src/share/vm/memory/blockOffsetTable.cpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 2943
537a4053b0f9
child 4037
da91efe96a93
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_interface/collectedHeap.inline.hpp"
    27 #include "memory/blockOffsetTable.inline.hpp"
    28 #include "memory/iterator.hpp"
    29 #include "memory/space.inline.hpp"
    30 #include "memory/universe.hpp"
    31 #include "oops/oop.inline.hpp"
    32 #include "runtime/java.hpp"
    33 #include "services/memTracker.hpp"
    35 //////////////////////////////////////////////////////////////////////
    36 // BlockOffsetSharedArray
    37 //////////////////////////////////////////////////////////////////////
    39 BlockOffsetSharedArray::BlockOffsetSharedArray(MemRegion reserved,
    40                                                size_t init_word_size):
    41   _reserved(reserved), _end(NULL)
    42 {
    43   size_t size = compute_size(reserved.word_size());
    44   ReservedSpace rs(size);
    45   if (!rs.is_reserved()) {
    46     vm_exit_during_initialization("Could not reserve enough space for heap offset array");
    47   }
    49   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
    51   if (!_vs.initialize(rs, 0)) {
    52     vm_exit_during_initialization("Could not reserve enough space for heap offset array");
    53   }
    54   _offset_array = (u_char*)_vs.low_boundary();
    55   resize(init_word_size);
    56   if (TraceBlockOffsetTable) {
    57     gclog_or_tty->print_cr("BlockOffsetSharedArray::BlockOffsetSharedArray: ");
    58     gclog_or_tty->print_cr("  "
    59                   "  rs.base(): " INTPTR_FORMAT
    60                   "  rs.size(): " INTPTR_FORMAT
    61                   "  rs end(): " INTPTR_FORMAT,
    62                   rs.base(), rs.size(), rs.base() + rs.size());
    63     gclog_or_tty->print_cr("  "
    64                   "  _vs.low_boundary(): " INTPTR_FORMAT
    65                   "  _vs.high_boundary(): " INTPTR_FORMAT,
    66                   _vs.low_boundary(),
    67                   _vs.high_boundary());
    68   }
    69 }
    71 void BlockOffsetSharedArray::resize(size_t new_word_size) {
    72   assert(new_word_size <= _reserved.word_size(), "Resize larger than reserved");
    73   size_t new_size = compute_size(new_word_size);
    74   size_t old_size = _vs.committed_size();
    75   size_t delta;
    76   char* high = _vs.high();
    77   _end = _reserved.start() + new_word_size;
    78   if (new_size > old_size) {
    79     delta = ReservedSpace::page_align_size_up(new_size - old_size);
    80     assert(delta > 0, "just checking");
    81     if (!_vs.expand_by(delta)) {
    82       // Do better than this for Merlin
    83       vm_exit_out_of_memory(delta, "offset table expansion");
    84     }
    85     assert(_vs.high() == high + delta, "invalid expansion");
    86   } else {
    87     delta = ReservedSpace::page_align_size_down(old_size - new_size);
    88     if (delta == 0) return;
    89     _vs.shrink_by(delta);
    90     assert(_vs.high() == high - delta, "invalid expansion");
    91   }
    92 }
    94 bool BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const {
    95   assert(p >= _reserved.start(), "just checking");
    96   size_t delta = pointer_delta(p, _reserved.start());
    97   return (delta & right_n_bits(LogN_words)) == (size_t)NoBits;
    98 }
   101 void BlockOffsetSharedArray::serialize(SerializeOopClosure* soc,
   102                                        HeapWord* start, HeapWord* end) {
   103   assert(_offset_array[0] == 0, "objects can't cross covered areas");
   104   assert(start <= end, "bad address range");
   105   size_t start_index = index_for(start);
   106   size_t end_index = index_for(end-1)+1;
   107   soc->do_region(&_offset_array[start_index],
   108                  (end_index - start_index) * sizeof(_offset_array[0]));
   109 }
   111 //////////////////////////////////////////////////////////////////////
   112 // BlockOffsetArray
   113 //////////////////////////////////////////////////////////////////////
   115 BlockOffsetArray::BlockOffsetArray(BlockOffsetSharedArray* array,
   116                                    MemRegion mr, bool init_to_zero_) :
   117   BlockOffsetTable(mr.start(), mr.end()),
   118   _array(array)
   119 {
   120   assert(_bottom <= _end, "arguments out of order");
   121   set_init_to_zero(init_to_zero_);
   122   if (!init_to_zero_) {
   123     // initialize cards to point back to mr.start()
   124     set_remainder_to_point_to_start(mr.start() + N_words, mr.end());
   125     _array->set_offset_array(0, 0);  // set first card to 0
   126   }
   127 }
   130 // The arguments follow the normal convention of denoting
   131 // a right-open interval: [start, end)
   132 void
   133 BlockOffsetArray::
   134 set_remainder_to_point_to_start(HeapWord* start, HeapWord* end, bool reducing) {
   136   check_reducing_assertion(reducing);
   137   if (start >= end) {
   138     // The start address is equal to the end address (or to
   139     // the right of the end address) so there are not cards
   140     // that need to be updated..
