src/share/vm/adlc/output_c.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 850
4d9884b01ba6
child 1038
dbbe28fc66b5
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 1998-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // output_c.cpp - Class CPP file output routines for architecture definition
    27 #include "adlc.hpp"
    29 // Utilities to characterize effect statements
    30 static bool is_def(int usedef) {
    31   switch(usedef) {
    32   case Component::DEF:
    33   case Component::USE_DEF: return true; break;
    34   }
    35   return false;
    36 }
    38 static bool is_use(int usedef) {
    39   switch(usedef) {
    40   case Component::USE:
    41   case Component::USE_DEF:
    42   case Component::USE_KILL: return true; break;
    43   }
    44   return false;
    45 }
    47 static bool is_kill(int usedef) {
    48   switch(usedef) {
    49   case Component::KILL:
    50   case Component::USE_KILL: return true; break;
    51   }
    52   return false;
    53 }
    55 // Define  an array containing the machine register names, strings.
    56 static void defineRegNames(FILE *fp, RegisterForm *registers) {
    57   if (registers) {
    58     fprintf(fp,"\n");
    59     fprintf(fp,"// An array of character pointers to machine register names.\n");
    60     fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
    62     // Output the register name for each register in the allocation classes
    63     RegDef *reg_def = NULL;
    64     RegDef *next = NULL;
    65     registers->reset_RegDefs();
    66     for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
    67       next = registers->iter_RegDefs();
    68       const char *comma = (next != NULL) ? "," : " // no trailing comma";
    69       fprintf(fp,"  \"%s\"%s\n",
    70                  reg_def->_regname, comma );
    71     }
    73     // Finish defining enumeration
    74     fprintf(fp,"};\n");
    76     fprintf(fp,"\n");
    77     fprintf(fp,"// An array of character pointers to machine register names.\n");
    78     fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
    79     reg_def = NULL;
    80     next = NULL;
    81     registers->reset_RegDefs();
    82     for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
    83       next = registers->iter_RegDefs();
    84       const char *comma = (next != NULL) ? "," : " // no trailing comma";
    85       fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma );
    86     }
    87     // Finish defining array
    88     fprintf(fp,"\t};\n");
    89     fprintf(fp,"\n");
    91     fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
    93   }
    94 }
    96 // Define an array containing the machine register encoding values
    97 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
    98   if (registers) {
    99     fprintf(fp,"\n");
   100     fprintf(fp,"// An array of the machine register encode values\n");
   101     fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
   103     // Output the register encoding for each register in the allocation classes
   104     RegDef *reg_def = NULL;
   105     RegDef *next    = NULL;
   106     registers->reset_RegDefs();
   107     for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
   108       next = registers->iter_RegDefs();
   109       const char* register_encode = reg_def->register_encode();
   110       const char *comma = (next != NULL) ? "," : " // no trailing comma";
   111       int encval;
   112       if (!ADLParser::is_int_token(register_encode, encval)) {
   113         fprintf(fp,"  %s%s  // %s\n",
   114                 register_encode, comma, reg_def->_regname );
   115       } else {
   116         // Output known constants in hex char format (backward compatibility).
   117         assert(encval < 256, "Exceeded supported width for register encoding");
   118         fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n",
   119                 encval,          comma, reg_def->_regname );
   120       }
   121     }
   122     // Finish defining enumeration
   123     fprintf(fp,"};\n");
   125   } // Done defining array
   126 }
   128 // Output an enumeration of register class names
   129 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
   130   if (registers) {
   131     // Output an enumeration of register class names
   132     fprintf(fp,"\n");
   133     fprintf(fp,"// Enumeration of register class names\n");
   134     fprintf(fp, "enum machRegisterClass {\n");
   135     registers->_rclasses.reset();
   136     for( const char *class_name = NULL;
   137          (class_name = registers->_rclasses.iter()) != NULL; ) {
   138       fprintf(fp,"  %s,\n", toUpper( class_name ));
   139     }
   140     // Finish defining enumeration
   141     fprintf(fp, "  _last_Mach_Reg_Class\n");
   142     fprintf(fp, "};\n");
   143   }
   144 }
   146 // Declare an enumeration of user-defined register classes
   147 // and a list of register masks, one for each class.
   148 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
   149   const char  *rc_name;
   151   if( _register ) {
   152     // Build enumeration of user-defined register classes.
   153     defineRegClassEnum(fp_hpp, _register);
   155     // Generate a list of register masks, one for each class.
   156     fprintf(fp_hpp,"\n");
   157     fprintf(fp_hpp,"// Register masks, one for each register class.\n");
   158     _register->_rclasses.reset();
   159     for( rc_name = NULL;
   160          (rc_name = _register->_rclasses.iter()) != NULL; ) {
   161       const char *prefix    = "";
   162       RegClass   *reg_class = _register->getRegClass(rc_name);
   163       assert( reg_class, "Using an undefined register class");
   165       int len = RegisterForm::RegMask_Size();
   166       fprintf(fp_hpp, "extern const RegMask %s%s_mask;\n", prefix, toUpper( rc_name ) );
   168       if( reg_class->_stack_or_reg ) {
   169         fprintf(fp_hpp, "extern const RegMask %sSTACK_OR_%s_mask;\n", prefix, toUpper( rc_name ) );
   170       }
   171     }
   172   }
   173 }
   175 // Generate an enumeration of user-defined register classes
   176 // and a list of register masks, one for each class.
   177 void ArchDesc::build_register_masks(FILE *fp_cpp) {
   178   const char  *rc_name;
   180   if( _register ) {
   181     // Generate a list of register masks, one for each class.
   182     fprintf(fp_cpp,"\n");
   183     fprintf(fp_cpp,"// Register masks, one for each register class.\n");
   184     _register->_rclasses.reset();
   185     for( rc_name = NULL;
   186          (rc_name = _register->_rclasses.iter()) != NULL; ) {
   187       const char *prefix    = "";
   188       RegClass   *reg_class = _register->getRegClass(rc_name);
   189       assert( reg_class, "Using an undefined register class");
   191       int len = RegisterForm::RegMask_Size();
   192       fprintf(fp_cpp, "const RegMask %s%s_mask(", prefix, toUpper( rc_name ) );
   193       { int i;
   194         for( i = 0; i < len-1; i++ )
   195           fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i,false));
   196         fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i,false));
   197       }
   199       if( reg_class->_stack_or_reg ) {
   200         int i;
   201         fprintf(fp_cpp, "const RegMask %sSTACK_OR_%s_mask(", prefix, toUpper( rc_name ) );
   202         for( i = 0; i < len-1; i++ )
   203           fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i,true));
   204         fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i,true));
   205       }
   206     }
   207   }
   208 }
   210 // Compute an index for an array in the pipeline_reads_NNN arrays
   211 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
   212 {
   213   int templen = 1;
   214   int paramcount = 0;
   215   const char *paramname;
   217   if (pipeclass->_parameters.count() == 0)
   218     return -1;
   220   pipeclass->_parameters.reset();
   221   paramname = pipeclass->_parameters.iter();
   222   const PipeClassOperandForm *pipeopnd =
   223     (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   224   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
   225     pipeclass->_parameters.reset();
   227   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
   228     const PipeClassOperandForm *pipeopnd =
   229         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   231     if (pipeopnd)
   232       templen += 10 + (int)strlen(pipeopnd->_stage);
   233     else
   234       templen += 19;
   236     paramcount++;
   237   }
   239   // See if the count is zero
   240   if (paramcount == 0) {
   241     return -1;
   242   }
   244   char *operand_stages = new char [templen];
   245   operand_stages[0] = 0;
   246   int i = 0;
   247   templen = 0;
   249   pipeclass->_parameters.reset();
   250   paramname = pipeclass->_parameters.iter();
   251   pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   252   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
   253     pipeclass->_parameters.reset();
   255   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
   256     const PipeClassOperandForm *pipeopnd =
   257         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   258     templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
   259       pipeopnd ? pipeopnd->_stage : "undefined",
   260       (++i < paramcount ? ',' : ' ') );
   261   }
   263   // See if the same string is in the table
   264   int ndx = pipeline_reads.index(operand_stages);
   266   // No, add it to the table
   267   if (ndx < 0) {
   268     pipeline_reads.addName(operand_stages);
   269     ndx = pipeline_reads.index(operand_stages);
   271     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
   272       ndx+1, paramcount, operand_stages);
   273   }
   274   else
   275     delete [] operand_stages;
   277   return (ndx);
   278 }
   280 // Compute an index for an array in the pipeline_res_stages_NNN arrays
   281 static int pipeline_res_stages_initializer(
   282   FILE *fp_cpp,
   283   PipelineForm *pipeline,
   284   NameList &pipeline_res_stages,
   285   PipeClassForm *pipeclass)
   286 {
   287   const PipeClassResourceForm *piperesource;
   288   int * res_stages = new int [pipeline->_rescount];
   289   int i;
   291   for (i = 0; i < pipeline->_rescount; i++)
   292      res_stages[i] = 0;
   294   for (pipeclass->_resUsage.reset();
   295        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   296     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   297     for (i = 0; i < pipeline->_rescount; i++)
   298       if ((1 << i) & used_mask) {
   299         int stage = pipeline->_stages.index(piperesource->_stage);
   300         if (res_stages[i] < stage+1)
   301           res_stages[i] = stage+1;
   302       }
   303   }
   305   // Compute the length needed for the resource list
   306   int commentlen = 0;
   307   int max_stage = 0;
   308   for (i = 0; i < pipeline->_rescount; i++) {
   309     if (res_stages[i] == 0) {
   310       if (max_stage < 9)
   311         max_stage = 9;
   312     }
   313     else {
   314       int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
   315       if (max_stage < stagelen)
   316         max_stage = stagelen;
   317     }
   319     commentlen += (int)strlen(pipeline->_reslist.name(i));
   320   }
   322   int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
   324   // Allocate space for the resource list
   325   char * resource_stages = new char [templen];
   327   templen = 0;
   328   for (i = 0; i < pipeline->_rescount; i++) {
   329     const char * const resname =
   330       res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
   332     templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
   333       resname, max_stage - (int)strlen(resname) + 1,
   334       (i < pipeline->_rescount-1) ? "," : "",
   335       pipeline->_reslist.name(i));
   336   }
   338   // See if the same string is in the table
   339   int ndx = pipeline_res_stages.index(resource_stages);
   341   // No, add it to the table
   342   if (ndx < 0) {
   343     pipeline_res_stages.addName(resource_stages);
   344     ndx = pipeline_res_stages.index(resource_stages);
   346     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
   347       ndx+1, pipeline->_rescount, resource_stages);
   348   }
   349   else
   350     delete [] resource_stages;
   352   delete [] res_stages;
   354   return (ndx);
   355 }
   357 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
   358 static int pipeline_res_cycles_initializer(
   359   FILE *fp_cpp,
   360   PipelineForm *pipeline,
   361   NameList &pipeline_res_cycles,
   362   PipeClassForm *pipeclass)
   363 {
   364   const PipeClassResourceForm *piperesource;
   365   int * res_cycles = new int [pipeline->_rescount];
   366   int i;
   368   for (i = 0; i < pipeline->_rescount; i++)
   369      res_cycles[i] = 0;
   371   for (pipeclass->_resUsage.reset();
   372        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   373     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   374     for (i = 0; i < pipeline->_rescount; i++)
   375       if ((1 << i) & used_mask) {
   376         int cycles = piperesource->_cycles;
   377         if (res_cycles[i] < cycles)
   378           res_cycles[i] = cycles;
   379       }
   380   }
   382   // Pre-compute the string length
   383   int templen;
   384   int cyclelen = 0, commentlen = 0;
   385   int max_cycles = 0;
   386   char temp[32];
   388   for (i = 0; i < pipeline->_rescount; i++) {
   389     if (max_cycles < res_cycles[i])
   390       max_cycles = res_cycles[i];
   391     templen = sprintf(temp, "%d", res_cycles[i]);
   392     if (cyclelen < templen)
   393       cyclelen = templen;
   394     commentlen += (int)strlen(pipeline->_reslist.name(i));
   395   }
   397   templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
   399   // Allocate space for the resource list
   400   char * resource_cycles = new char [templen];
   402   templen = 0;
   404   for (i = 0; i < pipeline->_rescount; i++) {
   405     templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
   406       cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
   407   }
   409   // See if the same string is in the table
   410   int ndx = pipeline_res_cycles.index(resource_cycles);
   412   // No, add it to the table
   413   if (ndx < 0) {
   414     pipeline_res_cycles.addName(resource_cycles);
   415     ndx = pipeline_res_cycles.index(resource_cycles);
   417     fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
   418       ndx+1, pipeline->_rescount, resource_cycles);
   419   }
   420   else
   421     delete [] resource_cycles;
   423   delete [] res_cycles;
   425   return (ndx);
   426 }
   428 //typedef unsigned long long uint64_t;
   430 // Compute an index for an array in the pipeline_res_mask_NNN arrays
   431 static int pipeline_res_mask_initializer(
   432   FILE *fp_cpp,
   433   PipelineForm *pipeline,
   434   NameList &pipeline_res_mask,
   435   NameList &pipeline_res_args,
   436   PipeClassForm *pipeclass)
   437 {
   438   const PipeClassResourceForm *piperesource;
   439   const uint rescount      = pipeline->_rescount;
   440   const uint maxcycleused  = pipeline->_maxcycleused;
   441   const uint cyclemasksize = (maxcycleused + 31) >> 5;
   443   int i, j;
   444   int element_count = 0;
   445   uint *res_mask = new uint [cyclemasksize];
   446   uint resources_used             = 0;
   447   uint resources_used_exclusively = 0;
   449   for (pipeclass->_resUsage.reset();
   450        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; )
   451     element_count++;
   453   // Pre-compute the string length
   454   int templen;
   455   int commentlen = 0;
   456   int max_cycles = 0;
   458   int cyclelen = ((maxcycleused + 3) >> 2);
   459   int masklen = (rescount + 3) >> 2;
   461   int cycledigit = 0;
   462   for (i = maxcycleused; i > 0; i /= 10)
   463     cycledigit++;
   465   int maskdigit = 0;
   466   for (i = rescount; i > 0; i /= 10)
   467     maskdigit++;
   469   static const char * pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
   470   static const char * pipeline_use_element    = "Pipeline_Use_Element";
   472   templen = 1 +
   473     (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
   474      (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
   476   // Allocate space for the resource list
   477   char * resource_mask = new char [templen];
   478   char * last_comma = NULL;
   480   templen = 0;
   482   for (pipeclass->_resUsage.reset();
   483        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   484     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   486     if (!used_mask)
   487       fprintf(stderr, "*** used_mask is 0 ***\n");
   489     resources_used |= used_mask;
   491     uint lb, ub;
   493     for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
   494     for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
   496     if (lb == ub)
   497       resources_used_exclusively |= used_mask;
   499     int formatlen =
   500       sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
   501         pipeline_use_element,
   502         masklen, used_mask,
   503         cycledigit, lb, cycledigit, ub,
   504         ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
   505         pipeline_use_cycle_mask);
   507     templen += formatlen;
   509     memset(res_mask, 0, cyclemasksize * sizeof(uint));
   511     int cycles = piperesource->_cycles;
   512     uint stage          = pipeline->_stages.index(piperesource->_stage);
   513     uint upper_limit    = stage+cycles-1;
   514     uint lower_limit    = stage-1;
   515     uint upper_idx      = upper_limit >> 5;
   516     uint lower_idx      = lower_limit >> 5;
   517     uint upper_position = upper_limit & 0x1f;
   518     uint lower_position = lower_limit & 0x1f;
   520     uint mask = (((uint)1) << upper_position) - 1;
   522     while ( upper_idx > lower_idx ) {
   523       res_mask[upper_idx--] |= mask;
   524       mask = (uint)-1;
   525     }
   527     mask -= (((uint)1) << lower_position) - 1;
   528     res_mask[upper_idx] |= mask;
   530     for (j = cyclemasksize-1; j >= 0; j--) {
   531       formatlen =
   532         sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
   533       templen += formatlen;
   534     }
   536     resource_mask[templen++] = ')';
   537     resource_mask[templen++] = ')';
   538     last_comma = &resource_mask[templen];
   539     resource_mask[templen++] = ',';
   540     resource_mask[templen++] = '\n';
   541   }
   543   resource_mask[templen] = 0;
   544   if (last_comma)
   545     last_comma[0] = ' ';
   547   // See if the same string is in the table
   548   int ndx = pipeline_res_mask.index(resource_mask);
   550   // No, add it to the table
   551   if (ndx < 0) {
   552     pipeline_res_mask.addName(resource_mask);
   553     ndx = pipeline_res_mask.index(resource_mask);
   555     if (strlen(resource_mask) > 0)
   556       fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
   557         ndx+1, element_count, resource_mask);
   559     char * args = new char [9 + 2*masklen + maskdigit];
   561     sprintf(args, "0x%0*x, 0x%0*x, %*d",
   562       masklen, resources_used,
   563       masklen, resources_used_exclusively,
   564       maskdigit, element_count);
   566     pipeline_res_args.addName(args);
   567   }
   568   else
   569     delete [] resource_mask;
   571   delete [] res_mask;
   572 //delete [] res_masks;
   574   return (ndx);
   575 }
   577 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
   578   const char *classname;
   579   const char *resourcename;
   580   int resourcenamelen = 0;
   581   NameList pipeline_reads;
   582   NameList pipeline_res_stages;
   583   NameList pipeline_res_cycles;
   584   NameList pipeline_res_masks;
   585   NameList pipeline_res_args;
   586   const int default_latency = 1;
   587   const int non_operand_latency = 0;
   588   const int node_latency = 0;
   590   if (!_pipeline) {
   591     fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
   592     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
   593     fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
   594     fprintf(fp_cpp, "}\n");
   595     return;
   596   }
   598   fprintf(fp_cpp, "\n");
   599   fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
   600   fprintf(fp_cpp, "#ifndef PRODUCT\n");
   601   fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
   602   fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
   603   fprintf(fp_cpp, "    \"undefined\"");
   605   for (int s = 0; s < _pipeline->_stagecnt; s++)
   606     fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
   608   fprintf(fp_cpp, "\n  };\n\n");
   609   fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
   610     _pipeline->_stagecnt);
   611   fprintf(fp_cpp, "}\n");
   612   fprintf(fp_cpp, "#endif\n\n");
   614   fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
   615   fprintf(fp_cpp, "  // See if the functional units overlap\n");
   616 #if 0
   617   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   618   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   619   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
   620   fprintf(fp_cpp, "  }\n");
   621   fprintf(fp_cpp, "#endif\n\n");
   622 #endif
   623   fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
   624   fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
   625 #if 0
   626   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   627   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   628   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
   629   fprintf(fp_cpp, "  }\n");
   630   fprintf(fp_cpp, "#endif\n\n");
   631 #endif
   632   fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
   633   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
   634   fprintf(fp_cpp, "    if (predUse->multiple())\n");
