src/cpu/mips/vm/mips_64.ad

Mon, 20 Feb 2017 12:23:10 -0500

author
fujie
date
Mon, 20 Feb 2017 12:23:10 -0500
changeset 327
0797c3ebbee4
parent 326
82d0812bdc67
child 328
245bd118e64c
permissions
-rw-r--r--

[C2] Add instruct rotI_shr_logical_Reg in mips_64.ad

     1 //
     2 // Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // Copyright (c) 2015, 2016, Loongson Technology. All rights reserved.
     4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5 //
     6 // This code is free software; you can redistribute it and/or modify it
     7 // under the terms of the GNU General Public License version 2 only, as
     8 // published by the Free Software Foundation.
     9 //
    10 // This code is distributed in the hope that it will be useful, but WITHOUT
    11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13 // version 2 for more details (a copy is included in the LICENSE file that
    14 // accompanied this code).
    15 //
    16 // You should have received a copy of the GNU General Public License version
    17 // 2 along with this work; if not, write to the Free Software Foundation,
    18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19 //
    20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21 // or visit www.oracle.com if you need additional information or have any
    22 // questions.
    23 //
    24 //
    26 // GodSon3 Architecture Description File
    28 //----------REGISTER DEFINITION BLOCK------------------------------------------
    29 // This information is used by the matcher and the register allocator to
    30 // describe individual registers and classes of registers within the target
    31 // archtecture.
    33 // format:
    34 // reg_def name (call convention, c-call convention, ideal type, encoding);
    35 // 		call convention : 
    36 //			NS  = No-Save
    37 //			SOC = Save-On-Call
    38 //			SOE = Save-On-Entry
    39 //			AS  = Always-Save
    40 //		ideal type :
    41 //			see opto/opcodes.hpp for more info
    42 // reg_class name (reg, ...);
    43 // alloc_class name (reg, ...); 
    44 register %{
    46 // General Registers
    47 // Integer Registers
    48 	reg_def R0	    ( NS,  NS, 	Op_RegI,  0, VMRegImpl::Bad());
    49 	reg_def AT		( NS,  NS, 	Op_RegI,  1, AT->as_VMReg());
    50 	reg_def AT_H    ( NS,  NS,  Op_RegI,  1, AT->as_VMReg()->next());
    51 	reg_def V0		(SOC, SOC,	Op_RegI,  2, V0->as_VMReg());
    52 	reg_def V0_H	(SOC, SOC,	Op_RegI,  2, V0->as_VMReg()->next());
    53 	reg_def V1		(SOC, SOC,	Op_RegI,  3, V1->as_VMReg());
    54 	reg_def V1_H	(SOC, SOC,	Op_RegI,  3, V1->as_VMReg()->next());
    55 	reg_def A0		(SOC, SOC,	Op_RegI,  4, A0->as_VMReg());
    56 	reg_def A0_H	(SOC, SOC,	Op_RegI,  4, A0->as_VMReg()->next());
    57 	reg_def A1		(SOC, SOC,	Op_RegI,  5, A1->as_VMReg());
    58 	reg_def A1_H	(SOC, SOC,	Op_RegI,  5, A1->as_VMReg()->next());
    59 	reg_def A2		(SOC, SOC,	Op_RegI,  6, A2->as_VMReg());
    60 	reg_def A2_H	(SOC, SOC,	Op_RegI,  6, A2->as_VMReg()->next());
    61 	reg_def A3		(SOC, SOC,	Op_RegI,  7, A3->as_VMReg());
    62 	reg_def A3_H	(SOC, SOC,	Op_RegI,  7, A3->as_VMReg()->next());
    63 	reg_def A4		(SOC, SOC,	Op_RegI,  8, A4->as_VMReg());
    64 	reg_def A4_H	(SOC, SOC,	Op_RegI,  8, A4->as_VMReg()->next());
    65 	reg_def A5		(SOC, SOC,	Op_RegI,  9, A5->as_VMReg());
    66 	reg_def A5_H	(SOC, SOC,	Op_RegI,  9, A5->as_VMReg()->next());
    67 	reg_def A6		(SOC, SOC,	Op_RegI,  10, A6->as_VMReg());
    68 	reg_def A6_H	(SOC, SOC,	Op_RegI,  10, A6->as_VMReg()->next());
    69 	reg_def A7		(SOC, SOC,	Op_RegI,  11, A7->as_VMReg());
    70 	reg_def A7_H	(SOC, SOC,	Op_RegI,  11, A7->as_VMReg()->next());
    71 	reg_def T0		(SOC, SOC,	Op_RegI,  12, T0->as_VMReg());
    72 	reg_def T0_H	(SOC, SOC,	Op_RegI,  12, T0->as_VMReg()->next());
    73 	reg_def T1		(SOC, SOC,	Op_RegI,  13, T1->as_VMReg());
    74 	reg_def T1_H	(SOC, SOC,	Op_RegI,  13, T1->as_VMReg()->next());
    75 	reg_def T2		(SOC, SOC,	Op_RegI,  14, T2->as_VMReg());
    76 	reg_def T2_H	(SOC, SOC,	Op_RegI,  14, T2->as_VMReg()->next());
    77 	reg_def T3		(SOC, SOC,	Op_RegI,  15, T3->as_VMReg());
    78 	reg_def T3_H	(SOC, SOC,	Op_RegI,  15, T3->as_VMReg()->next());
    79 	reg_def S0		(SOC, SOE,	Op_RegI,  16, S0->as_VMReg());
    80 	reg_def S0_H	(SOC, SOE,	Op_RegI,  16, S0->as_VMReg()->next());
    81 	reg_def S1		(SOC, SOE,	Op_RegI,  17, S1->as_VMReg());
    82 	reg_def S1_H	(SOC, SOE,	Op_RegI,  17, S1->as_VMReg()->next());
    83 	reg_def S2		(SOC, SOE,	Op_RegI,  18, S2->as_VMReg());
    84 	reg_def S2_H	(SOC, SOE,	Op_RegI,  18, S2->as_VMReg()->next());
    85 	reg_def S3		(SOC, SOE,	Op_RegI,  19, S3->as_VMReg());
    86 	reg_def S3_H	(SOC, SOE,	Op_RegI,  19, S3->as_VMReg()->next());
    87 	reg_def S4		(SOC, SOE,	Op_RegI,  20, S4->as_VMReg());
    88 	reg_def S4_H	(SOC, SOE,	Op_RegI,  20, S4->as_VMReg()->next());
    89 	reg_def S5		(SOC, SOE,	Op_RegI,  21, S5->as_VMReg());
    90 	reg_def S5_H	(SOC, SOE,	Op_RegI,  21, S5->as_VMReg()->next());
    91 	reg_def S6		(SOC, SOE,	Op_RegI,  22, S6->as_VMReg());
    92 	reg_def S6_H	(SOC, SOE,	Op_RegI,  22, S6->as_VMReg()->next());
    93 	reg_def S7		(SOC, SOE,	Op_RegI,  23, S7->as_VMReg());
