src/share/vm/memory/allocation.cpp

Wed, 15 Feb 2012 10:12:55 -0800

author
never
date
Wed, 15 Feb 2012 10:12:55 -0800
changeset 3571
09d00c18e323
parent 3156
f08d439fab8c
child 3900
d2a62e0f25eb
permissions
-rw-r--r--

7145537: minor tweaks to LogEvents
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "memory/resourceArea.hpp"
    29 #include "runtime/os.hpp"
    30 #include "runtime/task.hpp"
    31 #include "runtime/threadCritical.hpp"
    32 #include "utilities/ostream.hpp"
    33 #ifdef TARGET_OS_FAMILY_linux
    34 # include "os_linux.inline.hpp"
    35 #endif
    36 #ifdef TARGET_OS_FAMILY_solaris
    37 # include "os_solaris.inline.hpp"
    38 #endif
    39 #ifdef TARGET_OS_FAMILY_windows
    40 # include "os_windows.inline.hpp"
    41 #endif
    42 #ifdef TARGET_OS_FAMILY_bsd
    43 # include "os_bsd.inline.hpp"
    44 #endif
    46 void* CHeapObj::operator new(size_t size){
    47   return (void *) AllocateHeap(size, "CHeapObj-new");
    48 }
    50 void* CHeapObj::operator new (size_t size, const std::nothrow_t&  nothrow_constant) {
    51   char* p = (char*) os::malloc(size);
    52 #ifdef ASSERT
    53   if (PrintMallocFree) trace_heap_malloc(size, "CHeapObj-new", p);
    54 #endif
    55   return p;
    56 }
    58 void CHeapObj::operator delete(void* p){
    59  FreeHeap(p);
    60 }
    62 void* StackObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
    63 void  StackObj::operator delete(void* p)   { ShouldNotCallThis(); };
    64 void* _ValueObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
    65 void  _ValueObj::operator delete(void* p)   { ShouldNotCallThis(); };
    67 void* ResourceObj::operator new(size_t size, allocation_type type) {
    68   address res;
    69   switch (type) {
    70    case C_HEAP:
    71     res = (address)AllocateHeap(size, "C_Heap: ResourceOBJ");
    72     DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
    73     break;
    74    case RESOURCE_AREA:
    75     // new(size) sets allocation type RESOURCE_AREA.
    76     res = (address)operator new(size);
    77     break;
    78    default:
    79     ShouldNotReachHere();
    80   }
    81   return res;
    82 }
    84 void ResourceObj::operator delete(void* p) {
    85   assert(((ResourceObj *)p)->allocated_on_C_heap(),
    86          "delete only allowed for C_HEAP objects");
    87   DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
    88   FreeHeap(p);
    89 }
    91 #ifdef ASSERT
    92 void ResourceObj::set_allocation_type(address res, allocation_type type) {
    93     // Set allocation type in the resource object
    94     uintptr_t allocation = (uintptr_t)res;
    95     assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
    96     assert(type <= allocation_mask, "incorrect allocation type");
    97     ResourceObj* resobj = (ResourceObj *)res;
    98     resobj->_allocation_t[0] = ~(allocation + type);
    99     if (type != STACK_OR_EMBEDDED) {
   100       // Called from operator new() and CollectionSetChooser(),
   101       // set verification value.
   102       resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
   103     }
   104 }
   106 ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
   107     assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
   108     return (allocation_type)((~_allocation_t[0]) & allocation_mask);
   109 }
   111 bool ResourceObj::is_type_set() const {
   112     allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
   113     return get_allocation_type()  == type &&
   114            (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
   115 }
   117 ResourceObj::ResourceObj() { // default constructor
   118     if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
   119       // Operator new() is not called for allocations
   120       // on stack and for embedded objects.
   121       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   122     } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
   123       // For some reason we got a value which resembles
   124       // an embedded or stack object (operator new() does not
   125       // set such type). Keep it since it is valid value
   126       // (even if it was garbage).
   127       // Ignore garbage in other fields.
   128     } else if (is_type_set()) {
   129       // Operator new() was called and type was set.
   130       assert(!allocated_on_stack(),
   131              err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   132                      this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   133     } else {
   134       // Operator new() was not called.
