src/share/vm/memory/blockOffsetTable.cpp

Wed, 15 Feb 2012 10:12:55 -0800

author
never
date
Wed, 15 Feb 2012 10:12:55 -0800
changeset 3571
09d00c18e323
parent 2943
537a4053b0f9
child 3900
d2a62e0f25eb
permissions
-rw-r--r--

7145537: minor tweaks to LogEvents
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_interface/collectedHeap.inline.hpp"
    27 #include "memory/blockOffsetTable.inline.hpp"
    28 #include "memory/iterator.hpp"
    29 #include "memory/space.inline.hpp"
    30 #include "memory/universe.hpp"
    31 #include "oops/oop.inline.hpp"
    32 #include "runtime/java.hpp"
    34 //////////////////////////////////////////////////////////////////////
    35 // BlockOffsetSharedArray
    36 //////////////////////////////////////////////////////////////////////
    38 BlockOffsetSharedArray::BlockOffsetSharedArray(MemRegion reserved,
    39                                                size_t init_word_size):
    40   _reserved(reserved), _end(NULL)
    41 {
    42   size_t size = compute_size(reserved.word_size());
    43   ReservedSpace rs(size);
    44   if (!rs.is_reserved()) {
    45     vm_exit_during_initialization("Could not reserve enough space for heap offset array");
    46   }
    47   if (!_vs.initialize(rs, 0)) {
    48     vm_exit_during_initialization("Could not reserve enough space for heap offset array");
    49   }
    50   _offset_array = (u_char*)_vs.low_boundary();
    51   resize(init_word_size);
    52   if (TraceBlockOffsetTable) {
    53     gclog_or_tty->print_cr("BlockOffsetSharedArray::BlockOffsetSharedArray: ");
    54     gclog_or_tty->print_cr("  "
    55                   "  rs.base(): " INTPTR_FORMAT
    56                   "  rs.size(): " INTPTR_FORMAT
    57                   "  rs end(): " INTPTR_FORMAT,
    58                   rs.base(), rs.size(), rs.base() + rs.size());
    59     gclog_or_tty->print_cr("  "
    60                   "  _vs.low_boundary(): " INTPTR_FORMAT
    61                   "  _vs.high_boundary(): " INTPTR_FORMAT,
    62                   _vs.low_boundary(),
    63                   _vs.high_boundary());
    64   }
    65 }
    67 void BlockOffsetSharedArray::resize(size_t new_word_size) {
    68   assert(new_word_size <= _reserved.word_size(), "Resize larger than reserved");
    69   size_t new_size = compute_size(new_word_size);
    70   size_t old_size = _vs.committed_size();
    71   size_t delta;
    72   char* high = _vs.high();
    73   _end = _reserved.start() + new_word_size;
    74   if (new_size > old_size) {
    75     delta = ReservedSpace::page_align_size_up(new_size - old_size);
    76     assert(delta > 0, "just checking");
    77     if (!_vs.expand_by(delta)) {
    78       // Do better than this for Merlin
    79       vm_exit_out_of_memory(delta, "offset table expansion");
    80     }
    81     assert(_vs.high() == high + delta, "invalid expansion");
    82   } else {
    83     delta = ReservedSpace::page_align_size_down(old_size - new_size);
    84     if (delta == 0) return;
    85     _vs.shrink_by(delta);
    86     assert(_vs.high() == high - delta, "invalid expansion");
    87   }
    88 }
    90 bool BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const {
    91   assert(p >= _reserved.start(), "just checking");
    92   size_t delta = pointer_delta(p, _reserved.start());
    93   return (delta & right_n_bits(LogN_words)) == (size_t)NoBits;
    94 }
    97 void BlockOffsetSharedArray::serialize(SerializeOopClosure* soc,
    98                                        HeapWord* start, HeapWord* end) {
    99   assert(_offset_array[0] == 0, "objects can't cross covered areas");
   100   assert(start <= end, "bad address range");
   101   size_t start_index = index_for(start);
   102   size_t end_index = index_for(end-1)+1;
   103   soc->do_region(&_offset_array[start_index],
   104                  (end_index - start_index) * sizeof(_offset_array[0]));
   105 }
   107 //////////////////////////////////////////////////////////////////////
   108 // BlockOffsetArray
   109 //////////////////////////////////////////////////////////////////////
   111 BlockOffsetArray::BlockOffsetArray(BlockOffsetSharedArray* array,
   112                                    MemRegion mr, bool init_to_zero_) :
   113   BlockOffsetTable(mr.start(), mr.end()),
   114   _array(array)
   115 {
   116   assert(_bottom <= _end, "arguments out of order");
   117   set_init_to_zero(init_to_zero_);
   118   if (!init_to_zero_) {
   119     // initialize cards to point back to mr.start()
   120     set_remainder_to_point_to_start(mr.start() + N_words, mr.end());
   121     _array->set_offset_array(0, 0);  // set first card to 0
   122   }
   123 }
   126 // The arguments follow the normal convention of denoting
   127 // a right-open interval: [start, end)
   128 void
   129 BlockOffsetArray::
   130 set_remainder_to_point_to_start(HeapWord* start, HeapWord* end, bool reducing) {
   132   check_reducing_assertion(reducing);
   133   if (start >= end) {
   134     // The start address is equal to the end address (or to
   135     // the right of the end address) so there are not cards
   136     // that need to be updated..
