN dst src));
  6480    ins_cost(MEMORY_REF_COST);
  6481    size(4);
  6483    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6484    ins_encode %{
  6485      Register base = as_Register($dst$$base);
  6486      Register index = as_Register($dst$$index);
  6487      Register src = $src$$Register;
  6488      if (index != G0) {
  6489        __ stw(src, base, index);
  6490      } else {
  6491        __ stw(src, base, $dst$$disp);
  6493    %}
  6494    ins_pipe(istore_mem_spORreg);
  6495 %}
  6497 instruct storeNKlass(memory dst, iRegN src) %{
  6498    match(Set dst (StoreNKlass dst src));
  6499    ins_cost(MEMORY_REF_COST);
  6500    size(4);
  6502    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
  6503    ins_encode %{
  6504      Register base = as_Register($dst$$base);
  6505      Register index = as_Register($dst$$index);
  6506      Register src = $src$$Register;
  6507      if (index != G0) {
  6508        __ stw(src, base, index);
  6509      } else {
  6510        __ stw(src, base, $dst$$disp);
  6512    %}
  6513    ins_pipe(istore_mem_spORreg);
  6514 %}
  6516 instruct storeN0(memory dst, immN0 src) %{
  6517    match(Set dst (StoreN dst src));
  6518    ins_cost(MEMORY_REF_COST);
  6519    size(4);
  6521    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6522    ins_encode %{
  6523      Register base = as_Register($dst$$base);
  6524      Register index = as_Register($dst$$index);
  6525      if (index != G0) {
  6526        __ stw(0, base, index);
  6527      } else {
  6528        __ stw(0, base, $dst$$disp);
  6530    %}
  6531    ins_pipe(istore_mem_zero);
  6532 %}
  6534 // Store Double
  6535 instruct storeD( memory mem, regD src) %{
  6536   match(Set mem (StoreD mem src));
  6537   ins_cost(MEMORY_REF_COST);
  6539   size(4);
  6540   format %{ "STDF   $src,$mem" %}
  6541   opcode(Assembler::stdf_op3);
  6542   ins_encode(simple_form3_mem_reg( mem, src ) );
  6543   ins_pipe(fstoreD_mem_reg);
  6544 %}
  6546 instruct storeD0( memory mem, immD0 src) %{
  6547   match(Set mem (StoreD mem src));
  6548   ins_cost(MEMORY_REF_COST);
  6550   size(4);
  6551   format %{ "STX    $src,$mem" %}
  6552   opcode(Assembler::stx_op3);
  6553   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6554   ins_pipe(fstoreD_mem_zero);
  6555 %}
  6557 // Store Float
  6558 instruct storeF( memory mem, regF src) %{
  6559   match(Set mem (StoreF mem src));
  6560   ins_cost(MEMORY_REF_COST);
  6562   size(4);
  6563   format %{ "STF    $src,$mem" %}
  6564   opcode(Assembler::stf_op3);
  6565   ins_encode(simple_form3_mem_reg( mem, src ) );
  6566   ins_pipe(fstoreF_mem_reg);
  6567 %}
  6569 instruct storeF0( memory mem, immF0 src) %{
  6570   match(Set mem (StoreF mem src));
  6571   ins_cost(MEMORY_REF_COST);
  6573   size(4);
  6574   format %{ "STW    $src,$mem\t! storeF0" %}
  6575   opcode(Assembler::stw_op3);
  6576   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6577   ins_pipe(fstoreF_mem_zero);
  6578 %}
  6580 // Convert oop pointer into compressed form
  6581 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6582   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6583   match(Set dst (EncodeP src));
  6584   format %{ "encode_heap_oop $src, $dst" %}
  6585   ins_encode %{
  6586     __ encode_heap_oop($src$$Register, $dst$$Register);
  6587   %}
  6588   ins_pipe(ialu_reg);
  6589 %}
  6591 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6592   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6593   match(Set dst (EncodeP src));
  6594   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6595   ins_encode %{
  6596     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6597   %}
  6598   ins_pipe(ialu_reg);
  6599 %}
  6601 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6602   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6603             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6604   match(Set dst (DecodeN src));
  6605   format %{ "decode_heap_oop $src, $dst" %}
  6606   ins_encode %{
  6607     __ decode_heap_oop($src$$Register, $dst$$Register);
  6608   %}
  6609   ins_pipe(ialu_reg);
  6610 %}
  6612 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6613   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6614             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6615   match(Set dst (DecodeN src));
  6616   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6617   ins_encode %{
  6618     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6619   %}
  6620   ins_pipe(ialu_reg);
  6621 %}
  6623 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
  6624   match(Set dst (EncodePKlass src));
  6625   format %{ "encode_klass_not_null $src, $dst" %}
  6626   ins_encode %{
  6627     __ encode_klass_not_null($src$$Register, $dst$$Register);
  6628   %}
  6629   ins_pipe(ialu_reg);
  6630 %}
  6632 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
  6633   match(Set dst (DecodeNKlass src));
  6634   format %{ "decode_klass_not_null $src, $dst" %}
  6635   ins_encode %{
  6636     __ decode_klass_not_null($src$$Register, $dst$$Register);
  6637   %}
  6638   ins_pipe(ialu_reg);
  6639 %}
  6641 //----------MemBar Instructions-----------------------------------------------
  6642 // Memory barrier flavors
  6644 instruct membar_acquire() %{
  6645   match(MemBarAcquire);
  6646   ins_cost(4*MEMORY_REF_COST);
  6648   size(0);
  6649   format %{ "MEMBAR-acquire" %}
  6650   ins_encode( enc_membar_acquire );
  6651   ins_pipe(long_memory_op);
  6652 %}
  6654 instruct membar_acquire_lock() %{
  6655   match(MemBarAcquireLock);
  6656   ins_cost(0);
  6658   size(0);
  6659   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6660   ins_encode( );
  6661   ins_pipe(empty);
  6662 %}
  6664 instruct membar_release() %{
  6665   match(MemBarRelease);
  6666   ins_cost(4*MEMORY_REF_COST);
  6668   size(0);
  6669   format %{ "MEMBAR-release" %}
  6670   ins_encode( enc_membar_release );
  6671   ins_pipe(long_memory_op);
  6672 %}
  6674 instruct membar_release_lock() %{
  6675   match(MemBarReleaseLock);
  6676   ins_cost(0);
  6678   size(0);
  6679   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6680   ins_encode( );
  6681   ins_pipe(empty);
  6682 %}
  6684 instruct membar_volatile() %{
  6685   match(MemBarVolatile);
  6686   ins_cost(4*MEMORY_REF_COST);
  6688   size(4);
  6689   format %{ "MEMBAR-volatile" %}
  6690   ins_encode( enc_membar_volatile );
  6691   ins_pipe(long_memory_op);
  6692 %}
  6694 instruct unnecessary_membar_volatile() %{
  6695   match(MemBarVolatile);
  6696   predicate(Matcher::post_store_load_barrier(n));
  6697   ins_cost(0);
  6699   size(0);
  6700   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6701   ins_encode( );
  6702   ins_pipe(empty);
  6703 %}
  6705 instruct membar_storestore() %{
  6706   match(MemBarStoreStore);
  6707   ins_cost(0);
  6709   size(0);
  6710   format %{ "!MEMBAR-storestore (empty encoding)" %}
  6711   ins_encode( );
  6712   ins_pipe(empty);
  6713 %}
  6715 //----------Register Move Instructions-----------------------------------------
  6716 instruct roundDouble_nop(regD dst) %{
  6717   match(Set dst (RoundDouble dst));
  6718   ins_cost(0);
  6719   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6720   ins_encode( );
  6721   ins_pipe(empty);
  6722 %}
  6725 instruct roundFloat_nop(regF dst) %{
  6726   match(Set dst (RoundFloat dst));
  6727   ins_cost(0);
  6728   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6729   ins_encode( );
  6730   ins_pipe(empty);
  6731 %}
  6734 // Cast Index to Pointer for unsafe natives
  6735 instruct castX2P(iRegX src, iRegP dst) %{
  6736   match(Set dst (CastX2P src));
  6738   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6739   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6740   ins_pipe(ialu_reg);
  6741 %}
  6743 // Cast Pointer to Index for unsafe natives
  6744 instruct castP2X(iRegP src, iRegX dst) %{
  6745   match(Set dst (CastP2X src));
  6747   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6748   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6749   ins_pipe(ialu_reg);
  6750 %}
  6752 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6753   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6754   match(Set stkSlot src);   // chain rule
  6755   ins_cost(MEMORY_REF_COST);
  6756   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6757   opcode(Assembler::stdf_op3);
  6758   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6759   ins_pipe(fstoreD_stk_reg);
  6760 %}
  6762 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6763   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6764   match(Set dst stkSlot);   // chain rule
  6765   ins_cost(MEMORY_REF_COST);
  6766   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6767   opcode(Assembler::lddf_op3);
  6768   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6769   ins_pipe(floadD_stk);
  6770 %}
  6772 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6773   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6774   match(Set stkSlot src);   // chain rule
  6775   ins_cost(MEMORY_REF_COST);
  6776   format %{ "STF   $src,$stkSlot\t!stk" %}
  6777   opcode(Assembler::stf_op3);
  6778   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6779   ins_pipe(fstoreF_stk_reg);
  6780 %}
  6782 //----------Conditional Move---------------------------------------------------
  6783 // Conditional move
  6784 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6785   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6786   ins_cost(150);
  6787   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6788   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6789   ins_pipe(ialu_reg);
  6790 %}
  6792 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6793   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6794   ins_cost(140);
  6795   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6796   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6797   ins_pipe(ialu_imm);
  6798 %}
  6800 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6801   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6802   ins_cost(150);
  6803   size(4);
  6804   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6805   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6806   ins_pipe(ialu_reg);
  6807 %}
  6809 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6810   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6811   ins_cost(140);
  6812   size(4);
  6813   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6814   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6815   ins_pipe(ialu_imm);
  6816 %}
  6818 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6819   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6820   ins_cost(150);
  6821   size(4);
  6822   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6823   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6824   ins_pipe(ialu_reg);
  6825 %}
  6827 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6828   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6829   ins_cost(140);
  6830   size(4);
  6831   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6832   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6833   ins_pipe(ialu_imm);
  6834 %}
  6836 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6837   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6838   ins_cost(150);
  6839   size(4);
  6840   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6841   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6842   ins_pipe(ialu_reg);
  6843 %}
  6845 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6846   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6847   ins_cost(140);
  6848   size(4);
  6849   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6850   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6851   ins_pipe(ialu_imm);
  6852 %}
  6854 // Conditional move for RegN. Only cmov(reg,reg).
  6855 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6856   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6857   ins_cost(150);
  6858   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6859   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6860   ins_pipe(ialu_reg);
  6861 %}
  6863 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6864 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6865   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6866   ins_cost(150);
  6867   size(4);
  6868   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6869   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6870   ins_pipe(ialu_reg);
  6871 %}
  6873 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6874 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6875   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6876   ins_cost(150);
  6877   size(4);
  6878   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6879   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6880   ins_pipe(ialu_reg);
  6881 %}
  6883 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6884   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6885   ins_cost(150);
  6886   size(4);
  6887   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6888   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6889   ins_pipe(ialu_reg);
  6890 %}
  6892 // Conditional move
  6893 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6894   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6895   ins_cost(150);
  6896   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6897   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6898   ins_pipe(ialu_reg);
  6899 %}
  6901 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6902   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6903   ins_cost(140);
  6904   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6905   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6906   ins_pipe(ialu_imm);
  6907 %}
  6909 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6910 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6911   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6912   ins_cost(150);
  6914   size(4);
  6915   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6916   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6917   ins_pipe(ialu_reg);
  6918 %}
  6920 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6921   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6922   ins_cost(150);
  6924   size(4);
  6925   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6926   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6927   ins_pipe(ialu_reg);
  6928 %}
  6930 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6931   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6932   ins_cost(140);
  6934   size(4);
  6935   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6936   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6937   ins_pipe(ialu_imm);
  6938 %}
  6940 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6941   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6942   ins_cost(140);
  6944   size(4);
  6945   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6946   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6947   ins_pipe(ialu_imm);
  6948 %}
  6950 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6951   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6952   ins_cost(150);
  6953   size(4);
  6954   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6955   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6956   ins_pipe(ialu_imm);
  6957 %}
  6959 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6960   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6961   ins_cost(140);
  6962   size(4);
  6963   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6964   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6965   ins_pipe(ialu_imm);
  6966 %}
  6968 // Conditional move
  6969 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6970   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6971   ins_cost(150);
  6972   opcode(0x101);
  6973   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6974   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6975   ins_pipe(int_conditional_float_move);
  6976 %}
  6978 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6979   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6980   ins_cost(150);
  6982   size(4);
  6983   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6984   opcode(0x101);
  6985   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6986   ins_pipe(int_conditional_float_move);
  6987 %}
  6989 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  6990   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6991   ins_cost(150);
  6993   size(4);
  6994   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6995   opcode(0x101);
  6996   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6997   ins_pipe(int_conditional_float_move);
  6998 %}
  7000 // Conditional move,
  7001 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  7002   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  7003   ins_cost(150);
  7004   size(4);
  7005   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  7006   opcode(0x1);
  7007   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7008   ins_pipe(int_conditional_double_move);
  7009 %}
  7011 // Conditional move
  7012 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  7013   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  7014   ins_cost(150);
  7015   size(4);
  7016   opcode(0x102);
  7017   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7018   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7019   ins_pipe(int_conditional_double_move);
  7020 %}
  7022 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  7023   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7024   ins_cost(150);
  7026   size(4);
  7027   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7028   opcode(0x102);
  7029   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7030   ins_pipe(int_conditional_double_move);
  7031 %}
  7033 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  7034   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7035   ins_cost(150);
  7037   size(4);
  7038   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7039   opcode(0x102);
  7040   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7041   ins_pipe(int_conditional_double_move);
  7042 %}
  7044 // Conditional move,
  7045 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7046   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7047   ins_cost(150);
  7048   size(4);
  7049   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7050   opcode(0x2);
  7051   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7052   ins_pipe(int_conditional_double_move);
  7053 %}
  7055 // Conditional move
  7056 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7057   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7058   ins_cost(150);
  7059   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7060   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7061   ins_pipe(ialu_reg);
  7062 %}
  7064 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7065   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7066   ins_cost(140);
  7067   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7068   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7069   ins_pipe(ialu_imm);
  7070 %}
  7072 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7073   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7074   ins_cost(150);
  7076   size(4);
  7077   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7078   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7079   ins_pipe(ialu_reg);
  7080 %}
  7083 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7084   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7085   ins_cost(150);
  7087   size(4);
  7088   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7089   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7090   ins_pipe(ialu_reg);
  7091 %}
  7094 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7095   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7096   ins_cost(150);
  7098   size(4);
  7099   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7100   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7101   ins_pipe(ialu_reg);
  7102 %}
  7106 //----------OS and Locking Instructions----------------------------------------
  7108 // This name is KNOWN by the ADLC and cannot be changed.
  7109 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7110 // for this guy.
  7111 instruct tlsLoadP(g2RegP dst) %{
  7112   match(Set dst (ThreadLocal));
  7114   size(0);
  7115   ins_cost(0);
  7116   format %{ "# TLS is in G2" %}
  7117   ins_encode( /*empty encoding*/ );
  7118   ins_pipe(ialu_none);
  7119 %}
  7121 instruct checkCastPP( iRegP dst ) %{
  7122   match(Set dst (CheckCastPP dst));
  7124   size(0);
  7125   format %{ "# checkcastPP of $dst" %}
  7126   ins_encode( /*empty encoding*/ );
  7127   ins_pipe(empty);
  7128 %}
  7131 instruct castPP( iRegP dst ) %{
  7132   match(Set dst (CastPP dst));
  7133   format %{ "# castPP of $dst" %}
  7134   ins_encode( /*empty encoding*/ );
  7135   ins_pipe(empty);
  7136 %}
  7138 instruct castII( iRegI dst ) %{
  7139   match(Set dst (CastII dst));
  7140   format %{ "# castII of $dst" %}
  7141   ins_encode( /*empty encoding*/ );
  7142   ins_cost(0);
  7143   ins_pipe(empty);
  7144 %}
  7146 //----------Arithmetic Instructions--------------------------------------------
  7147 // Addition Instructions
  7148 // Register Addition
  7149 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7150   match(Set dst (AddI src1 src2));
  7152   size(4);
  7153   format %{ "ADD    $src1,$src2,$dst" %}
  7154   ins_encode %{
  7155     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7156   %}
  7157   ins_pipe(ialu_reg_reg);
  7158 %}
  7160 // Immediate Addition
  7161 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7162   match(Set dst (AddI src1 src2));
  7164   size(4);
  7165   format %{ "ADD    $src1,$src2,$dst" %}
  7166   opcode(Assembler::add_op3, Assembler::arith_op);
  7167   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7168   ins_pipe(ialu_reg_imm);
  7169 %}
  7171 // Pointer Register Addition
  7172 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7173   match(Set dst (AddP src1 src2));
  7175   size(4);
  7176   format %{ "ADD    $src1,$src2,$dst" %}
  7177   opcode(Assembler::add_op3, Assembler::arith_op);
  7178   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7179   ins_pipe(ialu_reg_reg);
  7180 %}
  7182 // Pointer Immediate Addition
  7183 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7184   match(Set dst (AddP src1 src2));
  7186   size(4);
  7187   format %{ "ADD    $src1,$src2,$dst" %}
  7188   opcode(Assembler::add_op3, Assembler::arith_op);
  7189   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7190   ins_pipe(ialu_reg_imm);
  7191 %}
  7193 // Long Addition
  7194 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7195   match(Set dst (AddL src1 src2));
  7197   size(4);
  7198   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7199   opcode(Assembler::add_op3, Assembler::arith_op);
  7200   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7201   ins_pipe(ialu_reg_reg);
  7202 %}
  7204 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7205   match(Set dst (AddL src1 con));
  7207   size(4);
  7208   format %{ "ADD    $src1,$con,$dst" %}
  7209   opcode(Assembler::add_op3, Assembler::arith_op);
  7210   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7211   ins_pipe(ialu_reg_imm);
  7212 %}
  7214 //----------Conditional_store--------------------------------------------------
  7215 // Conditional-store of the updated heap-top.
