src/share/vm/adlc/output_c.cpp

Fri, 27 Feb 2009 03:35:40 -0800

author
twisti
date
Fri, 27 Feb 2009 03:35:40 -0800
changeset 1038
dbbe28fc66b5
parent 850
4d9884b01ba6
child 1059
337400e7a5dd
permissions
-rw-r--r--

6778669: Patch from Red Hat -- fixes compilation errors
Summary: Some fixes which are required to build on recent GCCs.
Reviewed-by: never, kvn
Contributed-by: langel@redhat.com

     1 /*
     2  * Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // output_c.cpp - Class CPP file output routines for architecture definition
    27 #include "adlc.hpp"
    29 // Utilities to characterize effect statements
    30 static bool is_def(int usedef) {
    31   switch(usedef) {
    32   case Component::DEF:
    33   case Component::USE_DEF: return true; break;
    34   }
    35   return false;
    36 }
    38 static bool is_use(int usedef) {
    39   switch(usedef) {
    40   case Component::USE:
    41   case Component::USE_DEF:
    42   case Component::USE_KILL: return true; break;
    43   }
    44   return false;
    45 }
    47 static bool is_kill(int usedef) {
    48   switch(usedef) {
    49   case Component::KILL:
    50   case Component::USE_KILL: return true; break;
    51   }
    52   return false;
    53 }
    55 // Define  an array containing the machine register names, strings.
    56 static void defineRegNames(FILE *fp, RegisterForm *registers) {
    57   if (registers) {
    58     fprintf(fp,"\n");
    59     fprintf(fp,"// An array of character pointers to machine register names.\n");
    60     fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
    62     // Output the register name for each register in the allocation classes
    63     RegDef *reg_def = NULL;
    64     RegDef *next = NULL;
    65     registers->reset_RegDefs();
    66     for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
    67       next = registers->iter_RegDefs();
    68       const char *comma = (next != NULL) ? "," : " // no trailing comma";
    69       fprintf(fp,"  \"%s\"%s\n",
    70                  reg_def->_regname, comma );
    71     }
    73     // Finish defining enumeration
    74     fprintf(fp,"};\n");
    76     fprintf(fp,"\n");
    77     fprintf(fp,"// An array of character pointers to machine register names.\n");
    78     fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
    79     reg_def = NULL;
    80     next = NULL;
    81     registers->reset_RegDefs();
    82     for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
    83       next = registers->iter_RegDefs();
    84       const char *comma = (next != NULL) ? "," : " // no trailing comma";
    85       fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma );
    86     }
    87     // Finish defining array
    88     fprintf(fp,"\t};\n");
    89     fprintf(fp,"\n");
    91     fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
    93   }
    94 }
    96 // Define an array containing the machine register encoding values
    97 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
    98   if (registers) {
    99     fprintf(fp,"\n");
   100     fprintf(fp,"// An array of the machine register encode values\n");
   101     fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
   103     // Output the register encoding for each register in the allocation classes
   104     RegDef *reg_def = NULL;
   105     RegDef *next    = NULL;
   106     registers->reset_RegDefs();
   107     for( reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next ) {
   108       next = registers->iter_RegDefs();
   109       const char* register_encode = reg_def->register_encode();
   110       const char *comma = (next != NULL) ? "," : " // no trailing comma";
   111       int encval;
   112       if (!ADLParser::is_int_token(register_encode, encval)) {
   113         fprintf(fp,"  %s%s  // %s\n",
   114                 register_encode, comma, reg_def->_regname );
   115       } else {
   116         // Output known constants in hex char format (backward compatibility).
   117         assert(encval < 256, "Exceeded supported width for register encoding");
   118         fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n",
   119                 encval,          comma, reg_def->_regname );
   120       }
   121     }
   122     // Finish defining enumeration
   123     fprintf(fp,"};\n");
   125   } // Done defining array
   126 }
   128 // Output an enumeration of register class names
   129 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
   130   if (registers) {
   131     // Output an enumeration of register class names
   132     fprintf(fp,"\n");
   133     fprintf(fp,"// Enumeration of register class names\n");
   134     fprintf(fp, "enum machRegisterClass {\n");
   135     registers->_rclasses.reset();
   136     for( const char *class_name = NULL;
   137          (class_name = registers->_rclasses.iter()) != NULL; ) {
   138       fprintf(fp,"  %s,\n", toUpper( class_name ));
   139     }
   140     // Finish defining enumeration
   141     fprintf(fp, "  _last_Mach_Reg_Class\n");
   142     fprintf(fp, "};\n");
   143   }
   144 }
   146 // Declare an enumeration of user-defined register classes
   147 // and a list of register masks, one for each class.
   148 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
   149   const char  *rc_name;
   151   if( _register ) {
   152     // Build enumeration of user-defined register classes.
   153     defineRegClassEnum(fp_hpp, _register);
   155     // Generate a list of register masks, one for each class.
   156     fprintf(fp_hpp,"\n");
   157     fprintf(fp_hpp,"// Register masks, one for each register class.\n");
   158     _register->_rclasses.reset();
   159     for( rc_name = NULL;
   160          (rc_name = _register->_rclasses.iter()) != NULL; ) {
   161       const char *prefix    = "";
   162       RegClass   *reg_class = _register->getRegClass(rc_name);
   163       assert( reg_class, "Using an undefined register class");
   165       int len = RegisterForm::RegMask_Size();
   166       fprintf(fp_hpp, "extern const RegMask %s%s_mask;\n", prefix, toUpper( rc_name ) );
   168       if( reg_class->_stack_or_reg ) {
   169         fprintf(fp_hpp, "extern const RegMask %sSTACK_OR_%s_mask;\n", prefix, toUpper( rc_name ) );
   170       }
   171     }
   172   }
   173 }
   175 // Generate an enumeration of user-defined register classes
   176 // and a list of register masks, one for each class.
   177 void ArchDesc::build_register_masks(FILE *fp_cpp) {
   178   const char  *rc_name;
   180   if( _register ) {
   181     // Generate a list of register masks, one for each class.
   182     fprintf(fp_cpp,"\n");
   183     fprintf(fp_cpp,"// Register masks, one for each register class.\n");
   184     _register->_rclasses.reset();
   185     for( rc_name = NULL;
   186          (rc_name = _register->_rclasses.iter()) != NULL; ) {
   187       const char *prefix    = "";
   188       RegClass   *reg_class = _register->getRegClass(rc_name);
   189       assert( reg_class, "Using an undefined register class");
   191       int len = RegisterForm::RegMask_Size();
   192       fprintf(fp_cpp, "const RegMask %s%s_mask(", prefix, toUpper( rc_name ) );
   193       { int i;
   194         for( i = 0; i < len-1; i++ )
   195           fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i,false));
   196         fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i,false));
   197       }
   199       if( reg_class->_stack_or_reg ) {
   200         int i;
   201         fprintf(fp_cpp, "const RegMask %sSTACK_OR_%s_mask(", prefix, toUpper( rc_name ) );
   202         for( i = 0; i < len-1; i++ )
   203           fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i,true));
   204         fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i,true));
   205       }
   206     }
   207   }
   208 }
   210 // Compute an index for an array in the pipeline_reads_NNN arrays
   211 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
   212 {
   213   int templen = 1;
   214   int paramcount = 0;
   215   const char *paramname;
   217   if (pipeclass->_parameters.count() == 0)
   218     return -1;
   220   pipeclass->_parameters.reset();
   221   paramname = pipeclass->_parameters.iter();
   222   const PipeClassOperandForm *pipeopnd =
   223     (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   224   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
   225     pipeclass->_parameters.reset();
   227   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
   228     const PipeClassOperandForm *tmppipeopnd =
   229         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   231     if (tmppipeopnd)
   232       templen += 10 + (int)strlen(tmppipeopnd->_stage);
   233     else
   234       templen += 19;
   236     paramcount++;
   237   }
   239   // See if the count is zero
   240   if (paramcount == 0) {
   241     return -1;
   242   }
   244   char *operand_stages = new char [templen];
   245   operand_stages[0] = 0;
   246   int i = 0;
   247   templen = 0;
   249   pipeclass->_parameters.reset();
   250   paramname = pipeclass->_parameters.iter();
   251   pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   252   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
   253     pipeclass->_parameters.reset();
   255   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
   256     const PipeClassOperandForm *tmppipeopnd =
   257         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   258     templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
   259       tmppipeopnd ? tmppipeopnd->_stage : "undefined",
   260       (++i < paramcount ? ',' : ' ') );
   261   }
   263   // See if the same string is in the table
   264   int ndx = pipeline_reads.index(operand_stages);
   266   // No, add it to the table
   267   if (ndx < 0) {
   268     pipeline_reads.addName(operand_stages);
   269     ndx = pipeline_reads.index(operand_stages);
   271     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
   272       ndx+1, paramcount, operand_stages);
   273   }
   274   else
   275     delete [] operand_stages;
   277   return (ndx);
   278 }
   280 // Compute an index for an array in the pipeline_res_stages_NNN arrays
   281 static int pipeline_res_stages_initializer(
   282   FILE *fp_cpp,
   283   PipelineForm *pipeline,
   284   NameList &pipeline_res_stages,
   285   PipeClassForm *pipeclass)
   286 {
   287   const PipeClassResourceForm *piperesource;
   288   int * res_stages = new int [pipeline->_rescount];
   289   int i;
   291   for (i = 0; i < pipeline->_rescount; i++)
   292      res_stages[i] = 0;
   294   for (pipeclass->_resUsage.reset();
   295        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   296     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   297     for (i = 0; i < pipeline->_rescount; i++)
   298       if ((1 << i) & used_mask) {
   299         int stage = pipeline->_stages.index(piperesource->_stage);
   300         if (res_stages[i] < stage+1)
   301           res_stages[i] = stage+1;
   302       }
   303   }
   305   // Compute the length needed for the resource list
   306   int commentlen = 0;
   307   int max_stage = 0;
   308   for (i = 0; i < pipeline->_rescount; i++) {
   309     if (res_stages[i] == 0) {
   310       if (max_stage < 9)
   311         max_stage = 9;
   312     }
   313     else {
   314       int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
   315       if (max_stage < stagelen)
   316         max_stage = stagelen;
   317     }
   319     commentlen += (int)strlen(pipeline->_reslist.name(i));
   320   }
   322   int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
   324   // Allocate space for the resource list
   325   char * resource_stages = new char [templen];
   327   templen = 0;
   328   for (i = 0; i < pipeline->_rescount; i++) {
   329     const char * const resname =
   330       res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
   332     templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
   333       resname, max_stage - (int)strlen(resname) + 1,
   334       (i < pipeline->_rescount-1) ? "," : "",
   335       pipeline->_reslist.name(i));
   336   }
   338   // See if the same string is in the table
   339   int ndx = pipeline_res_stages.index(resource_stages);
   341   // No, add it to the table
   342   if (ndx < 0) {
   343     pipeline_res_stages.addName(resource_stages);
   344     ndx = pipeline_res_stages.index(resource_stages);
   346     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
   347       ndx+1, pipeline->_rescount, resource_stages);
   348   }
   349   else
   350     delete [] resource_stages;
   352   delete [] res_stages;
   354   return (ndx);
   355 }
   357 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
   358 static int pipeline_res_cycles_initializer(
   359   FILE *fp_cpp,
   360   PipelineForm *pipeline,
   361   NameList &pipeline_res_cycles,
   362   PipeClassForm *pipeclass)
   363 {
   364   const PipeClassResourceForm *piperesource;
   365   int * res_cycles = new int [pipeline->_rescount];
   366   int i;
   368   for (i = 0; i < pipeline->_rescount; i++)
   369      res_cycles[i] = 0;
   371   for (pipeclass->_resUsage.reset();
   372        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   373     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   374     for (i = 0; i < pipeline->_rescount; i++)
   375       if ((1 << i) & used_mask) {
   376         int cycles = piperesource->_cycles;
   377         if (res_cycles[i] < cycles)
   378           res_cycles[i] = cycles;
   379       }
   380   }
   382   // Pre-compute the string length
   383   int templen;
   384   int cyclelen = 0, commentlen = 0;
   385   int max_cycles = 0;
   386   char temp[32];
   388   for (i = 0; i < pipeline->_rescount; i++) {
   389     if (max_cycles < res_cycles[i])
   390       max_cycles = res_cycles[i];
   391     templen = sprintf(temp, "%d", res_cycles[i]);
   392     if (cyclelen < templen)
   393       cyclelen = templen;
   394     commentlen += (int)strlen(pipeline->_reslist.name(i));
   395   }
   397   templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
   399   // Allocate space for the resource list
   400   char * resource_cycles = new char [templen];
   402   templen = 0;
   404   for (i = 0; i < pipeline->_rescount; i++) {
   405     templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
   406       cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
   407   }
   409   // See if the same string is in the table
   410   int ndx = pipeline_res_cycles.index(resource_cycles);
   412   // No, add it to the table
   413   if (ndx < 0) {
   414     pipeline_res_cycles.addName(resource_cycles);
   415     ndx = pipeline_res_cycles.index(resource_cycles);
   417     fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
   418       ndx+1, pipeline->_rescount, resource_cycles);
   419   }
   420   else
   421     delete [] resource_cycles;
   423   delete [] res_cycles;
   425   return (ndx);
   426 }
   428 //typedef unsigned long long uint64_t;
   430 // Compute an index for an array in the pipeline_res_mask_NNN arrays
   431 static int pipeline_res_mask_initializer(
   432   FILE *fp_cpp,
   433   PipelineForm *pipeline,
   434   NameList &pipeline_res_mask,
   435   NameList &pipeline_res_args,
   436   PipeClassForm *pipeclass)
   437 {
   438   const PipeClassResourceForm *piperesource;
   439   const uint rescount      = pipeline->_rescount;
   440   const uint maxcycleused  = pipeline->_maxcycleused;
   441   const uint cyclemasksize = (maxcycleused + 31) >> 5;
   443   int i, j;
   444   int element_count = 0;
   445   uint *res_mask = new uint [cyclemasksize];
   446   uint resources_used             = 0;
   447   uint resources_used_exclusively = 0;
   449   for (pipeclass->_resUsage.reset();
   450        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; )
   451     element_count++;
   453   // Pre-compute the string length
   454   int templen;
   455   int commentlen = 0;
   456   int max_cycles = 0;
   458   int cyclelen = ((maxcycleused + 3) >> 2);
   459   int masklen = (rescount + 3) >> 2;
   461   int cycledigit = 0;
   462   for (i = maxcycleused; i > 0; i /= 10)
   463     cycledigit++;
   465   int maskdigit = 0;
   466   for (i = rescount; i > 0; i /= 10)
   467     maskdigit++;
   469   static const char * pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
   470   static const char * pipeline_use_element    = "Pipeline_Use_Element";
   472   templen = 1 +
   473     (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
   474      (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
   476   // Allocate space for the resource list
   477   char * resource_mask = new char [templen];
   478   char * last_comma = NULL;
   480   templen = 0;
   482   for (pipeclass->_resUsage.reset();
   483        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   484     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   486     if (!used_mask)
   487       fprintf(stderr, "*** used_mask is 0 ***\n");
   489     resources_used |= used_mask;
   491     uint lb, ub;
   493     for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
   494     for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
   496     if (lb == ub)
   497       resources_used_exclusively |= used_mask;
   499     int formatlen =
   500       sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
   501         pipeline_use_element,
   502         masklen, used_mask,
   503         cycledigit, lb, cycledigit, ub,
   504         ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
   505         pipeline_use_cycle_mask);
   507     templen += formatlen;
   509     memset(res_mask, 0, cyclemasksize * sizeof(uint));
   511     int cycles = piperesource->_cycles;
   512     uint stage          = pipeline->_stages.index(piperesource->_stage);
   513     uint upper_limit    = stage+cycles-1;
   514     uint lower_limit    = stage-1;
   515     uint upper_idx      = upper_limit >> 5;
   516     uint lower_idx      = lower_limit >> 5;
   517     uint upper_position = upper_limit & 0x1f;
   518     uint lower_position = lower_limit & 0x1f;
   520     uint mask = (((uint)1) << upper_position) - 1;
   522     while ( upper_idx > lower_idx ) {
   523       res_mask[upper_idx--] |= mask;
   524       mask = (uint)-1;
   525     }
   527     mask -= (((uint)1) << lower_position) - 1;
   528     res_mask[upper_idx] |= mask;
   530     for (j = cyclemasksize-1; j >= 0; j--) {
   531       formatlen =
   532         sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
   533       templen += formatlen;
   534     }
   536     resource_mask[templen++] = ')';
   537     resource_mask[templen++] = ')';
   538     last_comma = &resource_mask[templen];
   539     resource_mask[templen++] = ',';
   540     resource_mask[templen++] = '\n';
   541   }
   543   resource_mask[templen] = 0;
   544   if (last_comma)
   545     last_comma[0] = ' ';
   547   // See if the same string is in the table
   548   int ndx = pipeline_res_mask.index(resource_mask);
   550   // No, add it to the table
   551   if (ndx < 0) {
   552     pipeline_res_mask.addName(resource_mask);
   553     ndx = pipeline_res_mask.index(resource_mask);
   555     if (strlen(resource_mask) > 0)
   556       fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
   557         ndx+1, element_count, resource_mask);
   559     char * args = new char [9 + 2*masklen + maskdigit];
   561     sprintf(args, "0x%0*x, 0x%0*x, %*d",
   562       masklen, resources_used,
   563       masklen, resources_used_exclusively,
   564       maskdigit, element_count);
   566     pipeline_res_args.addName(args);
   567   }
   568   else
   569     delete [] resource_mask;
   571   delete [] res_mask;
   572 //delete [] res_masks;
   574   return (ndx);
   575 }
   577 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
   578   const char *classname;
   579   const char *resourcename;
   580   int resourcenamelen = 0;
   581   NameList pipeline_reads;
   582   NameList pipeline_res_stages;
   583   NameList pipeline_res_cycles;
   584   NameList pipeline_res_masks;
   585   NameList pipeline_res_args;
   586   const int default_latency = 1;
   587   const int non_operand_latency = 0;
   588   const int node_latency = 0;
   590   if (!_pipeline) {
   591     fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
   592     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
   593     fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
   594     fprintf(fp_cpp, "}\n");
   595     return;
   596   }
   598   fprintf(fp_cpp, "\n");
   599   fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
   600   fprintf(fp_cpp, "#ifndef PRODUCT\n");
   601   fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
   602   fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
   603   fprintf(fp_cpp, "    \"undefined\"");
   605   for (int s = 0; s < _pipeline->_stagecnt; s++)
   606     fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
   608   fprintf(fp_cpp, "\n  };\n\n");
   609   fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
   610     _pipeline->_stagecnt);
   611   fprintf(fp_cpp, "}\n");
   612   fprintf(fp_cpp, "#endif\n\n");
   614   fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
   615   fprintf(fp_cpp, "  // See if the functional units overlap\n");
   616 #if 0
   617   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   618   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   619   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
   620   fprintf(fp_cpp, "  }\n");
   621   fprintf(fp_cpp, "#endif\n\n");
   622 #endif
   623   fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
   624   fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
   625 #if 0
   626   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   627   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   628   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
   629   fprintf(fp_cpp, "  }\n");
   630   fprintf(fp_cpp, "#endif\n\n");
   631 #endif
   632   fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