    94 	reg_def S7_H	(SOC, SOE,	Op_RegI,  23, S7->as_VMReg()->next());
    95 	reg_def T8		(SOC, SOC,	Op_RegI,  24, T8->as_VMReg());
    96 	reg_def T8_H	(SOC, SOC,	Op_RegI,  24, T8->as_VMReg()->next());
    97 	reg_def T9		(SOC, SOC,	Op_RegI,  25, T9->as_VMReg());
    98 	reg_def T9_H	(SOC, SOC,	Op_RegI,  25, T9->as_VMReg()->next());
   100 // Special Registers
   101 	reg_def K0		( NS,  NS,	Op_RegI, 26, K0->as_VMReg());
   102 	reg_def K1		( NS,  NS,	Op_RegI, 27, K1->as_VMReg());
   103 	reg_def GP		( NS,  NS,	Op_RegI, 28, GP->as_VMReg());
   104 	reg_def GP_H	( NS,  NS,	Op_RegI, 28, GP->as_VMReg()->next());
   105 	reg_def SP		( NS,  NS,	Op_RegI, 29, SP->as_VMReg());
   106 	reg_def SP_H	( NS,  NS,	Op_RegI, 29, SP->as_VMReg()->next());
   107 	reg_def FP		( NS,  NS,	Op_RegI, 30, FP->as_VMReg());
   108 	reg_def FP_H	( NS,  NS,	Op_RegI, 30, FP->as_VMReg()->next());
   109 	reg_def RA		( NS,  NS,	Op_RegI, 31, RA->as_VMReg());
   110 	reg_def RA_H	( NS,  NS,	Op_RegI, 31, RA->as_VMReg()->next());
   112 // Floating registers. 
   113 reg_def F0          ( SOC, SOC, Op_RegF, 0, F0->as_VMReg());
   114 reg_def F0_H        ( SOC, SOC, Op_RegF, 0, F0->as_VMReg()->next());
   115 reg_def F1          ( SOC, SOC, Op_RegF, 1, F1->as_VMReg());
   116 reg_def F1_H        ( SOC, SOC, Op_RegF, 1, F1->as_VMReg()->next());
   117 reg_def F2          ( SOC, SOC, Op_RegF, 2, F2->as_VMReg());
   118 reg_def F2_H        ( SOC, SOC, Op_RegF, 2, F2->as_VMReg()->next());
   119 reg_def F3          ( SOC, SOC, Op_RegF, 3, F3->as_VMReg());
   120 reg_def F3_H        ( SOC, SOC, Op_RegF, 3, F3->as_VMReg()->next());
   121 reg_def F4          ( SOC, SOC, Op_RegF, 4, F4->as_VMReg());
   122 reg_def F4_H        ( SOC, SOC, Op_RegF, 4, F4->as_VMReg()->next());
   123 reg_def F5          ( SOC, SOC, Op_RegF, 5, F5->as_VMReg());
   124 reg_def F5_H        ( SOC, SOC, Op_RegF, 5, F5->as_VMReg()->next());
   125 reg_def F6          ( SOC, SOC, Op_RegF, 6, F6->as_VMReg());
   126 reg_def F6_H        ( SOC, SOC, Op_RegF, 6, F6->as_VMReg()->next());
   127 reg_def F7          ( SOC, SOC, Op_RegF, 7, F7->as_VMReg());
   128 reg_def F7_H        ( SOC, SOC, Op_RegF, 7, F7->as_VMReg()->next());
   129 reg_def F8          ( SOC, SOC, Op_RegF, 8, F8->as_VMReg());
   130 reg_def F8_H        ( SOC, SOC, Op_RegF, 8, F8->as_VMReg()->next());
   131 reg_def F9          ( SOC, SOC, Op_RegF, 9, F9->as_VMReg());
   132 reg_def F9_H        ( SOC, SOC, Op_RegF, 9, F9->as_VMReg()->next());
   133 reg_def F10         ( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   134 reg_def F10_H       ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()->next());
   135 reg_def F11         ( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   136 reg_def F11_H       ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()->next());
   137 reg_def F12         ( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   138 reg_def F12_H       ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()->next());
   139 reg_def F13         ( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   140 reg_def F13_H       ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()->next());
   141 reg_def F14         ( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   142 reg_def F14_H       ( SOC, SOC, Op_RegF, 14, F14->as_VMReg()->next());
   143 reg_def F15         ( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   144 reg_def F15_H       ( SOC, SOC, Op_RegF, 15, F15->as_VMReg()->next());
   145 reg_def F16         ( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   146 reg_def F16_H       ( SOC, SOC, Op_RegF, 16, F16->as_VMReg()->next());
   147 reg_def F17         ( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   148 reg_def F17_H       ( SOC, SOC, Op_RegF, 17, F17->as_VMReg()->next());
   149 reg_def F18         ( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   150 reg_def F18_H       ( SOC, SOC, Op_RegF, 18, F18->as_VMReg()->next());
   151 reg_def F19         ( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   152 reg_def F19_H       ( SOC, SOC, Op_RegF, 19, F19->as_VMReg()->next());
   153 reg_def F20         ( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   154 reg_def F20_H       ( SOC, SOC, Op_RegF, 20, F20->as_VMReg()->next());
   155 reg_def F21         ( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   156 reg_def F21_H       ( SOC, SOC, Op_RegF, 21, F21->as_VMReg()->next());
   157 reg_def F22         ( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   158 reg_def F22_H       ( SOC, SOC, Op_RegF, 22, F22->as_VMReg()->next());
   159 reg_def F23         ( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   160 reg_def F23_H       ( SOC, SOC, Op_RegF, 23, F23->as_VMReg()->next());
   161 reg_def F24         ( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   162 reg_def F24_H       ( SOC, SOC, Op_RegF, 24, F24->as_VMReg()->next());
   163 reg_def F25         ( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   164 reg_def F25_H       ( SOC, SOC, Op_RegF, 25, F25->as_VMReg()->next());
   165 reg_def F26         ( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   166 reg_def F26_H       ( SOC, SOC, Op_RegF, 26, F26->as_VMReg()->next());