   137     return;
   138   }
   140   // Write the backskip value for each region.
   141   //
   142   //    offset
   143   //    card             2nd                       3rd
   144   //     | +- 1st        |                         |
   145   //     v v             v                         v
   146   //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+-+-+-
   147   //    |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ...
   148   //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+-+-+-
   149   //    11              19                        75
   150   //      12
   151   //
   152   //    offset card is the card that points to the start of an object
   153   //      x - offset value of offset card
   154   //    1st - start of first logarithmic region
   155   //      0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1
   156   //    2nd - start of second logarithmic region
   157   //      1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8
   158   //    3rd - start of third logarithmic region
   159   //      2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64
   160   //
   161   //    integer below the block offset entry is an example of
   162   //    the index of the entry
   163   //
   164   //    Given an address,
   165   //      Find the index for the address
   166   //      Find the block offset table entry
   167   //      Convert the entry to a back slide
   168   //        (e.g., with today's, offset = 0x81 =>
   169   //          back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8
   170   //      Move back N (e.g., 8) entries and repeat with the
   171   //        value of the new entry
   172   //
   173   size_t start_card = _array->index_for(start);
   174   size_t end_card = _array->index_for(end-1);
   175   assert(start ==_array->address_for_index(start_card), "Precondition");
   176   assert(end ==_array->address_for_index(end_card)+N_words, "Precondition");
   177   set_remainder_to_point_to_start_incl(start_card, end_card, reducing); // closed interval
   178 }
   181 // Unlike the normal convention in this code, the argument here denotes
   182 // a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start()
   183 // above.
   184 void
   185 BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card, bool reducing) {
   187   check_reducing_assertion(reducing);
   188   if (start_card > end_card) {
   189     return;
   190   }
   191   assert(start_card > _array->index_for(_bottom), "Cannot be first card");
   192   assert(_array->offset_array(start_card-1) <= N_words,
   193     "Offset card has an unexpected value");
   194   size_t start_card_for_region = start_card;
   195   u_char offset = max_jubyte;
   196   for (int i = 0; i < N_powers; i++) {
   197     // -1 so that the the card with the actual offset is counted.  Another -1
   198     // so that the reach ends in this region and not at the start
   199     // of the next.
   200     size_t reach = start_card - 1 + (power_to_cards_back(i+1) - 1);
   201     offset = N_words + i;
   202     if (reach >= end_card) {
   203       _array->set_offset_array(start_card_for_region, end_card, offset, reducing);
   204       start_card_for_region = reach + 1;
   205       break;
   206     }
   207     _array->set_offset_array(start_card_for_region, reach, offset, reducing);
   208     start_card_for_region = reach + 1;
   209   }
   210   assert(start_card_for_region > end_card, "Sanity check");
   211   DEBUG_ONLY(check_all_cards(start_card, end_card);)
   212 }
   214 // The card-interval [start_card, end_card] is a closed interval; this
   215 // is an expensive check -- use with care and only under protection of
   216 // suitable flag.
