src/share/vm/gc_implementation/parallelScavenge/psAdaptiveSizePolicy.cpp

Fri, 11 Mar 2011 16:35:18 +0100

author
jwilhelm
date
Fri, 11 Mar 2011 16:35:18 +0100
changeset 2648
1fb790245268
parent 2314
f95d63e2154a
child 4037
da91efe96a93
permissions
-rw-r--r--

6820066: Check that -XX:ParGCArrayScanChunk has a value larger than zero.
Summary: Check that -XX:ParGCArrayScanChunk has a value larger than zero.
Reviewed-by: johnc, jmasa, ysr

     1 /*
     2  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
    27 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    28 #include "gc_implementation/parallelScavenge/psGCAdaptivePolicyCounters.hpp"
    29 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    30 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    31 #include "gc_interface/gcCause.hpp"
    32 #include "memory/collectorPolicy.hpp"
    33 #include "runtime/timer.hpp"
    34 #include "utilities/top.hpp"
    36 #include <math.h>
    38 PSAdaptiveSizePolicy::PSAdaptiveSizePolicy(size_t init_eden_size,
    39                                            size_t init_promo_size,
    40                                            size_t init_survivor_size,
    41                                            size_t intra_generation_alignment,
    42                                            double gc_pause_goal_sec,
    43                                            double gc_minor_pause_goal_sec,
    44                                            uint gc_cost_ratio) :
    45      AdaptiveSizePolicy(init_eden_size,
    46                         init_promo_size,
    47                         init_survivor_size,
    48                         gc_pause_goal_sec,
    49                         gc_cost_ratio),
    50      _collection_cost_margin_fraction(AdaptiveSizePolicyCollectionCostMargin/
    51        100.0),
    52      _intra_generation_alignment(intra_generation_alignment),
    53      _live_at_last_full_gc(init_promo_size),
    54      _gc_minor_pause_goal_sec(gc_minor_pause_goal_sec),
    55      _latest_major_mutator_interval_seconds(0),
    56      _young_gen_change_for_major_pause_count(0)
    57 {
    58   // Sizing policy statistics
    59   _avg_major_pause    =
    60     new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding);
    61   _avg_minor_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    62   _avg_major_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    64   _avg_base_footprint = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
    65   _major_pause_old_estimator =
    66     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    67   _major_pause_young_estimator =
    68     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    69   _major_collection_estimator =
    70     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    72   _young_gen_size_increment_supplement = YoungGenerationSizeSupplement;
    73   _old_gen_size_increment_supplement = TenuredGenerationSizeSupplement;
    75   // Start the timers
    76   _major_timer.start();
    78   _old_gen_policy_is_ready = false;
    79 }
    81 void PSAdaptiveSizePolicy::major_collection_begin() {
    82   // Update the interval time
    83   _major_timer.stop();
    84   // Save most recent collection time
    85   _latest_major_mutator_interval_seconds = _major_timer.seconds();
    86   _major_timer.reset();
    87   _major_timer.start();
    88 }
    90 void PSAdaptiveSizePolicy::update_minor_pause_old_estimator(
    91     double minor_pause_in_ms) {
    92   double promo_size_in_mbytes = ((double)_promo_size)/((double)M);
    93   _minor_pause_old_estimator->update(promo_size_in_mbytes,
    94     minor_pause_in_ms);
    95 }
    97 void PSAdaptiveSizePolicy::major_collection_end(size_t amount_live,
    98   GCCause::Cause gc_cause) {
    99   // Update the pause time.
   100   _major_timer.stop();
   102   if (gc_cause != GCCause::_java_lang_system_gc ||
   103       UseAdaptiveSizePolicyWithSystemGC) {
   104     double major_pause_in_seconds = _major_timer.seconds();
   105     double major_pause_in_ms = major_pause_in_seconds * MILLIUNITS;
   107     // Sample for performance counter
   108     _avg_major_pause->sample(major_pause_in_seconds);
   110     // Cost of collection (unit-less)
   111     double collection_cost = 0.0;
   112     if ((_latest_major_mutator_interval_seconds > 0.0) &&
   113         (major_pause_in_seconds > 0.0)) {
   114       double interval_in_seconds =
   115         _latest_major_mutator_interval_seconds + major_pause_in_seconds;
   116       collection_cost =
   117         major_pause_in_seconds / interval_in_seconds;
   118       avg_major_gc_cost()->sample(collection_cost);
   120       // Sample for performance counter
   121       _avg_major_interval->sample(interval_in_seconds);
   122     }
   124     // Calculate variables used to estimate pause time vs. gen sizes
   125     double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
   126     double promo_size_in_mbytes = ((double)_promo_size)/((double)M);
   127     _major_pause_old_estimator->update(promo_size_in_mbytes,
   128       major_pause_in_ms);
   129     _major_pause_young_estimator->update(eden_size_in_mbytes,
   130       major_pause_in_ms);
   132     if (PrintAdaptiveSizePolicy && Verbose) {
   133       gclog_or_tty->print("psAdaptiveSizePolicy::major_collection_end: "
   134         "major gc cost: %f  average: %f", collection_cost,
   135         avg_major_gc_cost()->average());
   136       gclog_or_tty->print_cr("  major pause: %f major period %f",
   137         major_pause_in_ms,
   138         _latest_major_mutator_interval_seconds * MILLIUNITS);
   139     }
   141     // Calculate variable used to estimate collection cost vs. gen sizes
   142     assert(collection_cost >= 0.0, "Expected to be non-negative");
   143     _major_collection_estimator->update(promo_size_in_mbytes,
   144         collection_cost);
   145   }
   147   // Update the amount live at the end of a full GC
   148   _live_at_last_full_gc = amount_live;
   150   // The policy does not have enough data until at least some major collections
   151   // have been done.
   152   if (_avg_major_pause->count() >= AdaptiveSizePolicyReadyThreshold) {
   153     _old_gen_policy_is_ready = true;
   154   }
   156   // Interval times use this timer to measure the interval that
   157   // the mutator runs.  Reset after the GC pause has been measured.
