src/share/vm/gc_implementation/parallelScavenge/psScavenge.cpp

Tue, 15 Sep 2009 21:53:47 -0700

author
jrose
date
Tue, 15 Sep 2009 21:53:47 -0700
changeset 1424
148e5441d916
parent 1014
0fbdb4381b99
child 1822
0bfd3fb24150
permissions
-rw-r--r--

6863023: need non-perm oops in code cache for JSR 292
Summary: Make a special root-list for those few nmethods which might contain non-perm oops.
Reviewed-by: twisti, kvn, never, jmasa, ysr

     1 /*
     2  * Copyright 2002-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    26 # include "incls/_precompiled.incl"
    27 # include "incls/_psScavenge.cpp.incl"
    29 HeapWord*                  PSScavenge::_to_space_top_before_gc = NULL;
    30 int                        PSScavenge::_consecutive_skipped_scavenges = 0;
    31 ReferenceProcessor*        PSScavenge::_ref_processor = NULL;
    32 CardTableExtension*        PSScavenge::_card_table = NULL;
    33 bool                       PSScavenge::_survivor_overflow = false;
    34 int                        PSScavenge::_tenuring_threshold = 0;
    35 HeapWord*                  PSScavenge::_young_generation_boundary = NULL;
    36 elapsedTimer               PSScavenge::_accumulated_time;
    37 GrowableArray<markOop>*    PSScavenge::_preserved_mark_stack = NULL;
    38 GrowableArray<oop>*        PSScavenge::_preserved_oop_stack = NULL;
    39 CollectorCounters*         PSScavenge::_counters = NULL;
    41 // Define before use
    42 class PSIsAliveClosure: public BoolObjectClosure {
    43 public:
    44   void do_object(oop p) {
    45     assert(false, "Do not call.");
    46   }
    47   bool do_object_b(oop p) {
    48     return (!PSScavenge::is_obj_in_young((HeapWord*) p)) || p->is_forwarded();
    49   }
    50 };
    52 PSIsAliveClosure PSScavenge::_is_alive_closure;
    54 class PSKeepAliveClosure: public OopClosure {
    55 protected:
    56   MutableSpace* _to_space;
    57   PSPromotionManager* _promotion_manager;
    59 public:
    60   PSKeepAliveClosure(PSPromotionManager* pm) : _promotion_manager(pm) {
    61     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    62     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
    63     _to_space = heap->young_gen()->to_space();
    65     assert(_promotion_manager != NULL, "Sanity");
    66   }
    68   template <class T> void do_oop_work(T* p) {
    69     assert (!oopDesc::is_null(*p), "expected non-null ref");
    70     assert ((oopDesc::load_decode_heap_oop_not_null(p))->is_oop(),
    71             "expected an oop while scanning weak refs");
    73     // Weak refs may be visited more than once.
    74     if (PSScavenge::should_scavenge(p, _to_space)) {
    75       PSScavenge::copy_and_push_safe_barrier(_promotion_manager, p);
    76     }
    77   }
    78   virtual void do_oop(oop* p)       { PSKeepAliveClosure::do_oop_work(p); }
    79   virtual void do_oop(narrowOop* p) { PSKeepAliveClosure::do_oop_work(p); }
    80 };
    82 class PSEvacuateFollowersClosure: public VoidClosure {
    83  private:
    84   PSPromotionManager* _promotion_manager;
    85  public:
    86   PSEvacuateFollowersClosure(PSPromotionManager* pm) : _promotion_manager(pm) {}
    88   virtual void do_void() {
    89     assert(_promotion_manager != NULL, "Sanity");
    90     _promotion_manager->drain_stacks(true);
    91     guarantee(_promotion_manager->stacks_empty(),
    92               "stacks should be empty at this point");
    93   }
    94 };
    96 class PSPromotionFailedClosure : public ObjectClosure {
    97   virtual void do_object(oop obj) {
    98     if (obj->is_forwarded()) {
    99       obj->init_mark();
   100     }
   101   }
   102 };
   104 class PSRefProcTaskProxy: public GCTask {
   105   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
   106   ProcessTask & _rp_task;
   107   uint          _work_id;
   108 public:
   109   PSRefProcTaskProxy(ProcessTask & rp_task, uint work_id)
   110     : _rp_task(rp_task),
   111       _work_id(work_id)
   112   { }
   114 private:
   115   virtual char* name() { return (char *)"Process referents by policy in parallel"; }
   116   virtual void do_it(GCTaskManager* manager, uint which);
   117 };
   119 void PSRefProcTaskProxy::do_it(GCTaskManager* manager, uint which)
   120 {