   135       // Assume that it is embedded or stack object.
   136       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   137     }
   138     _allocation_t[1] = 0; // Zap verification value
   139 }
   141 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
   142     // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
   143     // Note: garbage may resembles valid value.
   144     assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
   145            err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   146                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   147     set_allocation_type((address)this, STACK_OR_EMBEDDED);
   148     _allocation_t[1] = 0; // Zap verification value
   149 }
   151 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
   152     // Used in InlineTree::ok_to_inline() for WarmCallInfo.
   153     assert(allocated_on_stack(),
   154            err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   155                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   156     // Keep current _allocation_t value;
   157     return *this;
   158 }
   160 ResourceObj::~ResourceObj() {
   161     // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
   162     if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
   163       _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
   164     }
   165 }
   166 #endif // ASSERT
   169 void trace_heap_malloc(size_t size, const char* name, void* p) {
   170   // A lock is not needed here - tty uses a lock internally
   171   tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
   172 }
   175 void trace_heap_free(void* p) {
   176   // A lock is not needed here - tty uses a lock internally
   177   tty->print_cr("Heap free   " INTPTR_FORMAT, p);
   178 }
   180 bool warn_new_operator = false; // see vm_main
   182 //--------------------------------------------------------------------------------------
   183 // ChunkPool implementation
   185 // MT-safe pool of chunks to reduce malloc/free thrashing
   186 // NB: not using Mutex because pools are used before Threads are initialized
   187 class ChunkPool {
   188   Chunk*       _first;        // first cached Chunk; its first word points to next chunk
   189   size_t       _num_chunks;   // number of unused chunks in pool
   190   size_t       _num_used;     // number of chunks currently checked out
   191   const size_t _size;         // size of each chunk (must be uniform)
   193   // Our three static pools
   194   static ChunkPool* _large_pool;
   195   static ChunkPool* _medium_pool;
   196   static ChunkPool* _small_pool;
   198   // return first element or null
   199   void* get_first() {
   200     Chunk* c = _first;
   201     if (_first) {
   202       _first = _first->next();
   203       _num_chunks--;
   204     }
   205     return c;
   206   }
   208  public:
   209   // All chunks in a ChunkPool has the same size
   210    ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
   212   // Allocate a new chunk from the pool (might expand the pool)
   213   void* allocate(size_t bytes) {
   214     assert(bytes == _size, "bad size");
   215     void* p = NULL;
   216     { ThreadCritical tc;
   217       _num_used++;
   218       p = get_first();
   219       if (p == NULL) p = os::malloc(bytes);
   220     }
   221     if (p == NULL)
   222       vm_exit_out_of_memory(bytes, "ChunkPool::allocate");
   224     return p;
   225   }
   227   // Return a chunk to the pool
   228   void free(Chunk* chunk) {
   229     assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
   230     ThreadCritical tc;
   231     _num_used--;
   233     // Add chunk to list
   234     chunk->set_next(_first);
   235     _first = chunk;
   236     _num_chunks++;
   237   }
   239   // Prune the pool
   240   void free_all_but(size_t n) {
   241     // if we have more than n chunks, free all of them
   242     ThreadCritical tc;
   243     if (_num_chunks > n) {
   244       // free chunks at end of queue, for better locality
   245       Chunk* cur = _first;
   246       for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
   248       if (cur != NULL) {
   249         Chunk* next = cur->next();
   250         cur->set_next(NULL);
   251         cur = next;
   253         // Free all remaining chunks
   254         while(cur != NULL) {
   255           next = cur->next();
   256           os::free(cur);
   257           _num_chunks--;
   258           cur = next;
   259         }
   260       }
   261     }
   262   }
   264   // Accessors to preallocated pool's
   265   static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
   266   static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
   267   static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
   269   static void initialize() {
   270     _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
   271     _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
   272     _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
   273   }
   275   static void clean() {
   276     enum { BlocksToKeep = 5 };
   277      _small_pool->free_all_but(BlocksToKeep);
   278      _medium_pool->free_all_but(BlocksToKeep);
   279      _large_pool->free_all_but(BlocksToKeep);
   280   }
   281 };
   283 ChunkPool* ChunkPool::_large_pool  = NULL;
   284 ChunkPool* ChunkPool::_medium_pool = NULL;
   285 ChunkPool* ChunkPool::_small_pool  = NULL;
   287 void chunkpool_init() {
   288   ChunkPool::initialize();
   289 }
   291 void
   292 Chunk::clean_chunk_pool() {
   293   ChunkPool::clean();
   294 }
   297 //--------------------------------------------------------------------------------------
   298 // ChunkPoolCleaner implementation
   299 //
   301 class ChunkPoolCleaner : public PeriodicTask {
   302   enum { CleaningInterval = 5000 };      // cleaning interval in ms
   304  public:
   305    ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
   306    void task() {
   307      ChunkPool::clean();
   308    }
   309 };
   311 //--------------------------------------------------------------------------------------
   312 // Chunk implementation
   314 void* Chunk::operator new(size_t requested_size, size_t length) {
   315   // requested_size is equal to sizeof(Chunk) but in order for the arena
   316   // allocations to come out aligned as expected the size must be aligned
   317   // to expected arean alignment.