   167 reg_def F27         ( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   168 reg_def F27_H       ( SOC, SOC, Op_RegF, 27, F27->as_VMReg()->next());
   169 reg_def F28         ( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   170 reg_def F28_H       ( SOC, SOC, Op_RegF, 28, F28->as_VMReg()->next());
   171 reg_def F29         ( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   172 reg_def F29_H       ( SOC, SOC, Op_RegF, 29, F29->as_VMReg()->next());
   173 reg_def F30         ( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   174 reg_def F30_H       ( SOC, SOC, Op_RegF, 30, F30->as_VMReg()->next());
   175 reg_def F31         ( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   176 reg_def F31_H       ( SOC, SOC, Op_RegF, 31, F31->as_VMReg()->next());
   179 // ----------------------------
   180 // Special Registers
   181 // Condition Codes Flag Registers
   182 reg_def MIPS_FLAG (SOC, SOC,  Op_RegFlags, 1, as_Register(1)->as_VMReg());
   183 //S6 is used for get_thread(S6)
   184 //S5 is uesd for heapbase of compressed oop
   185 alloc_class chunk0(  
   186                      S7, S7_H,
   187                      S0, S0_H,
   188                      S1, S1_H,
   189                      S2, S2_H,
   190                      S4, S4_H,
   191                      S5, S5_H,
   192                      S6, S6_H,
   193                      S3, S3_H,
   194                      T2, T2_H,
   195                      T3, T3_H,
   196                      T8, T8_H,
   197                      T9, T9_H,
   198                      T1, T1_H, // inline_cache_reg
   199                      V1, V1_H,
   200                      A7, A7_H,
   201                      A6, A6_H,
   202                      A5, A5_H,
   203                      A4, A4_H,
   204                      V0, V0_H,
   205                      A3, A3_H,
   206                      A2, A2_H,
   207                      A1, A1_H,
   208                      A0, A0_H,
   209                      T0, T0_H,
   210                      GP, GP_H 
   211                      RA, RA_H,
   212                      SP, SP_H, // stack_pointer
   213                      FP, FP_H  // frame_pointer
   214                  );
   216 alloc_class chunk1(  F0, F0_H,
   217                      F1, F1_H,
   218                      F2, F2_H,
   219                      F3, F3_H,
   220                      F4, F4_H,
   221                      F5, F5_H,
   222                      F6, F6_H,
   223                      F7, F7_H,
   224                      F8, F8_H,
   225                      F9, F9_H,
   226                      F10, F10_H,
   227                      F11, F11_H,
   228                      F20, F20_H,
   229                      F21, F21_H,
   230                      F22, F22_H,
   231                      F23, F23_H,
   232                      F24, F24_H,
   233                      F25, F25_H,
   234                      F26, F26_H,
   235                      F27, F27_H,
   236                      F28, F28_H,
   237                      F19, F19_H,
   238                      F18, F18_H,
   239                      F17, F17_H,
   240                      F16, F16_H,
   241                      F15, F15_H,
   242                      F14, F14_H,
   243                      F13, F13_H,
   244                      F12, F12_H,
   245                      F29, F29_H,
   246                      F30, F30_H,
   247                      F31, F31_H);
   249 alloc_class chunk2(MIPS_FLAG);
   251 reg_class s_reg( S0, S1, S2, S3, S4, S5, S6, S7 );
   252 reg_class s0_reg( S0 );
   253 reg_class s1_reg( S1 );
   254 reg_class s2_reg( S2 );
   255 reg_class s3_reg( S3 );
   256 reg_class s4_reg( S4 );
   257 reg_class s5_reg( S5 );
   258 reg_class s6_reg( S6 );
   259 reg_class s7_reg( S7 );
   261 reg_class t_reg( T0, T1, T2, T3, T8, T9 );
   262 reg_class t0_reg( T0 );
   263 reg_class t1_reg( T1 );
   264 reg_class t2_reg( T2 );
   265 reg_class t3_reg( T3 );
   266 reg_class t8_reg( T8 );
   267 reg_class t9_reg( T9 );
   269 reg_class a_reg( A0, A1, A2, A3, A4, A5, A6, A7 );
   270 reg_class a0_reg( A0 );
   271 reg_class a1_reg( A1 );
   272 reg_class a2_reg( A2 );
   273 reg_class a3_reg( A3 );
   274 reg_class a4_reg( A4 );
   275 reg_class a5_reg( A5 );
   276 reg_class a6_reg( A6 );
   277 reg_class a7_reg( A7 );
   279 reg_class v0_reg( V0 );
   280 reg_class v1_reg( V1 );
   282 reg_class sp_reg( SP, SP_H );
   283 reg_class fp_reg( FP, FP_H );
   285 reg_class mips_flags(MIPS_FLAG);
   287 reg_class v0_long_reg( V0, V0_H );
   288 reg_class v1_long_reg( V1, V1_H );
   289 reg_class a0_long_reg( A0, A0_H );
   290 reg_class a1_long_reg( A1, A1_H );
   291 reg_class a2_long_reg( A2, A2_H );
   292 reg_class a3_long_reg( A3, A3_H );
   293 reg_class a4_long_reg( A4, A4_H );
   294 reg_class a5_long_reg( A5, A5_H );
   295 reg_class a6_long_reg( A6, A6_H );
   296 reg_class a7_long_reg( A7, A7_H );
   297 reg_class t0_long_reg( T0, T0_H );
   298 reg_class t1_long_reg( T1, T1_H );
   299 reg_class t2_long_reg( T2, T2_H );