   121   PSPromotionManager* promotion_manager =
   122     PSPromotionManager::gc_thread_promotion_manager(which);
   123   assert(promotion_manager != NULL, "sanity check");
   124   PSKeepAliveClosure keep_alive(promotion_manager);
   125   PSEvacuateFollowersClosure evac_followers(promotion_manager);
   126   PSIsAliveClosure is_alive;
   127   _rp_task.work(_work_id, is_alive, keep_alive, evac_followers);
   128 }
   130 class PSRefEnqueueTaskProxy: public GCTask {
   131   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
   132   EnqueueTask& _enq_task;
   133   uint         _work_id;
   135 public:
   136   PSRefEnqueueTaskProxy(EnqueueTask& enq_task, uint work_id)
   137     : _enq_task(enq_task),
   138       _work_id(work_id)
   139   { }
   141   virtual char* name() { return (char *)"Enqueue reference objects in parallel"; }
   142   virtual void do_it(GCTaskManager* manager, uint which)
   143   {
   144     _enq_task.work(_work_id);
   145   }
   146 };
   148 class PSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
   149   virtual void execute(ProcessTask& task);
   150   virtual void execute(EnqueueTask& task);
   151 };
   153 void PSRefProcTaskExecutor::execute(ProcessTask& task)
   154 {
   155   GCTaskQueue* q = GCTaskQueue::create();
   156   for(uint i=0; i<ParallelGCThreads; i++) {
   157     q->enqueue(new PSRefProcTaskProxy(task, i));
   158   }
   159   ParallelTaskTerminator terminator(
   160     ParallelScavengeHeap::gc_task_manager()->workers(),
   161     UseDepthFirstScavengeOrder ?
   162         (TaskQueueSetSuper*) PSPromotionManager::stack_array_depth()
   163       : (TaskQueueSetSuper*) PSPromotionManager::stack_array_breadth());
   164   if (task.marks_oops_alive() && ParallelGCThreads > 1) {
   165     for (uint j=0; j<ParallelGCThreads; j++) {
   166       q->enqueue(new StealTask(&terminator));
   167     }
   168   }
   169   ParallelScavengeHeap::gc_task_manager()->execute_and_wait(q);
   170 }
   173 void PSRefProcTaskExecutor::execute(EnqueueTask& task)
   174 {
   175   GCTaskQueue* q = GCTaskQueue::create();
   176   for(uint i=0; i<ParallelGCThreads; i++) {
   177     q->enqueue(new PSRefEnqueueTaskProxy(task, i));
   178   }
   179   ParallelScavengeHeap::gc_task_manager()->execute_and_wait(q);
   180 }
   182 // This method contains all heap specific policy for invoking scavenge.
   183 // PSScavenge::invoke_no_policy() will do nothing but attempt to
   184 // scavenge. It will not clean up after failed promotions, bail out if
   185 // we've exceeded policy time limits, or any other special behavior.
   186 // All such policy should be placed here.
   187 //
   188 // Note that this method should only be called from the vm_thread while
   189 // at a safepoint!
   190 void PSScavenge::invoke()
   191 {
   192   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   193   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   194   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   196   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   197   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   199   PSAdaptiveSizePolicy* policy = heap->size_policy();
   201   // Before each allocation/collection attempt, find out from the
   202   // policy object if GCs are, on the whole, taking too long. If so,
   203   // bail out without attempting a collection.
   204   if (!policy->gc_time_limit_exceeded()) {
   205     IsGCActiveMark mark;
   207     bool scavenge_was_done = PSScavenge::invoke_no_policy();
   209     PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
   210     if (UsePerfData)
   211       counters->update_full_follows_scavenge(0);
   212     if (!scavenge_was_done ||
   213         policy->should_full_GC(heap->old_gen()->free_in_bytes())) {
   214       if (UsePerfData)
   215         counters->update_full_follows_scavenge(full_follows_scavenge);
   217       GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
   218       if (UseParallelOldGC) {
   219         PSParallelCompact::invoke_no_policy(false);
   220       } else {
   221         PSMarkSweep::invoke_no_policy(false);
   222       }
   223     }
   224   }
   225 }
   227 // This method contains no policy. You should probably
   228 // be calling invoke() instead.