   318   // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
   319   assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
   320   size_t bytes = ARENA_ALIGN(requested_size) + length;
   321   switch (length) {
   322    case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes);
   323    case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes);
   324    case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes);
   325    default: {
   326      void *p =  os::malloc(bytes);
   327      if (p == NULL)
   328        vm_exit_out_of_memory(bytes, "Chunk::new");
   329      return p;
   330    }
   331   }
   332 }
   334 void Chunk::operator delete(void* p) {
   335   Chunk* c = (Chunk*)p;
   336   switch (c->length()) {
   337    case Chunk::size:        ChunkPool::large_pool()->free(c); break;
   338    case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
   339    case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
   340    default:                 os::free(c);
   341   }
   342 }
   344 Chunk::Chunk(size_t length) : _len(length) {
   345   _next = NULL;         // Chain on the linked list
   346 }
   349 void Chunk::chop() {
   350   Chunk *k = this;
   351   while( k ) {
   352     Chunk *tmp = k->next();
   353     // clear out this chunk (to detect allocation bugs)
   354     if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
   355     delete k;                   // Free chunk (was malloc'd)
   356     k = tmp;
   357   }
   358 }
   360 void Chunk::next_chop() {
   361   _next->chop();
   362   _next = NULL;
   363 }
   366 void Chunk::start_chunk_pool_cleaner_task() {
   367 #ifdef ASSERT
   368   static bool task_created = false;
   369   assert(!task_created, "should not start chuck pool cleaner twice");
   370   task_created = true;
   371 #endif
   372   ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
   373   cleaner->enroll();
   374 }
   376 //------------------------------Arena------------------------------------------
   378 Arena::Arena(size_t init_size) {
   379   size_t round_size = (sizeof (char *)) - 1;
   380   init_size = (init_size+round_size) & ~round_size;
   381   _first = _chunk = new (init_size) Chunk(init_size);
   382   _hwm = _chunk->bottom();      // Save the cached hwm, max
   383   _max = _chunk->top();
   384   set_size_in_bytes(init_size);
   385 }
   387 Arena::Arena() {
   388   _first = _chunk = new (Chunk::init_size) Chunk(Chunk::init_size);
   389   _hwm = _chunk->bottom();      // Save the cached hwm, max
   390   _max = _chunk->top();
   391   set_size_in_bytes(Chunk::init_size);
   392 }
   394 Arena::Arena(Arena *a) : _chunk(a->_chunk), _hwm(a->_hwm), _max(a->_max), _first(a->_first) {
   395   set_size_in_bytes(a->size_in_bytes());
   396 }
   398 Arena *Arena::move_contents(Arena *copy) {
   399   copy->destruct_contents();
   400   copy->_chunk = _chunk;
   401   copy->_hwm   = _hwm;
   402   copy->_max   = _max;
   403   copy->_first = _first;
   404   copy->set_size_in_bytes(size_in_bytes());
   405   // Destroy original arena
   406   reset();
   407   return copy;            // Return Arena with contents
   408 }
   410 Arena::~Arena() {
   411   destruct_contents();
   412 }
   414 // Destroy this arenas contents and reset to empty
   415 void Arena::destruct_contents() {
   416   if (UseMallocOnly && _first != NULL) {
   417     char* end = _first->next() ? _first->top() : _hwm;
   418     free_malloced_objects(_first, _first->bottom(), end, _hwm);
   419   }
   420   _first->chop();
   421   reset();
   422 }
   425 // Total of all Chunks in arena
   426 size_t Arena::used() const {
   427   size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
   428   register Chunk *k = _first;
   429   while( k != _chunk) {         // Whilst have Chunks in a row
   430     sum += k->length();         // Total size of this Chunk
   431     k = k->next();              // Bump along to next Chunk
   432   }
   433   return sum;                   // Return total consumed space.
