src/share/vm/gc_implementation/parallelScavenge/psScavenge.cpp

Tue, 13 Apr 2010 13:52:10 -0700

author
jmasa
date
Tue, 13 Apr 2010 13:52:10 -0700
changeset 1822
0bfd3fb24150
parent 1424
148e5441d916
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6858496: Clear all SoftReferences before an out-of-memory due to GC overhead limit.
Summary: Ensure a full GC that clears SoftReferences before throwing an out-of-memory
Reviewed-by: ysr, jcoomes

     1 /*
     2  * Copyright 2002-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    26 # include "incls/_precompiled.incl"
    27 # include "incls/_psScavenge.cpp.incl"
    29 HeapWord*                  PSScavenge::_to_space_top_before_gc = NULL;
    30 int                        PSScavenge::_consecutive_skipped_scavenges = 0;
    31 ReferenceProcessor*        PSScavenge::_ref_processor = NULL;
    32 CardTableExtension*        PSScavenge::_card_table = NULL;
    33 bool                       PSScavenge::_survivor_overflow = false;
    34 int                        PSScavenge::_tenuring_threshold = 0;
    35 HeapWord*                  PSScavenge::_young_generation_boundary = NULL;
    36 elapsedTimer               PSScavenge::_accumulated_time;
    37 GrowableArray<markOop>*    PSScavenge::_preserved_mark_stack = NULL;
    38 GrowableArray<oop>*        PSScavenge::_preserved_oop_stack = NULL;
    39 CollectorCounters*         PSScavenge::_counters = NULL;
    41 // Define before use
    42 class PSIsAliveClosure: public BoolObjectClosure {
    43 public:
    44   void do_object(oop p) {
    45     assert(false, "Do not call.");
    46   }
    47   bool do_object_b(oop p) {
    48     return (!PSScavenge::is_obj_in_young((HeapWord*) p)) || p->is_forwarded();
    49   }
    50 };
    52 PSIsAliveClosure PSScavenge::_is_alive_closure;
    54 class PSKeepAliveClosure: public OopClosure {
    55 protected:
    56   MutableSpace* _to_space;
    57   PSPromotionManager* _promotion_manager;
    59 public:
    60   PSKeepAliveClosure(PSPromotionManager* pm) : _promotion_manager(pm) {
    61     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    62     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
    63     _to_space = heap->young_gen()->to_space();
    65     assert(_promotion_manager != NULL, "Sanity");
    66   }
    68   template <class T> void do_oop_work(T* p) {
    69     assert (!oopDesc::is_null(*p), "expected non-null ref");
    70     assert ((oopDesc::load_decode_heap_oop_not_null(p))->is_oop(),
    71             "expected an oop while scanning weak refs");
    73     // Weak refs may be visited more than once.
    74     if (PSScavenge::should_scavenge(p, _to_space)) {
    75       PSScavenge::copy_and_push_safe_barrier(_promotion_manager, p);
    76     }
    77   }
    78   virtual void do_oop(oop* p)       { PSKeepAliveClosure::do_oop_work(p); }
    79   virtual void do_oop(narrowOop* p) { PSKeepAliveClosure::do_oop_work(p); }
    80 };
    82 class PSEvacuateFollowersClosure: public VoidClosure {
    83  private:
    84   PSPromotionManager* _promotion_manager;
    85  public:
    86   PSEvacuateFollowersClosure(PSPromotionManager* pm) : _promotion_manager(pm) {}
    88   virtual void do_void() {
    89     assert(_promotion_manager != NULL, "Sanity");
    90     _promotion_manager->drain_stacks(true);
    91     guarantee(_promotion_manager->stacks_empty(),
    92               "stacks should be empty at this point");
    93   }
    94 };
    96 class PSPromotionFailedClosure : public ObjectClosure {
    97   virtual void do_object(oop obj) {
    98     if (obj->is_forwarded()) {
    99       obj->init_mark();
   100     }
   101   }
   102 };
   104 class PSRefProcTaskProxy: public GCTask {
   105   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
   106   ProcessTask & _rp_task;
   107   uint          _work_id;
   108 public:
   109   PSRefProcTaskProxy(ProcessTask & rp_task, uint work_id)
   110     : _rp_task(rp_task),
   111       _work_id(work_id)
   112   { }
   114 private:
   115   virtual char* name() { return (char *)"Process referents by policy in parallel"; }
   116   virtual void do_it(GCTaskManager* manager, uint which);
   117 };