   229 bool PSScavenge::invoke_no_policy() {
   230   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   231   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   233   TimeStamp scavenge_entry;
   234   TimeStamp scavenge_midpoint;
   235   TimeStamp scavenge_exit;
   237   scavenge_entry.update();
   239   if (GC_locker::check_active_before_gc()) {
   240     return false;
   241   }
   243   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   244   GCCause::Cause gc_cause = heap->gc_cause();
   245   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   247   // Check for potential problems.
   248   if (!should_attempt_scavenge()) {
   249     return false;
   250   }
   252   bool promotion_failure_occurred = false;
   254   PSYoungGen* young_gen = heap->young_gen();
   255   PSOldGen* old_gen = heap->old_gen();
   256   PSPermGen* perm_gen = heap->perm_gen();
   257   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
   258   heap->increment_total_collections();
   260   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
   262   if ((gc_cause != GCCause::_java_lang_system_gc) ||
   263        UseAdaptiveSizePolicyWithSystemGC) {
   264     // Gather the feedback data for eden occupancy.
   265     young_gen->eden_space()->accumulate_statistics();
   266   }
   268   if (ZapUnusedHeapArea) {
   269     // Save information needed to minimize mangling
   270     heap->record_gen_tops_before_GC();
   271   }
   273   if (PrintHeapAtGC) {
   274     Universe::print_heap_before_gc();
   275   }
   277   assert(!NeverTenure || _tenuring_threshold == markOopDesc::max_age + 1, "Sanity");
   278   assert(!AlwaysTenure || _tenuring_threshold == 0, "Sanity");
   280   size_t prev_used = heap->used();
   281   assert(promotion_failed() == false, "Sanity");
   283   // Fill in TLABs
   284   heap->accumulate_statistics_all_tlabs();
   285   heap->ensure_parsability(true);  // retire TLABs
   287   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
   288     HandleMark hm;  // Discard invalid handles created during verification
   289     gclog_or_tty->print(" VerifyBeforeGC:");
   290     Universe::verify(true);
   291   }
   293   {
   294     ResourceMark rm;
   295     HandleMark hm;
   297     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   298     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   299     TraceTime t1("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
   300     TraceCollectorStats tcs(counters());
   301     TraceMemoryManagerStats tms(false /* not full GC */);
   303     if (TraceGen0Time) accumulated_time()->start();
   305     // Let the size policy know we're starting
   306     size_policy->minor_collection_begin();
   308     // Verify the object start arrays.
   309     if (VerifyObjectStartArray &&
   310         VerifyBeforeGC) {
   311       old_gen->verify_object_start_array();
   312       perm_gen->verify_object_start_array();
   313     }
   315     // Verify no unmarked old->young roots
   316     if (VerifyRememberedSets) {
   317       CardTableExtension::verify_all_young_refs_imprecise();
   318     }
   320     if (!ScavengeWithObjectsInToSpace) {
   321       assert(young_gen->to_space()->is_empty(),
   322              "Attempt to scavenge with live objects in to_space");
   323       young_gen->to_space()->clear(SpaceDecorator::Mangle);
   324     } else if (ZapUnusedHeapArea) {
   325       young_gen->to_space()->mangle_unused_area();
   326     }
   327     save_to_space_top_before_gc();
   329     NOT_PRODUCT(reference_processor()->verify_no_references_recorded());
   330     COMPILER2_PRESENT(DerivedPointerTable::clear());
   332     reference_processor()->enable_discovery();
   333     reference_processor()->setup_policy(false);
   335     // We track how much was promoted to the next generation for
   336     // the AdaptiveSizePolicy.
   337     size_t old_gen_used_before = old_gen->used_in_bytes();
   339     // For PrintGCDetails
   340     size_t young_gen_used_before = young_gen->used_in_bytes();
   342     // Reset our survivor overflow.
   343     set_survivor_overflow(false);
   345     // We need to save the old/perm top values before
   346     // creating the promotion_manager. We pass the top
   347     // values to the card_table, to prevent it from
   348     // straying into the promotion labs.
   349     HeapWord* old_top = old_gen->object_space()->top();
   350     HeapWord* perm_top = perm_gen->object_space()->top();
   352     // Release all previously held resources
   353     gc_task_manager()->release_all_resources();
   355     PSPromotionManager::pre_scavenge();
   357     // We'll use the promotion manager again later.
