src/cpu/sparc/vm/macroAssembler_sparc.cpp

Wed, 15 May 2013 11:05:09 +0200

author
tschatzl
date
Wed, 15 May 2013 11:05:09 +0200
changeset 5119
12f651e29f6b
parent 4767
a5de0cc2f91c
child 5281
8d52e305a777
permissions
-rw-r--r--

6843347: Boundary values in some public GC options cause crashes
Summary: Setting some public integer options to specific values causes crashes or undefined GC behavior. This patchset adds the necessary argument checking for these options.
Reviewed-by: jmasa, brutisso

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.inline.hpp"
    27 #include "compiler/disassembler.hpp"
    28 #include "gc_interface/collectedHeap.inline.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "memory/cardTableModRefBS.hpp"
    31 #include "memory/resourceArea.hpp"
    32 #include "prims/methodHandles.hpp"
    33 #include "runtime/biasedLocking.hpp"
    34 #include "runtime/interfaceSupport.hpp"
    35 #include "runtime/objectMonitor.hpp"
    36 #include "runtime/os.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubRoutines.hpp"
    39 #include "utilities/macros.hpp"
    40 #if INCLUDE_ALL_GCS
    41 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    43 #include "gc_implementation/g1/heapRegion.hpp"
    44 #endif // INCLUDE_ALL_GCS
    46 #ifdef PRODUCT
    47 #define BLOCK_COMMENT(str) /* nothing */
    48 #define STOP(error) stop(error)
    49 #else
    50 #define BLOCK_COMMENT(str) block_comment(str)
    51 #define STOP(error) block_comment(error); stop(error)
    52 #endif
    54 // Convert the raw encoding form into the form expected by the
    55 // constructor for Address.
    56 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
    57   assert(scale == 0, "not supported");
    58   RelocationHolder rspec;
    59   if (disp_reloc != relocInfo::none) {
    60     rspec = Relocation::spec_simple(disp_reloc);
    61   }
    63   Register rindex = as_Register(index);
    64   if (rindex != G0) {
    65     Address madr(as_Register(base), rindex);
    66     madr._rspec = rspec;
    67     return madr;
    68   } else {
    69     Address madr(as_Register(base), disp);
    70     madr._rspec = rspec;
    71     return madr;
    72   }
    73 }
    75 Address Argument::address_in_frame() const {
    76   // Warning: In LP64 mode disp will occupy more than 10 bits, but
    77   //          op codes such as ld or ldx, only access disp() to get
    78   //          their simm13 argument.
    79   int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
    80   if (is_in())
    81     return Address(FP, disp); // In argument.
    82   else
    83     return Address(SP, disp); // Out argument.
    84 }
    86 static const char* argumentNames[][2] = {
    87   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
    88   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
    89   {"A(n>9)","P(n>9)"}
    90 };
    92 const char* Argument::name() const {
    93   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
    94   int num = number();
    95   if (num >= nofArgs)  num = nofArgs - 1;
    96   return argumentNames[num][is_in() ? 1 : 0];
    97 }
    99 #ifdef ASSERT
   100 // On RISC, there's no benefit to verifying instruction boundaries.
   101 bool AbstractAssembler::pd_check_instruction_mark() { return false; }
   102 #endif
   104 // Patch instruction inst at offset inst_pos to refer to dest_pos
   105 // and return the resulting instruction.
   106 // We should have pcs, not offsets, but since all is relative, it will work out
   107 // OK.
   108 int MacroAssembler::patched_branch(int dest_pos, int inst, int inst_pos) {
   109   int m; // mask for displacement field
   110   int v; // new value for displacement field
   111   const int word_aligned_ones = -4;
   112   switch (inv_op(inst)) {
   113   default: ShouldNotReachHere();
   114   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
   115   case branch_op:
   116     switch (inv_op2(inst)) {
   117       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
   118       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
   119       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   120       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   121       case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   122       case bpr_op2: {
   123         if (is_cbcond(inst)) {
   124           m = wdisp10(word_aligned_ones, 0);
   125           v = wdisp10(dest_pos, inst_pos);
   126         } else {
   127           m = wdisp16(word_aligned_ones, 0);
   128           v = wdisp16(dest_pos, inst_pos);
   129         }
   130         break;
   131       }
   132       default: ShouldNotReachHere();
   133     }
   134   }
   135   return  inst & ~m  |  v;
   136 }
   138 // Return the offset of the branch destionation of instruction inst
   139 // at offset pos.
   140 // Should have pcs, but since all is relative, it works out.
   141 int MacroAssembler::branch_destination(int inst, int pos) {
   142   int r;
   143   switch (inv_op(inst)) {
   144   default: ShouldNotReachHere();
   145   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
   146   case branch_op:
   147     switch (inv_op2(inst)) {
   148       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
   149       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
   150       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   151       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   152       case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   153       case bpr_op2: {
   154         if (is_cbcond(inst)) {
   155           r = inv_wdisp10(inst, pos);
   156         } else {
   157           r = inv_wdisp16(inst, pos);
   158         }
   159         break;
   160       }
   161       default: ShouldNotReachHere();
   162     }
   163   }
   164   return r;
   165 }
   167 void MacroAssembler::null_check(Register reg, int offset) {
   168   if (needs_explicit_null_check((intptr_t)offset)) {
   169     // provoke OS NULL exception if reg = NULL by
   170     // accessing M[reg] w/o changing any registers
   171     ld_ptr(reg, 0, G0);
   172   }
   173   else {
   174     // nothing to do, (later) access of M[reg + offset]
   175     // will provoke OS NULL exception if reg = NULL
   176   }
   177 }
   179 // Ring buffer jumps
   181 #ifndef PRODUCT
   182 void MacroAssembler::ret(  bool trace )   { if (trace) {
   183                                                     mov(I7, O7); // traceable register
   184                                                     JMP(O7, 2 * BytesPerInstWord);
   185                                                   } else {
   186                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
   187                                                   }
   188                                                 }
   190 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
   191                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
   192 #endif /* PRODUCT */
   195 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
   196   assert_not_delayed();
   197   // This can only be traceable if r1 & r2 are visible after a window save
   198   if (TraceJumps) {
   199 #ifndef PRODUCT
   200     save_frame(0);
   201     verify_thread();
   202     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   203     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   204     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   205     add(O2, O1, O1);
   207     add(r1->after_save(), r2->after_save(), O2);
   208     set((intptr_t)file, O3);
   209     set(line, O4);
   210     Label L;
   211     // get nearby pc, store jmp target
   212     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   213     delayed()->st(O2, O1, 0);
   214     bind(L);
   216     // store nearby pc
   217     st(O7, O1, sizeof(intptr_t));
   218     // store file
   219     st(O3, O1, 2*sizeof(intptr_t));
   220     // store line
   221     st(O4, O1, 3*sizeof(intptr_t));
   222     add(O0, 1, O0);
   223     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   224     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   225     restore();
   226 #endif /* PRODUCT */
   227   }
   228   jmpl(r1, r2, G0);
   229 }
   230 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
   231   assert_not_delayed();
   232   // This can only be traceable if r1 is visible after a window save
   233   if (TraceJumps) {
   234 #ifndef PRODUCT
   235     save_frame(0);
   236     verify_thread();
   237     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   238     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   239     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   240     add(O2, O1, O1);
   242     add(r1->after_save(), offset, O2);
   243     set((intptr_t)file, O3);
   244     set(line, O4);
   245     Label L;
   246     // get nearby pc, store jmp target
   247     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   248     delayed()->st(O2, O1, 0);
   249     bind(L);
   251     // store nearby pc
   252     st(O7, O1, sizeof(intptr_t));
   253     // store file
   254     st(O3, O1, 2*sizeof(intptr_t));
   255     // store line
   256     st(O4, O1, 3*sizeof(intptr_t));
   257     add(O0, 1, O0);
   258     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   259     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   260     restore();
   261 #endif /* PRODUCT */
   262   }
   263   jmp(r1, offset);
   264 }
   266 // This code sequence is relocatable to any address, even on LP64.
   267 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
   268   assert_not_delayed();
   269   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   270   // variable length instruction streams.
   271   patchable_sethi(addrlit, temp);
   272   Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
   273   if (TraceJumps) {
   274 #ifndef PRODUCT
   275     // Must do the add here so relocation can find the remainder of the
   276     // value to be relocated.
   277     add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
   278     save_frame(0);
   279     verify_thread();
   280     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   281     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   282     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   283     add(O2, O1, O1);
   285     set((intptr_t)file, O3);
   286     set(line, O4);
   287     Label L;
   289     // get nearby pc, store jmp target
   290     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   291     delayed()->st(a.base()->after_save(), O1, 0);
   292     bind(L);
   294     // store nearby pc
   295     st(O7, O1, sizeof(intptr_t));
   296     // store file
   297     st(O3, O1, 2*sizeof(intptr_t));
   298     // store line
   299     st(O4, O1, 3*sizeof(intptr_t));
   300     add(O0, 1, O0);
   301     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   302     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   303     restore();
   304     jmpl(a.base(), G0, d);
   305 #else
   306     jmpl(a.base(), a.disp(), d);
   307 #endif /* PRODUCT */
   308   } else {
   309     jmpl(a.base(), a.disp(), d);
   310   }
   311 }
   313 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
   314   jumpl(addrlit, temp, G0, offset, file, line);
   315 }
   318 // Conditional breakpoint (for assertion checks in assembly code)
   319 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
   320   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
   321 }
   323 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
   324 void MacroAssembler::breakpoint_trap() {
   325   trap(ST_RESERVED_FOR_USER_0);
   326 }
   328 // flush windows (except current) using flushw instruction if avail.
   329 void MacroAssembler::flush_windows() {
   330   if (VM_Version::v9_instructions_work())  flushw();
   331   else                                     flush_windows_trap();
   332 }
   334 // Write serialization page so VM thread can do a pseudo remote membar
   335 // We use the current thread pointer to calculate a thread specific
   336 // offset to write to within the page. This minimizes bus traffic
   337 // due to cache line collision.
   338 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
   339   srl(thread, os::get_serialize_page_shift_count(), tmp2);
   340   if (Assembler::is_simm13(os::vm_page_size())) {
   341     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
   342   }
   343   else {
   344     set((os::vm_page_size() - sizeof(int)), tmp1);
   345     and3(tmp2, tmp1, tmp2);
   346   }
   347   set(os::get_memory_serialize_page(), tmp1);
   348   st(G0, tmp1, tmp2);
   349 }
   353 void MacroAssembler::enter() {
   354   Unimplemented();
   355 }
   357 void MacroAssembler::leave() {
   358   Unimplemented();
   359 }
   361 void MacroAssembler::mult(Register s1, Register s2, Register d) {
   362   if(VM_Version::v9_instructions_work()) {
   363     mulx (s1, s2, d);
   364   } else {
   365     smul (s1, s2, d);
   366   }
   367 }
   369 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
   370   if(VM_Version::v9_instructions_work()) {
   371     mulx (s1, simm13a, d);
   372   } else {
   373     smul (s1, simm13a, d);
   374   }
   375 }
   378 #ifdef ASSERT
   379 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
   380   const Register s1 = G3_scratch;
   381   const Register s2 = G4_scratch;
   382   Label get_psr_test;
   383   // Get the condition codes the V8 way.
   384   read_ccr_trap(s1);
   385   mov(ccr_save, s2);
   386   // This is a test of V8 which has icc but not xcc
   387   // so mask off the xcc bits
   388   and3(s2, 0xf, s2);
   389   // Compare condition codes from the V8 and V9 ways.
   390   subcc(s2, s1, G0);
   391   br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
   392   delayed()->breakpoint_trap();
   393   bind(get_psr_test);
   394 }
   396 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
   397   const Register s1 = G3_scratch;
   398   const Register s2 = G4_scratch;
   399   Label set_psr_test;
   400   // Write out the saved condition codes the V8 way
   401   write_ccr_trap(ccr_save, s1, s2);
   402   // Read back the condition codes using the V9 instruction
   403   rdccr(s1);
   404   mov(ccr_save, s2);
   405   // This is a test of V8 which has icc but not xcc
   406   // so mask off the xcc bits
   407   and3(s2, 0xf, s2);
   408   and3(s1, 0xf, s1);
   409   // Compare the V8 way with the V9 way.
   410   subcc(s2, s1, G0);
   411   br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
   412   delayed()->breakpoint_trap();
   413   bind(set_psr_test);
   414 }
   415 #else
   416 #define read_ccr_v8_assert(x)
   417 #define write_ccr_v8_assert(x)
   418 #endif // ASSERT
   420 void MacroAssembler::read_ccr(Register ccr_save) {
   421   if (VM_Version::v9_instructions_work()) {
   422     rdccr(ccr_save);
   423     // Test code sequence used on V8.  Do not move above rdccr.
   424     read_ccr_v8_assert(ccr_save);
   425   } else {
   426     read_ccr_trap(ccr_save);
   427   }
   428 }
   430 void MacroAssembler::write_ccr(Register ccr_save) {
   431   if (VM_Version::v9_instructions_work()) {
   432     // Test code sequence used on V8.  Do not move below wrccr.
   433     write_ccr_v8_assert(ccr_save);
   434     wrccr(ccr_save);
   435   } else {
   436     const Register temp_reg1 = G3_scratch;
   437     const Register temp_reg2 = G4_scratch;
   438     write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
   439   }
   440 }
   443 // Calls to C land
   445 #ifdef ASSERT
   446 // a hook for debugging
   447 static Thread* reinitialize_thread() {
   448   return ThreadLocalStorage::thread();
   449 }
   450 #else
   451 #define reinitialize_thread ThreadLocalStorage::thread
   452 #endif
   454 #ifdef ASSERT
   455 address last_get_thread = NULL;
   456 #endif
   458 // call this when G2_thread is not known to be valid
   459 void MacroAssembler::get_thread() {
   460   save_frame(0);                // to avoid clobbering O0
   461   mov(G1, L0);                  // avoid clobbering G1
   462   mov(G5_method, L1);           // avoid clobbering G5
   463   mov(G3, L2);                  // avoid clobbering G3 also
   464   mov(G4, L5);                  // avoid clobbering G4
   465 #ifdef ASSERT
   466   AddressLiteral last_get_thread_addrlit(&last_get_thread);
   467   set(last_get_thread_addrlit, L3);
   468   inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
   469   st_ptr(L4, L3, 0);
   470 #endif
   471   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
   472   delayed()->nop();
   473   mov(L0, G1);
   474   mov(L1, G5_method);
   475   mov(L2, G3);
   476   mov(L5, G4);
   477   restore(O0, 0, G2_thread);
   478 }
   480 static Thread* verify_thread_subroutine(Thread* gthread_value) {
   481   Thread* correct_value = ThreadLocalStorage::thread();
   482   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
   483   return correct_value;
   484 }
   486 void MacroAssembler::verify_thread() {
   487   if (VerifyThread) {
   488     // NOTE: this chops off the heads of the 64-bit O registers.
   489 #ifdef CC_INTERP
   490     save_frame(0);
   491 #else
   492     // make sure G2_thread contains the right value
   493     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
   494     mov(G1, L1);                // avoid clobbering G1
   495     // G2 saved below
   496     mov(G3, L3);                // avoid clobbering G3
   497     mov(G4, L4);                // avoid clobbering G4
   498     mov(G5_method, L5);         // avoid clobbering G5_method
   499 #endif /* CC_INTERP */
   500 #if defined(COMPILER2) && !defined(_LP64)
   501     // Save & restore possible 64-bit Long arguments in G-regs
   502     srlx(G1,32,L0);
   503     srlx(G4,32,L6);
   504 #endif
   505     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
   506     delayed()->mov(G2_thread, O0);
   508     mov(L1, G1);                // Restore G1
   509     // G2 restored below
   510     mov(L3, G3);                // restore G3
   511     mov(L4, G4);                // restore G4
   512     mov(L5, G5_method);         // restore G5_method
   513 #if defined(COMPILER2) && !defined(_LP64)
   514     // Save & restore possible 64-bit Long arguments in G-regs
   515     sllx(L0,32,G2);             // Move old high G1 bits high in G2
   516     srl(G1, 0,G1);              // Clear current high G1 bits
   517     or3 (G1,G2,G1);             // Recover 64-bit G1
   518     sllx(L6,32,G2);             // Move old high G4 bits high in G2
   519     srl(G4, 0,G4);              // Clear current high G4 bits
   520     or3 (G4,G2,G4);             // Recover 64-bit G4
   521 #endif
   522     restore(O0, 0, G2_thread);
   523   }
   524 }
   527 void MacroAssembler::save_thread(const Register thread_cache) {
   528   verify_thread();
   529   if (thread_cache->is_valid()) {
   530     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   531     mov(G2_thread, thread_cache);
   532   }
   533   if (VerifyThread) {
   534     // smash G2_thread, as if the VM were about to anyway
   535     set(0x67676767, G2_thread);
   536   }
   537 }
   540 void MacroAssembler::restore_thread(const Register thread_cache) {
   541   if (thread_cache->is_valid()) {
   542     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   543     mov(thread_cache, G2_thread);
   544     verify_thread();
   545   } else {
   546     // do it the slow way
   547     get_thread();
   548   }
   549 }
   552 // %%% maybe get rid of [re]set_last_Java_frame
   553 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
   554   assert_not_delayed();
   555   Address flags(G2_thread, JavaThread::frame_anchor_offset() +
   556                            JavaFrameAnchor::flags_offset());
   557   Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
   559   // Always set last_Java_pc and flags first because once last_Java_sp is visible
   560   // has_last_Java_frame is true and users will look at the rest of the fields.
   561   // (Note: flags should always be zero before we get here so doesn't need to be set.)