   119 void PSRefProcTaskProxy::do_it(GCTaskManager* manager, uint which)
   120 {
   121   PSPromotionManager* promotion_manager =
   122     PSPromotionManager::gc_thread_promotion_manager(which);
   123   assert(promotion_manager != NULL, "sanity check");
   124   PSKeepAliveClosure keep_alive(promotion_manager);
   125   PSEvacuateFollowersClosure evac_followers(promotion_manager);
   126   PSIsAliveClosure is_alive;
   127   _rp_task.work(_work_id, is_alive, keep_alive, evac_followers);
   128 }
   130 class PSRefEnqueueTaskProxy: public GCTask {
   131   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
   132   EnqueueTask& _enq_task;
   133   uint         _work_id;
   135 public:
   136   PSRefEnqueueTaskProxy(EnqueueTask& enq_task, uint work_id)
   137     : _enq_task(enq_task),
   138       _work_id(work_id)
   139   { }
   141   virtual char* name() { return (char *)"Enqueue reference objects in parallel"; }
   142   virtual void do_it(GCTaskManager* manager, uint which)
   143   {
   144     _enq_task.work(_work_id);
   145   }
   146 };
   148 class PSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
   149   virtual void execute(ProcessTask& task);
   150   virtual void execute(EnqueueTask& task);
   151 };
   153 void PSRefProcTaskExecutor::execute(ProcessTask& task)
   154 {
   155   GCTaskQueue* q = GCTaskQueue::create();
   156   for(uint i=0; i<ParallelGCThreads; i++) {
   157     q->enqueue(new PSRefProcTaskProxy(task, i));
   158   }
   159   ParallelTaskTerminator terminator(
   160     ParallelScavengeHeap::gc_task_manager()->workers(),
   161     UseDepthFirstScavengeOrder ?
   162         (TaskQueueSetSuper*) PSPromotionManager::stack_array_depth()
   163       : (TaskQueueSetSuper*) PSPromotionManager::stack_array_breadth());
   164   if (task.marks_oops_alive() && ParallelGCThreads > 1) {
   165     for (uint j=0; j<ParallelGCThreads; j++) {
   166       q->enqueue(new StealTask(&terminator));
   167     }
   168   }
   169   ParallelScavengeHeap::gc_task_manager()->execute_and_wait(q);
   170 }
   173 void PSRefProcTaskExecutor::execute(EnqueueTask& task)
   174 {
   175   GCTaskQueue* q = GCTaskQueue::create();
   176   for(uint i=0; i<ParallelGCThreads; i++) {
   177     q->enqueue(new PSRefEnqueueTaskProxy(task, i));
   178   }
   179   ParallelScavengeHeap::gc_task_manager()->execute_and_wait(q);
   180 }
   182 // This method contains all heap specific policy for invoking scavenge.
   183 // PSScavenge::invoke_no_policy() will do nothing but attempt to
   184 // scavenge. It will not clean up after failed promotions, bail out if
   185 // we've exceeded policy time limits, or any other special behavior.
   186 // All such policy should be placed here.
   187 //
   188 // Note that this method should only be called from the vm_thread while
   189 // at a safepoint!
   190 void PSScavenge::invoke() {
   191   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   192   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   193   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   195   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   196   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   198   PSAdaptiveSizePolicy* policy = heap->size_policy();
   199   IsGCActiveMark mark;
   201   bool scavenge_was_done = PSScavenge::invoke_no_policy();
   203   PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
   204   if (UsePerfData)
   205     counters->update_full_follows_scavenge(0);
   206   if (!scavenge_was_done ||
   207       policy->should_full_GC(heap->old_gen()->free_in_bytes())) {
   208     if (UsePerfData)
   209       counters->update_full_follows_scavenge(full_follows_scavenge);
   210     GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
   211     CollectorPolicy* cp = heap->collector_policy();
   212     const bool clear_all_softrefs = cp->should_clear_all_soft_refs();
   214     if (UseParallelOldGC) {
   215       PSParallelCompact::invoke_no_policy(clear_all_softrefs);
   216     } else {
   217       PSMarkSweep::invoke_no_policy(clear_all_softrefs);
   218     }
   219   }
   220 }
   222 // This method contains no policy. You should probably
   223 // be calling invoke() instead.