   633   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
   634   fprintf(fp_cpp, "    if (predUse->multiple())\n");
   635   fprintf(fp_cpp, "      continue;\n\n");
   636   fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
   637   fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
   638   fprintf(fp_cpp, "      if (currUse->multiple())\n");
   639   fprintf(fp_cpp, "        continue;\n\n");
   640   fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
   641   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
   642   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
   643   fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
   644   fprintf(fp_cpp, "          y <<= 1;\n");
   645   fprintf(fp_cpp, "      }\n");
   646   fprintf(fp_cpp, "    }\n");
   647   fprintf(fp_cpp, "  }\n\n");
   648   fprintf(fp_cpp, "  // There is the potential for overlap\n");
   649   fprintf(fp_cpp, "  return (start);\n");
   650   fprintf(fp_cpp, "}\n\n");
   651   fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
   652   fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
   653   fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
   654   fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
   655   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
   656   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
   657   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
   658   fprintf(fp_cpp, "      uint min_delay = %d;\n",
   659     _pipeline->_maxcycleused+1);
   660   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
   661   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   662   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
   663   fprintf(fp_cpp, "        uint curr_delay = delay;\n");
   664   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
   665   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
   666   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
   667   fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
   668   fprintf(fp_cpp, "            y <<= 1;\n");
   669   fprintf(fp_cpp, "        }\n");
   670   fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
   671   fprintf(fp_cpp, "      }\n");
   672   fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
   673   fprintf(fp_cpp, "    }\n");
   674   fprintf(fp_cpp, "    else {\n");
   675   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   676   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
   677   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
   678   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
   679   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
   680   fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
   681   fprintf(fp_cpp, "            y <<= 1;\n");
   682   fprintf(fp_cpp, "        }\n");
   683   fprintf(fp_cpp, "      }\n");
   684   fprintf(fp_cpp, "    }\n");
   685   fprintf(fp_cpp, "  }\n\n");
   686   fprintf(fp_cpp, "  return (delay);\n");
   687   fprintf(fp_cpp, "}\n\n");
   688   fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
   689   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
   690   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
   691   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
   692   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
   693   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   694   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
   695   fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
   696   fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
   697   fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
   698   fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
   699   fprintf(fp_cpp, "          break;\n");
   700   fprintf(fp_cpp, "        }\n");
   701   fprintf(fp_cpp, "      }\n");
   702   fprintf(fp_cpp, "    }\n");
   703   fprintf(fp_cpp, "    else {\n");
   704   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
   705   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
   706   fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
   707   fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
   708   fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
   709   fprintf(fp_cpp, "      }\n");
   710   fprintf(fp_cpp, "    }\n");
   711   fprintf(fp_cpp, "  }\n");
   712   fprintf(fp_cpp, "}\n\n");
   714   fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
   715   fprintf(fp_cpp, "  int const default_latency = 1;\n");
   716   fprintf(fp_cpp, "\n");
   717 #if 0
   718   fprintf(fp_cpp, "#ifndef PRODUCT\n");
   719   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   720   fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
   721   fprintf(fp_cpp, "  }\n");
   722   fprintf(fp_cpp, "#endif\n\n");
   723 #endif
   724   fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\")\n");
   725   fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\")\n\n");
   726   fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
   727   fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
   728   fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
   729   fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
   730   fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
   731 #if 0
   732   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   733   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   734   fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
   735   fprintf(fp_cpp, "  }\n");
   736   fprintf(fp_cpp, "#endif\n\n");
   737 #endif
   738   fprintf(fp_cpp, "\n");
   739   fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
   740   fprintf(fp_cpp, "    return (default_latency);\n");
   741   fprintf(fp_cpp, "\n");
   742   fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
   743   fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
   744 #if 0
   745   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
   746   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
   747   fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
   748   fprintf(fp_cpp, "  }\n");
   749   fprintf(fp_cpp, "#endif\n\n");
   750 #endif
   751   fprintf(fp_cpp, "  return (delta);\n");
   752   fprintf(fp_cpp, "}\n\n");
   754   if (!_pipeline)
   755     /* Do Nothing */;
   757   else if (_pipeline->_maxcycleused <=
   758 #ifdef SPARC
   759     64
   760 #else
   761     32
   762 #endif
   763       ) {
   764     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   765     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
   766     fprintf(fp_cpp, "}\n\n");
   767     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   768     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
   769     fprintf(fp_cpp, "}\n\n");
   770   }
   771   else {
   772     uint l;
   773     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
   774     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   775     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
   776     for (l = 1; l <= masklen; l++)
   777       fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
   778     fprintf(fp_cpp, ");\n");
   779     fprintf(fp_cpp, "}\n\n");
   780     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
   781     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
   782     for (l = 1; l <= masklen; l++)
   783       fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
   784     fprintf(fp_cpp, ");\n");
   785     fprintf(fp_cpp, "}\n\n");
   786     fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
   787     for (l = 1; l <= masklen; l++)
   788       fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
   789     fprintf(fp_cpp, "\n}\n\n");
   790   }
   792   /* Get the length of all the resource names */
   793   for (_pipeline->_reslist.reset(), resourcenamelen = 0;
   794        (resourcename = _pipeline->_reslist.iter()) != NULL;
   795        resourcenamelen += (int)strlen(resourcename));
   797   // Create the pipeline class description
   799   fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
   800   fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
   802   fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
   803   for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
   804     fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
   805     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
   806     for (int i2 = masklen-1; i2 >= 0; i2--)
   807       fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
   808     fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
   809   }
   810   fprintf(fp_cpp, "};\n\n");
   812   fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
   813     _pipeline->_rescount);
   815   for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
   816     fprintf(fp_cpp, "\n");
   817     fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
   818     PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
   819     int maxWriteStage = -1;
   820     int maxMoreInstrs = 0;
   821     int paramcount = 0;
   822     int i = 0;
   823     const char *paramname;
   824     int resource_count = (_pipeline->_rescount + 3) >> 2;
   826     // Scan the operands, looking for last output stage and number of inputs
   827     for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
   828       const PipeClassOperandForm *pipeopnd =
   829           (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
   830       if (pipeopnd) {
   831         if (pipeopnd->_iswrite) {
   832            int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
   833            int moreinsts = pipeopnd->_more_instrs;
   834           if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
   835             maxWriteStage = stagenum;
   836             maxMoreInstrs = moreinsts;
   837           }
   838         }
   839       }
   841       if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
   842         paramcount++;
   843     }
   845     // Create the list of stages for the operands that are read
   846     // Note that we will build a NameList to reduce the number of copies
   848     int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
   850     int pipeline_res_stages_index = pipeline_res_stages_initializer(
   851       fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
   853     int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
   854       fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
   856     int pipeline_res_mask_index = pipeline_res_mask_initializer(
   857       fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
   859 #if 0
   860     // Process the Resources
   861     const PipeClassResourceForm *piperesource;
   863     unsigned resources_used = 0;
   864     unsigned exclusive_resources_used = 0;
   865     unsigned resource_groups = 0;
   866     for (pipeclass->_resUsage.reset();
   867          (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
   868       int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   869       if (used_mask)
   870         resource_groups++;
   871       resources_used |= used_mask;
   872       if ((used_mask & (used_mask-1)) == 0)
   873         exclusive_resources_used |= used_mask;
   874     }
   876     if (resource_groups > 0) {
   877       fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
   878         pipeclass->_num, resource_groups);
   879       for (pipeclass->_resUsage.reset(), i = 1;
   880            (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
   881            i++ ) {
   882         int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
   883         if (used_mask) {
   884           fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
   885         }
   886       }
   887       fprintf(fp_cpp, "};\n\n");
   888     }
   889 #endif
   891     // Create the pipeline class description
   892     fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
   893       pipeclass->_num);
   894     if (maxWriteStage < 0)
   895       fprintf(fp_cpp, "(uint)stage_undefined");
   896     else if (maxMoreInstrs == 0)
   897       fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
   898     else
   899       fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
   900     fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
   901       paramcount,
   902       pipeclass->hasFixedLatency() ? "true" : "false",
   903       pipeclass->fixedLatency(),
   904       pipeclass->InstructionCount(),
   905       pipeclass->hasBranchDelay() ? "true" : "false",
   906       pipeclass->hasMultipleBundles() ? "true" : "false",
   907       pipeclass->forceSerialization() ? "true" : "false",
   908       pipeclass->mayHaveNoCode() ? "true" : "false" );
   909     if (paramcount > 0) {
   910       fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
   911         pipeline_reads_index+1);
   912     }
   913     else
   914       fprintf(fp_cpp, " NULL,");
   915     fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
   916       pipeline_res_stages_index+1);
   917     fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
   918       pipeline_res_cycles_index+1);
   919     fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
   920       pipeline_res_args.name(pipeline_res_mask_index));
   921     if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
   922       fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
   923         pipeline_res_mask_index+1);
   924     else
   925       fprintf(fp_cpp, "NULL");
   926     fprintf(fp_cpp, "));\n");
   927   }
   929   // Generate the Node::latency method if _pipeline defined
   930   fprintf(fp_cpp, "\n");
   931   fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
   932   fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
   933   if (_pipeline) {
   934 #if 0
   935     fprintf(fp_cpp, "#ifndef PRODUCT\n");
   936     fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
   937     fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
   938     fprintf(fp_cpp, " }\n");
   939     fprintf(fp_cpp, "#endif\n");
   940 #endif
   941     fprintf(fp_cpp, "  uint j;\n");
   942     fprintf(fp_cpp, "  // verify in legal range for inputs\n");
   943     fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
   944     fprintf(fp_cpp, "  // verify input is not null\n");
   945     fprintf(fp_cpp, "  Node *pred = in(i);\n");
   946     fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
   947       non_operand_latency);
   948     fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
   949     fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
   950     fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
   951     fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
   952     fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
   953     fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
   954     fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
   955     fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
   956       node_latency);
   957     fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
   958     fprintf(fp_cpp, "  j = m->oper_input_base();\n");
   959     fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
   960       non_operand_latency);
   961     fprintf(fp_cpp, "  // determine which operand this is in\n");
   962     fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
   963     fprintf(fp_cpp, "  int delta = %d;\n\n",
   964       non_operand_latency);
   965     fprintf(fp_cpp, "  uint k;\n");
   966     fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
   967     fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
   968     fprintf(fp_cpp, "    if (i < j)\n");
   969     fprintf(fp_cpp, "      break;\n");
   970     fprintf(fp_cpp, "  }\n");
   971     fprintf(fp_cpp, "  if (k < n)\n");
   972     fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
   973     fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
   974   }
   975   else {
   976     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
   977     fprintf(fp_cpp, "  return %d;\n",
   978       non_operand_latency);
   979   }
   980   fprintf(fp_cpp, "}\n\n");
   982   // Output the list of nop nodes
   983   fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
   984   const char *nop;
   985   int nopcnt = 0;
   986   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
   988   fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt);
   989   int i = 0;
   990   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
   991     fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop);
   992   }
   993   fprintf(fp_cpp, "};\n\n");
   994   fprintf(fp_cpp, "#ifndef PRODUCT\n");
   995   fprintf(fp_cpp, "void Bundle::dump() const {\n");
   996   fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
   997   fprintf(fp_cpp, "    \"\",\n");
   998   fprintf(fp_cpp, "    \"use nop delay\",\n");
   999   fprintf(fp_cpp, "    \"use unconditional delay\",\n");
  1000   fprintf(fp_cpp, "    \"use conditional delay\",\n");
  1001   fprintf(fp_cpp, "    \"used in conditional delay\",\n");
  1002   fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
  1003   fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
  1004   fprintf(fp_cpp, "  };\n\n");
  1006   fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
  1007   for (i = 0; i < _pipeline->_rescount; i++)
  1008     fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
  1009   fprintf(fp_cpp, "};\n\n");
  1011   // See if the same string is in the table
  1012   fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
  1013   fprintf(fp_cpp, "  if (_flags) {\n");
  1014   fprintf(fp_cpp, "    tty->print(\"%%s\", bundle_flags[_flags]);\n");
  1015   fprintf(fp_cpp, "    needs_comma = true;\n");
  1016   fprintf(fp_cpp, "  };\n");
  1017   fprintf(fp_cpp, "  if (instr_count()) {\n");
  1018   fprintf(fp_cpp, "    tty->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
  1019   fprintf(fp_cpp, "    needs_comma = true;\n");
  1020   fprintf(fp_cpp, "  };\n");
  1021   fprintf(fp_cpp, "  uint r = resources_used();\n");
  1022   fprintf(fp_cpp, "  if (r) {\n");
  1023   fprintf(fp_cpp, "    tty->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
  1024   fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
  1025   fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
  1026   fprintf(fp_cpp, "        tty->print(\" %%s\", resource_names[i]);\n");
  1027   fprintf(fp_cpp, "    needs_comma = true;\n");
  1028   fprintf(fp_cpp, "  };\n");
  1029   fprintf(fp_cpp, "  tty->print(\"\\n\");\n");
  1030   fprintf(fp_cpp, "}\n");
  1031   fprintf(fp_cpp, "#endif\n");
  1034 // ---------------------------------------------------------------------------
  1035 //------------------------------Utilities to build Instruction Classes--------
  1036 // ---------------------------------------------------------------------------
  1038 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
  1039   fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
  1040           node, regMask);
  1043 // Scan the peepmatch and output a test for each instruction
  1044 static void check_peepmatch_instruction_tree(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  1045   int         parent        = -1;
  1046   int         inst_position = 0;
  1047   const char* inst_name     = NULL;
  1048   int         input         = 0;
  1049   fprintf(fp, "      // Check instruction sub-tree\n");
  1050   pmatch->reset();
  1051   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
  1052        inst_name != NULL;
  1053        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
  1054     // If this is not a placeholder
  1055     if( ! pmatch->is_placeholder() ) {
  1056       // Define temporaries 'inst#', based on parent and parent's input index
  1057       if( parent != -1 ) {                // root was initialized
  1058         fprintf(fp, "  inst%d = inst%d->in(%d);\n",
  1059                 inst_position, parent, input);
  1062       // When not the root
  1063       // Test we have the correct instruction by comparing the rule
  1064       if( parent != -1 ) {
  1065         fprintf(fp, "  matches = matches &&  ( inst%d->rule() == %s_rule );",
  1066                 inst_position, inst_name);
  1068     } else {
  1069       // Check that user did not try to constrain a placeholder
  1070       assert( ! pconstraint->constrains_instruction(inst_position),
  1071               "fatal(): Can not constrain a placeholder instruction");
  1076 static void print_block_index(FILE *fp, int inst_position) {
  1077   assert( inst_position >= 0, "Instruction number less than zero");
  1078   fprintf(fp, "block_index");
  1079   if( inst_position != 0 ) {
  1080     fprintf(fp, " - %d", inst_position);
  1084 // Scan the peepmatch and output a test for each instruction
  1085 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  1086   int         parent        = -1;
  1087   int         inst_position = 0;
  1088   const char* inst_name     = NULL;
  1089   int         input         = 0;
  1090   fprintf(fp, "  // Check instruction sub-tree\n");
  1091   pmatch->reset();
  1092   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
  1093        inst_name != NULL;
  1094        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
  1095     // If this is not a placeholder
  1096     if( ! pmatch->is_placeholder() ) {
  1097       // Define temporaries 'inst#', based on parent and parent's input index
  1098       if( parent != -1 ) {                // root was initialized
  1099         fprintf(fp, "  // Identify previous instruction if inside this block\n");
  1100         fprintf(fp, "  if( ");
  1101         print_block_index(fp, inst_position);
  1102         fprintf(fp, " > 0 ) {\n    Node *n = block->_nodes.at(");
  1103         print_block_index(fp, inst_position);
  1104         fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
  1105         fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
  1108       // When not the root
  1109       // Test we have the correct instruction by comparing the rule.