   635   fprintf(fp_cpp, "      continue;\n\n");
   636   fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
   637   fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
   638   fprintf(fp_cpp, "      if (currUse->multiple())\n");
   639   fprintf(fp_cpp, "        continue;\n\n");
   640   fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
   641   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
   642   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
   643   fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
   644   fprintf(fp_cpp, "          y <<= 1;\n");
   645   fprintf(fp_cpp, "      }\n");
   646   fprintf(fp_cpp, "    }\n");
   647   fprintf(fp_cpp, "  }\n\n");
   648   fprintf(fp_cpp, "  // There is the potential for overlap\n");
   649   fprintf(fp_cpp, "  return (start);\n");
   650   fprintf(fp_cpp, "}\n\n");
   651   fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
   652   fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
   653   fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
   654   fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
   655   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
   656   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
   657   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
   658   fprintf(fp_cpp, "      uint min_delay = %d;\n",
   659     _pipeline->_maxcycleused+1);
   660   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
   661   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   662   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
   663   fprintf(fp_cpp, "        uint curr_delay = delay;\n");
   664   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
   665   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
   666   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
   667   fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
   668   fprintf(fp_cpp, "            y <<= 1;\n");
   669   fprintf(fp_cpp, "        }\n");
   670   fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
   671   fprintf(fp_cpp, "      }\n");
   672   fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
   673   fprintf(fp_cpp, "    }\n");
   674   fprintf(fp_cpp, "    else {\n");
   675   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   676   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
   677   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
   678   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
   679   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
   680   fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
   681   fprintf(fp_cpp, "            y <<= 1;\n");
   682   fprintf(fp_cpp, "        }\n");
   683   fprintf(fp_cpp, "      }\n");
   684   fprintf(fp_cpp, "    }\n");
   685   fprintf(fp_cpp, "  }\n\n");
   686   fprintf(fp_cpp, "  return (delay);\n");
   687   fprintf(fp_cpp, "}\n\n");
   688   fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
   689   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
   690   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
   691   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
   692   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
   693   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   694   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
   695   fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
   696   fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
   697   fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
   698   fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
   699   fprintf(fp_cpp, "          break;\n");
   700   fprintf(fp_cpp, "        }\n");
   701   fprintf(fp_cpp, "      }\n");
   702   fprintf(fp_cpp, "    }\n");
   703   fprintf(fp_cpp, "    else {\n");
   704   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   705   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
   706   fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
   707   fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
   708   fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
   709   fprintf(fp_cpp, "      }\n");
   710   fprintf(fp_cpp, "    }\n");
   711   fprintf(fp_cpp, "  }\n");
   712   fprintf(fp_cpp, "}\n\n");
   714   fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
   715   fprintf(fp_cpp, "  int const default_latency = 1;\n");
   716   fprintf(fp_cpp, "\n");
   717 #if 0
   718   fprintf(fp_cpp, "#ifndef PRODUCT\n");
   719   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   720   fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
   721   fprintf(fp_cpp, "  }\n");
   722   fprintf(fp_cpp, "#endif\n\n");
   723 #endif
   724   fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\")\n");
   725   fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\")\n\n");
   726   fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
   727   fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
   728   fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
   729   fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
   730   fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
   731 #if 0
   732   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   733   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   734   fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
   735   fprintf(fp_cpp, "  }\n");
   736   fprintf(fp_cpp, "#endif\n\n");
   737 #endif
   738   fprintf(fp_cpp, "\n");
   739   fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
   740   fprintf(fp_cpp, "    return (default_latency);\n");
   741   fprintf(fp_cpp, "\n");
   742   fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
   743   fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
   744 #if 0
   745   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   746   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   747   fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
   748   fprintf(fp_cpp, "  }\n");
   749   fprintf(fp_cpp, "#endif\n\n");
   750 #endif
   751   fprintf(fp_cpp, "  return (delta);\n");
   752   fprintf(fp_cpp, "}\n\n");
   754   if (!_pipeline)
   755     /* Do Nothing */;
   757   else if (_pipeline->_maxcycleused <=
   758 #ifdef SPARC
   759     64
   760 #else
   761     32
   762 #endif
   763       ) {
   764     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   765     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
   766     fprintf(fp_cpp, "}\n\n");
   767     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   768     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
   769     fprintf(fp_cpp, "}\n\n");
   770   }
   771   else {
   772     uint l;
   773     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
   774     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   775     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
   776     for (l = 1; l <= masklen; l++)
   777       fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
   778     fprintf(fp_cpp, ");\n");
   779     fprintf(fp_cpp, "}\n\n");
   780     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   781     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
   782     for (l = 1; l <= masklen; l++)
   783       fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
   784     fprintf(fp_cpp, ");\n");
   785     fprintf(fp_cpp, "}\n\n");
   786     fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
   787     for (l = 1; l <= masklen; l++)
   788       fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
   789     fprintf(fp_cpp, "\n}\n\n");
   790   }
   792   /* Get the length of all the resource names */
   793   for (_pipeline->_reslist.reset(), resourcenamelen = 0;
   794        (resourcename = _pipeline->_reslist.iter()) != NULL;
   795        resourcenamelen += (int)strlen(resourcename));
   797   // Create the pipeline class description
   799   fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
   800   fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
   802   fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
   803   for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
   804     fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
   805     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
   806     for (int i2 = masklen-1; i2 >= 0; i2--)
   807       fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
   808     fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
   809   }
   810   fprintf(fp_cpp, "};\n\n");
   812   fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
   813     _pipeline->_rescount);
   815   for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
   816     fprintf(fp_cpp, "\n");
   817     fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
   818     PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
   819     int maxWriteStage = -1;
   820     int maxMoreInstrs = 0;
   821     int paramcount = 0;
   822     int i = 0;
   823     const char *paramname;
   824     int resource_count = (_pipeline->_rescount + 3) >> 2;
   826     // Scan the operands, looking for last output stage and number of inputs
   827     for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
   828       const PipeClassOperandForm *pipeopnd =
   829           (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   830       if (pipeopnd) {
   831         if (pipeopnd->_iswrite) {
   832            int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
   833            int moreinsts = pipeopnd->_more_instrs;
   834           if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
   835             maxWriteStage = stagenum;
   836             maxMoreInstrs = moreinsts;
   837           }
   838         }
   839       }
   841       if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
   842         paramcount++;
   843     }
   845     // Create the list of stages for the operands that are read
   846     // Note that we will build a NameList to reduce the number of copies
   848     int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
   850     int pipeline_res_stages_index = pipeline_res_stages_initializer(
   851       fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
   853     int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
   854       fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
   856     int pipeline_res_mask_index = pipeline_res_mask_initializer(
   857       fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
   859 #if 0
   860     // Process the Resources
   861     const PipeClassResourceForm *piperesource;
   863     unsigned resources_used = 0;
   864     unsigned exclusive_resources_used = 0;
   865     unsigned resource_groups = 0;
   866     for (pipeclass->_resUsage.reset();
   867          (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   868       int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   869       if (used_mask)
   870         resource_groups++;
   871       resources_used |= used_mask;
   872       if ((used_mask & (used_mask-1)) == 0)
   873         exclusive_resources_used |= used_mask;
   874     }
   876     if (resource_groups > 0) {
   877       fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
   878         pipeclass->_num, resource_groups);
   879       for (pipeclass->_resUsage.reset(), i = 1;
   880            (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
   881            i++ ) {
   882         int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   883         if (used_mask) {
   884           fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
   885         }
   886       }
   887       fprintf(fp_cpp, "};\n\n");
   888     }
   889 #endif
   891     // Create the pipeline class description
   892     fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
   893       pipeclass->_num);
   894     if (maxWriteStage < 0)
   895       fprintf(fp_cpp, "(uint)stage_undefined");
   896     else if (maxMoreInstrs == 0)
   897       fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
   898     else
   899       fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
   900     fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
   901       paramcount,
   902       pipeclass->hasFixedLatency() ? "true" : "false",
   903       pipeclass->fixedLatency(),
   904       pipeclass->InstructionCount(),
   905       pipeclass->hasBranchDelay() ? "true" : "false",
   906       pipeclass->hasMultipleBundles() ? "true" : "false",
   907       pipeclass->forceSerialization() ? "true" : "false",
   908       pipeclass->mayHaveNoCode() ? "true" : "false" );
   909     if (paramcount > 0) {
   910       fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
   911         pipeline_reads_index+1);
   912     }
   913     else
   914       fprintf(fp_cpp, " NULL,");
   915     fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
   916       pipeline_res_stages_index+1);
   917     fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
   918       pipeline_res_cycles_index+1);
   919     fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
   920       pipeline_res_args.name(pipeline_res_mask_index));
   921     if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
   922       fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
   923         pipeline_res_mask_index+1);
   924     else
   925       fprintf(fp_cpp, "NULL");
   926     fprintf(fp_cpp, "));\n");
   927   }
   929   // Generate the Node::latency method if _pipeline defined
   930   fprintf(fp_cpp, "\n");
   931   fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
   932   fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
   933   if (_pipeline) {
   934 #if 0
   935     fprintf(fp_cpp, "#ifndef PRODUCT\n");
   936     fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
   937     fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
   938     fprintf(fp_cpp, " }\n");
   939     fprintf(fp_cpp, "#endif\n");
   940 #endif
   941     fprintf(fp_cpp, "  uint j;\n");
   942     fprintf(fp_cpp, "  // verify in legal range for inputs\n");
   943     fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
   944     fprintf(fp_cpp, "  // verify input is not null\n");
   945     fprintf(fp_cpp, "  Node *pred = in(i);\n");
   946     fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
   947       non_operand_latency);
   948     fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
   949     fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
   950     fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
   951     fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
   952     fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
   953     fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
   954     fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
   955     fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
   956       node_latency);
   957     fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
   958     fprintf(fp_cpp, "  j = m->oper_input_base();\n");
   959     fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
   960       non_operand_latency);
   961     fprintf(fp_cpp, "  // determine which operand this is in\n");
   962     fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
   963     fprintf(fp_cpp, "  int delta = %d;\n\n",
   964       non_operand_latency);
   965     fprintf(fp_cpp, "  uint k;\n");
   966     fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
   967     fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
   968     fprintf(fp_cpp, "    if (i < j)\n");
   969     fprintf(fp_cpp, "      break;\n");
   970     fprintf(fp_cpp, "  }\n");
   971     fprintf(fp_cpp, "  if (k < n)\n");
   972     fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
   973     fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
   974   }
   975   else {
   976     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
   977     fprintf(fp_cpp, "  return %d;\n",
   978       non_operand_latency);
   979   }
   980   fprintf(fp_cpp, "}\n\n");
   982   // Output the list of nop nodes
   983   fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
   984   const char *nop;
   985   int nopcnt = 0;
   986   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
   988   fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt);
   989   int i = 0;
   990   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
   991     fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop);
   992   }
   993   fprintf(fp_cpp, "};\n\n");
   994   fprintf(fp_cpp, "#ifndef PRODUCT\n");
   995   fprintf(fp_cpp, "void Bundle::dump() const {\n");
   996   fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
   997   fprintf(fp_cpp, "    \"\",\n");
   998   fprintf(fp_cpp, "    \"use nop delay\",\n");
   999   fprintf(fp_cpp, "    \"use unconditional delay\",\n");
  1000   fprintf(fp_cpp, "    \"use conditional delay\",\n");
  1001   fprintf(fp_cpp, "    \"used in conditional delay\",\n");
  1002   fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
  1003   fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
  1004   fprintf(fp_cpp, "  };\n\n");
  1006   fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
  1007   for (i = 0; i < _pipeline->_rescount; i++)
  1008     fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
  1009   fprintf(fp_cpp, "};\n\n");
  1011   // See if the same string is in the table
  1012   fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
  1013   fprintf(fp_cpp, "  if (_flags) {\n");
  1014   fprintf(fp_cpp, "    tty->print(\"%%s\", bundle_flags[_flags]);\n");
  1015   fprintf(fp_cpp, "    needs_comma = true;\n");
  1016   fprintf(fp_cpp, "  };\n");
  1017   fprintf(fp_cpp, "  if (instr_count()) {\n");
  1018   fprintf(fp_cpp, "    tty->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
  1019   fprintf(fp_cpp, "    needs_comma = true;\n");
  1020   fprintf(fp_cpp, "  };\n");
  1021   fprintf(fp_cpp, "  uint r = resources_used();\n");
  1022   fprintf(fp_cpp, "  if (r) {\n");
  1023   fprintf(fp_cpp, "    tty->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
  1024   fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
  1025   fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
  1026   fprintf(fp_cpp, "        tty->print(\" %%s\", resource_names[i]);\n");
  1027   fprintf(fp_cpp, "    needs_comma = true;\n");
  1028   fprintf(fp_cpp, "  };\n");
  1029   fprintf(fp_cpp, "  tty->print(\"\\n\");\n");
  1030   fprintf(fp_cpp, "}\n");
  1031   fprintf(fp_cpp, "#endif\n");
  1034 // ---------------------------------------------------------------------------
  1035 //------------------------------Utilities to build Instruction Classes--------
  1036 // ---------------------------------------------------------------------------
  1038 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
  1039   fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
  1040           node, regMask);
  1043 // Scan the peepmatch and output a test for each instruction
  1044 static void check_peepmatch_instruction_tree(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  1045   intptr_t   parent        = -1;
  1046   intptr_t   inst_position = 0;
  1047   const char *inst_name    = NULL;
  1048   intptr_t   input         = 0;
  1049   fprintf(fp, "      // Check instruction sub-tree\n");
  1050   pmatch->reset();
  1051   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
  1052        inst_name != NULL;
  1053        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
  1054     // If this is not a placeholder
  1055     if( ! pmatch->is_placeholder() ) {
  1056       // Define temporaries 'inst#', based on parent and parent's input index
  1057       if( parent != -1 ) {                // root was initialized
  1058         fprintf(fp, "  inst%ld = inst%ld->in(%ld);\n",
  1059                 inst_position, parent, input);
  1062       // When not the root
  1063       // Test we have the correct instruction by comparing the rule
  1064       if( parent != -1 ) {
  1065         fprintf(fp, "  matches = matches &&  ( inst%ld->rule() == %s_rule );",
  1066                 inst_position, inst_name);
  1068     } else {
  1069       // Check that user did not try to constrain a placeholder
  1070       assert( ! pconstraint->constrains_instruction(inst_position),
  1071               "fatal(): Can not constrain a placeholder instruction");
  1076 static void print_block_index(FILE *fp, intptr_t inst_position) {
  1077   assert( inst_position >= 0, "Instruction number less than zero");
  1078   fprintf(fp, "block_index");
  1079   if( inst_position != 0 ) {
  1080     fprintf(fp, " - %ld", inst_position);
  1084 // Scan the peepmatch and output a test for each instruction
  1085 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  1086   intptr_t   parent        = -1;
  1087   intptr_t   inst_position = 0;
  1088   const char *inst_name    = NULL;
  1089   intptr_t   input         = 0;
  1090   fprintf(fp, "  // Check instruction sub-tree\n");
  1091   pmatch->reset();
  1092   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
  1093        inst_name != NULL;
  1094        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
  1095     // If this is not a placeholder
  1096     if( ! pmatch->is_placeholder() ) {
  1097       // Define temporaries 'inst#', based on parent and parent's input index
  1098       if( parent != -1 ) {                // root was initialized
  1099         fprintf(fp, "  // Identify previous instruction if inside this block\n");
  1100         fprintf(fp, "  if( ");
  1101         print_block_index(fp, inst_position);
  1102         fprintf(fp, " > 0 ) {\n    Node *n = block->_nodes.at(");
  1103         print_block_index(fp, inst_position);
  1104         fprintf(fp, ");\n    inst%ld = (n->is_Mach()) ? ", inst_position);
  1105         fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
  1108       // When not the root
  1109       // Test we have the correct instruction by comparing the rule.