   224 bool PSScavenge::invoke_no_policy() {
   225   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   226   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   228   TimeStamp scavenge_entry;
   229   TimeStamp scavenge_midpoint;
   230   TimeStamp scavenge_exit;
   232   scavenge_entry.update();
   234   if (GC_locker::check_active_before_gc()) {
   235     return false;
   236   }
   238   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   239   GCCause::Cause gc_cause = heap->gc_cause();
   240   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   242   // Check for potential problems.
   243   if (!should_attempt_scavenge()) {
   244     return false;
   245   }
   247   bool promotion_failure_occurred = false;
   249   PSYoungGen* young_gen = heap->young_gen();
   250   PSOldGen* old_gen = heap->old_gen();
   251   PSPermGen* perm_gen = heap->perm_gen();
   252   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
   253   heap->increment_total_collections();
   255   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
   257   if ((gc_cause != GCCause::_java_lang_system_gc) ||
   258        UseAdaptiveSizePolicyWithSystemGC) {
   259     // Gather the feedback data for eden occupancy.
   260     young_gen->eden_space()->accumulate_statistics();
   261   }
   263   if (ZapUnusedHeapArea) {
   264     // Save information needed to minimize mangling
   265     heap->record_gen_tops_before_GC();
   266   }
   268   if (PrintHeapAtGC) {
   269     Universe::print_heap_before_gc();
   270   }
   272   assert(!NeverTenure || _tenuring_threshold == markOopDesc::max_age + 1, "Sanity");
   273   assert(!AlwaysTenure || _tenuring_threshold == 0, "Sanity");
   275   size_t prev_used = heap->used();
   276   assert(promotion_failed() == false, "Sanity");
   278   // Fill in TLABs
   279   heap->accumulate_statistics_all_tlabs();
   280   heap->ensure_parsability(true);  // retire TLABs
   282   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
   283     HandleMark hm;  // Discard invalid handles created during verification
   284     gclog_or_tty->print(" VerifyBeforeGC:");
   285     Universe::verify(true);
   286   }
   288   {
   289     ResourceMark rm;
   290     HandleMark hm;
   292     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   293     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   294     TraceTime t1("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
   295     TraceCollectorStats tcs(counters());
   296     TraceMemoryManagerStats tms(false /* not full GC */);
   298     if (TraceGen0Time) accumulated_time()->start();
   300     // Let the size policy know we're starting
   301     size_policy->minor_collection_begin();
   303     // Verify the object start arrays.
   304     if (VerifyObjectStartArray &&
   305         VerifyBeforeGC) {
   306       old_gen->verify_object_start_array();
   307       perm_gen->verify_object_start_array();
   308     }
   310     // Verify no unmarked old->young roots
   311     if (VerifyRememberedSets) {
   312       CardTableExtension::verify_all_young_refs_imprecise();
   313     }
   315     if (!ScavengeWithObjectsInToSpace) {
   316       assert(young_gen->to_space()->is_empty(),
   317              "Attempt to scavenge with live objects in to_space");
   318       young_gen->to_space()->clear(SpaceDecorator::Mangle);
   319     } else if (ZapUnusedHeapArea) {
   320       young_gen->to_space()->mangle_unused_area();
   321     }
   322     save_to_space_top_before_gc();
   324     NOT_PRODUCT(reference_processor()->verify_no_references_recorded());
   325     COMPILER2_PRESENT(DerivedPointerTable::clear());
   327     reference_processor()->enable_discovery();
   328     reference_processor()->setup_policy(false);
   330     // We track how much was promoted to the next generation for
   331     // the AdaptiveSizePolicy.
   332     size_t old_gen_used_before = old_gen->used_in_bytes();
   334     // For PrintGCDetails
   335     size_t young_gen_used_before = young_gen->used_in_bytes();
   337     // Reset our survivor overflow.
   338     set_survivor_overflow(false);
   340     // We need to save the old/perm top values before
   341     // creating the promotion_manager. We pass the top
   342     // values to the card_table, to prevent it from
   343     // straying into the promotion labs.
   344     HeapWord* old_top = old_gen->object_space()->top();
   345     HeapWord* perm_top = perm_gen->object_space()->top();
   347     // Release all previously held resources
   348     gc_task_manager()->release_all_resources();
   350     PSPromotionManager::pre_scavenge();
   352     // We'll use the promotion manager again later.
