src/cpu/sparc/vm/sharedRuntime_sparc.cpp

Thu, 15 Oct 2009 11:47:13 -0700

author
never
date
Thu, 15 Oct 2009 11:47:13 -0700
changeset 1472
0a46d0c5dccb
parent 1442
1ce3281a8e93
child 1622
cf0685d550f1
permissions
-rw-r--r--

6891750: deopt blob kills values in O5
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright 2003-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_sharedRuntime_sparc.cpp.incl"
    28 #define __ masm->
    30 #ifdef COMPILER2
    31 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
    32 #endif // COMPILER2
    34 DeoptimizationBlob* SharedRuntime::_deopt_blob;
    35 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
    36 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
    37 RuntimeStub*        SharedRuntime::_wrong_method_blob;
    38 RuntimeStub*        SharedRuntime::_ic_miss_blob;
    39 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
    40 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
    41 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
    43 class RegisterSaver {
    45   // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
    46   // The Oregs are problematic. In the 32bit build the compiler can
    47   // have O registers live with 64 bit quantities. A window save will
    48   // cut the heads off of the registers. We have to do a very extensive
    49   // stack dance to save and restore these properly.
    51   // Note that the Oregs problem only exists if we block at either a polling
    52   // page exception a compiled code safepoint that was not originally a call
    53   // or deoptimize following one of these kinds of safepoints.
    55   // Lots of registers to save.  For all builds, a window save will preserve
    56   // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
    57   // builds a window-save will preserve the %o registers.  In the LION build
    58   // we need to save the 64-bit %o registers which requires we save them
    59   // before the window-save (as then they become %i registers and get their
    60   // heads chopped off on interrupt).  We have to save some %g registers here
    61   // as well.
    62   enum {
    63     // This frame's save area.  Includes extra space for the native call:
    64     // vararg's layout space and the like.  Briefly holds the caller's
    65     // register save area.
    66     call_args_area = frame::register_save_words_sp_offset +
    67                      frame::memory_parameter_word_sp_offset*wordSize,
    68     // Make sure save locations are always 8 byte aligned.
    69     // can't use round_to because it doesn't produce compile time constant
    70     start_of_extra_save_area = ((call_args_area + 7) & ~7),
    71     g1_offset = start_of_extra_save_area, // g-regs needing saving
    72     g3_offset = g1_offset+8,
    73     g4_offset = g3_offset+8,
    74     g5_offset = g4_offset+8,
    75     o0_offset = g5_offset+8,
    76     o1_offset = o0_offset+8,
    77     o2_offset = o1_offset+8,
    78     o3_offset = o2_offset+8,
    79     o4_offset = o3_offset+8,
    80     o5_offset = o4_offset+8,
    81     start_of_flags_save_area = o5_offset+8,
    82     ccr_offset = start_of_flags_save_area,
    83     fsr_offset = ccr_offset + 8,
    84     d00_offset = fsr_offset+8,  // Start of float save area
    85     register_save_size = d00_offset+8*32
    86   };
    89   public:
    91   static int Oexception_offset() { return o0_offset; };
    92   static int G3_offset() { return g3_offset; };
    93   static int G5_offset() { return g5_offset; };
    94   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
    95   static void restore_live_registers(MacroAssembler* masm);
    97   // During deoptimization only the result register need to be restored
    98   // all the other values have already been extracted.
   100   static void restore_result_registers(MacroAssembler* masm);
   101 };
   103 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
   104   // Record volatile registers as callee-save values in an OopMap so their save locations will be
   105   // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
   106   // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
   107   // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
   108   // (as the stub's I's) when the runtime routine called by the stub creates its frame.
   109   int i;
   110   // Always make the frame size 16 byte aligned.
   111   int frame_size = round_to(additional_frame_words + register_save_size, 16);
   112   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
   113   int frame_size_in_slots = frame_size / sizeof(jint);
   114   // CodeBlob frame size is in words.
   115   *total_frame_words = frame_size / wordSize;
   116   // OopMap* map = new OopMap(*total_frame_words, 0);
   117   OopMap* map = new OopMap(frame_size_in_slots, 0);
   119 #if !defined(_LP64)
   121   // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
   122   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   123   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   124   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
   125   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
   126   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
   127   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
   128 #endif /* _LP64 */
   130   __ save(SP, -frame_size, SP);
   132 #ifndef _LP64
   133   // Reload the 64 bit Oregs. Although they are now Iregs we load them
   134   // to Oregs here to avoid interrupts cutting off their heads
   136   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   137   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   138   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
   139   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
   140   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
   141   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
   143   __ stx(O0, SP, o0_offset+STACK_BIAS);
   144   map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
   146   __ stx(O1, SP, o1_offset+STACK_BIAS);
   148   map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
   150   __ stx(O2, SP, o2_offset+STACK_BIAS);
   151   map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
   153   __ stx(O3, SP, o3_offset+STACK_BIAS);
   154   map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
   156   __ stx(O4, SP, o4_offset+STACK_BIAS);
   157   map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
   159   __ stx(O5, SP, o5_offset+STACK_BIAS);
   160   map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
   161 #endif /* _LP64 */
   164 #ifdef _LP64
   165   int debug_offset = 0;
   166 #else
   167   int debug_offset = 4;
   168 #endif
   169   // Save the G's
   170   __ stx(G1, SP, g1_offset+STACK_BIAS);
   171   map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
   173   __ stx(G3, SP, g3_offset+STACK_BIAS);
   174   map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
   176   __ stx(G4, SP, g4_offset+STACK_BIAS);
   177   map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
   179   __ stx(G5, SP, g5_offset+STACK_BIAS);
   180   map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
   182   // This is really a waste but we'll keep things as they were for now
   183   if (true) {
   184 #ifndef _LP64
   185     map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
   186     map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
   187     map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
   188     map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
   189     map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
   190     map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
   191     map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
   192     map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
   193     map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
   194     map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
   195 #endif /* _LP64 */
   196   }
   199   // Save the flags
   200   __ rdccr( G5 );
   201   __ stx(G5, SP, ccr_offset+STACK_BIAS);
   202   __ stxfsr(SP, fsr_offset+STACK_BIAS);
   204   // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
   205   int offset = d00_offset;
   206   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
   207     FloatRegister f = as_FloatRegister(i);
   208     __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
   209     // Record as callee saved both halves of double registers (2 float registers).
   210     map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
   211     map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
   212     offset += sizeof(double);
   213   }
   215   // And we're done.
   217   return map;
   218 }
   221 // Pop the current frame and restore all the registers that we
   222 // saved.
   223 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   225   // Restore all the FP registers
   226   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
   227     __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
   228   }
   230   __ ldx(SP, ccr_offset+STACK_BIAS, G1);
   231   __ wrccr (G1) ;
   233   // Restore the G's
   234   // Note that G2 (AKA GThread) must be saved and restored separately.
   235   // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
   237   __ ldx(SP, g1_offset+STACK_BIAS, G1);
   238   __ ldx(SP, g3_offset+STACK_BIAS, G3);
   239   __ ldx(SP, g4_offset+STACK_BIAS, G4);
   240   __ ldx(SP, g5_offset+STACK_BIAS, G5);
   243 #if !defined(_LP64)
   244   // Restore the 64-bit O's.
   245   __ ldx(SP, o0_offset+STACK_BIAS, O0);
   246   __ ldx(SP, o1_offset+STACK_BIAS, O1);
   247   __ ldx(SP, o2_offset+STACK_BIAS, O2);
   248   __ ldx(SP, o3_offset+STACK_BIAS, O3);
   249   __ ldx(SP, o4_offset+STACK_BIAS, O4);
   250   __ ldx(SP, o5_offset+STACK_BIAS, O5);
   252   // And temporarily place them in TLS
   254   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   255   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   256   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
   257   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
   258   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
   259   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
   260 #endif /* _LP64 */
   262   // Restore flags
   264   __ ldxfsr(SP, fsr_offset+STACK_BIAS);
   266   __ restore();
   268 #if !defined(_LP64)
   269   // Now reload the 64bit Oregs after we've restore the window.
   270   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   271   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   272   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
   273   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
   274   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
   275   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
   276 #endif /* _LP64 */
   278 }
   280 // Pop the current frame and restore the registers that might be holding
   281 // a result.
   282 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   284 #if !defined(_LP64)
   285   // 32bit build returns longs in G1
   286   __ ldx(SP, g1_offset+STACK_BIAS, G1);
   288   // Retrieve the 64-bit O's.
   289   __ ldx(SP, o0_offset+STACK_BIAS, O0);
   290   __ ldx(SP, o1_offset+STACK_BIAS, O1);
   291   // and save to TLS
   292   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   293   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   294 #endif /* _LP64 */
   296   __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
   298   __ restore();
   300 #if !defined(_LP64)
   301   // Now reload the 64bit Oregs after we've restore the window.
   302   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   303   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   304 #endif /* _LP64 */
   306 }
   308 // The java_calling_convention describes stack locations as ideal slots on
   309 // a frame with no abi restrictions. Since we must observe abi restrictions
   310 // (like the placement of the register window) the slots must be biased by
   311 // the following value.
   312 static int reg2offset(VMReg r) {
   313   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   314 }
   316 // ---------------------------------------------------------------------------
   317 // Read the array of BasicTypes from a signature, and compute where the
   318 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
   319 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
   320 // refer to 4-byte stack slots.  All stack slots are based off of the window
   321 // top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
   322 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   323 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
   324 // integer registers.  Values 64-95 are the (32-bit only) float registers.
   325 // Each 32-bit quantity is given its own number, so the integer registers
   326 // (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
   327 // an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
   329 // Register results are passed in O0-O5, for outgoing call arguments.  To
   330 // convert to incoming arguments, convert all O's to I's.  The regs array
   331 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
   332 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
   333 // 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
   334 // passed (used as a placeholder for the other half of longs and doubles in
   335 // the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
   336 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
   337 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
   338 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
   339 // same VMRegPair.
   341 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   342 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   343 // units regardless of build.
   346 // ---------------------------------------------------------------------------
   347 // The compiled Java calling convention.  The Java convention always passes
   348 // 64-bit values in adjacent aligned locations (either registers or stack),
   349 // floats in float registers and doubles in aligned float pairs.  Values are
   350 // packed in the registers.  There is no backing varargs store for values in
   351 // registers.  In the 32-bit build, longs are passed in G1 and G4 (cannot be
   352 // passed in I's, because longs in I's get their heads chopped off at
   353 // interrupt).
   354 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   355                                            VMRegPair *regs,
   356                                            int total_args_passed,
   357                                            int is_outgoing) {
   358   assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
   360   // Convention is to pack the first 6 int/oop args into the first 6 registers
   361   // (I0-I5), extras spill to the stack.  Then pack the first 8 float args
   362   // into F0-F7, extras spill to the stack.  Then pad all register sets to
   363   // align.  Then put longs and doubles into the same registers as they fit,
   364   // else spill to the stack.
   365   const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
   366   const int flt_reg_max = 8;
   367   //
   368   // Where 32-bit 1-reg longs start being passed
   369   // In tiered we must pass on stack because c1 can't use a "pair" in a single reg.
   370   // So make it look like we've filled all the G regs that c2 wants to use.
   371   Register g_reg = TieredCompilation ? noreg : G1;
   373   // Count int/oop and float args.  See how many stack slots we'll need and
   374   // where the longs & doubles will go.
   375   int int_reg_cnt   = 0;
   376   int flt_reg_cnt   = 0;
   377   // int stk_reg_pairs = frame::register_save_words*(wordSize>>2);
   378   // int stk_reg_pairs = SharedRuntime::out_preserve_stack_slots();
   379   int stk_reg_pairs = 0;
   380   for (int i = 0; i < total_args_passed; i++) {
   381     switch (sig_bt[i]) {
   382     case T_LONG:                // LP64, longs compete with int args
   383       assert(sig_bt[i+1] == T_VOID, "");
   384 #ifdef _LP64
   385       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
   386 #endif
   387       break;
   388     case T_OBJECT:
   389     case T_ARRAY:
   390     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   391       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
   392 #ifndef _LP64
   393       else                            stk_reg_pairs++;
   394 #endif
   395       break;
   396     case T_INT:
   397     case T_SHORT:
   398     case T_CHAR:
   399     case T_BYTE:
   400     case T_BOOLEAN:
   401       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
   402       else                            stk_reg_pairs++;
   403       break;
   404     case T_FLOAT:
   405       if (flt_reg_cnt < flt_reg_max) flt_reg_cnt++;
   406       else                            stk_reg_pairs++;
   407       break;
   408     case T_DOUBLE:
   409       assert(sig_bt[i+1] == T_VOID, "");
   410       break;
   411     case T_VOID:
   412       break;
   413     default:
   414       ShouldNotReachHere();
   415     }
   416   }
   418   // This is where the longs/doubles start on the stack.
   419   stk_reg_pairs = (stk_reg_pairs+1) & ~1; // Round
   421   int int_reg_pairs = (int_reg_cnt+1) & ~1; // 32-bit 2-reg longs only
   422   int flt_reg_pairs = (flt_reg_cnt+1) & ~1;
   424   // int stk_reg = frame::register_save_words*(wordSize>>2);
   425   // int stk_reg = SharedRuntime::out_preserve_stack_slots();
   426   int stk_reg = 0;
   427   int int_reg = 0;
   428   int flt_reg = 0;
   430   // Now do the signature layout
   431   for (int i = 0; i < total_args_passed; i++) {
   432     switch (sig_bt[i]) {
   433     case T_INT:
   434     case T_SHORT:
   435     case T_CHAR:
   436     case T_BYTE:
   437     case T_BOOLEAN:
   438 #ifndef _LP64
   439     case T_OBJECT:
   440     case T_ARRAY:
   441     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   442 #endif // _LP64
   443       if (int_reg < int_reg_max) {
   444         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   445         regs[i].set1(r->as_VMReg());
   446       } else {
   447         regs[i].set1(VMRegImpl::stack2reg(stk_reg++));
   448       }
   449       break;
   451 #ifdef _LP64
   452     case T_OBJECT:
   453     case T_ARRAY:
   454     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   455       if (int_reg < int_reg_max) {
   456         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   457         regs[i].set2(r->as_VMReg());
   458       } else {
   459         regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   460         stk_reg_pairs += 2;
   461       }
   462       break;
   463 #endif // _LP64
   465     case T_LONG:
   466       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
   467 #ifdef _LP64
   468         if (int_reg < int_reg_max) {
   469           Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   470           regs[i].set2(r->as_VMReg());
   471         } else {
   472           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   473           stk_reg_pairs += 2;
   474         }
   475 #else
   476 #ifdef COMPILER2
   477         // For 32-bit build, can't pass longs in O-regs because they become
   478         // I-regs and get trashed.  Use G-regs instead.  G1 and G4 are almost
   479         // spare and available.  This convention isn't used by the Sparc ABI or
   480         // anywhere else. If we're tiered then we don't use G-regs because c1
   481         // can't deal with them as a "pair". (Tiered makes this code think g's are filled)
   482         // G0: zero
   483         // G1: 1st Long arg
   484         // G2: global allocated to TLS
   485         // G3: used in inline cache check
   486         // G4: 2nd Long arg
   487         // G5: used in inline cache check
   488         // G6: used by OS
   489         // G7: used by OS
   491         if (g_reg == G1) {
   492           regs[i].set2(G1->as_VMReg()); // This long arg in G1
   493           g_reg = G4;                  // Where the next arg goes
   494         } else if (g_reg == G4) {
   495           regs[i].set2(G4->as_VMReg()); // The 2nd long arg in G4
   496           g_reg = noreg;               // No more longs in registers
   497         } else {
   498           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   499           stk_reg_pairs += 2;
   500         }
   501 #else // COMPILER2
   502         if (int_reg_pairs + 1 < int_reg_max) {
   503           if (is_outgoing) {
   504             regs[i].set_pair(as_oRegister(int_reg_pairs + 1)->as_VMReg(), as_oRegister(int_reg_pairs)->as_VMReg());
   505           } else {
   506             regs[i].set_pair(as_iRegister(int_reg_pairs + 1)->as_VMReg(), as_iRegister(int_reg_pairs)->as_VMReg());
   507           }
   508           int_reg_pairs += 2;
   509         } else {
   510           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   511           stk_reg_pairs += 2;
   512         }
   513 #endif // COMPILER2
   514 #endif // _LP64
   515       break;
   517     case T_FLOAT:
   518       if (flt_reg < flt_reg_max) regs[i].set1(as_FloatRegister(flt_reg++)->as_VMReg());
   519       else                       regs[i].set1(    VMRegImpl::stack2reg(stk_reg++));
   520       break;
   521     case T_DOUBLE:
   522       assert(sig_bt[i+1] == T_VOID, "expecting half");
   523       if (flt_reg_pairs + 1 < flt_reg_max) {
   524         regs[i].set2(as_FloatRegister(flt_reg_pairs)->as_VMReg());
   525         flt_reg_pairs += 2;
   526       } else {
   527         regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   528         stk_reg_pairs += 2;
   529       }
   530       break;
   531     case T_VOID: regs[i].set_bad();  break; // Halves of longs & doubles
   532     default:
   533       ShouldNotReachHere();
   534     }
   535   }
   537   // retun the amount of stack space these arguments will need.