   141     return;
   142   }
   144   // Write the backskip value for each region.
   145   //
   146   //    offset
   147   //    card             2nd                       3rd
   148   //     | +- 1st        |                         |
   149   //     v v             v                         v
   150   //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+-+-+-
   151   //    |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ...
   152   //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+-+-+-
   153   //    11              19                        75
   154   //      12
   155   //
   156   //    offset card is the card that points to the start of an object
   157   //      x - offset value of offset card
   158   //    1st - start of first logarithmic region
   159   //      0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1
   160   //    2nd - start of second logarithmic region
   161   //      1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8
   162   //    3rd - start of third logarithmic region
   163   //      2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64
   164   //
   165   //    integer below the block offset entry is an example of
   166   //    the index of the entry
   167   //
   168   //    Given an address,
   169   //      Find the index for the address
   170   //      Find the block offset table entry
   171   //      Convert the entry to a back slide
   172   //        (e.g., with today's, offset = 0x81 =>
   173   //          back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8
   174   //      Move back N (e.g., 8) entries and repeat with the
   175   //        value of the new entry
   176   //
   177   size_t start_card = _array->index_for(start);
   178   size_t end_card = _array->index_for(end-1);
   179   assert(start ==_array->address_for_index(start_card), "Precondition");
   180   assert(end ==_array->address_for_index(end_card)+N_words, "Precondition");
   181   set_remainder_to_point_to_start_incl(start_card, end_card, reducing); // closed interval
   182 }
   185 // Unlike the normal convention in this code, the argument here denotes
   186 // a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start()
   187 // above.
   188 void
   189 BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card, bool reducing) {
   191   check_reducing_assertion(reducing);
   192   if (start_card > end_card) {
   193     return;
   194   }
   195   assert(start_card > _array->index_for(_bottom), "Cannot be first card");
   196   assert(_array->offset_array(start_card-1) <= N_words,
   197     "Offset card has an unexpected value");
   198   size_t start_card_for_region = start_card;
   199   u_char offset = max_jubyte;
   200   for (int i = 0; i < N_powers; i++) {
   201     // -1 so that the the card with the actual offset is counted.  Another -1
   202     // so that the reach ends in this region and not at the start
   203     // of the next.
   204     size_t reach = start_card - 1 + (power_to_cards_back(i+1) - 1);
   205     offset = N_words + i;
   206     if (reach >= end_card) {
   207       _array->set_offset_array(start_card_for_region, end_card, offset, reducing);
   208       start_card_for_region = reach + 1;
   209       break;
   210     }
   211     _array->set_offset_array(start_card_for_region, reach, offset, reducing);
   212     start_card_for_region = reach + 1;
   213   }
   214   assert(start_card_for_region > end_card, "Sanity check");
   215   DEBUG_ONLY(check_all_cards(start_card, end_card);)
   216 }
   218 // The card-interval [start_card, end_card] is a closed interval; this
   219 // is an expensive check -- use with care and only under protection of
   220 // suitable flag.