  1110       if( parent != -1 ) {
  1111         fprintf(fp, "  matches = matches && (inst%ld != NULL) && (inst%ld->rule() == %s_rule);\n",
  1112                 inst_position, inst_position, inst_name);
  1114     } else {
  1115       // Check that user did not try to constrain a placeholder
  1116       assert( ! pconstraint->constrains_instruction(inst_position),
  1117               "fatal(): Can not constrain a placeholder instruction");
  1122 // Build mapping for register indices, num_edges to input
  1123 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
  1124   intptr_t   parent        = -1;
  1125   intptr_t   inst_position = 0;
  1126   const char *inst_name    = NULL;
  1127   intptr_t   input         = 0;
  1128   fprintf(fp, "      // Build map to register info\n");
  1129   pmatch->reset();
  1130   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
  1131        inst_name != NULL;
  1132        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
  1133     // If this is not a placeholder
  1134     if( ! pmatch->is_placeholder() ) {
  1135       // Define temporaries 'inst#', based on self's inst_position
  1136       InstructForm *inst = globals[inst_name]->is_instruction();
  1137       if( inst != NULL ) {
  1138         char inst_prefix[]  = "instXXXX_";
  1139         sprintf(inst_prefix, "inst%ld_",   inst_position);
  1140         char receiver[]     = "instXXXX->";
  1141         sprintf(receiver,    "inst%ld->", inst_position);
  1142         inst->index_temps( fp, globals, inst_prefix, receiver );
  1148 // Generate tests for the constraints
  1149 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  1150   fprintf(fp, "\n");
  1151   fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
  1153   // Build mapping from num_edges to local variables
  1154   build_instruction_index_mapping( fp, globals, pmatch );
  1156   // Build constraint tests
  1157   if( pconstraint != NULL ) {
  1158     fprintf(fp, "      matches = matches &&");
  1159     bool   first_constraint = true;
  1160     while( pconstraint != NULL ) {
  1161       // indentation and connecting '&&'
  1162       const char *indentation = "      ";
  1163       fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
  1165       // Only have '==' relation implemented
  1166       if( strcmp(pconstraint->_relation,"==") != 0 ) {
  1167         assert( false, "Unimplemented()" );
  1170       // LEFT
  1171       intptr_t left_index  = pconstraint->_left_inst;
  1172       const char *left_op  = pconstraint->_left_op;
  1173       // Access info on the instructions whose operands are compared
  1174       InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
  1175       assert( inst_left, "Parser should guaranty this is an instruction");
  1176       int left_op_base  = inst_left->oper_input_base(globals);
  1177       // Access info on the operands being compared
  1178       int left_op_index  = inst_left->operand_position(left_op, Component::USE);
  1179       if( left_op_index == -1 ) {
  1180         left_op_index = inst_left->operand_position(left_op, Component::DEF);
  1181         if( left_op_index == -1 ) {
  1182           left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
  1185       assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
  1186       ComponentList components_left = inst_left->_components;
  1187       const char *left_comp_type = components_left.at(left_op_index)->_type;
  1188       OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
  1189       Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
  1192       // RIGHT
  1193       int right_op_index = -1;
  1194       intptr_t right_index = pconstraint->_right_inst;
  1195       const char *right_op = pconstraint->_right_op;
  1196       if( right_index != -1 ) { // Match operand
  1197         // Access info on the instructions whose operands are compared
  1198         InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
  1199         assert( inst_right, "Parser should guaranty this is an instruction");
  1200         int right_op_base = inst_right->oper_input_base(globals);
  1201         // Access info on the operands being compared
  1202         right_op_index = inst_right->operand_position(right_op, Component::USE);
  1203         if( right_op_index == -1 ) {
  1204           right_op_index = inst_right->operand_position(right_op, Component::DEF);
  1205           if( right_op_index == -1 ) {
  1206             right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
  1209         assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
  1210         ComponentList components_right = inst_right->_components;
  1211         const char *right_comp_type = components_right.at(right_op_index)->_type;
  1212         OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
  1213         Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
  1214         assert( right_interface_type == left_interface_type, "Both must be same interface");
  1216       } else {                  // Else match register
  1217         // assert( false, "should be a register" );
  1220       //
  1221       // Check for equivalence
  1222       //
  1223       // fprintf(fp, "phase->eqv( ");
  1224       // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
  1225       //         left_index,  left_op_base,  left_op_index,  left_op,
  1226       //         right_index, right_op_base, right_op_index, right_op );
  1227       // fprintf(fp, ")");
  1228       //
  1229       switch( left_interface_type ) {
  1230       case Form::register_interface: {
  1231         // Check that they are allocated to the same register
  1232         // Need parameter for index position if not result operand
  1233         char left_reg_index[] = ",instXXXX_idxXXXX";
  1234         if( left_op_index != 0 ) {
  1235           assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
  1236           // Must have index into operands
  1237           sprintf(left_reg_index,",inst%d_idx%d", left_index, left_op_index);
  1238         } else {
  1239           strcpy(left_reg_index, "");
  1241         fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
  1242                 left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
  1243         fprintf(fp, " == ");
  1245         if( right_index != -1 ) {
  1246           char right_reg_index[18] = ",instXXXX_idxXXXX";
  1247           if( right_op_index != 0 ) {
  1248             assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
  1249             // Must have index into operands
  1250             sprintf(right_reg_index,",inst%d_idx%d", right_index, right_op_index);
  1251           } else {
  1252             strcpy(right_reg_index, "");
  1254           fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
  1255                   right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
  1256         } else {
  1257           fprintf(fp, "%s_enc", right_op );
  1259         fprintf(fp,")");
  1260         break;
  1262       case Form::constant_interface: {
  1263         // Compare the '->constant()' values
  1264         fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
  1265                 left_index,  left_op_index,  left_index, left_op );
  1266         fprintf(fp, " == ");
  1267         fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
  1268                 right_index, right_op, right_index, right_op_index );
  1269         break;
  1271       case Form::memory_interface: {
  1272         // Compare 'base', 'index', 'scale', and 'disp'
  1273         // base
  1274         fprintf(fp, "( \n");
  1275         fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
  1276           left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1277         fprintf(fp, " == ");
  1278         fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
  1279                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1280         // index
  1281         fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
  1282                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1283         fprintf(fp, " == ");
  1284         fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
  1285                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1286         // scale
  1287         fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
  1288                 left_index,  left_op_index,  left_index, left_op );
  1289         fprintf(fp, " == ");
  1290         fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
  1291                 right_index, right_op, right_index, right_op_index );
  1292         // disp
  1293         fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
  1294                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1295         fprintf(fp, " == ");
  1296         fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
  1297                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1298         fprintf(fp, ") \n");
  1299         break;
  1301       case Form::conditional_interface: {
  1302         // Compare the condition code being tested
  1303         assert( false, "Unimplemented()" );
  1304         break;
  1306       default: {
  1307         assert( false, "ShouldNotReachHere()" );
  1308         break;
  1312       // Advance to next constraint
  1313       pconstraint = pconstraint->next();
  1314       first_constraint = false;
  1317     fprintf(fp, ";\n");
  1321 // // EXPERIMENTAL -- TEMPORARY code
  1322 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
  1323 //   int op_index = instr->operand_position(op_name, Component::USE);
  1324 //   if( op_index == -1 ) {
  1325 //     op_index = instr->operand_position(op_name, Component::DEF);
  1326 //     if( op_index == -1 ) {
  1327 //       op_index = instr->operand_position(op_name, Component::USE_DEF);
  1328 //     }
  1329 //   }
  1330 //   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
  1331 //
  1332 //   ComponentList components_right = instr->_components;
  1333 //   char *right_comp_type = components_right.at(op_index)->_type;
  1334 //   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
  1335 //   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
  1336 //
  1337 //   return;
  1338 // }
  1340 // Construct the new sub-tree
  1341 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
  1342   fprintf(fp, "      // IF instructions and constraints matched\n");
  1343   fprintf(fp, "      if( matches ) {\n");
  1344   fprintf(fp, "        // generate the new sub-tree\n");
  1345   fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
  1346   if( preplace != NULL ) {
  1347     // Get the root of the new sub-tree
  1348     const char *root_inst = NULL;
  1349     preplace->next_instruction(root_inst);
  1350     InstructForm *root_form = globals[root_inst]->is_instruction();
  1351     assert( root_form != NULL, "Replacement instruction was not previously defined");
  1352     fprintf(fp, "        %sNode *root = new (C) %sNode();\n", root_inst, root_inst);
  1354     intptr_t    inst_num;
  1355     const char *op_name;
  1356     int         opnds_index = 0;            // define result operand
  1357     // Then install the use-operands for the new sub-tree
  1358     // preplace->reset();             // reset breaks iteration
  1359     for( preplace->next_operand( inst_num, op_name );
  1360          op_name != NULL;
  1361          preplace->next_operand( inst_num, op_name ) ) {
  1362       InstructForm *inst_form;
  1363       inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
  1364       assert( inst_form, "Parser should guaranty this is an instruction");
  1365       int op_base     = inst_form->oper_input_base(globals);
  1366       int inst_op_num = inst_form->operand_position(op_name, Component::USE);
  1367       if( inst_op_num == NameList::Not_in_list )
  1368         inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
  1369       assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
  1370       // find the name of the OperandForm from the local name
  1371       const Form *form   = inst_form->_localNames[op_name];
  1372       OperandForm  *op_form = form->is_operand();
  1373       if( opnds_index == 0 ) {
  1374         // Initial setup of new instruction
  1375         fprintf(fp, "        // ----- Initial setup -----\n");
  1376         //
  1377         // Add control edge for this node
  1378         fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
  1379         // Add unmatched edges from root of match tree
  1380         int op_base = root_form->oper_input_base(globals);
  1381         for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
  1382           fprintf(fp, "        root->add_req(inst%ld->in(%d));        // unmatched ideal edge\n",
  1383                                           inst_num, unmatched_edge);
  1385         // If new instruction captures bottom type
  1386         if( root_form->captures_bottom_type() ) {
  1387           // Get bottom type from instruction whose result we are replacing
  1388           fprintf(fp, "        root->_bottom_type = inst%ld->bottom_type();\n", inst_num);
  1390         // Define result register and result operand
  1391         fprintf(fp, "        ra_->add_reference(root, inst%ld);\n", inst_num);
  1392         fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%ld));\n", inst_num);
  1393         fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%ld), ra_->get_reg_first(inst%ld));\n", inst_num, inst_num);
  1394         fprintf(fp, "        root->_opnds[0] = inst%ld->_opnds[0]->clone(C); // result\n", inst_num);
  1395         fprintf(fp, "        // ----- Done with initial setup -----\n");
  1396       } else {
  1397         if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
  1398           // Do not have ideal edges for constants after matching
  1399           fprintf(fp, "        for( unsigned x%d = inst%ld_idx%d; x%d < inst%ld_idx%d; x%d++ )\n",
  1400                   inst_op_num, inst_num, inst_op_num,
  1401                   inst_op_num, inst_num, inst_op_num+1, inst_op_num );
  1402           fprintf(fp, "          root->add_req( inst%ld->in(x%d) );\n",
  1403                   inst_num, inst_op_num );
  1404         } else {
  1405           fprintf(fp, "        // no ideal edge for constants after matching\n");
  1407         fprintf(fp, "        root->_opnds[%d] = inst%ld->_opnds[%d]->clone(C);\n",
  1408                 opnds_index, inst_num, inst_op_num );
  1410       ++opnds_index;
  1412   }else {
  1413     // Replacing subtree with empty-tree
  1414     assert( false, "ShouldNotReachHere();");
  1417   // Return the new sub-tree
  1418   fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
  1419   fprintf(fp, "        return root;  // return new root;\n");
  1420   fprintf(fp, "      }\n");
  1424 // Define the Peephole method for an instruction node
  1425 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
  1426   // Generate Peephole function header
  1427   fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident);
  1428   fprintf(fp, "  bool  matches = true;\n");
  1430   // Identify the maximum instruction position,
  1431   // generate temporaries that hold current instruction
  1432   //
  1433   //   MachNode  *inst0 = NULL;
  1434   //   ...
  1435   //   MachNode  *instMAX = NULL;
  1436   //
  1437   int max_position = 0;
  1438   Peephole *peep;
  1439   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
  1440     PeepMatch *pmatch = peep->match();
  1441     assert( pmatch != NULL, "fatal(), missing peepmatch rule");
  1442     if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
  1444   for( int i = 0; i <= max_position; ++i ) {
  1445     if( i == 0 ) {
  1446       fprintf(fp, "  MachNode *inst0 = this;\n", i);
  1447     } else {
  1448       fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
  1452   // For each peephole rule in architecture description
  1453   //   Construct a test for the desired instruction sub-tree
  1454   //   then check the constraints
  1455   //   If these match, Generate the new subtree
  1456   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
  1457     int         peephole_number = peep->peephole_number();
  1458     PeepMatch      *pmatch      = peep->match();
  1459     PeepConstraint *pconstraint = peep->constraints();
  1460     PeepReplace    *preplace    = peep->replacement();
  1462     // Root of this peephole is the current MachNode
  1463     assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
  1464             "root of PeepMatch does not match instruction");
  1466     // Make each peephole rule individually selectable
  1467     fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
  1468     fprintf(fp, "    matches = true;\n");
  1469     // Scan the peepmatch and output a test for each instruction
  1470     check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
  1472     // Check constraints and build replacement inside scope
  1473     fprintf(fp, "    // If instruction subtree matches\n");
  1474     fprintf(fp, "    if( matches ) {\n");
  1476     // Generate tests for the constraints
  1477     check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
  1479     // Construct the new sub-tree
  1480     generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
  1482     // End of scope for this peephole's constraints
  1483     fprintf(fp, "    }\n");
  1484     // Closing brace '}' to make each peephole rule individually selectable
  1485     fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
  1486     fprintf(fp, "\n");
  1489   fprintf(fp, "  return NULL;  // No peephole rules matched\n");
  1490   fprintf(fp, "}\n");
  1491   fprintf(fp, "\n");
  1494 // Define the Expand method for an instruction node
  1495 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
  1496   unsigned      cnt  = 0;          // Count nodes we have expand into
  1497   unsigned      i;
  1499   // Generate Expand function header
  1500   fprintf(fp,"MachNode *%sNode::Expand(State *state, Node_List &proj_list) {\n", node->_ident);
  1501   fprintf(fp,"Compile* C = Compile::current();\n");
  1502   // Generate expand code
  1503   if( node->expands() ) {
  1504     const char   *opid;
  1505     int           new_pos, exp_pos;
  1506     const char   *new_id   = NULL;
  1507     const Form   *frm      = NULL;
  1508     InstructForm *new_inst = NULL;
  1509     OperandForm  *new_oper = NULL;
  1510     unsigned      numo     = node->num_opnds() +
  1511                                 node->_exprule->_newopers.count();
  1513     // If necessary, generate any operands created in expand rule
  1514     if (node->_exprule->_newopers.count()) {
  1515       for(node->_exprule->_newopers.reset();
  1516           (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
  1517         frm = node->_localNames[new_id];
  1518         assert(frm, "Invalid entry in new operands list of expand rule");
  1519         new_oper = frm->is_operand();
  1520         char *tmp = (char *)node->_exprule->_newopconst[new_id];
  1521         if (tmp == NULL) {
  1522           fprintf(fp,"  MachOper *op%d = new (C) %sOper();\n",
  1523                   cnt, new_oper->_ident);
  1525         else {
  1526           fprintf(fp,"  MachOper *op%d = new (C) %sOper(%s);\n",
  1527                   cnt, new_oper->_ident, tmp);
  1531     cnt = 0;
  1532     // Generate the temps to use for DAG building
  1533     for(i = 0; i < numo; i++) {
  1534       if (i < node->num_opnds()) {
  1535         fprintf(fp,"  MachNode *tmp%d = this;\n", i);
  1537       else {
  1538         fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
  1541     // Build mapping from num_edges to local variables
  1542     fprintf(fp,"  unsigned num0 = 0;\n");
  1543     for( i = 1; i < node->num_opnds(); i++ ) {
  1544       fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
  1547     // Build a mapping from operand index to input edges
  1548     fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
  1550     // The order in which inputs are added to a node is very
  1551     // strange.  Store nodes get a memory input before Expand is
  1552     // called and all other nodes get it afterwards so
  1553     // oper_input_base is wrong during expansion.  This code adjusts
  1554     // is so that expansion will work correctly.
  1555     bool missing_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames) &&
  1556                                node->is_ideal_store() == Form::none;
  1557     if (missing_memory_edge) {
  1558       fprintf(fp,"  idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
  1561     for( i = 0; i < node->num_opnds(); i++ ) {
  1562       fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
  1563               i+1,i,i);
  1566     // Declare variable to hold root of expansion
  1567     fprintf(fp,"  MachNode *result = NULL;\n");
  1569     // Iterate over the instructions 'node' expands into
  1570     ExpandRule  *expand       = node->_exprule;
  1571     NameAndList *expand_instr = NULL;
  1572     for(expand->reset_instructions();
  1573         (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
  1574       new_id = expand_instr->name();
  1576       InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
  1577       if (expand_instruction->has_temps()) {
  1578         globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s",
  1579                              node->_ident, new_id);
  1582       // Build the node for the instruction
  1583       fprintf(fp,"\n  %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id);
  1584       // Add control edge for this node
  1585       fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
  1586       // Build the operand for the value this node defines.
