src/share/vm/gc_implementation/parallelScavenge/psAdaptiveSizePolicy.cpp

Sat, 01 Sep 2012 13:25:18 -0400

author
coleenp
date
Sat, 01 Sep 2012 13:25:18 -0400
changeset 4037
da91efe96a93
parent 2314
f95d63e2154a
child 4129
22b8d3d181d9
permissions
-rw-r--r--

6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>

     1 /*
     2  * Copyright (c) 2002, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
    27 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    28 #include "gc_implementation/parallelScavenge/psGCAdaptivePolicyCounters.hpp"
    29 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    30 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    31 #include "gc_interface/gcCause.hpp"
    32 #include "memory/collectorPolicy.hpp"
    33 #include "runtime/timer.hpp"
    34 #include "utilities/top.hpp"
    36 #include <math.h>
    38 PSAdaptiveSizePolicy::PSAdaptiveSizePolicy(size_t init_eden_size,
    39                                            size_t init_promo_size,
    40                                            size_t init_survivor_size,
    41                                            size_t intra_generation_alignment,
    42                                            double gc_pause_goal_sec,
    43                                            double gc_minor_pause_goal_sec,
    44                                            uint gc_cost_ratio) :
    45      AdaptiveSizePolicy(init_eden_size,
    46                         init_promo_size,
    47                         init_survivor_size,
    48                         gc_pause_goal_sec,
    49                         gc_cost_ratio),
    50      _collection_cost_margin_fraction(AdaptiveSizePolicyCollectionCostMargin/
    51        100.0),
    52      _intra_generation_alignment(intra_generation_alignment),
    53      _live_at_last_full_gc(init_promo_size),
    54      _gc_minor_pause_goal_sec(gc_minor_pause_goal_sec),
    55      _latest_major_mutator_interval_seconds(0),
    56      _young_gen_change_for_major_pause_count(0)
    57 {
    58   // Sizing policy statistics
    59   _avg_major_pause    =
    60     new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding);
    61   _avg_minor_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    62   _avg_major_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    64   _avg_base_footprint = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
    65   _major_pause_old_estimator =
    66     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    67   _major_pause_young_estimator =
    68     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    69   _major_collection_estimator =
    70     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    72   _young_gen_size_increment_supplement = YoungGenerationSizeSupplement;
    73   _old_gen_size_increment_supplement = TenuredGenerationSizeSupplement;
    75   // Start the timers
    76   _major_timer.start();
    78   _old_gen_policy_is_ready = false;
    79 }
    81 void PSAdaptiveSizePolicy::major_collection_begin() {
    82   // Update the interval time
    83   _major_timer.stop();
    84   // Save most recent collection time
    85   _latest_major_mutator_interval_seconds = _major_timer.seconds();
    86   _major_timer.reset();
    87   _major_timer.start();
    88 }
    90 void PSAdaptiveSizePolicy::update_minor_pause_old_estimator(
    91     double minor_pause_in_ms) {
    92   double promo_size_in_mbytes = ((double)_promo_size)/((double)M);
    93   _minor_pause_old_estimator->update(promo_size_in_mbytes,
    94     minor_pause_in_ms);
    95 }
    97 void PSAdaptiveSizePolicy::major_collection_end(size_t amount_live,
    98   GCCause::Cause gc_cause) {
    99   // Update the pause time.
   100   _major_timer.stop();
   102   if (gc_cause != GCCause::_java_lang_system_gc ||
   103       UseAdaptiveSizePolicyWithSystemGC) {
   104     double major_pause_in_seconds = _major_timer.seconds();
   105     double major_pause_in_ms = major_pause_in_seconds * MILLIUNITS;
   107     // Sample for performance counter
   108     _avg_major_pause->sample(major_pause_in_seconds);
   110     // Cost of collection (unit-less)
   111     double collection_cost = 0.0;
   112     if ((_latest_major_mutator_interval_seconds > 0.0) &&
   113         (major_pause_in_seconds > 0.0)) {
   114       double interval_in_seconds =
   115         _latest_major_mutator_interval_seconds + major_pause_in_seconds;
   116       collection_cost =
   117         major_pause_in_seconds / interval_in_seconds;
   118       avg_major_gc_cost()->sample(collection_cost);
   120       // Sample for performance counter
   121       _avg_major_interval->sample(interval_in_seconds);
   122     }
   124     // Calculate variables used to estimate pause time vs. gen sizes
   125     double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
   126     double promo_size_in_mbytes = ((double)_promo_size)/((double)M);
   127     _major_pause_old_estimator->update(promo_size_in_mbytes,
   128       major_pause_in_ms);
   129     _major_pause_young_estimator->update(eden_size_in_mbytes,
   130       major_pause_in_ms);
   132     if (PrintAdaptiveSizePolicy && Verbose) {
   133       gclog_or_tty->print("psAdaptiveSizePolicy::major_collection_end: "
   134         "major gc cost: %f  average: %f", collection_cost,
   135         avg_major_gc_cost()->average());
   136       gclog_or_tty->print_cr("  major pause: %f major period %f",
   137         major_pause_in_ms,
   138         _latest_major_mutator_interval_seconds * MILLIUNITS);
   139     }
   141     // Calculate variable used to estimate collection cost vs. gen sizes
   142     assert(collection_cost >= 0.0, "Expected to be non-negative");
   143     _major_collection_estimator->update(promo_size_in_mbytes,
   144         collection_cost);
   145   }
   147   // Update the amount live at the end of a full GC
   148   _live_at_last_full_gc = amount_live;
   150   // The policy does not have enough data until at least some major collections
   151   // have been done.
   152   if (_avg_major_pause->count() >= AdaptiveSizePolicyReadyThreshold) {
   153     _old_gen_policy_is_ready = true;
   154   }
   156   // Interval times use this timer to measure the interval that
   157   // the mutator runs.  Reset after the GC pause has been measured.