  1110       if( parent != -1 ) {
  1111         fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
  1112                 inst_position, inst_position, inst_name);
  1114     } else {
  1115       // Check that user did not try to constrain a placeholder
  1116       assert( ! pconstraint->constrains_instruction(inst_position),
  1117               "fatal(): Can not constrain a placeholder instruction");
  1122 // Build mapping for register indices, num_edges to input
  1123 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
  1124   int         parent        = -1;
  1125   int         inst_position = 0;
  1126   const char* inst_name     = NULL;
  1127   int         input         = 0;
  1128   fprintf(fp, "      // Build map to register info\n");
  1129   pmatch->reset();
  1130   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
  1131        inst_name != NULL;
  1132        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
  1133     // If this is not a placeholder
  1134     if( ! pmatch->is_placeholder() ) {
  1135       // Define temporaries 'inst#', based on self's inst_position
  1136       InstructForm *inst = globals[inst_name]->is_instruction();
  1137       if( inst != NULL ) {
  1138         char inst_prefix[]  = "instXXXX_";
  1139         sprintf(inst_prefix, "inst%d_",   inst_position);
  1140         char receiver[]     = "instXXXX->";
  1141         sprintf(receiver,    "inst%d->", inst_position);
  1142         inst->index_temps( fp, globals, inst_prefix, receiver );
  1148 // Generate tests for the constraints
  1149 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  1150   fprintf(fp, "\n");
  1151   fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
  1153   // Build mapping from num_edges to local variables
  1154   build_instruction_index_mapping( fp, globals, pmatch );
  1156   // Build constraint tests
  1157   if( pconstraint != NULL ) {
  1158     fprintf(fp, "      matches = matches &&");
  1159     bool   first_constraint = true;
  1160     while( pconstraint != NULL ) {
  1161       // indentation and connecting '&&'
  1162       const char *indentation = "      ";
  1163       fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
  1165       // Only have '==' relation implemented
  1166       if( strcmp(pconstraint->_relation,"==") != 0 ) {
  1167         assert( false, "Unimplemented()" );
  1170       // LEFT
  1171       int left_index       = pconstraint->_left_inst;
  1172       const char *left_op  = pconstraint->_left_op;
  1173       // Access info on the instructions whose operands are compared
  1174       InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
  1175       assert( inst_left, "Parser should guaranty this is an instruction");
  1176       int left_op_base  = inst_left->oper_input_base(globals);
  1177       // Access info on the operands being compared
  1178       int left_op_index  = inst_left->operand_position(left_op, Component::USE);
  1179       if( left_op_index == -1 ) {
  1180         left_op_index = inst_left->operand_position(left_op, Component::DEF);
  1181         if( left_op_index == -1 ) {
  1182           left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
  1185       assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
  1186       ComponentList components_left = inst_left->_components;
  1187       const char *left_comp_type = components_left.at(left_op_index)->_type;
  1188       OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
  1189       Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
  1192       // RIGHT
  1193       int right_op_index = -1;
  1194       int right_index      = pconstraint->_right_inst;
  1195       const char *right_op = pconstraint->_right_op;
  1196       if( right_index != -1 ) { // Match operand
  1197         // Access info on the instructions whose operands are compared
  1198         InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
  1199         assert( inst_right, "Parser should guaranty this is an instruction");
  1200         int right_op_base = inst_right->oper_input_base(globals);
  1201         // Access info on the operands being compared
  1202         right_op_index = inst_right->operand_position(right_op, Component::USE);
  1203         if( right_op_index == -1 ) {
  1204           right_op_index = inst_right->operand_position(right_op, Component::DEF);
  1205           if( right_op_index == -1 ) {
  1206             right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
  1209         assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
  1210         ComponentList components_right = inst_right->_components;
  1211         const char *right_comp_type = components_right.at(right_op_index)->_type;
  1212         OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
  1213         Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
  1214         assert( right_interface_type == left_interface_type, "Both must be same interface");
  1216       } else {                  // Else match register
  1217         // assert( false, "should be a register" );
  1220       //
  1221       // Check for equivalence
  1222       //
  1223       // fprintf(fp, "phase->eqv( ");
  1224       // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
  1225       //         left_index,  left_op_base,  left_op_index,  left_op,
  1226       //         right_index, right_op_base, right_op_index, right_op );
  1227       // fprintf(fp, ")");
  1228       //
  1229       switch( left_interface_type ) {
  1230       case Form::register_interface: {
  1231         // Check that they are allocated to the same register
  1232         // Need parameter for index position if not result operand
  1233         char left_reg_index[] = ",instXXXX_idxXXXX";
  1234         if( left_op_index != 0 ) {
  1235           assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
  1236           // Must have index into operands
  1237           sprintf(left_reg_index,",inst%d_idx%d", left_index, left_op_index);
  1238         } else {
  1239           strcpy(left_reg_index, "");
  1241         fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
  1242                 left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
  1243         fprintf(fp, " == ");
  1245         if( right_index != -1 ) {
  1246           char right_reg_index[18] = ",instXXXX_idxXXXX";
  1247           if( right_op_index != 0 ) {
  1248             assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
  1249             // Must have index into operands
  1250             sprintf(right_reg_index,",inst%d_idx%d", right_index, right_op_index);
  1251           } else {
  1252             strcpy(right_reg_index, "");
  1254           fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
  1255                   right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
  1256         } else {
  1257           fprintf(fp, "%s_enc", right_op );
  1259         fprintf(fp,")");
  1260         break;
  1262       case Form::constant_interface: {
  1263         // Compare the '->constant()' values
  1264         fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
  1265                 left_index,  left_op_index,  left_index, left_op );
  1266         fprintf(fp, " == ");
  1267         fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
  1268                 right_index, right_op, right_index, right_op_index );
  1269         break;
  1271       case Form::memory_interface: {
  1272         // Compare 'base', 'index', 'scale', and 'disp'
  1273         // base
  1274         fprintf(fp, "( \n");
  1275         fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
  1276           left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1277         fprintf(fp, " == ");
  1278         fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
  1279                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1280         // index
  1281         fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
  1282                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1283         fprintf(fp, " == ");
  1284         fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
  1285                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1286         // scale
  1287         fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
  1288                 left_index,  left_op_index,  left_index, left_op );
  1289         fprintf(fp, " == ");
  1290         fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
  1291                 right_index, right_op, right_index, right_op_index );
  1292         // disp
  1293         fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
  1294                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
  1295         fprintf(fp, " == ");
  1296         fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
  1297                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
  1298         fprintf(fp, ") \n");
  1299         break;
  1301       case Form::conditional_interface: {
  1302         // Compare the condition code being tested
  1303         assert( false, "Unimplemented()" );
  1304         break;
  1306       default: {
  1307         assert( false, "ShouldNotReachHere()" );
  1308         break;
  1312       // Advance to next constraint
  1313       pconstraint = pconstraint->next();
  1314       first_constraint = false;
  1317     fprintf(fp, ";\n");
  1321 // // EXPERIMENTAL -- TEMPORARY code
  1322 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
  1323 //   int op_index = instr->operand_position(op_name, Component::USE);
  1324 //   if( op_index == -1 ) {
  1325 //     op_index = instr->operand_position(op_name, Component::DEF);
  1326 //     if( op_index == -1 ) {
  1327 //       op_index = instr->operand_position(op_name, Component::USE_DEF);
  1328 //     }
  1329 //   }
  1330 //   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
  1331 //
  1332 //   ComponentList components_right = instr->_components;
  1333 //   char *right_comp_type = components_right.at(op_index)->_type;
  1334 //   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
  1335 //   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
  1336 //
  1337 //   return;
  1338 // }
  1340 // Construct the new sub-tree
  1341 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
  1342   fprintf(fp, "      // IF instructions and constraints matched\n");
  1343   fprintf(fp, "      if( matches ) {\n");
  1344   fprintf(fp, "        // generate the new sub-tree\n");
  1345   fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
  1346   if( preplace != NULL ) {
  1347     // Get the root of the new sub-tree
  1348     const char *root_inst = NULL;
  1349     preplace->next_instruction(root_inst);
  1350     InstructForm *root_form = globals[root_inst]->is_instruction();
  1351     assert( root_form != NULL, "Replacement instruction was not previously defined");
  1352     fprintf(fp, "        %sNode *root = new (C) %sNode();\n", root_inst, root_inst);
  1354     int         inst_num;
  1355     const char *op_name;
  1356     int         opnds_index = 0;            // define result operand
  1357     // Then install the use-operands for the new sub-tree
  1358     // preplace->reset();             // reset breaks iteration
  1359     for( preplace->next_operand( inst_num, op_name );
  1360          op_name != NULL;
  1361          preplace->next_operand( inst_num, op_name ) ) {
  1362       InstructForm *inst_form;
  1363       inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
  1364       assert( inst_form, "Parser should guaranty this is an instruction");
  1365       int inst_op_num = inst_form->operand_position(op_name, Component::USE);
  1366       if( inst_op_num == NameList::Not_in_list )
  1367         inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
  1368       assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
  1369       // find the name of the OperandForm from the local name
  1370       const Form *form   = inst_form->_localNames[op_name];
  1371       OperandForm  *op_form = form->is_operand();
  1372       if( opnds_index == 0 ) {
  1373         // Initial setup of new instruction
  1374         fprintf(fp, "        // ----- Initial setup -----\n");
  1375         //
  1376         // Add control edge for this node
  1377         fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
  1378         // Add unmatched edges from root of match tree
  1379         int op_base = root_form->oper_input_base(globals);
  1380         for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
  1381           fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
  1382                                           inst_num, unmatched_edge);
  1384         // If new instruction captures bottom type
  1385         if( root_form->captures_bottom_type() ) {
  1386           // Get bottom type from instruction whose result we are replacing
  1387           fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
  1389         // Define result register and result operand
  1390         fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
  1391         fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
  1392         fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
  1393         fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(C); // result\n", inst_num);
  1394         fprintf(fp, "        // ----- Done with initial setup -----\n");
  1395       } else {
  1396         if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
  1397           // Do not have ideal edges for constants after matching
  1398           fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
  1399                   inst_op_num, inst_num, inst_op_num,
  1400                   inst_op_num, inst_num, inst_op_num+1, inst_op_num );
  1401           fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
  1402                   inst_num, inst_op_num );
  1403         } else {
  1404           fprintf(fp, "        // no ideal edge for constants after matching\n");
  1406         fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone(C);\n",
  1407                 opnds_index, inst_num, inst_op_num );
  1409       ++opnds_index;
  1411   }else {
  1412     // Replacing subtree with empty-tree
  1413     assert( false, "ShouldNotReachHere();");
  1416   // Return the new sub-tree
  1417   fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
  1418   fprintf(fp, "        return root;  // return new root;\n");
  1419   fprintf(fp, "      }\n");
  1423 // Define the Peephole method for an instruction node
  1424 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
  1425   // Generate Peephole function header
  1426   fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident);
  1427   fprintf(fp, "  bool  matches = true;\n");
  1429   // Identify the maximum instruction position,
  1430   // generate temporaries that hold current instruction
  1431   //
  1432   //   MachNode  *inst0 = NULL;
  1433   //   ...
  1434   //   MachNode  *instMAX = NULL;
  1435   //
  1436   int max_position = 0;
  1437   Peephole *peep;
  1438   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
  1439     PeepMatch *pmatch = peep->match();
  1440     assert( pmatch != NULL, "fatal(), missing peepmatch rule");
  1441     if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
  1443   for( int i = 0; i <= max_position; ++i ) {
  1444     if( i == 0 ) {
  1445       fprintf(fp, "  MachNode *inst0 = this;\n");
  1446     } else {
  1447       fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
  1451   // For each peephole rule in architecture description
  1452   //   Construct a test for the desired instruction sub-tree
  1453   //   then check the constraints
  1454   //   If these match, Generate the new subtree
  1455   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
  1456     int         peephole_number = peep->peephole_number();
  1457     PeepMatch      *pmatch      = peep->match();
  1458     PeepConstraint *pconstraint = peep->constraints();
  1459     PeepReplace    *preplace    = peep->replacement();
  1461     // Root of this peephole is the current MachNode
  1462     assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
  1463             "root of PeepMatch does not match instruction");
  1465     // Make each peephole rule individually selectable
  1466     fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
  1467     fprintf(fp, "    matches = true;\n");
  1468     // Scan the peepmatch and output a test for each instruction
  1469     check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
  1471     // Check constraints and build replacement inside scope
  1472     fprintf(fp, "    // If instruction subtree matches\n");
  1473     fprintf(fp, "    if( matches ) {\n");
  1475     // Generate tests for the constraints
  1476     check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
  1478     // Construct the new sub-tree
  1479     generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
  1481     // End of scope for this peephole's constraints
  1482     fprintf(fp, "    }\n");
  1483     // Closing brace '}' to make each peephole rule individually selectable
  1484     fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
  1485     fprintf(fp, "\n");
  1488   fprintf(fp, "  return NULL;  // No peephole rules matched\n");
  1489   fprintf(fp, "}\n");
  1490   fprintf(fp, "\n");
  1493 // Define the Expand method for an instruction node
  1494 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
  1495   unsigned      cnt  = 0;          // Count nodes we have expand into
  1496   unsigned      i;
  1498   // Generate Expand function header
  1499   fprintf(fp,"MachNode *%sNode::Expand(State *state, Node_List &proj_list) {\n", node->_ident);
  1500   fprintf(fp,"Compile* C = Compile::current();\n");
  1501   // Generate expand code
  1502   if( node->expands() ) {
  1503     const char   *opid;
  1504     int           new_pos, exp_pos;
  1505     const char   *new_id   = NULL;
  1506     const Form   *frm      = NULL;
  1507     InstructForm *new_inst = NULL;
  1508     OperandForm  *new_oper = NULL;
  1509     unsigned      numo     = node->num_opnds() +
  1510                                 node->_exprule->_newopers.count();
  1512     // If necessary, generate any operands created in expand rule
  1513     if (node->_exprule->_newopers.count()) {
  1514       for(node->_exprule->_newopers.reset();
  1515           (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
  1516         frm = node->_localNames[new_id];
  1517         assert(frm, "Invalid entry in new operands list of expand rule");
  1518         new_oper = frm->is_operand();
  1519         char *tmp = (char *)node->_exprule->_newopconst[new_id];
  1520         if (tmp == NULL) {
  1521           fprintf(fp,"  MachOper *op%d = new (C) %sOper();\n",
  1522                   cnt, new_oper->_ident);
  1524         else {
  1525           fprintf(fp,"  MachOper *op%d = new (C) %sOper(%s);\n",
  1526                   cnt, new_oper->_ident, tmp);
  1530     cnt = 0;
  1531     // Generate the temps to use for DAG building
  1532     for(i = 0; i < numo; i++) {
  1533       if (i < node->num_opnds()) {
  1534         fprintf(fp,"  MachNode *tmp%d = this;\n", i);
  1536       else {
  1537         fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
  1540     // Build mapping from num_edges to local variables
  1541     fprintf(fp,"  unsigned num0 = 0;\n");
  1542     for( i = 1; i < node->num_opnds(); i++ ) {
  1543       fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
  1546     // Build a mapping from operand index to input edges
  1547     fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
  1549     // The order in which inputs are added to a node is very
  1550     // strange.  Store nodes get a memory input before Expand is
  1551     // called and all other nodes get it afterwards so
  1552     // oper_input_base is wrong during expansion.  This code adjusts
  1553     // is so that expansion will work correctly.
  1554     bool missing_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames) &&
  1555                                node->is_ideal_store() == Form::none;
  1556     if (missing_memory_edge) {
  1557       fprintf(fp,"  idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
  1560     for( i = 0; i < node->num_opnds(); i++ ) {
  1561       fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
  1562               i+1,i,i);
  1565     // Declare variable to hold root of expansion
  1566     fprintf(fp,"  MachNode *result = NULL;\n");
  1568     // Iterate over the instructions 'node' expands into
  1569     ExpandRule  *expand       = node->_exprule;
  1570     NameAndList *expand_instr = NULL;
  1571     for(expand->reset_instructions();
  1572         (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
  1573       new_id = expand_instr->name();
  1575       InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
  1576       if (expand_instruction->has_temps()) {
  1577         globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s",
  1578                              node->_ident, new_id);
  1581       // Build the node for the instruction
  1582       fprintf(fp,"\n  %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id);
  1583       // Add control edge for this node
  1584       fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
  1585       // Build the operand for the value this node defines.