  1587       Form *form = (Form*)_globalNames[new_id];
  1588       assert( form, "'new_id' must be a defined form name");
  1589       // Grab the InstructForm for the new instruction
  1590       new_inst = form->is_instruction();
  1591       assert( new_inst, "'new_id' must be an instruction name");
  1592       if( node->is_ideal_if() && new_inst->is_ideal_if() ) {
  1593         fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n",cnt);
  1594         fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt);
  1597       if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
  1598         fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
  1601       const char *resultOper = new_inst->reduce_result();
  1602       fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n",
  1603               cnt, machOperEnum(resultOper));
  1605       // get the formal operand NameList
  1606       NameList *formal_lst = &new_inst->_parameters;
  1607       formal_lst->reset();
  1609       // Handle any memory operand
  1610       int memory_operand = new_inst->memory_operand(_globalNames);
  1611       if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
  1612         int node_mem_op = node->memory_operand(_globalNames);
  1613         assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
  1614                 "expand rule member needs memory but top-level inst doesn't have any" );
  1615         if (!missing_memory_edge) {
  1616           // Copy memory edge
  1617           fprintf(fp,"  n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
  1621       // Iterate over the new instruction's operands
  1622       int prev_pos = -1;
  1623       for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
  1624         // Use 'parameter' at current position in list of new instruction's formals
  1625         // instead of 'opid' when looking up info internal to new_inst
  1626         const char *parameter = formal_lst->iter();
  1627         // Check for an operand which is created in the expand rule
  1628         if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
  1629           new_pos = new_inst->operand_position(parameter,Component::USE);
  1630           exp_pos += node->num_opnds();
  1631           // If there is no use of the created operand, just skip it
  1632           if (new_pos != -1) {
  1633             //Copy the operand from the original made above
  1634             fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n",
  1635                     cnt, new_pos, exp_pos-node->num_opnds(), opid);
  1636             // Check for who defines this operand & add edge if needed
  1637             fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
  1638             fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
  1641         else {
  1642           // Use operand name to get an index into instruction component list
  1643           // ins = (InstructForm *) _globalNames[new_id];
  1644           exp_pos = node->operand_position_format(opid);
  1645           assert(exp_pos != -1, "Bad expand rule");
  1646           if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
  1647             // For the add_req calls below to work correctly they need
  1648             // to added in the same order that a match would add them.
  1649             // This means that they would need to be in the order of
  1650             // the components list instead of the formal parameters.
  1651             // This is a sort of hidden invariant that previously
  1652             // wasn't checked and could lead to incorrectly
  1653             // constructed nodes.
  1654             syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
  1655                        node->_ident, new_inst->_ident);
  1657           prev_pos = exp_pos;
  1659           new_pos = new_inst->operand_position(parameter,Component::USE);
  1660           if (new_pos != -1) {
  1661             // Copy the operand from the ExpandNode to the new node
  1662             fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
  1663                     cnt, new_pos, exp_pos, opid);
  1664             // For each operand add appropriate input edges by looking at tmp's
  1665             fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
  1666             // Grab corresponding edges from ExpandNode and insert them here
  1667             fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
  1668             fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
  1669             fprintf(fp,"    }\n");
  1670             fprintf(fp,"  }\n");
  1671             // This value is generated by one of the new instructions
  1672             fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
  1676         // Update the DAG tmp's for values defined by this instruction
  1677         int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
  1678         Effect *eform = (Effect *)new_inst->_effects[parameter];
  1679         // If this operand is a definition in either an effects rule
  1680         // or a match rule
  1681         if((eform) && (is_def(eform->_use_def))) {
  1682           // Update the temp associated with this operand
  1683           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
  1685         else if( new_def_pos != -1 ) {
  1686           // Instruction defines a value but user did not declare it
  1687           // in the 'effect' clause
  1688           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
  1690       } // done iterating over a new instruction's operands
  1692       // Invoke Expand() for the newly created instruction.
  1693       fprintf(fp,"  result = n%d->Expand( state, proj_list );\n", cnt);
  1694       assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
  1695     } // done iterating over new instructions
  1696     fprintf(fp,"\n");
  1697   } // done generating expand rule
  1699   else if( node->_matrule != NULL ) {
  1700     // Remove duplicated operands and inputs which use the same name.
  1701     // Seach through match operands for the same name usage.
  1702     uint cur_num_opnds = node->num_opnds();
  1703     if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) {
  1704       Component *comp = NULL;
  1705       // Build mapping from num_edges to local variables
  1706       fprintf(fp,"  unsigned num0 = 0;\n");
  1707       for( i = 1; i < cur_num_opnds; i++ ) {
  1708         fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
  1710       // Build a mapping from operand index to input edges
  1711       fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
  1712       for( i = 0; i < cur_num_opnds; i++ ) {
  1713         fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
  1714                 i+1,i,i);
  1717       uint new_num_opnds = 1;
  1718       node->_components.reset();
  1719       // Skip first unique operands.
  1720       for( i = 1; i < cur_num_opnds; i++ ) {
  1721         comp = node->_components.iter();
  1722         if( (int)i != node->unique_opnds_idx(i) ) {
  1723           break;
  1725         new_num_opnds++;
  1727       // Replace not unique operands with next unique operands.
  1728       for( ; i < cur_num_opnds; i++ ) {
  1729         comp = node->_components.iter();
  1730         int j = node->unique_opnds_idx(i);
  1731         // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
  1732         if( j != node->unique_opnds_idx(j) ) {
  1733           fprintf(fp,"  set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
  1734                   new_num_opnds, i, comp->_name);
  1735           // delete not unique edges here
  1736           fprintf(fp,"  for(unsigned i = 0; i < num%d; i++) {\n", i);
  1737           fprintf(fp,"    set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
  1738           fprintf(fp,"  }\n");
  1739           fprintf(fp,"  num%d = num%d;\n", new_num_opnds, i);
  1740           fprintf(fp,"  idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
  1741           new_num_opnds++;
  1744       // delete the rest of edges
  1745       fprintf(fp,"  for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
  1746       fprintf(fp,"    del_req(i);\n", i);
  1747       fprintf(fp,"  }\n");
  1748       fprintf(fp,"  _num_opnds = %d;\n", new_num_opnds);
  1753   // Generate projections for instruction's additional DEFs and KILLs
  1754   if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
  1755     // Get string representing the MachNode that projections point at
  1756     const char *machNode = "this";
  1757     // Generate the projections
  1758     fprintf(fp,"  // Add projection edges for additional defs or kills\n");
  1760     // Examine each component to see if it is a DEF or KILL
  1761     node->_components.reset();
  1762     // Skip the first component, if already handled as (SET dst (...))
  1763     Component *comp = NULL;
  1764     // For kills, the choice of projection numbers is arbitrary
  1765     int proj_no = 1;
  1766     bool declared_def  = false;
  1767     bool declared_kill = false;
  1769     while( (comp = node->_components.iter()) != NULL ) {
  1770       // Lookup register class associated with operand type
  1771       Form        *form = (Form*)_globalNames[comp->_type];
  1772       assert( form, "component type must be a defined form");
  1773       OperandForm *op   = form->is_operand();
  1775       if (comp->is(Component::TEMP)) {
  1776         fprintf(fp, "  // TEMP %s\n", comp->_name);
  1777         if (!declared_def) {
  1778           // Define the variable "def" to hold new MachProjNodes
  1779           fprintf(fp, "  MachTempNode *def;\n");
  1780           declared_def = true;
  1782         if (op && op->_interface && op->_interface->is_RegInterface()) {
  1783           fprintf(fp,"  def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n",
  1784                   machOperEnum(op->_ident));
  1785           fprintf(fp,"  add_req(def);\n");
  1786           int idx  = node->operand_position_format(comp->_name);
  1787           fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n",
  1788                   idx, machOperEnum(op->_ident));
  1789         } else {
  1790           assert(false, "can't have temps which aren't registers");
  1792       } else if (comp->isa(Component::KILL)) {
  1793         fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
  1795         if (!declared_kill) {
  1796           // Define the variable "kill" to hold new MachProjNodes
  1797           fprintf(fp, "  MachProjNode *kill;\n");
  1798           declared_kill = true;
  1801         assert( op, "Support additional KILLS for base operands");
  1802         const char *regmask    = reg_mask(*op);
  1803         const char *ideal_type = op->ideal_type(_globalNames, _register);
  1805         if (!op->is_bound_register()) {
  1806           syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
  1807                      node->_ident, comp->_type, comp->_name);
  1810         fprintf(fp,"  kill = ");
  1811         fprintf(fp,"new (C, 1) MachProjNode( %s, %d, (%s), Op_%s );\n",
  1812                 machNode, proj_no++, regmask, ideal_type);
  1813         fprintf(fp,"  proj_list.push(kill);\n");
  1818   fprintf(fp,"\n");
  1819   if( node->expands() ) {
  1820     fprintf(fp,"  return result;\n",cnt-1);
  1821   } else {
  1822     fprintf(fp,"  return this;\n");
  1824   fprintf(fp,"}\n");
  1825   fprintf(fp,"\n");
  1829 //------------------------------Emit Routines----------------------------------
  1830 // Special classes and routines for defining node emit routines which output
  1831 // target specific instruction object encodings.
  1832 // Define the ___Node::emit() routine
  1833 //
  1834 // (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1835 // (2)   // ...  encoding defined by user
  1836 // (3)
  1837 // (4) }
  1838 //
  1840 class DefineEmitState {
  1841 private:
  1842   enum reloc_format { RELOC_NONE        = -1,
  1843                       RELOC_IMMEDIATE   =  0,
  1844                       RELOC_DISP        =  1,
  1845                       RELOC_CALL_DISP   =  2 };
  1846   enum literal_status{ LITERAL_NOT_SEEN  = 0,
  1847                        LITERAL_SEEN      = 1,
  1848                        LITERAL_ACCESSED  = 2,
  1849                        LITERAL_OUTPUT    = 3 };
  1850   // Temporaries that describe current operand
  1851   bool          _cleared;
  1852   OpClassForm  *_opclass;
  1853   OperandForm  *_operand;
  1854   int           _operand_idx;
  1855   const char   *_local_name;
  1856   const char   *_operand_name;
  1857   bool          _doing_disp;
  1858   bool          _doing_constant;
  1859   Form::DataType _constant_type;
  1860   DefineEmitState::literal_status _constant_status;
  1861   DefineEmitState::literal_status _reg_status;
  1862   bool          _doing_emit8;
  1863   bool          _doing_emit_d32;
  1864   bool          _doing_emit_d16;
  1865   bool          _doing_emit_hi;
  1866   bool          _doing_emit_lo;
  1867   bool          _may_reloc;
  1868   bool          _must_reloc;
  1869   reloc_format  _reloc_form;
  1870   const char *  _reloc_type;
  1871   bool          _processing_noninput;
  1873   NameList      _strings_to_emit;
  1875   // Stable state, set by constructor
  1876   ArchDesc     &_AD;
  1877   FILE         *_fp;
  1878   EncClass     &_encoding;
  1879   InsEncode    &_ins_encode;
  1880   InstructForm &_inst;
  1882 public:
  1883   DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
  1884                   InsEncode &ins_encode, InstructForm &inst)
  1885     : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
  1886       clear();
  1889   void clear() {
  1890     _cleared       = true;
  1891     _opclass       = NULL;
  1892     _operand       = NULL;
  1893     _operand_idx   = 0;
  1894     _local_name    = "";
  1895     _operand_name  = "";
  1896     _doing_disp    = false;
  1897     _doing_constant= false;
  1898     _constant_type = Form::none;
  1899     _constant_status = LITERAL_NOT_SEEN;
  1900     _reg_status      = LITERAL_NOT_SEEN;
  1901     _doing_emit8   = false;
  1902     _doing_emit_d32= false;
  1903     _doing_emit_d16= false;
  1904     _doing_emit_hi = false;
  1905     _doing_emit_lo = false;
  1906     _may_reloc     = false;
  1907     _must_reloc    = false;
  1908     _reloc_form    = RELOC_NONE;
  1909     _reloc_type    = AdlcVMDeps::none_reloc_type();
  1910     _strings_to_emit.clear();
  1913   // Track necessary state when identifying a replacement variable
  1914   void update_state(const char *rep_var) {
  1915     // A replacement variable or one of its subfields
  1916     // Obtain replacement variable from list
  1917     if ( (*rep_var) != '$' ) {
  1918       // A replacement variable, '$' prefix
  1919       // check_rep_var( rep_var );
  1920       if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
  1921         // No state needed.
  1922         assert( _opclass == NULL,
  1923                 "'primary', 'secondary' and 'tertiary' don't follow operand.");
  1924       } else {
  1925         // Lookup its position in parameter list
  1926         int   param_no  = _encoding.rep_var_index(rep_var);
  1927         if ( param_no == -1 ) {
  1928           _AD.syntax_err( _encoding._linenum,
  1929                           "Replacement variable %s not found in enc_class %s.\n",
  1930                           rep_var, _encoding._name);
  1933         // Lookup the corresponding ins_encode parameter
  1934         const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
  1935         if (inst_rep_var == NULL) {
  1936           _AD.syntax_err( _ins_encode._linenum,
  1937                           "Parameter %s not passed to enc_class %s from instruct %s.\n",
  1938                           rep_var, _encoding._name, _inst._ident);
  1941         // Check if instruction's actual parameter is a local name in the instruction
  1942         const Form  *local     = _inst._localNames[inst_rep_var];
  1943         OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
  1944         // Note: assert removed to allow constant and symbolic parameters
  1945         // assert( opc, "replacement variable was not found in local names");
  1946         // Lookup the index position iff the replacement variable is a localName
  1947         int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
  1949         if ( idx != -1 ) {
  1950           // This is a local in the instruction
  1951           // Update local state info.
  1952           _opclass        = opc;
  1953           _operand_idx    = idx;
  1954           _local_name     = rep_var;
  1955           _operand_name   = inst_rep_var;
  1957           // !!!!!
  1958           // Do not support consecutive operands.
  1959           assert( _operand == NULL, "Unimplemented()");
  1960           _operand = opc->is_operand();
  1962         else if( ADLParser::is_literal_constant(inst_rep_var) ) {
  1963           // Instruction provided a constant expression
  1964           // Check later that encoding specifies $$$constant to resolve as constant
  1965           _constant_status   = LITERAL_SEEN;
  1967         else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
  1968           // Instruction provided an opcode: "primary", "secondary", "tertiary"
  1969           // Check later that encoding specifies $$$constant to resolve as constant
  1970           _constant_status   = LITERAL_SEEN;
  1972         else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
  1973           // Instruction provided a literal register name for this parameter
  1974           // Check that encoding specifies $$$reg to resolve.as register.
  1975           _reg_status        = LITERAL_SEEN;
  1977         else {
  1978           // Check for unimplemented functionality before hard failure
  1979           assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
  1980           assert( false, "ShouldNotReachHere()");
  1982       } // done checking which operand this is.
  1983     } else {
  1984       //
  1985       // A subfield variable, '$$' prefix
  1986       // Check for fields that may require relocation information.
  1987       // Then check that literal register parameters are accessed with 'reg' or 'constant'
  1988       //
  1989       if ( strcmp(rep_var,"$disp") == 0 ) {
  1990         _doing_disp = true;
  1991         assert( _opclass, "Must use operand or operand class before '$disp'");
  1992         if( _operand == NULL ) {
  1993           // Only have an operand class, generate run-time check for relocation
  1994           _may_reloc    = true;
  1995           _reloc_form   = RELOC_DISP;
  1996           _reloc_type   = AdlcVMDeps::oop_reloc_type();
  1997         } else {
  1998           // Do precise check on operand: is it a ConP or not
  1999           //
  2000           // Check interface for value of displacement
  2001           assert( ( _operand->_interface != NULL ),
  2002                   "$disp can only follow memory interface operand");
  2003           MemInterface *mem_interface= _operand->_interface->is_MemInterface();
  2004           assert( mem_interface != NULL,
  2005                   "$disp can only follow memory interface operand");
  2006           const char *disp = mem_interface->_disp;
  2008           if( disp != NULL && (*disp == '$') ) {
  2009             // MemInterface::disp contains a replacement variable,
  2010             // Check if this matches a ConP
  2011             //
  2012             // Lookup replacement variable, in operand's component list
  2013             const char *rep_var_name = disp + 1; // Skip '$'
  2014             const Component *comp = _operand->_components.search(rep_var_name);
  2015             assert( comp != NULL,"Replacement variable not found in components");
  2016             const char      *type = comp->_type;
  2017             // Lookup operand form for replacement variable's type
  2018             const Form *form = _AD.globalNames()[type];
  2019             assert( form != NULL, "Replacement variable's type not found");
  2020             OperandForm *op = form->is_operand();
  2021             assert( op, "Attempting to emit a non-register or non-constant");
  2022             // Check if this is a constant
  2023             if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
  2024               // Check which constant this name maps to: _c0, _c1, ..., _cn
  2025               // const int idx = _operand.constant_position(_AD.globalNames(), comp);
  2026               // assert( idx != -1, "Constant component not found in operand");
  2027               Form::DataType dtype = op->is_base_constant(_AD.globalNames());
  2028               if ( dtype == Form::idealP ) {
  2029                 _may_reloc    = true;
  2030                 // No longer true that idealP is always an oop
  2031                 _reloc_form   = RELOC_DISP;
  2032                 _reloc_type   = AdlcVMDeps::oop_reloc_type();
  2036             else if( _operand->is_user_name_for_sReg() != Form::none ) {
  2037               // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
  2038               assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
  2039               _may_reloc   = false;
  2040             } else {
  2041               assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
  2044         } // finished with precise check of operand for relocation.