   300 reg_class t3_long_reg( T3, T3_H );
   301 reg_class t8_long_reg( T8, T8_H );
   302 reg_class t9_long_reg( T9, T9_H );
   303 reg_class s0_long_reg( S0, S0_H );
   304 reg_class s1_long_reg( S1, S1_H );
   305 reg_class s2_long_reg( S2, S2_H );
   306 reg_class s3_long_reg( S3, S3_H );
   307 reg_class s4_long_reg( S4, S4_H );
   308 reg_class s5_long_reg( S5, S5_H );
   309 reg_class s6_long_reg( S6, S6_H );
   310 reg_class s7_long_reg( S7, S7_H );
   312 reg_class int_reg( S7, S0, S1, S2, S4, S3, T8, T2, T3, T1, V1, A7, A6, A5, A4, V0, A3, A2, A1, A0, T0 );
   314 reg_class no_Ax_int_reg( S7, S0, S1, S2, S4, S3, T8, T2, T3, T1, V1, V0, T0 );
   316 reg_class p_reg( 
   317                  S7, S7_H,
   318                  S0, S0_H,
   319                  S1, S1_H,
   320                  S2, S2_H,
   321                  S4, S4_H,
   322                  S3, S3_H,
   323                  T8, T8_H,
   324                  T2, T2_H,
   325                  T3, T3_H,
   326                  T1, T1_H,
   327                  A7, A7_H,
   328                  A6, A6_H,
   329                  A5, A5_H,
   330                  A4, A4_H,
   331                  A3, A3_H,
   332                  A2, A2_H,
   333                  A1, A1_H,
   334                  A0, A0_H,
   335                  T0, T0_H
   336                );
   338 reg_class no_T8_p_reg( 
   339                  S7, S7_H,
   340                  S0, S0_H,
   341                  S1, S1_H,
   342                  S2, S2_H,
   343                  S4, S4_H,
   344                  S3, S3_H,
   345                  T2, T2_H,
   346                  T3, T3_H,
   347                  T1, T1_H,
   348                  A7, A7_H,
   349                  A6, A6_H,
   350                  A5, A5_H,
   351                  A4, A4_H,
   352                  A3, A3_H,
   353                  A2, A2_H,
   354                  A1, A1_H,
   355                  A0, A0_H,
   356                  T0, T0_H
   357                );
   359 reg_class long_reg( 
   360                     S7, S7_H,
   361                     S0, S0_H,
   362                     S1, S1_H,
   363                     S2, S2_H,
   364                     S4, S4_H,
   365                     S3, S3_H,
   366                     T8, T8_H,
   367                     T2, T2_H,
   368                     T3, T3_H,
   369                     T1, T1_H,
   370                     A7, A7_H,
   371                     A6, A6_H,
   372                     A5, A5_H,
   373                     A4, A4_H,
   374                     A3, A3_H,
   375                     A2, A2_H,
   376                     A1, A1_H,
   377                     A0, A0_H,
   378                     T0, T0_H
   379                   );
   382 // Floating point registers.
   383 // 2012/8/23 Fu: F30/F31 are used as temporary registers in D2I
   384 // 2016/12/1 aoqi: F31 are not used as temporary registers in D2I
   385 reg_class flt_reg( F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17 F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F31);
   386 reg_class dbl_reg( F0, F0_H,
   387                    F1, F1_H,
   388                    F2, F2_H,
   389                    F3, F3_H,
   390                    F4, F4_H,
   391                    F5, F5_H,
   392                    F6, F6_H,
   393                    F7, F7_H,
   394                    F8, F8_H,
   395                    F9, F9_H,
   396                    F10, F10_H, 
   397                    F11, F11_H, 
   398                    F12, F12_H, 
   399                    F13, F13_H, 
   400                    F14, F14_H, 
   401                    F15, F15_H, 
   402                    F16, F16_H, 
   403                    F17, F17_H, 
   404                    F18, F18_H, 
   405                    F19, F19_H, 
   406                    F20, F20_H, 
   407                    F21, F21_H, 
   408                    F22, F22_H, 
   409                    F23, F23_H, 
   410                    F24, F24_H, 
   411                    F25, F25_H, 
   412                    F26, F26_H, 
   413                    F27, F27_H, 
   414                    F28, F28_H, 
   415                    F29, F29_H, 
   416                    F31, F31_H);
   418 reg_class flt_arg0( F12 );
   419 reg_class dbl_arg0( F12, F12_H );
   420 reg_class dbl_arg1( F14, F14_H );
   422 %} 
   424 //----------DEFINITION BLOCK---------------------------------------------------
   425 // Define name --> value mappings to inform the ADLC of an integer valued name
   426 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   427 // Format:
   428 //        int_def  <name>         ( <int_value>, <expression>);
   429 // Generated Code in ad_<arch>.hpp
   430 //        #define  <name>   (<expression>)
   431 //        // value == <int_value>
   432 // Generated code in ad_<arch>.cpp adlc_verification()
   433 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   434 //
   435 definitions %{
   436 	int_def DEFAULT_COST      (    100,     100);
   437 	int_def HUGE_COST         (1000000, 1000000);
   439 	// Memory refs are twice as expensive as run-of-the-mill.