   158   _major_timer.reset();
   159   _major_timer.start();
   160 }
   162 // If the remaining free space in the old generation is less that
   163 // that expected to be needed by the next collection, do a full
   164 // collection now.
   165 bool PSAdaptiveSizePolicy::should_full_GC(size_t old_free_in_bytes) {
   167   // A similar test is done in the scavenge's should_attempt_scavenge().  If
   168   // this is changed, decide if that test should also be changed.
   169   bool result = padded_average_promoted_in_bytes() > (float) old_free_in_bytes;
   170   if (PrintGCDetails && Verbose) {
   171     if (result) {
   172       gclog_or_tty->print("  full after scavenge: ");
   173     } else {
   174       gclog_or_tty->print("  no full after scavenge: ");
   175     }
   176     gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT
   177       " padded_average_promoted " SIZE_FORMAT
   178       " free in old gen " SIZE_FORMAT,
   179       (size_t) average_promoted_in_bytes(),
   180       (size_t) padded_average_promoted_in_bytes(),
   181       old_free_in_bytes);
   182   }
   183   return result;
   184 }
   186 void PSAdaptiveSizePolicy::clear_generation_free_space_flags() {
   188   AdaptiveSizePolicy::clear_generation_free_space_flags();
   190   set_change_old_gen_for_min_pauses(0);
   192   set_change_young_gen_for_maj_pauses(0);
   193 }
   195 // If this is not a full GC, only test and modify the young generation.
   197 void PSAdaptiveSizePolicy::compute_generation_free_space(
   198                                            size_t young_live,
   199                                            size_t eden_live,
   200                                            size_t old_live,
   201                                            size_t perm_live,
   202                                            size_t cur_eden,
   203                                            size_t max_old_gen_size,
   204                                            size_t max_eden_size,
   205                                            bool   is_full_gc,
   206                                            GCCause::Cause gc_cause,
   207                                            CollectorPolicy* collector_policy) {
   209   // Update statistics
   210   // Time statistics are updated as we go, update footprint stats here
   211   _avg_base_footprint->sample(BaseFootPrintEstimate + perm_live);
   212   avg_young_live()->sample(young_live);
   213   avg_eden_live()->sample(eden_live);
   214   if (is_full_gc) {
   215     // old_live is only accurate after a full gc
   216     avg_old_live()->sample(old_live);
   217   }
   219   // This code used to return if the policy was not ready , i.e.,
   220   // policy_is_ready() returning false.  The intent was that
   221   // decisions below needed major collection times and so could
   222   // not be made before two major collections.  A consequence was
   223   // adjustments to the young generation were not done until after
   224   // two major collections even if the minor collections times
   225   // exceeded the requested goals.  Now let the young generation
   226   // adjust for the minor collection times.  Major collection times
   227   // will be zero for the first collection and will naturally be
   228   // ignored.  Tenured generation adjustments are only made at the
   229   // full collections so until the second major collection has
   230   // been reached, no tenured generation adjustments will be made.
   232   // Until we know better, desired promotion size uses the last calculation
   233   size_t desired_promo_size = _promo_size;
   235   // Start eden at the current value.  The desired value that is stored
   236   // in _eden_size is not bounded by constraints of the heap and can
   237   // run away.
   238   //
   239   // As expected setting desired_eden_size to the current
   240   // value of desired_eden_size as a starting point
   241   // caused desired_eden_size to grow way too large and caused
   242   // an overflow down stream.  It may have improved performance in
   243   // some case but is dangerous.
   244   size_t desired_eden_size = cur_eden;
   246 #ifdef ASSERT
   247   size_t original_promo_size = desired_promo_size;
   248   size_t original_eden_size = desired_eden_size;
   249 #endif
   251   // Cache some values. There's a bit of work getting these, so
   252   // we might save a little time.
   253   const double major_cost = major_gc_cost();
   254   const double minor_cost = minor_gc_cost();
   256   // Used for diagnostics
   257   clear_generation_free_space_flags();
   259   // Limits on our growth
   260   size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average());
   262   // This method sets the desired eden size.  That plus the
   263   // desired survivor space sizes sets the desired young generation
   264   // size.  This methods does not know what the desired survivor
   265   // size is but expects that other policy will attempt to make
   266   // the survivor sizes compatible with the live data in the
   267   // young generation.  This limit is an estimate of the space left
   268   // in the young generation after the survivor spaces have been
   269   // subtracted out.
   270   size_t eden_limit = max_eden_size;
   272   // But don't force a promo size below the current promo size. Otherwise,
   273   // the promo size will shrink for no good reason.
   274   promo_limit = MAX2(promo_limit, _promo_size);
   276   const double gc_cost_limit = GCTimeLimit/100.0;
   278   // Which way should we go?
   279   // if pause requirement is not met
   280   //   adjust size of any generation with average paus exceeding
   281   //   the pause limit.  Adjust one pause at a time (the larger)
   282   //   and only make adjustments for the major pause at full collections.
   283   // else if throughput requirement not met
   284   //   adjust the size of the generation with larger gc time.  Only
   285   //   adjust one generation at a time.
   286   // else
   287   //   adjust down the total heap size.  Adjust down the larger of the
   288   //   generations.
   290   // Add some checks for a threshhold for a change.  For example,
   291   // a change less than the necessary alignment is probably not worth
   292   // attempting.
   295   if ((_avg_minor_pause->padded_average() > gc_pause_goal_sec()) ||
   296       (_avg_major_pause->padded_average() > gc_pause_goal_sec())) {
   297     //
   298     // Check pauses
   299     //
   300     // Make changes only to affect one of the pauses (the larger)
   301     // at a time.
   302     adjust_for_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size);
   304   } else if (_avg_minor_pause->padded_average() > gc_minor_pause_goal_sec()) {
   305     // Adjust only for the minor pause time goal
   306     adjust_for_minor_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size);
   308   } else if(adjusted_mutator_cost() < _throughput_goal) {
   309     // This branch used to require that (mutator_cost() > 0.0 in 1.4.2.