  2045       } // finished with subfield variable
  2046       else if ( strcmp(rep_var,"$constant") == 0 ) {
  2047         _doing_constant = true;
  2048         if ( _constant_status == LITERAL_NOT_SEEN ) {
  2049           // Check operand for type of constant
  2050           assert( _operand, "Must use operand before '$$constant'");
  2051           Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
  2052           _constant_type = dtype;
  2053           if ( dtype == Form::idealP ) {
  2054             _may_reloc    = true;
  2055             // No longer true that idealP is always an oop
  2056             // // _must_reloc   = true;
  2057             _reloc_form   = RELOC_IMMEDIATE;
  2058             _reloc_type   = AdlcVMDeps::oop_reloc_type();
  2059           } else {
  2060             // No relocation information needed
  2062         } else {
  2063           // User-provided literals may not require relocation information !!!!!
  2064           assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
  2067       else if ( strcmp(rep_var,"$label") == 0 ) {
  2068         // Calls containing labels require relocation
  2069         if ( _inst.is_ideal_call() )  {
  2070           _may_reloc    = true;
  2071           // !!!!! !!!!!
  2072           _reloc_type   = AdlcVMDeps::none_reloc_type();
  2076       // literal register parameter must be accessed as a 'reg' field.
  2077       if ( _reg_status != LITERAL_NOT_SEEN ) {
  2078         assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
  2079         if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
  2080           _reg_status  = LITERAL_ACCESSED;
  2081         } else {
  2082           assert( false, "invalid access to literal register parameter");
  2085       // literal constant parameters must be accessed as a 'constant' field
  2086       if ( _constant_status != LITERAL_NOT_SEEN ) {
  2087         assert( _constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
  2088         if( strcmp(rep_var,"$constant") == 0 ) {
  2089           _constant_status  = LITERAL_ACCESSED;
  2090         } else {
  2091           assert( false, "invalid access to literal constant parameter");
  2094     } // end replacement and/or subfield
  2098   void add_rep_var(const char *rep_var) {
  2099     // Handle subfield and replacement variables.
  2100     if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
  2101       // Check for emit prefix, '$$emit32'
  2102       assert( _cleared, "Can not nest $$$emit32");
  2103       if ( strcmp(rep_var,"$$emit32") == 0 ) {
  2104         _doing_emit_d32 = true;
  2106       else if ( strcmp(rep_var,"$$emit16") == 0 ) {
  2107         _doing_emit_d16 = true;
  2109       else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
  2110         _doing_emit_hi  = true;
  2112       else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
  2113         _doing_emit_lo  = true;
  2115       else if ( strcmp(rep_var,"$$emit8") == 0 ) {
  2116         _doing_emit8    = true;
  2118       else {
  2119         _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
  2120         assert( false, "fatal();");
  2123     else {
  2124       // Update state for replacement variables
  2125       update_state( rep_var );
  2126       _strings_to_emit.addName(rep_var);
  2128     _cleared  = false;
  2131   void emit_replacement() {
  2132     // A replacement variable or one of its subfields
  2133     // Obtain replacement variable from list
  2134     // const char *ec_rep_var = encoding->_rep_vars.iter();
  2135     const char *rep_var;
  2136     _strings_to_emit.reset();
  2137     while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
  2139       if ( (*rep_var) == '$' ) {
  2140         // A subfield variable, '$$' prefix
  2141         emit_field( rep_var );
  2142       } else {
  2143         // A replacement variable, '$' prefix
  2144         emit_rep_var( rep_var );
  2145       } // end replacement and/or subfield
  2149   void emit_reloc_type(const char* type) {
  2150     fprintf(_fp, "%s", type)
  2155   void gen_emit_x_reloc(const char *d32_lo_hi ) {
  2156     fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_lo_hi );
  2157     emit_replacement();             fprintf(_fp,", ");
  2158     emit_reloc_type( _reloc_type ); fprintf(_fp,", ");
  2159     fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
  2163   void emit() {
  2164     //
  2165     //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
  2166     //
  2167     // Emit the function name when generating an emit function
  2168     if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
  2169       const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
  2170       // In general, relocatable isn't known at compiler compile time.
  2171       // Check results of prior scan
  2172       if ( ! _may_reloc ) {
  2173         // Definitely don't need relocation information
  2174         fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
  2175         emit_replacement(); fprintf(_fp, ")");
  2177       else if ( _must_reloc ) {
  2178         // Must emit relocation information
  2179         gen_emit_x_reloc( d32_hi_lo );
  2181       else {
  2182         // Emit RUNTIME CHECK to see if value needs relocation info
  2183         // If emitting a relocatable address, use 'emit_d32_reloc'
  2184         const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
  2185         assert( (_doing_disp || _doing_constant)
  2186                 && !(_doing_disp && _doing_constant),
  2187                 "Must be emitting either a displacement or a constant");
  2188         fprintf(_fp,"\n");
  2189         fprintf(_fp,"if ( opnd_array(%d)->%s_is_oop() ) {\n",
  2190                 _operand_idx, disp_constant);
  2191         fprintf(_fp,"  ");
  2192         gen_emit_x_reloc( d32_hi_lo ); fprintf(_fp,"\n");
  2193         fprintf(_fp,"} else {\n");
  2194         fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
  2195         emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
  2198     else if ( _doing_emit_d16 ) {
  2199       // Relocation of 16-bit values is not supported
  2200       fprintf(_fp,"emit_d16(cbuf, ");
  2201       emit_replacement(); fprintf(_fp, ")");
  2202       // No relocation done for 16-bit values
  2204     else if ( _doing_emit8 ) {
  2205       // Relocation of 8-bit values is not supported
  2206       fprintf(_fp,"emit_d8(cbuf, ");
  2207       emit_replacement(); fprintf(_fp, ")");
  2208       // No relocation done for 8-bit values
  2210     else {
  2211       // Not an emit# command, just output the replacement string.
  2212       emit_replacement();
  2215     // Get ready for next state collection.
  2216     clear();
  2219 private:
  2221   // recognizes names which represent MacroAssembler register types
  2222   // and return the conversion function to build them from OptoReg
  2223   const char* reg_conversion(const char* rep_var) {
  2224     if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
  2225     if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
  2226 #if defined(IA32) || defined(AMD64)
  2227     if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
  2228 #endif
  2229     return NULL;
  2232   void emit_field(const char *rep_var) {
  2233     const char* reg_convert = reg_conversion(rep_var);
  2235     // A subfield variable, '$$subfield'
  2236     if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
  2237       // $reg form or the $Register MacroAssembler type conversions
  2238       assert( _operand_idx != -1,
  2239               "Must use this subfield after operand");
  2240       if( _reg_status == LITERAL_NOT_SEEN ) {
  2241         if (_processing_noninput) {
  2242           const Form  *local     = _inst._localNames[_operand_name];
  2243           OperandForm *oper      = local->is_operand();
  2244           const RegDef* first = oper->get_RegClass()->find_first_elem();
  2245           if (reg_convert != NULL) {
  2246             fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
  2247           } else {
  2248             fprintf(_fp, "%s_enc", first->_regname);
  2250         } else {
  2251           fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
  2252           // Add parameter for index position, if not result operand
  2253           if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
  2254           fprintf(_fp,")");
  2256       } else {
  2257         assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
  2258         // Register literal has already been sent to output file, nothing more needed
  2261     else if ( strcmp(rep_var,"$base") == 0 ) {
  2262       assert( _operand_idx != -1,
  2263               "Must use this subfield after operand");
  2264       assert( ! _may_reloc, "UnImplemented()");
  2265       fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
  2267     else if ( strcmp(rep_var,"$index") == 0 ) {
  2268       assert( _operand_idx != -1,
  2269               "Must use this subfield after operand");
  2270       assert( ! _may_reloc, "UnImplemented()");
  2271       fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
  2273     else if ( strcmp(rep_var,"$scale") == 0 ) {
  2274       assert( ! _may_reloc, "UnImplemented()");
  2275       fprintf(_fp,"->scale()");
  2277     else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
  2278       assert( ! _may_reloc, "UnImplemented()");
  2279       fprintf(_fp,"->ccode()");
  2281     else if ( strcmp(rep_var,"$constant") == 0 ) {
  2282       if( _constant_status == LITERAL_NOT_SEEN ) {
  2283         if ( _constant_type == Form::idealD ) {
  2284           fprintf(_fp,"->constantD()");
  2285         } else if ( _constant_type == Form::idealF ) {
  2286           fprintf(_fp,"->constantF()");
  2287         } else if ( _constant_type == Form::idealL ) {
  2288           fprintf(_fp,"->constantL()");
  2289         } else {
  2290           fprintf(_fp,"->constant()");
  2292       } else {
  2293         assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
  2294         // Cosntant literal has already been sent to output file, nothing more needed
  2297     else if ( strcmp(rep_var,"$disp") == 0 ) {
  2298       Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
  2299       if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
  2300         fprintf(_fp,"->disp(ra_,this,0)");
  2301       } else {
  2302         fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
  2305     else if ( strcmp(rep_var,"$label") == 0 ) {
  2306       fprintf(_fp,"->label()");
  2308     else if ( strcmp(rep_var,"$method") == 0 ) {
  2309       fprintf(_fp,"->method()");
  2311     else {
  2312       printf("emit_field: %s\n",rep_var);
  2313       assert( false, "UnImplemented()");
  2318   void emit_rep_var(const char *rep_var) {
  2319     _processing_noninput = false;
  2320     // A replacement variable, originally '$'
  2321     if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
  2322       if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
  2323         // Missing opcode
  2324         _AD.syntax_err( _inst._linenum,
  2325                         "Missing $%s opcode definition in %s, used by encoding %s\n",
  2326                         rep_var, _inst._ident, _encoding._name);
  2329     else {
  2330       // Lookup its position in parameter list
  2331       int   param_no  = _encoding.rep_var_index(rep_var);
  2332       if ( param_no == -1 ) {
  2333         _AD.syntax_err( _encoding._linenum,
  2334                         "Replacement variable %s not found in enc_class %s.\n",
  2335                         rep_var, _encoding._name);
  2337       // Lookup the corresponding ins_encode parameter
  2338       const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
  2340       // Check if instruction's actual parameter is a local name in the instruction
  2341       const Form  *local     = _inst._localNames[inst_rep_var];
  2342       OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
  2343       // Note: assert removed to allow constant and symbolic parameters
  2344       // assert( opc, "replacement variable was not found in local names");
  2345       // Lookup the index position iff the replacement variable is a localName
  2346       int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
  2347       if( idx != -1 ) {
  2348         if (_inst.is_noninput_operand(idx)) {
  2349           // This operand isn't a normal input so printing it is done
  2350           // specially.
  2351           _processing_noninput = true;
  2352         } else {
  2353           // Output the emit code for this operand
  2354           fprintf(_fp,"opnd_array(%d)",idx);
  2356         assert( _operand == opc->is_operand(),
  2357                 "Previous emit $operand does not match current");
  2359       else if( ADLParser::is_literal_constant(inst_rep_var) ) {
  2360         // else check if it is a constant expression
  2361         // Removed following assert to allow primitive C types as arguments to encodings
  2362         // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
  2363         fprintf(_fp,"(%s)", inst_rep_var);
  2364         _constant_status = LITERAL_OUTPUT;
  2366       else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
  2367         // else check if "primary", "secondary", "tertiary"
  2368         assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
  2369         if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
  2370           // Missing opcode
  2371           _AD.syntax_err( _inst._linenum,
  2372                           "Missing $%s opcode definition in %s\n",
  2373                           rep_var, _inst._ident);
  2376         _constant_status = LITERAL_OUTPUT;
  2378       else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
  2379         // Instruction provided a literal register name for this parameter
  2380         // Check that encoding specifies $$$reg to resolve.as register.
  2381         assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
  2382         fprintf(_fp,"(%s_enc)", inst_rep_var);
  2383         _reg_status = LITERAL_OUTPUT;
  2385       else {
  2386         // Check for unimplemented functionality before hard failure
  2387         assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
  2388         assert( false, "ShouldNotReachHere()");
  2390       // all done
  2394 };  // end class DefineEmitState
  2397 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
  2399   //(1)
  2400   // Output instruction's emit prototype
  2401   fprintf(fp,"uint  %sNode::size(PhaseRegAlloc *ra_) const {\n",
  2402           inst._ident);
  2404   fprintf(fp, " assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
  2406   //(2)
  2407   // Print the size
  2408   fprintf(fp, " return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
  2410   // (3) and (4)
  2411   fprintf(fp,"}\n");
  2414 void ArchDesc::defineEmit(FILE *fp, InstructForm &inst) {
  2415   InsEncode *ins_encode = inst._insencode;
  2417   // (1)
  2418   // Output instruction's emit prototype
  2419   fprintf(fp,"void  %sNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {\n",
  2420           inst._ident);
  2422   // If user did not define an encode section,
  2423   // provide stub that does not generate any machine code.
  2424   if( (_encode == NULL) || (ins_encode == NULL) ) {
  2425     fprintf(fp, "  // User did not define an encode section.\n");
  2426     fprintf(fp,"}\n");
  2427     return;
  2430   // Save current instruction's starting address (helps with relocation).
  2431   fprintf( fp, "    cbuf.set_inst_mark();\n");
  2433   // // // idx0 is only needed for syntactic purposes and only by "storeSSI"
  2434   // fprintf( fp, "    unsigned idx0  = 0;\n");
  2436   // Output each operand's offset into the array of registers.
  2437   inst.index_temps( fp, _globalNames );
  2439   // Output this instruction's encodings
  2440   const char *ec_name;
  2441   bool        user_defined = false;
  2442   ins_encode->reset();
  2443   while ( (ec_name = ins_encode->encode_class_iter()) != NULL ) {
  2444     fprintf(fp, "  {");
  2445     // Output user-defined encoding
  2446     user_defined           = true;
  2448     const char *ec_code    = NULL;
  2449     const char *ec_rep_var = NULL;
  2450     EncClass   *encoding   = _encode->encClass(ec_name);
  2451     if (encoding == NULL) {
  2452       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
  2453       abort();
  2456     if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
  2457       globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
  2458                            inst._ident, ins_encode->current_encoding_num_args(),
  2459                            ec_name, encoding->num_args());
  2462     DefineEmitState  pending(fp, *this, *encoding, *ins_encode, inst );
  2463     encoding->_code.reset();
  2464     encoding->_rep_vars.reset();
  2465     // Process list of user-defined strings,
  2466     // and occurrences of replacement variables.
  2467     // Replacement Vars are pushed into a list and then output
  2468     while ( (ec_code = encoding->_code.iter()) != NULL ) {
  2469       if ( ! encoding->_code.is_signal( ec_code ) ) {
  2470         // Emit pending code
  2471         pending.emit();
  2472         pending.clear();
  2473         // Emit this code section
  2474         fprintf(fp,"%s", ec_code);
  2475       } else {
  2476         // A replacement variable or one of its subfields
  2477         // Obtain replacement variable from list
  2478         ec_rep_var  = encoding->_rep_vars.iter();
  2479         pending.add_rep_var(ec_rep_var);
  2482     // Emit pending code
  2483     pending.emit();
  2484     pending.clear();
  2485     fprintf(fp, "}\n");
  2486   } // end while instruction's encodings
  2488   // Check if user stated which encoding to user
  2489   if ( user_defined == false ) {
  2490     fprintf(fp, "  // User did not define which encode class to use.\n");
  2493   // (3) and (4)
  2494   fprintf(fp,"}\n");
  2497 // ---------------------------------------------------------------------------
  2498 //--------Utilities to build MachOper and MachNode derived Classes------------
  2499 // ---------------------------------------------------------------------------
  2501 //------------------------------Utilities to build Operand Classes------------
  2502 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
  2503   uint num_edges = oper.num_edges(globals);
  2504   if( num_edges != 0 ) {
  2505     // Method header
  2506     fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
  2507             oper._ident);
  2509     // Assert that the index is in range.
  2510     fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
  2511             num_edges);
  2513     // Figure out if all RegMasks are the same.
  2514     const char* first_reg_class = oper.in_reg_class(0, globals);
  2515     bool all_same = true;
  2516     assert(first_reg_class != NULL, "did not find register mask");
  2518     for (uint index = 1; all_same && index < num_edges; index++) {
  2519       const char* some_reg_class = oper.in_reg_class(index, globals);
  2520       assert(some_reg_class != NULL, "did not find register mask");
  2521       if (strcmp(first_reg_class, some_reg_class) != 0) {
  2522         all_same = false;
  2526     if (all_same) {
  2527       // Return the sole RegMask.
  2528       if (strcmp(first_reg_class, "stack_slots") == 0) {
  2529         fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
  2530       } else {
  2531         fprintf(fp,"  return &%s_mask;\n", toUpper(first_reg_class));
  2533     } else {
  2534       // Build a switch statement to return the desired mask.