  7216 // Used during allocation of the shared heap.
  7217 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7219 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7220 instruct loadPLocked(iRegP dst, memory mem) %{
  7221   match(Set dst (LoadPLocked mem));
  7222   ins_cost(MEMORY_REF_COST);
  7224 #ifndef _LP64
  7225   size(4);
  7226   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7227   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7228 #else
  7229   format %{ "LDX    $mem,$dst\t! ptr" %}
  7230   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7231 #endif
  7232   ins_encode( form3_mem_reg( mem, dst ) );
  7233   ins_pipe(iload_mem);
  7234 %}
  7236 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7237   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7238   effect( KILL newval );
  7239   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7240             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7241   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7242   ins_pipe( long_memory_op );
  7243 %}
  7245 // Conditional-store of an int value.
  7246 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7247   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7248   effect( KILL newval );
  7249   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7250             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7251   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7252   ins_pipe( long_memory_op );
  7253 %}
  7255 // Conditional-store of a long value.
  7256 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7257   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7258   effect( KILL newval );
  7259   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7260             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7261   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7262   ins_pipe( long_memory_op );
  7263 %}
  7265 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7267 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7268   predicate(VM_Version::supports_cx8());
  7269   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7270   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7271   format %{
  7272             "MOV    $newval,O7\n\t"
  7273             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7274             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7275             "MOV    1,$res\n\t"
  7276             "MOVne  xcc,R_G0,$res"
  7277   %}
  7278   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7279               enc_lflags_ne_to_boolean(res) );
  7280   ins_pipe( long_memory_op );
  7281 %}
  7284 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7285   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7286   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7287   format %{
  7288             "MOV    $newval,O7\n\t"
  7289             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7290             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7291             "MOV    1,$res\n\t"
  7292             "MOVne  icc,R_G0,$res"
  7293   %}
  7294   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7295               enc_iflags_ne_to_boolean(res) );
  7296   ins_pipe( long_memory_op );
  7297 %}
  7299 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7300 #ifdef _LP64
  7301   predicate(VM_Version::supports_cx8());
  7302 #endif
  7303   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7304   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7305   format %{
  7306             "MOV    $newval,O7\n\t"
  7307             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7308             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7309             "MOV    1,$res\n\t"
  7310             "MOVne  xcc,R_G0,$res"
  7311   %}
  7312 #ifdef _LP64
  7313   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7314               enc_lflags_ne_to_boolean(res) );
  7315 #else
  7316   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7317               enc_iflags_ne_to_boolean(res) );
  7318 #endif
  7319   ins_pipe( long_memory_op );
  7320 %}
  7322 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7323   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7324   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7325   format %{
  7326             "MOV    $newval,O7\n\t"
  7327             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7328             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7329             "MOV    1,$res\n\t"
  7330             "MOVne  icc,R_G0,$res"
  7331   %}
  7332   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7333               enc_iflags_ne_to_boolean(res) );
  7334   ins_pipe( long_memory_op );
  7335 %}
  7337 instruct xchgI( memory mem, iRegI newval) %{
  7338   match(Set newval (GetAndSetI mem newval));
  7339   format %{ "SWAP  [$mem],$newval" %}
  7340   size(4);
  7341   ins_encode %{
  7342     __ swap($mem$$Address, $newval$$Register);
  7343   %}
  7344   ins_pipe( long_memory_op );
  7345 %}
  7347 #ifndef _LP64
  7348 instruct xchgP( memory mem, iRegP newval) %{
  7349   match(Set newval (GetAndSetP mem newval));
  7350   format %{ "SWAP  [$mem],$newval" %}
  7351   size(4);
  7352   ins_encode %{
  7353     __ swap($mem$$Address, $newval$$Register);
  7354   %}
  7355   ins_pipe( long_memory_op );
  7356 %}
  7357 #endif
  7359 instruct xchgN( memory mem, iRegN newval) %{
  7360   match(Set newval (GetAndSetN mem newval));
  7361   format %{ "SWAP  [$mem],$newval" %}
  7362   size(4);
  7363   ins_encode %{
  7364     __ swap($mem$$Address, $newval$$Register);
  7365   %}
  7366   ins_pipe( long_memory_op );
  7367 %}
  7369 //---------------------
  7370 // Subtraction Instructions
  7371 // Register Subtraction
  7372 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7373   match(Set dst (SubI src1 src2));
  7375   size(4);
  7376   format %{ "SUB    $src1,$src2,$dst" %}
  7377   opcode(Assembler::sub_op3, Assembler::arith_op);
  7378   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7379   ins_pipe(ialu_reg_reg);
  7380 %}
  7382 // Immediate Subtraction
  7383 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7384   match(Set dst (SubI src1 src2));
  7386   size(4);
  7387   format %{ "SUB    $src1,$src2,$dst" %}
  7388   opcode(Assembler::sub_op3, Assembler::arith_op);
  7389   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7390   ins_pipe(ialu_reg_imm);
  7391 %}
  7393 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7394   match(Set dst (SubI zero src2));
  7396   size(4);
  7397   format %{ "NEG    $src2,$dst" %}
  7398   opcode(Assembler::sub_op3, Assembler::arith_op);
  7399   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7400   ins_pipe(ialu_zero_reg);
  7401 %}
  7403 // Long subtraction
  7404 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7405   match(Set dst (SubL src1 src2));
  7407   size(4);
  7408   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7409   opcode(Assembler::sub_op3, Assembler::arith_op);
  7410   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7411   ins_pipe(ialu_reg_reg);
  7412 %}
  7414 // Immediate Subtraction
  7415 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7416   match(Set dst (SubL src1 con));
  7418   size(4);
  7419   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7420   opcode(Assembler::sub_op3, Assembler::arith_op);
  7421   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7422   ins_pipe(ialu_reg_imm);
  7423 %}
  7425 // Long negation
  7426 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7427   match(Set dst (SubL zero src2));
  7429   size(4);
  7430   format %{ "NEG    $src2,$dst\t! long" %}
  7431   opcode(Assembler::sub_op3, Assembler::arith_op);
  7432   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7433   ins_pipe(ialu_zero_reg);
  7434 %}
  7436 // Multiplication Instructions
  7437 // Integer Multiplication
  7438 // Register Multiplication
  7439 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7440   match(Set dst (MulI src1 src2));
  7442   size(4);
  7443   format %{ "MULX   $src1,$src2,$dst" %}
  7444   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7445   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7446   ins_pipe(imul_reg_reg);
  7447 %}
  7449 // Immediate Multiplication
  7450 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7451   match(Set dst (MulI src1 src2));
  7453   size(4);
  7454   format %{ "MULX   $src1,$src2,$dst" %}
  7455   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7456   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7457   ins_pipe(imul_reg_imm);
  7458 %}
  7460 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7461   match(Set dst (MulL src1 src2));
  7462   ins_cost(DEFAULT_COST * 5);
  7463   size(4);
  7464   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7465   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7466   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7467   ins_pipe(mulL_reg_reg);
  7468 %}
  7470 // Immediate Multiplication
  7471 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7472   match(Set dst (MulL src1 src2));
  7473   ins_cost(DEFAULT_COST * 5);
  7474   size(4);
  7475   format %{ "MULX   $src1,$src2,$dst" %}
  7476   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7477   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7478   ins_pipe(mulL_reg_imm);
  7479 %}
  7481 // Integer Division
  7482 // Register Division
  7483 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7484   match(Set dst (DivI src1 src2));
  7485   ins_cost((2+71)*DEFAULT_COST);
  7487   format %{ "SRA     $src2,0,$src2\n\t"
  7488             "SRA     $src1,0,$src1\n\t"
  7489             "SDIVX   $src1,$src2,$dst" %}
  7490   ins_encode( idiv_reg( src1, src2, dst ) );
  7491   ins_pipe(sdiv_reg_reg);
  7492 %}
  7494 // Immediate Division
  7495 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7496   match(Set dst (DivI src1 src2));
  7497   ins_cost((2+71)*DEFAULT_COST);
  7499   format %{ "SRA     $src1,0,$src1\n\t"
  7500             "SDIVX   $src1,$src2,$dst" %}
  7501   ins_encode( idiv_imm( src1, src2, dst ) );
  7502   ins_pipe(sdiv_reg_imm);
  7503 %}
  7505 //----------Div-By-10-Expansion------------------------------------------------
  7506 // Extract hi bits of a 32x32->64 bit multiply.
  7507 // Expand rule only, not matched
  7508 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7509   effect( DEF dst, USE src1, USE src2 );
  7510   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7511             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7512   ins_encode( enc_mul_hi(dst,src1,src2));
  7513   ins_pipe(sdiv_reg_reg);
  7514 %}
  7516 // Magic constant, reciprocal of 10
  7517 instruct loadConI_x66666667(iRegIsafe dst) %{
  7518   effect( DEF dst );
  7520   size(8);
  7521   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7522   ins_encode( Set32(0x66666667, dst) );
  7523   ins_pipe(ialu_hi_lo_reg);
  7524 %}
  7526 // Register Shift Right Arithmetic Long by 32-63
  7527 instruct sra_31( iRegI dst, iRegI src ) %{
  7528   effect( DEF dst, USE src );
  7529   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7530   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7531   ins_pipe(ialu_reg_reg);
  7532 %}
  7534 // Arithmetic Shift Right by 8-bit immediate
  7535 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7536   effect( DEF dst, USE src );
  7537   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7538   opcode(Assembler::sra_op3, Assembler::arith_op);
  7539   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7540   ins_pipe(ialu_reg_imm);
  7541 %}
  7543 // Integer DIV with 10
  7544 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7545   match(Set dst (DivI src div));
  7546   ins_cost((6+6)*DEFAULT_COST);
  7547   expand %{
  7548     iRegIsafe tmp1;               // Killed temps;
  7549     iRegIsafe tmp2;               // Killed temps;
  7550     iRegI tmp3;                   // Killed temps;
  7551     iRegI tmp4;                   // Killed temps;
  7552     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7553     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7554     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7555     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7556     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7557   %}
  7558 %}
  7560 // Register Long Division
  7561 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7562   match(Set dst (DivL src1 src2));
  7563   ins_cost(DEFAULT_COST*71);
  7564   size(4);
  7565   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7566   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7567   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7568   ins_pipe(divL_reg_reg);
  7569 %}
  7571 // Register Long Division
  7572 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7573   match(Set dst (DivL src1 src2));
  7574   ins_cost(DEFAULT_COST*71);
  7575   size(4);
  7576   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7577   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7578   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7579   ins_pipe(divL_reg_imm);
  7580 %}
  7582 // Integer Remainder
  7583 // Register Remainder
  7584 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7585   match(Set dst (ModI src1 src2));
  7586   effect( KILL ccr, KILL temp);
  7588   format %{ "SREM   $src1,$src2,$dst" %}
  7589   ins_encode( irem_reg(src1, src2, dst, temp) );
  7590   ins_pipe(sdiv_reg_reg);
  7591 %}
  7593 // Immediate Remainder
  7594 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7595   match(Set dst (ModI src1 src2));
  7596   effect( KILL ccr, KILL temp);
  7598   format %{ "SREM   $src1,$src2,$dst" %}
  7599   ins_encode( irem_imm(src1, src2, dst, temp) );
  7600   ins_pipe(sdiv_reg_imm);
  7601 %}
  7603 // Register Long Remainder
  7604 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7605   effect(DEF dst, USE src1, USE src2);
  7606   size(4);
  7607   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7608   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7609   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7610   ins_pipe(divL_reg_reg);
  7611 %}
  7613 // Register Long Division
  7614 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7615   effect(DEF dst, USE src1, USE src2);
  7616   size(4);
  7617   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7618   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7619   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7620   ins_pipe(divL_reg_imm);
  7621 %}
  7623 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7624   effect(DEF dst, USE src1, USE src2);
  7625   size(4);
  7626   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7627   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7628   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7629   ins_pipe(mulL_reg_reg);
  7630 %}
  7632 // Immediate Multiplication
  7633 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7634   effect(DEF dst, USE src1, USE src2);
  7635   size(4);
  7636   format %{ "MULX   $src1,$src2,$dst" %}
  7637   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7638   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7639   ins_pipe(mulL_reg_imm);
  7640 %}
  7642 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7643   effect(DEF dst, USE src1, USE src2);
  7644   size(4);
  7645   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7646   opcode(Assembler::sub_op3, Assembler::arith_op);
  7647   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7648   ins_pipe(ialu_reg_reg);
  7649 %}
  7651 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7652   effect(DEF dst, USE src1, USE src2);
  7653   size(4);
  7654   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7655   opcode(Assembler::sub_op3, Assembler::arith_op);
  7656   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7657   ins_pipe(ialu_reg_reg);
  7658 %}
  7660 // Register Long Remainder
  7661 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7662   match(Set dst (ModL src1 src2));
  7663   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7664   expand %{
  7665     iRegL tmp1;
  7666     iRegL tmp2;
  7667     divL_reg_reg_1(tmp1, src1, src2);
  7668     mulL_reg_reg_1(tmp2, tmp1, src2);
  7669     subL_reg_reg_1(dst,  src1, tmp2);
  7670   %}
  7671 %}
  7673 // Register Long Remainder
  7674 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7675   match(Set dst (ModL src1 src2));
  7676   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7677   expand %{
  7678     iRegL tmp1;
  7679     iRegL tmp2;
  7680     divL_reg_imm13_1(tmp1, src1, src2);
  7681     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7682     subL_reg_reg_2  (dst,  src1, tmp2);
  7683   %}
  7684 %}
  7686 // Integer Shift Instructions
  7687 // Register Shift Left
  7688 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7689   match(Set dst (LShiftI src1 src2));
  7691   size(4);
  7692   format %{ "SLL    $src1,$src2,$dst" %}
  7693   opcode(Assembler::sll_op3, Assembler::arith_op);
  7694   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7695   ins_pipe(ialu_reg_reg);
  7696 %}
  7698 // Register Shift Left Immediate
  7699 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7700   match(Set dst (LShiftI src1 src2));
  7702   size(4);
  7703   format %{ "SLL    $src1,$src2,$dst" %}
  7704   opcode(Assembler::sll_op3, Assembler::arith_op);
  7705   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7706   ins_pipe(ialu_reg_imm);
  7707 %}
  7709 // Register Shift Left
  7710 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7711   match(Set dst (LShiftL src1 src2));
  7713   size(4);
  7714   format %{ "SLLX   $src1,$src2,$dst" %}
  7715   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7716   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7717   ins_pipe(ialu_reg_reg);
  7718 %}
  7720 // Register Shift Left Immediate
  7721 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7722   match(Set dst (LShiftL src1 src2));
  7724   size(4);
  7725   format %{ "SLLX   $src1,$src2,$dst" %}