   310     // This sometimes resulted in skipping to the minimize footprint
   311     // code.  Change this to try and reduce GC time if mutator time is
   312     // negative for whatever reason.  Or for future consideration,
   313     // bail out of the code if mutator time is negative.
   314     //
   315     // Throughput
   316     //
   317     assert(major_cost >= 0.0, "major cost is < 0.0");
   318     assert(minor_cost >= 0.0, "minor cost is < 0.0");
   319     // Try to reduce the GC times.
   320     adjust_for_throughput(is_full_gc, &desired_promo_size, &desired_eden_size);
   322   } else {
   324     // Be conservative about reducing the footprint.
   325     //   Do a minimum number of major collections first.
   326     //   Have reasonable averages for major and minor collections costs.
   327     if (UseAdaptiveSizePolicyFootprintGoal &&
   328         young_gen_policy_is_ready() &&
   329         avg_major_gc_cost()->average() >= 0.0 &&
   330         avg_minor_gc_cost()->average() >= 0.0) {
   331       size_t desired_sum = desired_eden_size + desired_promo_size;
   332       desired_eden_size = adjust_eden_for_footprint(desired_eden_size,
   333                                                     desired_sum);
   334       if (is_full_gc) {
   335         set_decide_at_full_gc(decide_at_full_gc_true);
   336         desired_promo_size = adjust_promo_for_footprint(desired_promo_size,
   337                                                         desired_sum);
   338       }
   339     }
   340   }
   342   // Note we make the same tests as in the code block below;  the code
   343   // seems a little easier to read with the printing in another block.
   344   if (PrintAdaptiveSizePolicy) {
   345     if (desired_promo_size > promo_limit)  {
   346       // "free_in_old_gen" was the original value for used for promo_limit
   347       size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
   348       gclog_or_tty->print_cr(
   349             "PSAdaptiveSizePolicy::compute_generation_free_space limits:"
   350             " desired_promo_size: " SIZE_FORMAT
   351             " promo_limit: " SIZE_FORMAT
   352             " free_in_old_gen: " SIZE_FORMAT
   353             " max_old_gen_size: " SIZE_FORMAT
   354             " avg_old_live: " SIZE_FORMAT,
   355             desired_promo_size, promo_limit, free_in_old_gen,
   356             max_old_gen_size, (size_t) avg_old_live()->average());
   357     }
   358     if (desired_eden_size > eden_limit) {
   359       gclog_or_tty->print_cr(
   360             "AdaptiveSizePolicy::compute_generation_free_space limits:"
   361             " desired_eden_size: " SIZE_FORMAT
   362             " old_eden_size: " SIZE_FORMAT
   363             " eden_limit: " SIZE_FORMAT
   364             " cur_eden: " SIZE_FORMAT
   365             " max_eden_size: " SIZE_FORMAT
   366             " avg_young_live: " SIZE_FORMAT,
   367             desired_eden_size, _eden_size, eden_limit, cur_eden,
   368             max_eden_size, (size_t)avg_young_live()->average());
   369     }
   370     if (gc_cost() > gc_cost_limit) {
   371       gclog_or_tty->print_cr(
   372             "AdaptiveSizePolicy::compute_generation_free_space: gc time limit"
   373             " gc_cost: %f "
   374             " GCTimeLimit: %d",
   375             gc_cost(), GCTimeLimit);
   376     }
   377   }
   379   // Align everything and make a final limit check
   380   const size_t alignment = _intra_generation_alignment;
   381   desired_eden_size  = align_size_up(desired_eden_size, alignment);
   382   desired_eden_size  = MAX2(desired_eden_size, alignment);
   383   desired_promo_size = align_size_up(desired_promo_size, alignment);
   384   desired_promo_size = MAX2(desired_promo_size, alignment);
   386   eden_limit  = align_size_down(eden_limit, alignment);
   387   promo_limit = align_size_down(promo_limit, alignment);
   389   // Is too much time being spent in GC?
   390   //   Is the heap trying to grow beyond it's limits?
   392   const size_t free_in_old_gen =
   393     (size_t)(max_old_gen_size - avg_old_live()->average());
   394   if (desired_promo_size > free_in_old_gen && desired_eden_size > eden_limit) {
   395     check_gc_overhead_limit(young_live,
   396                             eden_live,
   397                             max_old_gen_size,
   398                             max_eden_size,
   399                             is_full_gc,
   400                             gc_cause,
   401                             collector_policy);
   402   }
   405   // And one last limit check, now that we've aligned things.
   406   if (desired_eden_size > eden_limit) {
   407     // If the policy says to get a larger eden but
   408     // is hitting the limit, don't decrease eden.
   409     // This can lead to a general drifting down of the
   410     // eden size.  Let the tenuring calculation push more
   411     // into the old gen.
   412     desired_eden_size = MAX2(eden_limit, cur_eden);
   413   }
   414   desired_promo_size = MIN2(desired_promo_size, promo_limit);
   417   if (PrintAdaptiveSizePolicy) {
   418     // Timing stats
   419     gclog_or_tty->print(
   420                "PSAdaptiveSizePolicy::compute_generation_free_space: costs"
   421                " minor_time: %f"
   422                " major_cost: %f"
   423                " mutator_cost: %f"
   424                " throughput_goal: %f",
   425                minor_gc_cost(), major_gc_cost(), mutator_cost(),
   426                _throughput_goal);
   428     // We give more details if Verbose is set
   429     if (Verbose) {
   430       gclog_or_tty->print( " minor_pause: %f"
   431                   " major_pause: %f"
   432                   " minor_interval: %f"
   433                   " major_interval: %f"
   434                   " pause_goal: %f",
   435                   _avg_minor_pause->padded_average(),
   436                   _avg_major_pause->padded_average(),
   437                   _avg_minor_interval->average(),
   438                   _avg_major_interval->average(),
   439                   gc_pause_goal_sec());
   440     }
   442     // Footprint stats
   443     gclog_or_tty->print( " live_space: " SIZE_FORMAT
   444                 " free_space: " SIZE_FORMAT,
   445                 live_space(), free_space());
   446     // More detail
   447     if (Verbose) {
   448       gclog_or_tty->print( " base_footprint: " SIZE_FORMAT
   449                   " avg_young_live: " SIZE_FORMAT
   450                   " avg_old_live: " SIZE_FORMAT,
   451                   (size_t)_avg_base_footprint->average(),
   452                   (size_t)avg_young_live()->average(),
   453                   (size_t)avg_old_live()->average());
   454     }
   456     // And finally, our old and new sizes.