   353     PSPromotionManager* promotion_manager = PSPromotionManager::vm_thread_promotion_manager();
   354     {
   355       // TraceTime("Roots");
   356       ParallelScavengeHeap::ParStrongRootsScope psrs;
   358       GCTaskQueue* q = GCTaskQueue::create();
   360       for(uint i=0; i<ParallelGCThreads; i++) {
   361         q->enqueue(new OldToYoungRootsTask(old_gen, old_top, i));
   362       }
   364       q->enqueue(new SerialOldToYoungRootsTask(perm_gen, perm_top));
   366       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::universe));
   367       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jni_handles));
   368       // We scan the thread roots in parallel
   369       Threads::create_thread_roots_tasks(q);
   370       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::object_synchronizer));
   371       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::flat_profiler));
   372       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::management));
   373       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::system_dictionary));
   374       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jvmti));
   375       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::code_cache));
   377       ParallelTaskTerminator terminator(
   378         gc_task_manager()->workers(),
   379         promotion_manager->depth_first() ?
   380             (TaskQueueSetSuper*) promotion_manager->stack_array_depth()
   381           : (TaskQueueSetSuper*) promotion_manager->stack_array_breadth());
   382       if (ParallelGCThreads>1) {
   383         for (uint j=0; j<ParallelGCThreads; j++) {
   384           q->enqueue(new StealTask(&terminator));
   385         }
   386       }
   388       gc_task_manager()->execute_and_wait(q);
   389     }
   391     scavenge_midpoint.update();
   393     // Process reference objects discovered during scavenge
   394     {
   395       reference_processor()->setup_policy(false); // not always_clear
   396       PSKeepAliveClosure keep_alive(promotion_manager);
   397       PSEvacuateFollowersClosure evac_followers(promotion_manager);
   398       if (reference_processor()->processing_is_mt()) {
   399         PSRefProcTaskExecutor task_executor;
   400         reference_processor()->process_discovered_references(
   401           &_is_alive_closure, &keep_alive, &evac_followers, &task_executor);
   402       } else {
   403         reference_processor()->process_discovered_references(
   404           &_is_alive_closure, &keep_alive, &evac_followers, NULL);
   405       }
   406     }
   408     // Enqueue reference objects discovered during scavenge.
   409     if (reference_processor()->processing_is_mt()) {
   410       PSRefProcTaskExecutor task_executor;
   411       reference_processor()->enqueue_discovered_references(&task_executor);
   412     } else {
   413       reference_processor()->enqueue_discovered_references(NULL);
   414     }
   416     // Finally, flush the promotion_manager's labs, and deallocate its stacks.
   417     assert(promotion_manager->claimed_stack_empty(), "Sanity");
   418     PSPromotionManager::post_scavenge();
   420     promotion_failure_occurred = promotion_failed();
   421     if (promotion_failure_occurred) {
   422       clean_up_failed_promotion();
   423       if (PrintGC) {
   424         gclog_or_tty->print("--");
   425       }
   426     }
   428     // Let the size policy know we're done.  Note that we count promotion
   429     // failure cleanup time as part of the collection (otherwise, we're
   430     // implicitly saying it's mutator time).
   431     size_policy->minor_collection_end(gc_cause);
   433     if (!promotion_failure_occurred) {
   434       // Swap the survivor spaces.
   437       young_gen->eden_space()->clear(SpaceDecorator::Mangle);
   438       young_gen->from_space()->clear(SpaceDecorator::Mangle);
   439       young_gen->swap_spaces();
   441       size_t survived = young_gen->from_space()->used_in_bytes();
   442       size_t promoted = old_gen->used_in_bytes() - old_gen_used_before;
   443       size_policy->update_averages(_survivor_overflow, survived, promoted);
   445       // A successful scavenge should restart the GC time limit count which is
   446       // for full GC's.