   434 }
   436 void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
   437   vm_exit_out_of_memory(sz, whence);
   438 }
   440 // Grow a new Chunk
   441 void* Arena::grow( size_t x ) {
   442   // Get minimal required size.  Either real big, or even bigger for giant objs
   443   size_t len = MAX2(x, (size_t) Chunk::size);
   445   Chunk *k = _chunk;            // Get filled-up chunk address
   446   _chunk = new (len) Chunk(len);
   448   if (_chunk == NULL) {
   449     signal_out_of_memory(len * Chunk::aligned_overhead_size(), "Arena::grow");
   450   }
   452   if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
   453   else _first = _chunk;
   454   _hwm  = _chunk->bottom();     // Save the cached hwm, max
   455   _max =  _chunk->top();
   456   set_size_in_bytes(size_in_bytes() + len);
   457   void* result = _hwm;
   458   _hwm += x;
   459   return result;
   460 }
   464 // Reallocate storage in Arena.
   465 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size) {
   466   assert(new_size >= 0, "bad size");
   467   if (new_size == 0) return NULL;
   468 #ifdef ASSERT
   469   if (UseMallocOnly) {
   470     // always allocate a new object  (otherwise we'll free this one twice)
   471     char* copy = (char*)Amalloc(new_size);
   472     size_t n = MIN2(old_size, new_size);
   473     if (n > 0) memcpy(copy, old_ptr, n);
   474     Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
   475     return copy;
   476   }
   477 #endif
   478   char *c_old = (char*)old_ptr; // Handy name
   479   // Stupid fast special case
   480   if( new_size <= old_size ) {  // Shrink in-place
   481     if( c_old+old_size == _hwm) // Attempt to free the excess bytes
   482       _hwm = c_old+new_size;    // Adjust hwm
   483     return c_old;
   484   }
   486   // make sure that new_size is legal
   487   size_t corrected_new_size = ARENA_ALIGN(new_size);
   489   // See if we can resize in-place
   490   if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
   491       (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
   492     _hwm = c_old+corrected_new_size;      // Adjust hwm
   493     return c_old;               // Return old pointer
   494   }
   496   // Oops, got to relocate guts
   497   void *new_ptr = Amalloc(new_size);
   498   memcpy( new_ptr, c_old, old_size );
   499   Afree(c_old,old_size);        // Mostly done to keep stats accurate
   500   return new_ptr;
   501 }
   504 // Determine if pointer belongs to this Arena or not.
   505 bool Arena::contains( const void *ptr ) const {
   506 #ifdef ASSERT
   507   if (UseMallocOnly) {
   508     // really slow, but not easy to make fast
   509     if (_chunk == NULL) return false;
   510     char** bottom = (char**)_chunk->bottom();
   511     for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
   512       if (*p == ptr) return true;
   513     }
   514     for (Chunk *c = _first; c != NULL; c = c->next()) {
   515       if (c == _chunk) continue;  // current chunk has been processed
   516       char** bottom = (char**)c->bottom();
   517       for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
   518         if (*p == ptr) return true;
   519       }
   520     }
   521     return false;
   522   }
   523 #endif
   524   if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
   525     return true;                // Check for in this chunk
   526   for (Chunk *c = _first; c; c = c->next()) {
   527     if (c == _chunk) continue;  // current chunk has been processed
   528     if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
   529       return true;              // Check for every chunk in Arena
   530     }
   531   }
   532   return false;                 // Not in any Chunk, so not in Arena
   533 }
   536 #ifdef ASSERT
   537 void* Arena::malloc(size_t size) {
   538   assert(UseMallocOnly, "shouldn't call");
   539   // use malloc, but save pointer in res. area for later freeing
   540   char** save = (char**)internal_malloc_4(sizeof(char*));
   541   return (*save = (char*)os::malloc(size));
   542 }
   544 // for debugging with UseMallocOnly
   545 void* Arena::internal_malloc_4(size_t x) {
   546   assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
   547   check_for_overflow(x, "Arena::internal_malloc_4");
   548   if (_hwm + x > _max) {
   549     return grow(x);
   550   } else {
   551     char *old = _hwm;
   552     _hwm += x;
   553     return old;
   554   }
   555 }
   556 #endif
   559 //--------------------------------------------------------------------------------------
   560 // Non-product code
   562 #ifndef PRODUCT
   563 // The global operator new should never be called since it will usually indicate
   564 // a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
   565 // that they're allocated on the C heap.