  7726   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7727   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7728   ins_pipe(ialu_reg_imm);
  7729 %}
  7731 // Register Arithmetic Shift Right
  7732 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7733   match(Set dst (RShiftI src1 src2));
  7734   size(4);
  7735   format %{ "SRA    $src1,$src2,$dst" %}
  7736   opcode(Assembler::sra_op3, Assembler::arith_op);
  7737   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7738   ins_pipe(ialu_reg_reg);
  7739 %}
  7741 // Register Arithmetic Shift Right Immediate
  7742 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7743   match(Set dst (RShiftI src1 src2));
  7745   size(4);
  7746   format %{ "SRA    $src1,$src2,$dst" %}
  7747   opcode(Assembler::sra_op3, Assembler::arith_op);
  7748   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7749   ins_pipe(ialu_reg_imm);
  7750 %}
  7752 // Register Shift Right Arithmatic Long
  7753 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7754   match(Set dst (RShiftL src1 src2));
  7756   size(4);
  7757   format %{ "SRAX   $src1,$src2,$dst" %}
  7758   opcode(Assembler::srax_op3, Assembler::arith_op);
  7759   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7760   ins_pipe(ialu_reg_reg);
  7761 %}
  7763 // Register Shift Left Immediate
  7764 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7765   match(Set dst (RShiftL src1 src2));
  7767   size(4);
  7768   format %{ "SRAX   $src1,$src2,$dst" %}
  7769   opcode(Assembler::srax_op3, Assembler::arith_op);
  7770   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7771   ins_pipe(ialu_reg_imm);
  7772 %}
  7774 // Register Shift Right
  7775 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7776   match(Set dst (URShiftI src1 src2));
  7778   size(4);
  7779   format %{ "SRL    $src1,$src2,$dst" %}
  7780   opcode(Assembler::srl_op3, Assembler::arith_op);
  7781   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7782   ins_pipe(ialu_reg_reg);
  7783 %}
  7785 // Register Shift Right Immediate
  7786 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7787   match(Set dst (URShiftI src1 src2));
  7789   size(4);
  7790   format %{ "SRL    $src1,$src2,$dst" %}
  7791   opcode(Assembler::srl_op3, Assembler::arith_op);
  7792   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7793   ins_pipe(ialu_reg_imm);
  7794 %}
  7796 // Register Shift Right
  7797 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7798   match(Set dst (URShiftL src1 src2));
  7800   size(4);
  7801   format %{ "SRLX   $src1,$src2,$dst" %}
  7802   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7803   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7804   ins_pipe(ialu_reg_reg);
  7805 %}
  7807 // Register Shift Right Immediate
  7808 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7809   match(Set dst (URShiftL src1 src2));
  7811   size(4);
  7812   format %{ "SRLX   $src1,$src2,$dst" %}
  7813   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7814   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7815   ins_pipe(ialu_reg_imm);
  7816 %}
  7818 // Register Shift Right Immediate with a CastP2X
  7819 #ifdef _LP64
  7820 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7821   match(Set dst (URShiftL (CastP2X src1) src2));
  7822   size(4);
  7823   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7824   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7825   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7826   ins_pipe(ialu_reg_imm);
  7827 %}
  7828 #else
  7829 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7830   match(Set dst (URShiftI (CastP2X src1) src2));
  7831   size(4);
  7832   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7833   opcode(Assembler::srl_op3, Assembler::arith_op);
  7834   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7835   ins_pipe(ialu_reg_imm);
  7836 %}
  7837 #endif
  7840 //----------Floating Point Arithmetic Instructions-----------------------------
  7842 //  Add float single precision
  7843 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7844   match(Set dst (AddF src1 src2));
  7846   size(4);
  7847   format %{ "FADDS  $src1,$src2,$dst" %}
  7848   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7849   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7850   ins_pipe(faddF_reg_reg);
  7851 %}
  7853 //  Add float double precision
  7854 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7855   match(Set dst (AddD src1 src2));
  7857   size(4);
  7858   format %{ "FADDD  $src1,$src2,$dst" %}
  7859   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7860   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7861   ins_pipe(faddD_reg_reg);
  7862 %}
  7864 //  Sub float single precision
  7865 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7866   match(Set dst (SubF src1 src2));
  7868   size(4);
  7869   format %{ "FSUBS  $src1,$src2,$dst" %}
  7870   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7871   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7872   ins_pipe(faddF_reg_reg);
  7873 %}
  7875 //  Sub float double precision
  7876 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7877   match(Set dst (SubD src1 src2));
  7879   size(4);
  7880   format %{ "FSUBD  $src1,$src2,$dst" %}
  7881   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7882   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7883   ins_pipe(faddD_reg_reg);
  7884 %}
  7886 //  Mul float single precision
  7887 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7888   match(Set dst (MulF src1 src2));
  7890   size(4);
  7891   format %{ "FMULS  $src1,$src2,$dst" %}
  7892   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7893   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7894   ins_pipe(fmulF_reg_reg);
  7895 %}
  7897 //  Mul float double precision
  7898 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7899   match(Set dst (MulD src1 src2));
  7901   size(4);
  7902   format %{ "FMULD  $src1,$src2,$dst" %}
  7903   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7904   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7905   ins_pipe(fmulD_reg_reg);
  7906 %}
  7908 //  Div float single precision
  7909 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7910   match(Set dst (DivF src1 src2));
  7912   size(4);
  7913   format %{ "FDIVS  $src1,$src2,$dst" %}
  7914   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7915   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7916   ins_pipe(fdivF_reg_reg);
  7917 %}
  7919 //  Div float double precision
  7920 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7921   match(Set dst (DivD src1 src2));
  7923   size(4);
  7924   format %{ "FDIVD  $src1,$src2,$dst" %}
  7925   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7926   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7927   ins_pipe(fdivD_reg_reg);
  7928 %}
  7930 //  Absolute float double precision
  7931 instruct absD_reg(regD dst, regD src) %{
  7932   match(Set dst (AbsD src));
  7934   format %{ "FABSd  $src,$dst" %}
  7935   ins_encode(fabsd(dst, src));
  7936   ins_pipe(faddD_reg);
  7937 %}
  7939 //  Absolute float single precision
  7940 instruct absF_reg(regF dst, regF src) %{
  7941   match(Set dst (AbsF src));
  7943   format %{ "FABSs  $src,$dst" %}
  7944   ins_encode(fabss(dst, src));
  7945   ins_pipe(faddF_reg);
  7946 %}
  7948 instruct negF_reg(regF dst, regF src) %{
  7949   match(Set dst (NegF src));
  7951   size(4);
  7952   format %{ "FNEGs  $src,$dst" %}
  7953   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7954   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7955   ins_pipe(faddF_reg);
  7956 %}
  7958 instruct negD_reg(regD dst, regD src) %{
  7959   match(Set dst (NegD src));
  7961   format %{ "FNEGd  $src,$dst" %}
  7962   ins_encode(fnegd(dst, src));
  7963   ins_pipe(faddD_reg);
  7964 %}
  7966 //  Sqrt float double precision
  7967 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7968   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7970   size(4);
  7971   format %{ "FSQRTS $src,$dst" %}
  7972   ins_encode(fsqrts(dst, src));
  7973   ins_pipe(fdivF_reg_reg);
  7974 %}
  7976 //  Sqrt float double precision
  7977 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7978   match(Set dst (SqrtD src));
  7980   size(4);
  7981   format %{ "FSQRTD $src,$dst" %}
  7982   ins_encode(fsqrtd(dst, src));
  7983   ins_pipe(fdivD_reg_reg);
  7984 %}
  7986 //----------Logical Instructions-----------------------------------------------
  7987 // And Instructions
  7988 // Register And
  7989 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7990   match(Set dst (AndI src1 src2));
  7992   size(4);
  7993   format %{ "AND    $src1,$src2,$dst" %}
  7994   opcode(Assembler::and_op3, Assembler::arith_op);
  7995   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7996   ins_pipe(ialu_reg_reg);
  7997 %}
  7999 // Immediate And
  8000 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8001   match(Set dst (AndI src1 src2));
  8003   size(4);
  8004   format %{ "AND    $src1,$src2,$dst" %}
  8005   opcode(Assembler::and_op3, Assembler::arith_op);
  8006   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8007   ins_pipe(ialu_reg_imm);
  8008 %}
  8010 // Register And Long
  8011 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8012   match(Set dst (AndL src1 src2));
  8014   ins_cost(DEFAULT_COST);
  8015   size(4);
  8016   format %{ "AND    $src1,$src2,$dst\t! long" %}
  8017   opcode(Assembler::and_op3, Assembler::arith_op);
  8018   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8019   ins_pipe(ialu_reg_reg);
  8020 %}
  8022 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8023   match(Set dst (AndL src1 con));
  8025   ins_cost(DEFAULT_COST);
  8026   size(4);
  8027   format %{ "AND    $src1,$con,$dst\t! long" %}
  8028   opcode(Assembler::and_op3, Assembler::arith_op);
  8029   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8030   ins_pipe(ialu_reg_imm);
  8031 %}
  8033 // Or Instructions
  8034 // Register Or
  8035 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8036   match(Set dst (OrI src1 src2));
  8038   size(4);
  8039   format %{ "OR     $src1,$src2,$dst" %}
  8040   opcode(Assembler::or_op3, Assembler::arith_op);
  8041   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8042   ins_pipe(ialu_reg_reg);
  8043 %}
  8045 // Immediate Or
  8046 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8047   match(Set dst (OrI src1 src2));
  8049   size(4);
  8050   format %{ "OR     $src1,$src2,$dst" %}
  8051   opcode(Assembler::or_op3, Assembler::arith_op);
  8052   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8053   ins_pipe(ialu_reg_imm);
  8054 %}
  8056 // Register Or Long
  8057 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8058   match(Set dst (OrL src1 src2));
  8060   ins_cost(DEFAULT_COST);
  8061   size(4);
  8062   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8063   opcode(Assembler::or_op3, Assembler::arith_op);
  8064   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8065   ins_pipe(ialu_reg_reg);
  8066 %}
  8068 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8069   match(Set dst (OrL src1 con));
  8070   ins_cost(DEFAULT_COST*2);
  8072   ins_cost(DEFAULT_COST);
  8073   size(4);
  8074   format %{ "OR     $src1,$con,$dst\t! long" %}
  8075   opcode(Assembler::or_op3, Assembler::arith_op);
  8076   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8077   ins_pipe(ialu_reg_imm);
  8078 %}
  8080 #ifndef _LP64
  8082 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8083 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8084   match(Set dst (OrI src1 (CastP2X src2)));
  8086   size(4);
  8087   format %{ "OR     $src1,$src2,$dst" %}
  8088   opcode(Assembler::or_op3, Assembler::arith_op);
  8089   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8090   ins_pipe(ialu_reg_reg);
  8091 %}
  8093 #else
  8095 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8096   match(Set dst (OrL src1 (CastP2X src2)));
  8098   ins_cost(DEFAULT_COST);
  8099   size(4);
  8100   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8101   opcode(Assembler::or_op3, Assembler::arith_op);
  8102   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8103   ins_pipe(ialu_reg_reg);
  8104 %}
  8106 #endif
  8108 // Xor Instructions
  8109 // Register Xor
  8110 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8111   match(Set dst (XorI src1 src2));
  8113   size(4);
  8114   format %{ "XOR    $src1,$src2,$dst" %}
  8115   opcode(Assembler::xor_op3, Assembler::arith_op);
  8116   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8117   ins_pipe(ialu_reg_reg);
  8118 %}
  8120 // Immediate Xor
  8121 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8122   match(Set dst (XorI src1 src2));
  8124   size(4);
  8125   format %{ "XOR    $src1,$src2,$dst" %}
  8126   opcode(Assembler::xor_op3, Assembler::arith_op);
  8127   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8128   ins_pipe(ialu_reg_imm);
  8129 %}
  8131 // Register Xor Long
  8132 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8133   match(Set dst (XorL src1 src2));
  8135   ins_cost(DEFAULT_COST);
  8136   size(4);
  8137   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8138   opcode(Assembler::xor_op3, Assembler::arith_op);
  8139   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8140   ins_pipe(ialu_reg_reg);
  8141 %}
  8143 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8144   match(Set dst (XorL src1 con));
  8146   ins_cost(DEFAULT_COST);
  8147   size(4);
  8148   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8149   opcode(Assembler::xor_op3, Assembler::arith_op);
  8150   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8151   ins_pipe(ialu_reg_imm);
  8152 %}
  8154 //----------Convert to Boolean-------------------------------------------------
  8155 // Nice hack for 32-bit tests but doesn't work for
  8156 // 64-bit pointers.
  8157 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8158   match(Set dst (Conv2B src));
  8159   effect( KILL ccr );
  8160   ins_cost(DEFAULT_COST*2);
  8161   format %{ "CMP    R_G0,$src\n\t"
  8162             "ADDX   R_G0,0,$dst" %}
  8163   ins_encode( enc_to_bool( src, dst ) );
  8164   ins_pipe(ialu_reg_ialu);
  8165 %}
  8167 #ifndef _LP64
  8168 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8169   match(Set dst (Conv2B src));
  8170   effect( KILL ccr );
  8171   ins_cost(DEFAULT_COST*2);
  8172   format %{ "CMP    R_G0,$src\n\t"
  8173             "ADDX   R_G0,0,$dst" %}
  8174   ins_encode( enc_to_bool( src, dst ) );
  8175   ins_pipe(ialu_reg_ialu);
  8176 %}
  8177 #else
  8178 instruct convP2B( iRegI dst, iRegP src ) %{
  8179   match(Set dst (Conv2B src));
  8180   ins_cost(DEFAULT_COST*2);
  8181   format %{ "MOV    $src,$dst\n\t"
  8182             "MOVRNZ $src,1,$dst" %}
  8183   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8184   ins_pipe(ialu_clr_and_mover);
  8185 %}
  8186 #endif
  8188 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8189   match(Set dst (CmpLTMask src zero));
  8190   effect(KILL ccr);
  8191   size(4);
  8192   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8193   ins_encode %{
  8194     __ sra($src$$Register, 31, $dst$$Register);
  8195   %}
  8196   ins_pipe(ialu_reg_imm);
  8197 %}
  8199 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8200   match(Set dst (CmpLTMask p q));
  8201   effect( KILL ccr );
  8202   ins_cost(DEFAULT_COST*4);
  8203   format %{ "CMP    $p,$q\n\t"
  8204             "MOV    #0,$dst\n\t"
  8205             "BLT,a  .+8\n\t"
  8206             "MOV    #-1,$dst" %}
  8207   ins_encode( enc_ltmask(p,q,dst) );
  8208   ins_pipe(ialu_reg_reg_ialu);
  8209 %}
  8211 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8212   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8213   effect(KILL ccr, TEMP tmp);
  8214   ins_cost(DEFAULT_COST*3);
  8216   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8217             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8218             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8219   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
  8220   ins_pipe(cadd_cmpltmask);
  8221 %}
  8223 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
  8224   match(Set p (AndI (CmpLTMask p q) y));
  8225   effect(KILL ccr);
  8226   ins_cost(DEFAULT_COST*3);
  8228   format %{ "CMP  $p,$q\n\t"
  8229             "MOV  $y,$p\n\t"
  8230             "MOVge G0,$p" %}
  8231   ins_encode %{
  8232     __ cmp($p$$Register, $q$$Register);
  8233     __ mov($y$$Register, $p$$Register);
  8234     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
  8235   %}
  8236   ins_pipe(ialu_reg_reg_ialu);
  8237 %}
  8239 //-----------------------------------------------------------------
  8240 // Direct raw moves between float and general registers using VIS3.
  8242 //  ins_pipe(faddF_reg);
  8243 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8244   predicate(UseVIS >= 3);
  8245   match(Set dst (MoveF2I src));
  8247   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8248   ins_encode %{
  8249     __ movstouw($src$$FloatRegister, $dst$$Register);
  8250   %}
  8251   ins_pipe(ialu_reg_reg);
  8252 %}
  8254 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8255   predicate(UseVIS >= 3);
  8256   match(Set dst (MoveI2F src));
  8258   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8259   ins_encode %{
  8260     __ movwtos($src$$Register, $dst$$FloatRegister);
  8261   %}
  8262   ins_pipe(ialu_reg_reg);
  8263 %}
  8265 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8266   predicate(UseVIS >= 3);
  8267   match(Set dst (MoveD2L src));
  8269   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8270   ins_encode %{
  8271     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8272   %}
  8273   ins_pipe(ialu_reg_reg);
  8274 %}
  8276 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8277   predicate(UseVIS >= 3);
  8278   match(Set dst (MoveL2D src));
  8280   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8281   ins_encode %{
  8282     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8283   %}
  8284   ins_pipe(ialu_reg_reg);
  8285 %}
  8288 // Raw moves between float and general registers using stack.