  1586       Form *form = (Form*)_globalNames[new_id];
  1587       assert( form, "'new_id' must be a defined form name");
  1588       // Grab the InstructForm for the new instruction
  1589       new_inst = form->is_instruction();
  1590       assert( new_inst, "'new_id' must be an instruction name");
  1591       if( node->is_ideal_if() && new_inst->is_ideal_if() ) {
  1592         fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n",cnt);
  1593         fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt);
  1596       if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
  1597         fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
  1600       const char *resultOper = new_inst->reduce_result();
  1601       fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n",
  1602               cnt, machOperEnum(resultOper));
  1604       // get the formal operand NameList
  1605       NameList *formal_lst = &new_inst->_parameters;
  1606       formal_lst->reset();
  1608       // Handle any memory operand
  1609       int memory_operand = new_inst->memory_operand(_globalNames);
  1610       if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
  1611         int node_mem_op = node->memory_operand(_globalNames);
  1612         assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
  1613                 "expand rule member needs memory but top-level inst doesn't have any" );
  1614         if (!missing_memory_edge) {
  1615           // Copy memory edge
  1616           fprintf(fp,"  n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
  1620       // Iterate over the new instruction's operands
  1621       int prev_pos = -1;
  1622       for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
  1623         // Use 'parameter' at current position in list of new instruction's formals
  1624         // instead of 'opid' when looking up info internal to new_inst
  1625         const char *parameter = formal_lst->iter();
  1626         // Check for an operand which is created in the expand rule
  1627         if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
  1628           new_pos = new_inst->operand_position(parameter,Component::USE);
  1629           exp_pos += node->num_opnds();
  1630           // If there is no use of the created operand, just skip it
  1631           if (new_pos != -1) {
  1632             //Copy the operand from the original made above
  1633             fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n",
  1634                     cnt, new_pos, exp_pos-node->num_opnds(), opid);
  1635             // Check for who defines this operand & add edge if needed
  1636             fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
  1637             fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
  1640         else {
  1641           // Use operand name to get an index into instruction component list
  1642           // ins = (InstructForm *) _globalNames[new_id];
  1643           exp_pos = node->operand_position_format(opid);
  1644           assert(exp_pos != -1, "Bad expand rule");
  1645           if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
  1646             // For the add_req calls below to work correctly they need
  1647             // to added in the same order that a match would add them.
  1648             // This means that they would need to be in the order of
  1649             // the components list instead of the formal parameters.
  1650             // This is a sort of hidden invariant that previously
  1651             // wasn't checked and could lead to incorrectly
  1652             // constructed nodes.
  1653             syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
  1654                        node->_ident, new_inst->_ident);
  1656           prev_pos = exp_pos;
  1658           new_pos = new_inst->operand_position(parameter,Component::USE);
  1659           if (new_pos != -1) {
  1660             // Copy the operand from the ExpandNode to the new node
  1661             fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
  1662                     cnt, new_pos, exp_pos, opid);
  1663             // For each operand add appropriate input edges by looking at tmp's
  1664             fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
  1665             // Grab corresponding edges from ExpandNode and insert them here
  1666             fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
  1667             fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
  1668             fprintf(fp,"    }\n");
  1669             fprintf(fp,"  }\n");
  1670             // This value is generated by one of the new instructions
  1671             fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
  1675         // Update the DAG tmp's for values defined by this instruction
  1676         int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
  1677         Effect *eform = (Effect *)new_inst->_effects[parameter];
  1678         // If this operand is a definition in either an effects rule
  1679         // or a match rule
  1680         if((eform) && (is_def(eform->_use_def))) {
  1681           // Update the temp associated with this operand
  1682           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
  1684         else if( new_def_pos != -1 ) {
  1685           // Instruction defines a value but user did not declare it
  1686           // in the 'effect' clause
  1687           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
  1689       } // done iterating over a new instruction's operands
  1691       // Invoke Expand() for the newly created instruction.
  1692       fprintf(fp,"  result = n%d->Expand( state, proj_list );\n", cnt);
  1693       assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
  1694     } // done iterating over new instructions
  1695     fprintf(fp,"\n");
  1696   } // done generating expand rule
  1698   else if( node->_matrule != NULL ) {
  1699     // Remove duplicated operands and inputs which use the same name.
  1700     // Seach through match operands for the same name usage.
  1701     uint cur_num_opnds = node->num_opnds();
  1702     if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) {
  1703       Component *comp = NULL;
  1704       // Build mapping from num_edges to local variables
  1705       fprintf(fp,"  unsigned num0 = 0;\n");
  1706       for( i = 1; i < cur_num_opnds; i++ ) {
  1707         fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
  1709       // Build a mapping from operand index to input edges
  1710       fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
  1711       for( i = 0; i < cur_num_opnds; i++ ) {
  1712         fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
  1713                 i+1,i,i);
  1716       uint new_num_opnds = 1;
  1717       node->_components.reset();
  1718       // Skip first unique operands.
  1719       for( i = 1; i < cur_num_opnds; i++ ) {
  1720         comp = node->_components.iter();
  1721         if( (int)i != node->unique_opnds_idx(i) ) {
  1722           break;
  1724         new_num_opnds++;
  1726       // Replace not unique operands with next unique operands.
  1727       for( ; i < cur_num_opnds; i++ ) {
  1728         comp = node->_components.iter();
  1729         int j = node->unique_opnds_idx(i);
  1730         // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
  1731         if( j != node->unique_opnds_idx(j) ) {
  1732           fprintf(fp,"  set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
  1733                   new_num_opnds, i, comp->_name);
  1734           // delete not unique edges here
  1735           fprintf(fp,"  for(unsigned i = 0; i < num%d; i++) {\n", i);
  1736           fprintf(fp,"    set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
  1737           fprintf(fp,"  }\n");
  1738           fprintf(fp,"  num%d = num%d;\n", new_num_opnds, i);
  1739           fprintf(fp,"  idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
  1740           new_num_opnds++;
  1743       // delete the rest of edges
  1744       fprintf(fp,"  for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
  1745       fprintf(fp,"    del_req(i);\n");
  1746       fprintf(fp,"  }\n");
  1747       fprintf(fp,"  _num_opnds = %d;\n", new_num_opnds);
  1752   // Generate projections for instruction's additional DEFs and KILLs
  1753   if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
  1754     // Get string representing the MachNode that projections point at
  1755     const char *machNode = "this";
  1756     // Generate the projections
  1757     fprintf(fp,"  // Add projection edges for additional defs or kills\n");
  1759     // Examine each component to see if it is a DEF or KILL
  1760     node->_components.reset();
  1761     // Skip the first component, if already handled as (SET dst (...))
  1762     Component *comp = NULL;
  1763     // For kills, the choice of projection numbers is arbitrary
  1764     int proj_no = 1;
  1765     bool declared_def  = false;
  1766     bool declared_kill = false;
  1768     while( (comp = node->_components.iter()) != NULL ) {
  1769       // Lookup register class associated with operand type
  1770       Form        *form = (Form*)_globalNames[comp->_type];
  1771       assert( form, "component type must be a defined form");
  1772       OperandForm *op   = form->is_operand();
  1774       if (comp->is(Component::TEMP)) {
  1775         fprintf(fp, "  // TEMP %s\n", comp->_name);
  1776         if (!declared_def) {
  1777           // Define the variable "def" to hold new MachProjNodes
  1778           fprintf(fp, "  MachTempNode *def;\n");
  1779           declared_def = true;
  1781         if (op && op->_interface && op->_interface->is_RegInterface()) {
  1782           fprintf(fp,"  def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n",
  1783                   machOperEnum(op->_ident));
  1784           fprintf(fp,"  add_req(def);\n");
  1785           int idx  = node->operand_position_format(comp->_name);
  1786           fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n",
  1787                   idx, machOperEnum(op->_ident));
  1788         } else {
  1789           assert(false, "can't have temps which aren't registers");
  1791       } else if (comp->isa(Component::KILL)) {
  1792         fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
  1794         if (!declared_kill) {
  1795           // Define the variable "kill" to hold new MachProjNodes
  1796           fprintf(fp, "  MachProjNode *kill;\n");
  1797           declared_kill = true;
  1800         assert( op, "Support additional KILLS for base operands");
  1801         const char *regmask    = reg_mask(*op);
  1802         const char *ideal_type = op->ideal_type(_globalNames, _register);
  1804         if (!op->is_bound_register()) {
  1805           syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
  1806                      node->_ident, comp->_type, comp->_name);
  1809         fprintf(fp,"  kill = ");
  1810         fprintf(fp,"new (C, 1) MachProjNode( %s, %d, (%s), Op_%s );\n",
  1811                 machNode, proj_no++, regmask, ideal_type);
  1812         fprintf(fp,"  proj_list.push(kill);\n");
  1817   fprintf(fp,"\n");
  1818   if( node->expands() ) {
  1819     fprintf(fp,"  return result;\n");
  1820   } else {
  1821     fprintf(fp,"  return this;\n");
  1823   fprintf(fp,"}\n");
  1824   fprintf(fp,"\n");
  1828 //------------------------------Emit Routines----------------------------------
  1829 // Special classes and routines for defining node emit routines which output
  1830 // target specific instruction object encodings.
  1831 // Define the ___Node::emit() routine
  1832 //
  1833 // (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1834 // (2)   // ...  encoding defined by user
  1835 // (3)
  1836 // (4) }
  1837 //
  1839 class DefineEmitState {
  1840 private:
  1841   enum reloc_format { RELOC_NONE        = -1,
  1842                       RELOC_IMMEDIATE   =  0,
  1843                       RELOC_DISP        =  1,
  1844                       RELOC_CALL_DISP   =  2 };
  1845   enum literal_status{ LITERAL_NOT_SEEN  = 0,
  1846                        LITERAL_SEEN      = 1,
  1847                        LITERAL_ACCESSED  = 2,
  1848                        LITERAL_OUTPUT    = 3 };
  1849   // Temporaries that describe current operand
  1850   bool          _cleared;
  1851   OpClassForm  *_opclass;
  1852   OperandForm  *_operand;
  1853   int           _operand_idx;
  1854   const char   *_local_name;
  1855   const char   *_operand_name;
  1856   bool          _doing_disp;
  1857   bool          _doing_constant;
  1858   Form::DataType _constant_type;
  1859   DefineEmitState::literal_status _constant_status;
  1860   DefineEmitState::literal_status _reg_status;
  1861   bool          _doing_emit8;
  1862   bool          _doing_emit_d32;
  1863   bool          _doing_emit_d16;
  1864   bool          _doing_emit_hi;
  1865   bool          _doing_emit_lo;
  1866   bool          _may_reloc;
  1867   bool          _must_reloc;
  1868   reloc_format  _reloc_form;
  1869   const char *  _reloc_type;
  1870   bool          _processing_noninput;
  1872   NameList      _strings_to_emit;
  1874   // Stable state, set by constructor
  1875   ArchDesc     &_AD;
  1876   FILE         *_fp;
  1877   EncClass     &_encoding;
  1878   InsEncode    &_ins_encode;
  1879   InstructForm &_inst;
  1881 public:
  1882   DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
  1883                   InsEncode &ins_encode, InstructForm &inst)
  1884     : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
  1885       clear();
  1888   void clear() {
  1889     _cleared       = true;
  1890     _opclass       = NULL;
  1891     _operand       = NULL;
  1892     _operand_idx   = 0;
  1893     _local_name    = "";
  1894     _operand_name  = "";
  1895     _doing_disp    = false;
  1896     _doing_constant= false;
  1897     _constant_type = Form::none;
  1898     _constant_status = LITERAL_NOT_SEEN;
  1899     _reg_status      = LITERAL_NOT_SEEN;
  1900     _doing_emit8   = false;
  1901     _doing_emit_d32= false;
  1902     _doing_emit_d16= false;
  1903     _doing_emit_hi = false;
  1904     _doing_emit_lo = false;
  1905     _may_reloc     = false;
  1906     _must_reloc    = false;
  1907     _reloc_form    = RELOC_NONE;
  1908     _reloc_type    = AdlcVMDeps::none_reloc_type();
  1909     _strings_to_emit.clear();
  1912   // Track necessary state when identifying a replacement variable
  1913   void update_state(const char *rep_var) {
  1914     // A replacement variable or one of its subfields
  1915     // Obtain replacement variable from list
  1916     if ( (*rep_var) != '$' ) {
  1917       // A replacement variable, '$' prefix
  1918       // check_rep_var( rep_var );
  1919       if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
  1920         // No state needed.
  1921         assert( _opclass == NULL,
  1922                 "'primary', 'secondary' and 'tertiary' don't follow operand.");
  1923       } else {
  1924         // Lookup its position in parameter list
  1925         int   param_no  = _encoding.rep_var_index(rep_var);
  1926         if ( param_no == -1 ) {
  1927           _AD.syntax_err( _encoding._linenum,
  1928                           "Replacement variable %s not found in enc_class %s.\n",
  1929                           rep_var, _encoding._name);
  1932         // Lookup the corresponding ins_encode parameter
  1933         const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
  1934         if (inst_rep_var == NULL) {
  1935           _AD.syntax_err( _ins_encode._linenum,
  1936                           "Parameter %s not passed to enc_class %s from instruct %s.\n",
  1937                           rep_var, _encoding._name, _inst._ident);
  1940         // Check if instruction's actual parameter is a local name in the instruction
  1941         const Form  *local     = _inst._localNames[inst_rep_var];
  1942         OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
  1943         // Note: assert removed to allow constant and symbolic parameters
  1944         // assert( opc, "replacement variable was not found in local names");
  1945         // Lookup the index position iff the replacement variable is a localName
  1946         int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
  1948         if ( idx != -1 ) {
  1949           // This is a local in the instruction
  1950           // Update local state info.
  1951           _opclass        = opc;
  1952           _operand_idx    = idx;
  1953           _local_name     = rep_var;
  1954           _operand_name   = inst_rep_var;
  1956           // !!!!!
  1957           // Do not support consecutive operands.
  1958           assert( _operand == NULL, "Unimplemented()");
  1959           _operand = opc->is_operand();
  1961         else if( ADLParser::is_literal_constant(inst_rep_var) ) {
  1962           // Instruction provided a constant expression
  1963           // Check later that encoding specifies $$$constant to resolve as constant
  1964           _constant_status   = LITERAL_SEEN;
  1966         else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
  1967           // Instruction provided an opcode: "primary", "secondary", "tertiary"
  1968           // Check later that encoding specifies $$$constant to resolve as constant
  1969           _constant_status   = LITERAL_SEEN;
  1971         else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
  1972           // Instruction provided a literal register name for this parameter
  1973           // Check that encoding specifies $$$reg to resolve.as register.
  1974           _reg_status        = LITERAL_SEEN;
  1976         else {
  1977           // Check for unimplemented functionality before hard failure
  1978           assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
  1979           assert( false, "ShouldNotReachHere()");
  1981       } // done checking which operand this is.
  1982     } else {
  1983       //
  1984       // A subfield variable, '$$' prefix
  1985       // Check for fields that may require relocation information.
  1986       // Then check that literal register parameters are accessed with 'reg' or 'constant'
  1987       //
  1988       if ( strcmp(rep_var,"$disp") == 0 ) {
  1989         _doing_disp = true;
  1990         assert( _opclass, "Must use operand or operand class before '$disp'");
  1991         if( _operand == NULL ) {
  1992           // Only have an operand class, generate run-time check for relocation
  1993           _may_reloc    = true;
  1994           _reloc_form   = RELOC_DISP;
  1995           _reloc_type   = AdlcVMDeps::oop_reloc_type();
  1996         } else {
  1997           // Do precise check on operand: is it a ConP or not
  1998           //
  1999           // Check interface for value of displacement
  2000           assert( ( _operand->_interface != NULL ),
  2001                   "$disp can only follow memory interface operand");
  2002           MemInterface *mem_interface= _operand->_interface->is_MemInterface();
  2003           assert( mem_interface != NULL,
  2004                   "$disp can only follow memory interface operand");
  2005           const char *disp = mem_interface->_disp;
  2007           if( disp != NULL && (*disp == '$') ) {
  2008             // MemInterface::disp contains a replacement variable,
  2009             // Check if this matches a ConP
  2010             //
  2011             // Lookup replacement variable, in operand's component list
  2012             const char *rep_var_name = disp + 1; // Skip '$'
  2013             const Component *comp = _operand->_components.search(rep_var_name);
  2014             assert( comp != NULL,"Replacement variable not found in components");
  2015             const char      *type = comp->_type;
  2016             // Lookup operand form for replacement variable's type
  2017             const Form *form = _AD.globalNames()[type];
  2018             assert( form != NULL, "Replacement variable's type not found");
  2019             OperandForm *op = form->is_operand();
  2020             assert( op, "Attempting to emit a non-register or non-constant");
  2021             // Check if this is a constant
  2022             if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
  2023               // Check which constant this name maps to: _c0, _c1, ..., _cn
  2024               // const int idx = _operand.constant_position(_AD.globalNames(), comp);
  2025               // assert( idx != -1, "Constant component not found in operand");
  2026               Form::DataType dtype = op->is_base_constant(_AD.globalNames());
  2027               if ( dtype == Form::idealP ) {
  2028                 _may_reloc    = true;
  2029                 // No longer true that idealP is always an oop
  2030                 _reloc_form   = RELOC_DISP;
  2031                 _reloc_type   = AdlcVMDeps::oop_reloc_type();
  2035             else if( _operand->is_user_name_for_sReg() != Form::none ) {
  2036               // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
  2037               assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
  2038               _may_reloc   = false;
  2039             } else {
  2040               assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
  2043         } // finished with precise check of operand for relocation.