   158   _major_timer.reset();
   159   _major_timer.start();
   160 }
   162 // If the remaining free space in the old generation is less that
   163 // that expected to be needed by the next collection, do a full
   164 // collection now.
   165 bool PSAdaptiveSizePolicy::should_full_GC(size_t old_free_in_bytes) {
   167   // A similar test is done in the scavenge's should_attempt_scavenge().  If
   168   // this is changed, decide if that test should also be changed.
   169   bool result = padded_average_promoted_in_bytes() > (float) old_free_in_bytes;
   170   if (PrintGCDetails && Verbose) {
   171     if (result) {
   172       gclog_or_tty->print("  full after scavenge: ");
   173     } else {
   174       gclog_or_tty->print("  no full after scavenge: ");
   175     }
   176     gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT
   177       " padded_average_promoted " SIZE_FORMAT
   178       " free in old gen " SIZE_FORMAT,
   179       (size_t) average_promoted_in_bytes(),
   180       (size_t) padded_average_promoted_in_bytes(),
   181       old_free_in_bytes);
   182   }
   183   return result;
   184 }
   186 void PSAdaptiveSizePolicy::clear_generation_free_space_flags() {
   188   AdaptiveSizePolicy::clear_generation_free_space_flags();
   190   set_change_old_gen_for_min_pauses(0);
   192   set_change_young_gen_for_maj_pauses(0);
   193 }
   195 // If this is not a full GC, only test and modify the young generation.
   197 void PSAdaptiveSizePolicy::compute_generation_free_space(
   198                                            size_t young_live,
   199                                            size_t eden_live,
   200                                            size_t old_live,
   201                                            size_t cur_eden,
   202                                            size_t max_old_gen_size,
   203                                            size_t max_eden_size,
   204                                            bool   is_full_gc,
   205                                            GCCause::Cause gc_cause,
   206                                            CollectorPolicy* collector_policy) {
   208   // Update statistics
   209   // Time statistics are updated as we go, update footprint stats here
   210   _avg_base_footprint->sample(BaseFootPrintEstimate);
   211   avg_young_live()->sample(young_live);
   212   avg_eden_live()->sample(eden_live);
   213   if (is_full_gc) {
   214     // old_live is only accurate after a full gc
   215     avg_old_live()->sample(old_live);
   216   }
   218   // This code used to return if the policy was not ready , i.e.,
   219   // policy_is_ready() returning false.  The intent was that
   220   // decisions below needed major collection times and so could
   221   // not be made before two major collections.  A consequence was
   222   // adjustments to the young generation were not done until after
   223   // two major collections even if the minor collections times
   224   // exceeded the requested goals.  Now let the young generation
   225   // adjust for the minor collection times.  Major collection times
   226   // will be zero for the first collection and will naturally be
   227   // ignored.  Tenured generation adjustments are only made at the
   228   // full collections so until the second major collection has
   229   // been reached, no tenured generation adjustments will be made.
   231   // Until we know better, desired promotion size uses the last calculation
   232   size_t desired_promo_size = _promo_size;
   234   // Start eden at the current value.  The desired value that is stored
   235   // in _eden_size is not bounded by constraints of the heap and can
   236   // run away.
   237   //
   238   // As expected setting desired_eden_size to the current
   239   // value of desired_eden_size as a starting point
   240   // caused desired_eden_size to grow way too large and caused
   241   // an overflow down stream.  It may have improved performance in
   242   // some case but is dangerous.
   243   size_t desired_eden_size = cur_eden;
   245 #ifdef ASSERT
   246   size_t original_promo_size = desired_promo_size;
   247   size_t original_eden_size = desired_eden_size;
   248 #endif
   250   // Cache some values. There's a bit of work getting these, so
   251   // we might save a little time.
   252   const double major_cost = major_gc_cost();
   253   const double minor_cost = minor_gc_cost();
   255   // Used for diagnostics
   256   clear_generation_free_space_flags();
   258   // Limits on our growth
   259   size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average());
   261   // This method sets the desired eden size.  That plus the
   262   // desired survivor space sizes sets the desired young generation
   263   // size.  This methods does not know what the desired survivor
   264   // size is but expects that other policy will attempt to make
   265   // the survivor sizes compatible with the live data in the
   266   // young generation.  This limit is an estimate of the space left
   267   // in the young generation after the survivor spaces have been
   268   // subtracted out.
   269   size_t eden_limit = max_eden_size;
   271   // But don't force a promo size below the current promo size. Otherwise,
   272   // the promo size will shrink for no good reason.
   273   promo_limit = MAX2(promo_limit, _promo_size);
   275   const double gc_cost_limit = GCTimeLimit/100.0;
   277   // Which way should we go?
   278   // if pause requirement is not met
   279   //   adjust size of any generation with average paus exceeding
   280   //   the pause limit.  Adjust one pause at a time (the larger)
   281   //   and only make adjustments for the major pause at full collections.
   282   // else if throughput requirement not met
   283   //   adjust the size of the generation with larger gc time.  Only
   284   //   adjust one generation at a time.
   285   // else
   286   //   adjust down the total heap size.  Adjust down the larger of the
   287   //   generations.
   289   // Add some checks for a threshhold for a change.  For example,
   290   // a change less than the necessary alignment is probably not worth
   291   // attempting.
   294   if ((_avg_minor_pause->padded_average() > gc_pause_goal_sec()) ||
   295       (_avg_major_pause->padded_average() > gc_pause_goal_sec())) {
   296     //
   297     // Check pauses
   298     //
   299     // Make changes only to affect one of the pauses (the larger)
   300     // at a time.
   301     adjust_for_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size);
   303   } else if (_avg_minor_pause->padded_average() > gc_minor_pause_goal_sec()) {
   304     // Adjust only for the minor pause time goal
   305     adjust_for_minor_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size);
   307   } else if(adjusted_mutator_cost() < _throughput_goal) {
   308     // This branch used to require that (mutator_cost() > 0.0 in 1.4.2.