   221 void BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const {
   223   if (end_card < start_card) {
   224     return;
   225   }
   226   guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card");
   227   u_char last_entry = N_words;
   228   for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) {
   229     u_char entry = _array->offset_array(c);
   230     guarantee(entry >= last_entry, "Monotonicity");
   231     if (c - start_card > power_to_cards_back(1)) {
   232       guarantee(entry > N_words, "Should be in logarithmic region");
   233     }
   234     size_t backskip = entry_to_cards_back(entry);
   235     size_t landing_card = c - backskip;
   236     guarantee(landing_card >= (start_card - 1), "Inv");
   237     if (landing_card >= start_card) {
   238       guarantee(_array->offset_array(landing_card) <= entry, "Monotonicity");
   239     } else {
   240       guarantee(landing_card == (start_card - 1), "Tautology");
   241       // Note that N_words is the maximum offset value
   242       guarantee(_array->offset_array(landing_card) <= N_words, "Offset value");
   243     }
   244     last_entry = entry;  // remember for monotonicity test
   245   }
   246 }
   249 void
   250 BlockOffsetArray::alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
   251   assert(blk_start != NULL && blk_end > blk_start,
   252          "phantom block");
   253   single_block(blk_start, blk_end);
   254 }
   256 // Action_mark - update the BOT for the block [blk_start, blk_end).
   257 //               Current typical use is for splitting a block.
   258 // Action_single - udpate the BOT for an allocation.
   259 // Action_verify - BOT verification.
   260 void
   261 BlockOffsetArray::do_block_internal(HeapWord* blk_start,
   262                                     HeapWord* blk_end,
   263                                     Action action, bool reducing) {
   264   assert(Universe::heap()->is_in_reserved(blk_start),
   265          "reference must be into the heap");
   266   assert(Universe::heap()->is_in_reserved(blk_end-1),
   267          "limit must be within the heap");
   268   // This is optimized to make the test fast, assuming we only rarely
   269   // cross boundaries.
   270   uintptr_t end_ui = (uintptr_t)(blk_end - 1);
   271   uintptr_t start_ui = (uintptr_t)blk_start;
   272   // Calculate the last card boundary preceding end of blk
   273   intptr_t boundary_before_end = (intptr_t)end_ui;
   274   clear_bits(boundary_before_end, right_n_bits(LogN));
   275   if (start_ui <= (uintptr_t)boundary_before_end) {
   276     // blk starts at or crosses a boundary
   277     // Calculate index of card on which blk begins
   278     size_t    start_index = _array->index_for(blk_start);
   279     // Index of card on which blk ends
   280     size_t    end_index   = _array->index_for(blk_end - 1);
   281     // Start address of card on which blk begins
   282     HeapWord* boundary    = _array->address_for_index(start_index);
   283     assert(boundary <= blk_start, "blk should start at or after boundary");
   284     if (blk_start != boundary) {
   285       // blk starts strictly after boundary
   286       // adjust card boundary and start_index forward to next card
   287       boundary += N_words;
   288       start_index++;
   289     }
   290     assert(start_index <= end_index, "monotonicity of index_for()");
   291     assert(boundary <= (HeapWord*)boundary_before_end, "tautology");
   292     switch (action) {
   293       case Action_mark: {
   294         if (init_to_zero()) {
   295           _array->set_offset_array(start_index, boundary, blk_start, reducing);
   296           break;
   297         } // Else fall through to the next case
   298       }
   299       case Action_single: {
   300         _array->set_offset_array(start_index, boundary, blk_start, reducing);
   301         // We have finished marking the "offset card". We need to now
   302         // mark the subsequent cards that this blk spans.
   303         if (start_index < end_index) {
   304           HeapWord* rem_st = _array->address_for_index(start_index) + N_words;
   305           HeapWord* rem_end = _array->address_for_index(end_index) + N_words;
   306           set_remainder_to_point_to_start(rem_st, rem_end, reducing);
   307         }
   308         break;
   309       }
   310       case Action_check: {
   311         _array->check_offset_array(start_index, boundary, blk_start);
   312         // We have finished checking the "offset card". We need to now
   313         // check the subsequent cards that this blk spans.