  2044       } // finished with subfield variable
  2045       else if ( strcmp(rep_var,"$constant") == 0 ) {
  2046         _doing_constant = true;
  2047         if ( _constant_status == LITERAL_NOT_SEEN ) {
  2048           // Check operand for type of constant
  2049           assert( _operand, "Must use operand before '$$constant'");
  2050           Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
  2051           _constant_type = dtype;
  2052           if ( dtype == Form::idealP ) {
  2053             _may_reloc    = true;
  2054             // No longer true that idealP is always an oop
  2055             // // _must_reloc   = true;
  2056             _reloc_form   = RELOC_IMMEDIATE;
  2057             _reloc_type   = AdlcVMDeps::oop_reloc_type();
  2058           } else {
  2059             // No relocation information needed
  2061         } else {
  2062           // User-provided literals may not require relocation information !!!!!
  2063           assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
  2066       else if ( strcmp(rep_var,"$label") == 0 ) {
  2067         // Calls containing labels require relocation
  2068         if ( _inst.is_ideal_call() )  {
  2069           _may_reloc    = true;
  2070           // !!!!! !!!!!
  2071           _reloc_type   = AdlcVMDeps::none_reloc_type();
  2075       // literal register parameter must be accessed as a 'reg' field.
  2076       if ( _reg_status != LITERAL_NOT_SEEN ) {
  2077         assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
  2078         if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
  2079           _reg_status  = LITERAL_ACCESSED;
  2080         } else {
  2081           assert( false, "invalid access to literal register parameter");
  2084       // literal constant parameters must be accessed as a 'constant' field
  2085       if ( _constant_status != LITERAL_NOT_SEEN ) {
  2086         assert( _constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
  2087         if( strcmp(rep_var,"$constant") == 0 ) {
  2088           _constant_status  = LITERAL_ACCESSED;
  2089         } else {
  2090           assert( false, "invalid access to literal constant parameter");
  2093     } // end replacement and/or subfield
  2097   void add_rep_var(const char *rep_var) {
  2098     // Handle subfield and replacement variables.
  2099     if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
  2100       // Check for emit prefix, '$$emit32'
  2101       assert( _cleared, "Can not nest $$$emit32");
  2102       if ( strcmp(rep_var,"$$emit32") == 0 ) {
  2103         _doing_emit_d32 = true;
  2105       else if ( strcmp(rep_var,"$$emit16") == 0 ) {
  2106         _doing_emit_d16 = true;
  2108       else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
  2109         _doing_emit_hi  = true;
  2111       else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
  2112         _doing_emit_lo  = true;
  2114       else if ( strcmp(rep_var,"$$emit8") == 0 ) {
  2115         _doing_emit8    = true;
  2117       else {
  2118         _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
  2119         assert( false, "fatal();");
  2122     else {
  2123       // Update state for replacement variables
  2124       update_state( rep_var );
  2125       _strings_to_emit.addName(rep_var);
  2127     _cleared  = false;
  2130   void emit_replacement() {
  2131     // A replacement variable or one of its subfields
  2132     // Obtain replacement variable from list
  2133     // const char *ec_rep_var = encoding->_rep_vars.iter();
  2134     const char *rep_var;
  2135     _strings_to_emit.reset();
  2136     while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
  2138       if ( (*rep_var) == '$' ) {
  2139         // A subfield variable, '$$' prefix
  2140         emit_field( rep_var );
  2141       } else {
  2142         // A replacement variable, '$' prefix
  2143         emit_rep_var( rep_var );
  2144       } // end replacement and/or subfield
  2148   void emit_reloc_type(const char* type) {
  2149     fprintf(_fp, "%s", type)
  2154   void gen_emit_x_reloc(const char *d32_lo_hi ) {
  2155     fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_lo_hi );
  2156     emit_replacement();             fprintf(_fp,", ");
  2157     emit_reloc_type( _reloc_type ); fprintf(_fp,", ");
  2158     fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
  2162   void emit() {
  2163     //
  2164     //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
  2165     //
  2166     // Emit the function name when generating an emit function
  2167     if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
  2168       const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
  2169       // In general, relocatable isn't known at compiler compile time.
  2170       // Check results of prior scan
  2171       if ( ! _may_reloc ) {
  2172         // Definitely don't need relocation information
  2173         fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
  2174         emit_replacement(); fprintf(_fp, ")");
  2176       else if ( _must_reloc ) {
  2177         // Must emit relocation information
  2178         gen_emit_x_reloc( d32_hi_lo );
  2180       else {
  2181         // Emit RUNTIME CHECK to see if value needs relocation info
  2182         // If emitting a relocatable address, use 'emit_d32_reloc'
  2183         const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
  2184         assert( (_doing_disp || _doing_constant)
  2185                 && !(_doing_disp && _doing_constant),
  2186                 "Must be emitting either a displacement or a constant");
  2187         fprintf(_fp,"\n");
  2188         fprintf(_fp,"if ( opnd_array(%d)->%s_is_oop() ) {\n",
  2189                 _operand_idx, disp_constant);
  2190         fprintf(_fp,"  ");
  2191         gen_emit_x_reloc( d32_hi_lo ); fprintf(_fp,"\n");
  2192         fprintf(_fp,"} else {\n");
  2193         fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
  2194         emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
  2197     else if ( _doing_emit_d16 ) {
  2198       // Relocation of 16-bit values is not supported
  2199       fprintf(_fp,"emit_d16(cbuf, ");
  2200       emit_replacement(); fprintf(_fp, ")");
  2201       // No relocation done for 16-bit values
  2203     else if ( _doing_emit8 ) {
  2204       // Relocation of 8-bit values is not supported
  2205       fprintf(_fp,"emit_d8(cbuf, ");
  2206       emit_replacement(); fprintf(_fp, ")");
  2207       // No relocation done for 8-bit values
  2209     else {
  2210       // Not an emit# command, just output the replacement string.
  2211       emit_replacement();
  2214     // Get ready for next state collection.
  2215     clear();
  2218 private:
  2220   // recognizes names which represent MacroAssembler register types
  2221   // and return the conversion function to build them from OptoReg
  2222   const char* reg_conversion(const char* rep_var) {
  2223     if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
  2224     if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
  2225 #if defined(IA32) || defined(AMD64)
  2226     if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
  2227 #endif
  2228     return NULL;
  2231   void emit_field(const char *rep_var) {
  2232     const char* reg_convert = reg_conversion(rep_var);
  2234     // A subfield variable, '$$subfield'
  2235     if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
  2236       // $reg form or the $Register MacroAssembler type conversions
  2237       assert( _operand_idx != -1,
  2238               "Must use this subfield after operand");
  2239       if( _reg_status == LITERAL_NOT_SEEN ) {
  2240         if (_processing_noninput) {
  2241           const Form  *local     = _inst._localNames[_operand_name];
  2242           OperandForm *oper      = local->is_operand();
  2243           const RegDef* first = oper->get_RegClass()->find_first_elem();
  2244           if (reg_convert != NULL) {
  2245             fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
  2246           } else {
  2247             fprintf(_fp, "%s_enc", first->_regname);
  2249         } else {
  2250           fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
  2251           // Add parameter for index position, if not result operand
  2252           if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
  2253           fprintf(_fp,")");
  2255       } else {
  2256         assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
  2257         // Register literal has already been sent to output file, nothing more needed
  2260     else if ( strcmp(rep_var,"$base") == 0 ) {
  2261       assert( _operand_idx != -1,
  2262               "Must use this subfield after operand");
  2263       assert( ! _may_reloc, "UnImplemented()");
  2264       fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
  2266     else if ( strcmp(rep_var,"$index") == 0 ) {
  2267       assert( _operand_idx != -1,
  2268               "Must use this subfield after operand");
  2269       assert( ! _may_reloc, "UnImplemented()");
  2270       fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
  2272     else if ( strcmp(rep_var,"$scale") == 0 ) {
  2273       assert( ! _may_reloc, "UnImplemented()");
  2274       fprintf(_fp,"->scale()");
  2276     else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
  2277       assert( ! _may_reloc, "UnImplemented()");
  2278       fprintf(_fp,"->ccode()");
  2280     else if ( strcmp(rep_var,"$constant") == 0 ) {
  2281       if( _constant_status == LITERAL_NOT_SEEN ) {
  2282         if ( _constant_type == Form::idealD ) {
  2283           fprintf(_fp,"->constantD()");
  2284         } else if ( _constant_type == Form::idealF ) {
  2285           fprintf(_fp,"->constantF()");
  2286         } else if ( _constant_type == Form::idealL ) {
  2287           fprintf(_fp,"->constantL()");
  2288         } else {
  2289           fprintf(_fp,"->constant()");
  2291       } else {
  2292         assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
  2293         // Cosntant literal has already been sent to output file, nothing more needed
  2296     else if ( strcmp(rep_var,"$disp") == 0 ) {
  2297       Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
  2298       if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
  2299         fprintf(_fp,"->disp(ra_,this,0)");
  2300       } else {
  2301         fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
  2304     else if ( strcmp(rep_var,"$label") == 0 ) {
  2305       fprintf(_fp,"->label()");
  2307     else if ( strcmp(rep_var,"$method") == 0 ) {
  2308       fprintf(_fp,"->method()");
  2310     else {
  2311       printf("emit_field: %s\n",rep_var);
  2312       assert( false, "UnImplemented()");
  2317   void emit_rep_var(const char *rep_var) {
  2318     _processing_noninput = false;
  2319     // A replacement variable, originally '$'
  2320     if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
  2321       if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
  2322         // Missing opcode
  2323         _AD.syntax_err( _inst._linenum,
  2324                         "Missing $%s opcode definition in %s, used by encoding %s\n",
  2325                         rep_var, _inst._ident, _encoding._name);
  2328     else {
  2329       // Lookup its position in parameter list
  2330       int   param_no  = _encoding.rep_var_index(rep_var);
  2331       if ( param_no == -1 ) {
  2332         _AD.syntax_err( _encoding._linenum,
  2333                         "Replacement variable %s not found in enc_class %s.\n",
  2334                         rep_var, _encoding._name);
  2336       // Lookup the corresponding ins_encode parameter
  2337       const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
  2339       // Check if instruction's actual parameter is a local name in the instruction
  2340       const Form  *local     = _inst._localNames[inst_rep_var];
  2341       OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
  2342       // Note: assert removed to allow constant and symbolic parameters
  2343       // assert( opc, "replacement variable was not found in local names");
  2344       // Lookup the index position iff the replacement variable is a localName
  2345       int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
  2346       if( idx != -1 ) {
  2347         if (_inst.is_noninput_operand(idx)) {
  2348           // This operand isn't a normal input so printing it is done
  2349           // specially.
  2350           _processing_noninput = true;
  2351         } else {
  2352           // Output the emit code for this operand
  2353           fprintf(_fp,"opnd_array(%d)",idx);
  2355         assert( _operand == opc->is_operand(),
  2356                 "Previous emit $operand does not match current");
  2358       else if( ADLParser::is_literal_constant(inst_rep_var) ) {
  2359         // else check if it is a constant expression
  2360         // Removed following assert to allow primitive C types as arguments to encodings
  2361         // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
  2362         fprintf(_fp,"(%s)", inst_rep_var);
  2363         _constant_status = LITERAL_OUTPUT;
  2365       else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
  2366         // else check if "primary", "secondary", "tertiary"
  2367         assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
  2368         if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
  2369           // Missing opcode
  2370           _AD.syntax_err( _inst._linenum,
  2371                           "Missing $%s opcode definition in %s\n",
  2372                           rep_var, _inst._ident);
  2375         _constant_status = LITERAL_OUTPUT;
  2377       else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
  2378         // Instruction provided a literal register name for this parameter
  2379         // Check that encoding specifies $$$reg to resolve.as register.
  2380         assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
  2381         fprintf(_fp,"(%s_enc)", inst_rep_var);
  2382         _reg_status = LITERAL_OUTPUT;
  2384       else {
  2385         // Check for unimplemented functionality before hard failure
  2386         assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
  2387         assert( false, "ShouldNotReachHere()");
  2389       // all done
  2393 };  // end class DefineEmitState
  2396 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
  2398   //(1)
  2399   // Output instruction's emit prototype
  2400   fprintf(fp,"uint  %sNode::size(PhaseRegAlloc *ra_) const {\n",
  2401           inst._ident);
  2403   fprintf(fp, " assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
  2405   //(2)
  2406   // Print the size
  2407   fprintf(fp, " return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
  2409   // (3) and (4)
  2410   fprintf(fp,"}\n");
  2413 void ArchDesc::defineEmit(FILE *fp, InstructForm &inst) {
  2414   InsEncode *ins_encode = inst._insencode;
  2416   // (1)
  2417   // Output instruction's emit prototype
  2418   fprintf(fp,"void  %sNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {\n",
  2419           inst._ident);
  2421   // If user did not define an encode section,
  2422   // provide stub that does not generate any machine code.
  2423   if( (_encode == NULL) || (ins_encode == NULL) ) {
  2424     fprintf(fp, "  // User did not define an encode section.\n");
  2425     fprintf(fp,"}\n");
  2426     return;
  2429   // Save current instruction's starting address (helps with relocation).
  2430   fprintf( fp, "    cbuf.set_inst_mark();\n");
  2432   // // // idx0 is only needed for syntactic purposes and only by "storeSSI"
  2433   // fprintf( fp, "    unsigned idx0  = 0;\n");
  2435   // Output each operand's offset into the array of registers.
  2436   inst.index_temps( fp, _globalNames );
  2438   // Output this instruction's encodings
  2439   const char *ec_name;
  2440   bool        user_defined = false;
  2441   ins_encode->reset();
  2442   while ( (ec_name = ins_encode->encode_class_iter()) != NULL ) {
  2443     fprintf(fp, "  {");
  2444     // Output user-defined encoding
  2445     user_defined           = true;
  2447     const char *ec_code    = NULL;
  2448     const char *ec_rep_var = NULL;
  2449     EncClass   *encoding   = _encode->encClass(ec_name);
  2450     if (encoding == NULL) {
  2451       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
  2452       abort();
  2455     if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
  2456       globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
  2457                            inst._ident, ins_encode->current_encoding_num_args(),
  2458                            ec_name, encoding->num_args());
  2461     DefineEmitState  pending(fp, *this, *encoding, *ins_encode, inst );
  2462     encoding->_code.reset();
  2463     encoding->_rep_vars.reset();
  2464     // Process list of user-defined strings,
  2465     // and occurrences of replacement variables.
  2466     // Replacement Vars are pushed into a list and then output
  2467     while ( (ec_code = encoding->_code.iter()) != NULL ) {
  2468       if ( ! encoding->_code.is_signal( ec_code ) ) {
  2469         // Emit pending code
  2470         pending.emit();
  2471         pending.clear();
  2472         // Emit this code section
  2473         fprintf(fp,"%s", ec_code);
  2474       } else {
  2475         // A replacement variable or one of its subfields
  2476         // Obtain replacement variable from list
  2477         ec_rep_var  = encoding->_rep_vars.iter();
  2478         pending.add_rep_var(ec_rep_var);
  2481     // Emit pending code
  2482     pending.emit();
  2483     pending.clear();
  2484     fprintf(fp, "}\n");
  2485   } // end while instruction's encodings
  2487   // Check if user stated which encoding to user
  2488   if ( user_defined == false ) {
  2489     fprintf(fp, "  // User did not define which encode class to use.\n");
  2492   // (3) and (4)
  2493   fprintf(fp,"}\n");
  2496 // ---------------------------------------------------------------------------
  2497 //--------Utilities to build MachOper and MachNode derived Classes------------
  2498 // ---------------------------------------------------------------------------
  2500 //------------------------------Utilities to build Operand Classes------------
  2501 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
  2502   uint num_edges = oper.num_edges(globals);
  2503   if( num_edges != 0 ) {
  2504     // Method header
  2505     fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
  2506             oper._ident);
  2508     // Assert that the index is in range.
  2509     fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
  2510             num_edges);
  2512     // Figure out if all RegMasks are the same.
  2513     const char* first_reg_class = oper.in_reg_class(0, globals);
  2514     bool all_same = true;
  2515     assert(first_reg_class != NULL, "did not find register mask");
  2517     for (uint index = 1; all_same && index < num_edges; index++) {
  2518       const char* some_reg_class = oper.in_reg_class(index, globals);
  2519       assert(some_reg_class != NULL, "did not find register mask");
  2520       if (strcmp(first_reg_class, some_reg_class) != 0) {
  2521         all_same = false;
  2525     if (all_same) {
  2526       // Return the sole RegMask.
  2527       if (strcmp(first_reg_class, "stack_slots") == 0) {
  2528         fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
  2529       } else {
  2530         fprintf(fp,"  return &%s_mask;\n", toUpper(first_reg_class));
  2532     } else {
  2533       // Build a switch statement to return the desired mask.