   447       size_policy->reset_gc_overhead_limit_count();
   448       if (UseAdaptiveSizePolicy) {
   449         // Calculate the new survivor size and tenuring threshold
   451         if (PrintAdaptiveSizePolicy) {
   452           gclog_or_tty->print("AdaptiveSizeStart: ");
   453           gclog_or_tty->stamp();
   454           gclog_or_tty->print_cr(" collection: %d ",
   455                          heap->total_collections());
   457           if (Verbose) {
   458             gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
   459               " perm_gen_capacity: %d ",
   460               old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
   461               perm_gen->capacity_in_bytes());
   462           }
   463         }
   466         if (UsePerfData) {
   467           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
   468           counters->update_old_eden_size(
   469             size_policy->calculated_eden_size_in_bytes());
   470           counters->update_old_promo_size(
   471             size_policy->calculated_promo_size_in_bytes());
   472           counters->update_old_capacity(old_gen->capacity_in_bytes());
   473           counters->update_young_capacity(young_gen->capacity_in_bytes());
   474           counters->update_survived(survived);
   475           counters->update_promoted(promoted);
   476           counters->update_survivor_overflowed(_survivor_overflow);
   477         }
   479         size_t survivor_limit =
   480           size_policy->max_survivor_size(young_gen->max_size());
   481         _tenuring_threshold =
   482           size_policy->compute_survivor_space_size_and_threshold(
   483                                                            _survivor_overflow,
   484                                                            _tenuring_threshold,
   485                                                            survivor_limit);
   487        if (PrintTenuringDistribution) {
   488          gclog_or_tty->cr();
   489          gclog_or_tty->print_cr("Desired survivor size %ld bytes, new threshold %d (max %d)",
   490                                 size_policy->calculated_survivor_size_in_bytes(),
   491                                 _tenuring_threshold, MaxTenuringThreshold);
   492        }
   494         if (UsePerfData) {
   495           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
   496           counters->update_tenuring_threshold(_tenuring_threshold);
   497           counters->update_survivor_size_counters();
   498         }
   500         // Do call at minor collections?
   501         // Don't check if the size_policy is ready at this
   502         // level.  Let the size_policy check that internally.
   503         if (UseAdaptiveSizePolicy &&
   504             UseAdaptiveGenerationSizePolicyAtMinorCollection &&
   505             ((gc_cause != GCCause::_java_lang_system_gc) ||
   506               UseAdaptiveSizePolicyWithSystemGC)) {
   508           // Calculate optimial free space amounts
   509           assert(young_gen->max_size() >
   510             young_gen->from_space()->capacity_in_bytes() +
   511             young_gen->to_space()->capacity_in_bytes(),
   512             "Sizes of space in young gen are out-of-bounds");
   513           size_t max_eden_size = young_gen->max_size() -
   514             young_gen->from_space()->capacity_in_bytes() -
   515             young_gen->to_space()->capacity_in_bytes();
   516           size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
   517                                    young_gen->eden_space()->used_in_bytes(),
   518                                    old_gen->used_in_bytes(),
   519                                    perm_gen->used_in_bytes(),
   520                                    young_gen->eden_space()->capacity_in_bytes(),
   521                                    old_gen->max_gen_size(),
   522                                    max_eden_size,
   523                                    false  /* full gc*/,
   524                                    gc_cause,
   525                                    heap->collector_policy());
   527         }
   528         // Resize the young generation at every collection
   529         // even if new sizes have not been calculated.  This is
   530         // to allow resizes that may have been inhibited by the
   531         // relative location of the "to" and "from" spaces.
   533         // Resizing the old gen at minor collects can cause increases
   534         // that don't feed back to the generation sizing policy until
   535         // a major collection.  Don't resize the old gen here.
   537         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
   538                         size_policy->calculated_survivor_size_in_bytes());
   540         if (PrintAdaptiveSizePolicy) {
   541           gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
   542                          heap->total_collections());
   543         }
   544       }
   546       // Update the structure of the eden. With NUMA-eden CPU hotplugging or offlining can
   547       // cause the change of the heap layout. Make sure eden is reshaped if that's the case.
   548       // Also update() will case adaptive NUMA chunk resizing.
   549       assert(young_gen->eden_space()->is_empty(), "eden space should be empty now");
   550       young_gen->eden_space()->update();
   552       heap->gc_policy_counters()->update_counters();
   554       heap->resize_all_tlabs();
   556       assert(young_gen->to_space()->is_empty(), "to space should be empty now");
   557     }
   559     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   561     NOT_PRODUCT(reference_processor()->verify_no_references_recorded());
   563     // Re-verify object start arrays
   564     if (VerifyObjectStartArray &&
   565         VerifyAfterGC) {
   566       old_gen->verify_object_start_array();
   567       perm_gen->verify_object_start_array();
   568     }
   570     // Verify all old -> young cards are now precise
   571     if (VerifyRememberedSets) {
   572       // Precise verification will give false positives. Until this is fixed,
   573       // use imprecise verification.