   314         check_all_cards(start_index + 1, end_index);
   315         break;
   316       }
   317       default:
   318         ShouldNotReachHere();
   319     }
   320   }
   321 }
   323 // The range [blk_start, blk_end) represents a single contiguous block
   324 // of storage; modify the block offset table to represent this
   325 // information; Right-open interval: [blk_start, blk_end)
   326 // NOTE: this method does _not_ adjust _unallocated_block.
   327 void
   328 BlockOffsetArray::single_block(HeapWord* blk_start,
   329                                HeapWord* blk_end) {
   330   do_block_internal(blk_start, blk_end, Action_single);
   331 }
   333 void BlockOffsetArray::verify() const {
   334   // For each entry in the block offset table, verify that
   335   // the entry correctly finds the start of an object at the
   336   // first address covered by the block or to the left of that
   337   // first address.
   339   size_t next_index = 1;
   340   size_t last_index = last_active_index();
   342   // Use for debugging.  Initialize to NULL to distinguish the
   343   // first iteration through the while loop.
   344   HeapWord* last_p = NULL;
   345   HeapWord* last_start = NULL;
   346   oop last_o = NULL;
   348   while (next_index <= last_index) {
   349     // Use an address past the start of the address for
   350     // the entry.
   351     HeapWord* p = _array->address_for_index(next_index) + 1;
   352     if (p >= _end) {
   353       // That's all of the allocated block table.
   354       return;
   355     }
   356     // block_start() asserts that start <= p.
   357     HeapWord* start = block_start(p);
   358     // First check if the start is an allocated block and only
   359     // then if it is a valid object.
   360     oop o = oop(start);
   361     assert(!Universe::is_fully_initialized() ||
   362            _sp->is_free_block(start) ||
   363            o->is_oop_or_null(), "Bad object was found");
   364     next_index++;
   365     last_p = p;
   366     last_start = start;
   367     last_o = o;
   368   }
   369 }
   371 //////////////////////////////////////////////////////////////////////
   372 // BlockOffsetArrayNonContigSpace
   373 //////////////////////////////////////////////////////////////////////
   375 // The block [blk_start, blk_end) has been allocated;
   376 // adjust the block offset table to represent this information;
   377 // NOTE: Clients of BlockOffsetArrayNonContigSpace: consider using
   378 // the somewhat more lightweight split_block() or
   379 // (when init_to_zero()) mark_block() wherever possible.
   380 // right-open interval: [blk_start, blk_end)
   381 void
   382 BlockOffsetArrayNonContigSpace::alloc_block(HeapWord* blk_start,
   383                                             HeapWord* blk_end) {
   384   assert(blk_start != NULL && blk_end > blk_start,
   385          "phantom block");
   386   single_block(blk_start, blk_end);
   387   allocated(blk_start, blk_end);
   388 }
   390 // Adjust BOT to show that a previously whole block has been split
   391 // into two.  We verify the BOT for the first part (prefix) and
   392 // update the  BOT for the second part (suffix).
   393 //      blk is the start of the block
   394 //      blk_size is the size of the original block
   395 //      left_blk_size is the size of the first part of the split
   396 void BlockOffsetArrayNonContigSpace::split_block(HeapWord* blk,
   397                                                  size_t blk_size,
   398                                                  size_t left_blk_size) {
   399   // Verify that the BOT shows [blk, blk + blk_size) to be one block.
   400   verify_single_block(blk, blk_size);
   401   // Update the BOT to indicate that [blk + left_blk_size, blk + blk_size)
   402   // is one single block.
   403   assert(blk_size > 0, "Should be positive");
   404   assert(left_blk_size > 0, "Should be positive");
   405   assert(left_blk_size < blk_size, "Not a split");
   407   // Start addresses of prefix block and suffix block.
   408   HeapWord* pref_addr = blk;
   409   HeapWord* suff_addr = blk + left_blk_size;
   410   HeapWord* end_addr  = blk + blk_size;
   412   // Indices for starts of prefix block and suffix block.
   413   size_t pref_index = _array->index_for(pref_addr);
   414   if (_array->address_for_index(pref_index) != pref_addr) {
   415     // pref_addr does not begin pref_index
   416     pref_index++;
   417   }
   419   size_t suff_index = _array->index_for(suff_addr);
   420   if (_array->address_for_index(suff_index) != suff_addr) {
   421     // suff_addr does not begin suff_index
   422     suff_index++;
   423   }
   425   // Definition: A block B, denoted [B_start, B_end) __starts__
   426   //     a card C, denoted [C_start, C_end), where C_start and C_end
   427   //     are the heap addresses that card C covers, iff
   428   //     B_start <= C_start < B_end.