  2534       fprintf(fp,"  switch (index) {\n");
  2536       for (uint index = 0; index < num_edges; index++) {
  2537         const char *reg_class = oper.in_reg_class(index, globals);
  2538         assert(reg_class != NULL, "did not find register mask");
  2539         if( !strcmp(reg_class, "stack_slots") ) {
  2540           fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
  2541         } else {
  2542           fprintf(fp, "  case %d: return &%s_mask;\n", index, toUpper(reg_class));
  2545       fprintf(fp,"  }\n");
  2546       fprintf(fp,"  ShouldNotReachHere();\n");
  2547       fprintf(fp,"  return NULL;\n");
  2550     // Method close
  2551     fprintf(fp, "}\n\n");
  2555 // generate code to create a clone for a class derived from MachOper
  2556 //
  2557 // (0)  MachOper  *MachOperXOper::clone(Compile* C) const {
  2558 // (1)    return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn);
  2559 // (2)  }
  2560 //
  2561 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
  2562   fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper._ident);
  2563   // Check for constants that need to be copied over
  2564   const int  num_consts    = oper.num_consts(globalNames);
  2565   const bool is_ideal_bool = oper.is_ideal_bool();
  2566   if( (num_consts > 0) ) {
  2567     fprintf(fp,"  return  new (C) %sOper(", oper._ident);
  2568     // generate parameters for constants
  2569     int i = 0;
  2570     fprintf(fp,"_c%d", i);
  2571     for( i = 1; i < num_consts; ++i) {
  2572       fprintf(fp,", _c%d", i);
  2574     // finish line (1)
  2575     fprintf(fp,");\n");
  2577   else {
  2578     assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
  2579     fprintf(fp,"  return  new (C) %sOper();\n", oper._ident);
  2581   // finish method
  2582   fprintf(fp,"}\n");
  2585 static void define_hash(FILE *fp, char *operand) {
  2586   fprintf(fp,"uint %sOper::hash() const { return 5; }\n", operand);
  2589 static void define_cmp(FILE *fp, char *operand) {
  2590   fprintf(fp,"uint %sOper::cmp( const MachOper &oper ) const { return opcode() == oper.opcode(); }\n", operand);
  2594 // Helper functions for bug 4796752, abstracted with minimal modification
  2595 // from define_oper_interface()
  2596 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
  2597   OperandForm *op = NULL;
  2598   // Check for replacement variable
  2599   if( *encoding == '$' ) {
  2600     // Replacement variable
  2601     const char *rep_var = encoding + 1;
  2602     // Lookup replacement variable, rep_var, in operand's component list
  2603     const Component *comp = oper._components.search(rep_var);
  2604     assert( comp != NULL, "Replacement variable not found in components");
  2605     // Lookup operand form for replacement variable's type
  2606     const char      *type = comp->_type;
  2607     Form            *form = (Form*)globals[type];
  2608     assert( form != NULL, "Replacement variable's type not found");
  2609     op = form->is_operand();
  2610     assert( op, "Attempting to emit a non-register or non-constant");
  2613   return op;
  2616 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
  2617   int idx = -1;
  2618   // Check for replacement variable
  2619   if( *encoding == '$' ) {
  2620     // Replacement variable
  2621     const char *rep_var = encoding + 1;
  2622     // Lookup replacement variable, rep_var, in operand's component list
  2623     const Component *comp = oper._components.search(rep_var);
  2624     assert( comp != NULL, "Replacement variable not found in components");
  2625     // Lookup operand form for replacement variable's type
  2626     const char      *type = comp->_type;
  2627     Form            *form = (Form*)globals[type];
  2628     assert( form != NULL, "Replacement variable's type not found");
  2629     OperandForm *op = form->is_operand();
  2630     assert( op, "Attempting to emit a non-register or non-constant");
  2631     // Check that this is a constant and find constant's index:
  2632     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  2633       idx  = oper.constant_position(globals, comp);
  2637   return idx;
  2640 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
  2641   bool is_regI = false;
  2643   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
  2644   if( op != NULL ) {
  2645     // Check that this is a register
  2646     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
  2647       // Register
  2648       const char* ideal  = op->ideal_type(globals);
  2649       is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
  2653   return is_regI;
  2656 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
  2657   bool is_conP = false;
  2659   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
  2660   if( op != NULL ) {
  2661     // Check that this is a constant pointer
  2662     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  2663       // Constant
  2664       Form::DataType dtype = op->is_base_constant(globals);
  2665       is_conP = (dtype == Form::idealP);
  2669   return is_conP;
  2673 // Define a MachOper interface methods
  2674 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
  2675                                      const char *name, const char *encoding) {
  2676   bool emit_position = false;
  2677   int position = -1;
  2679   fprintf(fp,"  virtual int            %s", name);
  2680   // Generate access method for base, index, scale, disp, ...
  2681   if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
  2682     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
  2683     emit_position = true;
  2684   } else if ( (strcmp(name,"disp") == 0) ) {
  2685     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
  2686   } else {
  2687     fprintf(fp,"() const { ");
  2690   // Check for hexadecimal value OR replacement variable
  2691   if( *encoding == '$' ) {
  2692     // Replacement variable
  2693     const char *rep_var = encoding + 1;
  2694     fprintf(fp,"// Replacement variable: %s\n", encoding+1);
  2695     // Lookup replacement variable, rep_var, in operand's component list
  2696     const Component *comp = oper._components.search(rep_var);
  2697     assert( comp != NULL, "Replacement variable not found in components");
  2698     // Lookup operand form for replacement variable's type
  2699     const char      *type = comp->_type;
  2700     Form            *form = (Form*)globals[type];
  2701     assert( form != NULL, "Replacement variable's type not found");
  2702     OperandForm *op = form->is_operand();
  2703     assert( op, "Attempting to emit a non-register or non-constant");
  2704     // Check that this is a register or a constant and generate code:
  2705     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
  2706       // Register
  2707       int idx_offset = oper.register_position( globals, rep_var);
  2708       position = idx_offset;
  2709       fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
  2710       if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
  2711       fprintf(fp,"));\n");
  2712     } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
  2713       // StackSlot for an sReg comes either from input node or from self, when idx==0
  2714       fprintf(fp,"    if( idx != 0 ) {\n");
  2715       fprintf(fp,"      // Access register number for input operand\n");
  2716       fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
  2717       fprintf(fp,"    }\n");
  2718       fprintf(fp,"    // Access register number from myself\n");
  2719       fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
  2720     } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
  2721       // Constant
  2722       // Check which constant this name maps to: _c0, _c1, ..., _cn
  2723       const int idx = oper.constant_position(globals, comp);
  2724       assert( idx != -1, "Constant component not found in operand");
  2725       // Output code for this constant, type dependent.
  2726       fprintf(fp,"    return (int)" );
  2727       oper.access_constant(fp, globals, (uint)idx /* , const_type */);
  2728       fprintf(fp,";\n");
  2729     } else {
  2730       assert( false, "Attempting to emit a non-register or non-constant");
  2733   else if( *encoding == '0' && *(encoding+1) == 'x' ) {
  2734     // Hex value
  2735     fprintf(fp,"return %s;", encoding);
  2736   } else {
  2737     assert( false, "Do not support octal or decimal encode constants");
  2739   fprintf(fp,"  }\n");
  2741   if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
  2742     fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
  2743     MemInterface *mem_interface = oper._interface->is_MemInterface();
  2744     const char *base = mem_interface->_base;
  2745     const char *disp = mem_interface->_disp;
  2746     if( emit_position && (strcmp(name,"base") == 0)
  2747         && base != NULL && is_regI(base, oper, globals)
  2748         && disp != NULL && is_conP(disp, oper, globals) ) {
  2749       // Found a memory access using a constant pointer for a displacement
  2750       // and a base register containing an integer offset.
  2751       // In this case the base and disp are reversed with respect to what
  2752       // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
  2753       // Provide a non-NULL return for disp_as_type() that will allow adr_type()
  2754       // to correctly compute the access type for alias analysis.
  2755       //
  2756       // See BugId 4796752, operand indOffset32X in i486.ad
  2757       int idx = rep_var_to_constant_index(disp, oper, globals);
  2758       fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
  2763 //
  2764 // Construct the method to copy _idx, inputs and operands to new node.
  2765 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
  2766   fprintf(fp_cpp, "\n");
  2767   fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
  2768   fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n");
  2769   if( !used ) {
  2770     fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
  2771     fprintf(fp_cpp, "  ShouldNotCallThis();\n");
  2772     fprintf(fp_cpp, "}\n");
  2773   } else {
  2774     // New node must use same node index for access through allocator's tables
  2775     fprintf(fp_cpp, "  // New node must use same node index\n");
  2776     fprintf(fp_cpp, "  node->set_idx( _idx );\n");
  2777     // Copy machine-independent inputs
  2778     fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
  2779     fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
  2780     fprintf(fp_cpp, "    node->add_req(in(j));\n");
  2781     fprintf(fp_cpp, "  }\n");
  2782     // Copy machine operands to new MachNode
  2783     fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
  2784     fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
  2785     fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
  2786     fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
  2787     fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
  2788     fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
  2789     fprintf(fp_cpp, "      to[i] = _opnds[i]->clone(C);\n");
  2790     fprintf(fp_cpp, "  }\n");
  2791     fprintf(fp_cpp, "}\n");
  2793   fprintf(fp_cpp, "\n");
  2796 //------------------------------defineClasses----------------------------------
  2797 // Define members of MachNode and MachOper classes based on
  2798 // operand and instruction lists
  2799 void ArchDesc::defineClasses(FILE *fp) {
  2801   // Define the contents of an array containing the machine register names
  2802   defineRegNames(fp, _register);
  2803   // Define an array containing the machine register encoding values
  2804   defineRegEncodes(fp, _register);
  2805   // Generate an enumeration of user-defined register classes
  2806   // and a list of register masks, one for each class.
  2807   // Only define the RegMask value objects in the expand file.
  2808   // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
  2809   declare_register_masks(_HPP_file._fp);
  2810   // build_register_masks(fp);
  2811   build_register_masks(_CPP_EXPAND_file._fp);
  2812   // Define the pipe_classes
  2813   build_pipe_classes(_CPP_PIPELINE_file._fp);
  2815   // Generate Machine Classes for each operand defined in AD file
  2816   fprintf(fp,"\n");
  2817   fprintf(fp,"\n");
  2818   fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
  2819   // Iterate through all operands
  2820   _operands.reset();
  2821   OperandForm *oper;
  2822   for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
  2823     // Ensure this is a machine-world instruction
  2824     if ( oper->ideal_only() ) continue;
  2825     // !!!!!
  2826     // The declaration of labelOper is in machine-independent file: machnode
  2827     if ( strcmp(oper->_ident,"label") == 0 ) {
  2828       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
  2830       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
  2831       fprintf(fp,"  return  new (C) %sOper(_label, _block_num);\n", oper->_ident);
  2832       fprintf(fp,"}\n");
  2834       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
  2835               oper->_ident, machOperEnum(oper->_ident));
  2836       // // Currently all XXXOper::Hash() methods are identical (990820)
  2837       // define_hash(fp, oper->_ident);
  2838       // // Currently all XXXOper::Cmp() methods are identical (990820)
  2839       // define_cmp(fp, oper->_ident);
  2840       fprintf(fp,"\n");
  2842       continue;
  2845     // The declaration of methodOper is in machine-independent file: machnode
  2846     if ( strcmp(oper->_ident,"method") == 0 ) {
  2847       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
  2849       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
  2850       fprintf(fp,"  return  new (C) %sOper(_method);\n", oper->_ident);
  2851       fprintf(fp,"}\n");
  2853       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
  2854               oper->_ident, machOperEnum(oper->_ident));
  2855       // // Currently all XXXOper::Hash() methods are identical (990820)
  2856       // define_hash(fp, oper->_ident);
  2857       // // Currently all XXXOper::Cmp() methods are identical (990820)
  2858       // define_cmp(fp, oper->_ident);
  2859       fprintf(fp,"\n");
  2861       continue;
  2864     defineIn_RegMask(fp, _globalNames, *oper);
  2865     defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
  2866     // // Currently all XXXOper::Hash() methods are identical (990820)
  2867     // define_hash(fp, oper->_ident);
  2868     // // Currently all XXXOper::Cmp() methods are identical (990820)
  2869     // define_cmp(fp, oper->_ident);
  2871     // side-call to generate output that used to be in the header file:
  2872     extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
  2873     gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
  2878   // Generate Machine Classes for each instruction defined in AD file
  2879   fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
  2880   // Output the definitions for out_RegMask() // & kill_RegMask()
  2881   _instructions.reset();
  2882   InstructForm *instr;
  2883   MachNodeForm *machnode;
  2884   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  2885     // Ensure this is a machine-world instruction
  2886     if ( instr->ideal_only() ) continue;
  2888     defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
  2891   bool used = false;
  2892   // Output the definitions for expand rules & peephole rules
  2893   _instructions.reset();
  2894   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  2895     // Ensure this is a machine-world instruction
  2896     if ( instr->ideal_only() ) continue;
  2897     // If there are multiple defs/kills, or an explicit expand rule, build rule
  2898     if( instr->expands() || instr->needs_projections() ||
  2899         instr->has_temps() ||
  2900         instr->_matrule != NULL &&
  2901         instr->num_opnds() != instr->num_unique_opnds() )
  2902       defineExpand(_CPP_EXPAND_file._fp, instr);
  2903     // If there is an explicit peephole rule, build it
  2904     if ( instr->peepholes() )
  2905       definePeephole(_CPP_PEEPHOLE_file._fp, instr);
  2907     // Output code to convert to the cisc version, if applicable
  2908     used |= instr->define_cisc_version(*this, fp);
  2910     // Output code to convert to the short branch version, if applicable
  2911     used |= instr->define_short_branch_methods(fp);
  2914   // Construct the method called by cisc_version() to copy inputs and operands.
  2915   define_fill_new_machnode(used, fp);
  2917   // Output the definitions for labels
  2918   _instructions.reset();
  2919   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  2920     // Ensure this is a machine-world instruction
  2921     if ( instr->ideal_only() ) continue;
  2923     // Access the fields for operand Label
  2924     int label_position = instr->label_position();
  2925     if( label_position != -1 ) {
  2926       // Set the label
  2927       fprintf(fp,"void %sNode::label_set( Label& label, uint block_num ) {\n", instr->_ident);
  2928       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
  2929               label_position );
  2930       fprintf(fp,"  oper->_label     = &label;\n");
  2931       fprintf(fp,"  oper->_block_num = block_num;\n");
  2932       fprintf(fp,"}\n");
  2936   // Output the definitions for methods
  2937   _instructions.reset();
  2938   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  2939     // Ensure this is a machine-world instruction
  2940     if ( instr->ideal_only() ) continue;
  2942     // Access the fields for operand Label
  2943     int method_position = instr->method_position();
  2944     if( method_position != -1 ) {
  2945       // Access the method's address
  2946       fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
  2947       fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
  2948               method_position );
  2949       fprintf(fp,"}\n");
  2950       fprintf(fp,"\n");
  2954   // Define this instruction's number of relocation entries, base is '0'
  2955   _instructions.reset();
  2956   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  2957     // Output the definition for number of relocation entries
  2958     uint reloc_size = instr->reloc(_globalNames);
  2959     if ( reloc_size != 0 ) {
  2960       fprintf(fp,"int  %sNode::reloc()   const {\n", instr->_ident);
  2961       fprintf(fp,  "  return  %d;\n", reloc_size );
  2962       fprintf(fp,"}\n");
  2963       fprintf(fp,"\n");
  2966   fprintf(fp,"\n");
  2968   // Output the definitions for code generation
  2969   //
  2970   // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
  2971   //   // ...  encoding defined by user
  2972   //   return ptr;
  2973   // }
  2974   //
  2975   _instructions.reset();
  2976   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  2977     // Ensure this is a machine-world instruction
  2978     if ( instr->ideal_only() ) continue;
  2980     if (instr->_insencode) defineEmit(fp, *instr);
  2981     if (instr->_size)      defineSize(fp, *instr);
  2983     // side-call to generate output that used to be in the header file:
  2984     extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
  2985     gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
  2988   // Output the definitions for alias analysis
  2989   _instructions.reset();
  2990   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  2991     // Ensure this is a machine-world instruction
  2992     if ( instr->ideal_only() ) continue;
  2994     // Analyze machine instructions that either USE or DEF memory.