   217 void BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const {
   219   if (end_card < start_card) {
   220     return;
   221   }
   222   guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card");
   223   u_char last_entry = N_words;
   224   for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) {
   225     u_char entry = _array->offset_array(c);
   226     guarantee(entry >= last_entry, "Monotonicity");
   227     if (c - start_card > power_to_cards_back(1)) {
   228       guarantee(entry > N_words, "Should be in logarithmic region");
   229     }
   230     size_t backskip = entry_to_cards_back(entry);
   231     size_t landing_card = c - backskip;
   232     guarantee(landing_card >= (start_card - 1), "Inv");
   233     if (landing_card >= start_card) {
   234       guarantee(_array->offset_array(landing_card) <= entry, "Monotonicity");
   235     } else {
   236       guarantee(landing_card == (start_card - 1), "Tautology");
   237       // Note that N_words is the maximum offset value
   238       guarantee(_array->offset_array(landing_card) <= N_words, "Offset value");
   239     }
   240     last_entry = entry;  // remember for monotonicity test
   241   }
   242 }
   245 void
   246 BlockOffsetArray::alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
   247   assert(blk_start != NULL && blk_end > blk_start,
   248          "phantom block");
   249   single_block(blk_start, blk_end);
   250 }
   252 // Action_mark - update the BOT for the block [blk_start, blk_end).
   253 //               Current typical use is for splitting a block.
   254 // Action_single - udpate the BOT for an allocation.
   255 // Action_verify - BOT verification.
   256 void
   257 BlockOffsetArray::do_block_internal(HeapWord* blk_start,
   258                                     HeapWord* blk_end,
   259                                     Action action, bool reducing) {
   260   assert(Universe::heap()->is_in_reserved(blk_start),
   261          "reference must be into the heap");
   262   assert(Universe::heap()->is_in_reserved(blk_end-1),
   263          "limit must be within the heap");
   264   // This is optimized to make the test fast, assuming we only rarely
   265   // cross boundaries.
   266   uintptr_t end_ui = (uintptr_t)(blk_end - 1);
   267   uintptr_t start_ui = (uintptr_t)blk_start;
   268   // Calculate the last card boundary preceding end of blk
   269   intptr_t boundary_before_end = (intptr_t)end_ui;
   270   clear_bits(boundary_before_end, right_n_bits(LogN));
   271   if (start_ui <= (uintptr_t)boundary_before_end) {
   272     // blk starts at or crosses a boundary
   273     // Calculate index of card on which blk begins
   274     size_t    start_index = _array->index_for(blk_start);
   275     // Index of card on which blk ends
   276     size_t    end_index   = _array->index_for(blk_end - 1);
   277     // Start address of card on which blk begins
   278     HeapWord* boundary    = _array->address_for_index(start_index);
   279     assert(boundary <= blk_start, "blk should start at or after boundary");
   280     if (blk_start != boundary) {
   281       // blk starts strictly after boundary
   282       // adjust card boundary and start_index forward to next card
   283       boundary += N_words;
   284       start_index++;
   285     }
   286     assert(start_index <= end_index, "monotonicity of index_for()");
   287     assert(boundary <= (HeapWord*)boundary_before_end, "tautology");
   288     switch (action) {
   289       case Action_mark: {
   290         if (init_to_zero()) {
   291           _array->set_offset_array(start_index, boundary, blk_start, reducing);
   292           break;
   293         } // Else fall through to the next case
   294       }
   295       case Action_single: {
   296         _array->set_offset_array(start_index, boundary, blk_start, reducing);
   297         // We have finished marking the "offset card". We need to now
   298         // mark the subsequent cards that this blk spans.
   299         if (start_index < end_index) {
   300           HeapWord* rem_st = _array->address_for_index(start_index) + N_words;
   301           HeapWord* rem_end = _array->address_for_index(end_index) + N_words;
   302           set_remainder_to_point_to_start(rem_st, rem_end, reducing);
   303         }
   304         break;
   305       }
   306       case Action_check: {
   307         _array->check_offset_array(start_index, boundary, blk_start);
   308         // We have finished checking the "offset card". We need to now
   309         // check the subsequent cards that this blk spans.