   309     // This sometimes resulted in skipping to the minimize footprint
   310     // code.  Change this to try and reduce GC time if mutator time is
   311     // negative for whatever reason.  Or for future consideration,
   312     // bail out of the code if mutator time is negative.
   313     //
   314     // Throughput
   315     //
   316     assert(major_cost >= 0.0, "major cost is < 0.0");
   317     assert(minor_cost >= 0.0, "minor cost is < 0.0");
   318     // Try to reduce the GC times.
   319     adjust_for_throughput(is_full_gc, &desired_promo_size, &desired_eden_size);
   321   } else {
   323     // Be conservative about reducing the footprint.
   324     //   Do a minimum number of major collections first.
   325     //   Have reasonable averages for major and minor collections costs.
   326     if (UseAdaptiveSizePolicyFootprintGoal &&
   327         young_gen_policy_is_ready() &&
   328         avg_major_gc_cost()->average() >= 0.0 &&
   329         avg_minor_gc_cost()->average() >= 0.0) {
   330       size_t desired_sum = desired_eden_size + desired_promo_size;
   331       desired_eden_size = adjust_eden_for_footprint(desired_eden_size,
   332                                                     desired_sum);
   333       if (is_full_gc) {
   334         set_decide_at_full_gc(decide_at_full_gc_true);
   335         desired_promo_size = adjust_promo_for_footprint(desired_promo_size,
   336                                                         desired_sum);
   337       }
   338     }
   339   }
   341   // Note we make the same tests as in the code block below;  the code
   342   // seems a little easier to read with the printing in another block.
   343   if (PrintAdaptiveSizePolicy) {
   344     if (desired_promo_size > promo_limit)  {
   345       // "free_in_old_gen" was the original value for used for promo_limit
   346       size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
   347       gclog_or_tty->print_cr(
   348             "PSAdaptiveSizePolicy::compute_generation_free_space limits:"
   349             " desired_promo_size: " SIZE_FORMAT
   350             " promo_limit: " SIZE_FORMAT
   351             " free_in_old_gen: " SIZE_FORMAT
   352             " max_old_gen_size: " SIZE_FORMAT
   353             " avg_old_live: " SIZE_FORMAT,
   354             desired_promo_size, promo_limit, free_in_old_gen,
   355             max_old_gen_size, (size_t) avg_old_live()->average());
   356     }
   357     if (desired_eden_size > eden_limit) {
   358       gclog_or_tty->print_cr(
   359             "AdaptiveSizePolicy::compute_generation_free_space limits:"
   360             " desired_eden_size: " SIZE_FORMAT
   361             " old_eden_size: " SIZE_FORMAT
   362             " eden_limit: " SIZE_FORMAT
   363             " cur_eden: " SIZE_FORMAT
   364             " max_eden_size: " SIZE_FORMAT
   365             " avg_young_live: " SIZE_FORMAT,
   366             desired_eden_size, _eden_size, eden_limit, cur_eden,
   367             max_eden_size, (size_t)avg_young_live()->average());
   368     }
   369     if (gc_cost() > gc_cost_limit) {
   370       gclog_or_tty->print_cr(
   371             "AdaptiveSizePolicy::compute_generation_free_space: gc time limit"
   372             " gc_cost: %f "
   373             " GCTimeLimit: %d",
   374             gc_cost(), GCTimeLimit);
   375     }
   376   }
   378   // Align everything and make a final limit check
   379   const size_t alignment = _intra_generation_alignment;
   380   desired_eden_size  = align_size_up(desired_eden_size, alignment);
   381   desired_eden_size  = MAX2(desired_eden_size, alignment);
   382   desired_promo_size = align_size_up(desired_promo_size, alignment);
   383   desired_promo_size = MAX2(desired_promo_size, alignment);
   385   eden_limit  = align_size_down(eden_limit, alignment);
   386   promo_limit = align_size_down(promo_limit, alignment);
   388   // Is too much time being spent in GC?
   389   //   Is the heap trying to grow beyond it's limits?
   391   const size_t free_in_old_gen =
   392     (size_t)(max_old_gen_size - avg_old_live()->average());
   393   if (desired_promo_size > free_in_old_gen && desired_eden_size > eden_limit) {
   394     check_gc_overhead_limit(young_live,
   395                             eden_live,
   396                             max_old_gen_size,
   397                             max_eden_size,
   398                             is_full_gc,
   399                             gc_cause,
   400                             collector_policy);
   401   }
   404   // And one last limit check, now that we've aligned things.
   405   if (desired_eden_size > eden_limit) {
   406     // If the policy says to get a larger eden but
   407     // is hitting the limit, don't decrease eden.
   408     // This can lead to a general drifting down of the
   409     // eden size.  Let the tenuring calculation push more
   410     // into the old gen.
   411     desired_eden_size = MAX2(eden_limit, cur_eden);
   412   }
   413   desired_promo_size = MIN2(desired_promo_size, promo_limit);
   416   if (PrintAdaptiveSizePolicy) {
   417     // Timing stats
   418     gclog_or_tty->print(
   419                "PSAdaptiveSizePolicy::compute_generation_free_space: costs"
   420                " minor_time: %f"
   421                " major_cost: %f"
   422                " mutator_cost: %f"
   423                " throughput_goal: %f",
   424                minor_gc_cost(), major_gc_cost(), mutator_cost(),
   425                _throughput_goal);
   427     // We give more details if Verbose is set
   428     if (Verbose) {
   429       gclog_or_tty->print( " minor_pause: %f"
   430                   " major_pause: %f"
   431                   " minor_interval: %f"
   432                   " major_interval: %f"
   433                   " pause_goal: %f",
   434                   _avg_minor_pause->padded_average(),
   435                   _avg_major_pause->padded_average(),
   436                   _avg_minor_interval->average(),
   437                   _avg_major_interval->average(),
   438                   gc_pause_goal_sec());
   439     }
   441     // Footprint stats
   442     gclog_or_tty->print( " live_space: " SIZE_FORMAT
   443                 " free_space: " SIZE_FORMAT,
   444                 live_space(), free_space());
   445     // More detail
   446     if (Verbose) {
   447       gclog_or_tty->print( " base_footprint: " SIZE_FORMAT
   448                   " avg_young_live: " SIZE_FORMAT
   449                   " avg_old_live: " SIZE_FORMAT,
   450                   (size_t)_avg_base_footprint->average(),
   451                   (size_t)avg_young_live()->average(),
   452                   (size_t)avg_old_live()->average());
   453     }
   455     // And finally, our old and new sizes.