  2995     int memory_operand = instr->memory_operand(_globalNames);
  2996     // Some guys kill all of memory
  2997     if ( instr->is_wide_memory_kill(_globalNames) ) {
  2998       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
  3001     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
  3002       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
  3003         fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
  3004         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
  3005       } else {
  3006         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
  3011   // Get the length of the longest identifier
  3012   int max_ident_len = 0;
  3013   _instructions.reset();
  3015   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3016     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
  3017       int ident_len = (int)strlen(instr->_ident);
  3018       if( max_ident_len < ident_len )
  3019         max_ident_len = ident_len;
  3023   // Emit specifically for Node(s)
  3024   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
  3025     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
  3026   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
  3027     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
  3028   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3030   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
  3031     max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
  3032   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
  3033     max_ident_len, "MachNode");
  3034   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3036   // Output the definitions for machine node specific pipeline data
  3037   _machnodes.reset();
  3039   for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
  3040     fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
  3041       machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
  3044   fprintf(_CPP_PIPELINE_file._fp, "\n");
  3046   // Output the definitions for instruction pipeline static data references
  3047   _instructions.reset();
  3049   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  3050     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
  3051       fprintf(_CPP_PIPELINE_file._fp, "\n");
  3052       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
  3053         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
  3054       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
  3055         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
  3061 // -------------------------------- maps ------------------------------------
  3063 // Information needed to generate the ReduceOp mapping for the DFA
  3064 class OutputReduceOp : public OutputMap {
  3065 public:
  3066   OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3067     : OutputMap(hpp, cpp, globals, AD) {};
  3069   void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
  3070   void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
  3071   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3072                        OutputMap::closing();
  3074   void map(OpClassForm &opc)  {
  3075     const char *reduce = opc._ident;
  3076     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3077     else          fprintf(_cpp, "  0");
  3079   void map(OperandForm &oper) {
  3080     // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
  3081     const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
  3082     // operand stackSlot does not have a match rule, but produces a stackSlot
  3083     if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
  3084     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3085     else          fprintf(_cpp, "  0");
  3087   void map(InstructForm &inst) {
  3088     const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
  3089     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3090     else          fprintf(_cpp, "  0");
  3092   void map(char         *reduce) {
  3093     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3094     else          fprintf(_cpp, "  0");
  3096 };
  3098 // Information needed to generate the LeftOp mapping for the DFA
  3099 class OutputLeftOp : public OutputMap {
  3100 public:
  3101   OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3102     : OutputMap(hpp, cpp, globals, AD) {};
  3104   void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
  3105   void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
  3106   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3107                        OutputMap::closing();
  3109   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
  3110   void map(OperandForm &oper) {
  3111     const char *reduce = oper.reduce_left(_globals);
  3112     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3113     else          fprintf(_cpp, "  0");
  3115   void map(char        *name) {
  3116     const char *reduce = _AD.reduceLeft(name);
  3117     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3118     else          fprintf(_cpp, "  0");
  3120   void map(InstructForm &inst) {
  3121     const char *reduce = inst.reduce_left(_globals);
  3122     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3123     else          fprintf(_cpp, "  0");
  3125 };
  3128 // Information needed to generate the RightOp mapping for the DFA
  3129 class OutputRightOp : public OutputMap {
  3130 public:
  3131   OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3132     : OutputMap(hpp, cpp, globals, AD) {};
  3134   void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
  3135   void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
  3136   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
  3137                        OutputMap::closing();
  3139   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
  3140   void map(OperandForm &oper) {
  3141     const char *reduce = oper.reduce_right(_globals);
  3142     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3143     else          fprintf(_cpp, "  0");
  3145   void map(char        *name) {
  3146     const char *reduce = _AD.reduceRight(name);
  3147     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3148     else          fprintf(_cpp, "  0");
  3150   void map(InstructForm &inst) {
  3151     const char *reduce = inst.reduce_right(_globals);
  3152     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
  3153     else          fprintf(_cpp, "  0");
  3155 };
  3158 // Information needed to generate the Rule names for the DFA
  3159 class OutputRuleName : public OutputMap {
  3160 public:
  3161   OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3162     : OutputMap(hpp, cpp, globals, AD) {};
  3164   void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
  3165   void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
  3166   void closing()     { fprintf(_cpp, "  \"no trailing comma\"\n");
  3167                        OutputMap::closing();
  3169   void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
  3170   void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
  3171   void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
  3172   void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
  3173 };
  3176 // Information needed to generate the swallowed mapping for the DFA
  3177 class OutputSwallowed : public OutputMap {
  3178 public:
  3179   OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3180     : OutputMap(hpp, cpp, globals, AD) {};
  3182   void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
  3183   void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
  3184   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
  3185                        OutputMap::closing();
  3187   void map(OperandForm &oper) { // Generate the entry for this opcode
  3188     const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
  3189     fprintf(_cpp, "  %s", swallowed);
  3191   void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
  3192   void map(char        *name) { fprintf(_cpp, "  false"); }
  3193   void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
  3194 };
  3197 // Information needed to generate the decision array for instruction chain rule
  3198 class OutputInstChainRule : public OutputMap {
  3199 public:
  3200   OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  3201     : OutputMap(hpp, cpp, globals, AD) {};
  3203   void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
  3204   void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
  3205   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
  3206                        OutputMap::closing();
  3208   void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
  3209   void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
  3210   void map(char        *name)  { fprintf(_cpp, "  false"); }
  3211   void map(InstructForm &inst) { // Check for simple chain rule
  3212     const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
  3213     fprintf(_cpp, "  %s", chain);
  3215 };
  3218 //---------------------------build_map------------------------------------
  3219 // Build  mapping from enumeration for densely packed operands
  3220 // TO result and child types.
  3221 void ArchDesc::build_map(OutputMap &map) {
  3222   FILE         *fp_hpp = map.decl_file();
  3223   FILE         *fp_cpp = map.def_file();
  3224   int           idx    = 0;
  3225   OperandForm  *op;
  3226   OpClassForm  *opc;
  3227   InstructForm *inst;
  3229   // Construct this mapping
  3230   map.declaration();
  3231   fprintf(fp_cpp,"\n");
  3232   map.definition();
  3234   // Output the mapping for operands
  3235   map.record_position(OutputMap::BEGIN_OPERANDS, idx );
  3236   _operands.reset();
  3237   for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
  3238     // Ensure this is a machine-world instruction
  3239     if ( op->ideal_only() )  continue;
  3241     // Generate the entry for this opcode
  3242     map.map(*op);    fprintf(fp_cpp, ", // %d\n", idx);
  3243     ++idx;
  3244   };
  3245   fprintf(fp_cpp, "  // last operand\n");
  3247   // Place all user-defined operand classes into the mapping
  3248   map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
  3249   _opclass.reset();
  3250   for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
  3251     map.map(*opc);    fprintf(fp_cpp, ", // %d\n", idx);
  3252     ++idx;
  3253   };
  3254   fprintf(fp_cpp, "  // last operand class\n");
  3256   // Place all internally defined operands into the mapping
  3257   map.record_position(OutputMap::BEGIN_INTERNALS, idx );
  3258   _internalOpNames.reset();
  3259   char *name = NULL;
  3260   for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
  3261     map.map(name);    fprintf(fp_cpp, ", // %d\n", idx);
  3262     ++idx;
  3263   };
  3264   fprintf(fp_cpp, "  // last internally defined operand\n");
  3266   // Place all user-defined instructions into the mapping
  3267   if( map.do_instructions() ) {
  3268     map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
  3269     // Output all simple instruction chain rules first
  3270     map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
  3272       _instructions.reset();
  3273       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3274         // Ensure this is a machine-world instruction
  3275         if ( inst->ideal_only() )  continue;
  3276         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
  3277         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
  3279         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
  3280         ++idx;
  3281       };
  3282       map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
  3283       _instructions.reset();
  3284       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3285         // Ensure this is a machine-world instruction
  3286         if ( inst->ideal_only() )  continue;
  3287         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
  3288         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
  3290         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
  3291         ++idx;
  3292       };
  3293       map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
  3295     // Output all instructions that are NOT simple chain rules
  3297       _instructions.reset();
  3298       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3299         // Ensure this is a machine-world instruction
  3300         if ( inst->ideal_only() )  continue;
  3301         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
  3302         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
  3304         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
  3305         ++idx;
  3306       };
  3307       map.record_position(OutputMap::END_REMATERIALIZE, idx );
  3308       _instructions.reset();
  3309       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3310         // Ensure this is a machine-world instruction
  3311         if ( inst->ideal_only() )  continue;
  3312         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
  3313         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
  3315         map.map(*inst);      fprintf(fp_cpp, ", // %d\n", idx);
  3316         ++idx;
  3317       };
  3319     fprintf(fp_cpp, "  // last instruction\n");
  3320     map.record_position(OutputMap::END_INSTRUCTIONS, idx );
  3322   // Finish defining table
  3323   map.closing();
  3324 };
  3327 // Helper function for buildReduceMaps
  3328 char reg_save_policy(const char *calling_convention) {
  3329   char callconv;
  3331   if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
  3332   else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
  3333   else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
  3334   else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
  3335   else                                         callconv = 'Z';
  3337   return callconv;
  3340 //---------------------------generate_assertion_checks-------------------
  3341 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
  3342   fprintf(fp_cpp, "\n");
  3344   fprintf(fp_cpp, "#ifndef PRODUCT\n");
  3345   fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
  3346   globalDefs().print_asserts(fp_cpp);
  3347   fprintf(fp_cpp, "}\n");
  3348   fprintf(fp_cpp, "#endif\n");
  3349   fprintf(fp_cpp, "\n");
  3352 //---------------------------addSourceBlocks-----------------------------
  3353 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
  3354   if (_source.count() > 0)
  3355     _source.output(fp_cpp);
  3357   generate_adlc_verification(fp_cpp);
  3359 //---------------------------addHeaderBlocks-----------------------------
  3360 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
  3361   if (_header.count() > 0)
  3362     _header.output(fp_hpp);
  3364 //-------------------------addPreHeaderBlocks----------------------------
  3365 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
  3366   // Output #defines from definition block
  3367   globalDefs().print_defines(fp_hpp);
  3369   if (_pre_header.count() > 0)
  3370     _pre_header.output(fp_hpp);
  3373 //---------------------------buildReduceMaps-----------------------------
  3374 // Build  mapping from enumeration for densely packed operands
  3375 // TO result and child types.
  3376 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
  3377   RegDef       *rdef;
  3378   RegDef       *next;
  3380   // The emit bodies currently require functions defined in the source block.
  3382   // Build external declarations for mappings
  3383   fprintf(fp_hpp, "\n");
  3384   fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
  3385   fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
  3386   fprintf(fp_hpp, "extern const int   register_save_type[];\n");
  3387   fprintf(fp_hpp, "\n");
  3389   // Construct Save-Policy array
  3390   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
  3391   fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
  3392   _register->reset_RegDefs();
  3393   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3394     next              = _register->iter_RegDefs();
  3395     char policy       = reg_save_policy(rdef->_callconv);
  3396     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3397     fprintf(fp_cpp, "  '%c'%s\n", policy, comma);
  3399   fprintf(fp_cpp, "};\n\n");
  3401   // Construct Native Save-Policy array
  3402   fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
  3403   fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
  3404   _register->reset_RegDefs();
  3405   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3406     next        = _register->iter_RegDefs();
  3407     char policy = reg_save_policy(rdef->_c_conv);
  3408     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3409     fprintf(fp_cpp, "  '%c'%s\n", policy, comma);
  3411   fprintf(fp_cpp, "};\n\n");
  3413   // Construct Register Save Type array
  3414   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
  3415   fprintf(fp_cpp, "const        int register_save_type[] = {\n");
  3416   _register->reset_RegDefs();
  3417   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
  3418     next = _register->iter_RegDefs();
  3419     const char *comma = (next != NULL) ? "," : " // no trailing comma";
  3420     fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
  3422   fprintf(fp_cpp, "};\n\n");
  3424   // Construct the table for reduceOp
  3425   OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
  3426   build_map(output_reduce_op);
  3427   // Construct the table for leftOp
  3428   OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
  3429   build_map(output_left_op);
  3430   // Construct the table for rightOp
  3431   OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
  3432   build_map(output_right_op);
  3433   // Construct the table of rule names
  3434   OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
  3435   build_map(output_rule_name);
  3436   // Construct the boolean table for subsumed operands
  3437   OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
  3438   build_map(output_swallowed);
  3439   // // // Preserve in case we decide to use this table instead of another
  3440   //// Construct the boolean table for instruction chain rules
  3441   //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
  3442   //build_map(output_inst_chain);
  3447 //---------------------------buildMachOperGenerator---------------------------
  3449 // Recurse through match tree, building path through corresponding state tree,
  3450 // Until we reach the constant we are looking for.
  3451 static void path_to_constant(FILE *fp, FormDict &globals,
  3452                              MatchNode *mnode, uint idx) {
  3453   if ( ! mnode) return;
  3455   unsigned    position = 0;
  3456   const char *result   = NULL;
  3457   const char *name     = NULL;
  3458   const char *optype   = NULL;
  3460   // Base Case: access constant in ideal node linked to current state node
  3461   // Each type of constant has its own access function
  3462   if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
  3463        && mnode->base_operand(position, globals, result, name, optype) ) {
  3464     if (         strcmp(optype,"ConI") == 0 ) {
  3465       fprintf(fp, "_leaf->get_int()");
  3466     } else if ( (strcmp(optype,"ConP") == 0) ) {
  3467       fprintf(fp, "_leaf->bottom_type()->is_ptr()");
  3468     } else if ( (strcmp(optype,"ConN") == 0) ) {
  3469       fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
  3470     } else if ( (strcmp(optype,"ConF") == 0) ) {
  3471       fprintf(fp, "_leaf->getf()");
  3472     } else if ( (strcmp(optype,"ConD") == 0) ) {
  3473       fprintf(fp, "_leaf->getd()");
  3474     } else if ( (strcmp(optype,"ConL") == 0) ) {
  3475       fprintf(fp, "_leaf->get_long()");
  3476     } else if ( (strcmp(optype,"Con")==0) ) {
  3477       // !!!!! - Update if adding a machine-independent constant type
  3478       fprintf(fp, "_leaf->get_int()");
  3479       assert( false, "Unsupported constant type, pointer or indefinite");
  3480     } else if ( (strcmp(optype,"Bool") == 0) ) {
  3481       fprintf(fp, "_leaf->as_Bool()->_test._test");
  3482     } else {
  3483       assert( false, "Unsupported constant type");
  3485     return;
  3488   // If constant is in left child, build path and recurse
  3489   uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
  3490   uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
  3491   if ( (mnode->_lChild) && (lConsts > idx) ) {
  3492     fprintf(fp, "_kids[0]->");
  3493     path_to_constant(fp, globals, mnode->_lChild, idx);
  3494     return;
  3496   // If constant is in right child, build path and recurse
  3497   if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
  3498     idx = idx - lConsts;
  3499     fprintf(fp, "_kids[1]->");
  3500     path_to_constant(fp, globals, mnode->_rChild, idx);
  3501     return;
  3503   assert( false, "ShouldNotReachHere()");
  3506 // Generate code that is executed when generating a specific Machine Operand
  3507 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
  3508                             OperandForm &op) {
  3509   const char *opName         = op._ident;
  3510   const char *opEnumName     = AD.machOperEnum(opName);
  3511   uint        num_consts     = op.num_consts(globalNames);
  3513   // Generate the case statement for this opcode
  3514   fprintf(fp, "  case %s:", opEnumName);
  3515   fprintf(fp, "\n    return new (C) %sOper(", opName);
  3516   // Access parameters for constructor from the stat object
  3517   //
  3518   // Build access to condition code value
  3519   if ( (num_consts > 0) ) {
  3520     uint i = 0;
  3521     path_to_constant(fp, globalNames, op._matrule, i);
  3522     for ( i = 1; i < num_consts; ++i ) {
  3523       fprintf(fp, ", ");
  3524       path_to_constant(fp, globalNames, op._matrule, i);
  3527   fprintf(fp, " );\n");
  3531 // Build switch to invoke "new" MachNode or MachOper
  3532 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
  3533   int idx = 0;
  3535   // Build switch to invoke 'new' for a specific MachOper
  3536   fprintf(fp_cpp, "\n");
  3537   fprintf(fp_cpp, "\n");
  3538   fprintf(fp_cpp,
  3539           "//------------------------- MachOper Generator ---------------\n");
  3540   fprintf(fp_cpp,
  3541           "// A switch statement on the dense-packed user-defined type system\n"
  3542           "// that invokes 'new' on the corresponding class constructor.\n");
  3543   fprintf(fp_cpp, "\n");
  3544   fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
  3545   fprintf(fp_cpp, "(int opcode, Compile* C)");
  3546   fprintf(fp_cpp, "{\n");
  3547   fprintf(fp_cpp, "\n");
  3548   fprintf(fp_cpp, "  switch(opcode) {\n");
  3550   // Place all user-defined operands into the mapping
  3551   _operands.reset();
  3552   int  opIndex = 0;
  3553   OperandForm *op;
  3554   for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
  3555     // Ensure this is a machine-world instruction
  3556     if ( op->ideal_only() )  continue;
  3558     genMachOperCase(fp_cpp, _globalNames, *this, *op);
  3559   };
  3561   // Do not iterate over operand classes for the  operand generator!!!
  3563   // Place all internal operands into the mapping
  3564   _internalOpNames.reset();
  3565   const char *iopn;
  3566   for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
  3567     const char *opEnumName = machOperEnum(iopn);
  3568     // Generate the case statement for this opcode
  3569     fprintf(fp_cpp, "  case %s:", opEnumName);
  3570     fprintf(fp_cpp, "    return NULL;\n");
  3571   };
  3573   // Generate the default case for switch(opcode)
  3574   fprintf(fp_cpp, "  \n");
  3575   fprintf(fp_cpp, "  default:\n");
  3576   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
  3577   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
  3578   fprintf(fp_cpp, "    break;\n");
  3579   fprintf(fp_cpp, "  }\n");
  3581   // Generate the closing for method Matcher::MachOperGenerator
  3582   fprintf(fp_cpp, "  return NULL;\n");
  3583   fprintf(fp_cpp, "};\n");
  3587 //---------------------------buildMachNode-------------------------------------
  3588 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
  3589 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
  3590   const char *opType  = NULL;
  3591   const char *opClass = inst->_ident;
  3593   // Create the MachNode object
  3594   fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass);
  3596   if ( (inst->num_post_match_opnds() != 0) ) {
  3597     // Instruction that contains operands which are not in match rule.