   310         check_all_cards(start_index + 1, end_index);
   311         break;
   312       }
   313       default:
   314         ShouldNotReachHere();
   315     }
   316   }
   317 }
   319 // The range [blk_start, blk_end) represents a single contiguous block
   320 // of storage; modify the block offset table to represent this
   321 // information; Right-open interval: [blk_start, blk_end)
   322 // NOTE: this method does _not_ adjust _unallocated_block.
   323 void
   324 BlockOffsetArray::single_block(HeapWord* blk_start,
   325                                HeapWord* blk_end) {
   326   do_block_internal(blk_start, blk_end, Action_single);
   327 }
   329 void BlockOffsetArray::verify() const {
   330   // For each entry in the block offset table, verify that
   331   // the entry correctly finds the start of an object at the
   332   // first address covered by the block or to the left of that
   333   // first address.
   335   size_t next_index = 1;
   336   size_t last_index = last_active_index();
   338   // Use for debugging.  Initialize to NULL to distinguish the
   339   // first iteration through the while loop.
   340   HeapWord* last_p = NULL;
   341   HeapWord* last_start = NULL;
   342   oop last_o = NULL;
   344   while (next_index <= last_index) {
   345     // Use an address past the start of the address for
   346     // the entry.
   347     HeapWord* p = _array->address_for_index(next_index) + 1;
   348     if (p >= _end) {
   349       // That's all of the allocated block table.
   350       return;
   351     }
   352     // block_start() asserts that start <= p.
   353     HeapWord* start = block_start(p);
   354     // First check if the start is an allocated block and only
   355     // then if it is a valid object.
   356     oop o = oop(start);
   357     assert(!Universe::is_fully_initialized() ||
   358            _sp->is_free_block(start) ||
   359            o->is_oop_or_null(), "Bad object was found");
   360     next_index++;
   361     last_p = p;
   362     last_start = start;
   363     last_o = o;
   364   }
   365 }
   367 //////////////////////////////////////////////////////////////////////
   368 // BlockOffsetArrayNonContigSpace
   369 //////////////////////////////////////////////////////////////////////
   371 // The block [blk_start, blk_end) has been allocated;
   372 // adjust the block offset table to represent this information;
   373 // NOTE: Clients of BlockOffsetArrayNonContigSpace: consider using
   374 // the somewhat more lightweight split_block() or
   375 // (when init_to_zero()) mark_block() wherever possible.
   376 // right-open interval: [blk_start, blk_end)
   377 void
   378 BlockOffsetArrayNonContigSpace::alloc_block(HeapWord* blk_start,
   379                                             HeapWord* blk_end) {
   380   assert(blk_start != NULL && blk_end > blk_start,
   381          "phantom block");
   382   single_block(blk_start, blk_end);
   383   allocated(blk_start, blk_end);
   384 }
   386 // Adjust BOT to show that a previously whole block has been split
   387 // into two.  We verify the BOT for the first part (prefix) and
   388 // update the  BOT for the second part (suffix).
   389 //      blk is the start of the block
   390 //      blk_size is the size of the original block
   391 //      left_blk_size is the size of the first part of the split
   392 void BlockOffsetArrayNonContigSpace::split_block(HeapWord* blk,
   393                                                  size_t blk_size,
   394                                                  size_t left_blk_size) {
   395   // Verify that the BOT shows [blk, blk + blk_size) to be one block.
   396   verify_single_block(blk, blk_size);
   397   // Update the BOT to indicate that [blk + left_blk_size, blk + blk_size)
   398   // is one single block.
   399   assert(blk_size > 0, "Should be positive");
   400   assert(left_blk_size > 0, "Should be positive");
   401   assert(left_blk_size < blk_size, "Not a split");
   403   // Start addresses of prefix block and suffix block.
   404   HeapWord* pref_addr = blk;
   405   HeapWord* suff_addr = blk + left_blk_size;
   406   HeapWord* end_addr  = blk + blk_size;
   408   // Indices for starts of prefix block and suffix block.