   456     gclog_or_tty->print(" old_promo_size: " SIZE_FORMAT
   457                " old_eden_size: " SIZE_FORMAT
   458                " desired_promo_size: " SIZE_FORMAT
   459                " desired_eden_size: " SIZE_FORMAT,
   460                _promo_size, _eden_size,
   461                desired_promo_size, desired_eden_size);
   462     gclog_or_tty->cr();
   463   }
   465   decay_supplemental_growth(is_full_gc);
   467   set_promo_size(desired_promo_size);
   468   set_eden_size(desired_eden_size);
   469 };
   471 void PSAdaptiveSizePolicy::decay_supplemental_growth(bool is_full_gc) {
   472   // Decay the supplemental increment?  Decay the supplement growth
   473   // factor even if it is not used.  It is only meant to give a boost
   474   // to the initial growth and if it is not used, then it was not
   475   // needed.
   476   if (is_full_gc) {
   477     // Don't wait for the threshold value for the major collections.  If
   478     // here, the supplemental growth term was used and should decay.
   479     if ((_avg_major_pause->count() % TenuredGenerationSizeSupplementDecay)
   480         == 0) {
   481       _old_gen_size_increment_supplement =
   482         _old_gen_size_increment_supplement >> 1;
   483     }
   484   } else {
   485     if ((_avg_minor_pause->count() >= AdaptiveSizePolicyReadyThreshold) &&
   486         (_avg_minor_pause->count() % YoungGenerationSizeSupplementDecay) == 0) {
   487       _young_gen_size_increment_supplement =
   488         _young_gen_size_increment_supplement >> 1;
   489     }
   490   }
   491 }
   493 void PSAdaptiveSizePolicy::adjust_for_minor_pause_time(bool is_full_gc,
   494     size_t* desired_promo_size_ptr, size_t* desired_eden_size_ptr) {
   496   // Adjust the young generation size to reduce pause time of
   497   // of collections.
   498   //
   499   // The AdaptiveSizePolicyInitializingSteps test is not used
   500   // here.  It has not seemed to be needed but perhaps should
   501   // be added for consistency.
   502   if (minor_pause_young_estimator()->decrement_will_decrease()) {
   503         // reduce eden size
   504     set_change_young_gen_for_min_pauses(
   505           decrease_young_gen_for_min_pauses_true);
   506     *desired_eden_size_ptr = *desired_eden_size_ptr -
   507       eden_decrement_aligned_down(*desired_eden_size_ptr);
   508     } else {
   509       // EXPERIMENTAL ADJUSTMENT
   510       // Only record that the estimator indicated such an action.
   511       // *desired_eden_size_ptr = *desired_eden_size_ptr + eden_heap_delta;
   512       set_change_young_gen_for_min_pauses(
   513           increase_young_gen_for_min_pauses_true);
   514   }
   515   if (PSAdjustTenuredGenForMinorPause) {
   516     // If the desired eden size is as small as it will get,
   517     // try to adjust the old gen size.
   518     if (*desired_eden_size_ptr <= _intra_generation_alignment) {
   519       // Vary the old gen size to reduce the young gen pause.  This
   520       // may not be a good idea.  This is just a test.
   521       if (minor_pause_old_estimator()->decrement_will_decrease()) {
   522         set_change_old_gen_for_min_pauses(
   523           decrease_old_gen_for_min_pauses_true);
   524         *desired_promo_size_ptr =
   525           _promo_size - promo_decrement_aligned_down(*desired_promo_size_ptr);
   526       } else {
   527         set_change_old_gen_for_min_pauses(
   528           increase_old_gen_for_min_pauses_true);
   529         size_t promo_heap_delta =
   530           promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
   531         if ((*desired_promo_size_ptr + promo_heap_delta) >
   532             *desired_promo_size_ptr) {
   533           *desired_promo_size_ptr =
   534             _promo_size + promo_heap_delta;
   535         }
   536       }
   537     }
   538   }
   539 }
   541 void PSAdaptiveSizePolicy::adjust_for_pause_time(bool is_full_gc,
   542                                              size_t* desired_promo_size_ptr,
   543                                              size_t* desired_eden_size_ptr) {
   545   size_t promo_heap_delta = 0;
   546   size_t eden_heap_delta = 0;
   547   // Add some checks for a threshhold for a change.  For example,
   548   // a change less than the required alignment is probably not worth
   549   // attempting.
   550   if (is_full_gc) {
   551     set_decide_at_full_gc(decide_at_full_gc_true);
   552   }
   554   if (_avg_minor_pause->padded_average() > _avg_major_pause->padded_average()) {
   555     adjust_for_minor_pause_time(is_full_gc,
   556                                 desired_promo_size_ptr,
   557                                 desired_eden_size_ptr);
   558     // major pause adjustments
   559   } else if (is_full_gc) {
   560     // Adjust for the major pause time only at full gc's because the
   561     // affects of a change can only be seen at full gc's.
   563     // Reduce old generation size to reduce pause?
   564     if (major_pause_old_estimator()->decrement_will_decrease()) {
   565       // reduce old generation size
   566       set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
   567       promo_heap_delta = promo_decrement_aligned_down(*desired_promo_size_ptr);
   568       *desired_promo_size_ptr = _promo_size - promo_heap_delta;
   569     } else {
   570       // EXPERIMENTAL ADJUSTMENT
   571       // Only record that the estimator indicated such an action.