   538   return stk_reg_pairs;
   540 }
   542 // Helper class mostly to avoid passing masm everywhere, and handle
   543 // store displacement overflow logic.
   544 class AdapterGenerator {
   545   MacroAssembler *masm;
   546   Register Rdisp;
   547   void set_Rdisp(Register r)  { Rdisp = r; }
   549   void patch_callers_callsite();
   550   void tag_c2i_arg(frame::Tag t, Register base, int st_off, Register scratch);
   552   // base+st_off points to top of argument
   553   int arg_offset(const int st_off) { return st_off + Interpreter::value_offset_in_bytes(); }
   554   int next_arg_offset(const int st_off) {
   555     return st_off - Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
   556   }
   558   int tag_offset(const int st_off) { return st_off + Interpreter::tag_offset_in_bytes(); }
   559   int next_tag_offset(const int st_off) {
   560     return st_off - Interpreter::stackElementSize() + Interpreter::tag_offset_in_bytes();
   561   }
   563   // Argument slot values may be loaded first into a register because
   564   // they might not fit into displacement.
   565   RegisterOrConstant arg_slot(const int st_off);
   566   RegisterOrConstant next_arg_slot(const int st_off);
   568   RegisterOrConstant tag_slot(const int st_off);
   569   RegisterOrConstant next_tag_slot(const int st_off);
   571   // Stores long into offset pointed to by base
   572   void store_c2i_long(Register r, Register base,
   573                       const int st_off, bool is_stack);
   574   void store_c2i_object(Register r, Register base,
   575                         const int st_off);
   576   void store_c2i_int(Register r, Register base,
   577                      const int st_off);
   578   void store_c2i_double(VMReg r_2,
   579                         VMReg r_1, Register base, const int st_off);
   580   void store_c2i_float(FloatRegister f, Register base,
   581                        const int st_off);
   583  public:
   584   void gen_c2i_adapter(int total_args_passed,
   585                               // VMReg max_arg,
   586                               int comp_args_on_stack, // VMRegStackSlots
   587                               const BasicType *sig_bt,
   588                               const VMRegPair *regs,
   589                               Label& skip_fixup);
   590   void gen_i2c_adapter(int total_args_passed,
   591                               // VMReg max_arg,
   592                               int comp_args_on_stack, // VMRegStackSlots
   593                               const BasicType *sig_bt,
   594                               const VMRegPair *regs);
   596   AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
   597 };
   600 // Patch the callers callsite with entry to compiled code if it exists.
   601 void AdapterGenerator::patch_callers_callsite() {
   602   Label L;
   603   __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
   604   __ br_null(G3_scratch, false, __ pt, L);
   605   // Schedule the branch target address early.
   606   __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
   607   // Call into the VM to patch the caller, then jump to compiled callee
   608   __ save_frame(4);     // Args in compiled layout; do not blow them
   610   // Must save all the live Gregs the list is:
   611   // G1: 1st Long arg (32bit build)
   612   // G2: global allocated to TLS
   613   // G3: used in inline cache check (scratch)
   614   // G4: 2nd Long arg (32bit build);
   615   // G5: used in inline cache check (methodOop)
   617   // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
   619 #ifdef _LP64
   620   // mov(s,d)
   621   __ mov(G1, L1);
   622   __ mov(G4, L4);
   623   __ mov(G5_method, L5);
   624   __ mov(G5_method, O0);         // VM needs target method
   625   __ mov(I7, O1);                // VM needs caller's callsite
   626   // Must be a leaf call...
   627   // can be very far once the blob has been relocated
   628   AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
   629   __ relocate(relocInfo::runtime_call_type);
   630   __ jumpl_to(dest, O7, O7);
   631   __ delayed()->mov(G2_thread, L7_thread_cache);
   632   __ mov(L7_thread_cache, G2_thread);
   633   __ mov(L1, G1);
   634   __ mov(L4, G4);
   635   __ mov(L5, G5_method);
   636 #else
   637   __ stx(G1, FP, -8 + STACK_BIAS);
   638   __ stx(G4, FP, -16 + STACK_BIAS);
   639   __ mov(G5_method, L5);
   640   __ mov(G5_method, O0);         // VM needs target method
   641   __ mov(I7, O1);                // VM needs caller's callsite
   642   // Must be a leaf call...
   643   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
   644   __ delayed()->mov(G2_thread, L7_thread_cache);
   645   __ mov(L7_thread_cache, G2_thread);
   646   __ ldx(FP, -8 + STACK_BIAS, G1);
   647   __ ldx(FP, -16 + STACK_BIAS, G4);
   648   __ mov(L5, G5_method);
   649   __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
   650 #endif /* _LP64 */
   652   __ restore();      // Restore args
   653   __ bind(L);
   654 }
   656 void AdapterGenerator::tag_c2i_arg(frame::Tag t, Register base, int st_off,
   657                  Register scratch) {
   658   if (TaggedStackInterpreter) {
   659     RegisterOrConstant slot = tag_slot(st_off);
   660     // have to store zero because local slots can be reused (rats!)
   661     if (t == frame::TagValue) {
   662       __ st_ptr(G0, base, slot);
   663     } else if (t == frame::TagCategory2) {
   664       __ st_ptr(G0, base, slot);
   665       __ st_ptr(G0, base, next_tag_slot(st_off));
   666     } else {
   667       __ mov(t, scratch);
   668       __ st_ptr(scratch, base, slot);
   669     }
   670   }
   671 }
   674 RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
   675   RegisterOrConstant roc(arg_offset(st_off));
   676   return __ ensure_simm13_or_reg(roc, Rdisp);
   677 }
   679 RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
   680   RegisterOrConstant roc(next_arg_offset(st_off));
   681   return __ ensure_simm13_or_reg(roc, Rdisp);
   682 }
   685 RegisterOrConstant AdapterGenerator::tag_slot(const int st_off) {
   686   RegisterOrConstant roc(tag_offset(st_off));
   687   return __ ensure_simm13_or_reg(roc, Rdisp);
   688 }
   690 RegisterOrConstant AdapterGenerator::next_tag_slot(const int st_off) {
   691   RegisterOrConstant roc(next_tag_offset(st_off));
   692   return __ ensure_simm13_or_reg(roc, Rdisp);
   693 }
   696 // Stores long into offset pointed to by base
   697 void AdapterGenerator::store_c2i_long(Register r, Register base,
   698                                       const int st_off, bool is_stack) {
   699 #ifdef _LP64
   700   // In V9, longs are given 2 64-bit slots in the interpreter, but the
   701   // data is passed in only 1 slot.
   702   __ stx(r, base, next_arg_slot(st_off));
   703 #else
   704 #ifdef COMPILER2
   705   // Misaligned store of 64-bit data
   706   __ stw(r, base, arg_slot(st_off));    // lo bits
   707   __ srlx(r, 32, r);
   708   __ stw(r, base, next_arg_slot(st_off));  // hi bits
   709 #else
   710   if (is_stack) {
   711     // Misaligned store of 64-bit data
   712     __ stw(r, base, arg_slot(st_off));    // lo bits
   713     __ srlx(r, 32, r);
   714     __ stw(r, base, next_arg_slot(st_off));  // hi bits
   715   } else {
   716     __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
   717     __ stw(r             , base, next_arg_slot(st_off)); // hi bits
   718   }
   719 #endif // COMPILER2
   720 #endif // _LP64
   721   tag_c2i_arg(frame::TagCategory2, base, st_off, r);
   722 }
   724 void AdapterGenerator::store_c2i_object(Register r, Register base,
   725                       const int st_off) {
   726   __ st_ptr (r, base, arg_slot(st_off));
   727   tag_c2i_arg(frame::TagReference, base, st_off, r);
   728 }
   730 void AdapterGenerator::store_c2i_int(Register r, Register base,
   731                    const int st_off) {
   732   __ st (r, base, arg_slot(st_off));
   733   tag_c2i_arg(frame::TagValue, base, st_off, r);
   734 }
   736 // Stores into offset pointed to by base
   737 void AdapterGenerator::store_c2i_double(VMReg r_2,
   738                       VMReg r_1, Register base, const int st_off) {
   739 #ifdef _LP64
   740   // In V9, doubles are given 2 64-bit slots in the interpreter, but the
   741   // data is passed in only 1 slot.
   742   __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
   743 #else
   744   // Need to marshal 64-bit value from misaligned Lesp loads
   745   __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
   746   __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
   747 #endif
   748   tag_c2i_arg(frame::TagCategory2, base, st_off, G1_scratch);
   749 }
   751 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
   752                                        const int st_off) {
   753   __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
   754   tag_c2i_arg(frame::TagValue, base, st_off, G1_scratch);
   755 }
   757 void AdapterGenerator::gen_c2i_adapter(
   758                             int total_args_passed,
   759                             // VMReg max_arg,
   760                             int comp_args_on_stack, // VMRegStackSlots
   761                             const BasicType *sig_bt,
   762                             const VMRegPair *regs,
   763                             Label& skip_fixup) {
   765   // Before we get into the guts of the C2I adapter, see if we should be here
   766   // at all.  We've come from compiled code and are attempting to jump to the
   767   // interpreter, which means the caller made a static call to get here
   768   // (vcalls always get a compiled target if there is one).  Check for a
   769   // compiled target.  If there is one, we need to patch the caller's call.
   770   // However we will run interpreted if we come thru here. The next pass
   771   // thru the call site will run compiled. If we ran compiled here then
   772   // we can (theorectically) do endless i2c->c2i->i2c transitions during
   773   // deopt/uncommon trap cycles. If we always go interpreted here then
   774   // we can have at most one and don't need to play any tricks to keep
   775   // from endlessly growing the stack.
   776   //
   777   // Actually if we detected that we had an i2c->c2i transition here we
   778   // ought to be able to reset the world back to the state of the interpreted
   779   // call and not bother building another interpreter arg area. We don't
   780   // do that at this point.
   782   patch_callers_callsite();
   784   __ bind(skip_fixup);
   786   // Since all args are passed on the stack, total_args_passed*wordSize is the
   787   // space we need.  Add in varargs area needed by the interpreter. Round up
   788   // to stack alignment.
   789   const int arg_size = total_args_passed * Interpreter::stackElementSize();
   790   const int varargs_area =
   791                  (frame::varargs_offset - frame::register_save_words)*wordSize;
   792   const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
   794   int bias = STACK_BIAS;
   795   const int interp_arg_offset = frame::varargs_offset*wordSize +
   796                         (total_args_passed-1)*Interpreter::stackElementSize();
   798   Register base = SP;
   800 #ifdef _LP64
   801   // In the 64bit build because of wider slots and STACKBIAS we can run
   802   // out of bits in the displacement to do loads and stores.  Use g3 as
   803   // temporary displacement.
   804   if (! __ is_simm13(extraspace)) {
   805     __ set(extraspace, G3_scratch);
   806     __ sub(SP, G3_scratch, SP);
   807   } else {
   808     __ sub(SP, extraspace, SP);
   809   }
   810   set_Rdisp(G3_scratch);
   811 #else
   812   __ sub(SP, extraspace, SP);
   813 #endif // _LP64
   815   // First write G1 (if used) to where ever it must go
   816   for (int i=0; i<total_args_passed; i++) {
   817     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize()) + bias;
   818     VMReg r_1 = regs[i].first();
   819     VMReg r_2 = regs[i].second();
   820     if (r_1 == G1_scratch->as_VMReg()) {
   821       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
   822         store_c2i_object(G1_scratch, base, st_off);
   823       } else if (sig_bt[i] == T_LONG) {
   824         assert(!TieredCompilation, "should not use register args for longs");
   825         store_c2i_long(G1_scratch, base, st_off, false);
   826       } else {
   827         store_c2i_int(G1_scratch, base, st_off);
   828       }
   829     }
   830   }
   832   // Now write the args into the outgoing interpreter space
   833   for (int i=0; i<total_args_passed; i++) {
   834     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize()) + bias;
   835     VMReg r_1 = regs[i].first();
   836     VMReg r_2 = regs[i].second();
   837     if (!r_1->is_valid()) {
   838       assert(!r_2->is_valid(), "");
   839       continue;
   840     }
   841     // Skip G1 if found as we did it first in order to free it up
   842     if (r_1 == G1_scratch->as_VMReg()) {
   843       continue;
   844     }
   845 #ifdef ASSERT
   846     bool G1_forced = false;
   847 #endif // ASSERT
   848     if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
   849 #ifdef _LP64
   850       Register ld_off = Rdisp;
   851       __ set(reg2offset(r_1) + extraspace + bias, ld_off);
   852 #else
   853       int ld_off = reg2offset(r_1) + extraspace + bias;
   854 #ifdef ASSERT
   855       G1_forced = true;
   856 #endif // ASSERT
   857 #endif // _LP64
   858       r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
   859       if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
   860       else                  __ ldx(base, ld_off, G1_scratch);
   861     }
   863     if (r_1->is_Register()) {
   864       Register r = r_1->as_Register()->after_restore();
   865       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
   866         store_c2i_object(r, base, st_off);
   867       } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   868         if (TieredCompilation) {
   869           assert(G1_forced || sig_bt[i] != T_LONG, "should not use register args for longs");
   870         }
   871         store_c2i_long(r, base, st_off, r_2->is_stack());
   872       } else {
   873         store_c2i_int(r, base, st_off);
   874       }
   875     } else {
   876       assert(r_1->is_FloatRegister(), "");
   877       if (sig_bt[i] == T_FLOAT) {
   878         store_c2i_float(r_1->as_FloatRegister(), base, st_off);
   879       } else {
   880         assert(sig_bt[i] == T_DOUBLE, "wrong type");
   881         store_c2i_double(r_2, r_1, base, st_off);
   882       }
   883     }
   884   }
   886 #ifdef _LP64
   887   // Need to reload G3_scratch, used for temporary displacements.
   888   __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
   890   // Pass O5_savedSP as an argument to the interpreter.
   891   // The interpreter will restore SP to this value before returning.
   892   __ set(extraspace, G1);
   893   __ add(SP, G1, O5_savedSP);
   894 #else
   895   // Pass O5_savedSP as an argument to the interpreter.
   896   // The interpreter will restore SP to this value before returning.
   897   __ add(SP, extraspace, O5_savedSP);
   898 #endif // _LP64
   900   __ mov((frame::varargs_offset)*wordSize -
   901          1*Interpreter::stackElementSize()+bias+BytesPerWord, G1);
   902   // Jump to the interpreter just as if interpreter was doing it.