  8290 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8291   match(Set dst (MoveF2I src));
  8292   effect(DEF dst, USE src);
  8293   ins_cost(MEMORY_REF_COST);
  8295   size(4);
  8296   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8297   opcode(Assembler::lduw_op3);
  8298   ins_encode(simple_form3_mem_reg( src, dst ) );
  8299   ins_pipe(iload_mem);
  8300 %}
  8302 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8303   match(Set dst (MoveI2F src));
  8304   effect(DEF dst, USE src);
  8305   ins_cost(MEMORY_REF_COST);
  8307   size(4);
  8308   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8309   opcode(Assembler::ldf_op3);
  8310   ins_encode(simple_form3_mem_reg(src, dst));
  8311   ins_pipe(floadF_stk);
  8312 %}
  8314 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8315   match(Set dst (MoveD2L src));
  8316   effect(DEF dst, USE src);
  8317   ins_cost(MEMORY_REF_COST);
  8319   size(4);
  8320   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8321   opcode(Assembler::ldx_op3);
  8322   ins_encode(simple_form3_mem_reg( src, dst ) );
  8323   ins_pipe(iload_mem);
  8324 %}
  8326 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8327   match(Set dst (MoveL2D src));
  8328   effect(DEF dst, USE src);
  8329   ins_cost(MEMORY_REF_COST);
  8331   size(4);
  8332   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8333   opcode(Assembler::lddf_op3);
  8334   ins_encode(simple_form3_mem_reg(src, dst));
  8335   ins_pipe(floadD_stk);
  8336 %}
  8338 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8339   match(Set dst (MoveF2I src));
  8340   effect(DEF dst, USE src);
  8341   ins_cost(MEMORY_REF_COST);
  8343   size(4);
  8344   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8345   opcode(Assembler::stf_op3);
  8346   ins_encode(simple_form3_mem_reg(dst, src));
  8347   ins_pipe(fstoreF_stk_reg);
  8348 %}
  8350 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8351   match(Set dst (MoveI2F src));
  8352   effect(DEF dst, USE src);
  8353   ins_cost(MEMORY_REF_COST);
  8355   size(4);
  8356   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8357   opcode(Assembler::stw_op3);
  8358   ins_encode(simple_form3_mem_reg( dst, src ) );
  8359   ins_pipe(istore_mem_reg);
  8360 %}
  8362 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8363   match(Set dst (MoveD2L src));
  8364   effect(DEF dst, USE src);
  8365   ins_cost(MEMORY_REF_COST);
  8367   size(4);
  8368   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8369   opcode(Assembler::stdf_op3);
  8370   ins_encode(simple_form3_mem_reg(dst, src));
  8371   ins_pipe(fstoreD_stk_reg);
  8372 %}
  8374 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8375   match(Set dst (MoveL2D src));
  8376   effect(DEF dst, USE src);
  8377   ins_cost(MEMORY_REF_COST);
  8379   size(4);
  8380   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8381   opcode(Assembler::stx_op3);
  8382   ins_encode(simple_form3_mem_reg( dst, src ) );
  8383   ins_pipe(istore_mem_reg);
  8384 %}
  8387 //----------Arithmetic Conversion Instructions---------------------------------
  8388 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8390 instruct convD2F_reg(regF dst, regD src) %{
  8391   match(Set dst (ConvD2F src));
  8392   size(4);
  8393   format %{ "FDTOS  $src,$dst" %}
  8394   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8395   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8396   ins_pipe(fcvtD2F);
  8397 %}
  8400 // Convert a double to an int in a float register.
  8401 // If the double is a NAN, stuff a zero in instead.
  8402 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8403   effect(DEF dst, USE src, KILL fcc0);
  8404   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8405             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8406             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8407             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8408             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8409       "skip:" %}
  8410   ins_encode(form_d2i_helper(src,dst));
  8411   ins_pipe(fcvtD2I);
  8412 %}
  8414 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8415   match(Set dst (ConvD2I src));
  8416   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8417   expand %{
  8418     regF tmp;
  8419     convD2I_helper(tmp, src);
  8420     regF_to_stkI(dst, tmp);
  8421   %}
  8422 %}
  8424 instruct convD2I_reg(iRegI dst, regD src) %{
  8425   predicate(UseVIS >= 3);
  8426   match(Set dst (ConvD2I src));
  8427   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8428   expand %{
  8429     regF tmp;
  8430     convD2I_helper(tmp, src);
  8431     MoveF2I_reg_reg(dst, tmp);
  8432   %}
  8433 %}
  8436 // Convert a double to a long in a double register.
  8437 // If the double is a NAN, stuff a zero in instead.
  8438 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8439   effect(DEF dst, USE src, KILL fcc0);
  8440   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8441             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8442             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8443             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8444             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8445       "skip:" %}
  8446   ins_encode(form_d2l_helper(src,dst));
  8447   ins_pipe(fcvtD2L);
  8448 %}
  8450 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8451   match(Set dst (ConvD2L src));
  8452   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8453   expand %{
  8454     regD tmp;
  8455     convD2L_helper(tmp, src);
  8456     regD_to_stkL(dst, tmp);
  8457   %}
  8458 %}
  8460 instruct convD2L_reg(iRegL dst, regD src) %{
  8461   predicate(UseVIS >= 3);
  8462   match(Set dst (ConvD2L src));
  8463   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8464   expand %{
  8465     regD tmp;
  8466     convD2L_helper(tmp, src);
  8467     MoveD2L_reg_reg(dst, tmp);
  8468   %}
  8469 %}
  8472 instruct convF2D_reg(regD dst, regF src) %{
  8473   match(Set dst (ConvF2D src));
  8474   format %{ "FSTOD  $src,$dst" %}
  8475   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8476   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8477   ins_pipe(fcvtF2D);
  8478 %}
  8481 // Convert a float to an int in a float register.
  8482 // If the float is a NAN, stuff a zero in instead.
  8483 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8484   effect(DEF dst, USE src, KILL fcc0);
  8485   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8486             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8487             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8488             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8489             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8490       "skip:" %}
  8491   ins_encode(form_f2i_helper(src,dst));
  8492   ins_pipe(fcvtF2I);
  8493 %}
  8495 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8496   match(Set dst (ConvF2I src));
  8497   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8498   expand %{
  8499     regF tmp;
  8500     convF2I_helper(tmp, src);
  8501     regF_to_stkI(dst, tmp);
  8502   %}
  8503 %}
  8505 instruct convF2I_reg(iRegI dst, regF src) %{
  8506   predicate(UseVIS >= 3);
  8507   match(Set dst (ConvF2I src));
  8508   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8509   expand %{
  8510     regF tmp;
  8511     convF2I_helper(tmp, src);
  8512     MoveF2I_reg_reg(dst, tmp);
  8513   %}
  8514 %}
  8517 // Convert a float to a long in a float register.
  8518 // If the float is a NAN, stuff a zero in instead.
  8519 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8520   effect(DEF dst, USE src, KILL fcc0);
  8521   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8522             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8523             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8524             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8525             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8526       "skip:" %}
  8527   ins_encode(form_f2l_helper(src,dst));
  8528   ins_pipe(fcvtF2L);
  8529 %}
  8531 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8532   match(Set dst (ConvF2L src));
  8533   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8534   expand %{
  8535     regD tmp;
  8536     convF2L_helper(tmp, src);
  8537     regD_to_stkL(dst, tmp);
  8538   %}
  8539 %}
  8541 instruct convF2L_reg(iRegL dst, regF src) %{
  8542   predicate(UseVIS >= 3);
  8543   match(Set dst (ConvF2L src));
  8544   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8545   expand %{
  8546     regD tmp;
  8547     convF2L_helper(tmp, src);
  8548     MoveD2L_reg_reg(dst, tmp);
  8549   %}
  8550 %}
  8553 instruct convI2D_helper(regD dst, regF tmp) %{
  8554   effect(USE tmp, DEF dst);
  8555   format %{ "FITOD  $tmp,$dst" %}
  8556   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8557   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8558   ins_pipe(fcvtI2D);
  8559 %}
  8561 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8562   match(Set dst (ConvI2D src));
  8563   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8564   expand %{
  8565     regF tmp;
  8566     stkI_to_regF(tmp, src);
  8567     convI2D_helper(dst, tmp);
  8568   %}
  8569 %}
  8571 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8572   predicate(UseVIS >= 3);
  8573   match(Set dst (ConvI2D src));
  8574   expand %{
  8575     regF tmp;
  8576     MoveI2F_reg_reg(tmp, src);
  8577     convI2D_helper(dst, tmp);
  8578   %}
  8579 %}
  8581 instruct convI2D_mem(regD_low dst, memory mem) %{
  8582   match(Set dst (ConvI2D (LoadI mem)));
  8583   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8584   size(8);
  8585   format %{ "LDF    $mem,$dst\n\t"
  8586             "FITOD  $dst,$dst" %}
  8587   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8588   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8589   ins_pipe(floadF_mem);
  8590 %}
  8593 instruct convI2F_helper(regF dst, regF tmp) %{
  8594   effect(DEF dst, USE tmp);
  8595   format %{ "FITOS  $tmp,$dst" %}
  8596   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8597   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8598   ins_pipe(fcvtI2F);
  8599 %}
  8601 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8602   match(Set dst (ConvI2F src));
  8603   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8604   expand %{
  8605     regF tmp;
  8606     stkI_to_regF(tmp,src);
  8607     convI2F_helper(dst, tmp);
  8608   %}
  8609 %}
  8611 instruct convI2F_reg(regF dst, iRegI src) %{
  8612   predicate(UseVIS >= 3);
  8613   match(Set dst (ConvI2F src));
  8614   ins_cost(DEFAULT_COST);
  8615   expand %{
  8616     regF tmp;
  8617     MoveI2F_reg_reg(tmp, src);
  8618     convI2F_helper(dst, tmp);
  8619   %}
  8620 %}
  8622 instruct convI2F_mem( regF dst, memory mem ) %{
  8623   match(Set dst (ConvI2F (LoadI mem)));
  8624   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8625   size(8);
  8626   format %{ "LDF    $mem,$dst\n\t"
  8627             "FITOS  $dst,$dst" %}
  8628   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8629   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8630   ins_pipe(floadF_mem);
  8631 %}
  8634 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8635   match(Set dst (ConvI2L src));
  8636   size(4);
  8637   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8638   opcode(Assembler::sra_op3, Assembler::arith_op);
  8639   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8640   ins_pipe(ialu_reg_reg);
  8641 %}
  8643 // Zero-extend convert int to long
  8644 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8645   match(Set dst (AndL (ConvI2L src) mask) );
  8646   size(4);
  8647   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8648   opcode(Assembler::srl_op3, Assembler::arith_op);
  8649   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8650   ins_pipe(ialu_reg_reg);
  8651 %}
  8653 // Zero-extend long
  8654 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8655   match(Set dst (AndL src mask) );
  8656   size(4);
  8657   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8658   opcode(Assembler::srl_op3, Assembler::arith_op);
  8659   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8660   ins_pipe(ialu_reg_reg);
  8661 %}
  8664 //-----------
  8665 // Long to Double conversion using V8 opcodes.
  8666 // Still useful because cheetah traps and becomes
  8667 // amazingly slow for some common numbers.
  8669 // Magic constant, 0x43300000
  8670 instruct loadConI_x43300000(iRegI dst) %{
  8671   effect(DEF dst);
  8672   size(4);
  8673   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8674   ins_encode(SetHi22(0x43300000, dst));
  8675   ins_pipe(ialu_none);
  8676 %}
  8678 // Magic constant, 0x41f00000
  8679 instruct loadConI_x41f00000(iRegI dst) %{
  8680   effect(DEF dst);
  8681   size(4);
  8682   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8683   ins_encode(SetHi22(0x41f00000, dst));
  8684   ins_pipe(ialu_none);
  8685 %}
  8687 // Construct a double from two float halves
  8688 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8689   effect(DEF dst, USE src1, USE src2);
  8690   size(8);
  8691   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8692             "FMOVS  $src2.lo,$dst.lo" %}
  8693   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8694   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8695   ins_pipe(faddD_reg_reg);
  8696 %}
  8698 // Convert integer in high half of a double register (in the lower half of
  8699 // the double register file) to double
  8700 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8701   effect(DEF dst, USE src);
  8702   size(4);
  8703   format %{ "FITOD  $src,$dst" %}
  8704   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8705   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8706   ins_pipe(fcvtLHi2D);
  8707 %}
  8709 // Add float double precision
  8710 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8711   effect(DEF dst, USE src1, USE src2);
  8712   size(4);
  8713   format %{ "FADDD  $src1,$src2,$dst" %}
  8714   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8715   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8716   ins_pipe(faddD_reg_reg);
  8717 %}
  8719 // Sub float double precision
  8720 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8721   effect(DEF dst, USE src1, USE src2);
  8722   size(4);
  8723   format %{ "FSUBD  $src1,$src2,$dst" %}
  8724   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8725   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8726   ins_pipe(faddD_reg_reg);
  8727 %}
  8729 // Mul float double precision
  8730 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8731   effect(DEF dst, USE src1, USE src2);
  8732   size(4);
  8733   format %{ "FMULD  $src1,$src2,$dst" %}
  8734   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8735   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8736   ins_pipe(fmulD_reg_reg);
  8737 %}
  8739 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8740   match(Set dst (ConvL2D src));
  8741   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8743   expand %{
  8744     regD_low   tmpsrc;
  8745     iRegI      ix43300000;
  8746     iRegI      ix41f00000;
  8747     stackSlotL lx43300000;
  8748     stackSlotL lx41f00000;
  8749     regD_low   dx43300000;
  8750     regD       dx41f00000;
  8751     regD       tmp1;
  8752     regD_low   tmp2;
  8753     regD       tmp3;
  8754     regD       tmp4;
  8756     stkL_to_regD(tmpsrc, src);
  8758     loadConI_x43300000(ix43300000);
  8759     loadConI_x41f00000(ix41f00000);
  8760     regI_to_stkLHi(lx43300000, ix43300000);
  8761     regI_to_stkLHi(lx41f00000, ix41f00000);
  8762     stkL_to_regD(dx43300000, lx43300000);
  8763     stkL_to_regD(dx41f00000, lx41f00000);
  8765     convI2D_regDHi_regD(tmp1, tmpsrc);
  8766     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8767     subD_regD_regD(tmp3, tmp2, dx43300000);
  8768     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8769     addD_regD_regD(dst, tmp3, tmp4);
  8770   %}
  8771 %}
  8773 // Long to Double conversion using fast fxtof
  8774 instruct convL2D_helper(regD dst, regD tmp) %{
  8775   effect(DEF dst, USE tmp);
  8776   size(4);
  8777   format %{ "FXTOD  $tmp,$dst" %}
  8778   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8779   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8780   ins_pipe(fcvtL2D);
  8781 %}
  8783 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8784   predicate(VM_Version::has_fast_fxtof());
  8785   match(Set dst (ConvL2D src));
  8786   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8787   expand %{
  8788     regD tmp;
  8789     stkL_to_regD(tmp, src);
  8790     convL2D_helper(dst, tmp);
  8791   %}
  8792 %}
  8794 instruct convL2D_reg(regD dst, iRegL src) %{
  8795   predicate(UseVIS >= 3);
  8796   match(Set dst (ConvL2D src));
  8797   expand %{
  8798     regD tmp;
  8799     MoveL2D_reg_reg(tmp, src);
  8800     convL2D_helper(dst, tmp);
  8801   %}
  8802 %}
  8804 // Long to Float conversion using fast fxtof
  8805 instruct convL2F_helper(regF dst, regD tmp) %{
  8806   effect(DEF dst, USE tmp);
  8807   size(4);
  8808   format %{ "FXTOS  $tmp,$dst" %}
  8809   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8810   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8811   ins_pipe(fcvtL2F);
  8812 %}
  8814 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8815   match(Set dst (ConvL2F src));
  8816   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8817   expand %{
  8818     regD tmp;
  8819     stkL_to_regD(tmp, src);
  8820     convL2F_helper(dst, tmp);
  8821   %}
  8822 %}
  8824 instruct convL2F_reg(regF dst, iRegL src) %{
  8825   predicate(UseVIS >= 3);
  8826   match(Set dst (ConvL2F src));
  8827   ins_cost(DEFAULT_COST);
  8828   expand %{
  8829     regD tmp;
  8830     MoveL2D_reg_reg(tmp, src);
  8831     convL2F_helper(dst, tmp);
  8832   %}
  8833 %}
  8835 //-----------
  8837 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8838   match(Set dst (ConvL2I src));
  8839 #ifndef _LP64
  8840   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8841   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8842   ins_pipe(ialu_move_reg_I_to_L);
  8843 #else
  8844   size(4);
  8845   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8846   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8847   ins_pipe(ialu_reg);
  8848 #endif
  8849 %}
  8851 // Register Shift Right Immediate
  8852 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8853   match(Set dst (ConvL2I (RShiftL src cnt)));
  8855   size(4);
  8856   format %{ "SRAX   $src,$cnt,$dst" %}
  8857   opcode(Assembler::srax_op3, Assembler::arith_op);
  8858   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8859   ins_pipe(ialu_reg_imm);
  8860 %}
  8862 //----------Control Flow Instructions------------------------------------------
  8863 // Compare Instructions
  8864 // Compare Integers
  8865 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8866   match(Set icc (CmpI op1 op2));
  8867   effect( DEF icc, USE op1, USE op2 );
  8869   size(4);
  8870   format %{ "CMP    $op1,$op2" %}
  8871   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8872   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8873   ins_pipe(ialu_cconly_reg_reg);
  8874 %}
  8876 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8877   match(Set icc (CmpU op1 op2));
  8879   size(4);
  8880   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8881   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8882   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8883   ins_pipe(ialu_cconly_reg_reg);
  8884 %}
  8886 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8887   match(Set icc (CmpI op1 op2));
  8888   effect( DEF icc, USE op1 );
  8890   size(4);
  8891   format %{ "CMP    $op1,$op2" %}
  8892   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8893   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8894   ins_pipe(ialu_cconly_reg_imm);
  8895 %}
  8897 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8898   match(Set icc (CmpI (AndI op1 op2) zero));
  8900   size(4);
  8901   format %{ "BTST   $op2,$op1" %}
  8902   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8903   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8904   ins_pipe(ialu_cconly_reg_reg_zero);
  8905 %}
  8907 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8908   match(Set icc (CmpI (AndI op1 op2) zero));
  8910   size(4);
  8911   format %{ "BTST   $op2,$op1" %}
  8912   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8913   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8914   ins_pipe(ialu_cconly_reg_imm_zero);
  8915 %}
  8917 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8918   match(Set xcc (CmpL op1 op2));
  8919   effect( DEF xcc, USE op1, USE op2 );
  8921   size(4);
  8922   format %{ "CMP    $op1,$op2\t\t! long" %}
  8923   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8924   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8925   ins_pipe(ialu_cconly_reg_reg);
  8926 %}
  8928 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8929   match(Set xcc (CmpL op1 con));
  8930   effect( DEF xcc, USE op1, USE con );
  8932   size(4);
  8933   format %{ "CMP    $op1,$con\t\t! long" %}
  8934   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8935   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8936   ins_pipe(ialu_cconly_reg_reg);
  8937 %}
  8939 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8940   match(Set xcc (CmpL (AndL op1 op2) zero));
  8941   effect( DEF xcc, USE op1, USE op2 );
  8943   size(4);
  8944   format %{ "BTST   $op1,$op2\t\t! long" %}
  8945   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8946   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8947   ins_pipe(ialu_cconly_reg_reg);
  8948 %}
  8950 // useful for checking the alignment of a pointer:
  8951 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8952   match(Set xcc (CmpL (AndL op1 con) zero));
  8953   effect( DEF xcc, USE op1, USE con );
  8955   size(4);
  8956   format %{ "BTST   $op1,$con\t\t! long" %}
  8957   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8958   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8959   ins_pipe(ialu_cconly_reg_reg);
  8960 %}
  8962 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8963   match(Set icc (CmpU op1 op2));
  8965   size(4);
  8966   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8967   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8968   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8969   ins_pipe(ialu_cconly_reg_imm);
  8970 %}
  8972 // Compare Pointers
  8973 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8974   match(Set pcc (CmpP op1 op2));
  8976   size(4);
  8977   format %{ "CMP    $op1,$op2\t! ptr" %}
  8978   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8979   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8980   ins_pipe(ialu_cconly_reg_reg);
  8981 %}
  8983 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8984   match(Set pcc (CmpP op1 op2));
  8986   size(4);
  8987   format %{ "CMP    $op1,$op2\t! ptr" %}
  8988   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8989   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8990   ins_pipe(ialu_cconly_reg_imm);
  8991 %}
  8993 // Compare Narrow oops
  8994 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8995   match(Set icc (CmpN op1 op2));
  8997   size(4);
  8998   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8999   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9000   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9001   ins_pipe(ialu_cconly_reg_reg);
  9002 %}
  9004 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  9005   match(Set icc (CmpN op1 op2));
  9007   size(4);
  9008   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9009   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9010   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9011   ins_pipe(ialu_cconly_reg_imm);
  9012 %}
  9014 //----------Max and Min--------------------------------------------------------
  9015 // Min Instructions
  9016 // Conditional move for min
  9017 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9018   effect( USE_DEF op2, USE op1, USE icc );
  9020   size(4);
  9021   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  9022   opcode(Assembler::less);
  9023   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9024   ins_pipe(ialu_reg_flags);
  9025 %}
  9027 // Min Register with Register.