   572       // *desired_promo_size_ptr = _promo_size +
   573       //   promo_increment_aligned_up(*desired_promo_size_ptr);
   574       set_change_old_gen_for_maj_pauses(increase_old_gen_for_maj_pauses_true);
   575     }
   576     if (PSAdjustYoungGenForMajorPause) {
   577       // If the promo size is at the minimum (i.e., the old gen
   578       // size will not actually decrease), consider changing the
   579       // young gen size.
   580       if (*desired_promo_size_ptr < _intra_generation_alignment) {
   581         // If increasing the young generation will decrease the old gen
   582         // pause, do it.
   583         // During startup there is noise in the statistics for deciding
   584         // on whether to increase or decrease the young gen size.  For
   585         // some number of iterations, just try to increase the young
   586         // gen size if the major pause is too long to try and establish
   587         // good statistics for later decisions.
   588         if (major_pause_young_estimator()->increment_will_decrease() ||
   589           (_young_gen_change_for_major_pause_count
   590             <= AdaptiveSizePolicyInitializingSteps)) {
   591           set_change_young_gen_for_maj_pauses(
   592           increase_young_gen_for_maj_pauses_true);
   593           eden_heap_delta = eden_increment_aligned_up(*desired_eden_size_ptr);
   594           *desired_eden_size_ptr = _eden_size + eden_heap_delta;
   595           _young_gen_change_for_major_pause_count++;
   596         } else {
   597           // Record that decreasing the young gen size would decrease
   598           // the major pause
   599           set_change_young_gen_for_maj_pauses(
   600             decrease_young_gen_for_maj_pauses_true);
   601           eden_heap_delta = eden_decrement_aligned_down(*desired_eden_size_ptr);
   602           *desired_eden_size_ptr = _eden_size - eden_heap_delta;
   603         }
   604       }
   605     }
   606   }
   608   if (PrintAdaptiveSizePolicy && Verbose) {
   609     gclog_or_tty->print_cr(
   610       "AdaptiveSizePolicy::compute_generation_free_space "
   611       "adjusting gen sizes for major pause (avg %f goal %f). "
   612       "desired_promo_size " SIZE_FORMAT "desired_eden_size "
   613        SIZE_FORMAT
   614       " promo delta " SIZE_FORMAT  " eden delta " SIZE_FORMAT,
   615       _avg_major_pause->average(), gc_pause_goal_sec(),
   616       *desired_promo_size_ptr, *desired_eden_size_ptr,
   617       promo_heap_delta, eden_heap_delta);
   618   }
   619 }
   621 void PSAdaptiveSizePolicy::adjust_for_throughput(bool is_full_gc,
   622                                              size_t* desired_promo_size_ptr,
   623                                              size_t* desired_eden_size_ptr) {
   625   // Add some checks for a threshhold for a change.  For example,
   626   // a change less than the required alignment is probably not worth
   627   // attempting.
   628   if (is_full_gc) {
   629     set_decide_at_full_gc(decide_at_full_gc_true);
   630   }
   632   if ((gc_cost() + mutator_cost()) == 0.0) {
   633     return;
   634   }
   636   if (PrintAdaptiveSizePolicy && Verbose) {
   637     gclog_or_tty->print("\nPSAdaptiveSizePolicy::adjust_for_throughput("
   638       "is_full: %d, promo: " SIZE_FORMAT ",  cur_eden: " SIZE_FORMAT "): ",
   639       is_full_gc, *desired_promo_size_ptr, *desired_eden_size_ptr);
   640     gclog_or_tty->print_cr("mutator_cost %f  major_gc_cost %f "
   641       "minor_gc_cost %f", mutator_cost(), major_gc_cost(), minor_gc_cost());
   642   }
   644   // Tenured generation
   645   if (is_full_gc) {
   647     // Calculate the change to use for the tenured gen.
   648     size_t scaled_promo_heap_delta = 0;
   649     // Can the increment to the generation be scaled?
   650     if (gc_cost() >= 0.0 && major_gc_cost() >= 0.0) {
   651       size_t promo_heap_delta =
   652         promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
   653       double scale_by_ratio = major_gc_cost() / gc_cost();
   654       scaled_promo_heap_delta =
   655         (size_t) (scale_by_ratio * (double) promo_heap_delta);
   656       if (PrintAdaptiveSizePolicy && Verbose) {
   657         gclog_or_tty->print_cr(
   658           "Scaled tenured increment: " SIZE_FORMAT " by %f down to "
   659           SIZE_FORMAT,
   660           promo_heap_delta, scale_by_ratio, scaled_promo_heap_delta);
   661       }
   662     } else if (major_gc_cost() >= 0.0) {
   663       // Scaling is not going to work.  If the major gc time is the
   664       // larger, give it a full increment.
   665       if (major_gc_cost() >= minor_gc_cost()) {
   666         scaled_promo_heap_delta =
   667           promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
   668       }
   669     } else {
   670       // Don't expect to get here but it's ok if it does
   671       // in the product build since the delta will be 0
   672       // and nothing will change.
   673       assert(false, "Unexpected value for gc costs");
   674     }
   676     switch (AdaptiveSizeThroughPutPolicy) {
   677       case 1:
   678         // Early in the run the statistics might not be good.  Until
   679         // a specific number of collections have been, use the heuristic
   680         // that a larger generation size means lower collection costs.
   681         if (major_collection_estimator()->increment_will_decrease() ||
   682            (_old_gen_change_for_major_throughput
   683             <= AdaptiveSizePolicyInitializingSteps)) {
   684           // Increase tenured generation size to reduce major collection cost
   685           if ((*desired_promo_size_ptr + scaled_promo_heap_delta) >
   686               *desired_promo_size_ptr) {
   687             *desired_promo_size_ptr = _promo_size + scaled_promo_heap_delta;
   688           }
   689           set_change_old_gen_for_throughput(
   690               increase_old_gen_for_throughput_true);
   691               _old_gen_change_for_major_throughput++;
   692         } else {
   693           // EXPERIMENTAL ADJUSTMENT
   694           // Record that decreasing the old gen size would decrease
   695           // the major collection cost but don't do it.