   903   __ jmpl(G3_scratch, 0, G0);
   904   // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
   905   // (really L0) is in use by the compiled frame as a generic temp.  However,
   906   // the interpreter does not know where its args are without some kind of
   907   // arg pointer being passed in.  Pass it in Gargs.
   908   __ delayed()->add(SP, G1, Gargs);
   909 }
   911 void AdapterGenerator::gen_i2c_adapter(
   912                             int total_args_passed,
   913                             // VMReg max_arg,
   914                             int comp_args_on_stack, // VMRegStackSlots
   915                             const BasicType *sig_bt,
   916                             const VMRegPair *regs) {
   918   // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
   919   // layout.  Lesp was saved by the calling I-frame and will be restored on
   920   // return.  Meanwhile, outgoing arg space is all owned by the callee
   921   // C-frame, so we can mangle it at will.  After adjusting the frame size,
   922   // hoist register arguments and repack other args according to the compiled
   923   // code convention.  Finally, end in a jump to the compiled code.  The entry
   924   // point address is the start of the buffer.
   926   // We will only enter here from an interpreted frame and never from after
   927   // passing thru a c2i. Azul allowed this but we do not. If we lose the
   928   // race and use a c2i we will remain interpreted for the race loser(s).
   929   // This removes all sorts of headaches on the x86 side and also eliminates
   930   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
   932   // As you can see from the list of inputs & outputs there are not a lot
   933   // of temp registers to work with: mostly G1, G3 & G4.
   935   // Inputs:
   936   // G2_thread      - TLS
   937   // G5_method      - Method oop
   938   // G4 (Gargs)     - Pointer to interpreter's args
   939   // O0..O4         - free for scratch
   940   // O5_savedSP     - Caller's saved SP, to be restored if needed
   941   // O6             - Current SP!
   942   // O7             - Valid return address
   943   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
   945   // Outputs:
   946   // G2_thread      - TLS
   947   // G1, G4         - Outgoing long args in 32-bit build
   948   // O0-O5          - Outgoing args in compiled layout
   949   // O6             - Adjusted or restored SP
   950   // O7             - Valid return address
   951   // L0-L7, I0-I7    - Caller's temps (no frame pushed yet)
   952   // F0-F7          - more outgoing args
   955   // Gargs is the incoming argument base, and also an outgoing argument.
   956   __ sub(Gargs, BytesPerWord, Gargs);
   958 #ifdef ASSERT
   959   {
   960     // on entry OsavedSP and SP should be equal
   961     Label ok;
   962     __ cmp(O5_savedSP, SP);
   963     __ br(Assembler::equal, false, Assembler::pt, ok);
   964     __ delayed()->nop();
   965     __ stop("I5_savedSP not set");
   966     __ should_not_reach_here();
   967     __ bind(ok);
   968   }
   969 #endif
   971   // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
   972   // WITH O7 HOLDING A VALID RETURN PC
   973   //
   974   // |              |
   975   // :  java stack  :
   976   // |              |
   977   // +--------------+ <--- start of outgoing args
   978   // |   receiver   |   |
   979   // : rest of args :   |---size is java-arg-words
   980   // |              |   |
   981   // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
   982   // |              |   |
   983   // :    unused    :   |---Space for max Java stack, plus stack alignment
   984   // |              |   |
   985   // +--------------+ <--- SP + 16*wordsize
   986   // |              |
   987   // :    window    :
   988   // |              |
   989   // +--------------+ <--- SP
   991   // WE REPACK THE STACK.  We use the common calling convention layout as
   992   // discovered by calling SharedRuntime::calling_convention.  We assume it
   993   // causes an arbitrary shuffle of memory, which may require some register
   994   // temps to do the shuffle.  We hope for (and optimize for) the case where
   995   // temps are not needed.  We may have to resize the stack slightly, in case
   996   // we need alignment padding (32-bit interpreter can pass longs & doubles
   997   // misaligned, but the compilers expect them aligned).
   998   //
   999   // |              |
  1000   // :  java stack  :
  1001   // |              |
  1002   // +--------------+ <--- start of outgoing args
  1003   // |  pad, align  |   |
  1004   // +--------------+   |
  1005   // | ints, floats |   |---Outgoing stack args, packed low.
  1006   // +--------------+   |   First few args in registers.
  1007   // :   doubles    :   |
  1008   // |   longs      |   |
  1009   // +--------------+ <--- SP' + 16*wordsize
  1010   // |              |
  1011   // :    window    :
  1012   // |              |
  1013   // +--------------+ <--- SP'
  1015   // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
  1016   // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
  1017   // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
  1019   // Cut-out for having no stack args.  Since up to 6 args are passed
  1020   // in registers, we will commonly have no stack args.
  1021   if (comp_args_on_stack > 0) {
  1023     // Convert VMReg stack slots to words.
  1024     int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
  1025     // Round up to miminum stack alignment, in wordSize
  1026     comp_words_on_stack = round_to(comp_words_on_stack, 2);
  1027     // Now compute the distance from Lesp to SP.  This calculation does not
  1028     // include the space for total_args_passed because Lesp has not yet popped
  1029     // the arguments.
  1030     __ sub(SP, (comp_words_on_stack)*wordSize, SP);
  1033   // Will jump to the compiled code just as if compiled code was doing it.
  1034   // Pre-load the register-jump target early, to schedule it better.
  1035   __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
  1037   // Now generate the shuffle code.  Pick up all register args and move the
  1038   // rest through G1_scratch.
  1039   for (int i=0; i<total_args_passed; i++) {
  1040     if (sig_bt[i] == T_VOID) {
  1041       // Longs and doubles are passed in native word order, but misaligned
  1042       // in the 32-bit build.
  1043       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
  1044       continue;
  1047     // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
  1048     // 32-bit build and aligned in the 64-bit build.  Look for the obvious
  1049     // ldx/lddf optimizations.
  1051     // Load in argument order going down.
  1052     const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize();
  1053     set_Rdisp(G1_scratch);
  1055     VMReg r_1 = regs[i].first();
  1056     VMReg r_2 = regs[i].second();
  1057     if (!r_1->is_valid()) {
  1058       assert(!r_2->is_valid(), "");
  1059       continue;
  1061     if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
  1062       r_1 = F8->as_VMReg();        // as part of the load/store shuffle
  1063       if (r_2->is_valid()) r_2 = r_1->next();
  1065     if (r_1->is_Register()) {  // Register argument
  1066       Register r = r_1->as_Register()->after_restore();
  1067       if (!r_2->is_valid()) {
  1068         __ ld(Gargs, arg_slot(ld_off), r);
  1069       } else {
  1070 #ifdef _LP64
  1071         // In V9, longs are given 2 64-bit slots in the interpreter, but the
  1072         // data is passed in only 1 slot.
  1073         RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
  1074               next_arg_slot(ld_off) : arg_slot(ld_off);
  1075         __ ldx(Gargs, slot, r);
  1076 #else
  1077         // Need to load a 64-bit value into G1/G4, but G1/G4 is being used in the
  1078         // stack shuffle.  Load the first 2 longs into G1/G4 later.
  1079 #endif
  1081     } else {
  1082       assert(r_1->is_FloatRegister(), "");
  1083       if (!r_2->is_valid()) {
  1084         __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister());
  1085       } else {
  1086 #ifdef _LP64
  1087         // In V9, doubles are given 2 64-bit slots in the interpreter, but the
  1088         // data is passed in only 1 slot.  This code also handles longs that
  1089         // are passed on the stack, but need a stack-to-stack move through a
  1090         // spare float register.
  1091         RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
  1092               next_arg_slot(ld_off) : arg_slot(ld_off);
  1093         __ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister());
  1094 #else
  1095         // Need to marshal 64-bit value from misaligned Lesp loads
  1096         __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
  1097         __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_2->as_FloatRegister());
  1098 #endif
  1101     // Was the argument really intended to be on the stack, but was loaded
  1102     // into F8/F9?
  1103     if (regs[i].first()->is_stack()) {
  1104       assert(r_1->as_FloatRegister() == F8, "fix this code");
  1105       // Convert stack slot to an SP offset
  1106       int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
  1107       // Store down the shuffled stack word.  Target address _is_ aligned.
  1108       RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
  1109       if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
  1110       else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
  1113   bool made_space = false;
  1114 #ifndef _LP64
  1115   // May need to pick up a few long args in G1/G4
  1116   bool g4_crushed = false;
  1117   bool g3_crushed = false;
  1118   for (int i=0; i<total_args_passed; i++) {
  1119     if (regs[i].first()->is_Register() && regs[i].second()->is_valid()) {
  1120       // Load in argument order going down
  1121       int ld_off = (total_args_passed-i)*Interpreter::stackElementSize();
  1122       // Need to marshal 64-bit value from misaligned Lesp loads
  1123       Register r = regs[i].first()->as_Register()->after_restore();
  1124       if (r == G1 || r == G4) {
  1125         assert(!g4_crushed, "ordering problem");
  1126         if (r == G4){
  1127           g4_crushed = true;
  1128           __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
  1129           __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
  1130         } else {
  1131           // better schedule this way
  1132           __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
  1133           __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
  1135         g3_crushed = true;
  1136         __ sllx(r, 32, r);
  1137         __ or3(G3_scratch, r, r);
  1138       } else {
  1139         assert(r->is_out(), "longs passed in two O registers");
  1140         __ ld  (Gargs, arg_slot(ld_off)     , r->successor()); // Load lo bits
  1141         __ ld  (Gargs, next_arg_slot(ld_off), r);              // Load hi bits
  1145 #endif
  1147   // Jump to the compiled code just as if compiled code was doing it.
  1148   //
  1149 #ifndef _LP64
  1150     if (g3_crushed) {
  1151       // Rats load was wasted, at least it is in cache...
  1152       __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3);
  1154 #endif /* _LP64 */
  1156     // 6243940 We might end up in handle_wrong_method if
  1157     // the callee is deoptimized as we race thru here. If that
  1158     // happens we don't want to take a safepoint because the
  1159     // caller frame will look interpreted and arguments are now
  1160     // "compiled" so it is much better to make this transition
  1161     // invisible to the stack walking code. Unfortunately if
  1162     // we try and find the callee by normal means a safepoint
  1163     // is possible. So we stash the desired callee in the thread
  1164     // and the vm will find there should this case occur.
  1165     Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
  1166     __ st_ptr(G5_method, callee_target_addr);
  1168     if (StressNonEntrant) {
  1169       // Open a big window for deopt failure
  1170       __ save_frame(0);
  1171       __ mov(G0, L0);
  1172       Label loop;
  1173       __ bind(loop);
  1174       __ sub(L0, 1, L0);
  1175       __ br_null(L0, false, Assembler::pt, loop);
  1176       __ delayed()->nop();
  1178       __ restore();
  1182     __ jmpl(G3, 0, G0);
  1183     __ delayed()->nop();
  1186 // ---------------------------------------------------------------
  1187 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
  1188                                                             int total_args_passed,
  1189                                                             // VMReg max_arg,
  1190                                                             int comp_args_on_stack, // VMRegStackSlots
  1191                                                             const BasicType *sig_bt,
  1192                                                             const VMRegPair *regs) {
  1193   address i2c_entry = __ pc();
  1195   AdapterGenerator agen(masm);
  1197   agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
  1200   // -------------------------------------------------------------------------
  1201   // Generate a C2I adapter.  On entry we know G5 holds the methodOop.  The
  1202   // args start out packed in the compiled layout.  They need to be unpacked
  1203   // into the interpreter layout.  This will almost always require some stack
  1204   // space.  We grow the current (compiled) stack, then repack the args.  We
  1205   // finally end in a jump to the generic interpreter entry point.  On exit
  1206   // from the interpreter, the interpreter will restore our SP (lest the
  1207   // compiled code, which relys solely on SP and not FP, get sick).
  1209   address c2i_unverified_entry = __ pc();
  1210   Label skip_fixup;
  1212 #if !defined(_LP64) && defined(COMPILER2)
  1213     Register R_temp   = L0;   // another scratch register
  1214 #else
  1215     Register R_temp   = G1;   // another scratch register
  1216 #endif
  1218     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  1220     __ verify_oop(O0);
  1221     __ verify_oop(G5_method);
  1222     __ load_klass(O0, G3_scratch);
  1223     __ verify_oop(G3_scratch);
  1225 #if !defined(_LP64) && defined(COMPILER2)
  1226     __ save(SP, -frame::register_save_words*wordSize, SP);
  1227     __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
  1228     __ verify_oop(R_temp);
  1229     __ cmp(G3_scratch, R_temp);
  1230     __ restore();
  1231 #else
  1232     __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
  1233     __ verify_oop(R_temp);
  1234     __ cmp(G3_scratch, R_temp);
  1235 #endif
  1237     Label ok, ok2;
  1238     __ brx(Assembler::equal, false, Assembler::pt, ok);
  1239     __ delayed()->ld_ptr(G5_method, compiledICHolderOopDesc::holder_method_offset(), G5_method);
  1240     __ jump_to(ic_miss, G3_scratch);
  1241     __ delayed()->nop();
  1243     __ bind(ok);
  1244     // Method might have been compiled since the call site was patched to
  1245     // interpreted if that is the case treat it as a miss so we can get
  1246     // the call site corrected.
  1247     __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
  1248     __ bind(ok2);
  1249     __ br_null(G3_scratch, false, __ pt, skip_fixup);
  1250     __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
  1251     __ jump_to(ic_miss, G3_scratch);
  1252     __ delayed()->nop();
  1256   address c2i_entry = __ pc();
  1258   agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
  1260   __ flush();
  1261   return new AdapterHandlerEntry(i2c_entry, c2i_entry, c2i_unverified_entry);
  1265 // Helper function for native calling conventions
  1266 static VMReg int_stk_helper( int i ) {
  1267   // Bias any stack based VMReg we get by ignoring the window area
  1268   // but not the register parameter save area.
  1269   //
  1270   // This is strange for the following reasons. We'd normally expect
  1271   // the calling convention to return an VMReg for a stack slot
  1272   // completely ignoring any abi reserved area. C2 thinks of that
  1273   // abi area as only out_preserve_stack_slots. This does not include
  1274   // the area allocated by the C abi to store down integer arguments
  1275   // because the java calling convention does not use it. So
  1276   // since c2 assumes that there are only out_preserve_stack_slots
  1277   // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
  1278   // location the c calling convention must add in this bias amount
  1279   // to make up for the fact that the out_preserve_stack_slots is
  1280   // insufficient for C calls. What a mess. I sure hope those 6
  1281   // stack words were worth it on every java call!
  1283   // Another way of cleaning this up would be for out_preserve_stack_slots
  1284   // to take a parameter to say whether it was C or java calling conventions.
  1285   // Then things might look a little better (but not much).
  1287   int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
  1288   if( mem_parm_offset < 0 ) {
  1289     return as_oRegister(i)->as_VMReg();
  1290   } else {
  1291     int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
  1292     // Now return a biased offset that will be correct when out_preserve_slots is added back in
  1293     return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
  1298 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
  1299                                          VMRegPair *regs,
  1300                                          int total_args_passed) {
  1302     // Return the number of VMReg stack_slots needed for the args.
  1303     // This value does not include an abi space (like register window
  1304     // save area).
  1306     // The native convention is V8 if !LP64
  1307     // The LP64 convention is the V9 convention which is slightly more sane.
  1309     // We return the amount of VMReg stack slots we need to reserve for all
  1310     // the arguments NOT counting out_preserve_stack_slots. Since we always
  1311     // have space for storing at least 6 registers to memory we start with that.
  1312     // See int_stk_helper for a further discussion.
  1313     int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
  1315 #ifdef _LP64
  1316     // V9 convention: All things "as-if" on double-wide stack slots.
  1317     // Hoist any int/ptr/long's in the first 6 to int regs.
  1318     // Hoist any flt/dbl's in the first 16 dbl regs.