   457     gclog_or_tty->print(" old_promo_size: " SIZE_FORMAT
   458                " old_eden_size: " SIZE_FORMAT
   459                " desired_promo_size: " SIZE_FORMAT
   460                " desired_eden_size: " SIZE_FORMAT,
   461                _promo_size, _eden_size,
   462                desired_promo_size, desired_eden_size);
   463     gclog_or_tty->cr();
   464   }
   466   decay_supplemental_growth(is_full_gc);
   468   set_promo_size(desired_promo_size);
   469   set_eden_size(desired_eden_size);
   470 };
   472 void PSAdaptiveSizePolicy::decay_supplemental_growth(bool is_full_gc) {
   473   // Decay the supplemental increment?  Decay the supplement growth
   474   // factor even if it is not used.  It is only meant to give a boost
   475   // to the initial growth and if it is not used, then it was not
   476   // needed.
   477   if (is_full_gc) {
   478     // Don't wait for the threshold value for the major collections.  If
   479     // here, the supplemental growth term was used and should decay.
   480     if ((_avg_major_pause->count() % TenuredGenerationSizeSupplementDecay)
   481         == 0) {
   482       _old_gen_size_increment_supplement =
   483         _old_gen_size_increment_supplement >> 1;
   484     }
   485   } else {
   486     if ((_avg_minor_pause->count() >= AdaptiveSizePolicyReadyThreshold) &&
   487         (_avg_minor_pause->count() % YoungGenerationSizeSupplementDecay) == 0) {
   488       _young_gen_size_increment_supplement =
   489         _young_gen_size_increment_supplement >> 1;
   490     }
   491   }
   492 }
   494 void PSAdaptiveSizePolicy::adjust_for_minor_pause_time(bool is_full_gc,
   495     size_t* desired_promo_size_ptr, size_t* desired_eden_size_ptr) {
   497   // Adjust the young generation size to reduce pause time of
   498   // of collections.
   499   //
   500   // The AdaptiveSizePolicyInitializingSteps test is not used
   501   // here.  It has not seemed to be needed but perhaps should
   502   // be added for consistency.
   503   if (minor_pause_young_estimator()->decrement_will_decrease()) {
   504         // reduce eden size
   505     set_change_young_gen_for_min_pauses(
   506           decrease_young_gen_for_min_pauses_true);
   507     *desired_eden_size_ptr = *desired_eden_size_ptr -
   508       eden_decrement_aligned_down(*desired_eden_size_ptr);
   509     } else {
   510       // EXPERIMENTAL ADJUSTMENT
   511       // Only record that the estimator indicated such an action.
   512       // *desired_eden_size_ptr = *desired_eden_size_ptr + eden_heap_delta;
   513       set_change_young_gen_for_min_pauses(
   514           increase_young_gen_for_min_pauses_true);
   515   }
   516   if (PSAdjustTenuredGenForMinorPause) {
   517     // If the desired eden size is as small as it will get,
   518     // try to adjust the old gen size.
   519     if (*desired_eden_size_ptr <= _intra_generation_alignment) {
   520       // Vary the old gen size to reduce the young gen pause.  This
   521       // may not be a good idea.  This is just a test.
   522       if (minor_pause_old_estimator()->decrement_will_decrease()) {
   523         set_change_old_gen_for_min_pauses(
   524           decrease_old_gen_for_min_pauses_true);
   525         *desired_promo_size_ptr =
   526           _promo_size - promo_decrement_aligned_down(*desired_promo_size_ptr);
   527       } else {
   528         set_change_old_gen_for_min_pauses(
   529           increase_old_gen_for_min_pauses_true);
   530         size_t promo_heap_delta =
   531           promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
   532         if ((*desired_promo_size_ptr + promo_heap_delta) >
   533             *desired_promo_size_ptr) {
   534           *desired_promo_size_ptr =
   535             _promo_size + promo_heap_delta;
   536         }
   537       }
   538     }
   539   }
   540 }
   542 void PSAdaptiveSizePolicy::adjust_for_pause_time(bool is_full_gc,
   543                                              size_t* desired_promo_size_ptr,
   544                                              size_t* desired_eden_size_ptr) {
   546   size_t promo_heap_delta = 0;
   547   size_t eden_heap_delta = 0;
   548   // Add some checks for a threshhold for a change.  For example,
   549   // a change less than the required alignment is probably not worth
   550   // attempting.
   551   if (is_full_gc) {
   552     set_decide_at_full_gc(decide_at_full_gc_true);
   553   }
   555   if (_avg_minor_pause->padded_average() > _avg_major_pause->padded_average()) {
   556     adjust_for_minor_pause_time(is_full_gc,
   557                                 desired_promo_size_ptr,
   558                                 desired_eden_size_ptr);
   559     // major pause adjustments
   560   } else if (is_full_gc) {
   561     // Adjust for the major pause time only at full gc's because the
   562     // affects of a change can only be seen at full gc's.
   564     // Reduce old generation size to reduce pause?
   565     if (major_pause_old_estimator()->decrement_will_decrease()) {
   566       // reduce old generation size
   567       set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
   568       promo_heap_delta = promo_decrement_aligned_down(*desired_promo_size_ptr);
   569       *desired_promo_size_ptr = _promo_size - promo_heap_delta;
   570     } else {
   571       // EXPERIMENTAL ADJUSTMENT
   572       // Only record that the estimator indicated such an action.