   696           // *desired_promo_size_ptr = _promo_size -
   697           //   promo_decrement_aligned_down(*desired_promo_size_ptr);
   698           set_change_old_gen_for_throughput(
   699                 decrease_old_gen_for_throughput_true);
   700         }
   702         break;
   703       default:
   704         // Simplest strategy
   705         if ((*desired_promo_size_ptr + scaled_promo_heap_delta) >
   706             *desired_promo_size_ptr) {
   707           *desired_promo_size_ptr = *desired_promo_size_ptr +
   708             scaled_promo_heap_delta;
   709         }
   710         set_change_old_gen_for_throughput(
   711           increase_old_gen_for_throughput_true);
   712         _old_gen_change_for_major_throughput++;
   713     }
   715     if (PrintAdaptiveSizePolicy && Verbose) {
   716       gclog_or_tty->print_cr(
   717           "adjusting tenured gen for throughput (avg %f goal %f). "
   718           "desired_promo_size " SIZE_FORMAT " promo_delta " SIZE_FORMAT ,
   719           mutator_cost(), _throughput_goal,
   720           *desired_promo_size_ptr, scaled_promo_heap_delta);
   721     }
   722   }
   724   // Young generation
   725   size_t scaled_eden_heap_delta = 0;
   726   // Can the increment to the generation be scaled?
   727   if (gc_cost() >= 0.0 && minor_gc_cost() >= 0.0) {
   728     size_t eden_heap_delta =
   729       eden_increment_with_supplement_aligned_up(*desired_eden_size_ptr);
   730     double scale_by_ratio = minor_gc_cost() / gc_cost();
   731     assert(scale_by_ratio <= 1.0 && scale_by_ratio >= 0.0, "Scaling is wrong");
   732     scaled_eden_heap_delta =
   733       (size_t) (scale_by_ratio * (double) eden_heap_delta);
   734     if (PrintAdaptiveSizePolicy && Verbose) {
   735       gclog_or_tty->print_cr(
   736         "Scaled eden increment: " SIZE_FORMAT " by %f down to "
   737         SIZE_FORMAT,
   738         eden_heap_delta, scale_by_ratio, scaled_eden_heap_delta);
   739     }
   740   } else if (minor_gc_cost() >= 0.0) {
   741     // Scaling is not going to work.  If the minor gc time is the
   742     // larger, give it a full increment.
   743     if (minor_gc_cost() > major_gc_cost()) {
   744       scaled_eden_heap_delta =
   745         eden_increment_with_supplement_aligned_up(*desired_eden_size_ptr);
   746     }
   747   } else {
   748     // Don't expect to get here but it's ok if it does
   749     // in the product build since the delta will be 0
   750     // and nothing will change.
   751     assert(false, "Unexpected value for gc costs");
   752   }
   754   // Use a heuristic for some number of collections to give
   755   // the averages time to settle down.
   756   switch (AdaptiveSizeThroughPutPolicy) {
   757     case 1:
   758       if (minor_collection_estimator()->increment_will_decrease() ||
   759         (_young_gen_change_for_minor_throughput
   760           <= AdaptiveSizePolicyInitializingSteps)) {
   761         // Expand young generation size to reduce frequency of
   762         // of collections.
   763         if ((*desired_eden_size_ptr + scaled_eden_heap_delta) >
   764             *desired_eden_size_ptr) {
   765           *desired_eden_size_ptr =
   766             *desired_eden_size_ptr + scaled_eden_heap_delta;
   767         }
   768         set_change_young_gen_for_throughput(
   769           increase_young_gen_for_througput_true);
   770         _young_gen_change_for_minor_throughput++;
   771       } else {
   772         // EXPERIMENTAL ADJUSTMENT
   773         // Record that decreasing the young gen size would decrease
   774         // the minor collection cost but don't do it.
   775         // *desired_eden_size_ptr = _eden_size -
   776         //   eden_decrement_aligned_down(*desired_eden_size_ptr);
   777         set_change_young_gen_for_throughput(
   778           decrease_young_gen_for_througput_true);
   779       }
   780           break;
   781     default:
   782       if ((*desired_eden_size_ptr + scaled_eden_heap_delta) >
   783           *desired_eden_size_ptr) {
   784         *desired_eden_size_ptr =
   785           *desired_eden_size_ptr + scaled_eden_heap_delta;
   786       }
   787       set_change_young_gen_for_throughput(
   788         increase_young_gen_for_througput_true);
   789       _young_gen_change_for_minor_throughput++;
   790   }
   792   if (PrintAdaptiveSizePolicy && Verbose) {
   793     gclog_or_tty->print_cr(
   794         "adjusting eden for throughput (avg %f goal %f). desired_eden_size "
   795         SIZE_FORMAT " eden delta " SIZE_FORMAT "\n",
   796       mutator_cost(), _throughput_goal,
   797         *desired_eden_size_ptr, scaled_eden_heap_delta);
   798   }
   799 }
   801 size_t PSAdaptiveSizePolicy::adjust_promo_for_footprint(
   802     size_t desired_promo_size, size_t desired_sum) {
   803   assert(desired_promo_size <= desired_sum, "Inconsistent parameters");
   804   set_decrease_for_footprint(decrease_old_gen_for_footprint_true);
   806   size_t change = promo_decrement(desired_promo_size);
   807   change = scale_down(change, desired_promo_size, desired_sum);
   809   size_t reduced_size = desired_promo_size - change;
   811   if (PrintAdaptiveSizePolicy && Verbose) {
   812     gclog_or_tty->print_cr(
   813       "AdaptiveSizePolicy::compute_generation_free_space "
   814       "adjusting tenured gen for footprint. "
   815       "starting promo size " SIZE_FORMAT
   816       " reduced promo size " SIZE_FORMAT,
   817       " promo delta " SIZE_FORMAT,
   818       desired_promo_size, reduced_size, change );
   819   }
   821   assert(reduced_size <= desired_promo_size, "Inconsistent result");
   822   return reduced_size;
   823 }
   825 size_t PSAdaptiveSizePolicy::adjust_eden_for_footprint(
   826   size_t desired_eden_size, size_t desired_sum) {
   827   assert(desired_eden_size <= desired_sum, "Inconsistent parameters");
   828   set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
   830   size_t change = eden_decrement(desired_eden_size);
   831   change = scale_down(change, desired_eden_size, desired_sum);
   833   size_t reduced_size = desired_eden_size - change;
   835   if (PrintAdaptiveSizePolicy && Verbose) {
   836     gclog_or_tty->print_cr(
   837       "AdaptiveSizePolicy::compute_generation_free_space "
   838       "adjusting eden for footprint. "
   839       " starting eden size " SIZE_FORMAT
   840       " reduced eden size " SIZE_FORMAT
   841       " eden delta " SIZE_FORMAT,
   842       desired_eden_size, reduced_size, change);
   843   }
   845   assert(reduced_size <= desired_eden_size, "Inconsistent result");
   846   return reduced_size;
   847 }
   849 // Scale down "change" by the factor
   850 //      part / total
   851 // Don't align the results.