   429   //
   430   //     We say that a card C "is started by" a block B, iff
   431   //     B "starts" C.
   432   //
   433   //     Note that the cardinality of the set of cards {C}
   434   //     started by a block B can be 0, 1, or more.
   435   //
   436   // Below, pref_index and suff_index are, respectively, the
   437   // first (least) card indices that the prefix and suffix of
   438   // the split start; end_index is one more than the index of
   439   // the last (greatest) card that blk starts.
   440   size_t end_index  = _array->index_for(end_addr - 1) + 1;
   442   // Calculate the # cards that the prefix and suffix affect.
   443   size_t num_pref_cards = suff_index - pref_index;
   445   size_t num_suff_cards = end_index  - suff_index;
   446   // Change the cards that need changing
   447   if (num_suff_cards > 0) {
   448     HeapWord* boundary = _array->address_for_index(suff_index);
   449     // Set the offset card for suffix block
   450     _array->set_offset_array(suff_index, boundary, suff_addr, true /* reducing */);
   451     // Change any further cards that need changing in the suffix
   452     if (num_pref_cards > 0) {
   453       if (num_pref_cards >= num_suff_cards) {
   454         // Unilaterally fix all of the suffix cards: closed card
   455         // index interval in args below.
   456         set_remainder_to_point_to_start_incl(suff_index + 1, end_index - 1, true /* reducing */);
   457       } else {
   458         // Unilaterally fix the first (num_pref_cards - 1) following
   459         // the "offset card" in the suffix block.
   460         set_remainder_to_point_to_start_incl(suff_index + 1,
   461           suff_index + num_pref_cards - 1, true /* reducing */);
   462         // Fix the appropriate cards in the remainder of the
   463         // suffix block -- these are the last num_pref_cards
   464         // cards in each power block of the "new" range plumbed
   465         // from suff_addr.
   466         bool more = true;
   467         uint i = 1;
   468         while (more && (i < N_powers)) {
   469           size_t back_by = power_to_cards_back(i);
   470           size_t right_index = suff_index + back_by - 1;
   471           size_t left_index  = right_index - num_pref_cards + 1;
   472           if (right_index >= end_index - 1) { // last iteration
   473             right_index = end_index - 1;
   474             more = false;
   475           }
   476           if (back_by > num_pref_cards) {
   477             // Fill in the remainder of this "power block", if it
   478             // is non-null.
   479             if (left_index <= right_index) {
   480               _array->set_offset_array(left_index, right_index,
   481                                      N_words + i - 1, true /* reducing */);
   482             } else {
   483               more = false; // we are done
   484             }
   485             i++;
   486             break;
   487           }
   488           i++;
   489         }
   490         while (more && (i < N_powers)) {
   491           size_t back_by = power_to_cards_back(i);
   492           size_t right_index = suff_index + back_by - 1;
   493           size_t left_index  = right_index - num_pref_cards + 1;
   494           if (right_index >= end_index - 1) { // last iteration
   495             right_index = end_index - 1;
   496             if (left_index > right_index) {
   497               break;
   498             }
   499             more  = false;
   500           }
   501           assert(left_index <= right_index, "Error");
   502           _array->set_offset_array(left_index, right_index, N_words + i - 1, true /* reducing */);
   503           i++;
   504         }
   505       }
   506     } // else no more cards to fix in suffix
   507   } // else nothing needs to be done
   508   // Verify that we did the right thing
   509   verify_single_block(pref_addr, left_blk_size);
   510   verify_single_block(suff_addr, blk_size - left_blk_size);
   511 }
   514 // Mark the BOT such that if [blk_start, blk_end) straddles a card
   515 // boundary, the card following the first such boundary is marked
   516 // with the appropriate offset.
   517 // NOTE: this method does _not_ adjust _unallocated_block or
   518 // any cards subsequent to the first one.
