src/share/vm/gc_interface/collectedHeap.cpp

Wed, 19 May 2010 10:37:05 -0700

author
ysr
date
Wed, 19 May 2010 10:37:05 -0700
changeset 1903
15190cbcabe9
parent 1629
34fb2662f6c2
child 1904
1634cec09505
permissions
-rw-r--r--

6953483: Typo related to ReduceInitialCardMarks leaves concurrent collectors vulnerable to heap corruption
Summary: Corrected mis-spelling of COMPILER2 in #ifdef, which could cause heap corruption in CMS due to precleaning when +ReduceInitialCardMarks. Thanks to ChenGuang Sun <suncg03@gmail.com> for bringing this typo to our attention.
Reviewed-by: tonyp, jmasa, jcoomes, kvn

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_collectedHeap.cpp.incl"
    29 #ifdef ASSERT
    30 int CollectedHeap::_fire_out_of_memory_count = 0;
    31 #endif
    33 size_t CollectedHeap::_filler_array_max_size = 0;
    35 // Memory state functions.
    37 CollectedHeap::CollectedHeap()
    38 {
    39   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
    40   const size_t elements_per_word = HeapWordSize / sizeof(jint);
    41   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
    42                                              max_len * elements_per_word);
    44   _barrier_set = NULL;
    45   _is_gc_active = false;
    46   _total_collections = _total_full_collections = 0;
    47   _gc_cause = _gc_lastcause = GCCause::_no_gc;
    48   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
    49   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
    51   if (UsePerfData) {
    52     EXCEPTION_MARK;
    54     // create the gc cause jvmstat counters
    55     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
    56                              80, GCCause::to_string(_gc_cause), CHECK);
    58     _perf_gc_lastcause =
    59                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
    60                              80, GCCause::to_string(_gc_lastcause), CHECK);
    61   }
    62   _defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
    63 }
    65 void CollectedHeap::pre_initialize() {
    66   // Used for ReduceInitialCardMarks (when COMPILER2 is used);
    67   // otherwise remains unused.
    68 #ifdef COMPILER2
    69   _defer_initial_card_mark =    ReduceInitialCardMarks && can_elide_tlab_store_barriers()
    70                              && (DeferInitialCardMark || card_mark_must_follow_store());
    71 #else
    72   assert(_defer_initial_card_mark == false, "Who would set it?");
    73 #endif
    74 }
    76 #ifndef PRODUCT
    77 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
    78   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
    79     for (size_t slot = 0; slot < size; slot += 1) {
    80       assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
    81              "Found badHeapWordValue in post-allocation check");
    82     }
    83   }
    84 }
    86 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
    87  {
    88   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
    89     for (size_t slot = 0; slot < size; slot += 1) {
    90       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
    91              "Found non badHeapWordValue in pre-allocation check");
    92     }
    93   }
    94 }
    95 #endif // PRODUCT
    97 #ifdef ASSERT
    98 void CollectedHeap::check_for_valid_allocation_state() {
    99   Thread *thread = Thread::current();
   100   // How to choose between a pending exception and a potential
   101   // OutOfMemoryError?  Don't allow pending exceptions.
   102   // This is a VM policy failure, so how do we exhaustively test it?
   103   assert(!thread->has_pending_exception(),
   104          "shouldn't be allocating with pending exception");
   105   if (StrictSafepointChecks) {
   106     assert(thread->allow_allocation(),
   107            "Allocation done by thread for which allocation is blocked "
   108            "by No_Allocation_Verifier!");
   109     // Allocation of an oop can always invoke a safepoint,
   110     // hence, the true argument
   111     thread->check_for_valid_safepoint_state(true);
   112   }
   113 }
   114 #endif
   116 HeapWord* CollectedHeap::allocate_from_tlab_slow(Thread* thread, size_t size) {
   118   // Retain tlab and allocate object in shared space if
   119   // the amount free in the tlab is too large to discard.