  1319     int j = 0;                  // Count of actual args, not HALVES
  1320     for( int i=0; i<total_args_passed; i++, j++ ) {
  1321       switch( sig_bt[i] ) {
  1322       case T_BOOLEAN:
  1323       case T_BYTE:
  1324       case T_CHAR:
  1325       case T_INT:
  1326       case T_SHORT:
  1327         regs[i].set1( int_stk_helper( j ) ); break;
  1328       case T_LONG:
  1329         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1330       case T_ADDRESS: // raw pointers, like current thread, for VM calls
  1331       case T_ARRAY:
  1332       case T_OBJECT:
  1333         regs[i].set2( int_stk_helper( j ) );
  1334         break;
  1335       case T_FLOAT:
  1336         if ( j < 16 ) {
  1337           // V9ism: floats go in ODD registers
  1338           regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
  1339         } else {
  1340           // V9ism: floats go in ODD stack slot
  1341           regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
  1343         break;
  1344       case T_DOUBLE:
  1345         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1346         if ( j < 16 ) {
  1347           // V9ism: doubles go in EVEN/ODD regs
  1348           regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
  1349         } else {
  1350           // V9ism: doubles go in EVEN/ODD stack slots
  1351           regs[i].set2(VMRegImpl::stack2reg(j<<1));
  1353         break;
  1354       case T_VOID:  regs[i].set_bad(); j--; break; // Do not count HALVES
  1355       default:
  1356         ShouldNotReachHere();
  1358       if (regs[i].first()->is_stack()) {
  1359         int off =  regs[i].first()->reg2stack();
  1360         if (off > max_stack_slots) max_stack_slots = off;
  1362       if (regs[i].second()->is_stack()) {
  1363         int off =  regs[i].second()->reg2stack();
  1364         if (off > max_stack_slots) max_stack_slots = off;
  1368 #else // _LP64
  1369     // V8 convention: first 6 things in O-regs, rest on stack.
  1370     // Alignment is willy-nilly.
  1371     for( int i=0; i<total_args_passed; i++ ) {
  1372       switch( sig_bt[i] ) {
  1373       case T_ADDRESS: // raw pointers, like current thread, for VM calls
  1374       case T_ARRAY:
  1375       case T_BOOLEAN:
  1376       case T_BYTE:
  1377       case T_CHAR:
  1378       case T_FLOAT:
  1379       case T_INT:
  1380       case T_OBJECT:
  1381       case T_SHORT:
  1382         regs[i].set1( int_stk_helper( i ) );
  1383         break;
  1384       case T_DOUBLE:
  1385       case T_LONG:
  1386         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1387         regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
  1388         break;
  1389       case T_VOID: regs[i].set_bad(); break;
  1390       default:
  1391         ShouldNotReachHere();
  1393       if (regs[i].first()->is_stack()) {
  1394         int off =  regs[i].first()->reg2stack();
  1395         if (off > max_stack_slots) max_stack_slots = off;
  1397       if (regs[i].second()->is_stack()) {
  1398         int off =  regs[i].second()->reg2stack();
  1399         if (off > max_stack_slots) max_stack_slots = off;
  1402 #endif // _LP64
  1404   return round_to(max_stack_slots + 1, 2);
  1409 // ---------------------------------------------------------------------------
  1410 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1411   switch (ret_type) {
  1412   case T_FLOAT:
  1413     __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
  1414     break;
  1415   case T_DOUBLE:
  1416     __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
  1417     break;
  1421 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1422   switch (ret_type) {
  1423   case T_FLOAT:
  1424     __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
  1425     break;
  1426   case T_DOUBLE:
  1427     __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
  1428     break;
  1432 // Check and forward and pending exception.  Thread is stored in
  1433 // L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
  1434 // is no exception handler.  We merely pop this frame off and throw the
  1435 // exception in the caller's frame.
  1436 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
  1437   Label L;
  1438   __ br_null(Rex_oop, false, Assembler::pt, L);
  1439   __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
  1440   // Since this is a native call, we *know* the proper exception handler
  1441   // without calling into the VM: it's the empty function.  Just pop this
  1442   // frame and then jump to forward_exception_entry; O7 will contain the
  1443   // native caller's return PC.
  1444  AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
  1445   __ jump_to(exception_entry, G3_scratch);
  1446   __ delayed()->restore();      // Pop this frame off.
  1447   __ bind(L);
  1450 // A simple move of integer like type
  1451 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1452   if (src.first()->is_stack()) {
  1453     if (dst.first()->is_stack()) {
  1454       // stack to stack
  1455       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1456       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1457     } else {
  1458       // stack to reg
  1459       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1461   } else if (dst.first()->is_stack()) {
  1462     // reg to stack
  1463     __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1464   } else {
  1465     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1469 // On 64 bit we will store integer like items to the stack as
  1470 // 64 bits items (sparc abi) even though java would only store
  1471 // 32bits for a parameter. On 32bit it will simply be 32 bits
  1472 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
  1473 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1474   if (src.first()->is_stack()) {
  1475     if (dst.first()->is_stack()) {
  1476       // stack to stack
  1477       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1478       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1479     } else {
  1480       // stack to reg
  1481       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1483   } else if (dst.first()->is_stack()) {
  1484     // reg to stack
  1485     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1486   } else {
  1487     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1492 // An oop arg. Must pass a handle not the oop itself
  1493 static void object_move(MacroAssembler* masm,
  1494                         OopMap* map,
  1495                         int oop_handle_offset,
  1496                         int framesize_in_slots,
  1497                         VMRegPair src,
  1498                         VMRegPair dst,
  1499                         bool is_receiver,
  1500                         int* receiver_offset) {
  1502   // must pass a handle. First figure out the location we use as a handle
  1504   if (src.first()->is_stack()) {
  1505     // Oop is already on the stack
  1506     Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
  1507     __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
  1508     __ ld_ptr(rHandle, 0, L4);
  1509 #ifdef _LP64
  1510     __ movr( Assembler::rc_z, L4, G0, rHandle );
  1511 #else
  1512     __ tst( L4 );
  1513     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
  1514 #endif
  1515     if (dst.first()->is_stack()) {
  1516       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
  1518     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1519     if (is_receiver) {
  1520       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1522     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1523   } else {
  1524     // Oop is in an input register pass we must flush it to the stack
  1525     const Register rOop = src.first()->as_Register();
  1526     const Register rHandle = L5;
  1527     int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
  1528     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1529     Label skip;
  1530     __ st_ptr(rOop, SP, offset + STACK_BIAS);
  1531     if (is_receiver) {
  1532       *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
  1534     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1535     __ add(SP, offset + STACK_BIAS, rHandle);
  1536 #ifdef _LP64
  1537     __ movr( Assembler::rc_z, rOop, G0, rHandle );
  1538 #else
  1539     __ tst( rOop );
  1540     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
  1541 #endif
  1543     if (dst.first()->is_stack()) {
  1544       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
  1545     } else {
  1546       __ mov(rHandle, dst.first()->as_Register());
  1551 // A float arg may have to do float reg int reg conversion
  1552 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1553   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1555   if (src.first()->is_stack()) {
  1556     if (dst.first()->is_stack()) {
  1557       // stack to stack the easiest of the bunch
  1558       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1559       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1560     } else {
  1561       // stack to reg
  1562       if (dst.first()->is_Register()) {
  1563         __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1564       } else {
  1565         __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1568   } else if (dst.first()->is_stack()) {
  1569     // reg to stack
  1570     if (src.first()->is_Register()) {
  1571       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1572     } else {
  1573       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1575   } else {
  1576     // reg to reg
  1577     if (src.first()->is_Register()) {
  1578       if (dst.first()->is_Register()) {
  1579         // gpr -> gpr
  1580         __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1581       } else {
  1582         // gpr -> fpr
  1583         __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
  1584         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
  1586     } else if (dst.first()->is_Register()) {
  1587       // fpr -> gpr
  1588       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
  1589       __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
  1590     } else {
  1591       // fpr -> fpr
  1592       // In theory these overlap but the ordering is such that this is likely a nop
  1593       if ( src.first() != dst.first()) {
  1594         __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
  1600 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1601   VMRegPair src_lo(src.first());
  1602   VMRegPair src_hi(src.second());
  1603   VMRegPair dst_lo(dst.first());
  1604   VMRegPair dst_hi(dst.second());
  1605   simple_move32(masm, src_lo, dst_lo);
  1606   simple_move32(masm, src_hi, dst_hi);
  1609 // A long move
  1610 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1612   // Do the simple ones here else do two int moves
  1613   if (src.is_single_phys_reg() ) {
  1614     if (dst.is_single_phys_reg()) {
  1615       __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1616     } else {
  1617       // split src into two separate registers
  1618       // Remember hi means hi address or lsw on sparc
  1619       // Move msw to lsw
  1620       if (dst.second()->is_reg()) {
  1621         // MSW -> MSW
  1622         __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
  1623         // Now LSW -> LSW
  1624         // this will only move lo -> lo and ignore hi
  1625         VMRegPair split(dst.second());
  1626         simple_move32(masm, src, split);
  1627       } else {
  1628         VMRegPair split(src.first(), L4->as_VMReg());
  1629         // MSW -> MSW (lo ie. first word)
  1630         __ srax(src.first()->as_Register(), 32, L4);
  1631         split_long_move(masm, split, dst);
  1634   } else if (dst.is_single_phys_reg()) {
  1635     if (src.is_adjacent_aligned_on_stack(2)) {
  1636       __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1637     } else {
  1638       // dst is a single reg.
  1639       // Remember lo is low address not msb for stack slots
  1640       // and lo is the "real" register for registers
  1641       // src is
  1643       VMRegPair split;
  1645       if (src.first()->is_reg()) {
  1646         // src.lo (msw) is a reg, src.hi is stk/reg
  1647         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
  1648         split.set_pair(dst.first(), src.first());
  1649       } else {
  1650         // msw is stack move to L5
  1651         // lsw is stack move to dst.lo (real reg)
  1652         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
  1653         split.set_pair(dst.first(), L5->as_VMReg());
  1656       // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
  1657       // msw   -> src.lo/L5,  lsw -> dst.lo
  1658       split_long_move(masm, src, split);
  1660       // So dst now has the low order correct position the
  1661       // msw half
  1662       __ sllx(split.first()->as_Register(), 32, L5);
  1664       const Register d = dst.first()->as_Register();
  1665       __ or3(L5, d, d);
  1667   } else {
  1668     // For LP64 we can probably do better.
  1669     split_long_move(masm, src, dst);
  1673 // A double move
  1674 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1676   // The painful thing here is that like long_move a VMRegPair might be
  1677   // 1: a single physical register
  1678   // 2: two physical registers (v8)
  1679   // 3: a physical reg [lo] and a stack slot [hi] (v8)
  1680   // 4: two stack slots
  1682   // Since src is always a java calling convention we know that the src pair
  1683   // is always either all registers or all stack (and aligned?)
  1685   // in a register [lo] and a stack slot [hi]
  1686   if (src.first()->is_stack()) {
  1687     if (dst.first()->is_stack()) {
  1688       // stack to stack the easiest of the bunch
  1689       // ought to be a way to do this where if alignment is ok we use ldd/std when possible
  1690       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1691       __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1692       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1693       __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1694     } else {
  1695       // stack to reg
  1696       if (dst.second()->is_stack()) {
  1697         // stack -> reg, stack -> stack
  1698         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1699         if (dst.first()->is_Register()) {
  1700           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1701         } else {
  1702           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1704         // This was missing. (very rare case)
  1705         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1706       } else {
  1707         // stack -> reg
  1708         // Eventually optimize for alignment QQQ
  1709         if (dst.first()->is_Register()) {
  1710           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1711           __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
  1712         } else {
  1713           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1714           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
  1718   } else if (dst.first()->is_stack()) {
  1719     // reg to stack
  1720     if (src.first()->is_Register()) {
  1721       // Eventually optimize for alignment QQQ
  1722       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1723       if (src.second()->is_stack()) {
  1724         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1725         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1726       } else {
  1727         __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
  1729     } else {
  1730       // fpr to stack
  1731       if (src.second()->is_stack()) {
  1732         ShouldNotReachHere();
  1733       } else {
  1734         // Is the stack aligned?
  1735         if (reg2offset(dst.first()) & 0x7) {
  1736           // No do as pairs
  1737           __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1738           __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
  1739         } else {
  1740           __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1744   } else {
  1745     // reg to reg
  1746     if (src.first()->is_Register()) {
  1747       if (dst.first()->is_Register()) {
  1748         // gpr -> gpr
  1749         __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1750         __ mov(src.second()->as_Register(), dst.second()->as_Register());
  1751       } else {
  1752         // gpr -> fpr
  1753         // ought to be able to do a single store
  1754         __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
  1755         __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
  1756         // ought to be able to do a single load
  1757         __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
  1758         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
  1760     } else if (dst.first()->is_Register()) {
  1761       // fpr -> gpr
  1762       // ought to be able to do a single store
  1763       __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
  1764       // ought to be able to do a single load
  1765       // REMEMBER first() is low address not LSB
  1766       __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
  1767       if (dst.second()->is_Register()) {
  1768         __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
  1769       } else {
  1770         __ ld(FP, -4 + STACK_BIAS, L4);
  1771         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1773     } else {
  1774       // fpr -> fpr
  1775       // In theory these overlap but the ordering is such that this is likely a nop
  1776       if ( src.first() != dst.first()) {
  1777         __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
  1783 // Creates an inner frame if one hasn't already been created, and
  1784 // saves a copy of the thread in L7_thread_cache
  1785 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
  1786   if (!*already_created) {
  1787     __ save_frame(0);
  1788     // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
  1789     // Don't use save_thread because it smashes G2 and we merely want to save a
  1790     // copy
  1791     __ mov(G2_thread, L7_thread_cache);
  1792     *already_created = true;
  1796 // ---------------------------------------------------------------------------
  1797 // Generate a native wrapper for a given method.  The method takes arguments
  1798 // in the Java compiled code convention, marshals them to the native
  1799 // convention (handlizes oops, etc), transitions to native, makes the call,
  1800 // returns to java state (possibly blocking), unhandlizes any result and
  1801 // returns.
  1802 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
  1803                                                 methodHandle method,
  1804                                                 int total_in_args,
  1805                                                 int comp_args_on_stack, // in VMRegStackSlots
  1806                                                 BasicType *in_sig_bt,
  1807                                                 VMRegPair *in_regs,
  1808                                                 BasicType ret_type) {
  1810   // Native nmethod wrappers never take possesion of the oop arguments.
  1811   // So the caller will gc the arguments. The only thing we need an
  1812   // oopMap for is if the call is static
  1813   //
  1814   // An OopMap for lock (and class if static), and one for the VM call itself
  1815   OopMapSet *oop_maps = new OopMapSet();
  1816   intptr_t start = (intptr_t)__ pc();
  1818   // First thing make an ic check to see if we should even be here
  1820     Label L;
  1821     const Register temp_reg = G3_scratch;
  1822     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  1823     __ verify_oop(O0);
  1824     __ load_klass(O0, temp_reg);
  1825     __ cmp(temp_reg, G5_inline_cache_reg);
  1826     __ brx(Assembler::equal, true, Assembler::pt, L);
  1827     __ delayed()->nop();
  1829     __ jump_to(ic_miss, temp_reg);
  1830     __ delayed()->nop();
  1831     __ align(CodeEntryAlignment);
  1832     __ bind(L);
  1835   int vep_offset = ((intptr_t)__ pc()) - start;
  1837 #ifdef COMPILER1
  1838   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
  1839     // Object.hashCode can pull the hashCode from the header word
  1840     // instead of doing a full VM transition once it's been computed.
  1841     // Since hashCode is usually polymorphic at call sites we can't do
  1842     // this optimization at the call site without a lot of work.