   563 #ifdef ASSERT
   564   // Verify that flags was zeroed on return to Java
   565   Label PcOk;
   566   save_frame(0);                // to avoid clobbering O0
   567   ld_ptr(pc_addr, L0);
   568   br_null_short(L0, Assembler::pt, PcOk);
   569   STOP("last_Java_pc not zeroed before leaving Java");
   570   bind(PcOk);
   572   // Verify that flags was zeroed on return to Java
   573   Label FlagsOk;
   574   ld(flags, L0);
   575   tst(L0);
   576   br(Assembler::zero, false, Assembler::pt, FlagsOk);
   577   delayed() -> restore();
   578   STOP("flags not zeroed before leaving Java");
   579   bind(FlagsOk);
   580 #endif /* ASSERT */
   581   //
   582   // When returning from calling out from Java mode the frame anchor's last_Java_pc
   583   // will always be set to NULL. It is set here so that if we are doing a call to
   584   // native (not VM) that we capture the known pc and don't have to rely on the
   585   // native call having a standard frame linkage where we can find the pc.
   587   if (last_Java_pc->is_valid()) {
   588     st_ptr(last_Java_pc, pc_addr);
   589   }
   591 #ifdef _LP64
   592 #ifdef ASSERT
   593   // Make sure that we have an odd stack
   594   Label StackOk;
   595   andcc(last_java_sp, 0x01, G0);
   596   br(Assembler::notZero, false, Assembler::pt, StackOk);
   597   delayed()->nop();
   598   STOP("Stack Not Biased in set_last_Java_frame");
   599   bind(StackOk);
   600 #endif // ASSERT
   601   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
   602   add( last_java_sp, STACK_BIAS, G4_scratch );
   603   st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
   604 #else
   605   st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
   606 #endif // _LP64
   607 }
   609 void MacroAssembler::reset_last_Java_frame(void) {
   610   assert_not_delayed();
   612   Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
   613   Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
   614   Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
   616 #ifdef ASSERT
   617   // check that it WAS previously set
   618 #ifdef CC_INTERP
   619     save_frame(0);
   620 #else
   621     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
   622 #endif /* CC_INTERP */
   623     ld_ptr(sp_addr, L0);
   624     tst(L0);
   625     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
   626     restore();
   627 #endif // ASSERT
   629   st_ptr(G0, sp_addr);
   630   // Always return last_Java_pc to zero
   631   st_ptr(G0, pc_addr);
   632   // Always null flags after return to Java
   633   st(G0, flags);
   634 }
   637 void MacroAssembler::call_VM_base(
   638   Register        oop_result,
   639   Register        thread_cache,
   640   Register        last_java_sp,
   641   address         entry_point,
   642   int             number_of_arguments,
   643   bool            check_exceptions)
   644 {
   645   assert_not_delayed();
   647   // determine last_java_sp register
   648   if (!last_java_sp->is_valid()) {
   649     last_java_sp = SP;
   650   }
   651   // debugging support
   652   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
   654   // 64-bit last_java_sp is biased!
   655   set_last_Java_frame(last_java_sp, noreg);
   656   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
   657   save_thread(thread_cache);
   658   // do the call
   659   call(entry_point, relocInfo::runtime_call_type);
   660   if (!VerifyThread)
   661     delayed()->mov(G2_thread, O0);  // pass thread as first argument
   662   else
   663     delayed()->nop();             // (thread already passed)
   664   restore_thread(thread_cache);
   665   reset_last_Java_frame();
   667   // check for pending exceptions. use Gtemp as scratch register.
   668   if (check_exceptions) {
   669     check_and_forward_exception(Gtemp);
   670   }
   672 #ifdef ASSERT
   673   set(badHeapWordVal, G3);
   674   set(badHeapWordVal, G4);
   675   set(badHeapWordVal, G5);
   676 #endif
   678   // get oop result if there is one and reset the value in the thread
   679   if (oop_result->is_valid()) {
   680     get_vm_result(oop_result);
   681   }
   682 }
   684 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
   685 {
   686   Label L;
   688   check_and_handle_popframe(scratch_reg);
   689   check_and_handle_earlyret(scratch_reg);
   691   Address exception_addr(G2_thread, Thread::pending_exception_offset());
   692   ld_ptr(exception_addr, scratch_reg);
   693   br_null_short(scratch_reg, pt, L);
   694   // we use O7 linkage so that forward_exception_entry has the issuing PC
   695   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
   696   delayed()->nop();
   697   bind(L);
   698 }
   701 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
   702 }
   705 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
   706 }
   709 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
   710   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
   711 }
   714 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
   715   // O0 is reserved for the thread
   716   mov(arg_1, O1);
   717   call_VM(oop_result, entry_point, 1, check_exceptions);
   718 }
   721 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
   722   // O0 is reserved for the thread
   723   mov(arg_1, O1);
   724   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
   725   call_VM(oop_result, entry_point, 2, check_exceptions);
   726 }
   729 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
   730   // O0 is reserved for the thread
   731   mov(arg_1, O1);
   732   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
   733   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
   734   call_VM(oop_result, entry_point, 3, check_exceptions);
   735 }
   739 // Note: The following call_VM overloadings are useful when a "save"
   740 // has already been performed by a stub, and the last Java frame is
   741 // the previous one.  In that case, last_java_sp must be passed as FP
   742 // instead of SP.
   745 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
   746   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
   747 }
   750 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
   751   // O0 is reserved for the thread
   752   mov(arg_1, O1);
   753   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
   754 }
   757 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
   758   // O0 is reserved for the thread
   759   mov(arg_1, O1);
   760   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
   761   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
   762 }
   765 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
   766   // O0 is reserved for the thread
   767   mov(arg_1, O1);
   768   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
   769   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
   770   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
   771 }
   775 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
   776   assert_not_delayed();
   777   save_thread(thread_cache);
   778   // do the call
   779   call(entry_point, relocInfo::runtime_call_type);
   780   delayed()->nop();
   781   restore_thread(thread_cache);
   782 #ifdef ASSERT
   783   set(badHeapWordVal, G3);
   784   set(badHeapWordVal, G4);
   785   set(badHeapWordVal, G5);
   786 #endif
   787 }
   790 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
   791   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
   792 }
   795 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
   796   mov(arg_1, O0);
   797   call_VM_leaf(thread_cache, entry_point, 1);
   798 }
   801 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
   802   mov(arg_1, O0);
   803   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
   804   call_VM_leaf(thread_cache, entry_point, 2);
   805 }
   808 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
   809   mov(arg_1, O0);
   810   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
   811   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
   812   call_VM_leaf(thread_cache, entry_point, 3);
   813 }
   816 void MacroAssembler::get_vm_result(Register oop_result) {
   817   verify_thread();
   818   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
   819   ld_ptr(    vm_result_addr, oop_result);
   820   st_ptr(G0, vm_result_addr);
   821   verify_oop(oop_result);
   822 }
   825 void MacroAssembler::get_vm_result_2(Register metadata_result) {
   826   verify_thread();
   827   Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
   828   ld_ptr(vm_result_addr_2, metadata_result);
   829   st_ptr(G0, vm_result_addr_2);
   830 }
   833 // We require that C code which does not return a value in vm_result will
   834 // leave it undisturbed.
   835 void MacroAssembler::set_vm_result(Register oop_result) {
   836   verify_thread();
   837   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
   838   verify_oop(oop_result);
   840 # ifdef ASSERT
   841     // Check that we are not overwriting any other oop.
   842 #ifdef CC_INTERP
   843     save_frame(0);
   844 #else
   845     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
   846 #endif /* CC_INTERP */
   847     ld_ptr(vm_result_addr, L0);
   848     tst(L0);
   849     restore();
   850     breakpoint_trap(notZero, Assembler::ptr_cc);
   851     // }
   852 # endif
   854   st_ptr(oop_result, vm_result_addr);
   855 }
   858 void MacroAssembler::ic_call(address entry, bool emit_delay) {
   859   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
   860   patchable_set((intptr_t)Universe::non_oop_word(), G5_inline_cache_reg);
   861   relocate(rspec);
   862   call(entry, relocInfo::none);
   863   if (emit_delay) {
   864     delayed()->nop();
   865   }
   866 }
   869 void MacroAssembler::card_table_write(jbyte* byte_map_base,
   870                                       Register tmp, Register obj) {
   871 #ifdef _LP64
   872   srlx(obj, CardTableModRefBS::card_shift, obj);
   873 #else
   874   srl(obj, CardTableModRefBS::card_shift, obj);
   875 #endif
   876   assert(tmp != obj, "need separate temp reg");
   877   set((address) byte_map_base, tmp);
   878   stb(G0, tmp, obj);
   879 }
   882 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
   883   address save_pc;
   884   int shiftcnt;
   885 #ifdef _LP64
   886 # ifdef CHECK_DELAY
   887   assert_not_delayed((char*) "cannot put two instructions in delay slot");
   888 # endif
   889   v9_dep();
   890   save_pc = pc();
   892   int msb32 = (int) (addrlit.value() >> 32);
   893   int lsb32 = (int) (addrlit.value());
   895   if (msb32 == 0 && lsb32 >= 0) {
   896     Assembler::sethi(lsb32, d, addrlit.rspec());
   897   }
   898   else if (msb32 == -1) {
   899     Assembler::sethi(~lsb32, d, addrlit.rspec());
   900     xor3(d, ~low10(~0), d);
   901   }
   902   else {
   903     Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
   904     if (msb32 & 0x3ff)                            // Any bits?
   905       or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
   906     if (lsb32 & 0xFFFFFC00) {                     // done?
   907       if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
   908         sllx(d, 12, d);                           // Make room for next 12 bits
   909         or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
   910         shiftcnt = 0;                             // We already shifted
   911       }
   912       else
   913         shiftcnt = 12;
   914       if ((lsb32 >> 10) & 0x3ff) {
   915         sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
   916         or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
   917         shiftcnt = 0;
   918       }
   919       else
   920         shiftcnt = 10;
   921       sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
   922     }
   923     else
   924       sllx(d, 32, d);
   925   }
   926   // Pad out the instruction sequence so it can be patched later.
   927   if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
   928                            addrlit.rtype() != relocInfo::runtime_call_type)) {
   929     while (pc() < (save_pc + (7 * BytesPerInstWord)))
   930       nop();
   931   }
   932 #else
   933   Assembler::sethi(addrlit.value(), d, addrlit.rspec());
   934 #endif
   935 }
   938 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
   939   internal_sethi(addrlit, d, false);
   940 }
   943 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
   944   internal_sethi(addrlit, d, true);
   945 }
   948 int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
   949 #ifdef _LP64
   950   if (worst_case)  return 7;
   951   intptr_t iaddr = (intptr_t) a;
   952   int msb32 = (int) (iaddr >> 32);
   953   int lsb32 = (int) (iaddr);
   954   int count;
   955   if (msb32 == 0 && lsb32 >= 0)
   956     count = 1;
   957   else if (msb32 == -1)
   958     count = 2;
   959   else {
   960     count = 2;
   961     if (msb32 & 0x3ff)
   962       count++;
   963     if (lsb32 & 0xFFFFFC00 ) {
   964       if ((lsb32 >> 20) & 0xfff)  count += 2;
   965       if ((lsb32 >> 10) & 0x3ff)  count += 2;
   966     }
   967   }
   968   return count;
   969 #else
   970   return 1;
   971 #endif
   972 }
   974 int MacroAssembler::worst_case_insts_for_set() {
   975   return insts_for_sethi(NULL, true) + 1;
   976 }
   979 // Keep in sync with MacroAssembler::insts_for_internal_set
   980 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
   981   intptr_t value = addrlit.value();
   983   if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
   984     // can optimize
   985     if (-4096 <= value && value <= 4095) {
   986       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
   987       return;
   988     }
   989     if (inv_hi22(hi22(value)) == value) {
   990       sethi(addrlit, d);
   991       return;
   992     }
   993   }
   994   assert_not_delayed((char*) "cannot put two instructions in delay slot");
   995   internal_sethi(addrlit, d, ForceRelocatable);
   996   if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
   997     add(d, addrlit.low10(), d, addrlit.rspec());
   998   }
   999 }
  1001 // Keep in sync with MacroAssembler::internal_set
  1002 int MacroAssembler::insts_for_internal_set(intptr_t value) {
  1003   // can optimize
  1004   if (-4096 <= value && value <= 4095) {
  1005     return 1;
  1007   if (inv_hi22(hi22(value)) == value) {
  1008     return insts_for_sethi((address) value);
  1010   int count = insts_for_sethi((address) value);
  1011   AddressLiteral al(value);
  1012   if (al.low10() != 0) {
  1013     count++;
  1015   return count;
  1018 void MacroAssembler::set(const AddressLiteral& al, Register d) {
  1019   internal_set(al, d, false);
  1022 void MacroAssembler::set(intptr_t value, Register d) {
  1023   AddressLiteral al(value);
  1024   internal_set(al, d, false);
  1027 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
  1028   AddressLiteral al(addr, rspec);
  1029   internal_set(al, d, false);
  1032 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
  1033   internal_set(al, d, true);
  1036 void MacroAssembler::patchable_set(intptr_t value, Register d) {
  1037   AddressLiteral al(value);
  1038   internal_set(al, d, true);
  1042 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
  1043   assert_not_delayed();
  1044   v9_dep();
  1046   int hi = (int)(value >> 32);
  1047   int lo = (int)(value & ~0);
  1048   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  1049   if (Assembler::is_simm13(lo) && value == lo) {
  1050     or3(G0, lo, d);
  1051   } else if (hi == 0) {
  1052     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
  1053     if (low10(lo) != 0)
  1054       or3(d, low10(lo), d);
  1056   else if (hi == -1) {
  1057     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
  1058     xor3(d, low10(lo) ^ ~low10(~0), d);
  1060   else if (lo == 0) {
  1061     if (Assembler::is_simm13(hi)) {
  1062       or3(G0, hi, d);
  1063     } else {
  1064       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
  1065       if (low10(hi) != 0)
  1066         or3(d, low10(hi), d);
  1068     sllx(d, 32, d);
  1070   else {
  1071     Assembler::sethi(hi, tmp);
  1072     Assembler::sethi(lo,   d); // macro assembler version sign-extends
  1073     if (low10(hi) != 0)
  1074       or3 (tmp, low10(hi), tmp);
  1075     if (low10(lo) != 0)
  1076       or3 (  d, low10(lo),   d);
  1077     sllx(tmp, 32, tmp);
  1078     or3 (d, tmp, d);
  1082 int MacroAssembler::insts_for_set64(jlong value) {
  1083   v9_dep();
  1085   int hi = (int) (value >> 32);
  1086   int lo = (int) (value & ~0);
  1087   int count = 0;
  1089   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  1090   if (Assembler::is_simm13(lo) && value == lo) {
  1091     count++;
  1092   } else if (hi == 0) {
  1093     count++;
  1094     if (low10(lo) != 0)
  1095       count++;
  1097   else if (hi == -1) {
  1098     count += 2;
  1100   else if (lo == 0) {
  1101     if (Assembler::is_simm13(hi)) {
  1102       count++;
  1103     } else {
  1104       count++;
  1105       if (low10(hi) != 0)
  1106         count++;
  1108     count++;
  1110   else {
  1111     count += 2;
  1112     if (low10(hi) != 0)
  1113       count++;
  1114     if (low10(lo) != 0)
  1115       count++;
  1116     count += 2;
  1118   return count;
  1121 // compute size in bytes of sparc frame, given
  1122 // number of extraWords
  1123 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
  1125   int nWords = frame::memory_parameter_word_sp_offset;
  1127   nWords += extraWords;
  1129   if (nWords & 1) ++nWords; // round up to double-word
  1131   return nWords * BytesPerWord;
  1135 // save_frame: given number of "extra" words in frame,
  1136 // issue approp. save instruction (p 200, v8 manual)
  1138 void MacroAssembler::save_frame(int extraWords) {
  1139   int delta = -total_frame_size_in_bytes(extraWords);
  1140   if (is_simm13(delta)) {
  1141     save(SP, delta, SP);
  1142   } else {
  1143     set(delta, G3_scratch);
  1144     save(SP, G3_scratch, SP);
  1149 void MacroAssembler::save_frame_c1(int size_in_bytes) {
  1150   if (is_simm13(-size_in_bytes)) {
  1151     save(SP, -size_in_bytes, SP);
  1152   } else {
  1153     set(-size_in_bytes, G3_scratch);
  1154     save(SP, G3_scratch, SP);
  1159 void MacroAssembler::save_frame_and_mov(int extraWords,
  1160                                         Register s1, Register d1,
  1161                                         Register s2, Register d2) {
  1162   assert_not_delayed();
  1164   // The trick here is to use precisely the same memory word
  1165   // that trap handlers also use to save the register.
  1166   // This word cannot be used for any other purpose, but
  1167   // it works fine to save the register's value, whether or not
  1168   // an interrupt flushes register windows at any given moment!
  1169   Address s1_addr;
  1170   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
  1171     s1_addr = s1->address_in_saved_window();
  1172     st_ptr(s1, s1_addr);
  1175   Address s2_addr;
  1176   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
  1177     s2_addr = s2->address_in_saved_window();
  1178     st_ptr(s2, s2_addr);
  1181   save_frame(extraWords);
  1183   if (s1_addr.base() == SP) {
  1184     ld_ptr(s1_addr.after_save(), d1);
  1185   } else if (s1->is_valid()) {
  1186     mov(s1->after_save(), d1);
  1189   if (s2_addr.base() == SP) {
  1190     ld_ptr(s2_addr.after_save(), d2);
  1191   } else if (s2->is_valid()) {
  1192     mov(s2->after_save(), d2);
  1197 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
  1198   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
  1199   int index = oop_recorder()->allocate_metadata_index(obj);
  1200   RelocationHolder rspec = metadata_Relocation::spec(index);
  1201   return AddressLiteral((address)obj, rspec);
  1204 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
  1205   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
  1206   int index = oop_recorder()->find_index(obj);
  1207   RelocationHolder rspec = metadata_Relocation::spec(index);
  1208   return AddressLiteral((address)obj, rspec);
  1212 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
  1213   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1214   assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
  1215   int oop_index = oop_recorder()->find_index(obj);
  1216   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
  1219 void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
  1220   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1221   int oop_index = oop_recorder()->find_index(obj);
  1222   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  1224   assert_not_delayed();
  1225   // Relocation with special format (see relocInfo_sparc.hpp).