   566 // Commented out in product version to avoid conflicts with third-party C++ native code.
   567 // %% note this is causing a problem on solaris debug build. the global
   568 // new is being called from jdk source and causing data corruption.
   569 // src/share/native/sun/awt/font/fontmanager/textcache/hsMemory.cpp::hsSoftNew
   570 // define CATCH_OPERATOR_NEW_USAGE if you want to use this.
   571 #ifdef CATCH_OPERATOR_NEW_USAGE
   572 void* operator new(size_t size){
   573   static bool warned = false;
   574   if (!warned && warn_new_operator)
   575     warning("should not call global (default) operator new");
   576   warned = true;
   577   return (void *) AllocateHeap(size, "global operator new");
   578 }
   579 #endif
   581 void AllocatedObj::print() const       { print_on(tty); }
   582 void AllocatedObj::print_value() const { print_value_on(tty); }
   584 void AllocatedObj::print_on(outputStream* st) const {
   585   st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
   586 }
   588 void AllocatedObj::print_value_on(outputStream* st) const {
   589   st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
   590 }
   592 julong Arena::_bytes_allocated = 0;
   594 void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
   596 AllocStats::AllocStats() {
   597   start_mallocs      = os::num_mallocs;
   598   start_frees        = os::num_frees;
   599   start_malloc_bytes = os::alloc_bytes;
   600   start_mfree_bytes  = os::free_bytes;
   601   start_res_bytes    = Arena::_bytes_allocated;
   602 }
   604 julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
   605 julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
   606 julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
   607 julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
   608 julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
   609 void    AllocStats::print() {
   610   tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
   611                 UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
   612                 num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
   613 }
   616 // debugging code
   617 inline void Arena::free_all(char** start, char** end) {
   618   for (char** p = start; p < end; p++) if (*p) os::free(*p);
   619 }
   621 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
   622   assert(UseMallocOnly, "should not call");
   623   // free all objects malloced since resource mark was created; resource area
   624   // contains their addresses
   625   if (chunk->next()) {
   626     // this chunk is full, and some others too
   627     for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
   628       char* top = c->top();
   629       if (c->next() == NULL) {
   630         top = hwm2;     // last junk is only used up to hwm2
   631         assert(c->contains(hwm2), "bad hwm2");
   632       }
   633       free_all((char**)c->bottom(), (char**)top);
   634     }
   635     assert(chunk->contains(hwm), "bad hwm");
   636     assert(chunk->contains(max), "bad max");
   637     free_all((char**)hwm, (char**)max);
   638   } else {
   639     // this chunk was partially used
   640     assert(chunk->contains(hwm), "bad hwm");
   641     assert(chunk->contains(hwm2), "bad hwm2");
   642     free_all((char**)hwm, (char**)hwm2);
   643   }
   644 }
   647 ReallocMark::ReallocMark() {
   648 #ifdef ASSERT
   649   Thread *thread = ThreadLocalStorage::get_thread_slow();
   650   _nesting = thread->resource_area()->nesting();
   651 #endif
   652 }
   654 void ReallocMark::check() {
   655 #ifdef ASSERT
   656   if (_nesting != Thread::current()->resource_area()->nesting()) {
   657     fatal("allocation bug: array could grow within nested ResourceMark");
   658   }
   659 #endif
   660 }
   662 #endif // Non-product

mercurial