   853 size_t PSAdaptiveSizePolicy::scale_down(size_t change,
   854                                         double part,
   855                                         double total) {
   856   assert(part <= total, "Inconsistent input");
   857   size_t reduced_change = change;
   858   if (total > 0) {
   859     double fraction =  part / total;
   860     reduced_change = (size_t) (fraction * (double) change);
   861   }
   862   assert(reduced_change <= change, "Inconsistent result");
   863   return reduced_change;
   864 }
   866 size_t PSAdaptiveSizePolicy::eden_increment(size_t cur_eden,
   867                                             uint percent_change) {
   868   size_t eden_heap_delta;
   869   eden_heap_delta = cur_eden / 100 * percent_change;
   870   return eden_heap_delta;
   871 }
   873 size_t PSAdaptiveSizePolicy::eden_increment(size_t cur_eden) {
   874   return eden_increment(cur_eden, YoungGenerationSizeIncrement);
   875 }
   877 size_t PSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) {
   878   size_t result = eden_increment(cur_eden, YoungGenerationSizeIncrement);
   879   return align_size_up(result, _intra_generation_alignment);
   880 }
   882 size_t PSAdaptiveSizePolicy::eden_increment_aligned_down(size_t cur_eden) {
   883   size_t result = eden_increment(cur_eden);
   884   return align_size_down(result, _intra_generation_alignment);
   885 }
   887 size_t PSAdaptiveSizePolicy::eden_increment_with_supplement_aligned_up(
   888   size_t cur_eden) {
   889   size_t result = eden_increment(cur_eden,
   890     YoungGenerationSizeIncrement + _young_gen_size_increment_supplement);
   891   return align_size_up(result, _intra_generation_alignment);
   892 }
   894 size_t PSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) {
   895   size_t eden_heap_delta = eden_decrement(cur_eden);
   896   return align_size_down(eden_heap_delta, _intra_generation_alignment);
   897 }
   899 size_t PSAdaptiveSizePolicy::eden_decrement(size_t cur_eden) {
   900   size_t eden_heap_delta = eden_increment(cur_eden) /
   901     AdaptiveSizeDecrementScaleFactor;
   902   return eden_heap_delta;
   903 }
   905 size_t PSAdaptiveSizePolicy::promo_increment(size_t cur_promo,
   906                                              uint percent_change) {
   907   size_t promo_heap_delta;
   908   promo_heap_delta = cur_promo / 100 * percent_change;
   909   return promo_heap_delta;
   910 }
   912 size_t PSAdaptiveSizePolicy::promo_increment(size_t cur_promo) {
   913   return promo_increment(cur_promo, TenuredGenerationSizeIncrement);
   914 }
   916 size_t PSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) {
   917   size_t result =  promo_increment(cur_promo, TenuredGenerationSizeIncrement);
   918   return align_size_up(result, _intra_generation_alignment);
   919 }
   921 size_t PSAdaptiveSizePolicy::promo_increment_aligned_down(size_t cur_promo) {
   922   size_t result =  promo_increment(cur_promo, TenuredGenerationSizeIncrement);
   923   return align_size_down(result, _intra_generation_alignment);
   924 }
   926 size_t PSAdaptiveSizePolicy::promo_increment_with_supplement_aligned_up(
   927   size_t cur_promo) {
   928   size_t result =  promo_increment(cur_promo,
   929     TenuredGenerationSizeIncrement + _old_gen_size_increment_supplement);
   930   return align_size_up(result, _intra_generation_alignment);
   931 }
   933 size_t PSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) {
   934   size_t promo_heap_delta = promo_decrement(cur_promo);
   935   return align_size_down(promo_heap_delta, _intra_generation_alignment);
   936 }
   938 size_t PSAdaptiveSizePolicy::promo_decrement(size_t cur_promo) {
   939   size_t promo_heap_delta = promo_increment(cur_promo);
   940   promo_heap_delta = promo_heap_delta / AdaptiveSizeDecrementScaleFactor;
   941   return promo_heap_delta;
   942 }
   944 int PSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold(
   945                                              bool is_survivor_overflow,
   946                                              int tenuring_threshold,
   947                                              size_t survivor_limit) {
   948   assert(survivor_limit >= _intra_generation_alignment,
   949          "survivor_limit too small");
   950   assert((size_t)align_size_down(survivor_limit, _intra_generation_alignment)
   951          == survivor_limit, "survivor_limit not aligned");
   953   // This method is called even if the tenuring threshold and survivor
   954   // spaces are not adjusted so that the averages are sampled above.