  9028 instruct minI_eReg(iRegI op1, iRegI op2) %{
  9029   match(Set op2 (MinI op1 op2));
  9030   ins_cost(DEFAULT_COST*2);
  9031   expand %{
  9032     flagsReg icc;
  9033     compI_iReg(icc,op1,op2);
  9034     cmovI_reg_lt(op2,op1,icc);
  9035   %}
  9036 %}
  9038 // Max Instructions
  9039 // Conditional move for max
  9040 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9041   effect( USE_DEF op2, USE op1, USE icc );
  9042   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  9043   opcode(Assembler::greater);
  9044   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9045   ins_pipe(ialu_reg_flags);
  9046 %}
  9048 // Max Register with Register
  9049 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  9050   match(Set op2 (MaxI op1 op2));
  9051   ins_cost(DEFAULT_COST*2);
  9052   expand %{
  9053     flagsReg icc;
  9054     compI_iReg(icc,op1,op2);
  9055     cmovI_reg_gt(op2,op1,icc);
  9056   %}
  9057 %}
  9060 //----------Float Compares----------------------------------------------------
  9061 // Compare floating, generate condition code
  9062 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  9063   match(Set fcc (CmpF src1 src2));
  9065   size(4);
  9066   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9067   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9068   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9069   ins_pipe(faddF_fcc_reg_reg_zero);
  9070 %}
  9072 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9073   match(Set fcc (CmpD src1 src2));
  9075   size(4);
  9076   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9077   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9078   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9079   ins_pipe(faddD_fcc_reg_reg_zero);
  9080 %}
  9083 // Compare floating, generate -1,0,1
  9084 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9085   match(Set dst (CmpF3 src1 src2));
  9086   effect(KILL fcc0);
  9087   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9088   format %{ "fcmpl  $dst,$src1,$src2" %}
  9089   // Primary = float
  9090   opcode( true );
  9091   ins_encode( floating_cmp( dst, src1, src2 ) );
  9092   ins_pipe( floating_cmp );
  9093 %}
  9095 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9096   match(Set dst (CmpD3 src1 src2));
  9097   effect(KILL fcc0);
  9098   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9099   format %{ "dcmpl  $dst,$src1,$src2" %}
  9100   // Primary = double (not float)
  9101   opcode( false );
  9102   ins_encode( floating_cmp( dst, src1, src2 ) );
  9103   ins_pipe( floating_cmp );
  9104 %}
  9106 //----------Branches---------------------------------------------------------
  9107 // Jump
  9108 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9109 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9110   match(Jump switch_val);
  9111   effect(TEMP table);
  9113   ins_cost(350);
  9115   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9116              "LD     [O7 + $switch_val], O7\n\t"
  9117              "JUMP   O7" %}
  9118   ins_encode %{
  9119     // Calculate table address into a register.
  9120     Register table_reg;
  9121     Register label_reg = O7;
  9122     // If we are calculating the size of this instruction don't trust
  9123     // zero offsets because they might change when
  9124     // MachConstantBaseNode decides to optimize the constant table
  9125     // base.
  9126     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
  9127       table_reg = $constanttablebase;
  9128     } else {
  9129       table_reg = O7;
  9130       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9131       __ add($constanttablebase, con_offset, table_reg);
  9134     // Jump to base address + switch value
  9135     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9136     __ jmp(label_reg, G0);
  9137     __ delayed()->nop();
  9138   %}
  9139   ins_pipe(ialu_reg_reg);
  9140 %}
  9142 // Direct Branch.  Use V8 version with longer range.
  9143 instruct branch(label labl) %{
  9144   match(Goto);
  9145   effect(USE labl);
  9147   size(8);
  9148   ins_cost(BRANCH_COST);
  9149   format %{ "BA     $labl" %}
  9150   ins_encode %{
  9151     Label* L = $labl$$label;
  9152     __ ba(*L);
  9153     __ delayed()->nop();
  9154   %}
  9155   ins_pipe(br);
  9156 %}
  9158 // Direct Branch, short with no delay slot
  9159 instruct branch_short(label labl) %{
  9160   match(Goto);
  9161   predicate(UseCBCond);
  9162   effect(USE labl);
  9164   size(4);
  9165   ins_cost(BRANCH_COST);
  9166   format %{ "BA     $labl\t! short branch" %}
  9167   ins_encode %{ 
  9168     Label* L = $labl$$label;
  9169     assert(__ use_cbcond(*L), "back to back cbcond");
  9170     __ ba_short(*L);
  9171   %}
  9172   ins_short_branch(1);
  9173   ins_avoid_back_to_back(1);
  9174   ins_pipe(cbcond_reg_imm);
  9175 %}
  9177 // Conditional Direct Branch
  9178 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9179   match(If cmp icc);
  9180   effect(USE labl);
  9182   size(8);
  9183   ins_cost(BRANCH_COST);
  9184   format %{ "BP$cmp   $icc,$labl" %}
  9185   // Prim = bits 24-22, Secnd = bits 31-30
  9186   ins_encode( enc_bp( labl, cmp, icc ) );
  9187   ins_pipe(br_cc);
  9188 %}
  9190 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9191   match(If cmp icc);
  9192   effect(USE labl);
  9194   ins_cost(BRANCH_COST);
  9195   format %{ "BP$cmp  $icc,$labl" %}
  9196   // Prim = bits 24-22, Secnd = bits 31-30
  9197   ins_encode( enc_bp( labl, cmp, icc ) );
  9198   ins_pipe(br_cc);
  9199 %}
  9201 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9202   match(If cmp pcc);
  9203   effect(USE labl);
  9205   size(8);
  9206   ins_cost(BRANCH_COST);
  9207   format %{ "BP$cmp  $pcc,$labl" %}
  9208   ins_encode %{
  9209     Label* L = $labl$$label;
  9210     Assembler::Predict predict_taken =
  9211       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9213     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9214     __ delayed()->nop();
  9215   %}
  9216   ins_pipe(br_cc);
  9217 %}
  9219 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9220   match(If cmp fcc);
  9221   effect(USE labl);
  9223   size(8);
  9224   ins_cost(BRANCH_COST);
  9225   format %{ "FBP$cmp $fcc,$labl" %}
  9226   ins_encode %{
  9227     Label* L = $labl$$label;
  9228     Assembler::Predict predict_taken =
  9229       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9231     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9232     __ delayed()->nop();
  9233   %}
  9234   ins_pipe(br_fcc);
  9235 %}
  9237 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9238   match(CountedLoopEnd cmp icc);
  9239   effect(USE labl);
  9241   size(8);
  9242   ins_cost(BRANCH_COST);
  9243   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9244   // Prim = bits 24-22, Secnd = bits 31-30
  9245   ins_encode( enc_bp( labl, cmp, icc ) );
  9246   ins_pipe(br_cc);
  9247 %}
  9249 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9250   match(CountedLoopEnd cmp icc);
  9251   effect(USE labl);
  9253   size(8);
  9254   ins_cost(BRANCH_COST);
  9255   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9256   // Prim = bits 24-22, Secnd = bits 31-30
  9257   ins_encode( enc_bp( labl, cmp, icc ) );
  9258   ins_pipe(br_cc);
  9259 %}
  9261 // Compare and branch instructions
  9262 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9263   match(If cmp (CmpI op1 op2));
  9264   effect(USE labl, KILL icc);
  9266   size(12);
  9267   ins_cost(BRANCH_COST);
  9268   format %{ "CMP    $op1,$op2\t! int\n\t"
  9269             "BP$cmp   $labl" %}
  9270   ins_encode %{
  9271     Label* L = $labl$$label;
  9272     Assembler::Predict predict_taken =
  9273       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9274     __ cmp($op1$$Register, $op2$$Register);
  9275     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9276     __ delayed()->nop();
  9277   %}
  9278   ins_pipe(cmp_br_reg_reg);
  9279 %}
  9281 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9282   match(If cmp (CmpI op1 op2));
  9283   effect(USE labl, KILL icc);
  9285   size(12);
  9286   ins_cost(BRANCH_COST);
  9287   format %{ "CMP    $op1,$op2\t! int\n\t"
  9288             "BP$cmp   $labl" %}
  9289   ins_encode %{
  9290     Label* L = $labl$$label;
  9291     Assembler::Predict predict_taken =
  9292       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9293     __ cmp($op1$$Register, $op2$$constant);
  9294     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9295     __ delayed()->nop();
  9296   %}
  9297   ins_pipe(cmp_br_reg_imm);
  9298 %}
  9300 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9301   match(If cmp (CmpU op1 op2));
  9302   effect(USE labl, KILL icc);
  9304   size(12);
  9305   ins_cost(BRANCH_COST);
  9306   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9307             "BP$cmp  $labl" %}
  9308   ins_encode %{
  9309     Label* L = $labl$$label;
  9310     Assembler::Predict predict_taken =
  9311       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9312     __ cmp($op1$$Register, $op2$$Register);
  9313     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9314     __ delayed()->nop();
  9315   %}
  9316   ins_pipe(cmp_br_reg_reg);
  9317 %}
  9319 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9320   match(If cmp (CmpU op1 op2));
  9321   effect(USE labl, KILL icc);
  9323   size(12);
  9324   ins_cost(BRANCH_COST);
  9325   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9326             "BP$cmp  $labl" %}
  9327   ins_encode %{
  9328     Label* L = $labl$$label;
  9329     Assembler::Predict predict_taken =
  9330       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9331     __ cmp($op1$$Register, $op2$$constant);
  9332     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9333     __ delayed()->nop();
  9334   %}
  9335   ins_pipe(cmp_br_reg_imm);
  9336 %}
  9338 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9339   match(If cmp (CmpL op1 op2));
  9340   effect(USE labl, KILL xcc);
  9342   size(12);
  9343   ins_cost(BRANCH_COST);
  9344   format %{ "CMP    $op1,$op2\t! long\n\t"
  9345             "BP$cmp   $labl" %}
  9346   ins_encode %{
  9347     Label* L = $labl$$label;
  9348     Assembler::Predict predict_taken =
  9349       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9350     __ cmp($op1$$Register, $op2$$Register);
  9351     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9352     __ delayed()->nop();
  9353   %}
  9354   ins_pipe(cmp_br_reg_reg);
  9355 %}
  9357 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9358   match(If cmp (CmpL op1 op2));
  9359   effect(USE labl, KILL xcc);
  9361   size(12);
  9362   ins_cost(BRANCH_COST);
  9363   format %{ "CMP    $op1,$op2\t! long\n\t"
  9364             "BP$cmp   $labl" %}
  9365   ins_encode %{
  9366     Label* L = $labl$$label;
  9367     Assembler::Predict predict_taken =
  9368       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9369     __ cmp($op1$$Register, $op2$$constant);
  9370     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9371     __ delayed()->nop();
  9372   %}
  9373   ins_pipe(cmp_br_reg_imm);
  9374 %}
  9376 // Compare Pointers and branch
  9377 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9378   match(If cmp (CmpP op1 op2));
  9379   effect(USE labl, KILL pcc);
  9381   size(12);
  9382   ins_cost(BRANCH_COST);
  9383   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9384             "B$cmp   $labl" %}
  9385   ins_encode %{
  9386     Label* L = $labl$$label;
  9387     Assembler::Predict predict_taken =
  9388       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9389     __ cmp($op1$$Register, $op2$$Register);
  9390     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9391     __ delayed()->nop();
  9392   %}
  9393   ins_pipe(cmp_br_reg_reg);
  9394 %}
  9396 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9397   match(If cmp (CmpP op1 null));
  9398   effect(USE labl, KILL pcc);
  9400   size(12);
  9401   ins_cost(BRANCH_COST);
  9402   format %{ "CMP    $op1,0\t! ptr\n\t"
  9403             "B$cmp   $labl" %}
  9404   ins_encode %{
  9405     Label* L = $labl$$label;
  9406     Assembler::Predict predict_taken =
  9407       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9408     __ cmp($op1$$Register, G0);
  9409     // bpr() is not used here since it has shorter distance.