   409   size_t pref_index = _array->index_for(pref_addr);
   410   if (_array->address_for_index(pref_index) != pref_addr) {
   411     // pref_addr does not begin pref_index
   412     pref_index++;
   413   }
   415   size_t suff_index = _array->index_for(suff_addr);
   416   if (_array->address_for_index(suff_index) != suff_addr) {
   417     // suff_addr does not begin suff_index
   418     suff_index++;
   419   }
   421   // Definition: A block B, denoted [B_start, B_end) __starts__
   422   //     a card C, denoted [C_start, C_end), where C_start and C_end
   423   //     are the heap addresses that card C covers, iff
   424   //     B_start <= C_start < B_end.
   425   //
   426   //     We say that a card C "is started by" a block B, iff
   427   //     B "starts" C.
   428   //
   429   //     Note that the cardinality of the set of cards {C}
   430   //     started by a block B can be 0, 1, or more.
   431   //
   432   // Below, pref_index and suff_index are, respectively, the
   433   // first (least) card indices that the prefix and suffix of
   434   // the split start; end_index is one more than the index of
   435   // the last (greatest) card that blk starts.
   436   size_t end_index  = _array->index_for(end_addr - 1) + 1;
   438   // Calculate the # cards that the prefix and suffix affect.
   439   size_t num_pref_cards = suff_index - pref_index;
   441   size_t num_suff_cards = end_index  - suff_index;
   442   // Change the cards that need changing
   443   if (num_suff_cards > 0) {
   444     HeapWord* boundary = _array->address_for_index(suff_index);
   445     // Set the offset card for suffix block
   446     _array->set_offset_array(suff_index, boundary, suff_addr, true /* reducing */);
   447     // Change any further cards that need changing in the suffix
   448     if (num_pref_cards > 0) {
   449       if (num_pref_cards >= num_suff_cards) {
   450         // Unilaterally fix all of the suffix cards: closed card
   451         // index interval in args below.
   452         set_remainder_to_point_to_start_incl(suff_index + 1, end_index - 1, true /* reducing */);
   453       } else {
   454         // Unilaterally fix the first (num_pref_cards - 1) following
   455         // the "offset card" in the suffix block.
   456         set_remainder_to_point_to_start_incl(suff_index + 1,
   457           suff_index + num_pref_cards - 1, true /* reducing */);
   458         // Fix the appropriate cards in the remainder of the
   459         // suffix block -- these are the last num_pref_cards
   460         // cards in each power block of the "new" range plumbed
   461         // from suff_addr.
   462         bool more = true;
   463         uint i = 1;
   464         while (more && (i < N_powers)) {
   465           size_t back_by = power_to_cards_back(i);
   466           size_t right_index = suff_index + back_by - 1;
   467           size_t left_index  = right_index - num_pref_cards + 1;
   468           if (right_index >= end_index - 1) { // last iteration
   469             right_index = end_index - 1;
   470             more = false;
   471           }
   472           if (back_by > num_pref_cards) {
   473             // Fill in the remainder of this "power block", if it
   474             // is non-null.
   475             if (left_index <= right_index) {
   476               _array->set_offset_array(left_index, right_index,
   477                                      N_words + i - 1, true /* reducing */);
   478             } else {
   479               more = false; // we are done
   480             }
   481             i++;
   482             break;
   483           }
   484           i++;
   485         }
   486         while (more && (i < N_powers)) {
   487           size_t back_by = power_to_cards_back(i);
   488           size_t right_index = suff_index + back_by - 1;
   489           size_t left_index  = right_index - num_pref_cards + 1;
   490           if (right_index >= end_index - 1) { // last iteration
   491             right_index = end_index - 1;
   492             if (left_index > right_index) {
   493               break;
   494             }
   495             more  = false;
   496           }
   497           assert(left_index <= right_index, "Error");
   498           _array->set_offset_array(left_index, right_index, N_words + i - 1, true /* reducing */);
   499           i++;
   500         }
   501       }
   502     } // else no more cards to fix in suffix
   503   } // else nothing needs to be done
   504   // Verify that we did the right thing
   505   verify_single_block(pref_addr, left_blk_size);
   506   verify_single_block(suff_addr, blk_size - left_blk_size);
   507 }
   510 // Mark the BOT such that if [blk_start, blk_end) straddles a card
   511 // boundary, the card following the first such boundary is marked
   512 // with the appropriate offset.
   513 // NOTE: this method does _not_ adjust _unallocated_block or
   514 // any cards subsequent to the first one.