  1843     Label slowCase;
  1844     Register receiver             = O0;
  1845     Register result               = O0;
  1846     Register header               = G3_scratch;
  1847     Register hash                 = G3_scratch; // overwrite header value with hash value
  1848     Register mask                 = G1;         // to get hash field from header
  1850     // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
  1851     // We depend on hash_mask being at most 32 bits and avoid the use of
  1852     // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  1853     // vm: see markOop.hpp.
  1854     __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
  1855     __ sethi(markOopDesc::hash_mask, mask);
  1856     __ btst(markOopDesc::unlocked_value, header);
  1857     __ br(Assembler::zero, false, Assembler::pn, slowCase);
  1858     if (UseBiasedLocking) {
  1859       // Check if biased and fall through to runtime if so
  1860       __ delayed()->nop();
  1861       __ btst(markOopDesc::biased_lock_bit_in_place, header);
  1862       __ br(Assembler::notZero, false, Assembler::pn, slowCase);
  1864     __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
  1866     // Check for a valid (non-zero) hash code and get its value.
  1867 #ifdef _LP64
  1868     __ srlx(header, markOopDesc::hash_shift, hash);
  1869 #else
  1870     __ srl(header, markOopDesc::hash_shift, hash);
  1871 #endif
  1872     __ andcc(hash, mask, hash);
  1873     __ br(Assembler::equal, false, Assembler::pn, slowCase);
  1874     __ delayed()->nop();
  1876     // leaf return.
  1877     __ retl();
  1878     __ delayed()->mov(hash, result);
  1879     __ bind(slowCase);
  1881 #endif // COMPILER1
  1884   // We have received a description of where all the java arg are located
  1885   // on entry to the wrapper. We need to convert these args to where
  1886   // the jni function will expect them. To figure out where they go
  1887   // we convert the java signature to a C signature by inserting
  1888   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1890   int total_c_args = total_in_args + 1;
  1891   if (method->is_static()) {
  1892     total_c_args++;
  1895   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1896   VMRegPair  * out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
  1898   int argc = 0;
  1899   out_sig_bt[argc++] = T_ADDRESS;
  1900   if (method->is_static()) {
  1901     out_sig_bt[argc++] = T_OBJECT;
  1904   for (int i = 0; i < total_in_args ; i++ ) {
  1905     out_sig_bt[argc++] = in_sig_bt[i];
  1908   // Now figure out where the args must be stored and how much stack space
  1909   // they require (neglecting out_preserve_stack_slots but space for storing
  1910   // the 1st six register arguments). It's weird see int_stk_helper.
  1911   //
  1912   int out_arg_slots;
  1913   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1915   // Compute framesize for the wrapper.  We need to handlize all oops in
  1916   // registers. We must create space for them here that is disjoint from
  1917   // the windowed save area because we have no control over when we might
  1918   // flush the window again and overwrite values that gc has since modified.
  1919   // (The live window race)
  1920   //
  1921   // We always just allocate 6 word for storing down these object. This allow
  1922   // us to simply record the base and use the Ireg number to decide which
  1923   // slot to use. (Note that the reg number is the inbound number not the
  1924   // outbound number).
  1925   // We must shuffle args to match the native convention, and include var-args space.
  1927   // Calculate the total number of stack slots we will need.
  1929   // First count the abi requirement plus all of the outgoing args
  1930   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1932   // Now the space for the inbound oop handle area
  1934   int oop_handle_offset = stack_slots;
  1935   stack_slots += 6*VMRegImpl::slots_per_word;
  1937   // Now any space we need for handlizing a klass if static method
  1939   int oop_temp_slot_offset = 0;
  1940   int klass_slot_offset = 0;
  1941   int klass_offset = -1;
  1942   int lock_slot_offset = 0;
  1943   bool is_static = false;
  1945   if (method->is_static()) {
  1946     klass_slot_offset = stack_slots;
  1947     stack_slots += VMRegImpl::slots_per_word;
  1948     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1949     is_static = true;
  1952   // Plus a lock if needed
  1954   if (method->is_synchronized()) {
  1955     lock_slot_offset = stack_slots;
  1956     stack_slots += VMRegImpl::slots_per_word;
  1959   // Now a place to save return value or as a temporary for any gpr -> fpr moves
  1960   stack_slots += 2;
  1962   // Ok The space we have allocated will look like:
  1963   //
  1964   //
  1965   // FP-> |                     |
  1966   //      |---------------------|
  1967   //      | 2 slots for moves   |
  1968   //      |---------------------|
  1969   //      | lock box (if sync)  |
  1970   //      |---------------------| <- lock_slot_offset
  1971   //      | klass (if static)   |
  1972   //      |---------------------| <- klass_slot_offset
  1973   //      | oopHandle area      |
  1974   //      |---------------------| <- oop_handle_offset
  1975   //      | outbound memory     |
  1976   //      | based arguments     |
  1977   //      |                     |
  1978   //      |---------------------|
  1979   //      | vararg area         |
  1980   //      |---------------------|
  1981   //      |                     |
  1982   // SP-> | out_preserved_slots |
  1983   //
  1984   //
  1987   // Now compute actual number of stack words we need rounding to make
  1988   // stack properly aligned.
  1989   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
  1991   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1993   // Generate stack overflow check before creating frame
  1994   __ generate_stack_overflow_check(stack_size);
  1996   // Generate a new frame for the wrapper.
  1997   __ save(SP, -stack_size, SP);
  1999   int frame_complete = ((intptr_t)__ pc()) - start;
  2001   __ verify_thread();
  2004   //
  2005   // We immediately shuffle the arguments so that any vm call we have to
  2006   // make from here on out (sync slow path, jvmti, etc.) we will have
  2007   // captured the oops from our caller and have a valid oopMap for
  2008   // them.
  2010   // -----------------
  2011   // The Grand Shuffle
  2012   //
  2013   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  2014   // (derived from JavaThread* which is in L7_thread_cache) and, if static,
  2015   // the class mirror instead of a receiver.  This pretty much guarantees that
  2016   // register layout will not match.  We ignore these extra arguments during
  2017   // the shuffle. The shuffle is described by the two calling convention
  2018   // vectors we have in our possession. We simply walk the java vector to
  2019   // get the source locations and the c vector to get the destinations.
  2020   // Because we have a new window and the argument registers are completely
  2021   // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
  2022   // here.
  2024   // This is a trick. We double the stack slots so we can claim
  2025   // the oops in the caller's frame. Since we are sure to have
  2026   // more args than the caller doubling is enough to make
  2027   // sure we can capture all the incoming oop args from the
  2028   // caller.
  2029   //
  2030   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  2031   int c_arg = total_c_args - 1;
  2032   // Record sp-based slot for receiver on stack for non-static methods
  2033   int receiver_offset = -1;
  2035   // We move the arguments backward because the floating point registers
  2036   // destination will always be to a register with a greater or equal register
  2037   // number or the stack.
  2039 #ifdef ASSERT
  2040   bool reg_destroyed[RegisterImpl::number_of_registers];
  2041   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  2042   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2043     reg_destroyed[r] = false;
  2045   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
  2046     freg_destroyed[f] = false;
  2049 #endif /* ASSERT */
  2051   for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
  2053 #ifdef ASSERT
  2054     if (in_regs[i].first()->is_Register()) {
  2055       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
  2056     } else if (in_regs[i].first()->is_FloatRegister()) {
  2057       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
  2059     if (out_regs[c_arg].first()->is_Register()) {
  2060       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  2061     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
  2062       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
  2064 #endif /* ASSERT */
  2066     switch (in_sig_bt[i]) {
  2067       case T_ARRAY:
  2068       case T_OBJECT:
  2069         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  2070                     ((i == 0) && (!is_static)),
  2071                     &receiver_offset);
  2072         break;
  2073       case T_VOID:
  2074         break;
  2076       case T_FLOAT:
  2077         float_move(masm, in_regs[i], out_regs[c_arg]);
  2078           break;
  2080       case T_DOUBLE:
  2081         assert( i + 1 < total_in_args &&
  2082                 in_sig_bt[i + 1] == T_VOID &&
  2083                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  2084         double_move(masm, in_regs[i], out_regs[c_arg]);
  2085         break;
  2087       case T_LONG :
  2088         long_move(masm, in_regs[i], out_regs[c_arg]);
  2089         break;
  2091       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2093       default:
  2094         move32_64(masm, in_regs[i], out_regs[c_arg]);
  2098   // Pre-load a static method's oop into O1.  Used both by locking code and
  2099   // the normal JNI call code.
  2100   if (method->is_static()) {
  2101     __ set_oop_constant(JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()), O1);
  2103     // Now handlize the static class mirror in O1.  It's known not-null.
  2104     __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
  2105     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  2106     __ add(SP, klass_offset + STACK_BIAS, O1);
  2110   const Register L6_handle = L6;
  2112   if (method->is_synchronized()) {
  2113     __ mov(O1, L6_handle);
  2116   // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
  2117   // except O6/O7. So if we must call out we must push a new frame. We immediately
  2118   // push a new frame and flush the windows.
  2120 #ifdef _LP64
  2121   intptr_t thepc = (intptr_t) __ pc();
  2123     address here = __ pc();
  2124     // Call the next instruction
  2125     __ call(here + 8, relocInfo::none);
  2126     __ delayed()->nop();
  2128 #else
  2129   intptr_t thepc = __ load_pc_address(O7, 0);
  2130 #endif /* _LP64 */
  2132   // We use the same pc/oopMap repeatedly when we call out
  2133   oop_maps->add_gc_map(thepc - start, map);
  2135   // O7 now has the pc loaded that we will use when we finally call to native.
  2137   // Save thread in L7; it crosses a bunch of VM calls below
  2138   // Don't use save_thread because it smashes G2 and we merely
  2139   // want to save a copy
  2140   __ mov(G2_thread, L7_thread_cache);
  2143   // If we create an inner frame once is plenty
  2144   // when we create it we must also save G2_thread
  2145   bool inner_frame_created = false;
  2147   // dtrace method entry support
  2149     SkipIfEqual skip_if(
  2150       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
  2151     // create inner frame
  2152     __ save_frame(0);
  2153     __ mov(G2_thread, L7_thread_cache);
  2154     __ set_oop_constant(JNIHandles::make_local(method()), O1);
  2155     __ call_VM_leaf(L7_thread_cache,
  2156          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2157          G2_thread, O1);
  2158     __ restore();
  2161   // RedefineClasses() tracing support for obsolete method entry
  2162   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2163     // create inner frame
  2164     __ save_frame(0);
  2165     __ mov(G2_thread, L7_thread_cache);
  2166     __ set_oop_constant(JNIHandles::make_local(method()), O1);
  2167     __ call_VM_leaf(L7_thread_cache,
  2168          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2169          G2_thread, O1);
  2170     __ restore();
  2173   // We are in the jni frame unless saved_frame is true in which case
  2174   // we are in one frame deeper (the "inner" frame). If we are in the
  2175   // "inner" frames the args are in the Iregs and if the jni frame then
  2176   // they are in the Oregs.
  2177   // If we ever need to go to the VM (for locking, jvmti) then
  2178   // we will always be in the "inner" frame.
  2180   // Lock a synchronized method
  2181   int lock_offset = -1;         // Set if locked
  2182   if (method->is_synchronized()) {
  2183     Register Roop = O1;
  2184     const Register L3_box = L3;
  2186     create_inner_frame(masm, &inner_frame_created);
  2188     __ ld_ptr(I1, 0, O1);
  2189     Label done;
  2191     lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
  2192     __ add(FP, lock_offset+STACK_BIAS, L3_box);
  2193 #ifdef ASSERT
  2194     if (UseBiasedLocking) {
  2195       // making the box point to itself will make it clear it went unused
  2196       // but also be obviously invalid
  2197       __ st_ptr(L3_box, L3_box, 0);
  2199 #endif // ASSERT
  2200     //
  2201     // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
  2202     //
  2203     __ compiler_lock_object(Roop, L1,    L3_box, L2);
  2204     __ br(Assembler::equal, false, Assembler::pt, done);
  2205     __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
  2208     // None of the above fast optimizations worked so we have to get into the
  2209     // slow case of monitor enter.  Inline a special case of call_VM that
  2210     // disallows any pending_exception.
  2211     __ mov(Roop, O0);            // Need oop in O0
  2212     __ mov(L3_box, O1);
  2214     // Record last_Java_sp, in case the VM code releases the JVM lock.
  2216     __ set_last_Java_frame(FP, I7);
  2218     // do the call
  2219     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
  2220     __ delayed()->mov(L7_thread_cache, O2);
  2222     __ restore_thread(L7_thread_cache); // restore G2_thread
  2223     __ reset_last_Java_frame();
  2225 #ifdef ASSERT
  2226     { Label L;
  2227     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
  2228     __ br_null(O0, false, Assembler::pt, L);
  2229     __ delayed()->nop();
  2230     __ stop("no pending exception allowed on exit from IR::monitorenter");
  2231     __ bind(L);
  2233 #endif
  2234     __ bind(done);
  2238   // Finally just about ready to make the JNI call
  2240   __ flush_windows();
  2241   if (inner_frame_created) {
  2242     __ restore();
  2243   } else {
  2244     // Store only what we need from this frame
  2245     // QQQ I think that non-v9 (like we care) we don't need these saves
  2246     // either as the flush traps and the current window goes too.
  2247     __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
  2248     __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
  2251   // get JNIEnv* which is first argument to native
  2253   __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
  2255   // Use that pc we placed in O7 a while back as the current frame anchor
  2257   __ set_last_Java_frame(SP, O7);
  2259   // Transition from _thread_in_Java to _thread_in_native.
  2260   __ set(_thread_in_native, G3_scratch);
  2261   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2263   // We flushed the windows ages ago now mark them as flushed
  2265   // mark windows as flushed
  2266   __ set(JavaFrameAnchor::flushed, G3_scratch);
  2268   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  2270 #ifdef _LP64
  2271   AddressLiteral dest(method->native_function());
  2272   __ relocate(relocInfo::runtime_call_type);
  2273   __ jumpl_to(dest, O7, O7);
  2274 #else
  2275   __ call(method->native_function(), relocInfo::runtime_call_type);
  2276 #endif
  2277   __ delayed()->st(G3_scratch, flags);
  2279   __ restore_thread(L7_thread_cache); // restore G2_thread
  2281   // Unpack native results.  For int-types, we do any needed sign-extension
  2282   // and move things into I0.  The return value there will survive any VM
  2283   // calls for blocking or unlocking.  An FP or OOP result (handle) is done
  2284   // specially in the slow-path code.
  2285   switch (ret_type) {
  2286   case T_VOID:    break;        // Nothing to do!
  2287   case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
  2288   case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
  2289   // In 64 bits build result is in O0, in O0, O1 in 32bit build
  2290   case T_LONG:
  2291 #ifndef _LP64
  2292                   __ mov(O1, I1);
  2293 #endif
  2294                   // Fall thru
  2295   case T_OBJECT:                // Really a handle
  2296   case T_ARRAY:
  2297   case T_INT:
  2298                   __ mov(O0, I0);
  2299                   break;
  2300   case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
  2301   case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
  2302   case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
  2303   case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
  2304     break;                      // Cannot de-handlize until after reclaiming jvm_lock
  2305   default:
  2306     ShouldNotReachHere();
  2309   // must we block?
  2311   // Block, if necessary, before resuming in _thread_in_Java state.
  2312   // In order for GC to work, don't clear the last_Java_sp until after blocking.
  2313   { Label no_block;
  2314     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
  2316     // Switch thread to "native transition" state before reading the synchronization state.
  2317     // This additional state is necessary because reading and testing the synchronization
  2318     // state is not atomic w.r.t. GC, as this scenario demonstrates:
  2319     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  2320     //     VM thread changes sync state to synchronizing and suspends threads for GC.
  2321     //     Thread A is resumed to finish this native method, but doesn't block here since it
  2322     //     didn't see any synchronization is progress, and escapes.