  9410     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9411     __ delayed()->nop();
  9412   %}
  9413   ins_pipe(cmp_br_reg_reg);
  9414 %}
  9416 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9417   match(If cmp (CmpN op1 op2));
  9418   effect(USE labl, KILL icc);
  9420   size(12);
  9421   ins_cost(BRANCH_COST);
  9422   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9423             "BP$cmp   $labl" %}
  9424   ins_encode %{
  9425     Label* L = $labl$$label;
  9426     Assembler::Predict predict_taken =
  9427       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9428     __ cmp($op1$$Register, $op2$$Register);
  9429     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9430     __ delayed()->nop();
  9431   %}
  9432   ins_pipe(cmp_br_reg_reg);
  9433 %}
  9435 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9436   match(If cmp (CmpN op1 null));
  9437   effect(USE labl, KILL icc);
  9439   size(12);
  9440   ins_cost(BRANCH_COST);
  9441   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9442             "BP$cmp   $labl" %}
  9443   ins_encode %{
  9444     Label* L = $labl$$label;
  9445     Assembler::Predict predict_taken =
  9446       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9447     __ cmp($op1$$Register, G0);
  9448     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9449     __ delayed()->nop();
  9450   %}
  9451   ins_pipe(cmp_br_reg_reg);
  9452 %}
  9454 // Loop back branch
  9455 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9456   match(CountedLoopEnd cmp (CmpI op1 op2));
  9457   effect(USE labl, KILL icc);
  9459   size(12);
  9460   ins_cost(BRANCH_COST);
  9461   format %{ "CMP    $op1,$op2\t! int\n\t"
  9462             "BP$cmp   $labl\t! Loop end" %}
  9463   ins_encode %{
  9464     Label* L = $labl$$label;
  9465     Assembler::Predict predict_taken =
  9466       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9467     __ cmp($op1$$Register, $op2$$Register);
  9468     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9469     __ delayed()->nop();
  9470   %}
  9471   ins_pipe(cmp_br_reg_reg);
  9472 %}
  9474 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9475   match(CountedLoopEnd cmp (CmpI op1 op2));
  9476   effect(USE labl, KILL icc);
  9478   size(12);
  9479   ins_cost(BRANCH_COST);
  9480   format %{ "CMP    $op1,$op2\t! int\n\t"
  9481             "BP$cmp   $labl\t! Loop end" %}
  9482   ins_encode %{
  9483     Label* L = $labl$$label;
  9484     Assembler::Predict predict_taken =
  9485       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9486     __ cmp($op1$$Register, $op2$$constant);
  9487     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9488     __ delayed()->nop();
  9489   %}
  9490   ins_pipe(cmp_br_reg_imm);
  9491 %}
  9493 // Short compare and branch instructions
  9494 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9495   match(If cmp (CmpI op1 op2));
  9496   predicate(UseCBCond);
  9497   effect(USE labl, KILL icc);
  9499   size(4);
  9500   ins_cost(BRANCH_COST);
  9501   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9502   ins_encode %{
  9503     Label* L = $labl$$label;
  9504     assert(__ use_cbcond(*L), "back to back cbcond");
  9505     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9506   %}
  9507   ins_short_branch(1);
  9508   ins_avoid_back_to_back(1);
  9509   ins_pipe(cbcond_reg_reg);
  9510 %}
  9512 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9513   match(If cmp (CmpI op1 op2));
  9514   predicate(UseCBCond);
  9515   effect(USE labl, KILL icc);
  9517   size(4);
  9518   ins_cost(BRANCH_COST);
  9519   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9520   ins_encode %{
  9521     Label* L = $labl$$label;
  9522     assert(__ use_cbcond(*L), "back to back cbcond");
  9523     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9524   %}
  9525   ins_short_branch(1);
  9526   ins_avoid_back_to_back(1);
  9527   ins_pipe(cbcond_reg_imm);
  9528 %}
  9530 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9531   match(If cmp (CmpU op1 op2));
  9532   predicate(UseCBCond);
  9533   effect(USE labl, KILL icc);
  9535   size(4);
  9536   ins_cost(BRANCH_COST);
  9537   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9538   ins_encode %{
  9539     Label* L = $labl$$label;
  9540     assert(__ use_cbcond(*L), "back to back cbcond");
  9541     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9542   %}
  9543   ins_short_branch(1);
  9544   ins_avoid_back_to_back(1);
  9545   ins_pipe(cbcond_reg_reg);
  9546 %}
  9548 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9549   match(If cmp (CmpU op1 op2));
  9550   predicate(UseCBCond);
  9551   effect(USE labl, KILL icc);
  9553   size(4);
  9554   ins_cost(BRANCH_COST);
  9555   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9556   ins_encode %{
  9557     Label* L = $labl$$label;
  9558     assert(__ use_cbcond(*L), "back to back cbcond");
  9559     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9560   %}
  9561   ins_short_branch(1);
  9562   ins_avoid_back_to_back(1);
  9563   ins_pipe(cbcond_reg_imm);
  9564 %}
  9566 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9567   match(If cmp (CmpL op1 op2));
  9568   predicate(UseCBCond);
  9569   effect(USE labl, KILL xcc);
  9571   size(4);
  9572   ins_cost(BRANCH_COST);
  9573   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9574   ins_encode %{
  9575     Label* L = $labl$$label;
  9576     assert(__ use_cbcond(*L), "back to back cbcond");
  9577     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9578   %}
  9579   ins_short_branch(1);
  9580   ins_avoid_back_to_back(1);
  9581   ins_pipe(cbcond_reg_reg);
  9582 %}
  9584 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9585   match(If cmp (CmpL op1 op2));
  9586   predicate(UseCBCond);
  9587   effect(USE labl, KILL xcc);
  9589   size(4);
  9590   ins_cost(BRANCH_COST);
  9591   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9592   ins_encode %{
  9593     Label* L = $labl$$label;
  9594     assert(__ use_cbcond(*L), "back to back cbcond");
  9595     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9596   %}
  9597   ins_short_branch(1);
  9598   ins_avoid_back_to_back(1);
  9599   ins_pipe(cbcond_reg_imm);
  9600 %}
  9602 // Compare Pointers and branch
  9603 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9604   match(If cmp (CmpP op1 op2));
  9605   predicate(UseCBCond);
  9606   effect(USE labl, KILL pcc);
  9608   size(4);
  9609   ins_cost(BRANCH_COST);
  9610 #ifdef _LP64
  9611   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9612 #else
  9613   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9614 #endif
  9615   ins_encode %{
  9616     Label* L = $labl$$label;
  9617     assert(__ use_cbcond(*L), "back to back cbcond");
  9618     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9619   %}
  9620   ins_short_branch(1);
  9621   ins_avoid_back_to_back(1);
  9622   ins_pipe(cbcond_reg_reg);
  9623 %}
  9625 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9626   match(If cmp (CmpP op1 null));
  9627   predicate(UseCBCond);
  9628   effect(USE labl, KILL pcc);
  9630   size(4);
  9631   ins_cost(BRANCH_COST);
  9632 #ifdef _LP64
  9633   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9634 #else
  9635   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9636 #endif
  9637   ins_encode %{
  9638     Label* L = $labl$$label;
  9639     assert(__ use_cbcond(*L), "back to back cbcond");
  9640     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9641   %}
  9642   ins_short_branch(1);
  9643   ins_avoid_back_to_back(1);
  9644   ins_pipe(cbcond_reg_reg);
  9645 %}
  9647 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9648   match(If cmp (CmpN op1 op2));
  9649   predicate(UseCBCond);
  9650   effect(USE labl, KILL icc);
  9652   size(4);
  9653   ins_cost(BRANCH_COST);
  9654   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9655   ins_encode %{
  9656     Label* L = $labl$$label;
  9657     assert(__ use_cbcond(*L), "back to back cbcond");
  9658     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9659   %}
  9660   ins_short_branch(1);
  9661   ins_avoid_back_to_back(1);
  9662   ins_pipe(cbcond_reg_reg);
  9663 %}
  9665 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9666   match(If cmp (CmpN op1 null));
  9667   predicate(UseCBCond);
  9668   effect(USE labl, KILL icc);
  9670   size(4);
  9671   ins_cost(BRANCH_COST);
  9672   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9673   ins_encode %{
  9674     Label* L = $labl$$label;
  9675     assert(__ use_cbcond(*L), "back to back cbcond");
  9676     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9677   %}
  9678   ins_short_branch(1);
  9679   ins_avoid_back_to_back(1);
  9680   ins_pipe(cbcond_reg_reg);
  9681 %}
  9683 // Loop back branch
  9684 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9685   match(CountedLoopEnd cmp (CmpI op1 op2));
  9686   predicate(UseCBCond);
  9687   effect(USE labl, KILL icc);
  9689   size(4);
  9690   ins_cost(BRANCH_COST);
  9691   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9692   ins_encode %{
  9693     Label* L = $labl$$label;
  9694     assert(__ use_cbcond(*L), "back to back cbcond");
  9695     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9696   %}
  9697   ins_short_branch(1);
  9698   ins_avoid_back_to_back(1);
  9699   ins_pipe(cbcond_reg_reg);
  9700 %}
  9702 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9703   match(CountedLoopEnd cmp (CmpI op1 op2));
  9704   predicate(UseCBCond);
  9705   effect(USE labl, KILL icc);
  9707   size(4);
  9708   ins_cost(BRANCH_COST);
  9709   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9710   ins_encode %{
  9711     Label* L = $labl$$label;
  9712     assert(__ use_cbcond(*L), "back to back cbcond");
  9713     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9714   %}
  9715   ins_short_branch(1);
  9716   ins_avoid_back_to_back(1);
  9717   ins_pipe(cbcond_reg_imm);
  9718 %}
  9720 // Branch-on-register tests all 64 bits.  We assume that values
  9721 // in 64-bit registers always remains zero or sign extended
  9722 // unless our code munges the high bits.  Interrupts can chop
  9723 // the high order bits to zero or sign at any time.
  9724 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9725   match(If cmp (CmpI op1 zero));
  9726   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9727   effect(USE labl);
  9729   size(8);
  9730   ins_cost(BRANCH_COST);
  9731   format %{ "BR$cmp   $op1,$labl" %}
  9732   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9733   ins_pipe(br_reg);
  9734 %}
  9736 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9737   match(If cmp (CmpP op1 null));
  9738   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9739   effect(USE labl);
  9741   size(8);
  9742   ins_cost(BRANCH_COST);
  9743   format %{ "BR$cmp   $op1,$labl" %}
  9744   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9745   ins_pipe(br_reg);
  9746 %}
  9748 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9749   match(If cmp (CmpL op1 zero));
  9750   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9751   effect(USE labl);
  9753   size(8);
  9754   ins_cost(BRANCH_COST);
  9755   format %{ "BR$cmp   $op1,$labl" %}
  9756   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9757   ins_pipe(br_reg);
  9758 %}
  9761 // ============================================================================
  9762 // Long Compare
  9763 //
  9764 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9765 // is tricky.  The flavor of compare used depends on whether we are testing
  9766 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9767 // The GE test is the negated LT test.  The LE test can be had by commuting
  9768 // the operands (yielding a GE test) and then negating; negate again for the
  9769 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9770 // NE test is negated from that.
  9772 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9773 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9774 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9775 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9776 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9777 // foo match ends up with the wrong leaf.  One fix is to not match both
  9778 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9779 // both forms beat the trinary form of long-compare and both are very useful
  9780 // on Intel which has so few registers.
  9782 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9783   match(If cmp xcc);
  9784   effect(USE labl);
  9786   size(8);
  9787   ins_cost(BRANCH_COST);
  9788   format %{ "BP$cmp   $xcc,$labl" %}
  9789   ins_encode %{
  9790     Label* L = $labl$$label;
  9791     Assembler::Predict predict_taken =
  9792       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9794     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9795     __ delayed()->nop();
  9796   %}
  9797   ins_pipe(br_cc);
  9798 %}
  9800 // Manifest a CmpL3 result in an integer register.  Very painful.
  9801 // This is the test to avoid.
  9802 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9803   match(Set dst (CmpL3 src1 src2) );
  9804   effect( KILL ccr );
  9805   ins_cost(6*DEFAULT_COST);
  9806   size(24);
  9807   format %{ "CMP    $src1,$src2\t\t! long\n"
  9808           "\tBLT,a,pn done\n"
  9809           "\tMOV    -1,$dst\t! delay slot\n"
  9810           "\tBGT,a,pn done\n"
  9811           "\tMOV    1,$dst\t! delay slot\n"
  9812           "\tCLR    $dst\n"
  9813     "done:"     %}
  9814   ins_encode( cmpl_flag(src1,src2,dst) );
  9815   ins_pipe(cmpL_reg);
  9816 %}
  9818 // Conditional move
  9819 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9820   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9821   ins_cost(150);
  9822   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9823   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9824   ins_pipe(ialu_reg);
  9825 %}
  9827 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9828   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9829   ins_cost(140);
  9830   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9831   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9832   ins_pipe(ialu_imm);
  9833 %}
  9835 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9836   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9837   ins_cost(150);
  9838   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9839   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9840   ins_pipe(ialu_reg);
  9841 %}
  9843 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9844   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9845   ins_cost(140);
  9846   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9847   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9848   ins_pipe(ialu_imm);
  9849 %}
  9851 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9852   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9853   ins_cost(150);
  9854   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9855   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9856   ins_pipe(ialu_reg);
  9857 %}
  9859 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9860   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9861   ins_cost(150);
  9862   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9863   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9864   ins_pipe(ialu_reg);
  9865 %}
  9867 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9868   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9869   ins_cost(140);
  9870   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9871   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9872   ins_pipe(ialu_imm);
  9873 %}
  9875 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9876   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9877   ins_cost(150);
  9878   opcode(0x101);
  9879   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9880   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9881   ins_pipe(int_conditional_float_move);
  9882 %}
  9884 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9885   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9886   ins_cost(150);
  9887   opcode(0x102);
  9888   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9889   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9890   ins_pipe(int_conditional_float_move);
  9891 %}
  9893 // ============================================================================
  9894 // Safepoint Instruction
  9895 instruct safePoint_poll(iRegP poll) %{
  9896   match(SafePoint poll);
  9897   effect(USE poll);
  9899   size(4);
  9900 #ifdef _LP64
  9901   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9902 #else
  9903   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9904 #endif
  9905   ins_encode %{
  9906     __ relocate(relocInfo::poll_type);
  9907     __ ld_ptr($poll$$Register, 0, G0);
  9908   %}
  9909   ins_pipe(loadPollP);
  9910 %}
  9912 // ============================================================================
  9913 // Call Instructions
  9914 // Call Java Static Instruction
  9915 instruct CallStaticJavaDirect( method meth ) %{
  9916   match(CallStaticJava);
  9917   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9918   effect(USE meth);
  9920   size(8);
  9921   ins_cost(CALL_COST);
  9922   format %{ "CALL,static  ; NOP ==> " %}
  9923   ins_encode( Java_Static_Call( meth ), call_epilog );
  9924   ins_pipe(simple_call);
  9925 %}
  9927 // Call Java Static Instruction (method handle version)
  9928 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9929   match(CallStaticJava);
  9930   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9931   effect(USE meth, KILL l7_mh_SP_save);
  9933   size(16);
  9934   ins_cost(CALL_COST);
  9935   format %{ "CALL,static/MethodHandle" %}
  9936   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9937   ins_pipe(simple_call);
  9938 %}
  9940 // Call Java Dynamic Instruction
  9941 instruct CallDynamicJavaDirect( method meth ) %{
  9942   match(CallDynamicJava);
  9943   effect(USE meth);
  9945   ins_cost(CALL_COST);
  9946   format %{ "SET    (empty),R_G5\n\t"
  9947             "CALL,dynamic  ; NOP ==> " %}
  9948   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9949   ins_pipe(call);
  9950 %}
  9952 // Call Runtime Instruction
  9953 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9954   match(CallRuntime);
  9955   effect(USE meth, KILL l7);
  9956   ins_cost(CALL_COST);
  9957   format %{ "CALL,runtime" %}
  9958   ins_encode( Java_To_Runtime( meth ),
  9959               call_epilog, adjust_long_from_native_call );
  9960   ins_pipe(simple_call);
  9961 %}
  9963 // Call runtime without safepoint - same as CallRuntime
  9964 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9965   match(CallLeaf);
  9966   effect(USE meth, KILL l7);
  9967   ins_cost(CALL_COST);
  9968   format %{ "CALL,runtime leaf" %}
  9969   ins_encode( Java_To_Runtime( meth ),
  9970               call_epilog,
  9971               adjust_long_from_native_call );
  9972   ins_pipe(simple_call);
  9973 %}
  9975 // Call runtime without safepoint - same as CallLeaf
  9976 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  9977   match(CallLeafNoFP);
  9978   effect(USE meth, KILL l7);
  9979   ins_cost(CALL_COST);
  9980   format %{ "CALL,runtime leaf nofp" %}
  9981   ins_encode( Java_To_Runtime( meth ),
  9982               call_epilog,
  9983               adjust_long_from_native_call );
  9984   ins_pipe(simple_call);
  9985 %}
  9987 // Tail Call; Jump from runtime stub to Java code.