   515 void
   516 BlockOffsetArrayNonContigSpace::mark_block(HeapWord* blk_start,
   517                                            HeapWord* blk_end, bool reducing) {
   518   do_block_internal(blk_start, blk_end, Action_mark, reducing);
   519 }
   521 HeapWord* BlockOffsetArrayNonContigSpace::block_start_unsafe(
   522   const void* addr) const {
   523   assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
   524   assert(_bottom <= addr && addr < _end,
   525          "addr must be covered by this Array");
   526   // Must read this exactly once because it can be modified by parallel
   527   // allocation.
   528   HeapWord* ub = _unallocated_block;
   529   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
   530     assert(ub < _end, "tautology (see above)");
   531     return ub;
   532   }
   534   // Otherwise, find the block start using the table.
   535   size_t index = _array->index_for(addr);
   536   HeapWord* q = _array->address_for_index(index);
   538   uint offset = _array->offset_array(index);    // Extend u_char to uint.
   539   while (offset >= N_words) {
   540     // The excess of the offset from N_words indicates a power of Base
   541     // to go back by.
   542     size_t n_cards_back = entry_to_cards_back(offset);
   543     q -= (N_words * n_cards_back);
   544     assert(q >= _sp->bottom(),
   545            err_msg("q = " PTR_FORMAT " crossed below bottom = " PTR_FORMAT,
   546                    q, _sp->bottom()));
   547     assert(q < _sp->end(),
   548            err_msg("q = " PTR_FORMAT " crossed above end = " PTR_FORMAT,
   549                    q, _sp->end()));
   550     index -= n_cards_back;
   551     offset = _array->offset_array(index);
   552   }
   553   assert(offset < N_words, "offset too large");
   554   index--;
   555   q -= offset;
   556   assert(q >= _sp->bottom(),
   557          err_msg("q = " PTR_FORMAT " crossed below bottom = " PTR_FORMAT,
   558                  q, _sp->bottom()));
   559   assert(q < _sp->end(),
   560          err_msg("q = " PTR_FORMAT " crossed above end = " PTR_FORMAT,
   561                  q, _sp->end()));
   562   HeapWord* n = q;
   564   while (n <= addr) {
   565     debug_only(HeapWord* last = q);   // for debugging
   566     q = n;
   567     n += _sp->block_size(n);
   568     assert(n > q,
   569            err_msg("Looping at n = " PTR_FORMAT " with last = " PTR_FORMAT","
   570                    " while querying blk_start(" PTR_FORMAT ")"
   571                    " on _sp = [" PTR_FORMAT "," PTR_FORMAT ")",
   572                    n, last, addr, _sp->bottom(), _sp->end()));
   573   }
   574   assert(q <= addr,
   575          err_msg("wrong order for current (" INTPTR_FORMAT ")" " <= arg (" INTPTR_FORMAT ")",
   576                  q, addr));
   577   assert(addr <= n,
   578          err_msg("wrong order for arg (" INTPTR_FORMAT ") <= next (" INTPTR_FORMAT ")",
   579                  addr, n));
   580   return q;
   581 }
   583 HeapWord* BlockOffsetArrayNonContigSpace::block_start_careful(
   584   const void* addr) const {
   585   assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
   587   assert(_bottom <= addr && addr < _end,
   588          "addr must be covered by this Array");
   589   // Must read this exactly once because it can be modified by parallel
   590   // allocation.
   591   HeapWord* ub = _unallocated_block;
   592   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
   593     assert(ub < _end, "tautology (see above)");
   594     return ub;
   595   }
   597   // Otherwise, find the block start using the table, but taking
   598   // care (cf block_start_unsafe() above) not to parse any objects/blocks
   599   // on the cards themsleves.
   600   size_t index = _array->index_for(addr);
   601   assert(_array->address_for_index(index) == addr,
   602          "arg should be start of card");
   604   HeapWord* q = (HeapWord*)addr;
   605   uint offset;
   606   do {
   607     offset = _array->offset_array(index);
   608     if (offset < N_words) {
   609       q -= offset;
   610     } else {
   611       size_t n_cards_back = entry_to_cards_back(offset);
   612       q -= (n_cards_back * N_words);
   613       index -= n_cards_back;
   614     }
   615   } while (offset >= N_words);
   616   assert(q <= addr, "block start should be to left of arg");
   617   return q;
   618 }
   620 #ifndef PRODUCT
   621 // Verification & debugging - ensure that the offset table reflects the fact
   622 // that the block [blk_start, blk_end) or [blk, blk + size) is a
   623 // single block of storage. NOTE: can't const this because of
   624 // call to non-const do_block_internal() below.