  2323     __ set(_thread_in_native_trans, G3_scratch);
  2324     __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2325     if(os::is_MP()) {
  2326       if (UseMembar) {
  2327         // Force this write out before the read below
  2328         __ membar(Assembler::StoreLoad);
  2329       } else {
  2330         // Write serialization page so VM thread can do a pseudo remote membar.
  2331         // We use the current thread pointer to calculate a thread specific
  2332         // offset to write to within the page. This minimizes bus traffic
  2333         // due to cache line collision.
  2334         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
  2337     __ load_contents(sync_state, G3_scratch);
  2338     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
  2340     Label L;
  2341     Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
  2342     __ br(Assembler::notEqual, false, Assembler::pn, L);
  2343     __ delayed()->ld(suspend_state, G3_scratch);
  2344     __ cmp(G3_scratch, 0);
  2345     __ br(Assembler::equal, false, Assembler::pt, no_block);
  2346     __ delayed()->nop();
  2347     __ bind(L);
  2349     // Block.  Save any potential method result value before the operation and
  2350     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
  2351     // lets us share the oopMap we used when we went native rather the create
  2352     // a distinct one for this pc
  2353     //
  2354     save_native_result(masm, ret_type, stack_slots);
  2355     __ call_VM_leaf(L7_thread_cache,
  2356                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  2357                     G2_thread);
  2359     // Restore any method result value
  2360     restore_native_result(masm, ret_type, stack_slots);
  2361     __ bind(no_block);
  2364   // thread state is thread_in_native_trans. Any safepoint blocking has already
  2365   // happened so we can now change state to _thread_in_Java.
  2368   __ set(_thread_in_Java, G3_scratch);
  2369   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2372   Label no_reguard;
  2373   __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
  2374   __ cmp(G3_scratch, JavaThread::stack_guard_yellow_disabled);
  2375   __ br(Assembler::notEqual, false, Assembler::pt, no_reguard);
  2376   __ delayed()->nop();
  2378     save_native_result(masm, ret_type, stack_slots);
  2379   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
  2380   __ delayed()->nop();
  2382   __ restore_thread(L7_thread_cache); // restore G2_thread
  2383     restore_native_result(masm, ret_type, stack_slots);
  2385   __ bind(no_reguard);
  2387   // Handle possible exception (will unlock if necessary)
  2389   // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
  2391   // Unlock
  2392   if (method->is_synchronized()) {
  2393     Label done;
  2394     Register I2_ex_oop = I2;
  2395     const Register L3_box = L3;
  2396     // Get locked oop from the handle we passed to jni
  2397     __ ld_ptr(L6_handle, 0, L4);
  2398     __ add(SP, lock_offset+STACK_BIAS, L3_box);
  2399     // Must save pending exception around the slow-path VM call.  Since it's a
  2400     // leaf call, the pending exception (if any) can be kept in a register.
  2401     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
  2402     // Now unlock
  2403     //                       (Roop, Rmark, Rbox,   Rscratch)
  2404     __ compiler_unlock_object(L4,   L1,    L3_box, L2);
  2405     __ br(Assembler::equal, false, Assembler::pt, done);
  2406     __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
  2408     // save and restore any potential method result value around the unlocking
  2409     // operation.  Will save in I0 (or stack for FP returns).
  2410     save_native_result(masm, ret_type, stack_slots);
  2412     // Must clear pending-exception before re-entering the VM.  Since this is
  2413     // a leaf call, pending-exception-oop can be safely kept in a register.
  2414     __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
  2416     // slow case of monitor enter.  Inline a special case of call_VM that
  2417     // disallows any pending_exception.
  2418     __ mov(L3_box, O1);
  2420     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
  2421     __ delayed()->mov(L4, O0);              // Need oop in O0
  2423     __ restore_thread(L7_thread_cache); // restore G2_thread
  2425 #ifdef ASSERT
  2426     { Label L;
  2427     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
  2428     __ br_null(O0, false, Assembler::pt, L);
  2429     __ delayed()->nop();
  2430     __ stop("no pending exception allowed on exit from IR::monitorexit");
  2431     __ bind(L);
  2433 #endif
  2434     restore_native_result(masm, ret_type, stack_slots);
  2435     // check_forward_pending_exception jump to forward_exception if any pending
  2436     // exception is set.  The forward_exception routine expects to see the
  2437     // exception in pending_exception and not in a register.  Kind of clumsy,
  2438     // since all folks who branch to forward_exception must have tested
  2439     // pending_exception first and hence have it in a register already.
  2440     __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
  2441     __ bind(done);
  2444   // Tell dtrace about this method exit
  2446     SkipIfEqual skip_if(
  2447       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
  2448     save_native_result(masm, ret_type, stack_slots);
  2449     __ set_oop_constant(JNIHandles::make_local(method()), O1);
  2450     __ call_VM_leaf(L7_thread_cache,
  2451        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2452        G2_thread, O1);
  2453     restore_native_result(masm, ret_type, stack_slots);
  2456   // Clear "last Java frame" SP and PC.
  2457   __ verify_thread(); // G2_thread must be correct
  2458   __ reset_last_Java_frame();
  2460   // Unpack oop result
  2461   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2462       Label L;
  2463       __ addcc(G0, I0, G0);
  2464       __ brx(Assembler::notZero, true, Assembler::pt, L);
  2465       __ delayed()->ld_ptr(I0, 0, I0);
  2466       __ mov(G0, I0);
  2467       __ bind(L);
  2468       __ verify_oop(I0);
  2471   // reset handle block
  2472   __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
  2473   __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
  2475   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
  2476   check_forward_pending_exception(masm, G3_scratch);
  2479   // Return
  2481 #ifndef _LP64
  2482   if (ret_type == T_LONG) {
  2484     // Must leave proper result in O0,O1 and G1 (c2/tiered only)
  2485     __ sllx(I0, 32, G1);          // Shift bits into high G1
  2486     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  2487     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  2489 #endif
  2491   __ ret();
  2492   __ delayed()->restore();
  2494   __ flush();
  2496   nmethod *nm = nmethod::new_native_nmethod(method,
  2497                                             masm->code(),
  2498                                             vep_offset,
  2499                                             frame_complete,
  2500                                             stack_slots / VMRegImpl::slots_per_word,
  2501                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2502                                             in_ByteSize(lock_offset),
  2503                                             oop_maps);
  2504   return nm;
  2508 #ifdef HAVE_DTRACE_H
  2509 // ---------------------------------------------------------------------------
  2510 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  2511 // in the Java compiled code convention, marshals them to the native
  2512 // abi and then leaves nops at the position you would expect to call a native
  2513 // function. When the probe is enabled the nops are replaced with a trap
  2514 // instruction that dtrace inserts and the trace will cause a notification
  2515 // to dtrace.
  2516 //
  2517 // The probes are only able to take primitive types and java/lang/String as
  2518 // arguments.  No other java types are allowed. Strings are converted to utf8
  2519 // strings so that from dtrace point of view java strings are converted to C
  2520 // strings. There is an arbitrary fixed limit on the total space that a method
  2521 // can use for converting the strings. (256 chars per string in the signature).
  2522 // So any java string larger then this is truncated.
  2524 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
  2525 static bool offsets_initialized = false;
  2527 static VMRegPair reg64_to_VMRegPair(Register r) {
  2528   VMRegPair ret;
  2529   if (wordSize == 8) {
  2530     ret.set2(r->as_VMReg());
  2531   } else {
  2532     ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
  2534   return ret;
  2538 nmethod *SharedRuntime::generate_dtrace_nmethod(
  2539     MacroAssembler *masm, methodHandle method) {
  2542   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  2543   // be single threaded in this method.
  2544   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  2546   // Fill in the signature array, for the calling-convention call.
  2547   int total_args_passed = method->size_of_parameters();
  2549   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2550   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2552   // The signature we are going to use for the trap that dtrace will see
  2553   // java/lang/String is converted. We drop "this" and any other object
  2554   // is converted to NULL.  (A one-slot java/lang/Long object reference
  2555   // is converted to a two-slot long, which is why we double the allocation).
  2556   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  2557   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  2559   int i=0;
  2560   int total_strings = 0;
  2561   int first_arg_to_pass = 0;
  2562   int total_c_args = 0;
  2564   // Skip the receiver as dtrace doesn't want to see it
  2565   if( !method->is_static() ) {
  2566     in_sig_bt[i++] = T_OBJECT;
  2567     first_arg_to_pass = 1;
  2570   SignatureStream ss(method->signature());
  2571   for ( ; !ss.at_return_type(); ss.next()) {
  2572     BasicType bt = ss.type();
  2573     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  2574     out_sig_bt[total_c_args++] = bt;
  2575     if( bt == T_OBJECT) {
  2576       symbolOop s = ss.as_symbol_or_null();
  2577       if (s == vmSymbols::java_lang_String()) {
  2578         total_strings++;
  2579         out_sig_bt[total_c_args-1] = T_ADDRESS;
  2580       } else if (s == vmSymbols::java_lang_Boolean() ||
  2581                  s == vmSymbols::java_lang_Byte()) {
  2582         out_sig_bt[total_c_args-1] = T_BYTE;
  2583       } else if (s == vmSymbols::java_lang_Character() ||
  2584                  s == vmSymbols::java_lang_Short()) {
  2585         out_sig_bt[total_c_args-1] = T_SHORT;
  2586       } else if (s == vmSymbols::java_lang_Integer() ||
  2587                  s == vmSymbols::java_lang_Float()) {
  2588         out_sig_bt[total_c_args-1] = T_INT;
  2589       } else if (s == vmSymbols::java_lang_Long() ||
  2590                  s == vmSymbols::java_lang_Double()) {
  2591         out_sig_bt[total_c_args-1] = T_LONG;
  2592         out_sig_bt[total_c_args++] = T_VOID;
  2594     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2595       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2596       // We convert double to long
  2597       out_sig_bt[total_c_args-1] = T_LONG;
  2598       out_sig_bt[total_c_args++] = T_VOID;
  2599     } else if ( bt == T_FLOAT) {
  2600       // We convert float to int
  2601       out_sig_bt[total_c_args-1] = T_INT;
  2605   assert(i==total_args_passed, "validly parsed signature");
  2607   // Now get the compiled-Java layout as input arguments
  2608   int comp_args_on_stack;
  2609   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2610       in_sig_bt, in_regs, total_args_passed, false);
  2612   // We have received a description of where all the java arg are located
  2613   // on entry to the wrapper. We need to convert these args to where
  2614   // the a  native (non-jni) function would expect them. To figure out
  2615   // where they go we convert the java signature to a C signature and remove
  2616   // T_VOID for any long/double we might have received.
  2619   // Now figure out where the args must be stored and how much stack space
  2620   // they require (neglecting out_preserve_stack_slots but space for storing
  2621   // the 1st six register arguments). It's weird see int_stk_helper.
  2622   //
  2623   int out_arg_slots;
  2624   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2626   // Calculate the total number of stack slots we will need.
  2628   // First count the abi requirement plus all of the outgoing args
  2629   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2631   // Plus a temp for possible converion of float/double/long register args
  2633   int conversion_temp = stack_slots;
  2634   stack_slots += 2;
  2637   // Now space for the string(s) we must convert
  2639   int string_locs = stack_slots;
  2640   stack_slots += total_strings *
  2641                    (max_dtrace_string_size / VMRegImpl::stack_slot_size);
  2643   // Ok The space we have allocated will look like:
  2644   //
  2645   //
  2646   // FP-> |                     |
  2647   //      |---------------------|
  2648   //      | string[n]           |
  2649   //      |---------------------| <- string_locs[n]
  2650   //      | string[n-1]         |
  2651   //      |---------------------| <- string_locs[n-1]
  2652   //      | ...                 |
  2653   //      | ...                 |
  2654   //      |---------------------| <- string_locs[1]
  2655   //      | string[0]           |
  2656   //      |---------------------| <- string_locs[0]
  2657   //      | temp                |
  2658   //      |---------------------| <- conversion_temp
  2659   //      | outbound memory     |
  2660   //      | based arguments     |
  2661   //      |                     |
  2662   //      |---------------------|
  2663   //      |                     |
  2664   // SP-> | out_preserved_slots |
  2665   //
  2666   //
  2668   // Now compute actual number of stack words we need rounding to make
  2669   // stack properly aligned.
  2670   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
  2672   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2674   intptr_t start = (intptr_t)__ pc();
  2676   // First thing make an ic check to see if we should even be here
  2679     Label L;
  2680     const Register temp_reg = G3_scratch;
  2681     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  2682     __ verify_oop(O0);
  2683     __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
  2684     __ cmp(temp_reg, G5_inline_cache_reg);
  2685     __ brx(Assembler::equal, true, Assembler::pt, L);
  2686     __ delayed()->nop();
  2688     __ jump_to(ic_miss, temp_reg);
  2689     __ delayed()->nop();
  2690     __ align(CodeEntryAlignment);
  2691     __ bind(L);
  2694   int vep_offset = ((intptr_t)__ pc()) - start;
  2697   // The instruction at the verified entry point must be 5 bytes or longer
  2698   // because it can be patched on the fly by make_non_entrant. The stack bang
  2699   // instruction fits that requirement.
  2701   // Generate stack overflow check before creating frame
  2702   __ generate_stack_overflow_check(stack_size);
  2704   assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
  2705          "valid size for make_non_entrant");
  2707   // Generate a new frame for the wrapper.
  2708   __ save(SP, -stack_size, SP);
  2710   // Frame is now completed as far a size and linkage.
  2712   int frame_complete = ((intptr_t)__ pc()) - start;
  2714 #ifdef ASSERT
  2715   bool reg_destroyed[RegisterImpl::number_of_registers];
  2716   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  2717   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2718     reg_destroyed[r] = false;
  2720   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
  2721     freg_destroyed[f] = false;
  2724 #endif /* ASSERT */
  2726   VMRegPair zero;
  2727   const Register g0 = G0; // without this we get a compiler warning (why??)
  2728   zero.set2(g0->as_VMReg());
  2730   int c_arg, j_arg;
  2732   Register conversion_off = noreg;
  2734   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2735        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2737     VMRegPair src = in_regs[j_arg];
  2738     VMRegPair dst = out_regs[c_arg];
  2740 #ifdef ASSERT
  2741     if (src.first()->is_Register()) {
  2742       assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
  2743     } else if (src.first()->is_FloatRegister()) {
  2744       assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
  2745                                                FloatRegisterImpl::S)], "ack!");
  2747     if (dst.first()->is_Register()) {
  2748       reg_destroyed[dst.first()->as_Register()->encoding()] = true;
  2749     } else if (dst.first()->is_FloatRegister()) {
  2750       freg_destroyed[dst.first()->as_FloatRegister()->encoding(
  2751                                                  FloatRegisterImpl::S)] = true;
  2753 #endif /* ASSERT */
  2755     switch (in_sig_bt[j_arg]) {
  2756       case T_ARRAY:
  2757       case T_OBJECT:
  2759           if (out_sig_bt[c_arg] == T_BYTE  || out_sig_bt[c_arg] == T_SHORT ||
  2760               out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2761             // need to unbox a one-slot value
  2762             Register in_reg = L0;
  2763             Register tmp = L2;
  2764             if ( src.first()->is_reg() ) {
  2765               in_reg = src.first()->as_Register();
  2766             } else {
  2767               assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
  2768                      "must be");
  2769               __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
  2771             // If the final destination is an acceptable register
  2772             if ( dst.first()->is_reg() ) {
  2773               if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
  2774                 tmp = dst.first()->as_Register();
  2778             Label skipUnbox;
  2779             if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
  2780               __ mov(G0, tmp->successor());
  2782             __ br_null(in_reg, true, Assembler::pn, skipUnbox);
  2783             __ delayed()->mov(G0, tmp);
  2785             BasicType bt = out_sig_bt[c_arg];
  2786             int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2787             switch (bt) {
  2788                 case T_BYTE:
  2789                   __ ldub(in_reg, box_offset, tmp); break;
  2790                 case T_SHORT:
  2791                   __ lduh(in_reg, box_offset, tmp); break;
  2792                 case T_INT:
  2793                   __ ld(in_reg, box_offset, tmp); break;
  2794                 case T_LONG:
  2795                   __ ld_long(in_reg, box_offset, tmp); break;
  2796                 default: ShouldNotReachHere();
  2799             __ bind(skipUnbox);
  2800             // If tmp wasn't final destination copy to final destination
  2801             if (tmp == L2) {
  2802               VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
  2803               if (out_sig_bt[c_arg] == T_LONG) {
  2804                 long_move(masm, tmp_as_VM, dst);
  2805               } else {
  2806                 move32_64(masm, tmp_as_VM, out_regs[c_arg]);
  2809             if (out_sig_bt[c_arg] == T_LONG) {
  2810               assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2811               ++c_arg; // move over the T_VOID to keep the loop indices in sync
  2813           } else if (out_sig_bt[c_arg] == T_ADDRESS) {
  2814             Register s =
  2815                 src.first()->is_reg() ? src.first()->as_Register() : L2;
  2816             Register d =
  2817                 dst.first()->is_reg() ? dst.first()->as_Register() : L2;
  2819             // We store the oop now so that the conversion pass can reach
  2820             // while in the inner frame. This will be the only store if
  2821             // the oop is NULL.