   440 	int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   442 	// Branches are even more expensive.
   443 	int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   444 	// we use jr instruction to construct call, so more expensive
   445 	// by yjl 2/28/2006
   446 	int_def CALL_COST         (    500, DEFAULT_COST * 5);
   447 /*
   448         int_def EQUAL             (   1, 1  );
   449         int_def NOT_EQUAL         (   2, 2  );
   450         int_def GREATER           (   3, 3  );
   451         int_def GREATER_EQUAL     (   4, 4  );
   452         int_def LESS              (   5, 5  );
   453         int_def LESS_EQUAL        (   6, 6  );
   454 */
   455 %}
   459 //----------SOURCE BLOCK-------------------------------------------------------
   460 // This is a block of C++ code which provides values, functions, and
   461 // definitions necessary in the rest of the architecture description
   463 source_hpp %{
   464 // Header information of the source block.
   465 // Method declarations/definitions which are used outside
   466 // the ad-scope can conveniently be defined here.
   467 //
   468 // To keep related declarations/definitions/uses close together,
   469 // we switch between source %{ }% and source_hpp %{ }% freely as needed.
   471 class CallStubImpl {
   473   //--------------------------------------------------------------
   474   //---<  Used for optimization in Compile::shorten_branches  >---
   475   //--------------------------------------------------------------
   477  public:
   478   // Size of call trampoline stub.
   479   static uint size_call_trampoline() {
   480     return 0; // no call trampolines on this platform
   481   }
   483   // number of relocations needed by a call trampoline stub
   484   static uint reloc_call_trampoline() { 
   485     return 0; // no call trampolines on this platform
   486   }
   487 };
   489 class HandlerImpl {
   491  public:
   493   static int emit_exception_handler(CodeBuffer &cbuf);
   494   static int emit_deopt_handler(CodeBuffer& cbuf);
   496   static uint size_exception_handler() {
   497     // NativeCall instruction size is the same as NativeJump.
   498     // exception handler starts out as jump and can be patched to
   499     // a call be deoptimization.  (4932387)
   500     // Note that this value is also credited (in output.cpp) to
   501     // the size of the code section.
   502 //    return NativeJump::instruction_size;
   503     int size = NativeCall::instruction_size;
   504     return round_to(size, 16);
   505   }
   507 #ifdef _LP64
   508   static uint size_deopt_handler() {
   509     int size = NativeCall::instruction_size;
   510     return round_to(size, 16);
   511   }
   512 #else
   513   static uint size_deopt_handler() {
   514     // NativeCall instruction size is the same as NativeJump.
   515     // exception handler starts out as jump and can be patched to
   516     // a call be deoptimization.  (4932387)
   517     // Note that this value is also credited (in output.cpp) to
   518     // the size of the code section.
   519     return 5 + NativeJump::instruction_size; // pushl(); jmp;
   520   }
   521 #endif
   522 };
   524 %} // end source_hpp
   526 source %{
   528 #define   NO_INDEX    0
   529 #define   RELOC_IMM64    Assembler::imm_operand
   530 #define   RELOC_DISP32   Assembler::disp32_operand
   533 #define __ _masm.
   536 // Emit exception handler code.
   537 // Stuff framesize into a register and call a VM stub routine.
   538 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
   539 /*
   540   // Note that the code buffer's insts_mark is always relative to insts.
   541   // That's why we must use the macroassembler to generate a handler.
   542   MacroAssembler _masm(&cbuf);
   543   address base = __ start_a_stub(size_exception_handler());
   544   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   545   int offset = __ offset();
   546   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
   547   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
   548   __ end_a_stub();
   549   return offset;
   550 */
   551   // Note that the code buffer's insts_mark is always relative to insts.
   552   // That's why we must use the macroassembler to generate a handler.
   553   MacroAssembler _masm(&cbuf);
   554   address base =
   555   __ start_a_stub(size_exception_handler());
   556   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   557   int offset = __ offset();
   559   __ block_comment("; emit_exception_handler");
   561   /* 2012/9/25 FIXME Jin: According to X86, we should use direct jumpt.
   562  *    *  However, this will trigger an assert after the 40th method:
   563  *       *
   564  *          *        39   b   java.lang.Throwable::<init> (25 bytes)
   565  *             *       ---   ns  java.lang.Throwable::fillInStackTrace
   566  *                *        40  !b   java.net.URLClassLoader::findClass (29 bytes)
   567  *                   *       /vm/opto/runtime.cpp, 900 , assert(caller.is_compiled_frame(),"must be")
   568  *                      *        40   made not entrant  (2)  java.net.URLClassLoader::findClass (29 bytes)
   569  *                         *
   570  *                            *  If we change from JR to JALR, the assert will disappear, but WebClient will
   571  *                               *  fail  after the 403th method with unknown reason.
   572  *                                  */
   573   __ li48(T9, (long)OptoRuntime::exception_blob()->entry_point());
   574   __ jr(T9);
   575   __ delayed()->nop();
   576   __ align(16);
   577   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
   578   __ end_a_stub();
   579   return offset;
   580 }
   582 // Emit deopt handler code.
   583 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
   584 /*
   585   // Note that the code buffer's insts_mark is always relative to insts.
   586   // That's why we must use the macroassembler to generate a handler.
   587   MacroAssembler _masm(&cbuf);
   588   address base = __ start_a_stub(size_deopt_handler());
   589   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   590   int offset = __ offset();
   592 #ifdef _LP64
   593   address the_pc = (address) __ pc();
   594   Label next;
   595   // push a "the_pc" on the stack without destroying any registers
   596   // as they all may be live.