   358     PSPromotionManager* promotion_manager = PSPromotionManager::vm_thread_promotion_manager();
   359     {
   360       // TraceTime("Roots");
   361       ParallelScavengeHeap::ParStrongRootsScope psrs;
   363       GCTaskQueue* q = GCTaskQueue::create();
   365       for(uint i=0; i<ParallelGCThreads; i++) {
   366         q->enqueue(new OldToYoungRootsTask(old_gen, old_top, i));
   367       }
   369       q->enqueue(new SerialOldToYoungRootsTask(perm_gen, perm_top));
   371       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::universe));
   372       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jni_handles));
   373       // We scan the thread roots in parallel
   374       Threads::create_thread_roots_tasks(q);
   375       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::object_synchronizer));
   376       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::flat_profiler));
   377       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::management));
   378       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::system_dictionary));
   379       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jvmti));
   380       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::code_cache));
   382       ParallelTaskTerminator terminator(
   383         gc_task_manager()->workers(),
   384         promotion_manager->depth_first() ?
   385             (TaskQueueSetSuper*) promotion_manager->stack_array_depth()
   386           : (TaskQueueSetSuper*) promotion_manager->stack_array_breadth());
   387       if (ParallelGCThreads>1) {
   388         for (uint j=0; j<ParallelGCThreads; j++) {
   389           q->enqueue(new StealTask(&terminator));
   390         }
   391       }
   393       gc_task_manager()->execute_and_wait(q);
   394     }
   396     scavenge_midpoint.update();
   398     // Process reference objects discovered during scavenge
   399     {
   400       reference_processor()->setup_policy(false); // not always_clear
   401       PSKeepAliveClosure keep_alive(promotion_manager);
   402       PSEvacuateFollowersClosure evac_followers(promotion_manager);
   403       if (reference_processor()->processing_is_mt()) {
   404         PSRefProcTaskExecutor task_executor;
   405         reference_processor()->process_discovered_references(
   406           &_is_alive_closure, &keep_alive, &evac_followers, &task_executor);
   407       } else {
   408         reference_processor()->process_discovered_references(
   409           &_is_alive_closure, &keep_alive, &evac_followers, NULL);
   410       }
   411     }
   413     // Enqueue reference objects discovered during scavenge.
   414     if (reference_processor()->processing_is_mt()) {
   415       PSRefProcTaskExecutor task_executor;
   416       reference_processor()->enqueue_discovered_references(&task_executor);
   417     } else {
   418       reference_processor()->enqueue_discovered_references(NULL);
   419     }
   421     // Finally, flush the promotion_manager's labs, and deallocate its stacks.
   422     assert(promotion_manager->claimed_stack_empty(), "Sanity");
   423     PSPromotionManager::post_scavenge();
   425     promotion_failure_occurred = promotion_failed();
   426     if (promotion_failure_occurred) {
   427       clean_up_failed_promotion();
   428       if (PrintGC) {
   429         gclog_or_tty->print("--");
   430       }
   431     }
   433     // Let the size policy know we're done.  Note that we count promotion
   434     // failure cleanup time as part of the collection (otherwise, we're
   435     // implicitly saying it's mutator time).
   436     size_policy->minor_collection_end(gc_cause);
   438     if (!promotion_failure_occurred) {
   439       // Swap the survivor spaces.