   120   if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
   121     thread->tlab().record_slow_allocation(size);
   122     return NULL;
   123   }
   125   // Discard tlab and allocate a new one.
   126   // To minimize fragmentation, the last TLAB may be smaller than the rest.
   127   size_t new_tlab_size = thread->tlab().compute_size(size);
   129   thread->tlab().clear_before_allocation();
   131   if (new_tlab_size == 0) {
   132     return NULL;
   133   }
   135   // Allocate a new TLAB...
   136   HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
   137   if (obj == NULL) {
   138     return NULL;
   139   }
   140   if (ZeroTLAB) {
   141     // ..and clear it.
   142     Copy::zero_to_words(obj, new_tlab_size);
   143   } else {
   144     // ...and clear just the allocated object.
   145     Copy::zero_to_words(obj, size);
   146   }
   147   thread->tlab().fill(obj, obj + size, new_tlab_size);
   148   return obj;
   149 }
   151 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
   152   MemRegion deferred = thread->deferred_card_mark();
   153   if (!deferred.is_empty()) {
   154     assert(_defer_initial_card_mark, "Otherwise should be empty");
   155     {
   156       // Verify that the storage points to a parsable object in heap
   157       DEBUG_ONLY(oop old_obj = oop(deferred.start());)
   158       assert(is_in(old_obj), "Not in allocated heap");
   159       assert(!can_elide_initializing_store_barrier(old_obj),
   160              "Else should have been filtered in new_store_pre_barrier()");
   161       assert(!is_in_permanent(old_obj), "Sanity: not expected");
   162       assert(old_obj->is_oop(true), "Not an oop");
   163       assert(old_obj->is_parsable(), "Will not be concurrently parsable");
   164       assert(deferred.word_size() == (size_t)(old_obj->size()),
   165              "Mismatch: multiple objects?");
   166     }
   167     BarrierSet* bs = barrier_set();
   168     assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
   169     bs->write_region(deferred);
   170     // "Clear" the deferred_card_mark field
   171     thread->set_deferred_card_mark(MemRegion());
   172   }
   173   assert(thread->deferred_card_mark().is_empty(), "invariant");
   174 }
   176 // Helper for ReduceInitialCardMarks. For performance,
   177 // compiled code may elide card-marks for initializing stores
   178 // to a newly allocated object along the fast-path. We
   179 // compensate for such elided card-marks as follows:
   180 // (a) Generational, non-concurrent collectors, such as
   181 //     GenCollectedHeap(ParNew,DefNew,Tenured) and
   182 //     ParallelScavengeHeap(ParallelGC, ParallelOldGC)
   183 //     need the card-mark if and only if the region is
   184 //     in the old gen, and do not care if the card-mark
   185 //     succeeds or precedes the initializing stores themselves,
   186 //     so long as the card-mark is completed before the next
   187 //     scavenge. For all these cases, we can do a card mark
   188 //     at the point at which we do a slow path allocation
   189 //     in the old gen, i.e. in this call.
   190 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
   191 //     in addition that the card-mark for an old gen allocated
   192 //     object strictly follow any associated initializing stores.
   193 //     In these cases, the memRegion remembered below is
   194 //     used to card-mark the entire region either just before the next
   195 //     slow-path allocation by this thread or just before the next scavenge or
   196 //     CMS-associated safepoint, whichever of these events happens first.
   197 //     (The implicit assumption is that the object has been fully
   198 //     initialized by this point, a fact that we assert when doing the
   199 //     card-mark.)
   200 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
   201 //     G1 concurrent marking is in progress an SATB (pre-write-)barrier is
   202 //     is used to remember the pre-value of any store. Initializing
   203 //     stores will not need this barrier, so we need not worry about
   204 //     compensating for the missing pre-barrier here. Turning now
   205 //     to the post-barrier, we note that G1 needs a RS update barrier
   206 //     which simply enqueues a (sequence of) dirty cards which may
   207 //     optionally be refined by the concurrent update threads. Note
   208 //     that this barrier need only be applied to a non-young write,
   209 //     but, like in CMS, because of the presence of concurrent refinement
   210 //     (much like CMS' precleaning), must strictly follow the oop-store.