   519 void
   520 BlockOffsetArrayNonContigSpace::mark_block(HeapWord* blk_start,
   521                                            HeapWord* blk_end, bool reducing) {
   522   do_block_internal(blk_start, blk_end, Action_mark, reducing);
   523 }
   525 HeapWord* BlockOffsetArrayNonContigSpace::block_start_unsafe(
   526   const void* addr) const {
   527   assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
   528   assert(_bottom <= addr && addr < _end,
   529          "addr must be covered by this Array");
   530   // Must read this exactly once because it can be modified by parallel
   531   // allocation.
   532   HeapWord* ub = _unallocated_block;
   533   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
   534     assert(ub < _end, "tautology (see above)");
   535     return ub;
   536   }
   538   // Otherwise, find the block start using the table.
   539   size_t index = _array->index_for(addr);
   540   HeapWord* q = _array->address_for_index(index);
   542   uint offset = _array->offset_array(index);    // Extend u_char to uint.
   543   while (offset >= N_words) {
   544     // The excess of the offset from N_words indicates a power of Base
   545     // to go back by.
   546     size_t n_cards_back = entry_to_cards_back(offset);
   547     q -= (N_words * n_cards_back);
   548     assert(q >= _sp->bottom(),
   549            err_msg("q = " PTR_FORMAT " crossed below bottom = " PTR_FORMAT,
   550                    q, _sp->bottom()));
   551     assert(q < _sp->end(),
   552            err_msg("q = " PTR_FORMAT " crossed above end = " PTR_FORMAT,
   553                    q, _sp->end()));
   554     index -= n_cards_back;
   555     offset = _array->offset_array(index);
   556   }
   557   assert(offset < N_words, "offset too large");
   558   index--;
   559   q -= offset;
   560   assert(q >= _sp->bottom(),
   561          err_msg("q = " PTR_FORMAT " crossed below bottom = " PTR_FORMAT,
   562                  q, _sp->bottom()));
   563   assert(q < _sp->end(),
   564          err_msg("q = " PTR_FORMAT " crossed above end = " PTR_FORMAT,
   565                  q, _sp->end()));
   566   HeapWord* n = q;
   568   while (n <= addr) {
   569     debug_only(HeapWord* last = q);   // for debugging
   570     q = n;
   571     n += _sp->block_size(n);
   572     assert(n > q,
   573            err_msg("Looping at n = " PTR_FORMAT " with last = " PTR_FORMAT","
   574                    " while querying blk_start(" PTR_FORMAT ")"
   575                    " on _sp = [" PTR_FORMAT "," PTR_FORMAT ")",
   576                    n, last, addr, _sp->bottom(), _sp->end()));
   577   }
   578   assert(q <= addr,
   579          err_msg("wrong order for current (" INTPTR_FORMAT ")" " <= arg (" INTPTR_FORMAT ")",
   580                  q, addr));
   581   assert(addr <= n,
   582          err_msg("wrong order for arg (" INTPTR_FORMAT ") <= next (" INTPTR_FORMAT ")",
   583                  addr, n));
   584   return q;
   585 }
   587 HeapWord* BlockOffsetArrayNonContigSpace::block_start_careful(
   588   const void* addr) const {
   589   assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
   591   assert(_bottom <= addr && addr < _end,
   592          "addr must be covered by this Array");
   593   // Must read this exactly once because it can be modified by parallel
   594   // allocation.
   595   HeapWord* ub = _unallocated_block;
   596   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
   597     assert(ub < _end, "tautology (see above)");
   598     return ub;
   599   }
   601   // Otherwise, find the block start using the table, but taking
   602   // care (cf block_start_unsafe() above) not to parse any objects/blocks
   603   // on the cards themsleves.
   604   size_t index = _array->index_for(addr);
   605   assert(_array->address_for_index(index) == addr,
   606          "arg should be start of card");
   608   HeapWord* q = (HeapWord*)addr;
   609   uint offset;
   610   do {
   611     offset = _array->offset_array(index);
   612     if (offset < N_words) {
   613       q -= offset;
   614     } else {
   615       size_t n_cards_back = entry_to_cards_back(offset);
   616       q -= (n_cards_back * N_words);
   617       index -= n_cards_back;
   618     }
   619   } while (offset >= N_words);
   620   assert(q <= addr, "block start should be to left of arg");
   621   return q;
   622 }
   624 #ifndef PRODUCT
   625 // Verification & debugging - ensure that the offset table reflects the fact
   626 // that the block [blk_start, blk_end) or [blk, blk + size) is a
   627 // single block of storage. NOTE: can't const this because of
   628 // call to non-const do_block_internal() below.