   442       young_gen->eden_space()->clear(SpaceDecorator::Mangle);
   443       young_gen->from_space()->clear(SpaceDecorator::Mangle);
   444       young_gen->swap_spaces();
   446       size_t survived = young_gen->from_space()->used_in_bytes();
   447       size_t promoted = old_gen->used_in_bytes() - old_gen_used_before;
   448       size_policy->update_averages(_survivor_overflow, survived, promoted);
   450       if (UseAdaptiveSizePolicy) {
   451         // Calculate the new survivor size and tenuring threshold
   453         if (PrintAdaptiveSizePolicy) {
   454           gclog_or_tty->print("AdaptiveSizeStart: ");
   455           gclog_or_tty->stamp();
   456           gclog_or_tty->print_cr(" collection: %d ",
   457                          heap->total_collections());
   459           if (Verbose) {
   460             gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
   461               " perm_gen_capacity: %d ",
   462               old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
   463               perm_gen->capacity_in_bytes());
   464           }
   465         }
   468         if (UsePerfData) {
   469           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
   470           counters->update_old_eden_size(
   471             size_policy->calculated_eden_size_in_bytes());
   472           counters->update_old_promo_size(
   473             size_policy->calculated_promo_size_in_bytes());
   474           counters->update_old_capacity(old_gen->capacity_in_bytes());
   475           counters->update_young_capacity(young_gen->capacity_in_bytes());
   476           counters->update_survived(survived);
   477           counters->update_promoted(promoted);
   478           counters->update_survivor_overflowed(_survivor_overflow);
   479         }
   481         size_t survivor_limit =
   482           size_policy->max_survivor_size(young_gen->max_size());
   483         _tenuring_threshold =
   484           size_policy->compute_survivor_space_size_and_threshold(
   485                                                            _survivor_overflow,
   486                                                            _tenuring_threshold,
   487                                                            survivor_limit);
   489        if (PrintTenuringDistribution) {
   490          gclog_or_tty->cr();
   491          gclog_or_tty->print_cr("Desired survivor size %ld bytes, new threshold %d (max %d)",
   492                                 size_policy->calculated_survivor_size_in_bytes(),
   493                                 _tenuring_threshold, MaxTenuringThreshold);
   494        }
   496         if (UsePerfData) {
   497           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
   498           counters->update_tenuring_threshold(_tenuring_threshold);
   499           counters->update_survivor_size_counters();
   500         }
   502         // Do call at minor collections?
   503         // Don't check if the size_policy is ready at this
   504         // level.  Let the size_policy check that internally.
   505         if (UseAdaptiveSizePolicy &&
   506             UseAdaptiveGenerationSizePolicyAtMinorCollection &&
   507             ((gc_cause != GCCause::_java_lang_system_gc) ||
   508               UseAdaptiveSizePolicyWithSystemGC)) {
   510           // Calculate optimial free space amounts
   511           assert(young_gen->max_size() >
   512             young_gen->from_space()->capacity_in_bytes() +
   513             young_gen->to_space()->capacity_in_bytes(),
   514             "Sizes of space in young gen are out-of-bounds");
   515           size_t max_eden_size = young_gen->max_size() -
   516             young_gen->from_space()->capacity_in_bytes() -
   517             young_gen->to_space()->capacity_in_bytes();
   518           size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
   519                                    young_gen->eden_space()->used_in_bytes(),
   520                                    old_gen->used_in_bytes(),
   521                                    perm_gen->used_in_bytes(),
   522                                    young_gen->eden_space()->capacity_in_bytes(),
   523                                    old_gen->max_gen_size(),
   524                                    max_eden_size,
   525                                    false  /* full gc*/,
   526                                    gc_cause);
   528         }
   529         // Resize the young generation at every collection
   530         // even if new sizes have not been calculated.  This is
   531         // to allow resizes that may have been inhibited by the
   532         // relative location of the "to" and "from" spaces.
   534         // Resizing the old gen at minor collects can cause increases
   535         // that don't feed back to the generation sizing policy until
   536         // a major collection.  Don't resize the old gen here.
   538         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
   539                         size_policy->calculated_survivor_size_in_bytes());
   541         if (PrintAdaptiveSizePolicy) {
   542           gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
   543                          heap->total_collections());
   544         }
   545       }
   547       // Update the structure of the eden. With NUMA-eden CPU hotplugging or offlining can
   548       // cause the change of the heap layout. Make sure eden is reshaped if that's the case.
   549       // Also update() will case adaptive NUMA chunk resizing.
   550       assert(young_gen->eden_space()->is_empty(), "eden space should be empty now");
   551       young_gen->eden_space()->update();
   553       heap->gc_policy_counters()->update_counters();
   555       heap->resize_all_tlabs();
   557       assert(young_gen->to_space()->is_empty(), "to space should be empty now");
   558     }
   560     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   562     NOT_PRODUCT(reference_processor()->verify_no_references_recorded());
   564     // Re-verify object start arrays
   565     if (VerifyObjectStartArray &&
   566         VerifyAfterGC) {
   567       old_gen->verify_object_start_array();
   568       perm_gen->verify_object_start_array();
   569     }
   571     // Verify all old -> young cards are now precise
   572     if (VerifyRememberedSets) {
   573       // Precise verification will give false positives. Until this is fixed,
   574       // use imprecise verification.