   211 //     Thus, using the same protocol for maintaining the intended
   212 //     invariants turns out, serendepitously, to be the same for both
   213 //     G1 and CMS.
   214 //
   215 // For any future collector, this code should be reexamined with
   216 // that specific collector in mind, and the documentation above suitably
   217 // extended and updated.
   218 oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
   219   // If a previous card-mark was deferred, flush it now.
   220   flush_deferred_store_barrier(thread);
   221   if (can_elide_initializing_store_barrier(new_obj)) {
   222     // The deferred_card_mark region should be empty
   223     // following the flush above.
   224     assert(thread->deferred_card_mark().is_empty(), "Error");
   225   } else {
   226     MemRegion mr((HeapWord*)new_obj, new_obj->size());
   227     assert(!mr.is_empty(), "Error");
   228     if (_defer_initial_card_mark) {
   229       // Defer the card mark
   230       thread->set_deferred_card_mark(mr);
   231     } else {
   232       // Do the card mark
   233       BarrierSet* bs = barrier_set();
   234       assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
   235       bs->write_region(mr);
   236     }
   237   }
   238   return new_obj;
   239 }
   241 size_t CollectedHeap::filler_array_hdr_size() {
   242   return size_t(arrayOopDesc::header_size(T_INT));
   243 }
   245 size_t CollectedHeap::filler_array_min_size() {
   246   return align_object_size(filler_array_hdr_size());
   247 }
   249 size_t CollectedHeap::filler_array_max_size() {
   250   return _filler_array_max_size;
   251 }
   253 #ifdef ASSERT
   254 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
   255 {
   256   assert(words >= min_fill_size(), "too small to fill");
   257   assert(words % MinObjAlignment == 0, "unaligned size");
   258   assert(Universe::heap()->is_in_reserved(start), "not in heap");
   259   assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
   260 }
   262 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
   263 {
   264   if (ZapFillerObjects && zap) {
   265     Copy::fill_to_words(start + filler_array_hdr_size(),
   266                         words - filler_array_hdr_size(), 0XDEAFBABE);
   267   }
   268 }
   269 #endif // ASSERT
   271 void
   272 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
   273 {
   274   assert(words >= filler_array_min_size(), "too small for an array");
   275   assert(words <= filler_array_max_size(), "too big for a single object");
   277   const size_t payload_size = words - filler_array_hdr_size();
   278   const size_t len = payload_size * HeapWordSize / sizeof(jint);
   280   // Set the length first for concurrent GC.
   281   ((arrayOop)start)->set_length((int)len);
   282   post_allocation_setup_common(Universe::intArrayKlassObj(), start, words);
   283   DEBUG_ONLY(zap_filler_array(start, words, zap);)
   284 }
   286 void
   287 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
   288 {
   289   assert(words <= filler_array_max_size(), "too big for a single object");
   291   if (words >= filler_array_min_size()) {
   292     fill_with_array(start, words, zap);
   293   } else if (words > 0) {
   294     assert(words == min_fill_size(), "unaligned size");
   295     post_allocation_setup_common(SystemDictionary::Object_klass(), start,
   296                                  words);
   297   }
   298 }
   300 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
   301 {
   302   DEBUG_ONLY(fill_args_check(start, words);)
   303   HandleMark hm;  // Free handles before leaving.
   304   fill_with_object_impl(start, words, zap);
   305 }
   307 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
   308 {
   309   DEBUG_ONLY(fill_args_check(start, words);)
   310   HandleMark hm;  // Free handles before leaving.
   312 #ifdef LP64
   313   // A single array can fill ~8G, so multiple objects are needed only in 64-bit.