   629 void BlockOffsetArrayNonContigSpace::verify_single_block(
   630   HeapWord* blk_start, HeapWord* blk_end) {
   631   if (VerifyBlockOffsetArray) {
   632     do_block_internal(blk_start, blk_end, Action_check);
   633   }
   634 }
   636 void BlockOffsetArrayNonContigSpace::verify_single_block(
   637   HeapWord* blk, size_t size) {
   638   verify_single_block(blk, blk + size);
   639 }
   641 // Verify that the given block is before _unallocated_block
   642 void BlockOffsetArrayNonContigSpace::verify_not_unallocated(
   643   HeapWord* blk_start, HeapWord* blk_end) const {
   644   if (BlockOffsetArrayUseUnallocatedBlock) {
   645     assert(blk_start < blk_end, "Block inconsistency?");
   646     assert(blk_end <= _unallocated_block, "_unallocated_block problem");
   647   }
   648 }
   650 void BlockOffsetArrayNonContigSpace::verify_not_unallocated(
   651   HeapWord* blk, size_t size) const {
   652   verify_not_unallocated(blk, blk + size);
   653 }
   654 #endif // PRODUCT
   656 size_t BlockOffsetArrayNonContigSpace::last_active_index() const {
   657   if (_unallocated_block == _bottom) {
   658     return 0;
   659   } else {
   660     return _array->index_for(_unallocated_block - 1);
   661   }
   662 }
   664 //////////////////////////////////////////////////////////////////////
   665 // BlockOffsetArrayContigSpace
   666 //////////////////////////////////////////////////////////////////////
   668 HeapWord* BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) const {
   669   assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
   671   // Otherwise, find the block start using the table.
   672   assert(_bottom <= addr && addr < _end,
   673          "addr must be covered by this Array");
   674   size_t index = _array->index_for(addr);
   675   // We must make sure that the offset table entry we use is valid.  If
   676   // "addr" is past the end, start at the last known one and go forward.
   677   index = MIN2(index, _next_offset_index-1);
   678   HeapWord* q = _array->address_for_index(index);
   680   uint offset = _array->offset_array(index);    // Extend u_char to uint.
   681   while (offset > N_words) {
   682     // The excess of the offset from N_words indicates a power of Base
   683     // to go back by.
   684     size_t n_cards_back = entry_to_cards_back(offset);
   685     q -= (N_words * n_cards_back);
   686     assert(q >= _sp->bottom(), "Went below bottom!");
   687     index -= n_cards_back;
   688     offset = _array->offset_array(index);
   689   }
   690   while (offset == N_words) {
   691     assert(q >= _sp->bottom(), "Went below bottom!");
   692     q -= N_words;
   693     index--;
   694     offset = _array->offset_array(index);
   695   }
   696   assert(offset < N_words, "offset too large");
   697   q -= offset;
   698   HeapWord* n = q;
   700   while (n <= addr) {
   701     debug_only(HeapWord* last = q);   // for debugging
   702     q = n;
   703     n += _sp->block_size(n);
   704   }
   705   assert(q <= addr, "wrong order for current and arg");
   706   assert(addr <= n, "wrong order for arg and next");
   707   return q;
   708 }
   710 //
   711 //              _next_offset_threshold
   712 //              |   _next_offset_index
   713 //              v   v
   714 //      +-------+-------+-------+-------+-------+
   715 //      | i-1   |   i   | i+1   | i+2   | i+3   |
   716 //      +-------+-------+-------+-------+-------+
   717 //       ( ^    ]
   718 //         block-start
   719 //
   721 void BlockOffsetArrayContigSpace::alloc_block_work(HeapWord* blk_start,
   722                                         HeapWord* blk_end) {
   723   assert(blk_start != NULL && blk_end > blk_start,
   724          "phantom block");
   725   assert(blk_end > _next_offset_threshold,
   726          "should be past threshold");
   727   assert(blk_start <= _next_offset_threshold,
   728          "blk_start should be at or before threshold");
   729   assert(pointer_delta(_next_offset_threshold, blk_start) <= N_words,
   730          "offset should be <= BlockOffsetSharedArray::N");
   731   assert(Universe::heap()->is_in_reserved(blk_start),
   732          "reference must be into the heap");
   733   assert(Universe::heap()->is_in_reserved(blk_end-1),
   734          "limit must be within the heap");
   735   assert(_next_offset_threshold ==
   736          _array->_reserved.start() + _next_offset_index*N_words,
   737          "index must agree with threshold");
   739   debug_only(size_t orig_next_offset_index = _next_offset_index;)
   741   // Mark the card that holds the offset into the block.  Note
   742   // that _next_offset_index and _next_offset_threshold are not
   743   // updated until the end of this method.