   574       // CardTableExtension::verify_all_young_refs_precise();
   575       CardTableExtension::verify_all_young_refs_imprecise();
   576     }
   578     if (TraceGen0Time) accumulated_time()->stop();
   580     if (PrintGC) {
   581       if (PrintGCDetails) {
   582         // Don't print a GC timestamp here.  This is after the GC so
   583         // would be confusing.
   584         young_gen->print_used_change(young_gen_used_before);
   585       }
   586       heap->print_heap_change(prev_used);
   587     }
   589     // Track memory usage and detect low memory
   590     MemoryService::track_memory_usage();
   591     heap->update_counters();
   592   }
   594   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
   595     HandleMark hm;  // Discard invalid handles created during verification
   596     gclog_or_tty->print(" VerifyAfterGC:");
   597     Universe::verify(false);
   598   }
   600   if (PrintHeapAtGC) {
   601     Universe::print_heap_after_gc();
   602   }
   604   if (ZapUnusedHeapArea) {
   605     young_gen->eden_space()->check_mangled_unused_area_complete();
   606     young_gen->from_space()->check_mangled_unused_area_complete();
   607     young_gen->to_space()->check_mangled_unused_area_complete();
   608   }
   610   scavenge_exit.update();
   612   if (PrintGCTaskTimeStamps) {
   613     tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " " INT64_FORMAT,
   614                   scavenge_entry.ticks(), scavenge_midpoint.ticks(),
   615                   scavenge_exit.ticks());
   616     gc_task_manager()->print_task_time_stamps();
   617   }
   619 #ifdef TRACESPINNING
   620   ParallelTaskTerminator::print_termination_counts();
   621 #endif
   623   return !promotion_failure_occurred;
   624 }
   626 // This method iterates over all objects in the young generation,
   627 // unforwarding markOops. It then restores any preserved mark oops,
   628 // and clears the _preserved_mark_stack.
   629 void PSScavenge::clean_up_failed_promotion() {
   630   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   631   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   632   assert(promotion_failed(), "Sanity");
   634   PSYoungGen* young_gen = heap->young_gen();
   636   {
   637     ResourceMark rm;
   639     // Unforward all pointers in the young gen.
   640     PSPromotionFailedClosure unforward_closure;
   641     young_gen->object_iterate(&unforward_closure);
   643     if (PrintGC && Verbose) {
   644       gclog_or_tty->print_cr("Restoring %d marks",
   645                               _preserved_oop_stack->length());
   646     }
   648     // Restore any saved marks.
   649     for (int i=0; i < _preserved_oop_stack->length(); i++) {
   650       oop obj       = _preserved_oop_stack->at(i);
   651       markOop mark  = _preserved_mark_stack->at(i);
   652       obj->set_mark(mark);
   653     }
   655     // Deallocate the preserved mark and oop stacks.
   656     // The stacks were allocated as CHeap objects, so
   657     // we must call delete to prevent mem leaks.
   658     delete _preserved_mark_stack;
   659     _preserved_mark_stack = NULL;
   660     delete _preserved_oop_stack;
   661     _preserved_oop_stack = NULL;
   662   }
   664   // Reset the PromotionFailureALot counters.
   665   NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
   666 }
   668 // This method is called whenever an attempt to promote an object
   669 // fails. Some markOops will need preserving, some will not. Note
   670 // that the entire eden is traversed after a failed promotion, with
   671 // all forwarded headers replaced by the default markOop. This means
   672 // it is not neccessary to preserve most markOops.
   673 void PSScavenge::oop_promotion_failed(oop obj, markOop obj_mark) {
   674   if (_preserved_mark_stack == NULL) {
   675     ThreadCritical tc; // Lock and retest
   676     if (_preserved_mark_stack == NULL) {
   677       assert(_preserved_oop_stack == NULL, "Sanity");
   678       _preserved_mark_stack = new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
   679       _preserved_oop_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
   680     }
   681   }
   683   // Because we must hold the ThreadCritical lock before using
   684   // the stacks, we should be safe from observing partial allocations,
   685   // which are also guarded by the ThreadCritical lock.