   314   // First fill with arrays, ensuring that any remaining space is big enough to
   315   // fill.  The remainder is filled with a single object.
   316   const size_t min = min_fill_size();
   317   const size_t max = filler_array_max_size();
   318   while (words > max) {
   319     const size_t cur = words - max >= min ? max : max - min;
   320     fill_with_array(start, cur, zap);
   321     start += cur;
   322     words -= cur;
   323   }
   324 #endif
   326   fill_with_object_impl(start, words, zap);
   327 }
   329 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
   330   guarantee(false, "thread-local allocation buffers not supported");
   331   return NULL;
   332 }
   334 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
   335   // The second disjunct in the assertion below makes a concession
   336   // for the start-up verification done while the VM is being
   337   // created. Callers be careful that you know that mutators
   338   // aren't going to interfere -- for instance, this is permissible
   339   // if we are still single-threaded and have either not yet
   340   // started allocating (nothing much to verify) or we have
   341   // started allocating but are now a full-fledged JavaThread
   342   // (and have thus made our TLAB's) available for filling.
   343   assert(SafepointSynchronize::is_at_safepoint() ||
   344          !is_init_completed(),
   345          "Should only be called at a safepoint or at start-up"
   346          " otherwise concurrent mutator activity may make heap "
   347          " unparsable again");
   348   const bool use_tlab = UseTLAB;
   349   const bool deferred = _defer_initial_card_mark;
   350   // The main thread starts allocating via a TLAB even before it
   351   // has added itself to the threads list at vm boot-up.
   352   assert(!use_tlab || Threads::first() != NULL,
   353          "Attempt to fill tlabs before main thread has been added"
   354          " to threads list is doomed to failure!");
   355   for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
   356      if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
   357 #ifdef COMPILER2
   358      // The deferred store barriers must all have been flushed to the
   359      // card-table (or other remembered set structure) before GC starts
   360      // processing the card-table (or other remembered set).
   361      if (deferred) flush_deferred_store_barrier(thread);
   362 #else
   363      assert(!deferred, "Should be false");
   364      assert(thread->deferred_card_mark().is_empty(), "Should be empty");
   365 #endif
   366   }
   367 }
   369 void CollectedHeap::accumulate_statistics_all_tlabs() {
   370   if (UseTLAB) {
   371     assert(SafepointSynchronize::is_at_safepoint() ||
   372          !is_init_completed(),
   373          "should only accumulate statistics on tlabs at safepoint");
   375     ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
   376   }
   377 }
   379 void CollectedHeap::resize_all_tlabs() {
   380   if (UseTLAB) {
   381     assert(SafepointSynchronize::is_at_safepoint() ||
   382          !is_init_completed(),
   383          "should only resize tlabs at safepoint");
   385     ThreadLocalAllocBuffer::resize_all_tlabs();
   386   }
   387 }
   389 void CollectedHeap::pre_full_gc_dump() {
   390   if (HeapDumpBeforeFullGC) {
   391     TraceTime tt("Heap Dump: ", PrintGCDetails, false, gclog_or_tty);
   392     // We are doing a "major" collection and a heap dump before
   393     // major collection has been requested.
   394     HeapDumper::dump_heap();
   395   }
   396   if (PrintClassHistogramBeforeFullGC) {
   397     TraceTime tt("Class Histogram: ", PrintGCDetails, true, gclog_or_tty);
   398     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
   399     inspector.doit();
   400   }
   401 }
   403 void CollectedHeap::post_full_gc_dump() {
   404   if (HeapDumpAfterFullGC) {
   405     TraceTime tt("Heap Dump", PrintGCDetails, false, gclog_or_tty);
   406     HeapDumper::dump_heap();
   407   }
   408   if (PrintClassHistogramAfterFullGC) {
   409     TraceTime tt("Class Histogram", PrintGCDetails, true, gclog_or_tty);
   410     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
   411     inspector.doit();
   412   }
   413 }

mercurial