   575       // CardTableExtension::verify_all_young_refs_precise();
   576       CardTableExtension::verify_all_young_refs_imprecise();
   577     }
   579     if (TraceGen0Time) accumulated_time()->stop();
   581     if (PrintGC) {
   582       if (PrintGCDetails) {
   583         // Don't print a GC timestamp here.  This is after the GC so
   584         // would be confusing.
   585         young_gen->print_used_change(young_gen_used_before);
   586       }
   587       heap->print_heap_change(prev_used);
   588     }
   590     // Track memory usage and detect low memory
   591     MemoryService::track_memory_usage();
   592     heap->update_counters();
   593   }
   595   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
   596     HandleMark hm;  // Discard invalid handles created during verification
   597     gclog_or_tty->print(" VerifyAfterGC:");
   598     Universe::verify(false);
   599   }
   601   if (PrintHeapAtGC) {
   602     Universe::print_heap_after_gc();
   603   }
   605   if (ZapUnusedHeapArea) {
   606     young_gen->eden_space()->check_mangled_unused_area_complete();
   607     young_gen->from_space()->check_mangled_unused_area_complete();
   608     young_gen->to_space()->check_mangled_unused_area_complete();
   609   }
   611   scavenge_exit.update();
   613   if (PrintGCTaskTimeStamps) {
   614     tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " " INT64_FORMAT,
   615                   scavenge_entry.ticks(), scavenge_midpoint.ticks(),
   616                   scavenge_exit.ticks());
   617     gc_task_manager()->print_task_time_stamps();
   618   }
   620 #ifdef TRACESPINNING
   621   ParallelTaskTerminator::print_termination_counts();
   622 #endif
   624   return !promotion_failure_occurred;
   625 }
   627 // This method iterates over all objects in the young generation,
   628 // unforwarding markOops. It then restores any preserved mark oops,
   629 // and clears the _preserved_mark_stack.
   630 void PSScavenge::clean_up_failed_promotion() {
   631   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   632   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   633   assert(promotion_failed(), "Sanity");
   635   PSYoungGen* young_gen = heap->young_gen();
   637   {
   638     ResourceMark rm;
   640     // Unforward all pointers in the young gen.
   641     PSPromotionFailedClosure unforward_closure;
   642     young_gen->object_iterate(&unforward_closure);
   644     if (PrintGC && Verbose) {
   645       gclog_or_tty->print_cr("Restoring %d marks",
   646                               _preserved_oop_stack->length());
   647     }
   649     // Restore any saved marks.
   650     for (int i=0; i < _preserved_oop_stack->length(); i++) {
   651       oop obj       = _preserved_oop_stack->at(i);
   652       markOop mark  = _preserved_mark_stack->at(i);
   653       obj->set_mark(mark);
   654     }
   656     // Deallocate the preserved mark and oop stacks.
   657     // The stacks were allocated as CHeap objects, so
   658     // we must call delete to prevent mem leaks.
   659     delete _preserved_mark_stack;
   660     _preserved_mark_stack = NULL;
   661     delete _preserved_oop_stack;
   662     _preserved_oop_stack = NULL;
   663   }
   665   // Reset the PromotionFailureALot counters.
   666   NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
   667 }
   669 // This method is called whenever an attempt to promote an object
   670 // fails. Some markOops will need preserving, some will not. Note
   671 // that the entire eden is traversed after a failed promotion, with
   672 // all forwarded headers replaced by the default markOop. This means
   673 // it is not neccessary to preserve most markOops.
   674 void PSScavenge::oop_promotion_failed(oop obj, markOop obj_mark) {
   675   if (_preserved_mark_stack == NULL) {
   676     ThreadCritical tc; // Lock and retest
   677     if (_preserved_mark_stack == NULL) {
   678       assert(_preserved_oop_stack == NULL, "Sanity");
   679       _preserved_mark_stack = new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
   680       _preserved_oop_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
   681     }
   682   }
   684   // Because we must hold the ThreadCritical lock before using
   685   // the stacks, we should be safe from observing partial allocations,
   686   // which are also guarded by the ThreadCritical lock.