  1226   relocate(rspec, 1);
  1227   // Assembler::sethi(0x3fffff, d);
  1228   emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
  1229   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
  1230   add(d, 0x3ff, d);
  1234 void  MacroAssembler::set_narrow_klass(Klass* k, Register d) {
  1235   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1236   int klass_index = oop_recorder()->find_index(k);
  1237   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  1238   narrowOop encoded_k = oopDesc::encode_klass(k);
  1240   assert_not_delayed();
  1241   // Relocation with special format (see relocInfo_sparc.hpp).
  1242   relocate(rspec, 1);
  1243   // Assembler::sethi(encoded_k, d);
  1244   emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(encoded_k) );
  1245   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
  1246   add(d, low10(encoded_k), d);
  1250 void MacroAssembler::align(int modulus) {
  1251   while (offset() % modulus != 0) nop();
  1255 void MacroAssembler::safepoint() {
  1256   relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
  1260 void RegistersForDebugging::print(outputStream* s) {
  1261   FlagSetting fs(Debugging, true);
  1262   int j;
  1263   for (j = 0; j < 8; ++j) {
  1264     if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
  1265     else        { s->print( "fp = "   ); os::print_location(s, i[j]); }
  1267   s->cr();
  1269   for (j = 0;  j < 8;  ++j) {
  1270     s->print("l%d = ", j); os::print_location(s, l[j]);
  1272   s->cr();
  1274   for (j = 0; j < 8; ++j) {
  1275     if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
  1276     else        { s->print( "sp = "   ); os::print_location(s, o[j]); }
  1278   s->cr();
  1280   for (j = 0; j < 8; ++j) {
  1281     s->print("g%d = ", j); os::print_location(s, g[j]);
  1283   s->cr();
  1285   // print out floats with compression
  1286   for (j = 0; j < 32; ) {
  1287     jfloat val = f[j];
  1288     int last = j;
  1289     for ( ;  last+1 < 32;  ++last ) {
  1290       char b1[1024], b2[1024];
  1291       sprintf(b1, "%f", val);
  1292       sprintf(b2, "%f", f[last+1]);
  1293       if (strcmp(b1, b2))
  1294         break;
  1296     s->print("f%d", j);
  1297     if ( j != last )  s->print(" - f%d", last);
  1298     s->print(" = %f", val);
  1299     s->fill_to(25);
  1300     s->print_cr(" (0x%x)", val);
  1301     j = last + 1;
  1303   s->cr();
  1305   // and doubles (evens only)
  1306   for (j = 0; j < 32; ) {
  1307     jdouble val = d[j];
  1308     int last = j;
  1309     for ( ;  last+1 < 32;  ++last ) {
  1310       char b1[1024], b2[1024];
  1311       sprintf(b1, "%f", val);
  1312       sprintf(b2, "%f", d[last+1]);
  1313       if (strcmp(b1, b2))
  1314         break;
  1316     s->print("d%d", 2 * j);
  1317     if ( j != last )  s->print(" - d%d", last);
  1318     s->print(" = %f", val);
  1319     s->fill_to(30);
  1320     s->print("(0x%x)", *(int*)&val);
  1321     s->fill_to(42);
  1322     s->print_cr("(0x%x)", *(1 + (int*)&val));
  1323     j = last + 1;
  1325   s->cr();
  1328 void RegistersForDebugging::save_registers(MacroAssembler* a) {
  1329   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
  1330   a->flush_windows();
  1331   int i;
  1332   for (i = 0; i < 8; ++i) {
  1333     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
  1334     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
  1335     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
  1336     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
  1338   for (i = 0;  i < 32; ++i) {
  1339     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
  1341   for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
  1342     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
  1346 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
  1347   for (int i = 1; i < 8;  ++i) {
  1348     a->ld_ptr(r, g_offset(i), as_gRegister(i));
  1350   for (int j = 0; j < 32; ++j) {
  1351     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
  1353   for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
  1354     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
  1359 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1360 void MacroAssembler::push_fTOS() {
  1361   // %%%%%% need to implement this
  1364 // pops double TOS element from CPU stack and pushes on FPU stack
  1365 void MacroAssembler::pop_fTOS() {
  1366   // %%%%%% need to implement this
  1369 void MacroAssembler::empty_FPU_stack() {
  1370   // %%%%%% need to implement this
  1373 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
  1374   // plausibility check for oops
  1375   if (!VerifyOops) return;
  1377   if (reg == G0)  return;       // always NULL, which is always an oop
  1379   BLOCK_COMMENT("verify_oop {");
  1380   char buffer[64];
  1381 #ifdef COMPILER1
  1382   if (CommentedAssembly) {
  1383     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
  1384     block_comment(buffer);
  1386 #endif
  1388   const char* real_msg = NULL;
  1390     ResourceMark rm;
  1391     stringStream ss;
  1392     ss.print("%s at offset %d (%s:%d)", msg, offset(), file, line);
  1393     real_msg = code_string(ss.as_string());
  1396   // Call indirectly to solve generation ordering problem
  1397   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
  1399   // Make some space on stack above the current register window.
  1400   // Enough to hold 8 64-bit registers.
  1401   add(SP,-8*8,SP);
  1403   // Save some 64-bit registers; a normal 'save' chops the heads off
  1404   // of 64-bit longs in the 32-bit build.
  1405   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1406   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1407   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
  1408   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1410   // Size of set() should stay the same
  1411   patchable_set((intptr_t)real_msg, O1);
  1412   // Load address to call to into O7
  1413   load_ptr_contents(a, O7);
  1414   // Register call to verify_oop_subroutine
  1415   callr(O7, G0);
  1416   delayed()->nop();
  1417   // recover frame size
  1418   add(SP, 8*8,SP);
  1419   BLOCK_COMMENT("} verify_oop");
  1422 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
  1423   // plausibility check for oops
  1424   if (!VerifyOops) return;
  1426   const char* real_msg = NULL;
  1428     ResourceMark rm;
  1429     stringStream ss;
  1430     ss.print("%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
  1431     real_msg = code_string(ss.as_string());
  1434   // Call indirectly to solve generation ordering problem
  1435   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
  1437   // Make some space on stack above the current register window.
  1438   // Enough to hold 8 64-bit registers.
  1439   add(SP,-8*8,SP);
  1441   // Save some 64-bit registers; a normal 'save' chops the heads off
  1442   // of 64-bit longs in the 32-bit build.
  1443   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1444   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1445   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
  1446   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1448   // Size of set() should stay the same
  1449   patchable_set((intptr_t)real_msg, O1);
  1450   // Load address to call to into O7
  1451   load_ptr_contents(a, O7);
  1452   // Register call to verify_oop_subroutine
  1453   callr(O7, G0);
  1454   delayed()->nop();
  1455   // recover frame size
  1456   add(SP, 8*8,SP);
  1459 // side-door communication with signalHandler in os_solaris.cpp
  1460 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
  1462 // This macro is expanded just once; it creates shared code.  Contract:
  1463 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
  1464 // registers, including flags.  May not use a register 'save', as this blows
  1465 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
  1466 // call.
  1467 void MacroAssembler::verify_oop_subroutine() {
  1468   assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
  1470   // Leaf call; no frame.
  1471   Label succeed, fail, null_or_fail;
  1473   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
  1474   // O0 is now the oop to be checked.  O7 is the return address.
  1475   Register O0_obj = O0;
  1477   // Save some more registers for temps.
  1478   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
  1479   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
  1480   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
  1481   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
  1483   // Save flags
  1484   Register O5_save_flags = O5;
  1485   rdccr( O5_save_flags );
  1487   { // count number of verifies
  1488     Register O2_adr   = O2;
  1489     Register O3_accum = O3;
  1490     inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
  1493   Register O2_mask = O2;
  1494   Register O3_bits = O3;
  1495   Register O4_temp = O4;
  1497   // mark lower end of faulting range
  1498   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
  1499   _verify_oop_implicit_branch[0] = pc();
  1501   // We can't check the mark oop because it could be in the process of
  1502   // locking or unlocking while this is running.
  1503   set(Universe::verify_oop_mask (), O2_mask);
  1504   set(Universe::verify_oop_bits (), O3_bits);
  1506   // assert((obj & oop_mask) == oop_bits);
  1507   and3(O0_obj, O2_mask, O4_temp);
  1508   cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
  1510   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
  1511     // the null_or_fail case is useless; must test for null separately
  1512     br_null_short(O0_obj, pn, succeed);
  1515   // Check the Klass* of this object for being in the right area of memory.
  1516   // Cannot do the load in the delay above slot in case O0 is null
  1517   load_klass(O0_obj, O0_obj);
  1518   // assert((klass != NULL)
  1519   br_null_short(O0_obj, pn, fail);
  1520   // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
  1522   wrccr( O5_save_flags ); // Restore CCR's
  1524   // mark upper end of faulting range
  1525   _verify_oop_implicit_branch[1] = pc();
  1527   //-----------------------
  1528   // all tests pass
  1529   bind(succeed);
  1531   // Restore prior 64-bit registers
  1532   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
  1533   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
  1534   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
  1535   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
  1536   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
  1537   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
  1539   retl();                       // Leaf return; restore prior O7 in delay slot
  1540   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
  1542   //-----------------------
  1543   bind(null_or_fail);           // nulls are less common but OK
  1544   br_null(O0_obj, false, pt, succeed);
  1545   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1547   //-----------------------
  1548   // report failure:
  1549   bind(fail);
  1550   _verify_oop_implicit_branch[2] = pc();
  1552   wrccr( O5_save_flags ); // Restore CCR's
  1554   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1556   // stop_subroutine expects message pointer in I1.
  1557   mov(I1, O1);
  1559   // Restore prior 64-bit registers
  1560   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
  1561   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
  1562   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
  1563   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
  1564   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
  1565   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
  1567   // factor long stop-sequence into subroutine to save space
  1568   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1570   // call indirectly to solve generation ordering problem
  1571   AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
  1572   load_ptr_contents(al, O5);
  1573   jmpl(O5, 0, O7);
  1574   delayed()->nop();
  1578 void MacroAssembler::stop(const char* msg) {
  1579   // save frame first to get O7 for return address
  1580   // add one word to size in case struct is odd number of words long
  1581   // It must be doubleword-aligned for storing doubles into it.
  1583     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1585     // stop_subroutine expects message pointer in I1.
  1586     // Size of set() should stay the same
  1587     patchable_set((intptr_t)msg, O1);
  1589     // factor long stop-sequence into subroutine to save space
  1590     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1592     // call indirectly to solve generation ordering problem
  1593     AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
  1594     load_ptr_contents(a, O5);
  1595     jmpl(O5, 0, O7);
  1596     delayed()->nop();
  1598     breakpoint_trap();   // make stop actually stop rather than writing
  1599                          // unnoticeable results in the output files.
  1601     // restore(); done in callee to save space!
  1605 void MacroAssembler::warn(const char* msg) {
  1606   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1607   RegistersForDebugging::save_registers(this);
  1608   mov(O0, L0);
  1609   // Size of set() should stay the same
  1610   patchable_set((intptr_t)msg, O0);
  1611   call( CAST_FROM_FN_PTR(address, warning) );
  1612   delayed()->nop();
  1613 //  ret();
  1614 //  delayed()->restore();
  1615   RegistersForDebugging::restore_registers(this, L0);
  1616   restore();
  1620 void MacroAssembler::untested(const char* what) {
  1621   // We must be able to turn interactive prompting off
  1622   // in order to run automated test scripts on the VM
  1623   // Use the flag ShowMessageBoxOnError
  1625   const char* b = NULL;
  1627     ResourceMark rm;
  1628     stringStream ss;
  1629     ss.print("untested: %s", what);
  1630     b = code_string(ss.as_string());
  1632   if (ShowMessageBoxOnError) { STOP(b); }
  1633   else                       { warn(b); }
  1637 void MacroAssembler::stop_subroutine() {
  1638   RegistersForDebugging::save_registers(this);
  1640   // for the sake of the debugger, stick a PC on the current frame
  1641   // (this assumes that the caller has performed an extra "save")
  1642   mov(I7, L7);
  1643   add(O7, -7 * BytesPerInt, I7);
  1645   save_frame(); // one more save to free up another O7 register
  1646   mov(I0, O1); // addr of reg save area
  1648   // We expect pointer to message in I1. Caller must set it up in O1
  1649   mov(I1, O0); // get msg
  1650   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  1651   delayed()->nop();
  1653   restore();
  1655   RegistersForDebugging::restore_registers(this, O0);
  1657   save_frame(0);
  1658   call(CAST_FROM_FN_PTR(address,breakpoint));
  1659   delayed()->nop();
  1660   restore();
  1662   mov(L7, I7);
  1663   retl();
  1664   delayed()->restore(); // see stop above
  1668 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
  1669   if ( ShowMessageBoxOnError ) {
  1670     JavaThread* thread = JavaThread::current();
  1671     JavaThreadState saved_state = thread->thread_state();
  1672     thread->set_thread_state(_thread_in_vm);
  1674         // In order to get locks work, we need to fake a in_VM state
  1675         ttyLocker ttyl;
  1676         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
  1677         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  1678         BytecodeCounter::print();
  1680         if (os::message_box(msg, "Execution stopped, print registers?"))
  1681           regs->print(::tty);
  1683     BREAKPOINT;
  1684       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
  1686   else {
  1687      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  1689   assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  1693 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
  1694   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
  1695   Label no_extras;
  1696   br( negative, true, pt, no_extras ); // if neg, clear reg
  1697   delayed()->set(0, Rresult);          // annuled, so only if taken
  1698   bind( no_extras );
  1702 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
  1703 #ifdef _LP64
  1704   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
  1705 #else
  1706   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
  1707 #endif
  1708   bclr(1, Rresult);
  1709   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
  1713 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
  1714   calc_frame_size(Rextra_words, Rresult);
  1715   neg(Rresult);
  1716   save(SP, Rresult, SP);
  1720 // ---------------------------------------------------------
  1721 Assembler::RCondition cond2rcond(Assembler::Condition c) {
  1722   switch (c) {
  1723     /*case zero: */
  1724     case Assembler::equal:        return Assembler::rc_z;
  1725     case Assembler::lessEqual:    return Assembler::rc_lez;
  1726     case Assembler::less:         return Assembler::rc_lz;
  1727     /*case notZero:*/
  1728     case Assembler::notEqual:     return Assembler::rc_nz;
  1729     case Assembler::greater:      return Assembler::rc_gz;
  1730     case Assembler::greaterEqual: return Assembler::rc_gez;
  1732   ShouldNotReachHere();
  1733   return Assembler::rc_z;
  1736 // compares (32 bit) register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
  1737 void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
  1738   tst(s1);
  1739   br (c, a, p, L);
  1742 // Compares a pointer register with zero and branches on null.
  1743 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
  1744 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
  1745   assert_not_delayed();
  1746 #ifdef _LP64
  1747   bpr( rc_z, a, p, s1, L );
  1748 #else
  1749   tst(s1);
  1750   br ( zero, a, p, L );
  1751 #endif
  1754 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
  1755   assert_not_delayed();
  1756 #ifdef _LP64
  1757   bpr( rc_nz, a, p, s1, L );
  1758 #else
  1759   tst(s1);
  1760   br ( notZero, a, p, L );
  1761 #endif
  1764 // Compare registers and branch with nop in delay slot or cbcond without delay slot.
  1766 // Compare integer (32 bit) values (icc only).
  1767 void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
  1768                                       Predict p, Label& L) {
  1769   assert_not_delayed();
  1770   if (use_cbcond(L)) {
  1771     Assembler::cbcond(c, icc, s1, s2, L);
  1772   } else {
  1773     cmp(s1, s2);
  1774     br(c, false, p, L);
  1775     delayed()->nop();
  1779 // Compare integer (32 bit) values (icc only).
  1780 void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
  1781                                       Predict p, Label& L) {
  1782   assert_not_delayed();
  1783   if (is_simm(simm13a,5) && use_cbcond(L)) {
  1784     Assembler::cbcond(c, icc, s1, simm13a, L);
  1785   } else {
  1786     cmp(s1, simm13a);
  1787     br(c, false, p, L);
  1788     delayed()->nop();
  1792 // Branch that tests xcc in LP64 and icc in !LP64
  1793 void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
  1794                                        Predict p, Label& L) {
  1795   assert_not_delayed();
  1796   if (use_cbcond(L)) {
  1797     Assembler::cbcond(c, ptr_cc, s1, s2, L);
  1798   } else {
  1799     cmp(s1, s2);
  1800     brx(c, false, p, L);
  1801     delayed()->nop();
  1805 // Branch that tests xcc in LP64 and icc in !LP64
  1806 void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
  1807                                        Predict p, Label& L) {
  1808   assert_not_delayed();
  1809   if (is_simm(simm13a,5) && use_cbcond(L)) {
  1810     Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
  1811   } else {
  1812     cmp(s1, simm13a);
  1813     brx(c, false, p, L);
  1814     delayed()->nop();
  1818 // Short branch version for compares a pointer with zero.
  1820 void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
  1821   assert_not_delayed();
  1822   if (use_cbcond(L)) {
  1823     Assembler::cbcond(zero, ptr_cc, s1, 0, L);
  1824     return;
  1826   br_null(s1, false, p, L);
  1827   delayed()->nop();
  1830 void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
  1831   assert_not_delayed();
  1832   if (use_cbcond(L)) {
  1833     Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
  1834     return;
  1836   br_notnull(s1, false, p, L);
  1837   delayed()->nop();
  1840 // Unconditional short branch
  1841 void MacroAssembler::ba_short(Label& L) {
  1842   if (use_cbcond(L)) {
  1843     Assembler::cbcond(equal, icc, G0, G0, L);
  1844     return;
  1846   br(always, false, pt, L);
  1847   delayed()->nop();
  1850 // instruction sequences factored across compiler & interpreter
  1853 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
  1854                            Register Rb_hi, Register Rb_low,
  1855                            Register Rresult) {
  1857   Label check_low_parts, done;
  1859   cmp(Ra_hi, Rb_hi );  // compare hi parts
  1860   br(equal, true, pt, check_low_parts);
  1861   delayed()->cmp(Ra_low, Rb_low); // test low parts
  1863   // And, with an unsigned comparison, it does not matter if the numbers
  1864   // are negative or not.