  2535       fprintf(fp,"  switch (index) {\n");
  2537       for (uint index = 0; index < num_edges; index++) {
  2538         const char *reg_class = oper.in_reg_class(index, globals);
  2539         assert(reg_class != NULL, "did not find register mask");
  2540         if( !strcmp(reg_class, "stack_slots") ) {
  2541           fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
  2542         } else {
  2543           fprintf(fp, "  case %d: return &%s_mask;\n", index, toUpper(reg_class));
  2546       fprintf(fp,"  }\n");
  2547       fprintf(fp,"  ShouldNotReachHere();\n");
  2548       fprintf(fp,"  return NULL;\n");
  2551     // Method close
  2552     fprintf(fp, "}\n\n");
  2556 // generate code to create a clone for a class derived from MachOper
  2557 //
  2558 // (0)  MachOper  *MachOperXOper::clone(Compile* C) const {
  2559 // (1)    return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn);
  2560 // (2)  }
  2561 //
  2562 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
  2563   fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper._ident);
  2564   // Check for constants that need to be copied over
  2565   const int  num_consts    = oper.num_consts(globalNames);
  2566   const bool is_ideal_bool = oper.is_ideal_bool();
  2567   if( (num_consts > 0) ) {
  2568     fprintf(fp,"  return  new (C) %sOper(", oper._ident);
  2569     // generate parameters for constants
  2570     int i = 0;
  2571     fprintf(fp,"_c%d", i);
  2572     for( i = 1; i < num_consts; ++i) {
  2573       fprintf(fp,", _c%d", i);
  2575     // finish line (1)
  2576     fprintf(fp,");\n");
  2578   else {
  2579     assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
  2580     fprintf(fp,"  return  new (C) %sOper();\n", oper._ident);
  2582   // finish method
  2583   fprintf(fp,"}\n");
  2586 static void define_hash(FILE *fp, char *operand) {
  2587   fprintf(fp,"uint %sOper::hash() const { return 5; }\n", operand);
  2590 static void define_cmp(FILE *fp, char *operand) {
  2591   fprintf(fp,"uint %sOper::cmp( const MachOper &oper ) const { return opcode() == oper.opcode(); }\n", operand);
  2595 // Helper functions for bug 4796752, abstracted with minimal modification
  2596 // from define_oper_interface()
  2597 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
  2598   OperandForm *op = NULL;
  2599   // Check for replacement variable
  2600   if( *encoding == '$' ) {
  2601     // Replacement variable
  2602     const char *rep_var = encoding + 1;
  2603     // Lookup replacement variable, rep_var, in operand's component list
  2604     const Component *comp = oper._components.search(rep_var);
  2605     assert( comp != NULL, "Replacement variable not found in components");
  2606     // Lookup operand form for replacement variable's type
  2607     const char      *type = comp->_type;
  2608     Form            *form = (Form*)globals[type];
  2609     assert( form != NULL, "Replacement variable's type not found");
  2610     op = form->is_operand();
  2611     assert( op, "Attempting to emit a non-register or non-constant");
  2614   return op;
  2617 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
  2618   int idx = -1;
  2619   // Check for replacement variable
  2620   if( *encoding == '$' ) {
  2621     // Replacement variable
  2622     const char *rep_var = encoding + 1;
  2623     // Lookup replacement variable, rep_var, in operand's component list
  2624     const Component *comp = oper._components.search(rep_var);
  2625     assert( comp != NULL, "Replacement variable not found in components");
  2626     // Lookup operand form for replacement variable's type
  2627     const char      *type = comp->_type;
  2628     Form            *form = (Form*)globals[type];
  2629     assert( form != NULL, "Replacement variable's type not found");
  2630     OperandForm *op = form->is_operand();
  2631     assert( op, "Attempting to emit a non-register or non-constant");
  2632     // Check that this is a constant and find constant's index:
  2633     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  2634       idx  = oper.constant_position(globals, comp);
  2638   return idx;
  2641 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
  2642   bool is_regI = false;
  2644   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
  2645   if( op != NULL ) {
  2646     // Check that this is a register
  2647     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
  2648       // Register
  2649       const char* ideal  = op->ideal_type(globals);
  2650       is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
  2654   return is_regI;
  2657 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
  2658   bool is_conP = false;
  2660   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
  2661   if( op != NULL ) {
  2662     // Check that this is a constant pointer
  2663     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  2664       // Constant
  2665       Form::DataType dtype = op->is_base_constant(globals);
  2666       is_conP = (dtype == Form::idealP);
  2670   return is_conP;
  2674 // Define a MachOper interface methods
  2675 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
  2676                                      const char *name, const char *encoding) {
  2677   bool emit_position = false;
  2678   int position = -1;
  2680   fprintf(fp,"  virtual int            %s", name);
  2681   // Generate access method for base, index, scale, disp, ...
  2682   if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
  2683     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
  2684     emit_position = true;
  2685   } else if ( (strcmp(name,"disp") == 0) ) {
  2686     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
  2687   } else {
  2688     fprintf(fp,"() const { ");
  2691   // Check for hexadecimal value OR replacement variable
  2692   if( *encoding == '$' ) {
  2693     // Replacement variable
  2694     const char *rep_var = encoding + 1;
  2695     fprintf(fp,"// Replacement variable: %s\n", encoding+1);
  2696     // Lookup replacement variable, rep_var, in operand's component list
  2697     const Component *comp = oper._components.search(rep_var);
  2698     assert( comp != NULL, "Replacement variable not found in components");
  2699     // Lookup operand form for replacement variable's type
  2700     const char      *type = comp->_type;
  2701     Form            *form = (Form*)globals[type];
  2702     assert( form != NULL, "Replacement variable's type not found");
  2703     OperandForm *op = form->is_operand();
  2704     assert( op, "Attempting to emit a non-register or non-constant");
  2705     // Check that this is a register or a constant and generate code:
  2706     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
  2707       // Register
  2708       int idx_offset = oper.register_position( globals, rep_var);
  2709       position = idx_offset;
  2710       fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
  2711       if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
  2712       fprintf(fp,"));\n");
  2713     } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
  2714       // StackSlot for an sReg comes either from input node or from self, when idx==0
  2715       fprintf(fp,"    if( idx != 0 ) {\n");
  2716       fprintf(fp,"      // Access register number for input operand\n");
  2717       fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
  2718       fprintf(fp,"    }\n");
  2719       fprintf(fp,"    // Access register number from myself\n");
  2720       fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
  2721     } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  2722       // Constant
  2723       // Check which constant this name maps to: _c0, _c1, ..., _cn
  2724       const int idx = oper.constant_position(globals, comp);
  2725       assert( idx != -1, "Constant component not found in operand");
  2726       // Output code for this constant, type dependent.
  2727       fprintf(fp,"    return (int)" );
  2728       oper.access_constant(fp, globals, (uint)idx /* , const_type */);
  2729       fprintf(fp,";\n");
  2730     } else {
  2731       assert( false, "Attempting to emit a non-register or non-constant");
  2734   else if( *encoding == '0' && *(encoding+1) == 'x' ) {
  2735     // Hex value
  2736     fprintf(fp,"return %s;", encoding);
  2737   } else {
  2738     assert( false, "Do not support octal or decimal encode constants");
  2740   fprintf(fp,"  }\n");
  2742   if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
  2743     fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
  2744     MemInterface *mem_interface = oper._interface->is_MemInterface();
  2745     const char *base = mem_interface->_base;
  2746     const char *disp = mem_interface->_disp;
  2747     if( emit_position && (strcmp(name,"base") == 0)
  2748         && base != NULL && is_regI(base, oper, globals)
  2749         && disp != NULL && is_conP(disp, oper, globals) ) {
  2750       // Found a memory access using a constant pointer for a displacement
  2751       // and a base register containing an integer offset.
  2752       // In this case the base and disp are reversed with respect to what
  2753       // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
  2754       // Provide a non-NULL return for disp_as_type() that will allow adr_type()
  2755       // to correctly compute the access type for alias analysis.
  2756       //
  2757       // See BugId 4796752, operand indOffset32X in i486.ad
  2758       int idx = rep_var_to_constant_index(disp, oper, globals);
  2759       fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
  2764 //
  2765 // Construct the method to copy _idx, inputs and operands to new node.
  2766 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
  2767   fprintf(fp_cpp, "\n");
  2768   fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
  2769   fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n");
  2770   if( !used ) {
  2771     fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
  2772     fprintf(fp_cpp, "  ShouldNotCallThis();\n");
  2773     fprintf(fp_cpp, "}\n");
  2774   } else {
  2775     // New node must use same node index for access through allocator's tables
  2776     fprintf(fp_cpp, "  // New node must use same node index\n");
  2777     fprintf(fp_cpp, "  node->set_idx( _idx );\n");
  2778     // Copy machine-independent inputs
  2779     fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
  2780     fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
  2781     fprintf(fp_cpp, "    node->add_req(in(j));\n");
  2782     fprintf(fp_cpp, "  }\n");
  2783     // Copy machine operands to new MachNode
  2784     fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
  2785     fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
  2786     fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
  2787     fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
  2788     fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
  2789     fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
  2790     fprintf(fp_cpp, "      to[i] = _opnds[i]->clone(C);\n");
  2791     fprintf(fp_cpp, "  }\n");
  2792     fprintf(fp_cpp, "}\n");
  2794   fprintf(fp_cpp, "\n");
  2797 //------------------------------defineClasses----------------------------------
  2798 // Define members of MachNode and MachOper classes based on
  2799 // operand and instruction lists
  2800 void ArchDesc::defineClasses(FILE *fp) {
  2802   // Define the contents of an array containing the machine register names
  2803   defineRegNames(fp, _register);
  2804   // Define an array containing the machine register encoding values
  2805   defineRegEncodes(fp, _register);
  2806   // Generate an enumeration of user-defined register classes
  2807   // and a list of register masks, one for each class.
  2808   // Only define the RegMask value objects in the expand file.
  2809   // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
  2810   declare_register_masks(_HPP_file._fp);
  2811   // build_register_masks(fp);
  2812   build_register_masks(_CPP_EXPAND_file._fp);
  2813   // Define the pipe_classes
  2814   build_pipe_classes(_CPP_PIPELINE_file._fp);
  2816   // Generate Machine Classes for each operand defined in AD file
  2817   fprintf(fp,"\n");
  2818   fprintf(fp,"\n");
  2819   fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
  2820   // Iterate through all operands
  2821   _operands.reset();
  2822   OperandForm *oper;
  2823   for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
  2824     // Ensure this is a machine-world instruction
  2825     if ( oper->ideal_only() ) continue;
  2826     // !!!!!
  2827     // The declaration of labelOper is in machine-independent file: machnode
  2828     if ( strcmp(oper->_ident,"label") == 0 ) {
  2829       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
  2831       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
  2832       fprintf(fp,"  return  new (C) %sOper(_label, _block_num);\n", oper->_ident);
  2833       fprintf(fp,"}\n");
  2835       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
  2836               oper->_ident, machOperEnum(oper->_ident));
  2837       // // Currently all XXXOper::Hash() methods are identical (990820)
  2838       // define_hash(fp, oper->_ident);
  2839       // // Currently all XXXOper::Cmp() methods are identical (990820)
  2840       // define_cmp(fp, oper->_ident);
  2841       fprintf(fp,"\n");
  2843       continue;
  2846     // The declaration of methodOper is in machine-independent file: machnode
  2847     if ( strcmp(oper->_ident,"method") == 0 ) {
  2848       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
  2850       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
  2851       fprintf(fp,"  return  new (C) %sOper(_method);\n", oper->_ident);
  2852       fprintf(fp,"}\n");
  2854       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
  2855               oper->_ident, machOperEnum(oper->_ident));
  2856       // // Currently all XXXOper::Hash() methods are identical (990820)
  2857       // define_hash(fp, oper->_ident);
  2858       // // Currently all XXXOper::Cmp() methods are identical (990820)
  2859       // define_cmp(fp, oper->_ident);
  2860       fprintf(fp,"\n");
  2862       continue;
  2865     defineIn_RegMask(fp, _globalNames, *oper);
  2866     defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
  2867     // // Currently all XXXOper::Hash() methods are identical (990820)
  2868     // define_hash(fp, oper->_ident);
  2869     // // Currently all XXXOper::Cmp() methods are identical (990820)
  2870     // define_cmp(fp, oper->_ident);
  2872     // side-call to generate output that used to be in the header file:
  2873     extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
  2874     gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
  2879   // Generate Machine Classes for each instruction defined in AD file
  2880   fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
  2881   // Output the definitions for out_RegMask() // & kill_RegMask()
  2882   _instructions.reset();
  2883   InstructForm *instr;
  2884   MachNodeForm *machnode;
  2885   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  2886     // Ensure this is a machine-world instruction
  2887     if ( instr->ideal_only() ) continue;
  2889     defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
  2892   bool used = false;
  2893   // Output the definitions for expand rules & peephole rules
  2894   _instructions.reset();
  2895   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  2896     // Ensure this is a machine-world instruction
  2897     if ( instr->ideal_only() ) continue;
  2898     // If there are multiple defs/kills, or an explicit expand rule, build rule
  2899     if( instr->expands() || instr->needs_projections() ||
  2900         instr->has_temps() ||
  2901         instr->_matrule != NULL &&
  2902         instr->num_opnds() != instr->num_unique_opnds() )
  2903       defineExpand(_CPP_EXPAND_file._fp, instr);
  2904     // If there is an explicit peephole rule, build it
  2905     if ( instr->peepholes() )
  2906       definePeephole(_CPP_PEEPHOLE_file._fp, instr);
  2908     // Output code to convert to the cisc version, if applicable
  2909     used |= instr->define_cisc_version(*this, fp);
  2911     // Output code to convert to the short branch version, if applicable
  2912     used |= instr->define_short_branch_methods(fp);
  2915   // Construct the method called by cisc_version() to copy inputs and operands.
  2916   define_fill_new_machnode(used, fp);
  2918   // Output the definitions for labels
  2919   _instructions.reset();
  2920   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  2921     // Ensure this is a machine-world instruction
  2922     if ( instr->ideal_only() ) continue;
  2924     // Access the fields for operand Label
  2925     int label_position = instr->label_position();
  2926     if( label_position != -1 ) {
  2927       // Set the label
  2928       fprintf(fp,"void %sNode::label_set( Label& label, uint block_num ) {\n", instr->_ident);
  2929       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
  2930               label_position );
  2931       fprintf(fp,"  oper->_label     = &label;\n");
  2932       fprintf(fp,"  oper->_block_num = block_num;\n");
  2933       fprintf(fp,"}\n");
  2937   // Output the definitions for methods
  2938   _instructions.reset();
  2939   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  2940     // Ensure this is a machine-world instruction
  2941     if ( instr->ideal_only() ) continue;
  2943     // Access the fields for operand Label
  2944     int method_position = instr->method_position();
  2945     if( method_position != -1 ) {
  2946       // Access the method's address
  2947       fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
  2948       fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
  2949               method_position );
  2950       fprintf(fp,"}\n");
  2951       fprintf(fp,"\n");
  2955   // Define this instruction's number of relocation entries, base is '0'
  2956   _instructions.reset();
  2957   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  2958     // Output the definition for number of relocation entries
  2959     uint reloc_size = instr->reloc(_globalNames);
  2960     if ( reloc_size != 0 ) {
  2961       fprintf(fp,"int  %sNode::reloc()   const {\n", instr->_ident);
  2962       fprintf(fp,  "  return  %d;\n", reloc_size );
  2963       fprintf(fp,"}\n");
  2964       fprintf(fp,"\n");
  2967   fprintf(fp,"\n");
  2969   // Output the definitions for code generation
  2970   //
  2971   // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
  2972   //   // ...  encoding defined by user
  2973   //   return ptr;
  2974   // }
  2975   //
  2976   _instructions.reset();
  2977   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  2978     // Ensure this is a machine-world instruction
  2979     if ( instr->ideal_only() ) continue;
  2981     if (instr->_insencode) defineEmit(fp, *instr);
  2982     if (instr->_size)      defineSize(fp, *instr);
  2984     // side-call to generate output that used to be in the header file:
  2985     extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
  2986     gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
  2989   // Output the definitions for alias analysis
  2990   _instructions.reset();
  2991   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  2992     // Ensure this is a machine-world instruction
  2993     if ( instr->ideal_only() ) continue;
  2995     // Analyze machine instructions that either USE or DEF memory.