  2822             if (s != L2) {
  2823               // src is register
  2824               if (d != L2) {
  2825                 // dst is register
  2826                 __ mov(s, d);
  2827               } else {
  2828                 assert(Assembler::is_simm13(reg2offset(dst.first()) +
  2829                           STACK_BIAS), "must be");
  2830                 __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
  2832             } else {
  2833                 // src not a register
  2834                 assert(Assembler::is_simm13(reg2offset(src.first()) +
  2835                            STACK_BIAS), "must be");
  2836                 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
  2837                 if (d == L2) {
  2838                   assert(Assembler::is_simm13(reg2offset(dst.first()) +
  2839                              STACK_BIAS), "must be");
  2840                   __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
  2843           } else if (out_sig_bt[c_arg] != T_VOID) {
  2844             // Convert the arg to NULL
  2845             if (dst.first()->is_reg()) {
  2846               __ mov(G0, dst.first()->as_Register());
  2847             } else {
  2848               assert(Assembler::is_simm13(reg2offset(dst.first()) +
  2849                          STACK_BIAS), "must be");
  2850               __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
  2854         break;
  2855       case T_VOID:
  2856         break;
  2858       case T_FLOAT:
  2859         if (src.first()->is_stack()) {
  2860           // Stack to stack/reg is simple
  2861           move32_64(masm, src, dst);
  2862         } else {
  2863           if (dst.first()->is_reg()) {
  2864             // freg -> reg
  2865             int off =
  2866               STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  2867             Register d = dst.first()->as_Register();
  2868             if (Assembler::is_simm13(off)) {
  2869               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  2870                      SP, off);
  2871               __ ld(SP, off, d);
  2872             } else {
  2873               if (conversion_off == noreg) {
  2874                 __ set(off, L6);
  2875                 conversion_off = L6;
  2877               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  2878                      SP, conversion_off);
  2879               __ ld(SP, conversion_off , d);
  2881           } else {
  2882             // freg -> mem
  2883             int off = STACK_BIAS + reg2offset(dst.first());
  2884             if (Assembler::is_simm13(off)) {
  2885               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  2886                      SP, off);
  2887             } else {
  2888               if (conversion_off == noreg) {
  2889                 __ set(off, L6);
  2890                 conversion_off = L6;
  2892               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  2893                      SP, conversion_off);
  2897         break;
  2899       case T_DOUBLE:
  2900         assert( j_arg + 1 < total_args_passed &&
  2901                 in_sig_bt[j_arg + 1] == T_VOID &&
  2902                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  2903         if (src.first()->is_stack()) {
  2904           // Stack to stack/reg is simple
  2905           long_move(masm, src, dst);
  2906         } else {
  2907           Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
  2909           // Destination could be an odd reg on 32bit in which case
  2910           // we can't load direct to the destination.
  2912           if (!d->is_even() && wordSize == 4) {
  2913             d = L2;
  2915           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  2916           if (Assembler::is_simm13(off)) {
  2917             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
  2918                    SP, off);
  2919             __ ld_long(SP, off, d);
  2920           } else {
  2921             if (conversion_off == noreg) {
  2922               __ set(off, L6);
  2923               conversion_off = L6;
  2925             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
  2926                    SP, conversion_off);
  2927             __ ld_long(SP, conversion_off, d);
  2929           if (d == L2) {
  2930             long_move(masm, reg64_to_VMRegPair(L2), dst);
  2933         break;
  2935       case T_LONG :
  2936         // 32bit can't do a split move of something like g1 -> O0, O1
  2937         // so use a memory temp
  2938         if (src.is_single_phys_reg() && wordSize == 4) {
  2939           Register tmp = L2;
  2940           if (dst.first()->is_reg() &&
  2941               (wordSize == 8 || dst.first()->as_Register()->is_even())) {
  2942             tmp = dst.first()->as_Register();
  2945           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  2946           if (Assembler::is_simm13(off)) {
  2947             __ stx(src.first()->as_Register(), SP, off);
  2948             __ ld_long(SP, off, tmp);
  2949           } else {
  2950             if (conversion_off == noreg) {
  2951               __ set(off, L6);
  2952               conversion_off = L6;
  2954             __ stx(src.first()->as_Register(), SP, conversion_off);
  2955             __ ld_long(SP, conversion_off, tmp);
  2958           if (tmp == L2) {
  2959             long_move(masm, reg64_to_VMRegPair(L2), dst);
  2961         } else {
  2962           long_move(masm, src, dst);
  2964         break;
  2966       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2968       default:
  2969         move32_64(masm, src, dst);
  2974   // If we have any strings we must store any register based arg to the stack
  2975   // This includes any still live xmm registers too.
  2977   if (total_strings > 0 ) {
  2979     // protect all the arg registers
  2980     __ save_frame(0);
  2981     __ mov(G2_thread, L7_thread_cache);
  2982     const Register L2_string_off = L2;
  2984     // Get first string offset
  2985     __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
  2987     for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
  2988       if (out_sig_bt[c_arg] == T_ADDRESS) {
  2990         VMRegPair dst = out_regs[c_arg];
  2991         const Register d = dst.first()->is_reg() ?
  2992             dst.first()->as_Register()->after_save() : noreg;
  2994         // It's a string the oop and it was already copied to the out arg
  2995         // position
  2996         if (d != noreg) {
  2997           __ mov(d, O0);
  2998         } else {
  2999           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
  3000                  "must be");
  3001           __ ld_ptr(FP,  reg2offset(dst.first()) + STACK_BIAS, O0);
  3003         Label skip;
  3005         __ br_null(O0, false, Assembler::pn, skip);
  3006         __ delayed()->add(FP, L2_string_off, O1);
  3008         if (d != noreg) {
  3009           __ mov(O1, d);
  3010         } else {
  3011           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
  3012                  "must be");
  3013           __ st_ptr(O1, FP,  reg2offset(dst.first()) + STACK_BIAS);
  3016         __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
  3017                 relocInfo::runtime_call_type);
  3018         __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
  3020         __ bind(skip);
  3025     __ mov(L7_thread_cache, G2_thread);
  3026     __ restore();
  3031   // Ok now we are done. Need to place the nop that dtrace wants in order to
  3032   // patch in the trap
  3034   int patch_offset = ((intptr_t)__ pc()) - start;
  3036   __ nop();
  3039   // Return
  3041   __ ret();
  3042   __ delayed()->restore();
  3044   __ flush();
  3046   nmethod *nm = nmethod::new_dtrace_nmethod(
  3047       method, masm->code(), vep_offset, patch_offset, frame_complete,
  3048       stack_slots / VMRegImpl::slots_per_word);
  3049   return nm;
  3053 #endif // HAVE_DTRACE_H
  3055 // this function returns the adjust size (in number of words) to a c2i adapter
  3056 // activation for use during deoptimization
  3057 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
  3058   assert(callee_locals >= callee_parameters,
  3059           "test and remove; got more parms than locals");
  3060   if (callee_locals < callee_parameters)
  3061     return 0;                   // No adjustment for negative locals
  3062   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords();
  3063   return round_to(diff, WordsPerLong);
  3066 // "Top of Stack" slots that may be unused by the calling convention but must
  3067 // otherwise be preserved.
  3068 // On Intel these are not necessary and the value can be zero.
  3069 // On Sparc this describes the words reserved for storing a register window
  3070 // when an interrupt occurs.
  3071 uint SharedRuntime::out_preserve_stack_slots() {
  3072   return frame::register_save_words * VMRegImpl::slots_per_word;
  3075 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
  3076 //
  3077 // Common out the new frame generation for deopt and uncommon trap
  3078 //
  3079   Register        G3pcs              = G3_scratch; // Array of new pcs (input)
  3080   Register        Oreturn0           = O0;
  3081   Register        Oreturn1           = O1;
  3082   Register        O2UnrollBlock      = O2;
  3083   Register        O3array            = O3;         // Array of frame sizes (input)
  3084   Register        O4array_size       = O4;         // number of frames (input)
  3085   Register        O7frame_size       = O7;         // number of frames (input)
  3087   __ ld_ptr(O3array, 0, O7frame_size);
  3088   __ sub(G0, O7frame_size, O7frame_size);
  3089   __ save(SP, O7frame_size, SP);
  3090   __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
  3092   #ifdef ASSERT
  3093   // make sure that the frames are aligned properly
  3094 #ifndef _LP64
  3095   __ btst(wordSize*2-1, SP);
  3096   __ breakpoint_trap(Assembler::notZero);
  3097 #endif
  3098   #endif
  3100   // Deopt needs to pass some extra live values from frame to frame
  3102   if (deopt) {
  3103     __ mov(Oreturn0->after_save(), Oreturn0);
  3104     __ mov(Oreturn1->after_save(), Oreturn1);
  3107   __ mov(O4array_size->after_save(), O4array_size);
  3108   __ sub(O4array_size, 1, O4array_size);
  3109   __ mov(O3array->after_save(), O3array);
  3110   __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
  3111   __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
  3113   #ifdef ASSERT
  3114   // trash registers to show a clear pattern in backtraces
  3115   __ set(0xDEAD0000, I0);
  3116   __ add(I0,  2, I1);
  3117   __ add(I0,  4, I2);
  3118   __ add(I0,  6, I3);
  3119   __ add(I0,  8, I4);
  3120   // Don't touch I5 could have valuable savedSP
  3121   __ set(0xDEADBEEF, L0);
  3122   __ mov(L0, L1);
  3123   __ mov(L0, L2);
  3124   __ mov(L0, L3);
  3125   __ mov(L0, L4);
  3126   __ mov(L0, L5);
  3128   // trash the return value as there is nothing to return yet
  3129   __ set(0xDEAD0001, O7);
  3130   #endif
  3132   __ mov(SP, O5_savedSP);
  3136 static void make_new_frames(MacroAssembler* masm, bool deopt) {
  3137   //
  3138   // loop through the UnrollBlock info and create new frames
  3139   //
  3140   Register        G3pcs              = G3_scratch;
  3141   Register        Oreturn0           = O0;
  3142   Register        Oreturn1           = O1;
  3143   Register        O2UnrollBlock      = O2;
  3144   Register        O3array            = O3;
  3145   Register        O4array_size       = O4;
  3146   Label           loop;
  3148   // Before we make new frames, check to see if stack is available.
  3149   // Do this after the caller's return address is on top of stack
  3150   if (UseStackBanging) {
  3151     // Get total frame size for interpreted frames
  3152     __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
  3153     __ bang_stack_size(O4, O3, G3_scratch);
  3156   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
  3157   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
  3158   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
  3160   // Adjust old interpreter frame to make space for new frame's extra java locals
  3161   //
  3162   // We capture the original sp for the transition frame only because it is needed in
  3163   // order to properly calculate interpreter_sp_adjustment. Even though in real life
  3164   // every interpreter frame captures a savedSP it is only needed at the transition
  3165   // (fortunately). If we had to have it correct everywhere then we would need to
  3166   // be told the sp_adjustment for each frame we create. If the frame size array
  3167   // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
  3168   // for each frame we create and keep up the illusion every where.
  3169   //
  3171   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
  3172   __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
  3173   __ sub(SP, O7, SP);
  3175 #ifdef ASSERT
  3176   // make sure that there is at least one entry in the array
  3177   __ tst(O4array_size);
  3178   __ breakpoint_trap(Assembler::zero);
  3179 #endif
  3181   // Now push the new interpreter frames
  3182   __ bind(loop);
  3184   // allocate a new frame, filling the registers
  3186   gen_new_frame(masm, deopt);        // allocate an interpreter frame
  3188   __ tst(O4array_size);
  3189   __ br(Assembler::notZero, false, Assembler::pn, loop);
  3190   __ delayed()->add(O3array, wordSize, O3array);
  3191   __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
  3195 //------------------------------generate_deopt_blob----------------------------
  3196 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
  3197 // instead.
  3198 void SharedRuntime::generate_deopt_blob() {
  3199   // allocate space for the code
  3200   ResourceMark rm;
  3201   // setup code generation tools
  3202   int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
  3203 #ifdef _LP64
  3204   CodeBuffer buffer("deopt_blob", 2100+pad, 512);
  3205 #else
  3206   // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
  3207   // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
  3208   CodeBuffer buffer("deopt_blob", 1600+pad, 512);
  3209 #endif /* _LP64 */
  3210   MacroAssembler* masm               = new MacroAssembler(&buffer);
  3211   FloatRegister   Freturn0           = F0;
  3212   Register        Greturn1           = G1;
  3213   Register        Oreturn0           = O0;
  3214   Register        Oreturn1           = O1;
  3215   Register        O2UnrollBlock      = O2;
  3216   Register        L0deopt_mode       = L0;
  3217   Register        G4deopt_mode       = G4_scratch;
  3218   int             frame_size_words;
  3219   Address         saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
  3220 #if !defined(_LP64) && defined(COMPILER2)
  3221   Address         saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
  3222 #endif
  3223   Label           cont;
  3225   OopMapSet *oop_maps = new OopMapSet();
  3227   //
  3228   // This is the entry point for code which is returning to a de-optimized
  3229   // frame.
  3230   // The steps taken by this frame are as follows:
  3231   //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
  3232   //     and all potentially live registers (at a pollpoint many registers can be live).
  3233   //
  3234   //   - call the C routine: Deoptimization::fetch_unroll_info (this function
  3235   //     returns information about the number and size of interpreter frames
  3236   //     which are equivalent to the frame which is being deoptimized)
  3237   //   - deallocate the unpack frame, restoring only results values. Other
  3238   //     volatile registers will now be captured in the vframeArray as needed.
  3239   //   - deallocate the deoptimization frame
  3240   //   - in a loop using the information returned in the previous step
  3241   //     push new interpreter frames (take care to propagate the return
  3242   //     values through each new frame pushed)
  3243   //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
  3244   //   - call the C routine: Deoptimization::unpack_frames (this function
  3245   //     lays out values on the interpreter frame which was just created)
  3246   //   - deallocate the dummy unpack_frame
  3247   //   - ensure that all the return values are correctly set and then do
  3248   //     a return to the interpreter entry point
  3249   //
  3250   // Refer to the following methods for more information:
  3251   //   - Deoptimization::fetch_unroll_info
  3252   //   - Deoptimization::unpack_frames
  3254   OopMap* map = NULL;
  3256   int start = __ offset();
  3258   // restore G2, the trampoline destroyed it
  3259   __ get_thread();
  3261   // On entry we have been called by the deoptimized nmethod with a call that
  3262   // replaced the original call (or safepoint polling location) so the deoptimizing
  3263   // pc is now in O7. Return values are still in the expected places
  3265   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3266   __ ba(false, cont);
  3267   __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
  3269   int exception_offset = __ offset() - start;
  3271   // restore G2, the trampoline destroyed it
  3272   __ get_thread();
  3274   // On entry we have been jumped to by the exception handler (or exception_blob
  3275   // for server).  O0 contains the exception oop and O7 contains the original
  3276   // exception pc.  So if we push a frame here it will look to the
  3277   // stack walking code (fetch_unroll_info) just like a normal call so
  3278   // state will be extracted normally.