  9988 // Also known as an 'interprocedural jump'.
  9989 // Target of jump will eventually return to caller.
  9990 // TailJump below removes the return address.
  9991 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  9992   match(TailCall jump_target method_oop );
  9994   ins_cost(CALL_COST);
  9995   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  9996   ins_encode(form_jmpl(jump_target));
  9997   ins_pipe(tail_call);
  9998 %}
 10001 // Return Instruction
 10002 instruct Ret() %{
 10003   match(Return);
 10005   // The epilogue node did the ret already.
 10006   size(0);
 10007   format %{ "! return" %}
 10008   ins_encode();
 10009   ins_pipe(empty);
 10010 %}
 10013 // Tail Jump; remove the return address; jump to target.
 10014 // TailCall above leaves the return address around.
 10015 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 10016 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 10017 // "restore" before this instruction (in Epilogue), we need to materialize it
 10018 // in %i0.
 10019 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
 10020   match( TailJump jump_target ex_oop );
 10021   ins_cost(CALL_COST);
 10022   format %{ "! discard R_O7\n\t"
 10023             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
 10024   ins_encode(form_jmpl_set_exception_pc(jump_target));
 10025   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
 10026   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
 10027   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
 10028   ins_pipe(tail_call);
 10029 %}
 10031 // Create exception oop: created by stack-crawling runtime code.
 10032 // Created exception is now available to this handler, and is setup
 10033 // just prior to jumping to this handler.  No code emitted.
 10034 instruct CreateException( o0RegP ex_oop )
 10035 %{
 10036   match(Set ex_oop (CreateEx));
 10037   ins_cost(0);
 10039   size(0);
 10040   // use the following format syntax
 10041   format %{ "! exception oop is in R_O0; no code emitted" %}
 10042   ins_encode();
 10043   ins_pipe(empty);
 10044 %}
 10047 // Rethrow exception:
 10048 // The exception oop will come in the first argument position.
 10049 // Then JUMP (not call) to the rethrow stub code.
 10050 instruct RethrowException()
 10051 %{
 10052   match(Rethrow);
 10053   ins_cost(CALL_COST);
 10055   // use the following format syntax
 10056   format %{ "Jmp    rethrow_stub" %}
 10057   ins_encode(enc_rethrow);
 10058   ins_pipe(tail_call);
 10059 %}
 10062 // Die now
 10063 instruct ShouldNotReachHere( )
 10064 %{
 10065   match(Halt);
 10066   ins_cost(CALL_COST);
 10068   size(4);
 10069   // Use the following format syntax
 10070   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
 10071   ins_encode( form2_illtrap() );
 10072   ins_pipe(tail_call);
 10073 %}
 10075 // ============================================================================
 10076 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 10077 // array for an instance of the superklass.  Set a hidden internal cache on a
 10078 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 10079 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
 10080 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
 10081   match(Set index (PartialSubtypeCheck sub super));
 10082   effect( KILL pcc, KILL o7 );
 10083   ins_cost(DEFAULT_COST*10);
 10084   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
 10085   ins_encode( enc_PartialSubtypeCheck() );
 10086   ins_pipe(partial_subtype_check_pipe);
 10087 %}
 10089 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
 10090   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
 10091   effect( KILL idx, KILL o7 );
 10092   ins_cost(DEFAULT_COST*10);
 10093   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
 10094   ins_encode( enc_PartialSubtypeCheck() );
 10095   ins_pipe(partial_subtype_check_pipe);
 10096 %}
 10099 // ============================================================================
 10100 // inlined locking and unlocking
 10102 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10103   match(Set pcc (FastLock object box));
 10105   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10106   ins_cost(100);
 10108   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10109   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10110   ins_pipe(long_memory_op);
 10111 %}
 10114 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10115   match(Set pcc (FastUnlock object box));
 10116   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10117   ins_cost(100);
 10119   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10120   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10121   ins_pipe(long_memory_op);
 10122 %}
 10124 // The encodings are generic.
 10125 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10126   predicate(!use_block_zeroing(n->in(2)) );
 10127   match(Set dummy (ClearArray cnt base));
 10128   effect(TEMP temp, KILL ccr);
 10129   ins_cost(300);
 10130   format %{ "MOV    $cnt,$temp\n"
 10131     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10132     "        BRge   loop\t\t! Clearing loop\n"
 10133     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10135   ins_encode %{
 10136     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10137     Register nof_bytes_arg    = $cnt$$Register;
 10138     Register nof_bytes_tmp    = $temp$$Register;
 10139     Register base_pointer_arg = $base$$Register;
 10141     Label loop;
 10142     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10144     // Loop and clear, walking backwards through the array.
 10145     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10146     __ bind(loop);
 10147     __ deccc(nof_bytes_tmp, 8);
 10148     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10149     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10150     // %%%% this mini-loop must not cross a cache boundary!
 10151   %}
 10152   ins_pipe(long_memory_op);
 10153 %}
 10155 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10156   predicate(use_block_zeroing(n->in(2)));
 10157   match(Set dummy (ClearArray cnt base));
 10158   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10159   ins_cost(300);
 10160   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10162   ins_encode %{
 10164     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10165     Register to    = $base$$Register;
 10166     Register count = $cnt$$Register;
 10168     Label Ldone;
 10169     __ nop(); // Separate short branches
 10170     // Use BIS for zeroing (temp is not used).
 10171     __ bis_zeroing(to, count, G0, Ldone);
 10172     __ bind(Ldone);
 10174   %}
 10175   ins_pipe(long_memory_op);
 10176 %}
 10178 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10179   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10180   match(Set dummy (ClearArray cnt base));
 10181   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10182   ins_cost(300);
 10183   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10185   ins_encode %{
 10187     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10188     Register to    = $base$$Register;
 10189     Register count = $cnt$$Register;
 10190     Register temp  = $tmp$$Register;
 10192     Label Ldone;
 10193     __ nop(); // Separate short branches
 10194     // Use BIS for zeroing
 10195     __ bis_zeroing(to, count, temp, Ldone);
 10196     __ bind(Ldone);
 10198   %}
 10199   ins_pipe(long_memory_op);
 10200 %}
 10202 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10203                         o7RegI tmp, flagsReg ccr) %{
 10204   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10205   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10206   ins_cost(300);
 10207   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10208   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10209   ins_pipe(long_memory_op);
 10210 %}
 10212 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10213                        o7RegI tmp, flagsReg ccr) %{
 10214   match(Set result (StrEquals (Binary str1 str2) cnt));
 10215   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10216   ins_cost(300);
 10217   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10218   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10219   ins_pipe(long_memory_op);
 10220 %}
 10222 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10223                       o7RegI tmp2, flagsReg ccr) %{
 10224   match(Set result (AryEq ary1 ary2));
 10225   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10226   ins_cost(300);
 10227   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10228   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10229   ins_pipe(long_memory_op);
 10230 %}
 10233 //---------- Zeros Count Instructions ------------------------------------------
 10235 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10236   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10237   match(Set dst (CountLeadingZerosI src));
 10238   effect(TEMP dst, TEMP tmp, KILL cr);
 10240   // x |= (x >> 1);
 10241   // x |= (x >> 2);
 10242   // x |= (x >> 4);
 10243   // x |= (x >> 8);
 10244   // x |= (x >> 16);
 10245   // return (WORDBITS - popc(x));
 10246   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10247             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10248             "OR      $dst,$tmp,$dst\n\t"
 10249             "SRL     $dst,2,$tmp\n\t"
 10250             "OR      $dst,$tmp,$dst\n\t"
 10251             "SRL     $dst,4,$tmp\n\t"
 10252             "OR      $dst,$tmp,$dst\n\t"
 10253             "SRL     $dst,8,$tmp\n\t"
 10254             "OR      $dst,$tmp,$dst\n\t"
 10255             "SRL     $dst,16,$tmp\n\t"
 10256             "OR      $dst,$tmp,$dst\n\t"
 10257             "POPC    $dst,$dst\n\t"
 10258             "MOV     32,$tmp\n\t"
 10259             "SUB     $tmp,$dst,$dst" %}
 10260   ins_encode %{
 10261     Register Rdst = $dst$$Register;
 10262     Register Rsrc = $src$$Register;
 10263     Register Rtmp = $tmp$$Register;
 10264     __ srl(Rsrc, 1,    Rtmp);
 10265     __ srl(Rsrc, 0,    Rdst);
 10266     __ or3(Rdst, Rtmp, Rdst);
 10267     __ srl(Rdst, 2,    Rtmp);
 10268     __ or3(Rdst, Rtmp, Rdst);
 10269     __ srl(Rdst, 4,    Rtmp);
 10270     __ or3(Rdst, Rtmp, Rdst);
 10271     __ srl(Rdst, 8,    Rtmp);
 10272     __ or3(Rdst, Rtmp, Rdst);
 10273     __ srl(Rdst, 16,   Rtmp);
 10274     __ or3(Rdst, Rtmp, Rdst);
 10275     __ popc(Rdst, Rdst);
 10276     __ mov(BitsPerInt, Rtmp);
 10277     __ sub(Rtmp, Rdst, Rdst);
 10278   %}
 10279   ins_pipe(ialu_reg);
 10280 %}
 10282 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10283   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10284   match(Set dst (CountLeadingZerosL src));
 10285   effect(TEMP dst, TEMP tmp, KILL cr);
 10287   // x |= (x >> 1);
 10288   // x |= (x >> 2);
 10289   // x |= (x >> 4);
 10290   // x |= (x >> 8);
 10291   // x |= (x >> 16);
 10292   // x |= (x >> 32);
 10293   // return (WORDBITS - popc(x));
 10294   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10295             "OR      $src,$tmp,$dst\n\t"
 10296             "SRLX    $dst,2,$tmp\n\t"
 10297             "OR      $dst,$tmp,$dst\n\t"
 10298             "SRLX    $dst,4,$tmp\n\t"
 10299             "OR      $dst,$tmp,$dst\n\t"
 10300             "SRLX    $dst,8,$tmp\n\t"
 10301             "OR      $dst,$tmp,$dst\n\t"
 10302             "SRLX    $dst,16,$tmp\n\t"
 10303             "OR      $dst,$tmp,$dst\n\t"
 10304             "SRLX    $dst,32,$tmp\n\t"
 10305             "OR      $dst,$tmp,$dst\n\t"
 10306             "POPC    $dst,$dst\n\t"
 10307             "MOV     64,$tmp\n\t"
 10308             "SUB     $tmp,$dst,$dst" %}
 10309   ins_encode %{
 10310     Register Rdst = $dst$$Register;
 10311     Register Rsrc = $src$$Register;
 10312     Register Rtmp = $tmp$$Register;
 10313     __ srlx(Rsrc, 1,    Rtmp);
 10314     __ or3( Rsrc, Rtmp, Rdst);
 10315     __ srlx(Rdst, 2,    Rtmp);
 10316     __ or3( Rdst, Rtmp, Rdst);
 10317     __ srlx(Rdst, 4,    Rtmp);
 10318     __ or3( Rdst, Rtmp, Rdst);
 10319     __ srlx(Rdst, 8,    Rtmp);
 10320     __ or3( Rdst, Rtmp, Rdst);
 10321     __ srlx(Rdst, 16,   Rtmp);
 10322     __ or3( Rdst, Rtmp, Rdst);
 10323     __ srlx(Rdst, 32,   Rtmp);
 10324     __ or3( Rdst, Rtmp, Rdst);
 10325     __ popc(Rdst, Rdst);
 10326     __ mov(BitsPerLong, Rtmp);
 10327     __ sub(Rtmp, Rdst, Rdst);
 10328   %}
 10329   ins_pipe(ialu_reg);
 10330 %}
 10332 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
 10333   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10334   match(Set dst (CountTrailingZerosI src));
 10335   effect(TEMP dst, KILL cr);
 10337   // return popc(~x & (x - 1));
 10338   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10339             "ANDN    $dst,$src,$dst\n\t"
 10340             "SRL     $dst,R_G0,$dst\n\t"
 10341             "POPC    $dst,$dst" %}
 10342   ins_encode %{
 10343     Register Rdst = $dst$$Register;
 10344     Register Rsrc = $src$$Register;
 10345     __ sub(Rsrc, 1, Rdst);
 10346     __ andn(Rdst, Rsrc, Rdst);
 10347     __ srl(Rdst, G0, Rdst);
 10348     __ popc(Rdst, Rdst);
 10349   %}
 10350   ins_pipe(ialu_reg);
 10351 %}
 10353 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
 10354   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10355   match(Set dst (CountTrailingZerosL src));
 10356   effect(TEMP dst, KILL cr);
 10358   // return popc(~x & (x - 1));
 10359   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10360             "ANDN    $dst,$src,$dst\n\t"
 10361             "POPC    $dst,$dst" %}
 10362   ins_encode %{
 10363     Register Rdst = $dst$$Register;
 10364     Register Rsrc = $src$$Register;
 10365     __ sub(Rsrc, 1, Rdst);
 10366     __ andn(Rdst, Rsrc, Rdst);
 10367     __ popc(Rdst, Rdst);
 10368   %}
 10369   ins_pipe(ialu_reg);
 10370 %}
 10373 //---------- Population Count Instructions -------------------------------------
 10375 instruct popCountI(iRegIsafe dst, iRegI src) %{
 10376   predicate(UsePopCountInstruction);
 10377   match(Set dst (PopCountI src));
 10379   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
 10380             "POPC   $dst, $dst" %}
 10381   ins_encode %{
 10382     __ srl($src$$Register, G0, $dst$$Register);
 10383     __ popc($dst$$Register, $dst$$Register);
 10384   %}
 10385   ins_pipe(ialu_reg);
 10386 %}
 10388 // Note: Long.bitCount(long) returns an int.
 10389 instruct popCountL(iRegIsafe dst, iRegL src) %{
 10390   predicate(UsePopCountInstruction);
 10391   match(Set dst (PopCountL src));
 10393   format %{ "POPC   $src, $dst" %}
 10394   ins_encode %{
 10395     __ popc($src$$Register, $dst$$Register);
 10396   %}
 10397   ins_pipe(ialu_reg);
 10398 %}
 10401 // ============================================================================
 10402 //------------Bytes reverse--------------------------------------------------
 10404 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10405   match(Set dst (ReverseBytesI src));
 10407   // Op cost is artificially doubled to make sure that load or store
 10408   // instructions are preferred over this one which requires a spill
 10409   // onto a stack slot.
 10410   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10411   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10413   ins_encode %{
 10414     __ set($src$$disp + STACK_BIAS, O7);
 10415     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10416   %}
 10417   ins_pipe( iload_mem );
 10418 %}
 10420 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10421   match(Set dst (ReverseBytesL src));
 10423   // Op cost is artificially doubled to make sure that load or store
 10424   // instructions are preferred over this one which requires a spill
 10425   // onto a stack slot.
 10426   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10427   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10429   ins_encode %{
 10430     __ set($src$$disp + STACK_BIAS, O7);
 10431     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10432   %}
 10433   ins_pipe( iload_mem );
 10434 %}
 10436 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10437   match(Set dst (ReverseBytesUS src));
 10439   // Op cost is artificially doubled to make sure that load or store
 10440   // instructions are preferred over this one which requires a spill
 10441   // onto a stack slot.
 10442   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10443   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10445   ins_encode %{
 10446     // the value was spilled as an int so bias the load
 10447     __ set($src$$disp + STACK_BIAS + 2, O7);
 10448     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10449   %}
 10450   ins_pipe( iload_mem );
 10451 %}
 10453 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10454   match(Set dst (ReverseBytesS src));
 10456   // Op cost is artificially doubled to make sure that load or store
 10457   // instructions are preferred over this one which requires a spill
 10458   // onto a stack slot.