   686   if (obj_mark->must_be_preserved_for_promotion_failure(obj)) {
   687     ThreadCritical tc;
   688     _preserved_oop_stack->push(obj);
   689     _preserved_mark_stack->push(obj_mark);
   690   }
   691 }
   693 bool PSScavenge::should_attempt_scavenge() {
   694   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   695   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   696   PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
   698   if (UsePerfData) {
   699     counters->update_scavenge_skipped(not_skipped);
   700   }
   702   PSYoungGen* young_gen = heap->young_gen();
   703   PSOldGen* old_gen = heap->old_gen();
   705   if (!ScavengeWithObjectsInToSpace) {
   706     // Do not attempt to promote unless to_space is empty
   707     if (!young_gen->to_space()->is_empty()) {
   708       _consecutive_skipped_scavenges++;
   709       if (UsePerfData) {
   710         counters->update_scavenge_skipped(to_space_not_empty);
   711       }
   712       return false;
   713     }
   714   }
   716   // Test to see if the scavenge will likely fail.
   717   PSAdaptiveSizePolicy* policy = heap->size_policy();
   719   // A similar test is done in the policy's should_full_GC().  If this is
   720   // changed, decide if that test should also be changed.
   721   size_t avg_promoted = (size_t) policy->padded_average_promoted_in_bytes();
   722   size_t promotion_estimate = MIN2(avg_promoted, young_gen->used_in_bytes());
   723   bool result = promotion_estimate < old_gen->free_in_bytes();
   725   if (PrintGCDetails && Verbose) {
   726     gclog_or_tty->print(result ? "  do scavenge: " : "  skip scavenge: ");
   727     gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT
   728       " padded_average_promoted " SIZE_FORMAT
   729       " free in old gen " SIZE_FORMAT,
   730       (size_t) policy->average_promoted_in_bytes(),
   731       (size_t) policy->padded_average_promoted_in_bytes(),
   732       old_gen->free_in_bytes());
   733     if (young_gen->used_in_bytes() <
   734         (size_t) policy->padded_average_promoted_in_bytes()) {
   735       gclog_or_tty->print_cr(" padded_promoted_average is greater"
   736         " than maximum promotion = " SIZE_FORMAT, young_gen->used_in_bytes());
   737     }
   738   }
   740   if (result) {
   741     _consecutive_skipped_scavenges = 0;
   742   } else {
   743     _consecutive_skipped_scavenges++;
   744     if (UsePerfData) {
   745       counters->update_scavenge_skipped(promoted_too_large);
   746     }
   747   }
   748   return result;
   749 }
   751   // Used to add tasks
   752 GCTaskManager* const PSScavenge::gc_task_manager() {
   753   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
   754    "shouldn't return NULL");
   755   return ParallelScavengeHeap::gc_task_manager();
   756 }
   758 void PSScavenge::initialize() {
   759   // Arguments must have been parsed
   761   if (AlwaysTenure) {
   762     _tenuring_threshold = 0;
   763   } else if (NeverTenure) {
   764     _tenuring_threshold = markOopDesc::max_age + 1;
   765   } else {
   766     // We want to smooth out our startup times for the AdaptiveSizePolicy
   767     _tenuring_threshold = (UseAdaptiveSizePolicy) ? InitialTenuringThreshold :
   768                                                     MaxTenuringThreshold;
   769   }
   771   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   772   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   774   PSYoungGen* young_gen = heap->young_gen();
   775   PSOldGen* old_gen = heap->old_gen();
   776   PSPermGen* perm_gen = heap->perm_gen();
   778   // Set boundary between young_gen and old_gen
   779   assert(perm_gen->reserved().end() <= old_gen->object_space()->bottom(),
   780          "perm above old");
   781   assert(old_gen->reserved().end() <= young_gen->eden_space()->bottom(),
   782          "old above young");
   783   _young_generation_boundary = young_gen->eden_space()->bottom();
   785   // Initialize ref handling object for scavenging.
   786   MemRegion mr = young_gen->reserved();
   787   _ref_processor = ReferenceProcessor::create_ref_processor(
   788     mr,                         // span
   789     true,                       // atomic_discovery
   790     true,                       // mt_discovery
   791     NULL,                       // is_alive_non_header
   792     ParallelGCThreads,
   793     ParallelRefProcEnabled);
   795   // Cache the cardtable
   796   BarrierSet* bs = Universe::heap()->barrier_set();
   797   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
   798   _card_table = (CardTableExtension*)bs;
   800   _counters = new CollectorCounters("PSScavenge", 0);
   801 }

mercurial