  3280   // save exception oop in JavaThread and fall through into the
  3281   // exception_in_tls case since they are handled in same way except
  3282   // for where the pending exception is kept.
  3283   __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
  3285   //
  3286   // Vanilla deoptimization with an exception pending in exception_oop
  3287   //
  3288   int exception_in_tls_offset = __ offset() - start;
  3290   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
  3291   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3293   // Restore G2_thread
  3294   __ get_thread();
  3296 #ifdef ASSERT
  3298     // verify that there is really an exception oop in exception_oop
  3299     Label has_exception;
  3300     __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
  3301     __ br_notnull(Oexception, false, Assembler::pt, has_exception);
  3302     __ delayed()-> nop();
  3303     __ stop("no exception in thread");
  3304     __ bind(has_exception);
  3306     // verify that there is no pending exception
  3307     Label no_pending_exception;
  3308     Address exception_addr(G2_thread, Thread::pending_exception_offset());
  3309     __ ld_ptr(exception_addr, Oexception);
  3310     __ br_null(Oexception, false, Assembler::pt, no_pending_exception);
  3311     __ delayed()->nop();
  3312     __ stop("must not have pending exception here");
  3313     __ bind(no_pending_exception);
  3315 #endif
  3317   __ ba(false, cont);
  3318   __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
  3320   //
  3321   // Reexecute entry, similar to c2 uncommon trap
  3322   //
  3323   int reexecute_offset = __ offset() - start;
  3325   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
  3326   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3328   __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
  3330   __ bind(cont);
  3332   __ set_last_Java_frame(SP, noreg);
  3334   // do the call by hand so we can get the oopmap
  3336   __ mov(G2_thread, L7_thread_cache);
  3337   __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
  3338   __ delayed()->mov(G2_thread, O0);
  3340   // Set an oopmap for the call site this describes all our saved volatile registers
  3342   oop_maps->add_gc_map( __ offset()-start, map);
  3344   __ mov(L7_thread_cache, G2_thread);
  3346   __ reset_last_Java_frame();
  3348   // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
  3349   // so this move will survive
  3351   __ mov(L0deopt_mode, G4deopt_mode);
  3353   __ mov(O0, O2UnrollBlock->after_save());
  3355   RegisterSaver::restore_result_registers(masm);
  3357   Label noException;
  3358   __ cmp(G4deopt_mode, Deoptimization::Unpack_exception);   // Was exception pending?
  3359   __ br(Assembler::notEqual, false, Assembler::pt, noException);
  3360   __ delayed()->nop();
  3362   // Move the pending exception from exception_oop to Oexception so
  3363   // the pending exception will be picked up the interpreter.
  3364   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
  3365   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
  3366   __ bind(noException);
  3368   // deallocate the deoptimization frame taking care to preserve the return values
  3369   __ mov(Oreturn0,     Oreturn0->after_save());
  3370   __ mov(Oreturn1,     Oreturn1->after_save());
  3371   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
  3372   __ restore();
  3374   // Allocate new interpreter frame(s) and possible c2i adapter frame
  3376   make_new_frames(masm, true);
  3378   // push a dummy "unpack_frame" taking care of float return values and
  3379   // call Deoptimization::unpack_frames to have the unpacker layout
  3380   // information in the interpreter frames just created and then return
  3381   // to the interpreter entry point
  3382   __ save(SP, -frame_size_words*wordSize, SP);
  3383   __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
  3384 #if !defined(_LP64)
  3385 #if defined(COMPILER2)
  3386   if (!TieredCompilation) {
  3387     // 32-bit 1-register longs return longs in G1
  3388     __ stx(Greturn1, saved_Greturn1_addr);
  3390 #endif
  3391   __ set_last_Java_frame(SP, noreg);
  3392   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
  3393 #else
  3394   // LP64 uses g4 in set_last_Java_frame
  3395   __ mov(G4deopt_mode, O1);
  3396   __ set_last_Java_frame(SP, G0);
  3397   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
  3398 #endif
  3399   __ reset_last_Java_frame();
  3400   __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
  3402   // In tiered we never use C2 to compile methods returning longs so
  3403   // the result is where we expect it already.
  3405 #if !defined(_LP64) && defined(COMPILER2)
  3406   // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
  3407   // I0/I1 if the return value is long.  In the tiered world there is
  3408   // a mismatch between how C1 and C2 return longs compiles and so
  3409   // currently compilation of methods which return longs is disabled
  3410   // for C2 and so is this code.  Eventually C1 and C2 will do the
  3411   // same thing for longs in the tiered world.
  3412   if (!TieredCompilation) {
  3413     Label not_long;
  3414     __ cmp(O0,T_LONG);
  3415     __ br(Assembler::notEqual, false, Assembler::pt, not_long);
  3416     __ delayed()->nop();
  3417     __ ldd(saved_Greturn1_addr,I0);
  3418     __ bind(not_long);
  3420 #endif
  3421   __ ret();
  3422   __ delayed()->restore();
  3424   masm->flush();
  3425   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
  3426   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  3429 #ifdef COMPILER2
  3431 //------------------------------generate_uncommon_trap_blob--------------------
  3432 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
  3433 // instead.
  3434 void SharedRuntime::generate_uncommon_trap_blob() {
  3435   // allocate space for the code
  3436   ResourceMark rm;
  3437   // setup code generation tools
  3438   int pad = VerifyThread ? 512 : 0;
  3439 #ifdef _LP64
  3440   CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
  3441 #else
  3442   // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
  3443   // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
  3444   CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
  3445 #endif
  3446   MacroAssembler* masm               = new MacroAssembler(&buffer);
  3447   Register        O2UnrollBlock      = O2;
  3448   Register        O2klass_index      = O2;
  3450   //
  3451   // This is the entry point for all traps the compiler takes when it thinks
  3452   // it cannot handle further execution of compilation code. The frame is
  3453   // deoptimized in these cases and converted into interpreter frames for
  3454   // execution
  3455   // The steps taken by this frame are as follows:
  3456   //   - push a fake "unpack_frame"
  3457   //   - call the C routine Deoptimization::uncommon_trap (this function
  3458   //     packs the current compiled frame into vframe arrays and returns
  3459   //     information about the number and size of interpreter frames which
  3460   //     are equivalent to the frame which is being deoptimized)
  3461   //   - deallocate the "unpack_frame"
  3462   //   - deallocate the deoptimization frame
  3463   //   - in a loop using the information returned in the previous step
  3464   //     push interpreter frames;
  3465   //   - create a dummy "unpack_frame"
  3466   //   - call the C routine: Deoptimization::unpack_frames (this function
  3467   //     lays out values on the interpreter frame which was just created)
  3468   //   - deallocate the dummy unpack_frame
  3469   //   - return to the interpreter entry point
  3470   //
  3471   //  Refer to the following methods for more information:
  3472   //   - Deoptimization::uncommon_trap
  3473   //   - Deoptimization::unpack_frame
  3475   // the unloaded class index is in O0 (first parameter to this blob)
  3477   // push a dummy "unpack_frame"
  3478   // and call Deoptimization::uncommon_trap to pack the compiled frame into
  3479   // vframe array and return the UnrollBlock information
  3480   __ save_frame(0);
  3481   __ set_last_Java_frame(SP, noreg);
  3482   __ mov(I0, O2klass_index);
  3483   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
  3484   __ reset_last_Java_frame();
  3485   __ mov(O0, O2UnrollBlock->after_save());
  3486   __ restore();
  3488   // deallocate the deoptimized frame taking care to preserve the return values
  3489   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
  3490   __ restore();
  3492   // Allocate new interpreter frame(s) and possible c2i adapter frame
  3494   make_new_frames(masm, false);
  3496   // push a dummy "unpack_frame" taking care of float return values and
  3497   // call Deoptimization::unpack_frames to have the unpacker layout
  3498   // information in the interpreter frames just created and then return
  3499   // to the interpreter entry point
  3500   __ save_frame(0);
  3501   __ set_last_Java_frame(SP, noreg);
  3502   __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
  3503   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
  3504   __ reset_last_Java_frame();
  3505   __ ret();
  3506   __ delayed()->restore();
  3508   masm->flush();
  3509   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
  3512 #endif // COMPILER2
  3514 //------------------------------generate_handler_blob-------------------
  3515 //
  3516 // Generate a special Compile2Runtime blob that saves all registers, and sets
  3517 // up an OopMap.
  3518 //
  3519 // This blob is jumped to (via a breakpoint and the signal handler) from a
  3520 // safepoint in compiled code.  On entry to this blob, O7 contains the
  3521 // address in the original nmethod at which we should resume normal execution.
  3522 // Thus, this blob looks like a subroutine which must preserve lots of
  3523 // registers and return normally.  Note that O7 is never register-allocated,
  3524 // so it is guaranteed to be free here.
  3525 //
  3527 // The hardest part of what this blob must do is to save the 64-bit %o
  3528 // registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
  3529 // an interrupt will chop off their heads.  Making space in the caller's frame
  3530 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
  3531 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
  3532 // SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
  3533 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
  3534 // Tricky, tricky, tricky...
  3536 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
  3537   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3539   // allocate space for the code
  3540   ResourceMark rm;
  3541   // setup code generation tools
  3542   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
  3543   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
  3544   // even larger with TraceJumps
  3545   int pad = TraceJumps ? 512 : 0;
  3546   CodeBuffer buffer("handler_blob", 1600 + pad, 512);
  3547   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3548   int             frame_size_words;
  3549   OopMapSet *oop_maps = new OopMapSet();
  3550   OopMap* map = NULL;
  3552   int start = __ offset();
  3554   // If this causes a return before the processing, then do a "restore"
  3555   if (cause_return) {
  3556     __ restore();
  3557   } else {
  3558     // Make it look like we were called via the poll
  3559     // so that frame constructor always sees a valid return address
  3560     __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
  3561     __ sub(O7, frame::pc_return_offset, O7);
  3564   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3566   // setup last_Java_sp (blows G4)
  3567   __ set_last_Java_frame(SP, noreg);
  3569   // call into the runtime to handle illegal instructions exception
  3570   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
  3571   __ mov(G2_thread, O0);
  3572   __ save_thread(L7_thread_cache);
  3573   __ call(call_ptr);
  3574   __ delayed()->nop();
  3576   // Set an oopmap for the call site.
  3577   // We need this not only for callee-saved registers, but also for volatile
  3578   // registers that the compiler might be keeping live across a safepoint.
  3580   oop_maps->add_gc_map( __ offset() - start, map);
  3582   __ restore_thread(L7_thread_cache);
  3583   // clear last_Java_sp
  3584   __ reset_last_Java_frame();
  3586   // Check for exceptions
  3587   Label pending;
  3589   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
  3590   __ tst(O1);
  3591   __ brx(Assembler::notEqual, true, Assembler::pn, pending);
  3592   __ delayed()->nop();
  3594   RegisterSaver::restore_live_registers(masm);
  3596   // We are back the the original state on entry and ready to go.
  3598   __ retl();
  3599   __ delayed()->nop();
  3601   // Pending exception after the safepoint
  3603   __ bind(pending);
  3605   RegisterSaver::restore_live_registers(masm);
  3607   // We are back the the original state on entry.
  3609   // Tail-call forward_exception_entry, with the issuing PC in O7,
  3610   // so it looks like the original nmethod called forward_exception_entry.
  3611   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
  3612   __ JMP(O0, 0);
  3613   __ delayed()->nop();
  3615   // -------------
  3616   // make sure all code is generated
  3617   masm->flush();
  3619   // return exception blob
  3620   return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
  3623 //
  3624 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3625 //
  3626 // Generate a stub that calls into vm to find out the proper destination
  3627 // of a java call. All the argument registers are live at this point
  3628 // but since this is generic code we don't know what they are and the caller
  3629 // must do any gc of the args.
  3630 //
  3631 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
  3632   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3634   // allocate space for the code
  3635   ResourceMark rm;
  3636   // setup code generation tools
  3637   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
  3638   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
  3639   // even larger with TraceJumps
  3640   int pad = TraceJumps ? 512 : 0;
  3641   CodeBuffer buffer(name, 1600 + pad, 512);
  3642   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3643   int             frame_size_words;
  3644   OopMapSet *oop_maps = new OopMapSet();
  3645   OopMap* map = NULL;
  3647   int start = __ offset();
  3649   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3651   int frame_complete = __ offset();
  3653   // setup last_Java_sp (blows G4)
  3654   __ set_last_Java_frame(SP, noreg);
  3656   // call into the runtime to handle illegal instructions exception
  3657   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
  3658   __ mov(G2_thread, O0);
  3659   __ save_thread(L7_thread_cache);
  3660   __ call(destination, relocInfo::runtime_call_type);
  3661   __ delayed()->nop();
  3663   // O0 contains the address we are going to jump to assuming no exception got installed
  3665   // Set an oopmap for the call site.
  3666   // We need this not only for callee-saved registers, but also for volatile
  3667   // registers that the compiler might be keeping live across a safepoint.
  3669   oop_maps->add_gc_map( __ offset() - start, map);
  3671   __ restore_thread(L7_thread_cache);
  3672   // clear last_Java_sp
  3673   __ reset_last_Java_frame();
  3675   // Check for exceptions
  3676   Label pending;
  3678   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
  3679   __ tst(O1);
  3680   __ brx(Assembler::notEqual, true, Assembler::pn, pending);
  3681   __ delayed()->nop();
  3683   // get the returned methodOop
  3685   __ get_vm_result(G5_method);
  3686   __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
  3688   // O0 is where we want to jump, overwrite G3 which is saved and scratch
  3690   __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
  3692   RegisterSaver::restore_live_registers(masm);
  3694   // We are back the the original state on entry and ready to go.
  3696   __ JMP(G3, 0);
  3697   __ delayed()->nop();
  3699   // Pending exception after the safepoint
  3701   __ bind(pending);
  3703   RegisterSaver::restore_live_registers(masm);
  3705   // We are back the the original state on entry.
  3707   // Tail-call forward_exception_entry, with the issuing PC in O7,
  3708   // so it looks like the original nmethod called forward_exception_entry.
  3709   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
  3710   __ JMP(O0, 0);
  3711   __ delayed()->nop();
  3713   // -------------
  3714   // make sure all code is generated
  3715   masm->flush();
  3717   // return the  blob
  3718   // frame_size_words or bytes??
  3719   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
  3722 void SharedRuntime::generate_stubs() {
  3724   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
  3725                                              "wrong_method_stub");
  3727   _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
  3728                                         "ic_miss_stub");
  3730   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
  3731                                         "resolve_opt_virtual_call");
  3733   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
  3734                                         "resolve_virtual_call");
  3736   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
  3737                                         "resolve_static_call");
  3739   _polling_page_safepoint_handler_blob =
  3740     generate_handler_blob(CAST_FROM_FN_PTR(address,
  3741                    SafepointSynchronize::handle_polling_page_exception), false);
  3743   _polling_page_return_handler_blob =
  3744     generate_handler_blob(CAST_FROM_FN_PTR(address,
  3745                    SafepointSynchronize::handle_polling_page_exception), true);
  3747   generate_deopt_blob();
  3749 #ifdef COMPILER2
  3750   generate_uncommon_trap_blob();
  3751 #endif // COMPILER2

mercurial