  1865   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
  1866   // The second one is bigger (unsignedly).
  1868   // Other notes:  The first move in each triplet can be unconditional
  1869   // (and therefore probably prefetchable).
  1870   // And the equals case for the high part does not need testing,
  1871   // since that triplet is reached only after finding the high halves differ.
  1873   if (VM_Version::v9_instructions_work()) {
  1874     mov(-1, Rresult);
  1875     ba(done);  delayed()-> movcc(greater, false, icc,  1, Rresult);
  1876   } else {
  1877     br(less,    true, pt, done); delayed()-> set(-1, Rresult);
  1878     br(greater, true, pt, done); delayed()-> set( 1, Rresult);
  1881   bind( check_low_parts );
  1883   if (VM_Version::v9_instructions_work()) {
  1884     mov(                               -1, Rresult);
  1885     movcc(equal,           false, icc,  0, Rresult);
  1886     movcc(greaterUnsigned, false, icc,  1, Rresult);
  1887   } else {
  1888     set(-1, Rresult);
  1889     br(equal,           true, pt, done); delayed()->set( 0, Rresult);
  1890     br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
  1892   bind( done );
  1895 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
  1896   subcc(  G0, Rlow, Rlow );
  1897   subc(   G0, Rhi,  Rhi  );
  1900 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
  1901                            Register Rcount,
  1902                            Register Rout_high, Register Rout_low,
  1903                            Register Rtemp ) {
  1906   Register Ralt_count = Rtemp;
  1907   Register Rxfer_bits = Rtemp;
  1909   assert( Ralt_count != Rin_high
  1910       &&  Ralt_count != Rin_low
  1911       &&  Ralt_count != Rcount
  1912       &&  Rxfer_bits != Rin_low
  1913       &&  Rxfer_bits != Rin_high
  1914       &&  Rxfer_bits != Rcount
  1915       &&  Rxfer_bits != Rout_low
  1916       &&  Rout_low   != Rin_high,
  1917         "register alias checks");
  1919   Label big_shift, done;
  1921   // This code can be optimized to use the 64 bit shifts in V9.
  1922   // Here we use the 32 bit shifts.
  1924   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
  1925   subcc(Rcount,   31, Ralt_count);
  1926   br(greater, true, pn, big_shift);
  1927   delayed()->dec(Ralt_count);
  1929   // shift < 32 bits, Ralt_count = Rcount-31
  1931   // We get the transfer bits by shifting right by 32-count the low
  1932   // register. This is done by shifting right by 31-count and then by one
  1933   // more to take care of the special (rare) case where count is zero
  1934   // (shifting by 32 would not work).
  1936   neg(Ralt_count);
  1938   // The order of the next two instructions is critical in the case where
  1939   // Rin and Rout are the same and should not be reversed.
  1941   srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
  1942   if (Rcount != Rout_low) {
  1943     sll(Rin_low, Rcount, Rout_low); // low half
  1945   sll(Rin_high, Rcount, Rout_high);
  1946   if (Rcount == Rout_low) {
  1947     sll(Rin_low, Rcount, Rout_low); // low half
  1949   srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
  1950   ba(done);
  1951   delayed()->or3(Rout_high, Rxfer_bits, Rout_high);   // new hi value: or in shifted old hi part and xfer from low
  1953   // shift >= 32 bits, Ralt_count = Rcount-32
  1954   bind(big_shift);
  1955   sll(Rin_low, Ralt_count, Rout_high  );
  1956   clr(Rout_low);
  1958   bind(done);
  1962 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
  1963                            Register Rcount,
  1964                            Register Rout_high, Register Rout_low,
  1965                            Register Rtemp ) {
  1967   Register Ralt_count = Rtemp;
  1968   Register Rxfer_bits = Rtemp;
  1970   assert( Ralt_count != Rin_high
  1971       &&  Ralt_count != Rin_low
  1972       &&  Ralt_count != Rcount
  1973       &&  Rxfer_bits != Rin_low
  1974       &&  Rxfer_bits != Rin_high
  1975       &&  Rxfer_bits != Rcount
  1976       &&  Rxfer_bits != Rout_high
  1977       &&  Rout_high  != Rin_low,
  1978         "register alias checks");
  1980   Label big_shift, done;
  1982   // This code can be optimized to use the 64 bit shifts in V9.
  1983   // Here we use the 32 bit shifts.
  1985   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
  1986   subcc(Rcount,   31, Ralt_count);
  1987   br(greater, true, pn, big_shift);
  1988   delayed()->dec(Ralt_count);
  1990   // shift < 32 bits, Ralt_count = Rcount-31
  1992   // We get the transfer bits by shifting left by 32-count the high
  1993   // register. This is done by shifting left by 31-count and then by one
  1994   // more to take care of the special (rare) case where count is zero
  1995   // (shifting by 32 would not work).
  1997   neg(Ralt_count);
  1998   if (Rcount != Rout_low) {
  1999     srl(Rin_low, Rcount, Rout_low);
  2002   // The order of the next two instructions is critical in the case where
  2003   // Rin and Rout are the same and should not be reversed.
  2005   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
  2006   sra(Rin_high,     Rcount, Rout_high ); // high half
  2007   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
  2008   if (Rcount == Rout_low) {
  2009     srl(Rin_low, Rcount, Rout_low);
  2011   ba(done);
  2012   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
  2014   // shift >= 32 bits, Ralt_count = Rcount-32
  2015   bind(big_shift);
  2017   sra(Rin_high, Ralt_count, Rout_low);
  2018   sra(Rin_high,         31, Rout_high); // sign into hi
  2020   bind( done );
  2025 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
  2026                             Register Rcount,
  2027                             Register Rout_high, Register Rout_low,
  2028                             Register Rtemp ) {
  2030   Register Ralt_count = Rtemp;
  2031   Register Rxfer_bits = Rtemp;
  2033   assert( Ralt_count != Rin_high
  2034       &&  Ralt_count != Rin_low
  2035       &&  Ralt_count != Rcount
  2036       &&  Rxfer_bits != Rin_low
  2037       &&  Rxfer_bits != Rin_high
  2038       &&  Rxfer_bits != Rcount
  2039       &&  Rxfer_bits != Rout_high
  2040       &&  Rout_high  != Rin_low,
  2041         "register alias checks");
  2043   Label big_shift, done;
  2045   // This code can be optimized to use the 64 bit shifts in V9.
  2046   // Here we use the 32 bit shifts.
  2048   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
  2049   subcc(Rcount,   31, Ralt_count);
  2050   br(greater, true, pn, big_shift);
  2051   delayed()->dec(Ralt_count);
  2053   // shift < 32 bits, Ralt_count = Rcount-31
  2055   // We get the transfer bits by shifting left by 32-count the high
  2056   // register. This is done by shifting left by 31-count and then by one
  2057   // more to take care of the special (rare) case where count is zero
  2058   // (shifting by 32 would not work).
  2060   neg(Ralt_count);
  2061   if (Rcount != Rout_low) {
  2062     srl(Rin_low, Rcount, Rout_low);
  2065   // The order of the next two instructions is critical in the case where
  2066   // Rin and Rout are the same and should not be reversed.
  2068   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
  2069   srl(Rin_high,     Rcount, Rout_high ); // high half
  2070   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
  2071   if (Rcount == Rout_low) {
  2072     srl(Rin_low, Rcount, Rout_low);
  2074   ba(done);
  2075   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
  2077   // shift >= 32 bits, Ralt_count = Rcount-32
  2078   bind(big_shift);
  2080   srl(Rin_high, Ralt_count, Rout_low);
  2081   clr(Rout_high);
  2083   bind( done );
  2086 #ifdef _LP64
  2087 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
  2088   cmp(Ra, Rb);
  2089   mov(-1, Rresult);
  2090   movcc(equal,   false, xcc,  0, Rresult);
  2091   movcc(greater, false, xcc,  1, Rresult);
  2093 #endif
  2096 void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
  2097   switch (size_in_bytes) {
  2098   case  8:  ld_long(src, dst); break;
  2099   case  4:  ld(     src, dst); break;
  2100   case  2:  is_signed ? ldsh(src, dst) : lduh(src, dst); break;
  2101   case  1:  is_signed ? ldsb(src, dst) : ldub(src, dst); break;
  2102   default:  ShouldNotReachHere();
  2106 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
  2107   switch (size_in_bytes) {
  2108   case  8:  st_long(src, dst); break;
  2109   case  4:  st(     src, dst); break;
  2110   case  2:  sth(    src, dst); break;
  2111   case  1:  stb(    src, dst); break;
  2112   default:  ShouldNotReachHere();
  2117 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
  2118                                 FloatRegister Fa, FloatRegister Fb,
  2119                                 Register Rresult) {
  2121   fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
  2123   Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
  2124   Condition eq =                          f_equal;
  2125   Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
  2127   if (VM_Version::v9_instructions_work()) {
  2129     mov(-1, Rresult);
  2130     movcc(eq, true, fcc0, 0, Rresult);
  2131     movcc(gt, true, fcc0, 1, Rresult);
  2133   } else {
  2134     Label done;
  2136     set( -1, Rresult );
  2137     //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
  2138     fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
  2139     fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
  2141     bind (done);
  2146 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2148   if (VM_Version::v9_instructions_work()) {
  2149     Assembler::fneg(w, s, d);
  2150   } else {
  2151     if (w == FloatRegisterImpl::S) {
  2152       Assembler::fneg(w, s, d);
  2153     } else if (w == FloatRegisterImpl::D) {
  2154       // number() does a sanity check on the alignment.
  2155       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2156         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2158       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2159       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2160     } else {
  2161       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2163       // number() does a sanity check on the alignment.
  2164       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2165         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2167       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2168       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2169       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2170       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2175 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2177   if (VM_Version::v9_instructions_work()) {
  2178     Assembler::fmov(w, s, d);
  2179   } else {
  2180     if (w == FloatRegisterImpl::S) {
  2181       Assembler::fmov(w, s, d);
  2182     } else if (w == FloatRegisterImpl::D) {
  2183       // number() does a sanity check on the alignment.
  2184       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2185         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2187       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2188       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2189     } else {
  2190       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2192       // number() does a sanity check on the alignment.
  2193       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2194         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2196       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2197       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2198       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2199       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2204 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2206   if (VM_Version::v9_instructions_work()) {
  2207     Assembler::fabs(w, s, d);
  2208   } else {
  2209     if (w == FloatRegisterImpl::S) {
  2210       Assembler::fabs(w, s, d);
  2211     } else if (w == FloatRegisterImpl::D) {
  2212       // number() does a sanity check on the alignment.
  2213       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2214         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2216       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2217       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2218     } else {
  2219       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2221       // number() does a sanity check on the alignment.
  2222       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2223        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2225       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2226       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2227       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2228       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2233 void MacroAssembler::save_all_globals_into_locals() {
  2234   mov(G1,L1);
  2235   mov(G2,L2);
  2236   mov(G3,L3);
  2237   mov(G4,L4);
  2238   mov(G5,L5);
  2239   mov(G6,L6);
  2240   mov(G7,L7);
  2243 void MacroAssembler::restore_globals_from_locals() {
  2244   mov(L1,G1);
  2245   mov(L2,G2);
  2246   mov(L3,G3);
  2247   mov(L4,G4);
  2248   mov(L5,G5);
  2249   mov(L6,G6);
  2250   mov(L7,G7);
  2253 // Use for 64 bit operation.
  2254 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2256   // store ptr_reg as the new top value
  2257 #ifdef _LP64
  2258   casx(top_ptr_reg, top_reg, ptr_reg);
  2259 #else
  2260   cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
  2261 #endif // _LP64
  2264 // [RGV] This routine does not handle 64 bit operations.
  2265 //       use casx_under_lock() or casx directly!!!
  2266 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2268   // store ptr_reg as the new top value
  2269   if (VM_Version::v9_instructions_work()) {
  2270     cas(top_ptr_reg, top_reg, ptr_reg);
  2271   } else {
  2273     // If the register is not an out nor global, it is not visible
  2274     // after the save.  Allocate a register for it, save its
  2275     // value in the register save area (the save may not flush
  2276     // registers to the save area).
  2278     Register top_ptr_reg_after_save;
  2279     Register top_reg_after_save;
  2280     Register ptr_reg_after_save;
  2282     if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
  2283       top_ptr_reg_after_save = top_ptr_reg->after_save();
  2284     } else {
  2285       Address reg_save_addr = top_ptr_reg->address_in_saved_window();
  2286       top_ptr_reg_after_save = L0;
  2287       st(top_ptr_reg, reg_save_addr);
  2290     if (top_reg->is_out() || top_reg->is_global()) {
  2291       top_reg_after_save = top_reg->after_save();
  2292     } else {
  2293       Address reg_save_addr = top_reg->address_in_saved_window();
  2294       top_reg_after_save = L1;
  2295       st(top_reg, reg_save_addr);
  2298     if (ptr_reg->is_out() || ptr_reg->is_global()) {
  2299       ptr_reg_after_save = ptr_reg->after_save();
  2300     } else {
  2301       Address reg_save_addr = ptr_reg->address_in_saved_window();
  2302       ptr_reg_after_save = L2;
  2303       st(ptr_reg, reg_save_addr);
  2306     const Register& lock_reg = L3;
  2307     const Register& lock_ptr_reg = L4;
  2308     const Register& value_reg = L5;
  2309     const Register& yield_reg = L6;
  2310     const Register& yieldall_reg = L7;
  2312     save_frame();
  2314     if (top_ptr_reg_after_save == L0) {
  2315       ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
  2318     if (top_reg_after_save == L1) {
  2319       ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
  2322     if (ptr_reg_after_save == L2) {
  2323       ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
  2326     Label(retry_get_lock);
  2327     Label(not_same);
  2328     Label(dont_yield);
  2330     assert(lock_addr, "lock_address should be non null for v8");
  2331     set((intptr_t)lock_addr, lock_ptr_reg);
  2332     // Initialize yield counter
  2333     mov(G0,yield_reg);
  2334     mov(G0, yieldall_reg);
  2335     set(StubRoutines::Sparc::locked, lock_reg);
  2337     bind(retry_get_lock);
  2338     cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dont_yield);
  2340     if(use_call_vm) {
  2341       Untested("Need to verify global reg consistancy");
  2342       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
  2343     } else {
  2344       // Save the regs and make space for a C call
  2345       save(SP, -96, SP);
  2346       save_all_globals_into_locals();
  2347       call(CAST_FROM_FN_PTR(address,os::yield_all));
  2348       delayed()->mov(yieldall_reg, O0);
  2349       restore_globals_from_locals();
  2350       restore();
  2353     // reset the counter
  2354     mov(G0,yield_reg);
  2355     add(yieldall_reg, 1, yieldall_reg);
  2357     bind(dont_yield);
  2358     // try to get lock
  2359     Assembler::swap(lock_ptr_reg, 0, lock_reg);
  2361     // did we get the lock?
  2362     cmp(lock_reg, StubRoutines::Sparc::unlocked);
  2363     br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
  2364     delayed()->add(yield_reg,1,yield_reg);
  2366     // yes, got lock.  do we have the same top?
  2367     ld(top_ptr_reg_after_save, 0, value_reg);
  2368     cmp_and_br_short(value_reg, top_reg_after_save, Assembler::notEqual, Assembler::pn, not_same);
  2370     // yes, same top.
  2371     st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
  2372     membar(Assembler::StoreStore);
  2374     bind(not_same);
  2375     mov(value_reg, ptr_reg_after_save);
  2376     st(lock_reg, lock_ptr_reg, 0); // unlock
  2378     restore();
  2382 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  2383                                                       Register tmp,
  2384                                                       int offset) {
  2385   intptr_t value = *delayed_value_addr;
  2386   if (value != 0)
  2387     return RegisterOrConstant(value + offset);
  2389   // load indirectly to solve generation ordering problem
  2390   AddressLiteral a(delayed_value_addr);
  2391   load_ptr_contents(a, tmp);
  2393 #ifdef ASSERT
  2394   tst(tmp);
  2395   breakpoint_trap(zero, xcc);
  2396 #endif
  2398   if (offset != 0)
  2399     add(tmp, offset, tmp);
  2401   return RegisterOrConstant(tmp);
  2405 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2406   assert(d.register_or_noreg() != G0, "lost side effect");
  2407   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2408       (s2.is_register() && s2.as_register() == G0)) {
  2409     // Do nothing, just move value.
  2410     if (s1.is_register()) {
  2411       if (d.is_constant())  d = temp;
  2412       mov(s1.as_register(), d.as_register());
  2413       return d;
  2414     } else {
  2415       return s1;
  2419   if (s1.is_register()) {
  2420     assert_different_registers(s1.as_register(), temp);
  2421     if (d.is_constant())  d = temp;
  2422     andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2423     return d;
  2424   } else {
  2425     if (s2.is_register()) {
  2426       assert_different_registers(s2.as_register(), temp);
  2427       if (d.is_constant())  d = temp;
  2428       set(s1.as_constant(), temp);
  2429       andn(temp, s2.as_register(), d.as_register());
  2430       return d;
  2431     } else {
  2432       intptr_t res = s1.as_constant() & ~s2.as_constant();
  2433       return res;
  2438 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2439   assert(d.register_or_noreg() != G0, "lost side effect");
  2440   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2441       (s2.is_register() && s2.as_register() == G0)) {
  2442     // Do nothing, just move value.