   744   _array->set_offset_array(_next_offset_index,
   745                            _next_offset_threshold,
   746                            blk_start);
   748   // We need to now mark the subsequent cards that this blk spans.
   750   // Index of card on which blk ends.
   751   size_t end_index   = _array->index_for(blk_end - 1);
   753   // Are there more cards left to be updated?
   754   if (_next_offset_index + 1 <= end_index) {
   755     HeapWord* rem_st  = _array->address_for_index(_next_offset_index + 1);
   756     // Calculate rem_end this way because end_index
   757     // may be the last valid index in the covered region.
   758     HeapWord* rem_end = _array->address_for_index(end_index) +  N_words;
   759     set_remainder_to_point_to_start(rem_st, rem_end);
   760   }
   762   // _next_offset_index and _next_offset_threshold updated here.
   763   _next_offset_index = end_index + 1;
   764   // Calculate _next_offset_threshold this way because end_index
   765   // may be the last valid index in the covered region.
   766   _next_offset_threshold = _array->address_for_index(end_index) + N_words;
   767   assert(_next_offset_threshold >= blk_end, "Incorrect offset threshold");
   769 #ifdef ASSERT
   770   // The offset can be 0 if the block starts on a boundary.  That
   771   // is checked by an assertion above.
   772   size_t start_index = _array->index_for(blk_start);
   773   HeapWord* boundary    = _array->address_for_index(start_index);
   774   assert((_array->offset_array(orig_next_offset_index) == 0 &&
   775           blk_start == boundary) ||
   776           (_array->offset_array(orig_next_offset_index) > 0 &&
   777          _array->offset_array(orig_next_offset_index) <= N_words),
   778          "offset array should have been set");
   779   for (size_t j = orig_next_offset_index + 1; j <= end_index; j++) {
   780     assert(_array->offset_array(j) > 0 &&
   781            _array->offset_array(j) <= (u_char) (N_words+N_powers-1),
   782            "offset array should have been set");
   783   }
   784 #endif
   785 }
   787 HeapWord* BlockOffsetArrayContigSpace::initialize_threshold() {
   788   assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
   789          "just checking");
   790   _next_offset_index = _array->index_for(_bottom);
   791   _next_offset_index++;
   792   _next_offset_threshold =
   793     _array->address_for_index(_next_offset_index);
   794   return _next_offset_threshold;
   795 }
   797 void BlockOffsetArrayContigSpace::zero_bottom_entry() {
   798   assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
   799          "just checking");
   800   size_t bottom_index = _array->index_for(_bottom);
   801   _array->set_offset_array(bottom_index, 0);
   802 }
   805 void BlockOffsetArrayContigSpace::serialize(SerializeOopClosure* soc) {
   806   if (soc->reading()) {
   807     // Null these values so that the serializer won't object to updating them.
   808     _next_offset_threshold = NULL;
   809     _next_offset_index = 0;
   810   }
   811   soc->do_ptr(&_next_offset_threshold);
   812   soc->do_size_t(&_next_offset_index);
   813 }
   815 size_t BlockOffsetArrayContigSpace::last_active_index() const {
   816   size_t result = _next_offset_index - 1;
   817   return result >= 0 ? result : 0;
   818 }

mercurial