   573       // *desired_promo_size_ptr = _promo_size +
   574       //   promo_increment_aligned_up(*desired_promo_size_ptr);
   575       set_change_old_gen_for_maj_pauses(increase_old_gen_for_maj_pauses_true);
   576     }
   577     if (PSAdjustYoungGenForMajorPause) {
   578       // If the promo size is at the minimum (i.e., the old gen
   579       // size will not actually decrease), consider changing the
   580       // young gen size.
   581       if (*desired_promo_size_ptr < _intra_generation_alignment) {
   582         // If increasing the young generation will decrease the old gen
   583         // pause, do it.
   584         // During startup there is noise in the statistics for deciding
   585         // on whether to increase or decrease the young gen size.  For
   586         // some number of iterations, just try to increase the young
   587         // gen size if the major pause is too long to try and establish
   588         // good statistics for later decisions.
   589         if (major_pause_young_estimator()->increment_will_decrease() ||
   590           (_young_gen_change_for_major_pause_count
   591             <= AdaptiveSizePolicyInitializingSteps)) {
   592           set_change_young_gen_for_maj_pauses(
   593           increase_young_gen_for_maj_pauses_true);
   594           eden_heap_delta = eden_increment_aligned_up(*desired_eden_size_ptr);
   595           *desired_eden_size_ptr = _eden_size + eden_heap_delta;
   596           _young_gen_change_for_major_pause_count++;
   597         } else {
   598           // Record that decreasing the young gen size would decrease
   599           // the major pause
   600           set_change_young_gen_for_maj_pauses(
   601             decrease_young_gen_for_maj_pauses_true);
   602           eden_heap_delta = eden_decrement_aligned_down(*desired_eden_size_ptr);
   603           *desired_eden_size_ptr = _eden_size - eden_heap_delta;
   604         }
   605       }
   606     }
   607   }
   609   if (PrintAdaptiveSizePolicy && Verbose) {
   610     gclog_or_tty->print_cr(
   611       "AdaptiveSizePolicy::compute_generation_free_space "
   612       "adjusting gen sizes for major pause (avg %f goal %f). "
   613       "desired_promo_size " SIZE_FORMAT "desired_eden_size "
   614        SIZE_FORMAT
   615       " promo delta " SIZE_FORMAT  " eden delta " SIZE_FORMAT,
   616       _avg_major_pause->average(), gc_pause_goal_sec(),
   617       *desired_promo_size_ptr, *desired_eden_size_ptr,
   618       promo_heap_delta, eden_heap_delta);
   619   }
   620 }
   622 void PSAdaptiveSizePolicy::adjust_for_throughput(bool is_full_gc,
   623                                              size_t* desired_promo_size_ptr,
   624                                              size_t* desired_eden_size_ptr) {
   626   // Add some checks for a threshhold for a change.  For example,
   627   // a change less than the required alignment is probably not worth
   628   // attempting.
   629   if (is_full_gc) {
   630     set_decide_at_full_gc(decide_at_full_gc_true);
   631   }
   633   if ((gc_cost() + mutator_cost()) == 0.0) {
   634     return;
   635   }
   637   if (PrintAdaptiveSizePolicy && Verbose) {
   638     gclog_or_tty->print("\nPSAdaptiveSizePolicy::adjust_for_throughput("
   639       "is_full: %d, promo: " SIZE_FORMAT ",  cur_eden: " SIZE_FORMAT "): ",
   640       is_full_gc, *desired_promo_size_ptr, *desired_eden_size_ptr);
   641     gclog_or_tty->print_cr("mutator_cost %f  major_gc_cost %f "
   642       "minor_gc_cost %f", mutator_cost(), major_gc_cost(), minor_gc_cost());
   643   }
   645   // Tenured generation
   646   if (is_full_gc) {
   648     // Calculate the change to use for the tenured gen.
   649     size_t scaled_promo_heap_delta = 0;
   650     // Can the increment to the generation be scaled?
   651     if (gc_cost() >= 0.0 && major_gc_cost() >= 0.0) {
   652       size_t promo_heap_delta =
   653         promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
   654       double scale_by_ratio = major_gc_cost() / gc_cost();
   655       scaled_promo_heap_delta =
   656         (size_t) (scale_by_ratio * (double) promo_heap_delta);
   657       if (PrintAdaptiveSizePolicy && Verbose) {
   658         gclog_or_tty->print_cr(
   659           "Scaled tenured increment: " SIZE_FORMAT " by %f down to "
   660           SIZE_FORMAT,
   661           promo_heap_delta, scale_by_ratio, scaled_promo_heap_delta);
   662       }
   663     } else if (major_gc_cost() >= 0.0) {
   664       // Scaling is not going to work.  If the major gc time is the
   665       // larger, give it a full increment.
   666       if (major_gc_cost() >= minor_gc_cost()) {
   667         scaled_promo_heap_delta =
   668           promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
   669       }
   670     } else {
   671       // Don't expect to get here but it's ok if it does
   672       // in the product build since the delta will be 0
   673       // and nothing will change.
   674       assert(false, "Unexpected value for gc costs");
   675     }
   677     switch (AdaptiveSizeThroughPutPolicy) {
   678       case 1:
   679         // Early in the run the statistics might not be good.  Until
   680         // a specific number of collections have been, use the heuristic
   681         // that a larger generation size means lower collection costs.
   682         if (major_collection_estimator()->increment_will_decrease() ||
   683            (_old_gen_change_for_major_throughput
   684             <= AdaptiveSizePolicyInitializingSteps)) {
   685           // Increase tenured generation size to reduce major collection cost
   686           if ((*desired_promo_size_ptr + scaled_promo_heap_delta) >
   687               *desired_promo_size_ptr) {
   688             *desired_promo_size_ptr = _promo_size + scaled_promo_heap_delta;
   689           }
   690           set_change_old_gen_for_throughput(
   691               increase_old_gen_for_throughput_true);
   692               _old_gen_change_for_major_throughput++;
   693         } else {
   694           // EXPERIMENTAL ADJUSTMENT
   695           // Record that decreasing the old gen size would decrease
   696           // the major collection cost but don't do it.