   687   if (obj_mark->must_be_preserved_for_promotion_failure(obj)) {
   688     ThreadCritical tc;
   689     _preserved_oop_stack->push(obj);
   690     _preserved_mark_stack->push(obj_mark);
   691   }
   692 }
   694 bool PSScavenge::should_attempt_scavenge() {
   695   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   696   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   697   PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
   699   if (UsePerfData) {
   700     counters->update_scavenge_skipped(not_skipped);
   701   }
   703   PSYoungGen* young_gen = heap->young_gen();
   704   PSOldGen* old_gen = heap->old_gen();
   706   if (!ScavengeWithObjectsInToSpace) {
   707     // Do not attempt to promote unless to_space is empty
   708     if (!young_gen->to_space()->is_empty()) {
   709       _consecutive_skipped_scavenges++;
   710       if (UsePerfData) {
   711         counters->update_scavenge_skipped(to_space_not_empty);
   712       }
   713       return false;
   714     }
   715   }
   717   // Test to see if the scavenge will likely fail.
   718   PSAdaptiveSizePolicy* policy = heap->size_policy();
   720   // A similar test is done in the policy's should_full_GC().  If this is
   721   // changed, decide if that test should also be changed.
   722   size_t avg_promoted = (size_t) policy->padded_average_promoted_in_bytes();
   723   size_t promotion_estimate = MIN2(avg_promoted, young_gen->used_in_bytes());
   724   bool result = promotion_estimate < old_gen->free_in_bytes();
   726   if (PrintGCDetails && Verbose) {
   727     gclog_or_tty->print(result ? "  do scavenge: " : "  skip scavenge: ");
   728     gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT
   729       " padded_average_promoted " SIZE_FORMAT
   730       " free in old gen " SIZE_FORMAT,
   731       (size_t) policy->average_promoted_in_bytes(),
   732       (size_t) policy->padded_average_promoted_in_bytes(),
   733       old_gen->free_in_bytes());
   734     if (young_gen->used_in_bytes() <
   735         (size_t) policy->padded_average_promoted_in_bytes()) {
   736       gclog_or_tty->print_cr(" padded_promoted_average is greater"
   737         " than maximum promotion = " SIZE_FORMAT, young_gen->used_in_bytes());
   738     }
   739   }
   741   if (result) {
   742     _consecutive_skipped_scavenges = 0;
   743   } else {
   744     _consecutive_skipped_scavenges++;
   745     if (UsePerfData) {
   746       counters->update_scavenge_skipped(promoted_too_large);
   747     }
   748   }
   749   return result;
   750 }
   752   // Used to add tasks
   753 GCTaskManager* const PSScavenge::gc_task_manager() {
   754   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
   755    "shouldn't return NULL");
   756   return ParallelScavengeHeap::gc_task_manager();
   757 }
   759 void PSScavenge::initialize() {
   760   // Arguments must have been parsed
   762   if (AlwaysTenure) {
   763     _tenuring_threshold = 0;
   764   } else if (NeverTenure) {
   765     _tenuring_threshold = markOopDesc::max_age + 1;
   766   } else {
   767     // We want to smooth out our startup times for the AdaptiveSizePolicy
   768     _tenuring_threshold = (UseAdaptiveSizePolicy) ? InitialTenuringThreshold :
   769                                                     MaxTenuringThreshold;
   770   }
   772   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   773   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   775   PSYoungGen* young_gen = heap->young_gen();
   776   PSOldGen* old_gen = heap->old_gen();
   777   PSPermGen* perm_gen = heap->perm_gen();
   779   // Set boundary between young_gen and old_gen
   780   assert(perm_gen->reserved().end() <= old_gen->object_space()->bottom(),
   781          "perm above old");
   782   assert(old_gen->reserved().end() <= young_gen->eden_space()->bottom(),
   783          "old above young");
   784   _young_generation_boundary = young_gen->eden_space()->bottom();
   786   // Initialize ref handling object for scavenging.
   787   MemRegion mr = young_gen->reserved();
   788   _ref_processor = ReferenceProcessor::create_ref_processor(
   789     mr,                         // span
   790     true,                       // atomic_discovery
   791     true,                       // mt_discovery
   792     NULL,                       // is_alive_non_header
   793     ParallelGCThreads,
   794     ParallelRefProcEnabled);
   796   // Cache the cardtable
   797   BarrierSet* bs = Universe::heap()->barrier_set();
   798   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
   799   _card_table = (CardTableExtension*)bs;
   801   _counters = new CollectorCounters("PSScavenge", 0);
   802 }

mercurial