  2443     if (s1.is_register()) {
  2444       if (d.is_constant())  d = temp;
  2445       mov(s1.as_register(), d.as_register());
  2446       return d;
  2447     } else {
  2448       return s1;
  2452   if (s1.is_register()) {
  2453     assert_different_registers(s1.as_register(), temp);
  2454     if (d.is_constant())  d = temp;
  2455     add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2456     return d;
  2457   } else {
  2458     if (s2.is_register()) {
  2459       assert_different_registers(s2.as_register(), temp);
  2460       if (d.is_constant())  d = temp;
  2461       add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
  2462       return d;
  2463     } else {
  2464       intptr_t res = s1.as_constant() + s2.as_constant();
  2465       return res;
  2470 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2471   assert(d.register_or_noreg() != G0, "lost side effect");
  2472   if (!is_simm13(s2.constant_or_zero()))
  2473     s2 = (s2.as_constant() & 0xFF);
  2474   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2475       (s2.is_register() && s2.as_register() == G0)) {
  2476     // Do nothing, just move value.
  2477     if (s1.is_register()) {
  2478       if (d.is_constant())  d = temp;
  2479       mov(s1.as_register(), d.as_register());
  2480       return d;
  2481     } else {
  2482       return s1;
  2486   if (s1.is_register()) {
  2487     assert_different_registers(s1.as_register(), temp);
  2488     if (d.is_constant())  d = temp;
  2489     sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2490     return d;
  2491   } else {
  2492     if (s2.is_register()) {
  2493       assert_different_registers(s2.as_register(), temp);
  2494       if (d.is_constant())  d = temp;
  2495       set(s1.as_constant(), temp);
  2496       sll_ptr(temp, s2.as_register(), d.as_register());
  2497       return d;
  2498     } else {
  2499       intptr_t res = s1.as_constant() << s2.as_constant();
  2500       return res;
  2506 // Look up the method for a megamorphic invokeinterface call.
  2507 // The target method is determined by <intf_klass, itable_index>.
  2508 // The receiver klass is in recv_klass.
  2509 // On success, the result will be in method_result, and execution falls through.
  2510 // On failure, execution transfers to the given label.
  2511 void MacroAssembler::lookup_interface_method(Register recv_klass,
  2512                                              Register intf_klass,
  2513                                              RegisterOrConstant itable_index,
  2514                                              Register method_result,
  2515                                              Register scan_temp,
  2516                                              Register sethi_temp,
  2517                                              Label& L_no_such_interface) {
  2518   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  2519   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  2520          "caller must use same register for non-constant itable index as for method");
  2522   Label L_no_such_interface_restore;
  2523   bool did_save = false;
  2524   if (scan_temp == noreg || sethi_temp == noreg) {
  2525     Register recv_2 = recv_klass->is_global() ? recv_klass : L0;
  2526     Register intf_2 = intf_klass->is_global() ? intf_klass : L1;
  2527     assert(method_result->is_global(), "must be able to return value");
  2528     scan_temp  = L2;
  2529     sethi_temp = L3;
  2530     save_frame_and_mov(0, recv_klass, recv_2, intf_klass, intf_2);
  2531     recv_klass = recv_2;
  2532     intf_klass = intf_2;
  2533     did_save = true;
  2536   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  2537   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  2538   int scan_step   = itableOffsetEntry::size() * wordSize;
  2539   int vte_size    = vtableEntry::size() * wordSize;
  2541   lduw(recv_klass, InstanceKlass::vtable_length_offset() * wordSize, scan_temp);
  2542   // %%% We should store the aligned, prescaled offset in the klassoop.
  2543   // Then the next several instructions would fold away.
  2545   int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
  2546   int itb_offset = vtable_base;
  2547   if (round_to_unit != 0) {
  2548     // hoist first instruction of round_to(scan_temp, BytesPerLong):
  2549     itb_offset += round_to_unit - wordSize;
  2551   int itb_scale = exact_log2(vtableEntry::size() * wordSize);
  2552   sll(scan_temp, itb_scale,  scan_temp);
  2553   add(scan_temp, itb_offset, scan_temp);
  2554   if (round_to_unit != 0) {
  2555     // Round up to align_object_offset boundary
  2556     // see code for InstanceKlass::start_of_itable!
  2557     // Was: round_to(scan_temp, BytesPerLong);
  2558     // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
  2559     and3(scan_temp, -round_to_unit, scan_temp);
  2561   add(recv_klass, scan_temp, scan_temp);
  2563   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  2564   RegisterOrConstant itable_offset = itable_index;
  2565   itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
  2566   itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
  2567   add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
  2569   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  2570   //   if (scan->interface() == intf) {
  2571   //     result = (klass + scan->offset() + itable_index);
  2572   //   }
  2573   // }
  2574   Label L_search, L_found_method;
  2576   for (int peel = 1; peel >= 0; peel--) {
  2577     // %%%% Could load both offset and interface in one ldx, if they were
  2578     // in the opposite order.  This would save a load.
  2579     ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
  2581     // Check that this entry is non-null.  A null entry means that
  2582     // the receiver class doesn't implement the interface, and wasn't the
  2583     // same as when the caller was compiled.
  2584     bpr(Assembler::rc_z, false, Assembler::pn, method_result, did_save ? L_no_such_interface_restore : L_no_such_interface);
  2585     delayed()->cmp(method_result, intf_klass);
  2587     if (peel) {
  2588       brx(Assembler::equal,    false, Assembler::pt, L_found_method);
  2589     } else {
  2590       brx(Assembler::notEqual, false, Assembler::pn, L_search);
  2591       // (invert the test to fall through to found_method...)
  2593     delayed()->add(scan_temp, scan_step, scan_temp);
  2595     if (!peel)  break;
  2597     bind(L_search);
  2600   bind(L_found_method);
  2602   // Got a hit.
  2603   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
  2604   // scan_temp[-scan_step] points to the vtable offset we need
  2605   ito_offset -= scan_step;
  2606   lduw(scan_temp, ito_offset, scan_temp);
  2607   ld_ptr(recv_klass, scan_temp, method_result);
  2609   if (did_save) {
  2610     Label L_done;
  2611     ba(L_done);
  2612     delayed()->restore();
  2614     bind(L_no_such_interface_restore);
  2615     ba(L_no_such_interface);
  2616     delayed()->restore();
  2618     bind(L_done);
  2623 // virtual method calling
  2624 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  2625                                            RegisterOrConstant vtable_index,
  2626                                            Register method_result) {
  2627   assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
  2628   Register sethi_temp = method_result;
  2629   const int base = (InstanceKlass::vtable_start_offset() * wordSize +
  2630                     // method pointer offset within the vtable entry:
  2631                     vtableEntry::method_offset_in_bytes());
  2632   RegisterOrConstant vtable_offset = vtable_index;
  2633   // Each of the following three lines potentially generates an instruction.
  2634   // But the total number of address formation instructions will always be
  2635   // at most two, and will often be zero.  In any case, it will be optimal.
  2636   // If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
  2637   // If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
  2638   vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size() * wordSize), vtable_offset);
  2639   vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
  2640   Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
  2641   ld_ptr(vtable_entry_addr, method_result);
  2645 void MacroAssembler::check_klass_subtype(Register sub_klass,
  2646                                          Register super_klass,
  2647                                          Register temp_reg,
  2648                                          Register temp2_reg,
  2649                                          Label& L_success) {
  2650   Register sub_2 = sub_klass;
  2651   Register sup_2 = super_klass;
  2652   if (!sub_2->is_global())  sub_2 = L0;
  2653   if (!sup_2->is_global())  sup_2 = L1;
  2654   bool did_save = false;
  2655   if (temp_reg == noreg || temp2_reg == noreg) {
  2656     temp_reg = L2;
  2657     temp2_reg = L3;
  2658     save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
  2659     sub_klass = sub_2;
  2660     super_klass = sup_2;
  2661     did_save = true;
  2663   Label L_failure, L_pop_to_failure, L_pop_to_success;
  2664   check_klass_subtype_fast_path(sub_klass, super_klass,
  2665                                 temp_reg, temp2_reg,
  2666                                 (did_save ? &L_pop_to_success : &L_success),
  2667                                 (did_save ? &L_pop_to_failure : &L_failure), NULL);
  2669   if (!did_save)
  2670     save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
  2671   check_klass_subtype_slow_path(sub_2, sup_2,
  2672                                 L2, L3, L4, L5,
  2673                                 NULL, &L_pop_to_failure);
  2675   // on success:
  2676   bind(L_pop_to_success);
  2677   restore();
  2678   ba_short(L_success);
  2680   // on failure:
  2681   bind(L_pop_to_failure);
  2682   restore();
  2683   bind(L_failure);
  2687 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  2688                                                    Register super_klass,
  2689                                                    Register temp_reg,
  2690                                                    Register temp2_reg,
  2691                                                    Label* L_success,
  2692                                                    Label* L_failure,
  2693                                                    Label* L_slow_path,
  2694                                         RegisterOrConstant super_check_offset) {
  2695   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  2696   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  2698   bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
  2699   bool need_slow_path = (must_load_sco ||
  2700                          super_check_offset.constant_or_zero() == sco_offset);
  2702   assert_different_registers(sub_klass, super_klass, temp_reg);
  2703   if (super_check_offset.is_register()) {
  2704     assert_different_registers(sub_klass, super_klass, temp_reg,
  2705                                super_check_offset.as_register());
  2706   } else if (must_load_sco) {
  2707     assert(temp2_reg != noreg, "supply either a temp or a register offset");
  2710   Label L_fallthrough;
  2711   int label_nulls = 0;
  2712   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  2713   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  2714   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  2715   assert(label_nulls <= 1 ||
  2716          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
  2717          "at most one NULL in the batch, usually");
  2719   // If the pointers are equal, we are done (e.g., String[] elements).
  2720   // This self-check enables sharing of secondary supertype arrays among
  2721   // non-primary types such as array-of-interface.  Otherwise, each such
  2722   // type would need its own customized SSA.
  2723   // We move this check to the front of the fast path because many
  2724   // type checks are in fact trivially successful in this manner,
  2725   // so we get a nicely predicted branch right at the start of the check.
  2726   cmp(super_klass, sub_klass);
  2727   brx(Assembler::equal, false, Assembler::pn, *L_success);
  2728   delayed()->nop();
  2730   // Check the supertype display:
  2731   if (must_load_sco) {
  2732     // The super check offset is always positive...
  2733     lduw(super_klass, sco_offset, temp2_reg);
  2734     super_check_offset = RegisterOrConstant(temp2_reg);
  2735     // super_check_offset is register.
  2736     assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
  2738   ld_ptr(sub_klass, super_check_offset, temp_reg);
  2739   cmp(super_klass, temp_reg);
  2741   // This check has worked decisively for primary supers.
  2742   // Secondary supers are sought in the super_cache ('super_cache_addr').
  2743   // (Secondary supers are interfaces and very deeply nested subtypes.)
  2744   // This works in the same check above because of a tricky aliasing
  2745   // between the super_cache and the primary super display elements.
  2746   // (The 'super_check_addr' can address either, as the case requires.)
  2747   // Note that the cache is updated below if it does not help us find
  2748   // what we need immediately.
  2749   // So if it was a primary super, we can just fail immediately.
  2750   // Otherwise, it's the slow path for us (no success at this point).
  2752   // Hacked ba(), which may only be used just before L_fallthrough.
  2753 #define FINAL_JUMP(label)            \
  2754   if (&(label) != &L_fallthrough) {  \
  2755     ba(label);  delayed()->nop();    \
  2758   if (super_check_offset.is_register()) {
  2759     brx(Assembler::equal, false, Assembler::pn, *L_success);
  2760     delayed()->cmp(super_check_offset.as_register(), sc_offset);
  2762     if (L_failure == &L_fallthrough) {
  2763       brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
  2764       delayed()->nop();
  2765     } else {
  2766       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
  2767       delayed()->nop();
  2768       FINAL_JUMP(*L_slow_path);
  2770   } else if (super_check_offset.as_constant() == sc_offset) {
  2771     // Need a slow path; fast failure is impossible.
  2772     if (L_slow_path == &L_fallthrough) {
  2773       brx(Assembler::equal, false, Assembler::pt, *L_success);
  2774       delayed()->nop();
  2775     } else {
  2776       brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
  2777       delayed()->nop();
  2778       FINAL_JUMP(*L_success);
  2780   } else {
  2781     // No slow path; it's a fast decision.
  2782     if (L_failure == &L_fallthrough) {
  2783       brx(Assembler::equal, false, Assembler::pt, *L_success);
  2784       delayed()->nop();
  2785     } else {
  2786       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
  2787       delayed()->nop();
  2788       FINAL_JUMP(*L_success);
  2792   bind(L_fallthrough);
  2794 #undef FINAL_JUMP
  2798 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  2799                                                    Register super_klass,
  2800                                                    Register count_temp,
  2801                                                    Register scan_temp,
  2802                                                    Register scratch_reg,
  2803                                                    Register coop_reg,
  2804                                                    Label* L_success,
  2805                                                    Label* L_failure) {
  2806   assert_different_registers(sub_klass, super_klass,
  2807                              count_temp, scan_temp, scratch_reg, coop_reg);
  2809   Label L_fallthrough, L_loop;
  2810   int label_nulls = 0;
  2811   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  2812   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  2813   assert(label_nulls <= 1, "at most one NULL in the batch");
  2815   // a couple of useful fields in sub_klass:
  2816   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  2817   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  2819   // Do a linear scan of the secondary super-klass chain.
  2820   // This code is rarely used, so simplicity is a virtue here.
  2822 #ifndef PRODUCT
  2823   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  2824   inc_counter((address) pst_counter, count_temp, scan_temp);
  2825 #endif
  2827   // We will consult the secondary-super array.
  2828   ld_ptr(sub_klass, ss_offset, scan_temp);
  2830   Register search_key = super_klass;
  2832   // Load the array length.  (Positive movl does right thing on LP64.)
  2833   lduw(scan_temp, Array<Klass*>::length_offset_in_bytes(), count_temp);
  2835   // Check for empty secondary super list
  2836   tst(count_temp);
  2838   // In the array of super classes elements are pointer sized.
  2839   int element_size = wordSize;
  2841   // Top of search loop
  2842   bind(L_loop);
  2843   br(Assembler::equal, false, Assembler::pn, *L_failure);
  2844   delayed()->add(scan_temp, element_size, scan_temp);
  2846   // Skip the array header in all array accesses.
  2847   int elem_offset = Array<Klass*>::base_offset_in_bytes();
  2848   elem_offset -= element_size;   // the scan pointer was pre-incremented also
  2850   // Load next super to check
  2851     ld_ptr( scan_temp, elem_offset, scratch_reg );
  2853   // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
  2854   cmp(scratch_reg, search_key);
  2856   // A miss means we are NOT a subtype and need to keep looping
  2857   brx(Assembler::notEqual, false, Assembler::pn, L_loop);
  2858   delayed()->deccc(count_temp); // decrement trip counter in delay slot
  2860   // Success.  Cache the super we found and proceed in triumph.
  2861   st_ptr(super_klass, sub_klass, sc_offset);
  2863   if (L_success != &L_fallthrough) {
  2864     ba(*L_success);
  2865     delayed()->nop();
  2868   bind(L_fallthrough);
  2872 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
  2873                                                    Register temp_reg,
  2874                                                    int extra_slot_offset) {
  2875   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  2876   int stackElementSize = Interpreter::stackElementSize;
  2877   int offset = extra_slot_offset * stackElementSize;
  2878   if (arg_slot.is_constant()) {
  2879     offset += arg_slot.as_constant() * stackElementSize;
  2880     return offset;
  2881   } else {
  2882     assert(temp_reg != noreg, "must specify");
  2883     sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
  2884     if (offset != 0)
  2885       add(temp_reg, offset, temp_reg);
  2886     return temp_reg;
  2891 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  2892                                          Register temp_reg,
  2893                                          int extra_slot_offset) {
  2894   return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
  2898 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
  2899                                           Register temp_reg,
  2900                                           Label& done, Label* slow_case,
  2901                                           BiasedLockingCounters* counters) {
  2902   assert(UseBiasedLocking, "why call this otherwise?");
  2904   if (PrintBiasedLockingStatistics) {
  2905     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
  2906     if (counters == NULL)
  2907       counters = BiasedLocking::counters();
  2910   Label cas_label;
  2912   // Biased locking
  2913   // See whether the lock is currently biased toward our thread and
  2914   // whether the epoch is still valid
  2915   // Note that the runtime guarantees sufficient alignment of JavaThread
  2916   // pointers to allow age to be placed into low bits
  2917   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  2918   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  2919   cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
  2921   load_klass(obj_reg, temp_reg);
  2922   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
  2923   or3(G2_thread, temp_reg, temp_reg);
  2924   xor3(mark_reg, temp_reg, temp_reg);
  2925   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
  2926   if (counters != NULL) {
  2927     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
  2928     // Reload mark_reg as we may need it later
  2929     ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
  2931   brx(Assembler::equal, true, Assembler::pt, done);
  2932   delayed()->nop();
  2934   Label try_revoke_bias;
  2935   Label try_rebias;
  2936   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
  2937   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  2939   // At this point we know that the header has the bias pattern and
  2940   // that we are not the bias owner in the current epoch. We need to
  2941   // figure out more details about the state of the header in order to
  2942   // know what operations can be legally performed on the object's
  2943   // header.
  2945   // If the low three bits in the xor result aren't clear, that means
  2946   // the prototype header is no longer biased and we have to revoke
  2947   // the bias on this object.
  2948   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
  2949   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
  2951   // Biasing is still enabled for this data type. See whether the
  2952   // epoch of the current bias is still valid, meaning that the epoch
  2953   // bits of the mark word are equal to the epoch bits of the
  2954   // prototype header. (Note that the prototype header's epoch bits
  2955   // only change at a safepoint.) If not, attempt to rebias the object
  2956   // toward the current thread. Note that we must be absolutely sure
  2957   // that the current epoch is invalid in order to do this because
  2958   // otherwise the manipulations it performs on the mark word are
  2959   // illegal.
  2960   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
  2961   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
  2963   // The epoch of the current bias is still valid but we know nothing
  2964   // about the owner; it might be set or it might be clear. Try to
  2965   // acquire the bias of the object using an atomic operation. If this
  2966   // fails we will go in to the runtime to revoke the object's bias.