 10459   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10460   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10462   ins_encode %{
 10463     // the value was spilled as an int so bias the load
 10464     __ set($src$$disp + STACK_BIAS + 2, O7);
 10465     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10466   %}
 10467   ins_pipe( iload_mem );
 10468 %}
 10470 // Load Integer reversed byte order
 10471 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10472   match(Set dst (ReverseBytesI (LoadI src)));
 10474   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10475   size(4);
 10476   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10478   ins_encode %{
 10479     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10480   %}
 10481   ins_pipe(iload_mem);
 10482 %}
 10484 // Load Long - aligned and reversed
 10485 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10486   match(Set dst (ReverseBytesL (LoadL src)));
 10488   ins_cost(MEMORY_REF_COST);
 10489   size(4);
 10490   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10492   ins_encode %{
 10493     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10494   %}
 10495   ins_pipe(iload_mem);
 10496 %}
 10498 // Load unsigned short / char reversed byte order
 10499 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10500   match(Set dst (ReverseBytesUS (LoadUS src)));
 10502   ins_cost(MEMORY_REF_COST);
 10503   size(4);
 10504   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10506   ins_encode %{
 10507     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10508   %}
 10509   ins_pipe(iload_mem);
 10510 %}
 10512 // Load short reversed byte order
 10513 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10514   match(Set dst (ReverseBytesS (LoadS src)));
 10516   ins_cost(MEMORY_REF_COST);
 10517   size(4);
 10518   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10520   ins_encode %{
 10521     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10522   %}
 10523   ins_pipe(iload_mem);
 10524 %}
 10526 // Store Integer reversed byte order
 10527 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10528   match(Set dst (StoreI dst (ReverseBytesI src)));
 10530   ins_cost(MEMORY_REF_COST);
 10531   size(4);
 10532   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10534   ins_encode %{
 10535     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10536   %}
 10537   ins_pipe(istore_mem_reg);
 10538 %}
 10540 // Store Long reversed byte order
 10541 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10542   match(Set dst (StoreL dst (ReverseBytesL src)));
 10544   ins_cost(MEMORY_REF_COST);
 10545   size(4);
 10546   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10548   ins_encode %{
 10549     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10550   %}
 10551   ins_pipe(istore_mem_reg);
 10552 %}
 10554 // Store unsighed short/char reversed byte order
 10555 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10556   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10558   ins_cost(MEMORY_REF_COST);
 10559   size(4);
 10560   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10562   ins_encode %{
 10563     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10564   %}
 10565   ins_pipe(istore_mem_reg);
 10566 %}
 10568 // Store short reversed byte order
 10569 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10570   match(Set dst (StoreC dst (ReverseBytesS src)));
 10572   ins_cost(MEMORY_REF_COST);
 10573   size(4);
 10574   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10576   ins_encode %{
 10577     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10578   %}
 10579   ins_pipe(istore_mem_reg);
 10580 %}
 10582 // ====================VECTOR INSTRUCTIONS=====================================
 10584 // Load Aligned Packed values into a Double Register
 10585 instruct loadV8(regD dst, memory mem) %{
 10586   predicate(n->as_LoadVector()->memory_size() == 8);
 10587   match(Set dst (LoadVector mem));
 10588   ins_cost(MEMORY_REF_COST);
 10589   size(4);
 10590   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
 10591   ins_encode %{
 10592     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
 10593   %}
 10594   ins_pipe(floadD_mem);
 10595 %}
 10597 // Store Vector in Double register to memory
 10598 instruct storeV8(memory mem, regD src) %{
 10599   predicate(n->as_StoreVector()->memory_size() == 8);
 10600   match(Set mem (StoreVector mem src));
 10601   ins_cost(MEMORY_REF_COST);
 10602   size(4);
 10603   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
 10604   ins_encode %{
 10605     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
 10606   %}
 10607   ins_pipe(fstoreD_mem_reg);
 10608 %}
 10610 // Store Zero into vector in memory
 10611 instruct storeV8B_zero(memory mem, immI0 zero) %{
 10612   predicate(n->as_StoreVector()->memory_size() == 8);
 10613   match(Set mem (StoreVector mem (ReplicateB zero)));
 10614   ins_cost(MEMORY_REF_COST);
 10615   size(4);
 10616   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
 10617   ins_encode %{
 10618     __ stx(G0, $mem$$Address);
 10619   %}
 10620   ins_pipe(fstoreD_mem_zero);
 10621 %}
 10623 instruct storeV4S_zero(memory mem, immI0 zero) %{
 10624   predicate(n->as_StoreVector()->memory_size() == 8);
 10625   match(Set mem (StoreVector mem (ReplicateS zero)));
 10626   ins_cost(MEMORY_REF_COST);
 10627   size(4);
 10628   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
 10629   ins_encode %{
 10630     __ stx(G0, $mem$$Address);
 10631   %}
 10632   ins_pipe(fstoreD_mem_zero);
 10633 %}
 10635 instruct storeV2I_zero(memory mem, immI0 zero) %{
 10636   predicate(n->as_StoreVector()->memory_size() == 8);
 10637   match(Set mem (StoreVector mem (ReplicateI zero)));
 10638   ins_cost(MEMORY_REF_COST);
 10639   size(4);
 10640   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
 10641   ins_encode %{
 10642     __ stx(G0, $mem$$Address);
 10643   %}
 10644   ins_pipe(fstoreD_mem_zero);
 10645 %}
 10647 instruct storeV2F_zero(memory mem, immF0 zero) %{
 10648   predicate(n->as_StoreVector()->memory_size() == 8);
 10649   match(Set mem (StoreVector mem (ReplicateF zero)));
 10650   ins_cost(MEMORY_REF_COST);
 10651   size(4);
 10652   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
 10653   ins_encode %{
 10654     __ stx(G0, $mem$$Address);
 10655   %}
 10656   ins_pipe(fstoreD_mem_zero);
 10657 %}
 10659 // Replicate scalar to packed byte values into Double register
 10660 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10661   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
 10662   match(Set dst (ReplicateB src));
 10663   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10664   format %{ "SLLX  $src,56,$tmp\n\t"
 10665             "SRLX  $tmp, 8,$tmp2\n\t"
 10666             "OR    $tmp,$tmp2,$tmp\n\t"
 10667             "SRLX  $tmp,16,$tmp2\n\t"
 10668             "OR    $tmp,$tmp2,$tmp\n\t"
 10669             "SRLX  $tmp,32,$tmp2\n\t"
 10670             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10671             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10672   ins_encode %{
 10673     Register Rsrc = $src$$Register;
 10674     Register Rtmp = $tmp$$Register;
 10675     Register Rtmp2 = $tmp2$$Register;
 10676     __ sllx(Rsrc,    56, Rtmp);
 10677     __ srlx(Rtmp,     8, Rtmp2);
 10678     __ or3 (Rtmp, Rtmp2, Rtmp);
 10679     __ srlx(Rtmp,    16, Rtmp2);
 10680     __ or3 (Rtmp, Rtmp2, Rtmp);
 10681     __ srlx(Rtmp,    32, Rtmp2);
 10682     __ or3 (Rtmp, Rtmp2, Rtmp);
 10683     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10684   %}
 10685   ins_pipe(ialu_reg);
 10686 %}
 10688 // Replicate scalar to packed byte values into Double stack
 10689 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10690   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
 10691   match(Set dst (ReplicateB src));
 10692   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10693   format %{ "SLLX  $src,56,$tmp\n\t"
 10694             "SRLX  $tmp, 8,$tmp2\n\t"
 10695             "OR    $tmp,$tmp2,$tmp\n\t"
 10696             "SRLX  $tmp,16,$tmp2\n\t"
 10697             "OR    $tmp,$tmp2,$tmp\n\t"
 10698             "SRLX  $tmp,32,$tmp2\n\t"
 10699             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10700             "STX   $tmp,$dst\t! regL to stkD" %}
 10701   ins_encode %{
 10702     Register Rsrc = $src$$Register;
 10703     Register Rtmp = $tmp$$Register;
 10704     Register Rtmp2 = $tmp2$$Register;
 10705     __ sllx(Rsrc,    56, Rtmp);
 10706     __ srlx(Rtmp,     8, Rtmp2);
 10707     __ or3 (Rtmp, Rtmp2, Rtmp);
 10708     __ srlx(Rtmp,    16, Rtmp2);
 10709     __ or3 (Rtmp, Rtmp2, Rtmp);
 10710     __ srlx(Rtmp,    32, Rtmp2);
 10711     __ or3 (Rtmp, Rtmp2, Rtmp);
 10712     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10713     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10714   %}
 10715   ins_pipe(ialu_reg);
 10716 %}
 10718 // Replicate scalar constant to packed byte values in Double register
 10719 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
 10720   predicate(n->as_Vector()->length() == 8);
 10721   match(Set dst (ReplicateB con));
 10722   effect(KILL tmp);
 10723   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
 10724   ins_encode %{
 10725     // XXX This is a quick fix for 6833573.
 10726     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
 10727     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
 10728     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10729   %}
 10730   ins_pipe(loadConFD);
 10731 %}
 10733 // Replicate scalar to packed char/short values into Double register
 10734 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10735   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
 10736   match(Set dst (ReplicateS src));
 10737   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10738   format %{ "SLLX  $src,48,$tmp\n\t"
 10739             "SRLX  $tmp,16,$tmp2\n\t"
 10740             "OR    $tmp,$tmp2,$tmp\n\t"
 10741             "SRLX  $tmp,32,$tmp2\n\t"
 10742             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10743             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10744   ins_encode %{
 10745     Register Rsrc = $src$$Register;
 10746     Register Rtmp = $tmp$$Register;
 10747     Register Rtmp2 = $tmp2$$Register;
 10748     __ sllx(Rsrc,    48, Rtmp);
 10749     __ srlx(Rtmp,    16, Rtmp2);
 10750     __ or3 (Rtmp, Rtmp2, Rtmp);
 10751     __ srlx(Rtmp,    32, Rtmp2);
 10752     __ or3 (Rtmp, Rtmp2, Rtmp);
 10753     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10754   %}
 10755   ins_pipe(ialu_reg);
 10756 %}
 10758 // Replicate scalar to packed char/short values into Double stack
 10759 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10760   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
 10761   match(Set dst (ReplicateS src));
 10762   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10763   format %{ "SLLX  $src,48,$tmp\n\t"
 10764             "SRLX  $tmp,16,$tmp2\n\t"
 10765             "OR    $tmp,$tmp2,$tmp\n\t"
 10766             "SRLX  $tmp,32,$tmp2\n\t"
 10767             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10768             "STX   $tmp,$dst\t! regL to stkD" %}
 10769   ins_encode %{
 10770     Register Rsrc = $src$$Register;
 10771     Register Rtmp = $tmp$$Register;
 10772     Register Rtmp2 = $tmp2$$Register;
 10773     __ sllx(Rsrc,    48, Rtmp);
 10774     __ srlx(Rtmp,    16, Rtmp2);
 10775     __ or3 (Rtmp, Rtmp2, Rtmp);
 10776     __ srlx(Rtmp,    32, Rtmp2);
 10777     __ or3 (Rtmp, Rtmp2, Rtmp);
 10778     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10779     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10780   %}
 10781   ins_pipe(ialu_reg);
 10782 %}
 10784 // Replicate scalar constant to packed char/short values in Double register
 10785 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
 10786   predicate(n->as_Vector()->length() == 4);
 10787   match(Set dst (ReplicateS con));
 10788   effect(KILL tmp);
 10789   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
 10790   ins_encode %{
 10791     // XXX This is a quick fix for 6833573.
 10792     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
 10793     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
 10794     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10795   %}
 10796   ins_pipe(loadConFD);
 10797 %}
 10799 // Replicate scalar to packed int values into Double register
 10800 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10801   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
 10802   match(Set dst (ReplicateI src));
 10803   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10804   format %{ "SLLX  $src,32,$tmp\n\t"
 10805             "SRLX  $tmp,32,$tmp2\n\t"
 10806             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10807             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10808   ins_encode %{
 10809     Register Rsrc = $src$$Register;
 10810     Register Rtmp = $tmp$$Register;
 10811     Register Rtmp2 = $tmp2$$Register;
 10812     __ sllx(Rsrc,    32, Rtmp);
 10813     __ srlx(Rtmp,    32, Rtmp2);
 10814     __ or3 (Rtmp, Rtmp2, Rtmp);
 10815     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10816   %}
 10817   ins_pipe(ialu_reg);
 10818 %}
 10820 // Replicate scalar to packed int values into Double stack
 10821 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10822   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
 10823   match(Set dst (ReplicateI src));
 10824   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10825   format %{ "SLLX  $src,32,$tmp\n\t"
 10826             "SRLX  $tmp,32,$tmp2\n\t"
 10827             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10828             "STX   $tmp,$dst\t! regL to stkD" %}
 10829   ins_encode %{
 10830     Register Rsrc = $src$$Register;
 10831     Register Rtmp = $tmp$$Register;
 10832     Register Rtmp2 = $tmp2$$Register;
 10833     __ sllx(Rsrc,    32, Rtmp);
 10834     __ srlx(Rtmp,    32, Rtmp2);
 10835     __ or3 (Rtmp, Rtmp2, Rtmp);
 10836     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10837     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10838   %}
 10839   ins_pipe(ialu_reg);
 10840 %}
 10842 // Replicate scalar zero constant to packed int values in Double register
 10843 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
 10844   predicate(n->as_Vector()->length() == 2);
 10845   match(Set dst (ReplicateI con));
 10846   effect(KILL tmp);
 10847   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
 10848   ins_encode %{
 10849     // XXX This is a quick fix for 6833573.
 10850     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
 10851     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
 10852     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10853   %}
 10854   ins_pipe(loadConFD);
 10855 %}
 10857 // Replicate scalar to packed float values into Double stack
 10858 instruct Repl2F_stk(stackSlotD dst, regF src) %{
 10859   predicate(n->as_Vector()->length() == 2);
 10860   match(Set dst (ReplicateF src));
 10861   ins_cost(MEMORY_REF_COST*2);
 10862   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
 10863             "STF    $src,$dst.lo" %}
 10864   opcode(Assembler::stf_op3);
 10865   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
 10866   ins_pipe(fstoreF_stk_reg);
 10867 %}
 10869 // Replicate scalar zero constant to packed float values in Double register
 10870 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
 10871   predicate(n->as_Vector()->length() == 2);
 10872   match(Set dst (ReplicateF con));
 10873   effect(KILL tmp);
 10874   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
 10875   ins_encode %{
 10876     // XXX This is a quick fix for 6833573.
 10877     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
 10878     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
 10879     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10880   %}
 10881   ins_pipe(loadConFD);
 10882 %}
 10884 //----------PEEPHOLE RULES-----------------------------------------------------
 10885 // These must follow all instruction definitions as they use the names
 10886 // defined in the instructions definitions.
 10887 //
 10888 // peepmatch ( root_instr_name [preceding_instruction]* );
 10889 //
 10890 // peepconstraint %{
 10891 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10892 //  [, ...] );
 10893 // // instruction numbers are zero-based using left to right order in peepmatch
 10894 //
 10895 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10896 // // provide an instruction_number.operand_name for each operand that appears
 10897 // // in the replacement instruction's match rule
 10898 //
 10899 // ---------VM FLAGS---------------------------------------------------------
 10900 //
 10901 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10902 //
 10903 // Each peephole rule is given an identifying number starting with zero and
 10904 // increasing by one in the order seen by the parser.  An individual peephole
 10905 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10906 // on the command-line.
 10907 //
 10908 // ---------CURRENT LIMITATIONS----------------------------------------------
 10909 //
 10910 // Only match adjacent instructions in same basic block
 10911 // Only equality constraints
 10912 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10913 // Only one replacement instruction
 10914 //
 10915 // ---------EXAMPLE----------------------------------------------------------
 10916 //
 10917 // // pertinent parts of existing instructions in architecture description
 10918 // instruct movI(eRegI dst, eRegI src) %{
 10919 //   match(Set dst (CopyI src));
 10920 // %}
 10921 //
 10922 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10923 //   match(Set dst (AddI dst src));
 10924 //   effect(KILL cr);
 10925 // %}
 10926 //
 10927 // // Change (inc mov) to lea
 10928 // peephole %{
 10929 //   // increment preceeded by register-register move
 10930 //   peepmatch ( incI_eReg movI );
 10931 //   // require that the destination register of the increment
 10932 //   // match the destination register of the move
 10933 //   peepconstraint ( 0.dst == 1.dst );
 10934 //   // construct a replacement instruction that sets
 10935 //   // the destination to ( move's source register + one )
 10936 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10937 // %}
 10938 //
 10940 // // Change load of spilled value to only a spill
 10941 // instruct storeI(memory mem, eRegI src) %{
 10942 //   match(Set mem (StoreI mem src));
 10943 // %}
 10944 //
 10945 // instruct loadI(eRegI dst, memory mem) %{
 10946 //   match(Set dst (LoadI mem));
 10947 // %}
 10948 //
 10949 // peephole %{
 10950 //   peepmatch ( loadI storeI );
 10951 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10952 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10953 // %}
 10955 //----------SMARTSPILL RULES---------------------------------------------------
 10956 // These must follow all instruction definitions as they use the names
 10957 // defined in the instructions definitions.
 10958 //
 10959 // SPARC will probably not have any of these rules due to RISC instruction set.
 10961 //----------PIPELINE-----------------------------------------------------------
 10962 // Rules which define the behavior of the target architectures pipeline.

mercurial