  3598     //
  3599     // Check if the first post-match component may be an interesting def
  3600     bool           dont_care = false;
  3601     ComponentList &comp_list = inst->_components;
  3602     Component     *comp      = NULL;
  3603     comp_list.reset();
  3604     if ( comp_list.match_iter() != NULL )    dont_care = true;
  3606     // Insert operands that are not in match-rule.
  3607     // Only insert a DEF if the do_care flag is set
  3608     comp_list.reset();
  3609     while ( comp = comp_list.post_match_iter() ) {
  3610       // Check if we don't care about DEFs or KILLs that are not USEs
  3611       if ( dont_care && (! comp->isa(Component::USE)) ) {
  3612         continue;
  3614       dont_care = true;
  3615       // For each operand not in the match rule, call MachOperGenerator
  3616       // with the enum for the opcode that needs to be built
  3617       // and the node just built, the parent of the operand.
  3618       ComponentList clist = inst->_components;
  3619       int         index  = clist.operand_position(comp->_name, comp->_usedef);
  3620       const char *opcode = machOperEnum(comp->_type);
  3621       const char *parent = "node";
  3622       fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
  3623       fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode);
  3626   else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
  3627     // An instruction that chains from a constant!
  3628     // In this case, we need to subsume the constant into the node
  3629     // at operand position, oper_input_base().
  3630     //
  3631     // Fill in the constant
  3632     fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
  3633             inst->oper_input_base(_globalNames));
  3634     // #####
  3635     // Check for multiple constants and then fill them in.
  3636     // Just like MachOperGenerator
  3637     const char *opName = inst->_matrule->_rChild->_opType;
  3638     fprintf(fp_cpp, "new (C) %sOper(", opName);
  3639     // Grab operand form
  3640     OperandForm *op = (_globalNames[opName])->is_operand();
  3641     // Look up the number of constants
  3642     uint num_consts = op->num_consts(_globalNames);
  3643     if ( (num_consts > 0) ) {
  3644       uint i = 0;
  3645       path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
  3646       for ( i = 1; i < num_consts; ++i ) {
  3647         fprintf(fp_cpp, ", ");
  3648         path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
  3651     fprintf(fp_cpp, " );\n");
  3652     // #####
  3655   // Fill in the bottom_type where requested
  3656   if ( inst->captures_bottom_type() ) {
  3657     fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
  3659   if( inst->is_ideal_if() ) {
  3660     fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
  3661     fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
  3663   if( inst->is_ideal_fastlock() ) {
  3664     fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
  3669 //---------------------------declare_cisc_version------------------------------
  3670 // Build CISC version of this instruction
  3671 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
  3672   if( AD.can_cisc_spill() ) {
  3673     InstructForm *inst_cisc = cisc_spill_alternate();
  3674     if (inst_cisc != NULL) {
  3675       fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
  3676       fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset, Compile* C);\n");
  3677       fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
  3678       fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
  3683 //---------------------------define_cisc_version-------------------------------
  3684 // Build CISC version of this instruction
  3685 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
  3686   InstructForm *inst_cisc = this->cisc_spill_alternate();
  3687   if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
  3688     const char   *name      = inst_cisc->_ident;
  3689     assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
  3690     OperandForm *cisc_oper = AD.cisc_spill_operand();
  3691     assert( cisc_oper != NULL, "insanity check");
  3692     const char *cisc_oper_name  = cisc_oper->_ident;
  3693     assert( cisc_oper_name != NULL, "insanity check");
  3694     //
  3695     // Set the correct reg_mask_or_stack for the cisc operand
  3696     fprintf(fp_cpp, "\n");
  3697     fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
  3698     // Lookup the correct reg_mask_or_stack
  3699     const char *reg_mask_name = cisc_reg_mask_name();
  3700     fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
  3701     fprintf(fp_cpp, "}\n");
  3702     //
  3703     // Construct CISC version of this instruction
  3704     fprintf(fp_cpp, "\n");
  3705     fprintf(fp_cpp, "// Build CISC version of this instruction\n");
  3706     fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident);
  3707     // Create the MachNode object
  3708     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
  3709     // Fill in the bottom_type where requested
  3710     if ( this->captures_bottom_type() ) {
  3711       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
  3713     fprintf(fp_cpp, "\n");
  3714     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
  3715     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
  3716     // Construct operand to access [stack_pointer + offset]
  3717     fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
  3718     fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name);
  3719     fprintf(fp_cpp, "\n");
  3721     // Return result and exit scope
  3722     fprintf(fp_cpp, "  return node;\n");
  3723     fprintf(fp_cpp, "}\n");
  3724     fprintf(fp_cpp, "\n");
  3725     return true;
  3727   return false;
  3730 //---------------------------declare_short_branch_methods----------------------
  3731 // Build prototypes for short branch methods
  3732 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
  3733   if (has_short_branch_form()) {
  3734     fprintf(fp_hpp, "  virtual MachNode      *short_branch_version(Compile* C);\n");
  3738 //---------------------------define_short_branch_methods-----------------------
  3739 // Build definitions for short branch methods
  3740 bool InstructForm::define_short_branch_methods(FILE *fp_cpp) {
  3741   if (has_short_branch_form()) {
  3742     InstructForm *short_branch = short_branch_form();
  3743     const char   *name         = short_branch->_ident;
  3745     // Construct short_branch_version() method.
  3746     fprintf(fp_cpp, "// Build short branch version of this instruction\n");
  3747     fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident);
  3748     // Create the MachNode object
  3749     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
  3750     if( is_ideal_if() ) {
  3751       fprintf(fp_cpp, "  node->_prob = _prob;\n");
  3752       fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
  3754     // Fill in the bottom_type where requested
  3755     if ( this->captures_bottom_type() ) {
  3756       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
  3759     fprintf(fp_cpp, "\n");
  3760     // Short branch version must use same node index for access
  3761     // through allocator's tables
  3762     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
  3763     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
  3765     // Return result and exit scope
  3766     fprintf(fp_cpp, "  return node;\n");
  3767     fprintf(fp_cpp, "}\n");
  3768     fprintf(fp_cpp,"\n");
  3769     return true;
  3771   return false;
  3775 //---------------------------buildMachNodeGenerator----------------------------
  3776 // Build switch to invoke appropriate "new" MachNode for an opcode
  3777 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
  3779   // Build switch to invoke 'new' for a specific MachNode
  3780   fprintf(fp_cpp, "\n");
  3781   fprintf(fp_cpp, "\n");
  3782   fprintf(fp_cpp,
  3783           "//------------------------- MachNode Generator ---------------\n");
  3784   fprintf(fp_cpp,
  3785           "// A switch statement on the dense-packed user-defined type system\n"
  3786           "// that invokes 'new' on the corresponding class constructor.\n");
  3787   fprintf(fp_cpp, "\n");
  3788   fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
  3789   fprintf(fp_cpp, "(int opcode, Compile* C)");
  3790   fprintf(fp_cpp, "{\n");
  3791   fprintf(fp_cpp, "  switch(opcode) {\n");
  3793   // Provide constructor for all user-defined instructions
  3794   _instructions.reset();
  3795   int  opIndex = operandFormCount();
  3796   InstructForm *inst;
  3797   for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  3798     // Ensure that matrule is defined.
  3799     if ( inst->_matrule == NULL ) continue;
  3801     int         opcode  = opIndex++;
  3802     const char *opClass = inst->_ident;
  3803     char       *opType  = NULL;
  3805     // Generate the case statement for this instruction
  3806     fprintf(fp_cpp, "  case %s_rule:", opClass);
  3808     // Start local scope
  3809     fprintf(fp_cpp, "  {\n");
  3810     // Generate code to construct the new MachNode
  3811     buildMachNode(fp_cpp, inst, "     ");
  3812     // Return result and exit scope
  3813     fprintf(fp_cpp, "      return node;\n");
  3814     fprintf(fp_cpp, "    }\n");
  3817   // Generate the default case for switch(opcode)
  3818   fprintf(fp_cpp, "  \n");
  3819   fprintf(fp_cpp, "  default:\n");
  3820   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
  3821   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
  3822   fprintf(fp_cpp, "    break;\n");
  3823   fprintf(fp_cpp, "  };\n");
  3825   // Generate the closing for method Matcher::MachNodeGenerator
  3826   fprintf(fp_cpp, "  return NULL;\n");
  3827   fprintf(fp_cpp, "}\n");
  3831 //---------------------------buildInstructMatchCheck--------------------------
  3832 // Output the method to Matcher which checks whether or not a specific
  3833 // instruction has a matching rule for the host architecture.
  3834 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
  3835   fprintf(fp_cpp, "\n\n");
  3836   fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
  3837   fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
  3838   fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
  3839   fprintf(fp_cpp, "}\n\n");
  3841   fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
  3842   int i;
  3843   for (i = 0; i < _last_opcode - 1; i++) {
  3844     fprintf(fp_cpp, "    %-5s,  // %s\n",
  3845             _has_match_rule[i] ? "true" : "false",
  3846             NodeClassNames[i]);
  3848   fprintf(fp_cpp, "    %-5s   // %s\n",
  3849           _has_match_rule[i] ? "true" : "false",
  3850           NodeClassNames[i]);
  3851   fprintf(fp_cpp, "};\n");
  3854 //---------------------------buildFrameMethods---------------------------------
  3855 // Output the methods to Matcher which specify frame behavior
  3856 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
  3857   fprintf(fp_cpp,"\n\n");
  3858   // Stack Direction
  3859   fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
  3860           _frame->_direction ? "true" : "false");
  3861   // Sync Stack Slots
  3862   fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
  3863           _frame->_sync_stack_slots);
  3864   // Java Stack Alignment
  3865   fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
  3866           _frame->_alignment);
  3867   // Java Return Address Location
  3868   fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
  3869   if (_frame->_return_addr_loc) {
  3870     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  3871             _frame->_return_addr);
  3873   else {
  3874     fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
  3875             _frame->_return_addr);
  3877   // Java Stack Slot Preservation
  3878   fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
  3879   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
  3880   // Top Of Stack Slot Preservation, for both Java and C
  3881   fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
  3882   fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
  3883   // varargs C out slots killed
  3884   fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
  3885   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
  3886   // Java Argument Position
  3887   fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
  3888   fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
  3889   fprintf(fp_cpp,"}\n\n");
  3890   // Native Argument Position
  3891   fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
  3892   fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
  3893   fprintf(fp_cpp,"}\n\n");
  3894   // Java Return Value Location
  3895   fprintf(fp_cpp,"OptoRegPair Matcher::return_value(int ideal_reg, bool is_outgoing) {\n");
  3896   fprintf(fp_cpp,"%s\n", _frame->_return_value);
  3897   fprintf(fp_cpp,"}\n\n");
  3898   // Native Return Value Location
  3899   fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(int ideal_reg, bool is_outgoing) {\n");
  3900   fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
  3901   fprintf(fp_cpp,"}\n\n");
  3903   // Inline Cache Register, mask definition, and encoding
  3904   fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
  3905   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  3906           _frame->_inline_cache_reg);
  3907   fprintf(fp_cpp,"const RegMask &Matcher::inline_cache_reg_mask() {");
  3908   fprintf(fp_cpp," return INLINE_CACHE_REG_mask; }\n\n");
  3909   fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
  3910   fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
  3912   // Interpreter's Method Oop Register, mask definition, and encoding
  3913   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
  3914   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  3915           _frame->_interpreter_method_oop_reg);
  3916   fprintf(fp_cpp,"const RegMask &Matcher::interpreter_method_oop_reg_mask() {");
  3917   fprintf(fp_cpp," return INTERPRETER_METHOD_OOP_REG_mask; }\n\n");
  3918   fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
  3919   fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
  3921   // Interpreter's Frame Pointer Register, mask definition, and encoding
  3922   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
  3923   if (_frame->_interpreter_frame_pointer_reg == NULL)
  3924     fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
  3925   else
  3926     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  3927             _frame->_interpreter_frame_pointer_reg);
  3928   fprintf(fp_cpp,"const RegMask &Matcher::interpreter_frame_pointer_reg_mask() {");
  3929   if (_frame->_interpreter_frame_pointer_reg == NULL)
  3930     fprintf(fp_cpp," static RegMask dummy; return dummy; }\n\n");
  3931   else
  3932     fprintf(fp_cpp," return INTERPRETER_FRAME_POINTER_REG_mask; }\n\n");
  3934   // Frame Pointer definition
  3935   /* CNC - I can not contemplate having a different frame pointer between
  3936      Java and native code; makes my head hurt to think about it.
  3937   fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
  3938   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  3939           _frame->_frame_pointer);
  3940   */
  3941   // (Native) Frame Pointer definition
  3942   fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
  3943   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
  3944           _frame->_frame_pointer);
  3946   // Number of callee-save + always-save registers for calling convention
  3947   fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
  3948   fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
  3949   RegDef *rdef;
  3950   int nof_saved_registers = 0;
  3951   _register->reset_RegDefs();
  3952   while( (rdef = _register->iter_RegDefs()) != NULL ) {
  3953     if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
  3954       ++nof_saved_registers;
  3956   fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
  3957   fprintf(fp_cpp, "};\n\n");
  3963 static int PrintAdlcCisc = 0;
  3964 //---------------------------identify_cisc_spilling----------------------------
  3965 // Get info for the CISC_oracle and MachNode::cisc_version()
  3966 void ArchDesc::identify_cisc_spill_instructions() {
  3968   // Find the user-defined operand for cisc-spilling
  3969   if( _frame->_cisc_spilling_operand_name != NULL ) {
  3970     const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
  3971     OperandForm *oper = form ? form->is_operand() : NULL;
  3972     // Verify the user's suggestion
  3973     if( oper != NULL ) {
  3974       // Ensure that match field is defined.
  3975       if ( oper->_matrule != NULL )  {
  3976         MatchRule &mrule = *oper->_matrule;
  3977         if( strcmp(mrule._opType,"AddP") == 0 ) {
  3978           MatchNode *left = mrule._lChild;
  3979           MatchNode *right= mrule._rChild;
  3980           if( left != NULL && right != NULL ) {
  3981             const Form *left_op  = _globalNames[left->_opType]->is_operand();
  3982             const Form *right_op = _globalNames[right->_opType]->is_operand();
  3983             if(  (left_op != NULL && right_op != NULL)
  3984               && (left_op->interface_type(_globalNames) == Form::register_interface)
  3985               && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
  3986               // Successfully verified operand
  3987               set_cisc_spill_operand( oper );
  3988               if( _cisc_spill_debug ) {
  3989                 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
  3998   if( cisc_spill_operand() != NULL ) {
  3999     // N^2 comparison of instructions looking for a cisc-spilling version
  4000     _instructions.reset();
  4001     InstructForm *instr;
  4002     for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  4003       // Ensure that match field is defined.
  4004       if ( instr->_matrule == NULL )  continue;
  4006       MatchRule &mrule = *instr->_matrule;
  4007       Predicate *pred  =  instr->build_predicate();
  4009       // Grab the machine type of the operand
  4010       const char *rootOp = instr->_ident;
  4011       mrule._machType    = rootOp;
  4013       // Find result type for match
  4014       const char *result = instr->reduce_result();
  4016       if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
  4017       bool  found_cisc_alternate = false;
  4018       _instructions.reset2();
  4019       InstructForm *instr2;
  4020       for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
  4021         // Ensure that match field is defined.
  4022         if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
  4023         if ( instr2->_matrule != NULL
  4024             && (instr != instr2 )                // Skip self
  4025             && (instr2->reduce_result() != NULL) // want same result
  4026             && (strcmp(result, instr2->reduce_result()) == 0)) {
  4027           MatchRule &mrule2 = *instr2->_matrule;
  4028           Predicate *pred2  =  instr2->build_predicate();
  4029           found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
  4036 //---------------------------build_cisc_spilling-------------------------------
  4037 // Get info for the CISC_oracle and MachNode::cisc_version()
  4038 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
  4039   // Output the table for cisc spilling
  4040   fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
  4041   _instructions.reset();
  4042   InstructForm *inst = NULL;
  4043   for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
  4044     // Ensure this is a machine-world instruction
  4045     if ( inst->ideal_only() )  continue;
  4046     const char *inst_name = inst->_ident;
  4047     int   operand   = inst->cisc_spill_operand();
  4048     if( operand != AdlcVMDeps::Not_cisc_spillable ) {
  4049       InstructForm *inst2 = inst->cisc_spill_alternate();
  4050       fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
  4053   fprintf(fp_cpp, "\n\n");
  4056 //---------------------------identify_short_branches----------------------------
  4057 // Get info for our short branch replacement oracle.
  4058 void ArchDesc::identify_short_branches() {
  4059   // Walk over all instructions, checking to see if they match a short
  4060   // branching alternate.
  4061   _instructions.reset();
  4062   InstructForm *instr;
  4063   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  4064     // The instruction must have a match rule.
  4065     if (instr->_matrule != NULL &&
  4066         instr->is_short_branch()) {
  4068       _instructions.reset2();
  4069       InstructForm *instr2;
  4070       while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
  4071         instr2->check_branch_variant(*this, instr);
  4078 //---------------------------identify_unique_operands---------------------------
  4079 // Identify unique operands.
  4080 void ArchDesc::identify_unique_operands() {
  4081   // Walk over all instructions.
  4082   _instructions.reset();
  4083   InstructForm *instr;
  4084   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
  4085     // Ensure this is a machine-world instruction
  4086     if (!instr->ideal_only()) {
  4087       instr->set_unique_opnds();

mercurial