  2967   // Note that we first construct the presumed unbiased header so we
  2968   // don't accidentally blow away another thread's valid bias.
  2969   delayed()->and3(mark_reg,
  2970                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
  2971                   mark_reg);
  2972   or3(G2_thread, mark_reg, temp_reg);
  2973   casn(mark_addr.base(), mark_reg, temp_reg);
  2974   // If the biasing toward our thread failed, this means that
  2975   // another thread succeeded in biasing it toward itself and we
  2976   // need to revoke that bias. The revocation will occur in the
  2977   // interpreter runtime in the slow case.
  2978   cmp(mark_reg, temp_reg);
  2979   if (counters != NULL) {
  2980     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
  2982   if (slow_case != NULL) {
  2983     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  2984     delayed()->nop();
  2986   ba_short(done);
  2988   bind(try_rebias);
  2989   // At this point we know the epoch has expired, meaning that the
  2990   // current "bias owner", if any, is actually invalid. Under these
  2991   // circumstances _only_, we are allowed to use the current header's
  2992   // value as the comparison value when doing the cas to acquire the
  2993   // bias in the current epoch. In other words, we allow transfer of
  2994   // the bias from one thread to another directly in this situation.
  2995   //
  2996   // FIXME: due to a lack of registers we currently blow away the age
  2997   // bits in this situation. Should attempt to preserve them.
  2998   load_klass(obj_reg, temp_reg);
  2999   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
  3000   or3(G2_thread, temp_reg, temp_reg);
  3001   casn(mark_addr.base(), mark_reg, temp_reg);
  3002   // If the biasing toward our thread failed, this means that
  3003   // another thread succeeded in biasing it toward itself and we
  3004   // need to revoke that bias. The revocation will occur in the
  3005   // interpreter runtime in the slow case.
  3006   cmp(mark_reg, temp_reg);
  3007   if (counters != NULL) {
  3008     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
  3010   if (slow_case != NULL) {
  3011     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  3012     delayed()->nop();
  3014   ba_short(done);
  3016   bind(try_revoke_bias);
  3017   // The prototype mark in the klass doesn't have the bias bit set any
  3018   // more, indicating that objects of this data type are not supposed
  3019   // to be biased any more. We are going to try to reset the mark of
  3020   // this object to the prototype value and fall through to the
  3021   // CAS-based locking scheme. Note that if our CAS fails, it means
  3022   // that another thread raced us for the privilege of revoking the
  3023   // bias of this particular object, so it's okay to continue in the
  3024   // normal locking code.
  3025   //
  3026   // FIXME: due to a lack of registers we currently blow away the age
  3027   // bits in this situation. Should attempt to preserve them.
  3028   load_klass(obj_reg, temp_reg);
  3029   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
  3030   casn(mark_addr.base(), mark_reg, temp_reg);
  3031   // Fall through to the normal CAS-based lock, because no matter what
  3032   // the result of the above CAS, some thread must have succeeded in
  3033   // removing the bias bit from the object's header.
  3034   if (counters != NULL) {
  3035     cmp(mark_reg, temp_reg);
  3036     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
  3039   bind(cas_label);
  3042 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
  3043                                           bool allow_delay_slot_filling) {
  3044   // Check for biased locking unlock case, which is a no-op
  3045   // Note: we do not have to check the thread ID for two reasons.
  3046   // First, the interpreter checks for IllegalMonitorStateException at
  3047   // a higher level. Second, if the bias was revoked while we held the
  3048   // lock, the object could not be rebiased toward another thread, so
  3049   // the bias bit would be clear.
  3050   ld_ptr(mark_addr, temp_reg);
  3051   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  3052   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  3053   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
  3054   delayed();
  3055   if (!allow_delay_slot_filling) {
  3056     nop();
  3061 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
  3062 // Solaris/SPARC's "as".  Another apt name would be cas_ptr()
  3064 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
  3065   casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3070 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
  3071 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
  3072 // The code could be tightened up considerably.
  3073 //
  3074 // box->dhw disposition - post-conditions at DONE_LABEL.
  3075 // -   Successful inflated lock:  box->dhw != 0.
  3076 //     Any non-zero value suffices.
  3077 //     Consider G2_thread, rsp, boxReg, or unused_mark()
  3078 // -   Successful Stack-lock: box->dhw == mark.
  3079 //     box->dhw must contain the displaced mark word value
  3080 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
  3081 //     The slow-path fast_enter() and slow_enter() operators
  3082 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
  3083 // -   Biased: box->dhw is undefined
  3084 //
  3085 // SPARC refworkload performance - specifically jetstream and scimark - are
  3086 // extremely sensitive to the size of the code emitted by compiler_lock_object
  3087 // and compiler_unlock_object.  Critically, the key factor is code size, not path
  3088 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
  3089 // effect).
  3092 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
  3093                                           Register Rbox, Register Rscratch,
  3094                                           BiasedLockingCounters* counters,
  3095                                           bool try_bias) {
  3096    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
  3098    verify_oop(Roop);
  3099    Label done ;
  3101    if (counters != NULL) {
  3102      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
  3105    if (EmitSync & 1) {
  3106      mov(3, Rscratch);
  3107      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3108      cmp(SP, G0);
  3109      return ;
  3112    if (EmitSync & 2) {
  3114      // Fetch object's markword
  3115      ld_ptr(mark_addr, Rmark);
  3117      if (try_bias) {
  3118         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3121      // Save Rbox in Rscratch to be used for the cas operation
  3122      mov(Rbox, Rscratch);
  3124      // set Rmark to markOop | markOopDesc::unlocked_value
  3125      or3(Rmark, markOopDesc::unlocked_value, Rmark);
  3127      // Initialize the box.  (Must happen before we update the object mark!)
  3128      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3130      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
  3131      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3132      casx_under_lock(mark_addr.base(), Rmark, Rscratch,
  3133         (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3135      // if compare/exchange succeeded we found an unlocked object and we now have locked it
  3136      // hence we are done
  3137      cmp(Rmark, Rscratch);
  3138 #ifdef _LP64
  3139      sub(Rscratch, STACK_BIAS, Rscratch);
  3140 #endif
  3141      brx(Assembler::equal, false, Assembler::pt, done);
  3142      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
  3144      // we did not find an unlocked object so see if this is a recursive case
  3145      // sub(Rscratch, SP, Rscratch);
  3146      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3147      andcc(Rscratch, 0xfffff003, Rscratch);
  3148      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3149      bind (done);
  3150      return ;
  3153    Label Egress ;
  3155    if (EmitSync & 256) {
  3156       Label IsInflated ;
  3158       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
  3159       // Triage: biased, stack-locked, neutral, inflated
  3160       if (try_bias) {
  3161         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3162         // Invariant: if control reaches this point in the emitted stream
  3163         // then Rmark has not been modified.
  3166       // Store mark into displaced mark field in the on-stack basic-lock "box"
  3167       // Critically, this must happen before the CAS
  3168       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
  3169       st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3170       andcc(Rmark, 2, G0);
  3171       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
  3172       delayed()->
  3174       // Try stack-lock acquisition.
  3175       // Beware: the 1st instruction is in a delay slot
  3176       mov(Rbox,  Rscratch);
  3177       or3(Rmark, markOopDesc::unlocked_value, Rmark);
  3178       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3179       casn(mark_addr.base(), Rmark, Rscratch);
  3180       cmp(Rmark, Rscratch);
  3181       brx(Assembler::equal, false, Assembler::pt, done);
  3182       delayed()->sub(Rscratch, SP, Rscratch);
  3184       // Stack-lock attempt failed - check for recursive stack-lock.
  3185       // See the comments below about how we might remove this case.
  3186 #ifdef _LP64
  3187       sub(Rscratch, STACK_BIAS, Rscratch);
  3188 #endif
  3189       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3190       andcc(Rscratch, 0xfffff003, Rscratch);
  3191       br(Assembler::always, false, Assembler::pt, done);
  3192       delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3194       bind(IsInflated);
  3195       if (EmitSync & 64) {
  3196          // If m->owner != null goto IsLocked
  3197          // Pessimistic form: Test-and-CAS vs CAS
  3198          // The optimistic form avoids RTS->RTO cache line upgrades.
  3199          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3200          andcc(Rscratch, Rscratch, G0);
  3201          brx(Assembler::notZero, false, Assembler::pn, done);
  3202          delayed()->nop();
  3203          // m->owner == null : it's unlocked.
  3206       // Try to CAS m->owner from null to Self
  3207       // Invariant: if we acquire the lock then _recursions should be 0.
  3208       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
  3209       mov(G2_thread, Rscratch);
  3210       casn(Rmark, G0, Rscratch);
  3211       cmp(Rscratch, G0);
  3212       // Intentional fall-through into done
  3213    } else {
  3214       // Aggressively avoid the Store-before-CAS penalty
  3215       // Defer the store into box->dhw until after the CAS
  3216       Label IsInflated, Recursive ;
  3218 // Anticipate CAS -- Avoid RTS->RTO upgrade
  3219 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
  3221       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
  3222       // Triage: biased, stack-locked, neutral, inflated
  3224       if (try_bias) {
  3225         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3226         // Invariant: if control reaches this point in the emitted stream
  3227         // then Rmark has not been modified.
  3229       andcc(Rmark, 2, G0);
  3230       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
  3231       delayed()->                         // Beware - dangling delay-slot
  3233       // Try stack-lock acquisition.
  3234       // Transiently install BUSY (0) encoding in the mark word.
  3235       // if the CAS of 0 into the mark was successful then we execute:
  3236       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
  3237       //   ST obj->mark = box    -- overwrite transient 0 value
  3238       // This presumes TSO, of course.
  3240       mov(0, Rscratch);
  3241       or3(Rmark, markOopDesc::unlocked_value, Rmark);
  3242       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3243       casn(mark_addr.base(), Rmark, Rscratch);
  3244 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
  3245       cmp(Rscratch, Rmark);
  3246       brx(Assembler::notZero, false, Assembler::pn, Recursive);
  3247       delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3248       if (counters != NULL) {
  3249         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  3251       ba(done);
  3252       delayed()->st_ptr(Rbox, mark_addr);
  3254       bind(Recursive);
  3255       // Stack-lock attempt failed - check for recursive stack-lock.
  3256       // Tests show that we can remove the recursive case with no impact
  3257       // on refworkload 0.83.  If we need to reduce the size of the code
  3258       // emitted by compiler_lock_object() the recursive case is perfect
  3259       // candidate.
  3260       //
  3261       // A more extreme idea is to always inflate on stack-lock recursion.
  3262       // This lets us eliminate the recursive checks in compiler_lock_object
  3263       // and compiler_unlock_object and the (box->dhw == 0) encoding.
  3264       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
  3265       // and showed a performance *increase*.  In the same experiment I eliminated
  3266       // the fast-path stack-lock code from the interpreter and always passed
  3267       // control to the "slow" operators in synchronizer.cpp.
  3269       // RScratch contains the fetched obj->mark value from the failed CASN.
  3270 #ifdef _LP64
  3271       sub(Rscratch, STACK_BIAS, Rscratch);
  3272 #endif
  3273       sub(Rscratch, SP, Rscratch);
  3274       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3275       andcc(Rscratch, 0xfffff003, Rscratch);
  3276       if (counters != NULL) {
  3277         // Accounting needs the Rscratch register
  3278         st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3279         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  3280         ba_short(done);
  3281       } else {
  3282         ba(done);
  3283         delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3286       bind   (IsInflated);
  3287       if (EmitSync & 64) {
  3288          // If m->owner != null goto IsLocked
  3289          // Test-and-CAS vs CAS
  3290          // Pessimistic form avoids futile (doomed) CAS attempts
  3291          // The optimistic form avoids RTS->RTO cache line upgrades.
  3292          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3293          andcc(Rscratch, Rscratch, G0);
  3294          brx(Assembler::notZero, false, Assembler::pn, done);
  3295          delayed()->nop();
  3296          // m->owner == null : it's unlocked.
  3299       // Try to CAS m->owner from null to Self
  3300       // Invariant: if we acquire the lock then _recursions should be 0.
  3301       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
  3302       mov(G2_thread, Rscratch);
  3303       casn(Rmark, G0, Rscratch);
  3304       cmp(Rscratch, G0);
  3305       // ST box->displaced_header = NonZero.
  3306       // Any non-zero value suffices:
  3307       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
  3308       st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3309       // Intentional fall-through into done
  3312    bind   (done);
  3315 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
  3316                                             Register Rbox, Register Rscratch,
  3317                                             bool try_bias) {
  3318    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
  3320    Label done ;
  3322    if (EmitSync & 4) {
  3323      cmp(SP, G0);
  3324      return ;
  3327    if (EmitSync & 8) {
  3328      if (try_bias) {
  3329         biased_locking_exit(mark_addr, Rscratch, done);
  3332      // Test first if it is a fast recursive unlock
  3333      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
  3334      br_null_short(Rmark, Assembler::pt, done);
  3336      // Check if it is still a light weight lock, this is is true if we see
  3337      // the stack address of the basicLock in the markOop of the object
  3338      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3339      casx_under_lock(mark_addr.base(), Rbox, Rmark,
  3340        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3341      ba(done);
  3342      delayed()->cmp(Rbox, Rmark);
  3343      bind(done);
  3344      return ;
  3347    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
  3348    // is too large performance rolls abruptly off a cliff.
  3349    // This could be related to inlining policies, code cache management, or
  3350    // I$ effects.
  3351    Label LStacked ;
  3353    if (try_bias) {
  3354       // TODO: eliminate redundant LDs of obj->mark
  3355       biased_locking_exit(mark_addr, Rscratch, done);
  3358    ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
  3359    ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
  3360    andcc(Rscratch, Rscratch, G0);
  3361    brx(Assembler::zero, false, Assembler::pn, done);
  3362    delayed()->nop();      // consider: relocate fetch of mark, above, into this DS
  3363    andcc(Rmark, 2, G0);
  3364    brx(Assembler::zero, false, Assembler::pt, LStacked);
  3365    delayed()->nop();
  3367    // It's inflated
  3368    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
  3369    // the ST of 0 into _owner which releases the lock.  This prevents loads
  3370    // and stores within the critical section from reordering (floating)
  3371    // past the store that releases the lock.  But TSO is a strong memory model
  3372    // and that particular flavor of barrier is a noop, so we can safely elide it.
  3373    // Note that we use 1-0 locking by default for the inflated case.  We
  3374    // close the resultant (and rare) race by having contented threads in
  3375    // monitorenter periodically poll _owner.
  3376    ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3377    ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
  3378    xor3(Rscratch, G2_thread, Rscratch);
  3379    orcc(Rbox, Rscratch, Rbox);
  3380    brx(Assembler::notZero, false, Assembler::pn, done);
  3381    delayed()->
  3382    ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
  3383    ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
  3384    orcc(Rbox, Rscratch, G0);
  3385    if (EmitSync & 65536) {
  3386       Label LSucc ;
  3387       brx(Assembler::notZero, false, Assembler::pn, LSucc);
  3388       delayed()->nop();
  3389       ba(done);
  3390       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3392       bind(LSucc);
  3393       st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3394       if (os::is_MP()) { membar (StoreLoad); }
  3395       ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
  3396       andcc(Rscratch, Rscratch, G0);
  3397       brx(Assembler::notZero, false, Assembler::pt, done);
  3398       delayed()->andcc(G0, G0, G0);
  3399       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
  3400       mov(G2_thread, Rscratch);
  3401       casn(Rmark, G0, Rscratch);
  3402       // invert icc.zf and goto done
  3403       br_notnull(Rscratch, false, Assembler::pt, done);
  3404       delayed()->cmp(G0, G0);
  3405       ba(done);
  3406       delayed()->cmp(G0, 1);
  3407    } else {
  3408       brx(Assembler::notZero, false, Assembler::pn, done);
  3409       delayed()->nop();
  3410       ba(done);
  3411       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3414    bind   (LStacked);
  3415    // Consider: we could replace the expensive CAS in the exit
  3416    // path with a simple ST of the displaced mark value fetched from
  3417    // the on-stack basiclock box.  That admits a race where a thread T2
  3418    // in the slow lock path -- inflating with monitor M -- could race a
  3419    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
  3420    // More precisely T1 in the stack-lock unlock path could "stomp" the
  3421    // inflated mark value M installed by T2, resulting in an orphan
  3422    // object monitor M and T2 becoming stranded.  We can remedy that situation
  3423    // by having T2 periodically poll the object's mark word using timed wait
  3424    // operations.  If T2 discovers that a stomp has occurred it vacates
  3425    // the monitor M and wakes any other threads stranded on the now-orphan M.
  3426    // In addition the monitor scavenger, which performs deflation,
  3427    // would also need to check for orpan monitors and stranded threads.
  3428    //
  3429    // Finally, inflation is also used when T2 needs to assign a hashCode
  3430    // to O and O is stack-locked by T1.  The "stomp" race could cause
  3431    // an assigned hashCode value to be lost.  We can avoid that condition
  3432    // and provide the necessary hashCode stability invariants by ensuring
  3433    // that hashCode generation is idempotent between copying GCs.
  3434    // For example we could compute the hashCode of an object O as
  3435    // O's heap address XOR some high quality RNG value that is refreshed
  3436    // at GC-time.  The monitor scavenger would install the hashCode
  3437    // found in any orphan monitors.  Again, the mechanism admits a
  3438    // lost-update "stomp" WAW race but detects and recovers as needed.
  3439    //
  3440    // A prototype implementation showed excellent results, although
  3441    // the scavenger and timeout code was rather involved.
  3443    casn(mark_addr.base(), Rbox, Rscratch);
  3444    cmp(Rbox, Rscratch);
  3445    // Intentional fall through into done ...