   598   // push address of "next"
   599   __ call(next, relocInfo::none); // reloc none is fine since it is a disp32
   600   __ bind(next);
   601   // adjust it so it matches "the_pc"
   602   __ subptr(Address(rsp, 0), __ offset() - offset);
   603 #else
   604   InternalAddress here(__ pc());
   605   __ pushptr(here.addr());
   606 #endif
   608   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   609   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
   610   __ end_a_stub();
   611   return offset;
   612 */
   613   // Note that the code buffer's insts_mark is always relative to insts.
   614   // That's why we must use the macroassembler to generate a handler.
   615   MacroAssembler _masm(&cbuf);
   616   address base =
   617   __ start_a_stub(size_deopt_handler());
   619   // FIXME
   620   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   621   int offset = __ offset();
   623   __ block_comment("; emit_deopt_handler");
   625   cbuf.set_insts_mark();
   626   __ relocate(relocInfo::runtime_call_type);
   628   __ li48(T9, (long)SharedRuntime::deopt_blob()->unpack());
   629   __ jalr(T9);
   630   __ delayed()->nop();
   631   __ align(16);
   632   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
   633   __ end_a_stub();
   634   return offset;
   635 }
   638 const bool Matcher::match_rule_supported(int opcode) {
   639   if (!has_match_rule(opcode))
   640     return false;
   642   switch (opcode) {
   643     //Op_CountLeadingZerosI Op_CountLeadingZerosL can be deleted, all MIPS CPUs support clz & dclz.
   644     case Op_CountLeadingZerosI:
   645     case Op_CountLeadingZerosL:
   646       if (!UseCountLeadingZerosInstruction)
   647         return false;
   648       break;
   649     case Op_CountTrailingZerosI:
   650     case Op_CountTrailingZerosL:
   651       if (!UseCountTrailingZerosInstruction)
   652         return false;
   653       break;
   654   }
   656   return true;  // Per default match rules are supported.
   657 }
   659 //FIXME
   660 // emit call stub, compiled java to interpreter
   661 void emit_java_to_interp(CodeBuffer &cbuf ) {
   662   // Stub is fixed up when the corresponding call is converted from calling
   663   // compiled code to calling interpreted code.
   664   // mov rbx,0
   665   // jmp -1
   667   address mark = cbuf.insts_mark();  // get mark within main instrs section
   669   // Note that the code buffer's insts_mark is always relative to insts.
   670   // That's why we must use the macroassembler to generate a stub.
   671   MacroAssembler _masm(&cbuf);
   673   address base =
   674   __ start_a_stub(Compile::MAX_stubs_size);
   675   if (base == NULL)  return;  // CodeBuffer::expand failed
   676   // static stub relocation stores the instruction address of the call
   678   __ relocate(static_stub_Relocation::spec(mark), 0);
   680   /* 2012/10/29 Jin: Rmethod contains methodOop, it should be relocated for GC */
   681 /*
   682   int oop_index = __ oop_recorder()->allocate_index(NULL);
   683   RelocationHolder rspec = oop_Relocation::spec(oop_index);
   684   __ relocate(rspec);
   685 */
   687   // static stub relocation also tags the methodOop in the code-stream.
   688   __ li48(S3, (long)0);
   689   // This is recognized as unresolved by relocs/nativeInst/ic code
   691   __ relocate(relocInfo::runtime_call_type);
   693   cbuf.set_insts_mark();
   694   address call_pc = (address)-1;
   695   __ li48(AT, (long)call_pc);
   696   __ jr(AT);
   697   __ nop();
   698   __ align(16);
   699   __ end_a_stub();
   700   // Update current stubs pointer and restore code_end.
   701 }
   703 // size of call stub, compiled java to interpretor
   704 uint size_java_to_interp() {
   705   int size = 4 * 4 + NativeCall::instruction_size; // sizeof(li48) + NativeCall::instruction_size
   706   return round_to(size, 16);
   707 }
   709 // relocation entries for call stub, compiled java to interpreter
   710 uint reloc_java_to_interp() {
   711   return 16;  //  in emit_java_to_interp +  in Java_Static_Call
   712 }
   714 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
   715  if( Assembler::is_simm16(offset) ) return true;
   716  else 
   717  {
   718     assert(false, "Not implemented yet !" );
   719     Unimplemented();
   720  }
   721 }
   724 // No additional cost for CMOVL.
   725 const int Matcher::long_cmove_cost() { return 0; }
   727 // No CMOVF/CMOVD with SSE2
   728 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
   730 // Does the CPU require late expand (see block.cpp for description of late expand)?
   731 const bool Matcher::require_postalloc_expand = false;
   733 // Should the Matcher clone shifts on addressing modes, expecting them
   734 // to be subsumed into complex addressing expressions or compute them
   735 // into registers?  True for Intel but false for most RISCs
   736 const bool Matcher::clone_shift_expressions = false;
   738 // Do we need to mask the count passed to shift instructions or does
   739 // the cpu only look at the lower 5/6 bits anyway?
   740 const bool Matcher::need_masked_shift_count = false;
   742 bool Matcher::narrow_oop_use_complex_address() {
   743   NOT_LP64(ShouldNotCallThis());
   744   assert(UseCompressedOops, "only for compressed oops code");
   745   return false;
   746 }
   748 bool Matcher::narrow_klass_use_complex_address() {
   749   NOT_LP64(ShouldNotCallThis());
   750   assert(UseCompressedClassPointers, "only for compressed klass code");
   751   return false;
   752 }
   754 // This is UltraSparc specific, true just means we have fast l2f conversion
   755 const bool Matcher::convL2FSupported(void) {
   756   return true;
   757 }
   759 // Max vector size in bytes. 0 if not supported.