   625 void BlockOffsetArrayNonContigSpace::verify_single_block(
   626   HeapWord* blk_start, HeapWord* blk_end) {
   627   if (VerifyBlockOffsetArray) {
   628     do_block_internal(blk_start, blk_end, Action_check);
   629   }
   630 }
   632 void BlockOffsetArrayNonContigSpace::verify_single_block(
   633   HeapWord* blk, size_t size) {
   634   verify_single_block(blk, blk + size);
   635 }
   637 // Verify that the given block is before _unallocated_block
   638 void BlockOffsetArrayNonContigSpace::verify_not_unallocated(
   639   HeapWord* blk_start, HeapWord* blk_end) const {
   640   if (BlockOffsetArrayUseUnallocatedBlock) {
   641     assert(blk_start < blk_end, "Block inconsistency?");
   642     assert(blk_end <= _unallocated_block, "_unallocated_block problem");
   643   }
   644 }
   646 void BlockOffsetArrayNonContigSpace::verify_not_unallocated(
   647   HeapWord* blk, size_t size) const {
   648   verify_not_unallocated(blk, blk + size);
   649 }
   650 #endif // PRODUCT
   652 size_t BlockOffsetArrayNonContigSpace::last_active_index() const {
   653   if (_unallocated_block == _bottom) {
   654     return 0;
   655   } else {
   656     return _array->index_for(_unallocated_block - 1);
   657   }
   658 }
   660 //////////////////////////////////////////////////////////////////////
   661 // BlockOffsetArrayContigSpace
   662 //////////////////////////////////////////////////////////////////////
   664 HeapWord* BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) const {
   665   assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
   667   // Otherwise, find the block start using the table.
   668   assert(_bottom <= addr && addr < _end,
   669          "addr must be covered by this Array");
   670   size_t index = _array->index_for(addr);
   671   // We must make sure that the offset table entry we use is valid.  If
   672   // "addr" is past the end, start at the last known one and go forward.
   673   index = MIN2(index, _next_offset_index-1);
   674   HeapWord* q = _array->address_for_index(index);
   676   uint offset = _array->offset_array(index);    // Extend u_char to uint.
   677   while (offset > N_words) {
   678     // The excess of the offset from N_words indicates a power of Base
   679     // to go back by.
   680     size_t n_cards_back = entry_to_cards_back(offset);
   681     q -= (N_words * n_cards_back);
   682     assert(q >= _sp->bottom(), "Went below bottom!");
   683     index -= n_cards_back;
   684     offset = _array->offset_array(index);
   685   }
   686   while (offset == N_words) {
   687     assert(q >= _sp->bottom(), "Went below bottom!");
   688     q -= N_words;
   689     index--;
   690     offset = _array->offset_array(index);
   691   }
   692   assert(offset < N_words, "offset too large");
   693   q -= offset;
   694   HeapWord* n = q;
   696   while (n <= addr) {
   697     debug_only(HeapWord* last = q);   // for debugging
   698     q = n;
   699     n += _sp->block_size(n);
   700   }
   701   assert(q <= addr, "wrong order for current and arg");
   702   assert(addr <= n, "wrong order for arg and next");
   703   return q;
   704 }
   706 //
   707 //              _next_offset_threshold
   708 //              |   _next_offset_index
   709 //              v   v
   710 //      +-------+-------+-------+-------+-------+
   711 //      | i-1   |   i   | i+1   | i+2   | i+3   |
   712 //      +-------+-------+-------+-------+-------+
   713 //       ( ^    ]
   714 //         block-start
   715 //
   717 void BlockOffsetArrayContigSpace::alloc_block_work(HeapWord* blk_start,
   718                                         HeapWord* blk_end) {
   719   assert(blk_start != NULL && blk_end > blk_start,
   720          "phantom block");
   721   assert(blk_end > _next_offset_threshold,
   722          "should be past threshold");
   723   assert(blk_start <= _next_offset_threshold,
   724          "blk_start should be at or before threshold");
   725   assert(pointer_delta(_next_offset_threshold, blk_start) <= N_words,
   726          "offset should be <= BlockOffsetSharedArray::N");
   727   assert(Universe::heap()->is_in_reserved(blk_start),
   728          "reference must be into the heap");
   729   assert(Universe::heap()->is_in_reserved(blk_end-1),
   730          "limit must be within the heap");
   731   assert(_next_offset_threshold ==
   732          _array->_reserved.start() + _next_offset_index*N_words,
   733          "index must agree with threshold");
   735   debug_only(size_t orig_next_offset_index = _next_offset_index;)
   737   // Mark the card that holds the offset into the block.  Note
   738   // that _next_offset_index and _next_offset_threshold are not
   739   // updated until the end of this method.