  3447    bind(done);
  3452 void MacroAssembler::print_CPU_state() {
  3453   // %%%%% need to implement this
  3456 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  3457   // %%%%% need to implement this
  3460 void MacroAssembler::push_IU_state() {
  3461   // %%%%% need to implement this
  3465 void MacroAssembler::pop_IU_state() {
  3466   // %%%%% need to implement this
  3470 void MacroAssembler::push_FPU_state() {
  3471   // %%%%% need to implement this
  3475 void MacroAssembler::pop_FPU_state() {
  3476   // %%%%% need to implement this
  3480 void MacroAssembler::push_CPU_state() {
  3481   // %%%%% need to implement this
  3485 void MacroAssembler::pop_CPU_state() {
  3486   // %%%%% need to implement this
  3491 void MacroAssembler::verify_tlab() {
  3492 #ifdef ASSERT
  3493   if (UseTLAB && VerifyOops) {
  3494     Label next, next2, ok;
  3495     Register t1 = L0;
  3496     Register t2 = L1;
  3497     Register t3 = L2;
  3499     save_frame(0);
  3500     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3501     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
  3502     or3(t1, t2, t3);
  3503     cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
  3504     STOP("assert(top >= start)");
  3505     should_not_reach_here();
  3507     bind(next);
  3508     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3509     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
  3510     or3(t3, t2, t3);
  3511     cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
  3512     STOP("assert(top <= end)");
  3513     should_not_reach_here();
  3515     bind(next2);
  3516     and3(t3, MinObjAlignmentInBytesMask, t3);
  3517     cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
  3518     STOP("assert(aligned)");
  3519     should_not_reach_here();
  3521     bind(ok);
  3522     restore();
  3524 #endif
  3528 void MacroAssembler::eden_allocate(
  3529   Register obj,                        // result: pointer to object after successful allocation
  3530   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3531   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3532   Register t1,                         // temp register
  3533   Register t2,                         // temp register
  3534   Label&   slow_case                   // continuation point if fast allocation fails
  3535 ){
  3536   // make sure arguments make sense
  3537   assert_different_registers(obj, var_size_in_bytes, t1, t2);
  3538   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
  3539   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3541   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3542     // No allocation in the shared eden.
  3543     ba_short(slow_case);
  3544   } else {
  3545     // get eden boundaries
  3546     // note: we need both top & top_addr!
  3547     const Register top_addr = t1;
  3548     const Register end      = t2;
  3550     CollectedHeap* ch = Universe::heap();
  3551     set((intx)ch->top_addr(), top_addr);
  3552     intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
  3553     ld_ptr(top_addr, delta, end);
  3554     ld_ptr(top_addr, 0, obj);
  3556     // try to allocate
  3557     Label retry;
  3558     bind(retry);
  3559 #ifdef ASSERT
  3560     // make sure eden top is properly aligned
  3562       Label L;
  3563       btst(MinObjAlignmentInBytesMask, obj);
  3564       br(Assembler::zero, false, Assembler::pt, L);
  3565       delayed()->nop();
  3566       STOP("eden top is not properly aligned");
  3567       bind(L);
  3569 #endif // ASSERT
  3570     const Register free = end;
  3571     sub(end, obj, free);                                   // compute amount of free space
  3572     if (var_size_in_bytes->is_valid()) {
  3573       // size is unknown at compile time
  3574       cmp(free, var_size_in_bytes);
  3575       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3576       delayed()->add(obj, var_size_in_bytes, end);
  3577     } else {
  3578       // size is known at compile time
  3579       cmp(free, con_size_in_bytes);
  3580       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3581       delayed()->add(obj, con_size_in_bytes, end);
  3583     // Compare obj with the value at top_addr; if still equal, swap the value of
  3584     // end with the value at top_addr. If not equal, read the value at top_addr
  3585     // into end.
  3586     casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3587     // if someone beat us on the allocation, try again, otherwise continue
  3588     cmp(obj, end);
  3589     brx(Assembler::notEqual, false, Assembler::pn, retry);
  3590     delayed()->mov(end, obj);                              // nop if successfull since obj == end
  3592 #ifdef ASSERT
  3593     // make sure eden top is properly aligned
  3595       Label L;
  3596       const Register top_addr = t1;
  3598       set((intx)ch->top_addr(), top_addr);
  3599       ld_ptr(top_addr, 0, top_addr);
  3600       btst(MinObjAlignmentInBytesMask, top_addr);
  3601       br(Assembler::zero, false, Assembler::pt, L);
  3602       delayed()->nop();
  3603       STOP("eden top is not properly aligned");
  3604       bind(L);
  3606 #endif // ASSERT
  3611 void MacroAssembler::tlab_allocate(
  3612   Register obj,                        // result: pointer to object after successful allocation
  3613   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3614   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3615   Register t1,                         // temp register
  3616   Label&   slow_case                   // continuation point if fast allocation fails
  3617 ){
  3618   // make sure arguments make sense
  3619   assert_different_registers(obj, var_size_in_bytes, t1);
  3620   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
  3621   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3623   const Register free  = t1;
  3625   verify_tlab();
  3627   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
  3629   // calculate amount of free space
  3630   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
  3631   sub(free, obj, free);
  3633   Label done;
  3634   if (var_size_in_bytes == noreg) {
  3635     cmp(free, con_size_in_bytes);
  3636   } else {
  3637     cmp(free, var_size_in_bytes);
  3639   br(Assembler::less, false, Assembler::pn, slow_case);
  3640   // calculate the new top pointer
  3641   if (var_size_in_bytes == noreg) {
  3642     delayed()->add(obj, con_size_in_bytes, free);
  3643   } else {
  3644     delayed()->add(obj, var_size_in_bytes, free);
  3647   bind(done);
  3649 #ifdef ASSERT
  3650   // make sure new free pointer is properly aligned
  3652     Label L;
  3653     btst(MinObjAlignmentInBytesMask, free);
  3654     br(Assembler::zero, false, Assembler::pt, L);
  3655     delayed()->nop();
  3656     STOP("updated TLAB free is not properly aligned");
  3657     bind(L);
  3659 #endif // ASSERT
  3661   // update the tlab top pointer
  3662   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3663   verify_tlab();
  3667 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
  3668   Register top = O0;
  3669   Register t1 = G1;
  3670   Register t2 = G3;
  3671   Register t3 = O1;
  3672   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
  3673   Label do_refill, discard_tlab;
  3675   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3676     // No allocation in the shared eden.
  3677     ba_short(slow_case);
  3680   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
  3681   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
  3682   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
  3684   // calculate amount of free space
  3685   sub(t1, top, t1);
  3686   srl_ptr(t1, LogHeapWordSize, t1);
  3688   // Retain tlab and allocate object in shared space if
  3689   // the amount free in the tlab is too large to discard.
  3690   cmp(t1, t2);
  3691   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
  3693   // increment waste limit to prevent getting stuck on this slow path
  3694   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
  3695   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  3696   if (TLABStats) {
  3697     // increment number of slow_allocations
  3698     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
  3699     add(t2, 1, t2);
  3700     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  3702   ba_short(try_eden);
  3704   bind(discard_tlab);
  3705   if (TLABStats) {
  3706     // increment number of refills
  3707     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
  3708     add(t2, 1, t2);
  3709     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  3710     // accumulate wastage
  3711     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
  3712     add(t2, t1, t2);
  3713     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  3716   // if tlab is currently allocated (top or end != null) then
  3717   // fill [top, end + alignment_reserve) with array object
  3718   br_null_short(top, Assembler::pn, do_refill);
  3720   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
  3721   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
  3722   // set klass to intArrayKlass
  3723   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
  3724   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
  3725   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
  3726   st(t1, top, arrayOopDesc::length_offset_in_bytes());
  3727   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
  3728   ld_ptr(t2, 0, t2);
  3729   // store klass last.  concurrent gcs assumes klass length is valid if
  3730   // klass field is not null.
  3731   store_klass(t2, top);
  3732   verify_oop(top);
  3734   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
  3735   sub(top, t1, t1); // size of tlab's allocated portion
  3736   incr_allocated_bytes(t1, t2, t3);
  3738   // refill the tlab with an eden allocation
  3739   bind(do_refill);
  3740   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
  3741   sll_ptr(t1, LogHeapWordSize, t1);
  3742   // allocate new tlab, address returned in top
  3743   eden_allocate(top, t1, 0, t2, t3, slow_case);
  3745   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
  3746   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3747 #ifdef ASSERT
  3748   // check that tlab_size (t1) is still valid
  3750     Label ok;
  3751     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
  3752     sll_ptr(t2, LogHeapWordSize, t2);
  3753     cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
  3754     STOP("assert(t1 == tlab_size)");
  3755     should_not_reach_here();
  3757     bind(ok);
  3759 #endif // ASSERT
  3760   add(top, t1, top); // t1 is tlab_size
  3761   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
  3762   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
  3763   verify_tlab();
  3764   ba_short(retry);
  3767 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
  3768                                           Register t1, Register t2) {
  3769   // Bump total bytes allocated by this thread
  3770   assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
  3771   assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
  3772   // v8 support has gone the way of the dodo
  3773   ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
  3774   add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
  3775   stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
  3778 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  3779   switch (cond) {
  3780     // Note some conditions are synonyms for others
  3781     case Assembler::never:                return Assembler::always;
  3782     case Assembler::zero:                 return Assembler::notZero;
  3783     case Assembler::lessEqual:            return Assembler::greater;
  3784     case Assembler::less:                 return Assembler::greaterEqual;
  3785     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
  3786     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
  3787     case Assembler::negative:             return Assembler::positive;
  3788     case Assembler::overflowSet:          return Assembler::overflowClear;
  3789     case Assembler::always:               return Assembler::never;
  3790     case Assembler::notZero:              return Assembler::zero;
  3791     case Assembler::greater:              return Assembler::lessEqual;
  3792     case Assembler::greaterEqual:         return Assembler::less;
  3793     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
  3794     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
  3795     case Assembler::positive:             return Assembler::negative;
  3796     case Assembler::overflowClear:        return Assembler::overflowSet;
  3799   ShouldNotReachHere(); return Assembler::overflowClear;
  3802 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
  3803                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
  3804   Condition negated_cond = negate_condition(cond);
  3805   Label L;
  3806   brx(negated_cond, false, Assembler::pt, L);
  3807   delayed()->nop();
  3808   inc_counter(counter_ptr, Rtmp1, Rtmp2);
  3809   bind(L);
  3812 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
  3813   AddressLiteral addrlit(counter_addr);
  3814   sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
  3815   Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
  3816   ld(addr, Rtmp2);
  3817   inc(Rtmp2);
  3818   st(Rtmp2, addr);
  3821 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
  3822   inc_counter((address) counter_addr, Rtmp1, Rtmp2);
  3825 SkipIfEqual::SkipIfEqual(
  3826     MacroAssembler* masm, Register temp, const bool* flag_addr,
  3827     Assembler::Condition condition) {
  3828   _masm = masm;
  3829   AddressLiteral flag(flag_addr);
  3830   _masm->sethi(flag, temp);
  3831   _masm->ldub(temp, flag.low10(), temp);
  3832   _masm->tst(temp);
  3833   _masm->br(condition, false, Assembler::pt, _label);
  3834   _masm->delayed()->nop();
  3837 SkipIfEqual::~SkipIfEqual() {
  3838   _masm->bind(_label);
  3842 // Writes to stack successive pages until offset reached to check for
  3843 // stack overflow + shadow pages.  This clobbers tsp and scratch.
  3844 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
  3845                                      Register Rscratch) {
  3846   // Use stack pointer in temp stack pointer
  3847   mov(SP, Rtsp);
  3849   // Bang stack for total size given plus stack shadow page size.
  3850   // Bang one page at a time because a large size can overflow yellow and
  3851   // red zones (the bang will fail but stack overflow handling can't tell that
  3852   // it was a stack overflow bang vs a regular segv).
  3853   int offset = os::vm_page_size();
  3854   Register Roffset = Rscratch;
  3856   Label loop;
  3857   bind(loop);
  3858   set((-offset)+STACK_BIAS, Rscratch);
  3859   st(G0, Rtsp, Rscratch);
  3860   set(offset, Roffset);
  3861   sub(Rsize, Roffset, Rsize);
  3862   cmp(Rsize, G0);
  3863   br(Assembler::greater, false, Assembler::pn, loop);
  3864   delayed()->sub(Rtsp, Roffset, Rtsp);
  3866   // Bang down shadow pages too.
  3867   // The -1 because we already subtracted 1 page.
  3868   for (int i = 0; i< StackShadowPages-1; i++) {
  3869     set((-i*offset)+STACK_BIAS, Rscratch);
  3870     st(G0, Rtsp, Rscratch);
  3874 ///////////////////////////////////////////////////////////////////////////////////
  3875 #if INCLUDE_ALL_GCS
  3877 static address satb_log_enqueue_with_frame = NULL;
  3878 static u_char* satb_log_enqueue_with_frame_end = NULL;
  3880 static address satb_log_enqueue_frameless = NULL;
  3881 static u_char* satb_log_enqueue_frameless_end = NULL;
  3883 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
  3885 static void generate_satb_log_enqueue(bool with_frame) {
  3886   BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
  3887   CodeBuffer buf(bb);
  3888   MacroAssembler masm(&buf);
  3890 #define __ masm.
  3892   address start = __ pc();
  3893   Register pre_val;
  3895   Label refill, restart;
  3896   if (with_frame) {
  3897     __ save_frame(0);
  3898     pre_val = I0;  // Was O0 before the save.
  3899   } else {
  3900     pre_val = O0;
  3903   int satb_q_index_byte_offset =
  3904     in_bytes(JavaThread::satb_mark_queue_offset() +
  3905              PtrQueue::byte_offset_of_index());
  3907   int satb_q_buf_byte_offset =
  3908     in_bytes(JavaThread::satb_mark_queue_offset() +
  3909              PtrQueue::byte_offset_of_buf());
  3911   assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
  3912          in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
  3913          "check sizes in assembly below");
  3915   __ bind(restart);
  3917   // Load the index into the SATB buffer. PtrQueue::_index is a size_t
  3918   // so ld_ptr is appropriate.
  3919   __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
  3921   // index == 0?
  3922   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
  3924   __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
  3925   __ sub(L0, oopSize, L0);
  3927   __ st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
  3928   if (!with_frame) {
  3929     // Use return-from-leaf
  3930     __ retl();
  3931     __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  3932   } else {
  3933     // Not delayed.
  3934     __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  3936   if (with_frame) {
  3937     __ ret();
  3938     __ delayed()->restore();
  3940   __ bind(refill);
  3942   address handle_zero =
  3943     CAST_FROM_FN_PTR(address,
  3944                      &SATBMarkQueueSet::handle_zero_index_for_thread);
  3945   // This should be rare enough that we can afford to save all the
  3946   // scratch registers that the calling context might be using.
  3947   __ mov(G1_scratch, L0);
  3948   __ mov(G3_scratch, L1);
  3949   __ mov(G4, L2);
  3950   // We need the value of O0 above (for the write into the buffer), so we
  3951   // save and restore it.
  3952   __ mov(O0, L3);
  3953   // Since the call will overwrite O7, we save and restore that, as well.
  3954   __ mov(O7, L4);
  3955   __ call_VM_leaf(L5, handle_zero, G2_thread);
  3956   __ mov(L0, G1_scratch);
  3957   __ mov(L1, G3_scratch);
  3958   __ mov(L2, G4);
  3959   __ mov(L3, O0);
  3960   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  3961   __ delayed()->mov(L4, O7);
  3963   if (with_frame) {
  3964     satb_log_enqueue_with_frame = start;
  3965     satb_log_enqueue_with_frame_end = __ pc();
  3966   } else {
  3967     satb_log_enqueue_frameless = start;
  3968     satb_log_enqueue_frameless_end = __ pc();
  3971 #undef __
  3974 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
  3975   if (with_frame) {
  3976     if (satb_log_enqueue_with_frame == 0) {
  3977       generate_satb_log_enqueue(with_frame);
  3978       assert(satb_log_enqueue_with_frame != 0, "postcondition.");
  3979       if (G1SATBPrintStubs) {
  3980         tty->print_cr("Generated with-frame satb enqueue:");
  3981         Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
  3982                              satb_log_enqueue_with_frame_end,
  3983                              tty);
  3986   } else {
  3987     if (satb_log_enqueue_frameless == 0) {
  3988       generate_satb_log_enqueue(with_frame);
  3989       assert(satb_log_enqueue_frameless != 0, "postcondition.");
  3990       if (G1SATBPrintStubs) {
  3991         tty->print_cr("Generated frameless satb enqueue:");
  3992         Disassembler::decode((u_char*)satb_log_enqueue_frameless,
  3993                              satb_log_enqueue_frameless_end,
  3994                              tty);
  4000 void MacroAssembler::g1_write_barrier_pre(Register obj,
  4001                                           Register index,
  4002                                           int offset,
  4003                                           Register pre_val,
  4004                                           Register tmp,
  4005                                           bool preserve_o_regs) {
  4006   Label filtered;
  4008   if (obj == noreg) {
  4009     // We are not loading the previous value so make
  4010     // sure that we don't trash the value in pre_val
  4011     // with the code below.
  4012     assert_different_registers(pre_val, tmp);
  4013   } else {
  4014     // We will be loading the previous value
  4015     // in this code so...
  4016     assert(offset == 0 || index == noreg, "choose one");
  4017     assert(pre_val == noreg, "check this code");
  4020   // Is marking active?
  4021   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  4022     ld(G2,
  4023        in_bytes(JavaThread::satb_mark_queue_offset() +
  4024                 PtrQueue::byte_offset_of_active()),
  4025        tmp);
  4026   } else {
  4027     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  4028               "Assumption");
  4029     ldsb(G2,
  4030          in_bytes(JavaThread::satb_mark_queue_offset() +
  4031                   PtrQueue::byte_offset_of_active()),
  4032          tmp);
  4035   // Is marking active?
  4036   cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
  4038   // Do we need to load the previous value?
  4039   if (obj != noreg) {
  4040     // Load the previous value...
  4041     if (index == noreg) {
  4042       if (Assembler::is_simm13(offset)) {
  4043         load_heap_oop(obj, offset, tmp);
  4044       } else {
  4045         set(offset, tmp);
  4046         load_heap_oop(obj, tmp, tmp);
  4048     } else {
  4049       load_heap_oop(obj, index, tmp);
  4051     // Previous value has been loaded into tmp
  4052     pre_val = tmp;
  4055   assert(pre_val != noreg, "must have a real register");
  4057   // Is the previous value null?