   697           // *desired_promo_size_ptr = _promo_size -
   698           //   promo_decrement_aligned_down(*desired_promo_size_ptr);
   699           set_change_old_gen_for_throughput(
   700                 decrease_old_gen_for_throughput_true);
   701         }
   703         break;
   704       default:
   705         // Simplest strategy
   706         if ((*desired_promo_size_ptr + scaled_promo_heap_delta) >
   707             *desired_promo_size_ptr) {
   708           *desired_promo_size_ptr = *desired_promo_size_ptr +
   709             scaled_promo_heap_delta;
   710         }
   711         set_change_old_gen_for_throughput(
   712           increase_old_gen_for_throughput_true);
   713         _old_gen_change_for_major_throughput++;
   714     }
   716     if (PrintAdaptiveSizePolicy && Verbose) {
   717       gclog_or_tty->print_cr(
   718           "adjusting tenured gen for throughput (avg %f goal %f). "
   719           "desired_promo_size " SIZE_FORMAT " promo_delta " SIZE_FORMAT ,
   720           mutator_cost(), _throughput_goal,
   721           *desired_promo_size_ptr, scaled_promo_heap_delta);
   722     }
   723   }
   725   // Young generation
   726   size_t scaled_eden_heap_delta = 0;
   727   // Can the increment to the generation be scaled?
   728   if (gc_cost() >= 0.0 && minor_gc_cost() >= 0.0) {
   729     size_t eden_heap_delta =
   730       eden_increment_with_supplement_aligned_up(*desired_eden_size_ptr);
   731     double scale_by_ratio = minor_gc_cost() / gc_cost();
   732     assert(scale_by_ratio <= 1.0 && scale_by_ratio >= 0.0, "Scaling is wrong");
   733     scaled_eden_heap_delta =
   734       (size_t) (scale_by_ratio * (double) eden_heap_delta);
   735     if (PrintAdaptiveSizePolicy && Verbose) {
   736       gclog_or_tty->print_cr(
   737         "Scaled eden increment: " SIZE_FORMAT " by %f down to "
   738         SIZE_FORMAT,
   739         eden_heap_delta, scale_by_ratio, scaled_eden_heap_delta);
   740     }
   741   } else if (minor_gc_cost() >= 0.0) {
   742     // Scaling is not going to work.  If the minor gc time is the
   743     // larger, give it a full increment.
   744     if (minor_gc_cost() > major_gc_cost()) {
   745       scaled_eden_heap_delta =
   746         eden_increment_with_supplement_aligned_up(*desired_eden_size_ptr);
   747     }
   748   } else {
   749     // Don't expect to get here but it's ok if it does
   750     // in the product build since the delta will be 0
   751     // and nothing will change.
   752     assert(false, "Unexpected value for gc costs");
   753   }
   755   // Use a heuristic for some number of collections to give
   756   // the averages time to settle down.
   757   switch (AdaptiveSizeThroughPutPolicy) {
   758     case 1:
   759       if (minor_collection_estimator()->increment_will_decrease() ||
   760         (_young_gen_change_for_minor_throughput
   761           <= AdaptiveSizePolicyInitializingSteps)) {
   762         // Expand young generation size to reduce frequency of
   763         // of collections.
   764         if ((*desired_eden_size_ptr + scaled_eden_heap_delta) >
   765             *desired_eden_size_ptr) {
   766           *desired_eden_size_ptr =
   767             *desired_eden_size_ptr + scaled_eden_heap_delta;
   768         }
   769         set_change_young_gen_for_throughput(
   770           increase_young_gen_for_througput_true);
   771         _young_gen_change_for_minor_throughput++;
   772       } else {
   773         // EXPERIMENTAL ADJUSTMENT
   774         // Record that decreasing the young gen size would decrease
   775         // the minor collection cost but don't do it.
   776         // *desired_eden_size_ptr = _eden_size -
   777         //   eden_decrement_aligned_down(*desired_eden_size_ptr);
   778         set_change_young_gen_for_throughput(
   779           decrease_young_gen_for_througput_true);
   780       }
   781           break;
   782     default:
   783       if ((*desired_eden_size_ptr + scaled_eden_heap_delta) >
   784           *desired_eden_size_ptr) {
   785         *desired_eden_size_ptr =
   786           *desired_eden_size_ptr + scaled_eden_heap_delta;
   787       }
   788       set_change_young_gen_for_throughput(
   789         increase_young_gen_for_througput_true);
   790       _young_gen_change_for_minor_throughput++;
   791   }
   793   if (PrintAdaptiveSizePolicy && Verbose) {
   794     gclog_or_tty->print_cr(
   795         "adjusting eden for throughput (avg %f goal %f). desired_eden_size "
   796         SIZE_FORMAT " eden delta " SIZE_FORMAT "\n",
   797       mutator_cost(), _throughput_goal,
   798         *desired_eden_size_ptr, scaled_eden_heap_delta);
   799   }
   800 }
   802 size_t PSAdaptiveSizePolicy::adjust_promo_for_footprint(
   803     size_t desired_promo_size, size_t desired_sum) {
   804   assert(desired_promo_size <= desired_sum, "Inconsistent parameters");
   805   set_decrease_for_footprint(decrease_old_gen_for_footprint_true);
   807   size_t change = promo_decrement(desired_promo_size);
   808   change = scale_down(change, desired_promo_size, desired_sum);
   810   size_t reduced_size = desired_promo_size - change;
   812   if (PrintAdaptiveSizePolicy && Verbose) {
   813     gclog_or_tty->print_cr(
   814       "AdaptiveSizePolicy::compute_generation_free_space "
   815       "adjusting tenured gen for footprint. "
   816       "starting promo size " SIZE_FORMAT
   817       " reduced promo size " SIZE_FORMAT,
   818       " promo delta " SIZE_FORMAT,
   819       desired_promo_size, reduced_size, change );
   820   }
   822   assert(reduced_size <= desired_promo_size, "Inconsistent result");
   823   return reduced_size;
   824 }
   826 size_t PSAdaptiveSizePolicy::adjust_eden_for_footprint(
   827   size_t desired_eden_size, size_t desired_sum) {
   828   assert(desired_eden_size <= desired_sum, "Inconsistent parameters");
   829   set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
   831   size_t change = eden_decrement(desired_eden_size);
   832   change = scale_down(change, desired_eden_size, desired_sum);
   834   size_t reduced_size = desired_eden_size - change;
   836   if (PrintAdaptiveSizePolicy && Verbose) {
   837     gclog_or_tty->print_cr(
   838       "AdaptiveSizePolicy::compute_generation_free_space "
   839       "adjusting eden for footprint. "
   840       " starting eden size " SIZE_FORMAT
   841       " reduced eden size " SIZE_FORMAT
   842       " eden delta " SIZE_FORMAT,
   843       desired_eden_size, reduced_size, change);
   844   }
   846   assert(reduced_size <= desired_eden_size, "Inconsistent result");
   847   return reduced_size;
   848 }
   850 // Scale down "change" by the factor
   851 //      part / total
   852 // Don't align the results.