   955   if (!UsePSAdaptiveSurvivorSizePolicy ||
   956       !young_gen_policy_is_ready()) {
   957     return tenuring_threshold;
   958   }
   960   // We'll decide whether to increase or decrease the tenuring
   961   // threshold based partly on the newly computed survivor size
   962   // (if we hit the maximum limit allowed, we'll always choose to
   963   // decrement the threshold).
   964   bool incr_tenuring_threshold = false;
   965   bool decr_tenuring_threshold = false;
   967   set_decrement_tenuring_threshold_for_gc_cost(false);
   968   set_increment_tenuring_threshold_for_gc_cost(false);
   969   set_decrement_tenuring_threshold_for_survivor_limit(false);
   971   if (!is_survivor_overflow) {
   972     // Keep running averages on how much survived
   974     // We use the tenuring threshold to equalize the cost of major
   975     // and minor collections.
   976     // ThresholdTolerance is used to indicate how sensitive the
   977     // tenuring threshold is to differences in cost betweent the
   978     // collection types.
   980     // Get the times of interest. This involves a little work, so
   981     // we cache the values here.
   982     const double major_cost = major_gc_cost();
   983     const double minor_cost = minor_gc_cost();
   985     if (minor_cost > major_cost * _threshold_tolerance_percent) {
   986       // Minor times are getting too long;  lower the threshold so
   987       // less survives and more is promoted.
   988       decr_tenuring_threshold = true;
   989       set_decrement_tenuring_threshold_for_gc_cost(true);
   990     } else if (major_cost > minor_cost * _threshold_tolerance_percent) {
   991       // Major times are too long, so we want less promotion.
   992       incr_tenuring_threshold = true;
   993       set_increment_tenuring_threshold_for_gc_cost(true);
   994     }
   996   } else {
   997     // Survivor space overflow occurred, so promoted and survived are
   998     // not accurate. We'll make our best guess by combining survived
   999     // and promoted and count them as survivors.
  1000     //
  1001     // We'll lower the tenuring threshold to see if we can correct
  1002     // things. Also, set the survivor size conservatively. We're
  1003     // trying to avoid many overflows from occurring if defnew size
  1004     // is just too small.
  1006     decr_tenuring_threshold = true;
  1009   // The padded average also maintains a deviation from the average;
  1010   // we use this to see how good of an estimate we have of what survived.
  1011   // We're trying to pad the survivor size as little as possible without
  1012   // overflowing the survivor spaces.
  1013   size_t target_size = align_size_up((size_t)_avg_survived->padded_average(),
  1014                                      _intra_generation_alignment);
  1015   target_size = MAX2(target_size, _intra_generation_alignment);
  1017   if (target_size > survivor_limit) {
  1018     // Target size is bigger than we can handle. Let's also reduce
  1019     // the tenuring threshold.
  1020     target_size = survivor_limit;
  1021     decr_tenuring_threshold = true;
  1022     set_decrement_tenuring_threshold_for_survivor_limit(true);
  1025   // Finally, increment or decrement the tenuring threshold, as decided above.
  1026   // We test for decrementing first, as we might have hit the target size
  1027   // limit.
  1028   if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
  1029     if (tenuring_threshold > 1) {
  1030       tenuring_threshold--;
  1032   } else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
  1033     if (tenuring_threshold < MaxTenuringThreshold) {
  1034       tenuring_threshold++;
  1038   // We keep a running average of the amount promoted which is used
  1039   // to decide when we should collect the old generation (when
  1040   // the amount of old gen free space is less than what we expect to
  1041   // promote).
  1043   if (PrintAdaptiveSizePolicy) {
  1044     // A little more detail if Verbose is on
  1045     if (Verbose) {
  1046       gclog_or_tty->print( "  avg_survived: %f"
  1047                   "  avg_deviation: %f",
  1048                   _avg_survived->average(),
  1049                   _avg_survived->deviation());
  1052     gclog_or_tty->print( "  avg_survived_padded_avg: %f",
  1053                 _avg_survived->padded_average());
  1055     if (Verbose) {
  1056       gclog_or_tty->print( "  avg_promoted_avg: %f"
  1057                   "  avg_promoted_dev: %f",
  1058                   avg_promoted()->average(),
  1059                   avg_promoted()->deviation());
  1062     gclog_or_tty->print( "  avg_promoted_padded_avg: %f"
  1063                 "  avg_pretenured_padded_avg: %f"
  1064                 "  tenuring_thresh: %d"
  1065                 "  target_size: " SIZE_FORMAT,
  1066                 avg_promoted()->padded_average(),
  1067                 _avg_pretenured->padded_average(),
  1068                 tenuring_threshold, target_size);
  1069     tty->cr();
  1072   set_survivor_size(target_size);
  1074   return tenuring_threshold;
  1077 void PSAdaptiveSizePolicy::update_averages(bool is_survivor_overflow,
  1078                                            size_t survived,
  1079                                            size_t promoted) {
  1080   // Update averages
  1081   if (!is_survivor_overflow) {
  1082     // Keep running averages on how much survived
  1083     _avg_survived->sample(survived);
  1084   } else {
  1085     size_t survived_guess = survived + promoted;
  1086     _avg_survived->sample(survived_guess);
  1088   avg_promoted()->sample(promoted + _avg_pretenured->padded_average());
  1090   if (PrintAdaptiveSizePolicy) {
  1091     gclog_or_tty->print(
  1092                   "AdaptiveSizePolicy::compute_survivor_space_size_and_thresh:"
  1093                   "  survived: "  SIZE_FORMAT
  1094                   "  promoted: "  SIZE_FORMAT
  1095                   "  overflow: %s",
  1096                   survived, promoted, is_survivor_overflow ? "true" : "false");
  1100 bool PSAdaptiveSizePolicy::print_adaptive_size_policy_on(outputStream* st)
  1101   const {
  1103   if (!UseAdaptiveSizePolicy) return false;
  1105   return AdaptiveSizePolicy::print_adaptive_size_policy_on(
  1106                           st,
  1107                           PSScavenge::tenuring_threshold());

mercurial