  4058   cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
  4060   // OK, it's not filtered, so we'll need to call enqueue.  In the normal
  4061   // case, pre_val will be a scratch G-reg, but there are some cases in
  4062   // which it's an O-reg.  In the first case, do a normal call.  In the
  4063   // latter, do a save here and call the frameless version.
  4065   guarantee(pre_val->is_global() || pre_val->is_out(),
  4066             "Or we need to think harder.");
  4068   if (pre_val->is_global() && !preserve_o_regs) {
  4069     generate_satb_log_enqueue_if_necessary(true); // with frame
  4071     call(satb_log_enqueue_with_frame);
  4072     delayed()->mov(pre_val, O0);
  4073   } else {
  4074     generate_satb_log_enqueue_if_necessary(false); // frameless
  4076     save_frame(0);
  4077     call(satb_log_enqueue_frameless);
  4078     delayed()->mov(pre_val->after_save(), O0);
  4079     restore();
  4082   bind(filtered);
  4085 static address dirty_card_log_enqueue = 0;
  4086 static u_char* dirty_card_log_enqueue_end = 0;
  4088 // This gets to assume that o0 contains the object address.
  4089 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
  4090   BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
  4091   CodeBuffer buf(bb);
  4092   MacroAssembler masm(&buf);
  4093 #define __ masm.
  4094   address start = __ pc();
  4096   Label not_already_dirty, restart, refill;
  4098 #ifdef _LP64
  4099   __ srlx(O0, CardTableModRefBS::card_shift, O0);
  4100 #else
  4101   __ srl(O0, CardTableModRefBS::card_shift, O0);
  4102 #endif
  4103   AddressLiteral addrlit(byte_map_base);
  4104   __ set(addrlit, O1); // O1 := <card table base>
  4105   __ ldub(O0, O1, O2); // O2 := [O0 + O1]
  4107   assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
  4108   __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
  4110   // We didn't take the branch, so we're already dirty: return.
  4111   // Use return-from-leaf
  4112   __ retl();
  4113   __ delayed()->nop();
  4115   // Not dirty.
  4116   __ bind(not_already_dirty);
  4118   // Get O0 + O1 into a reg by itself
  4119   __ add(O0, O1, O3);
  4121   // First, dirty it.
  4122   __ stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
  4124   int dirty_card_q_index_byte_offset =
  4125     in_bytes(JavaThread::dirty_card_queue_offset() +
  4126              PtrQueue::byte_offset_of_index());
  4127   int dirty_card_q_buf_byte_offset =
  4128     in_bytes(JavaThread::dirty_card_queue_offset() +
  4129              PtrQueue::byte_offset_of_buf());
  4130   __ bind(restart);
  4132   // Load the index into the update buffer. PtrQueue::_index is
  4133   // a size_t so ld_ptr is appropriate here.
  4134   __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
  4136   // index == 0?
  4137   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
  4139   __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
  4140   __ sub(L0, oopSize, L0);
  4142   __ st_ptr(O3, L1, L0);  // [_buf + index] := I0
  4143   // Use return-from-leaf
  4144   __ retl();
  4145   __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
  4147   __ bind(refill);
  4148   address handle_zero =
  4149     CAST_FROM_FN_PTR(address,
  4150                      &DirtyCardQueueSet::handle_zero_index_for_thread);
  4151   // This should be rare enough that we can afford to save all the
  4152   // scratch registers that the calling context might be using.
  4153   __ mov(G1_scratch, L3);
  4154   __ mov(G3_scratch, L5);
  4155   // We need the value of O3 above (for the write into the buffer), so we
  4156   // save and restore it.
  4157   __ mov(O3, L6);
  4158   // Since the call will overwrite O7, we save and restore that, as well.
  4159   __ mov(O7, L4);
  4161   __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
  4162   __ mov(L3, G1_scratch);
  4163   __ mov(L5, G3_scratch);
  4164   __ mov(L6, O3);
  4165   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  4166   __ delayed()->mov(L4, O7);
  4168   dirty_card_log_enqueue = start;
  4169   dirty_card_log_enqueue_end = __ pc();
  4170   // XXX Should have a guarantee here about not going off the end!
  4171   // Does it already do so?  Do an experiment...
  4173 #undef __
  4177 static inline void
  4178 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
  4179   if (dirty_card_log_enqueue == 0) {
  4180     generate_dirty_card_log_enqueue(byte_map_base);
  4181     assert(dirty_card_log_enqueue != 0, "postcondition.");
  4182     if (G1SATBPrintStubs) {
  4183       tty->print_cr("Generated dirty_card enqueue:");
  4184       Disassembler::decode((u_char*)dirty_card_log_enqueue,
  4185                            dirty_card_log_enqueue_end,
  4186                            tty);
  4192 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  4194   Label filtered;
  4195   MacroAssembler* post_filter_masm = this;
  4197   if (new_val == G0) return;
  4199   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
  4200   assert(bs->kind() == BarrierSet::G1SATBCT ||
  4201          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
  4203   if (G1RSBarrierRegionFilter) {
  4204     xor3(store_addr, new_val, tmp);
  4205 #ifdef _LP64
  4206     srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  4207 #else
  4208     srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  4209 #endif
  4211     // XXX Should I predict this taken or not?  Does it matter?
  4212     cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
  4215   // If the "store_addr" register is an "in" or "local" register, move it to
  4216   // a scratch reg so we can pass it as an argument.
  4217   bool use_scr = !(store_addr->is_global() || store_addr->is_out());
  4218   // Pick a scratch register different from "tmp".
  4219   Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
  4220   // Make sure we use up the delay slot!
  4221   if (use_scr) {
  4222     post_filter_masm->mov(store_addr, scr);
  4223   } else {
  4224     post_filter_masm->nop();
  4226   generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
  4227   save_frame(0);
  4228   call(dirty_card_log_enqueue);
  4229   if (use_scr) {
  4230     delayed()->mov(scr, O0);
  4231   } else {
  4232     delayed()->mov(store_addr->after_save(), O0);
  4234   restore();
  4236   bind(filtered);
  4239 #endif // INCLUDE_ALL_GCS
  4240 ///////////////////////////////////////////////////////////////////////////////////
  4242 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  4243   // If we're writing constant NULL, we can skip the write barrier.
  4244   if (new_val == G0) return;
  4245   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
  4246   assert(bs->kind() == BarrierSet::CardTableModRef ||
  4247          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
  4248   card_table_write(bs->byte_map_base, tmp, store_addr);
  4251 void MacroAssembler::load_klass(Register src_oop, Register klass) {
  4252   // The number of bytes in this code is used by
  4253   // MachCallDynamicJavaNode::ret_addr_offset()
  4254   // if this changes, change that.
  4255   if (UseCompressedKlassPointers) {
  4256     lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  4257     decode_klass_not_null(klass);
  4258   } else {
  4259     ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  4263 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
  4264   if (UseCompressedKlassPointers) {
  4265     assert(dst_oop != klass, "not enough registers");
  4266     encode_klass_not_null(klass);
  4267     st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  4268   } else {
  4269     st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  4273 void MacroAssembler::store_klass_gap(Register s, Register d) {
  4274   if (UseCompressedKlassPointers) {
  4275     assert(s != d, "not enough registers");
  4276     st(s, d, oopDesc::klass_gap_offset_in_bytes());
  4280 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
  4281   if (UseCompressedOops) {
  4282     lduw(s, d);
  4283     decode_heap_oop(d);
  4284   } else {
  4285     ld_ptr(s, d);
  4289 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
  4290    if (UseCompressedOops) {
  4291     lduw(s1, s2, d);
  4292     decode_heap_oop(d, d);
  4293   } else {
  4294     ld_ptr(s1, s2, d);
  4298 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
  4299    if (UseCompressedOops) {
  4300     lduw(s1, simm13a, d);
  4301     decode_heap_oop(d, d);
  4302   } else {
  4303     ld_ptr(s1, simm13a, d);
  4307 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
  4308   if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
  4309   else                   load_heap_oop(s1, s2.as_register(), d);
  4312 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
  4313   if (UseCompressedOops) {
  4314     assert(s1 != d && s2 != d, "not enough registers");
  4315     encode_heap_oop(d);
  4316     st(d, s1, s2);
  4317   } else {
  4318     st_ptr(d, s1, s2);
  4322 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
  4323   if (UseCompressedOops) {
  4324     assert(s1 != d, "not enough registers");
  4325     encode_heap_oop(d);
  4326     st(d, s1, simm13a);
  4327   } else {
  4328     st_ptr(d, s1, simm13a);
  4332 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
  4333   if (UseCompressedOops) {
  4334     assert(a.base() != d, "not enough registers");
  4335     encode_heap_oop(d);
  4336     st(d, a, offset);
  4337   } else {
  4338     st_ptr(d, a, offset);
  4343 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
  4344   assert (UseCompressedOops, "must be compressed");
  4345   assert (Universe::heap() != NULL, "java heap should be initialized");
  4346   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4347   verify_oop(src);
  4348   if (Universe::narrow_oop_base() == NULL) {
  4349     srlx(src, LogMinObjAlignmentInBytes, dst);
  4350     return;
  4352   Label done;
  4353   if (src == dst) {
  4354     // optimize for frequent case src == dst
  4355     bpr(rc_nz, true, Assembler::pt, src, done);
  4356     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
  4357     bind(done);
  4358     srlx(src, LogMinObjAlignmentInBytes, dst);
  4359   } else {
  4360     bpr(rc_z, false, Assembler::pn, src, done);
  4361     delayed() -> mov(G0, dst);
  4362     // could be moved before branch, and annulate delay,
  4363     // but may add some unneeded work decoding null
  4364     sub(src, G6_heapbase, dst);
  4365     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4366     bind(done);
  4371 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  4372   assert (UseCompressedOops, "must be compressed");
  4373   assert (Universe::heap() != NULL, "java heap should be initialized");
  4374   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4375   verify_oop(r);
  4376   if (Universe::narrow_oop_base() != NULL)
  4377     sub(r, G6_heapbase, r);
  4378   srlx(r, LogMinObjAlignmentInBytes, r);
  4381 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
  4382   assert (UseCompressedOops, "must be compressed");
  4383   assert (Universe::heap() != NULL, "java heap should be initialized");
  4384   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4385   verify_oop(src);
  4386   if (Universe::narrow_oop_base() == NULL) {
  4387     srlx(src, LogMinObjAlignmentInBytes, dst);
  4388   } else {
  4389     sub(src, G6_heapbase, dst);
  4390     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4394 // Same algorithm as oops.inline.hpp decode_heap_oop.
  4395 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
  4396   assert (UseCompressedOops, "must be compressed");
  4397   assert (Universe::heap() != NULL, "java heap should be initialized");
  4398   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4399   sllx(src, LogMinObjAlignmentInBytes, dst);
  4400   if (Universe::narrow_oop_base() != NULL) {
  4401     Label done;
  4402     bpr(rc_nz, true, Assembler::pt, dst, done);
  4403     delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
  4404     bind(done);
  4406   verify_oop(dst);
  4409 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  4410   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4411   // pd_code_size_limit.
  4412   // Also do not verify_oop as this is called by verify_oop.
  4413   assert (UseCompressedOops, "must be compressed");
  4414   assert (Universe::heap() != NULL, "java heap should be initialized");
  4415   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4416   sllx(r, LogMinObjAlignmentInBytes, r);
  4417   if (Universe::narrow_oop_base() != NULL)
  4418     add(r, G6_heapbase, r);
  4421 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
  4422   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4423   // pd_code_size_limit.
  4424   // Also do not verify_oop as this is called by verify_oop.
  4425   assert (UseCompressedOops, "must be compressed");
  4426   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4427   sllx(src, LogMinObjAlignmentInBytes, dst);
  4428   if (Universe::narrow_oop_base() != NULL)
  4429     add(dst, G6_heapbase, dst);
  4432 void MacroAssembler::encode_klass_not_null(Register r) {
  4433   assert(Metaspace::is_initialized(), "metaspace should be initialized");
  4434   assert (UseCompressedKlassPointers, "must be compressed");
  4435   assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  4436   if (Universe::narrow_klass_base() != NULL)
  4437     sub(r, G6_heapbase, r);
  4438   srlx(r, LogKlassAlignmentInBytes, r);
  4441 void MacroAssembler::encode_klass_not_null(Register src, Register dst) {
  4442   assert(Metaspace::is_initialized(), "metaspace should be initialized");
  4443   assert (UseCompressedKlassPointers, "must be compressed");
  4444   assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  4445   if (Universe::narrow_klass_base() == NULL) {
  4446     srlx(src, LogKlassAlignmentInBytes, dst);
  4447   } else {
  4448     sub(src, G6_heapbase, dst);
  4449     srlx(dst, LogKlassAlignmentInBytes, dst);
  4453 void  MacroAssembler::decode_klass_not_null(Register r) {
  4454   assert(Metaspace::is_initialized(), "metaspace should be initialized");
  4455   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4456   // pd_code_size_limit.
  4457   assert (UseCompressedKlassPointers, "must be compressed");
  4458   assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  4459   sllx(r, LogKlassAlignmentInBytes, r);
  4460   if (Universe::narrow_klass_base() != NULL)
  4461     add(r, G6_heapbase, r);
  4464 void  MacroAssembler::decode_klass_not_null(Register src, Register dst) {
  4465   assert(Metaspace::is_initialized(), "metaspace should be initialized");
  4466   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4467   // pd_code_size_limit.
  4468   assert (UseCompressedKlassPointers, "must be compressed");
  4469   assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  4470   sllx(src, LogKlassAlignmentInBytes, dst);
  4471   if (Universe::narrow_klass_base() != NULL)
  4472     add(dst, G6_heapbase, dst);
  4475 void MacroAssembler::reinit_heapbase() {
  4476   if (UseCompressedOops || UseCompressedKlassPointers) {
  4477     AddressLiteral base(Universe::narrow_ptrs_base_addr());
  4478     load_ptr_contents(base, G6_heapbase);
  4482 // Compare char[] arrays aligned to 4 bytes.
  4483 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
  4484                                         Register limit, Register result,
  4485                                         Register chr1, Register chr2, Label& Ldone) {
  4486   Label Lvector, Lloop;
  4487   assert(chr1 == result, "should be the same");
  4489   // Note: limit contains number of bytes (2*char_elements) != 0.
  4490   andcc(limit, 0x2, chr1); // trailing character ?
  4491   br(Assembler::zero, false, Assembler::pt, Lvector);
  4492   delayed()->nop();
  4494   // compare the trailing char
  4495   sub(limit, sizeof(jchar), limit);
  4496   lduh(ary1, limit, chr1);
  4497   lduh(ary2, limit, chr2);
  4498   cmp(chr1, chr2);
  4499   br(Assembler::notEqual, true, Assembler::pt, Ldone);
  4500   delayed()->mov(G0, result);     // not equal
  4502   // only one char ?
  4503   cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
  4504   delayed()->add(G0, 1, result); // zero-length arrays are equal
  4506   // word by word compare, dont't need alignment check
  4507   bind(Lvector);
  4508   // Shift ary1 and ary2 to the end of the arrays, negate limit
  4509   add(ary1, limit, ary1);
  4510   add(ary2, limit, ary2);
  4511   neg(limit, limit);
  4513   lduw(ary1, limit, chr1);
  4514   bind(Lloop);
  4515   lduw(ary2, limit, chr2);
  4516   cmp(chr1, chr2);
  4517   br(Assembler::notEqual, true, Assembler::pt, Ldone);
  4518   delayed()->mov(G0, result);     // not equal
  4519   inccc(limit, 2*sizeof(jchar));
  4520   // annul LDUW if branch is not taken to prevent access past end of array
  4521   br(Assembler::notZero, true, Assembler::pt, Lloop);
  4522   delayed()->lduw(ary1, limit, chr1); // hoisted
  4524   // Caller should set it:
  4525   // add(G0, 1, result); // equals
  4528 // Use BIS for zeroing (count is in bytes).
  4529 void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
  4530   assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
  4531   Register end = count;
  4532   int cache_line_size = VM_Version::prefetch_data_size();
  4533   // Minimum count when BIS zeroing can be used since
  4534   // it needs membar which is expensive.
  4535   int block_zero_size  = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
  4537   Label small_loop;
  4538   // Check if count is negative (dead code) or zero.
  4539   // Note, count uses 64bit in 64 bit VM.
  4540   cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
  4542   // Use BIS zeroing only for big arrays since it requires membar.
  4543   if (Assembler::is_simm13(block_zero_size)) { // < 4096
  4544     cmp(count, block_zero_size);
  4545   } else {
  4546     set(block_zero_size, temp);
  4547     cmp(count, temp);
  4549   br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
  4550   delayed()->add(to, count, end);
  4552   // Note: size is >= three (32 bytes) cache lines.
  4554   // Clean the beginning of space up to next cache line.
  4555   for (int offs = 0; offs < cache_line_size; offs += 8) {
  4556     stx(G0, to, offs);
  4559   // align to next cache line
  4560   add(to, cache_line_size, to);
  4561   and3(to, -cache_line_size, to);
  4563   // Note: size left >= two (32 bytes) cache lines.
  4565   // BIS should not be used to zero tail (64 bytes)
  4566   // to avoid zeroing a header of the following object.
  4567   sub(end, (cache_line_size*2)-8, end);
  4569   Label bis_loop;
  4570   bind(bis_loop);
  4571   stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  4572   add(to, cache_line_size, to);
  4573   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
  4575   // BIS needs membar.
  4576   membar(Assembler::StoreLoad);
  4578   add(end, (cache_line_size*2)-8, end); // restore end
  4579   cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
  4581   // Clean the tail.
  4582   bind(small_loop);
  4583   stx(G0, to, 0);
  4584   add(to, 8, to);
  4585   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
  4586   nop(); // Separate short branches

mercurial