   854 size_t PSAdaptiveSizePolicy::scale_down(size_t change,
   855                                         double part,
   856                                         double total) {
   857   assert(part <= total, "Inconsistent input");
   858   size_t reduced_change = change;
   859   if (total > 0) {
   860     double fraction =  part / total;
   861     reduced_change = (size_t) (fraction * (double) change);
   862   }
   863   assert(reduced_change <= change, "Inconsistent result");
   864   return reduced_change;
   865 }
   867 size_t PSAdaptiveSizePolicy::eden_increment(size_t cur_eden,
   868                                             uint percent_change) {
   869   size_t eden_heap_delta;
   870   eden_heap_delta = cur_eden / 100 * percent_change;
   871   return eden_heap_delta;
   872 }
   874 size_t PSAdaptiveSizePolicy::eden_increment(size_t cur_eden) {
   875   return eden_increment(cur_eden, YoungGenerationSizeIncrement);
   876 }
   878 size_t PSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) {
   879   size_t result = eden_increment(cur_eden, YoungGenerationSizeIncrement);
   880   return align_size_up(result, _intra_generation_alignment);
   881 }
   883 size_t PSAdaptiveSizePolicy::eden_increment_aligned_down(size_t cur_eden) {
   884   size_t result = eden_increment(cur_eden);
   885   return align_size_down(result, _intra_generation_alignment);
   886 }
   888 size_t PSAdaptiveSizePolicy::eden_increment_with_supplement_aligned_up(
   889   size_t cur_eden) {
   890   size_t result = eden_increment(cur_eden,
   891     YoungGenerationSizeIncrement + _young_gen_size_increment_supplement);
   892   return align_size_up(result, _intra_generation_alignment);
   893 }
   895 size_t PSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) {
   896   size_t eden_heap_delta = eden_decrement(cur_eden);
   897   return align_size_down(eden_heap_delta, _intra_generation_alignment);
   898 }
   900 size_t PSAdaptiveSizePolicy::eden_decrement(size_t cur_eden) {
   901   size_t eden_heap_delta = eden_increment(cur_eden) /
   902     AdaptiveSizeDecrementScaleFactor;
   903   return eden_heap_delta;
   904 }
   906 size_t PSAdaptiveSizePolicy::promo_increment(size_t cur_promo,
   907                                              uint percent_change) {
   908   size_t promo_heap_delta;
   909   promo_heap_delta = cur_promo / 100 * percent_change;
   910   return promo_heap_delta;
   911 }
   913 size_t PSAdaptiveSizePolicy::promo_increment(size_t cur_promo) {
   914   return promo_increment(cur_promo, TenuredGenerationSizeIncrement);
   915 }
   917 size_t PSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) {
   918   size_t result =  promo_increment(cur_promo, TenuredGenerationSizeIncrement);
   919   return align_size_up(result, _intra_generation_alignment);
   920 }
   922 size_t PSAdaptiveSizePolicy::promo_increment_aligned_down(size_t cur_promo) {
   923   size_t result =  promo_increment(cur_promo, TenuredGenerationSizeIncrement);
   924   return align_size_down(result, _intra_generation_alignment);
   925 }
   927 size_t PSAdaptiveSizePolicy::promo_increment_with_supplement_aligned_up(
   928   size_t cur_promo) {
   929   size_t result =  promo_increment(cur_promo,
   930     TenuredGenerationSizeIncrement + _old_gen_size_increment_supplement);
   931   return align_size_up(result, _intra_generation_alignment);
   932 }
   934 size_t PSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) {
   935   size_t promo_heap_delta = promo_decrement(cur_promo);
   936   return align_size_down(promo_heap_delta, _intra_generation_alignment);
   937 }
   939 size_t PSAdaptiveSizePolicy::promo_decrement(size_t cur_promo) {
   940   size_t promo_heap_delta = promo_increment(cur_promo);
   941   promo_heap_delta = promo_heap_delta / AdaptiveSizeDecrementScaleFactor;
   942   return promo_heap_delta;
   943 }
   945 int PSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold(
   946                                              bool is_survivor_overflow,
   947                                              int tenuring_threshold,
   948                                              size_t survivor_limit) {
   949   assert(survivor_limit >= _intra_generation_alignment,
   950          "survivor_limit too small");
   951   assert((size_t)align_size_down(survivor_limit, _intra_generation_alignment)
   952          == survivor_limit, "survivor_limit not aligned");
   954   // This method is called even if the tenuring threshold and survivor
   955   // spaces are not adjusted so that the averages are sampled above.