   760 const int Matcher::vector_width_in_bytes(BasicType bt) {
   761   assert(MaxVectorSize == 8, "");
   762   return 8;
   763 }
   765 // Vector ideal reg
   766 const int Matcher::vector_ideal_reg(int size) {
   767   assert(MaxVectorSize == 8, "");
   768   switch(size) {
   769     case  8: return Op_VecD;
   770   }
   771   ShouldNotReachHere();
   772   return 0;
   773 }
   775 // Only lowest bits of xmm reg are used for vector shift count.
   776 const int Matcher::vector_shift_count_ideal_reg(int size) {
   777   fatal("vector shift is not supported");
   778   return Node::NotAMachineReg;
   779 }
   781 // Limits on vector size (number of elements) loaded into vector.
   782 const int Matcher::max_vector_size(const BasicType bt) {
   783   assert(is_java_primitive(bt), "only primitive type vectors");
   784   return vector_width_in_bytes(bt)/type2aelembytes(bt);
   785 }
   787 const int Matcher::min_vector_size(const BasicType bt) {
   788   return max_vector_size(bt); // Same as max.
   789 }
   791 // MIPS supports misaligned vectors store/load? FIXME
   792 const bool Matcher::misaligned_vectors_ok() {
   793   return false;
   794   //return !AlignVector; // can be changed by flag
   795 }
   797 // Register for DIVI projection of divmodI
   798 RegMask Matcher::divI_proj_mask() {
   799   ShouldNotReachHere();
   800   return RegMask();
   801 }
   803 // Register for MODI projection of divmodI
   804 RegMask Matcher::modI_proj_mask() {
   805   ShouldNotReachHere();
   806   return RegMask();
   807 }
   809 // Register for DIVL projection of divmodL
   810 RegMask Matcher::divL_proj_mask() {
   811   ShouldNotReachHere();
   812   return RegMask();
   813 }
   815 int Matcher::regnum_to_fpu_offset(int regnum) {
   816   return regnum - 32; // The FP registers are in the second chunk
   817 }
   820 const bool Matcher::isSimpleConstant64(jlong value) {
   821   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
   822   return true;
   823 }
   826 // Return whether or not this register is ever used as an argument.  This
   827 // function is used on startup to build the trampoline stubs in generateOptoStub.
   828 // Registers not mentioned will be killed by the VM call in the trampoline, and
   829 // arguments in those registers not be available to the callee.
   830 bool Matcher::can_be_java_arg( int reg ) {
   831   /* Refer to: [sharedRuntime_mips_64.cpp] SharedRuntime::java_calling_convention() */
   832   if (    reg == T0_num || reg == T0_H_num
   833 	   || reg == A0_num || reg == A0_H_num 
   834        || reg == A1_num || reg == A1_H_num 
   835        || reg == A2_num || reg == A2_H_num 
   836        || reg == A3_num || reg == A3_H_num 
   837        || reg == A4_num || reg == A4_H_num 
   838        || reg == A5_num || reg == A5_H_num 
   839        || reg == A6_num || reg == A6_H_num 
   840        || reg == A7_num || reg == A7_H_num )
   841     return true;
   843   if (    reg == F12_num || reg == F12_H_num
   844        || reg == F13_num || reg == F13_H_num 
   845        || reg == F14_num || reg == F14_H_num 
   846        || reg == F15_num || reg == F15_H_num 
   847        || reg == F16_num || reg == F16_H_num 
   848        || reg == F17_num || reg == F17_H_num 
   849        || reg == F18_num || reg == F18_H_num 
   850        || reg == F19_num || reg == F19_H_num )
   851     return true;
   853   return false;
   854 }
   856 bool Matcher::is_spillable_arg( int reg ) {
   857   return can_be_java_arg(reg);
   858 }
   860 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
   861   return false;
   862 }
   864 // Register for MODL projection of divmodL
   865 RegMask Matcher::modL_proj_mask() {
   866   ShouldNotReachHere();
   867   return RegMask();
   868 }
   870 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
   871   return FP_REG_mask();
   872 }
   874 // MIPS doesn't support AES intrinsics
   875 const bool Matcher::pass_original_key_for_aes() {
   876   return false;
   877 }
   879 // The address of the call instruction needs to be 16-byte aligned to
   880 // ensure that it does not span a cache line so that it can be patched.
   882 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   883   //lui
   884   //ori
   885   //dsll
   886   //ori
   888   //jalr
   889   //nop
   891   return round_to(current_offset, alignment_required()) - current_offset;
   892 }
   894 // The address of the call instruction needs to be 16-byte aligned to
   895 // ensure that it does not span a cache line so that it can be patched.
   896 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   897   //li64   <--- skip
   899   //lui
   900   //ori
   901   //dsll
   902   //ori
   904   //jalr
   905   //nop
   907   current_offset += 4 * 6; // skip li64 
   908   return round_to(current_offset, alignment_required()) - current_offset;
   909 }
   911 int CallLeafNoFPDirectNode::compute_padding(int current_offset) const {
   912   //lui
   913   //ori
   914   //dsll
   915   //ori
   917   //jalr
   918   //nop
   920   return round_to(current_offset, alignment_required()) - current_offset;
   921 }
   923 int CallLeafDirectNode::compute_padding(int current_offset) const {
   924   //lui
   925   //ori
   926   //dsll
   927   //ori
   929   //jalr
   930   //nop
   932   return round_to(current_offset, alignment_required()) - current_offset;
   933 }
   935 int CallRuntimeDirectNode::compute_padding(int current_offset) const {
   936   //lui
   937   //ori
   938   //dsll
   939   //ori
   941   //jalr
   942   //nop
   944   return round_to(current_offset, alignment_required()) - current_offset;
   945 }
   947 // If CPU can load and store mis-aligned doubles directly then no fixup is
   948 // needed.  Else we split the double into 2 integer pieces and move it
   949 // piece-by-piece.  Only happens when passing doubles into C code as the
   950 // Java calling convention forces doubles to be aligned.
   951 const bool Matcher::misaligned_doubles_ok = false;
   952 // Do floats take an entire double register or just half?