  2996     int memory_operand = instr->memory_operand(_globalNames);
  2997     // Some guys kill all of memory
  2998     if ( instr->is_wide_memory_kill(_globalNames) ) {
  2999       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
  3002     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
  3003       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
  3004         fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
  3005         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
  3006       } else {
  3007         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
  3012   // Get the length of the longest identifier
  3013   int max_ident_len = 0;
  3014   _instructions.reset();
  3016   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3017     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
  3018       int ident_len = (int)strlen(instr->_ident);
  3019       if( max_ident_len < ident_len )
  3020         max_ident_len = ident_len;
  3024   // Emit specifically for Node(s)
  3025   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
  3026     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
  3027   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
  3028     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
  3029   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3031   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
  3032     max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
  3033   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
  3034     max_ident_len, "MachNode");
  3035   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3037   // Output the definitions for machine node specific pipeline data
  3038   _machnodes.reset();
  3040   for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
  3041     fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
  3042       machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
  3045   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3047   // Output the definitions for instruction pipeline static data references
  3048   _instructions.reset();
  3050   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3051     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
  3052       fprintf(_CPP_PIPELINE_file._fp, "\n");
  3053       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
  3054         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
  3055       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
  3056         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
  3062 // -------------------------------- maps ------------------------------------
  3064 // Information needed to generate the ReduceOp mapping for the DFA
  3065 class OutputReduceOp : public OutputMap {
  3066 public:
  3067   OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3068     : OutputMap(hpp, cpp, globals, AD) {};
  3070   void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
  3071   void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
  3072   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3073                        OutputMap::closing();
  3075   void map(OpClassForm &opc)  {
  3076     const char *reduce = opc._ident;
  3077     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3078     else          fprintf(_cpp, "  0");
  3080   void map(OperandForm &oper) {
  3081     // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
  3082     const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
  3083     // operand stackSlot does not have a match rule, but produces a stackSlot
  3084     if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
  3085     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3086     else          fprintf(_cpp, "  0");
  3088   void map(InstructForm &inst) {
  3089     const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
  3090     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3091     else          fprintf(_cpp, "  0");
  3093   void map(char         *reduce) {
  3094     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3095     else          fprintf(_cpp, "  0");
  3097 };
  3099 // Information needed to generate the LeftOp mapping for the DFA
  3100 class OutputLeftOp : public OutputMap {
  3101 public:
  3102   OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3103     : OutputMap(hpp, cpp, globals, AD) {};
  3105   void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
  3106   void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
  3107   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3108                        OutputMap::closing();
  3110   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
  3111   void map(OperandForm &oper) {
  3112     const char *reduce = oper.reduce_left(_globals);
  3113     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3114     else          fprintf(_cpp, "  0");
  3116   void map(char        *name) {
  3117     const char *reduce = _AD.reduceLeft(name);
  3118     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3119     else          fprintf(_cpp, "  0");
  3121   void map(InstructForm &inst) {
  3122     const char *reduce = inst.reduce_left(_globals);
  3123     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3124     else          fprintf(_cpp, "  0");
  3126 };
  3129 // Information needed to generate the RightOp mapping for the DFA
  3130 class OutputRightOp : public OutputMap {
  3131 public:
  3132   OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3133     : OutputMap(hpp, cpp, globals, AD) {};
  3135   void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
  3136   void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
  3137   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3138                        OutputMap::closing();
  3140   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
  3141   void map(OperandForm &oper) {
  3142     const char *reduce = oper.reduce_right(_globals);
  3143     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3144     else          fprintf(_cpp, "  0");
  3146   void map(char        *name) {
  3147     const char *reduce = _AD.reduceRight(name);
  3148     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3149     else          fprintf(_cpp, "  0");
  3151   void map(InstructForm &inst) {
  3152     const char *reduce = inst.reduce_right(_globals);
  3153     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3154     else          fprintf(_cpp, "  0");
  3156 };
  3159 // Information needed to generate the Rule names for the DFA
  3160 class OutputRuleName : public OutputMap {
  3161 public:
  3162   OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3163     : OutputMap(hpp, cpp, globals, AD) {};
  3165   void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
  3166   void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
  3167   void closing()     { fprintf(_cpp, "  \"no trailing comma\"\n");
  3168                        OutputMap::closing();
  3170   void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
  3171   void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
  3172   void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
  3173   void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
  3174 };
  3177 // Information needed to generate the swallowed mapping for the DFA
  3178 class OutputSwallowed : public OutputMap {
  3179 public:
  3180   OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3181     : OutputMap(hpp, cpp, globals, AD) {};
  3183   void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
  3184   void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
  3185   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
  3186                        OutputMap::closing();
  3188   void map(OperandForm &oper) { // Generate the entry for this opcode
  3189     const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
  3190     fprintf(_cpp, "  %s", swallowed);
  3192   void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
  3193   void map(char        *name) { fprintf(_cpp, "  false"); }
  3194   void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
  3195 };
  3198 // Information needed to generate the decision array for instruction chain rule
  3199 class OutputInstChainRule : public OutputMap {
  3200 public:
  3201   OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3202     : OutputMap(hpp, cpp, globals, AD) {};
  3204   void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
  3205   void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
  3206   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
  3207                        OutputMap::closing();
  3209   void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
  3210   void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
  3211   void map(char        *name)  { fprintf(_cpp, "  false"); }
  3212   void map(InstructForm &inst) { // Check for simple chain rule
  3213     const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
  3214     fprintf(_cpp, "  %s", chain);
  3216 };
  3219 //---------------------------build_map------------------------------------
  3220 // Build  mapping from enumeration for densely packed operands
  3221 // TO result and child types.
  3222 void ArchDesc::build_map(OutputMap &map) {
  3223   FILE         *fp_hpp = map.decl_file();
  3224   FILE         *fp_cpp = map.def_file();
  3225   int           idx    = 0;
  3226   OperandForm  *op;
  3227   OpClassForm  *opc;
  3228   InstructForm *inst;
  3230   // Construct this mapping
  3231   map.declaration();
  3232   fprintf(fp_cpp,"\n");
  3233   map.definition();
  3235   // Output the mapping for operands
  3236   map.record_position(OutputMap::BEGIN_OPERANDS, idx );
  3237   _operands.reset();
  3238   for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
  3239     // Ensure this is a machine-world instruction
  3240     if ( op->ideal_only() )  continue;
  3242     // Generate the entry for this opcode
  3243     map.map(*op);    fprintf(fp_cpp, ", // %d\n", idx);
  3244     ++idx;
  3245   };
  3246   fprintf(fp_cpp, "  // last operand\n");
  3248   // Place all user-defined operand classes into the mapping
  3249   map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
  3250   _opclass.reset();
  3251   for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
  3252     map.map(*opc);    fprintf(fp_cpp, ", // %d\n", idx);
  3253     ++idx;
  3254   };
  3255   fprintf(fp_cpp, "  // last operand class\n");
  3257   // Place all internally defined operands into the mapping
  3258   map.record_position(OutputMap::BEGIN_INTERNALS, idx );
  3259   _internalOpNames.reset();
  3260   char *name = NULL;
  3261   for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
  3262     map.map(name);    fprintf(fp_cpp, ", // %d\n", idx);
  3263     ++idx;
  3264   };
  3265   fprintf(fp_cpp, "  // last internally defined operand\n");
  3267   // Place all user-defined instructions into the mapping
  3268   if( map.do_instructions() ) {
  3269     map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
  3270     // Output all simple instruction chain rules first
  3271     map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
  3273       _instructions.reset();
  3274       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3275         // Ensure this is a machine-world instruction
  3276         if ( inst->ideal_only() )  continue;
  3277         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
  3278         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
  3280         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
  3281         ++idx;
  3282       };
  3283       map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
  3284       _instructions.reset();
  3285       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3286         // Ensure this is a machine-world instruction
  3287         if ( inst->ideal_only() )  continue;
  3288         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
  3289         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
  3291         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
  3292         ++idx;
  3293       };
  3294       map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
  3296     // Output all instructions that are NOT simple chain rules
  3298       _instructions.reset();
  3299       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3300         // Ensure this is a machine-world instruction
  3301         if ( inst->ideal_only() )  continue;
  3302         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
  3303         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
  3305         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
  3306         ++idx;
  3307       };
  3308       map.record_position(OutputMap::END_REMATERIALIZE, idx );
  3309       _instructions.reset();
  3310       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3311         // Ensure this is a machine-world instruction
  3312         if ( inst->ideal_only() )  continue;
  3313         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
  3314         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
  3316         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
  3317         ++idx;
  3318       };
  3320     fprintf(fp_cpp, "  // last instruction\n");
  3321     map.record_position(OutputMap::END_INSTRUCTIONS, idx );
  3323   // Finish defining table
  3324   map.closing();
  3325 };
  3328 // Helper function for buildReduceMaps
  3329 char reg_save_policy(const char *calling_convention) {
  3330   char callconv;
  3332   if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
  3333   else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
  3334   else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
  3335   else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
  3336   else                                         callconv = 'Z';
  3338   return callconv;
  3341 //---------------------------generate_assertion_checks-------------------
  3342 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
  3343   fprintf(fp_cpp, "\n");
  3345   fprintf(fp_cpp, "#ifndef PRODUCT\n");
  3346   fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
  3347   globalDefs().print_asserts(fp_cpp);
  3348   fprintf(fp_cpp, "}\n");
  3349   fprintf(fp_cpp, "#endif\n");
  3350   fprintf(fp_cpp, "\n");
  3353 //---------------------------addSourceBlocks-----------------------------
  3354 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
  3355   if (_source.count() > 0)
  3356     _source.output(fp_cpp);
  3358   generate_adlc_verification(fp_cpp);
  3360 //---------------------------addHeaderBlocks-----------------------------
  3361 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
  3362   if (_header.count() > 0)
  3363     _header.output(fp_hpp);
  3365 //-------------------------addPreHeaderBlocks----------------------------
  3366 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
  3367   // Output #defines from definition block
  3368   globalDefs().print_defines(fp_hpp);
  3370   if (_pre_header.count() > 0)
  3371     _pre_header.output(fp_hpp);
  3374 //---------------------------buildReduceMaps-----------------------------
  3375 // Build  mapping from enumeration for densely packed operands
  3376 // TO result and child types.
  3377 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
  3378   RegDef       *rdef;
  3379   RegDef       *next;
  3381   // The emit bodies currently require functions defined in the source block.
  3383   // Build external declarations for mappings
  3384   fprintf(fp_hpp, "\n");
  3385   fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
  3386   fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
  3387   fprintf(fp_hpp, "extern const int   register_save_type[];\n");
  3388   fprintf(fp_hpp, "\n");
  3390   // Construct Save-Policy array
  3391   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
  3392   fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
  3393   _register->reset_RegDefs();
  3394   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3395     next              = _register->iter_RegDefs();
  3396     char policy       = reg_save_policy(rdef->_callconv);
  3397     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3398     fprintf(fp_cpp, "  '%c'%s\n", policy, comma);
  3400   fprintf(fp_cpp, "};\n\n");
  3402   // Construct Native Save-Policy array
  3403   fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
  3404   fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
  3405   _register->reset_RegDefs();
  3406   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3407     next        = _register->iter_RegDefs();
  3408     char policy = reg_save_policy(rdef->_c_conv);
  3409     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3410     fprintf(fp_cpp, "  '%c'%s\n", policy, comma);
  3412   fprintf(fp_cpp, "};\n\n");
  3414   // Construct Register Save Type array
  3415   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
  3416   fprintf(fp_cpp, "const        int register_save_type[] = {\n");
  3417   _register->reset_RegDefs();
  3418   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3419     next = _register->iter_RegDefs();
  3420     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3421     fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
  3423   fprintf(fp_cpp, "};\n\n");
  3425   // Construct the table for reduceOp
  3426   OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
  3427   build_map(output_reduce_op);
  3428   // Construct the table for leftOp
  3429   OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
  3430   build_map(output_left_op);
  3431   // Construct the table for rightOp
  3432   OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
  3433   build_map(output_right_op);
  3434   // Construct the table of rule names
  3435   OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
  3436   build_map(output_rule_name);
  3437   // Construct the boolean table for subsumed operands
  3438   OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
  3439   build_map(output_swallowed);
  3440   // // // Preserve in case we decide to use this table instead of another
  3441   //// Construct the boolean table for instruction chain rules
  3442   //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
  3443   //build_map(output_inst_chain);
  3448 //---------------------------buildMachOperGenerator---------------------------
  3450 // Recurse through match tree, building path through corresponding state tree,
  3451 // Until we reach the constant we are looking for.
  3452 static void path_to_constant(FILE *fp, FormDict &globals,
  3453                              MatchNode *mnode, uint idx) {
  3454   if ( ! mnode) return;
  3456   unsigned    position = 0;
  3457   const char *result   = NULL;
  3458   const char *name     = NULL;
  3459   const char *optype   = NULL;
  3461   // Base Case: access constant in ideal node linked to current state node
  3462   // Each type of constant has its own access function
  3463   if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
  3464        && mnode->base_operand(position, globals, result, name, optype) ) {
  3465     if (         strcmp(optype,"ConI") == 0 ) {
  3466       fprintf(fp, "_leaf->get_int()");
  3467     } else if ( (strcmp(optype,"ConP") == 0) ) {
  3468       fprintf(fp, "_leaf->bottom_type()->is_ptr()");
  3469     } else if ( (strcmp(optype,"ConN") == 0) ) {
  3470       fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
  3471     } else if ( (strcmp(optype,"ConF") == 0) ) {
  3472       fprintf(fp, "_leaf->getf()");
  3473     } else if ( (strcmp(optype,"ConD") == 0) ) {
  3474       fprintf(fp, "_leaf->getd()");
  3475     } else if ( (strcmp(optype,"ConL") == 0) ) {
  3476       fprintf(fp, "_leaf->get_long()");
  3477     } else if ( (strcmp(optype,"Con")==0) ) {
  3478       // !!!!! - Update if adding a machine-independent constant type
  3479       fprintf(fp, "_leaf->get_int()");
  3480       assert( false, "Unsupported constant type, pointer or indefinite");
  3481     } else if ( (strcmp(optype,"Bool") == 0) ) {
  3482       fprintf(fp, "_leaf->as_Bool()->_test._test");
  3483     } else {
  3484       assert( false, "Unsupported constant type");
  3486     return;
  3489   // If constant is in left child, build path and recurse
  3490   uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
  3491   uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
  3492   if ( (mnode->_lChild) && (lConsts > idx) ) {
  3493     fprintf(fp, "_kids[0]->");
  3494     path_to_constant(fp, globals, mnode->_lChild, idx);
  3495     return;
  3497   // If constant is in right child, build path and recurse
  3498   if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
  3499     idx = idx - lConsts;
  3500     fprintf(fp, "_kids[1]->");
  3501     path_to_constant(fp, globals, mnode->_rChild, idx);
  3502     return;
  3504   assert( false, "ShouldNotReachHere()");
  3507 // Generate code that is executed when generating a specific Machine Operand
  3508 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
  3509                             OperandForm &op) {
  3510   const char *opName         = op._ident;
  3511   const char *opEnumName     = AD.machOperEnum(opName);
  3512   uint        num_consts     = op.num_consts(globalNames);
  3514   // Generate the case statement for this opcode
  3515   fprintf(fp, "  case %s:", opEnumName);
  3516   fprintf(fp, "\n    return new (C) %sOper(", opName);
  3517   // Access parameters for constructor from the stat object
  3518   //
  3519   // Build access to condition code value
  3520   if ( (num_consts > 0) ) {
  3521     uint i = 0;
  3522     path_to_constant(fp, globalNames, op._matrule, i);
  3523     for ( i = 1; i < num_consts; ++i ) {
  3524       fprintf(fp, ", ");
  3525       path_to_constant(fp, globalNames, op._matrule, i);
  3528   fprintf(fp, " );\n");
  3532 // Build switch to invoke "new" MachNode or MachOper
  3533 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
  3534   int idx = 0;
  3536   // Build switch to invoke 'new' for a specific MachOper
  3537   fprintf(fp_cpp, "\n");
  3538   fprintf(fp_cpp, "\n");
  3539   fprintf(fp_cpp,
  3540           "//------------------------- MachOper Generator ---------------\n");
  3541   fprintf(fp_cpp,
  3542           "// A switch statement on the dense-packed user-defined type system\n"
  3543           "// that invokes 'new' on the corresponding class constructor.\n");
  3544   fprintf(fp_cpp, "\n");
  3545   fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
  3546   fprintf(fp_cpp, "(int opcode, Compile* C)");
  3547   fprintf(fp_cpp, "{\n");
  3548   fprintf(fp_cpp, "\n");
  3549   fprintf(fp_cpp, "  switch(opcode) {\n");
  3551   // Place all user-defined operands into the mapping
  3552   _operands.reset();
  3553   int  opIndex = 0;
  3554   OperandForm *op;
  3555   for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
  3556     // Ensure this is a machine-world instruction
  3557     if ( op->ideal_only() )  continue;
  3559     genMachOperCase(fp_cpp, _globalNames, *this, *op);
  3560   };
  3562   // Do not iterate over operand classes for the  operand generator!!!
  3564   // Place all internal operands into the mapping
  3565   _internalOpNames.reset();
  3566   const char *iopn;
  3567   for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
  3568     const char *opEnumName = machOperEnum(iopn);
  3569     // Generate the case statement for this opcode
  3570     fprintf(fp_cpp, "  case %s:", opEnumName);
  3571     fprintf(fp_cpp, "    return NULL;\n");
  3572   };
  3574   // Generate the default case for switch(opcode)
  3575   fprintf(fp_cpp, "  \n");
  3576   fprintf(fp_cpp, "  default:\n");
  3577   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
  3578   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
  3579   fprintf(fp_cpp, "    break;\n");
  3580   fprintf(fp_cpp, "  }\n");
  3582   // Generate the closing for method Matcher::MachOperGenerator
  3583   fprintf(fp_cpp, "  return NULL;\n");
  3584   fprintf(fp_cpp, "};\n");
  3588 //---------------------------buildMachNode-------------------------------------
  3589 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
  3590 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
  3591   const char *opType  = NULL;
  3592   const char *opClass = inst->_ident;
  3594   // Create the MachNode object
  3595   fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass);
  3597   if ( (inst->num_post_match_opnds() != 0) ) {
  3598     // Instruction that contains operands which are not in match rule.