   956   if (!UsePSAdaptiveSurvivorSizePolicy ||
   957       !young_gen_policy_is_ready()) {
   958     return tenuring_threshold;
   959   }
   961   // We'll decide whether to increase or decrease the tenuring
   962   // threshold based partly on the newly computed survivor size
   963   // (if we hit the maximum limit allowed, we'll always choose to
   964   // decrement the threshold).
   965   bool incr_tenuring_threshold = false;
   966   bool decr_tenuring_threshold = false;
   968   set_decrement_tenuring_threshold_for_gc_cost(false);
   969   set_increment_tenuring_threshold_for_gc_cost(false);
   970   set_decrement_tenuring_threshold_for_survivor_limit(false);
   972   if (!is_survivor_overflow) {
   973     // Keep running averages on how much survived
   975     // We use the tenuring threshold to equalize the cost of major
   976     // and minor collections.
   977     // ThresholdTolerance is used to indicate how sensitive the
   978     // tenuring threshold is to differences in cost betweent the
   979     // collection types.
   981     // Get the times of interest. This involves a little work, so
   982     // we cache the values here.
   983     const double major_cost = major_gc_cost();
   984     const double minor_cost = minor_gc_cost();
   986     if (minor_cost > major_cost * _threshold_tolerance_percent) {
   987       // Minor times are getting too long;  lower the threshold so
   988       // less survives and more is promoted.
   989       decr_tenuring_threshold = true;
   990       set_decrement_tenuring_threshold_for_gc_cost(true);
   991     } else if (major_cost > minor_cost * _threshold_tolerance_percent) {
   992       // Major times are too long, so we want less promotion.
   993       incr_tenuring_threshold = true;
   994       set_increment_tenuring_threshold_for_gc_cost(true);
   995     }
   997   } else {
   998     // Survivor space overflow occurred, so promoted and survived are
   999     // not accurate. We'll make our best guess by combining survived
  1000     // and promoted and count them as survivors.
  1001     //
  1002     // We'll lower the tenuring threshold to see if we can correct
  1003     // things. Also, set the survivor size conservatively. We're
  1004     // trying to avoid many overflows from occurring if defnew size
  1005     // is just too small.
  1007     decr_tenuring_threshold = true;
  1010   // The padded average also maintains a deviation from the average;
  1011   // we use this to see how good of an estimate we have of what survived.
  1012   // We're trying to pad the survivor size as little as possible without
  1013   // overflowing the survivor spaces.
  1014   size_t target_size = align_size_up((size_t)_avg_survived->padded_average(),
  1015                                      _intra_generation_alignment);
  1016   target_size = MAX2(target_size, _intra_generation_alignment);
  1018   if (target_size > survivor_limit) {
  1019     // Target size is bigger than we can handle. Let's also reduce
  1020     // the tenuring threshold.
  1021     target_size = survivor_limit;
  1022     decr_tenuring_threshold = true;
  1023     set_decrement_tenuring_threshold_for_survivor_limit(true);
  1026   // Finally, increment or decrement the tenuring threshold, as decided above.
  1027   // We test for decrementing first, as we might have hit the target size
  1028   // limit.
  1029   if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
  1030     if (tenuring_threshold > 1) {
  1031       tenuring_threshold--;
  1033   } else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
  1034     if (tenuring_threshold < MaxTenuringThreshold) {
  1035       tenuring_threshold++;
  1039   // We keep a running average of the amount promoted which is used
  1040   // to decide when we should collect the old generation (when
  1041   // the amount of old gen free space is less than what we expect to
  1042   // promote).
  1044   if (PrintAdaptiveSizePolicy) {
  1045     // A little more detail if Verbose is on
  1046     if (Verbose) {
  1047       gclog_or_tty->print( "  avg_survived: %f"
  1048                   "  avg_deviation: %f",
  1049                   _avg_survived->average(),
  1050                   _avg_survived->deviation());
  1053     gclog_or_tty->print( "  avg_survived_padded_avg: %f",
  1054                 _avg_survived->padded_average());
  1056     if (Verbose) {
  1057       gclog_or_tty->print( "  avg_promoted_avg: %f"
  1058                   "  avg_promoted_dev: %f",
  1059                   avg_promoted()->average(),
  1060                   avg_promoted()->deviation());
  1063     gclog_or_tty->print( "  avg_promoted_padded_avg: %f"
  1064                 "  avg_pretenured_padded_avg: %f"
  1065                 "  tenuring_thresh: %d"
  1066                 "  target_size: " SIZE_FORMAT,
  1067                 avg_promoted()->padded_average(),
  1068                 _avg_pretenured->padded_average(),
  1069                 tenuring_threshold, target_size);
  1070     tty->cr();
  1073   set_survivor_size(target_size);
  1075   return tenuring_threshold;
  1078 void PSAdaptiveSizePolicy::update_averages(bool is_survivor_overflow,
  1079                                            size_t survived,
  1080                                            size_t promoted) {
  1081   // Update averages
  1082   if (!is_survivor_overflow) {
  1083     // Keep running averages on how much survived
  1084     _avg_survived->sample(survived);
  1085   } else {
  1086     size_t survived_guess = survived + promoted;
  1087     _avg_survived->sample(survived_guess);
  1089   avg_promoted()->sample(promoted + _avg_pretenured->padded_average());
  1091   if (PrintAdaptiveSizePolicy) {
  1092     gclog_or_tty->print(
  1093                   "AdaptiveSizePolicy::compute_survivor_space_size_and_thresh:"
  1094                   "  survived: "  SIZE_FORMAT
  1095                   "  promoted: "  SIZE_FORMAT
  1096                   "  overflow: %s",
  1097                   survived, promoted, is_survivor_overflow ? "true" : "false");
  1101 bool PSAdaptiveSizePolicy::print_adaptive_size_policy_on(outputStream* st)
  1102   const {
  1104   if (!UseAdaptiveSizePolicy) return false;
  1106   return AdaptiveSizePolicy::print_adaptive_size_policy_on(
  1107                           st,
  1108                           PSScavenge::tenuring_threshold());

mercurial