   740   _array->set_offset_array(_next_offset_index,
   741                            _next_offset_threshold,
   742                            blk_start);
   744   // We need to now mark the subsequent cards that this blk spans.
   746   // Index of card on which blk ends.
   747   size_t end_index   = _array->index_for(blk_end - 1);
   749   // Are there more cards left to be updated?
   750   if (_next_offset_index + 1 <= end_index) {
   751     HeapWord* rem_st  = _array->address_for_index(_next_offset_index + 1);
   752     // Calculate rem_end this way because end_index
   753     // may be the last valid index in the covered region.
   754     HeapWord* rem_end = _array->address_for_index(end_index) +  N_words;
   755     set_remainder_to_point_to_start(rem_st, rem_end);
   756   }
   758   // _next_offset_index and _next_offset_threshold updated here.
   759   _next_offset_index = end_index + 1;
   760   // Calculate _next_offset_threshold this way because end_index
   761   // may be the last valid index in the covered region.
   762   _next_offset_threshold = _array->address_for_index(end_index) + N_words;
   763   assert(_next_offset_threshold >= blk_end, "Incorrect offset threshold");
   765 #ifdef ASSERT
   766   // The offset can be 0 if the block starts on a boundary.  That
   767   // is checked by an assertion above.
   768   size_t start_index = _array->index_for(blk_start);
   769   HeapWord* boundary    = _array->address_for_index(start_index);
   770   assert((_array->offset_array(orig_next_offset_index) == 0 &&
   771           blk_start == boundary) ||
   772           (_array->offset_array(orig_next_offset_index) > 0 &&
   773          _array->offset_array(orig_next_offset_index) <= N_words),
   774          "offset array should have been set");
   775   for (size_t j = orig_next_offset_index + 1; j <= end_index; j++) {
   776     assert(_array->offset_array(j) > 0 &&
   777            _array->offset_array(j) <= (u_char) (N_words+N_powers-1),
   778            "offset array should have been set");
   779   }
   780 #endif
   781 }
   783 HeapWord* BlockOffsetArrayContigSpace::initialize_threshold() {
   784   assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
   785          "just checking");
   786   _next_offset_index = _array->index_for(_bottom);
   787   _next_offset_index++;
   788   _next_offset_threshold =
   789     _array->address_for_index(_next_offset_index);
   790   return _next_offset_threshold;
   791 }
   793 void BlockOffsetArrayContigSpace::zero_bottom_entry() {
   794   assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
   795          "just checking");
   796   size_t bottom_index = _array->index_for(_bottom);
   797   _array->set_offset_array(bottom_index, 0);
   798 }
   801 void BlockOffsetArrayContigSpace::serialize(SerializeOopClosure* soc) {
   802   if (soc->reading()) {
   803     // Null these values so that the serializer won't object to updating them.
   804     _next_offset_threshold = NULL;
   805     _next_offset_index = 0;
   806   }
   807   soc->do_ptr(&_next_offset_threshold);
   808   soc->do_size_t(&_next_offset_index);
   809 }
   811 size_t BlockOffsetArrayContigSpace::last_active_index() const {
   812   size_t result = _next_offset_index - 1;
   813   return result >= 0 ? result : 0;
   814 }

mercurial