  3599     //
  3600     // Check if the first post-match component may be an interesting def
  3601     bool           dont_care = false;
  3602     ComponentList &comp_list = inst->_components;
  3603     Component     *comp      = NULL;
  3604     comp_list.reset();
  3605     if ( comp_list.match_iter() != NULL )    dont_care = true;
  3607     // Insert operands that are not in match-rule.
  3608     // Only insert a DEF if the do_care flag is set
  3609     comp_list.reset();
  3610     while ( comp = comp_list.post_match_iter() ) {
  3611       // Check if we don't care about DEFs or KILLs that are not USEs
  3612       if ( dont_care && (! comp->isa(Component::USE)) ) {
  3613         continue;
  3615       dont_care = true;
  3616       // For each operand not in the match rule, call MachOperGenerator
  3617       // with the enum for the opcode that needs to be built
  3618       // and the node just built, the parent of the operand.
  3619       ComponentList clist = inst->_components;
  3620       int         index  = clist.operand_position(comp->_name, comp->_usedef);
  3621       const char *opcode = machOperEnum(comp->_type);
  3622       const char *parent = "node";
  3623       fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
  3624       fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode);
  3627   else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
  3628     // An instruction that chains from a constant!
  3629     // In this case, we need to subsume the constant into the node
  3630     // at operand position, oper_input_base().
  3631     //
  3632     // Fill in the constant
  3633     fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
  3634             inst->oper_input_base(_globalNames));
  3635     // #####
  3636     // Check for multiple constants and then fill them in.
  3637     // Just like MachOperGenerator
  3638     const char *opName = inst->_matrule->_rChild->_opType;
  3639     fprintf(fp_cpp, "new (C) %sOper(", opName);
  3640     // Grab operand form
  3641     OperandForm *op = (_globalNames[opName])->is_operand();
  3642     // Look up the number of constants
  3643     uint num_consts = op->num_consts(_globalNames);
  3644     if ( (num_consts > 0) ) {
  3645       uint i = 0;
  3646       path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
  3647       for ( i = 1; i < num_consts; ++i ) {
  3648         fprintf(fp_cpp, ", ");
  3649         path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
  3652     fprintf(fp_cpp, " );\n");
  3653     // #####
  3656   // Fill in the bottom_type where requested
  3657   if ( inst->captures_bottom_type() ) {
  3658     fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
  3660   if( inst->is_ideal_if() ) {
  3661     fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
  3662     fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
  3664   if( inst->is_ideal_fastlock() ) {
  3665     fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
  3670 //---------------------------declare_cisc_version------------------------------
  3671 // Build CISC version of this instruction
  3672 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
  3673   if( AD.can_cisc_spill() ) {
  3674     InstructForm *inst_cisc = cisc_spill_alternate();
  3675     if (inst_cisc != NULL) {
  3676       fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
  3677       fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset, Compile* C);\n");
  3678       fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
  3679       fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
  3684 //---------------------------define_cisc_version-------------------------------
  3685 // Build CISC version of this instruction
  3686 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
  3687   InstructForm *inst_cisc = this->cisc_spill_alternate();
  3688   if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
  3689     const char   *name      = inst_cisc->_ident;
  3690     assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
  3691     OperandForm *cisc_oper = AD.cisc_spill_operand();
  3692     assert( cisc_oper != NULL, "insanity check");
  3693     const char *cisc_oper_name  = cisc_oper->_ident;
  3694     assert( cisc_oper_name != NULL, "insanity check");
  3695     //
  3696     // Set the correct reg_mask_or_stack for the cisc operand
  3697     fprintf(fp_cpp, "\n");
  3698     fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
  3699     // Lookup the correct reg_mask_or_stack
  3700     const char *reg_mask_name = cisc_reg_mask_name();
  3701     fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
  3702     fprintf(fp_cpp, "}\n");
  3703     //
  3704     // Construct CISC version of this instruction
  3705     fprintf(fp_cpp, "\n");
  3706     fprintf(fp_cpp, "// Build CISC version of this instruction\n");
  3707     fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident);
  3708     // Create the MachNode object
  3709     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
  3710     // Fill in the bottom_type where requested
  3711     if ( this->captures_bottom_type() ) {
  3712       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
  3714     fprintf(fp_cpp, "\n");
  3715     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
  3716     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
  3717     // Construct operand to access [stack_pointer + offset]
  3718     fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
  3719     fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name);
  3720     fprintf(fp_cpp, "\n");
  3722     // Return result and exit scope
  3723     fprintf(fp_cpp, "  return node;\n");
  3724     fprintf(fp_cpp, "}\n");
  3725     fprintf(fp_cpp, "\n");
  3726     return true;
  3728   return false;
  3731 //---------------------------declare_short_branch_methods----------------------
  3732 // Build prototypes for short branch methods
  3733 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
  3734   if (has_short_branch_form()) {
  3735     fprintf(fp_hpp, "  virtual MachNode      *short_branch_version(Compile* C);\n");
  3739 //---------------------------define_short_branch_methods-----------------------
  3740 // Build definitions for short branch methods
  3741 bool InstructForm::define_short_branch_methods(FILE *fp_cpp) {
  3742   if (has_short_branch_form()) {
  3743     InstructForm *short_branch = short_branch_form();
  3744     const char   *name         = short_branch->_ident;
  3746     // Construct short_branch_version() method.
  3747     fprintf(fp_cpp, "// Build short branch version of this instruction\n");
  3748     fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident);
  3749     // Create the MachNode object
  3750     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
  3751     if( is_ideal_if() ) {
  3752       fprintf(fp_cpp, "  node->_prob = _prob;\n");
  3753       fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
  3755     // Fill in the bottom_type where requested
  3756     if ( this->captures_bottom_type() ) {
  3757       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
  3760     fprintf(fp_cpp, "\n");
  3761     // Short branch version must use same node index for access
  3762     // through allocator's tables
  3763     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
  3764     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
  3766     // Return result and exit scope
  3767     fprintf(fp_cpp, "  return node;\n");
  3768     fprintf(fp_cpp, "}\n");
  3769     fprintf(fp_cpp,"\n");
  3770     return true;
  3772   return false;
  3776 //---------------------------buildMachNodeGenerator----------------------------
  3777 // Build switch to invoke appropriate "new" MachNode for an opcode
  3778 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
  3780   // Build switch to invoke 'new' for a specific MachNode
  3781   fprintf(fp_cpp, "\n");
  3782   fprintf(fp_cpp, "\n");
  3783   fprintf(fp_cpp,
  3784           "//------------------------- MachNode Generator ---------------\n");
  3785   fprintf(fp_cpp,
  3786           "// A switch statement on the dense-packed user-defined type system\n"
  3787           "// that invokes 'new' on the corresponding class constructor.\n");
  3788   fprintf(fp_cpp, "\n");
  3789   fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
  3790   fprintf(fp_cpp, "(int opcode, Compile* C)");
  3791   fprintf(fp_cpp, "{\n");
  3792   fprintf(fp_cpp, "  switch(opcode) {\n");
  3794   // Provide constructor for all user-defined instructions
  3795   _instructions.reset();
  3796   int  opIndex = operandFormCount();
  3797   InstructForm *inst;
  3798   for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3799     // Ensure that matrule is defined.
  3800     if ( inst->_matrule == NULL ) continue;
  3802     int         opcode  = opIndex++;
  3803     const char *opClass = inst->_ident;
  3804     char       *opType  = NULL;
  3806     // Generate the case statement for this instruction
  3807     fprintf(fp_cpp, "  case %s_rule:", opClass);
  3809     // Start local scope
  3810     fprintf(fp_cpp, "  {\n");
  3811     // Generate code to construct the new MachNode
  3812     buildMachNode(fp_cpp, inst, "     ");
  3813     // Return result and exit scope
  3814     fprintf(fp_cpp, "      return node;\n");
  3815     fprintf(fp_cpp, "    }\n");
  3818   // Generate the default case for switch(opcode)
  3819   fprintf(fp_cpp, "  \n");
  3820   fprintf(fp_cpp, "  default:\n");
  3821   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
  3822   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
  3823   fprintf(fp_cpp, "    break;\n");
  3824   fprintf(fp_cpp, "  };\n");
  3826   // Generate the closing for method Matcher::MachNodeGenerator
  3827   fprintf(fp_cpp, "  return NULL;\n");
  3828   fprintf(fp_cpp, "}\n");
  3832 //---------------------------buildInstructMatchCheck--------------------------
  3833 // Output the method to Matcher which checks whether or not a specific
  3834 // instruction has a matching rule for the host architecture.
  3835 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
  3836   fprintf(fp_cpp, "\n\n");
  3837   fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
  3838   fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
  3839   fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
  3840   fprintf(fp_cpp, "}\n\n");
  3842   fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
  3843   int i;
  3844   for (i = 0; i < _last_opcode - 1; i++) {
  3845     fprintf(fp_cpp, "    %-5s,  // %s\n",
  3846             _has_match_rule[i] ? "true" : "false",
  3847             NodeClassNames[i]);
  3849   fprintf(fp_cpp, "    %-5s   // %s\n",
  3850           _has_match_rule[i] ? "true" : "false",
  3851           NodeClassNames[i]);
  3852   fprintf(fp_cpp, "};\n");
  3855 //---------------------------buildFrameMethods---------------------------------
  3856 // Output the methods to Matcher which specify frame behavior
  3857 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
  3858   fprintf(fp_cpp,"\n\n");
  3859   // Stack Direction
  3860   fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
  3861           _frame->_direction ? "true" : "false");
  3862   // Sync Stack Slots
  3863   fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
  3864           _frame->_sync_stack_slots);
  3865   // Java Stack Alignment
  3866   fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
  3867           _frame->_alignment);
  3868   // Java Return Address Location
  3869   fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
  3870   if (_frame->_return_addr_loc) {
  3871     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  3872             _frame->_return_addr);
  3874   else {
  3875     fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
  3876             _frame->_return_addr);
  3878   // Java Stack Slot Preservation
  3879   fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
  3880   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
  3881   // Top Of Stack Slot Preservation, for both Java and C
  3882   fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
  3883   fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
  3884   // varargs C out slots killed
  3885   fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
  3886   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
  3887   // Java Argument Position
  3888   fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
  3889   fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
  3890   fprintf(fp_cpp,"}\n\n");
  3891   // Native Argument Position
  3892   fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
  3893   fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
  3894   fprintf(fp_cpp,"}\n\n");
  3895   // Java Return Value Location
  3896   fprintf(fp_cpp,"OptoRegPair Matcher::return_value(int ideal_reg, bool is_outgoing) {\n");
  3897   fprintf(fp_cpp,"%s\n", _frame->_return_value);
  3898   fprintf(fp_cpp,"}\n\n");
  3899   // Native Return Value Location
  3900   fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(int ideal_reg, bool is_outgoing) {\n");
  3901   fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
  3902   fprintf(fp_cpp,"}\n\n");
  3904   // Inline Cache Register, mask definition, and encoding
  3905   fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
  3906   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  3907           _frame->_inline_cache_reg);
  3908   fprintf(fp_cpp,"const RegMask &Matcher::inline_cache_reg_mask() {");
  3909   fprintf(fp_cpp," return INLINE_CACHE_REG_mask; }\n\n");
  3910   fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
  3911   fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
  3913   // Interpreter's Method Oop Register, mask definition, and encoding
  3914   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
  3915   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  3916           _frame->_interpreter_method_oop_reg);
  3917   fprintf(fp_cpp,"const RegMask &Matcher::interpreter_method_oop_reg_mask() {");
  3918   fprintf(fp_cpp," return INTERPRETER_METHOD_OOP_REG_mask; }\n\n");
  3919   fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
  3920   fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
  3922   // Interpreter's Frame Pointer Register, mask definition, and encoding
  3923   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
  3924   if (_frame->_interpreter_frame_pointer_reg == NULL)
  3925     fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
  3926   else
  3927     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  3928             _frame->_interpreter_frame_pointer_reg);
  3929   fprintf(fp_cpp,"const RegMask &Matcher::interpreter_frame_pointer_reg_mask() {");
  3930   if (_frame->_interpreter_frame_pointer_reg == NULL)
  3931     fprintf(fp_cpp," static RegMask dummy; return dummy; }\n\n");
  3932   else
  3933     fprintf(fp_cpp," return INTERPRETER_FRAME_POINTER_REG_mask; }\n\n");
  3935   // Frame Pointer definition
  3936   /* CNC - I can not contemplate having a different frame pointer between
  3937      Java and native code; makes my head hurt to think about it.
  3938   fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
  3939   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  3940           _frame->_frame_pointer);
  3941   */
  3942   // (Native) Frame Pointer definition
  3943   fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
  3944   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  3945           _frame->_frame_pointer);
  3947   // Number of callee-save + always-save registers for calling convention
  3948   fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
  3949   fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
  3950   RegDef *rdef;
  3951   int nof_saved_registers = 0;
  3952   _register->reset_RegDefs();
  3953   while( (rdef = _register->iter_RegDefs()) != NULL ) {
  3954     if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
  3955       ++nof_saved_registers;
  3957   fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
  3958   fprintf(fp_cpp, "};\n\n");
  3964 static int PrintAdlcCisc = 0;
  3965 //---------------------------identify_cisc_spilling----------------------------
  3966 // Get info for the CISC_oracle and MachNode::cisc_version()
  3967 void ArchDesc::identify_cisc_spill_instructions() {
  3969   // Find the user-defined operand for cisc-spilling
  3970   if( _frame->_cisc_spilling_operand_name != NULL ) {
  3971     const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
  3972     OperandForm *oper = form ? form->is_operand() : NULL;
  3973     // Verify the user's suggestion
  3974     if( oper != NULL ) {
  3975       // Ensure that match field is defined.
  3976       if ( oper->_matrule != NULL )  {
  3977         MatchRule &mrule = *oper->_matrule;
  3978         if( strcmp(mrule._opType,"AddP") == 0 ) {
  3979           MatchNode *left = mrule._lChild;
  3980           MatchNode *right= mrule._rChild;
  3981           if( left != NULL && right != NULL ) {
  3982             const Form *left_op  = _globalNames[left->_opType]->is_operand();
  3983             const Form *right_op = _globalNames[right->_opType]->is_operand();
  3984             if(  (left_op != NULL && right_op != NULL)
  3985               && (left_op->interface_type(_globalNames) == Form::register_interface)
  3986               && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
  3987               // Successfully verified operand
  3988               set_cisc_spill_operand( oper );
  3989               if( _cisc_spill_debug ) {
  3990                 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
  3999   if( cisc_spill_operand() != NULL ) {
  4000     // N^2 comparison of instructions looking for a cisc-spilling version
  4001     _instructions.reset();
  4002     InstructForm *instr;
  4003     for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  4004       // Ensure that match field is defined.
  4005       if ( instr->_matrule == NULL )  continue;
  4007       MatchRule &mrule = *instr->_matrule;
  4008       Predicate *pred  =  instr->build_predicate();
  4010       // Grab the machine type of the operand
  4011       const char *rootOp = instr->_ident;
  4012       mrule._machType    = rootOp;
  4014       // Find result type for match
  4015       const char *result = instr->reduce_result();
  4017       if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
  4018       bool  found_cisc_alternate = false;
  4019       _instructions.reset2();
  4020       InstructForm *instr2;
  4021       for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
  4022         // Ensure that match field is defined.
  4023         if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
  4024         if ( instr2->_matrule != NULL
  4025             && (instr != instr2 )                // Skip self
  4026             && (instr2->reduce_result() != NULL) // want same result
  4027             && (strcmp(result, instr2->reduce_result()) == 0)) {
  4028           MatchRule &mrule2 = *instr2->_matrule;
  4029           Predicate *pred2  =  instr2->build_predicate();
  4030           found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
  4037 //---------------------------build_cisc_spilling-------------------------------
  4038 // Get info for the CISC_oracle and MachNode::cisc_version()
  4039 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
  4040   // Output the table for cisc spilling
  4041   fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
  4042   _instructions.reset();
  4043   InstructForm *inst = NULL;
  4044   for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  4045     // Ensure this is a machine-world instruction
  4046     if ( inst->ideal_only() )  continue;
  4047     const char *inst_name = inst->_ident;
  4048     int   operand   = inst->cisc_spill_operand();
  4049     if( operand != AdlcVMDeps::Not_cisc_spillable ) {
  4050       InstructForm *inst2 = inst->cisc_spill_alternate();
  4051       fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
  4054   fprintf(fp_cpp, "\n\n");
  4057 //---------------------------identify_short_branches----------------------------
  4058 // Get info for our short branch replacement oracle.
  4059 void ArchDesc::identify_short_branches() {
  4060   // Walk over all instructions, checking to see if they match a short
  4061   // branching alternate.
  4062   _instructions.reset();
  4063   InstructForm *instr;
  4064   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  4065     // The instruction must have a match rule.
  4066     if (instr->_matrule != NULL &&
  4067         instr->is_short_branch()) {
  4069       _instructions.reset2();
  4070       InstructForm *instr2;
  4071       while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
  4072         instr2->check_branch_variant(*this, instr);
  4079 //---------------------------identify_unique_operands---------------------------
  4080 // Identify unique operands.
  4081 void ArchDesc::identify_unique_operands() {
  4082   // Walk over all instructions.
  4083   _instructions.reset();
  4084   InstructForm *instr;
  4085   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  4086     // Ensure this is a machine-world instruction
  4087     if (!instr->ideal_only()) {
  4088       instr->set_unique_opnds();

mercurial