   953 //const bool Matcher::float_in_double = true;
   954 bool Matcher::float_in_double() { return false; }
   955 // Threshold size for cleararray.
   956 const int Matcher::init_array_short_size = 8 * BytesPerLong;
   957 // Do ints take an entire long register or just half?
   958 const bool Matcher::int_in_long = true;
   959 // Is it better to copy float constants, or load them directly from memory?
   960 // Intel can load a float constant from a direct address, requiring no
   961 // extra registers.  Most RISCs will have to materialize an address into a
   962 // register first, so they would do better to copy the constant from stack.
   963 const bool Matcher::rematerialize_float_constants = false;
   964 // Advertise here if the CPU requires explicit rounding operations
   965 // to implement the UseStrictFP mode.
   966 const bool Matcher::strict_fp_requires_explicit_rounding = false;
   967 // The ecx parameter to rep stos for the ClearArray node is in dwords.
   968 const bool Matcher::init_array_count_is_in_bytes = false;
   971 // Indicate if the safepoint node needs the polling page as an input.
   972 // Since MIPS doesn't have absolute addressing, it needs.
   973 bool SafePointNode::needs_polling_address_input() {
   974   return true;
   975 }
   977 // !!!!! Special hack to get all type of calls to specify the byte offset
   978 //       from the start of the call to the point where the return address
   979 //       will point.
   980 int MachCallStaticJavaNode::ret_addr_offset() {
   981   assert(NativeCall::instruction_size == 24, "in MachCallStaticJavaNode::ret_addr_offset");
   982   //The value ought to be 16 bytes.
   983   //lui
   984   //ori
   985   //dsll
   986   //ori
   987   //jalr
   988   //nop
   989   return NativeCall::instruction_size; 
   990 }
   992 int MachCallDynamicJavaNode::ret_addr_offset() {
   993   /* 2012/9/10 Jin: must be kept in sync with Java_Dynamic_Call */
   995  // return NativeCall::instruction_size; 
   996   assert(NativeCall::instruction_size == 24, "in MachCallDynamicJavaNode::ret_addr_offset");
   997   //The value ought to be 4 + 16 bytes.
   998   //lui IC_Klass,
   999   //ori IC_Klass,
  1000   //dsll IC_Klass
  1001   //ori IC_Klass
  1002   //lui T9
  1003   //ori T9
  1004   //dsll T9
  1005   //ori T9
  1006   //jalr T9
  1007   //nop
  1008   return 6 * 4 + NativeCall::instruction_size; 
  1012 /*
  1013 // EMIT_OPCODE()
  1014 void emit_opcode(CodeBuffer &cbuf, int code) {
  1015   *(cbuf.code_end()) = (unsigned char)code;
  1016   cbuf.set_code_end(cbuf.code_end() + 1);
  1018 */
  1020 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
  1021         int format) {
  1022   cbuf.relocate(cbuf.insts_mark(), reloc, format);
  1023   cbuf.insts()->emit_int32(d32);
  1026 //=============================================================================
  1028 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1029 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1030 static enum RC rc_class( OptoReg::Name reg ) {
  1031   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1032   if (OptoReg::is_stack(reg)) return rc_stack;
  1033   VMReg r = OptoReg::as_VMReg(reg);
  1034   if (r->is_Register()) return rc_int;
  1035   assert(r->is_FloatRegister(), "must be");
  1036   return rc_float;
  1039 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
  1040   // Get registers to move
  1041   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1042   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1043   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1044   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1046   enum RC src_second_rc = rc_class(src_second);
  1047   enum RC src_first_rc = rc_class(src_first);
  1048   enum RC dst_second_rc = rc_class(dst_second);
  1049   enum RC dst_first_rc = rc_class(dst_first);
  1051   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1053   // Generate spill code!
  1054   int size = 0;
  1056   if( src_first == dst_first && src_second == dst_second )
  1057     return 0;            // Self copy, no move
  1059   if (src_first_rc == rc_stack) {
  1060     // mem ->
  1061     if (dst_first_rc == rc_stack) {
  1062       // mem -> mem
  1063       assert(src_second != dst_first, "overlap");
  1064       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1065           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1066         // 64-bit
  1067         int src_offset = ra_->reg2offset(src_first);
  1068         int dst_offset = ra_->reg2offset(dst_first);
  1069         if (cbuf) {
  1070           MacroAssembler _masm(cbuf);
  1071           __ ld(AT, Address(SP, src_offset));
  1072           __ sd(AT, Address(SP, dst_offset));
  1073 #ifndef PRODUCT
  1074         } else {
  1075 			if(!do_size){
  1076 				if (size != 0) st->print("\n\t");
  1077 				st->print("ld    AT, [SP + #%d]\t# 64-bit mem-mem spill 1\n\t"
  1078 						  "sd    AT, [SP + #%d]",
  1079 						  src_offset, dst_offset);
  1081 #endif
  1083 		size += 8;
  1084       } else {
  1085         // 32-bit
  1086         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1087         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1088         // No pushl/popl, so:
  1089         int src_offset = ra_->reg2offset(src_first);
  1090         int dst_offset = ra_->reg2offset(dst_first);
  1091         if (cbuf) {
  1092           MacroAssembler _masm(cbuf);
  1093           __ lw(AT, Address(SP, src_offset));
  1094           __ sw(AT, Address(SP, dst_offset));
  1095 #ifndef PRODUCT
  1096         } else {
  1097 			if(!do_size){
  1098 				if (size != 0) st->print("\n\t");
  1099 				st->print("lw    AT, [SP + #%d] spill 2\n\t"
  1100 						  "sw    AT, [SP + #%d]\n\t",
  1101 						  src_offset, dst_offset);
  1103 #endif
  1105 		size += 8;
  1107       return size;
  1108     } else if (dst_first_rc == rc_int) {
  1109       // mem -> gpr
  1110       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1111           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1112         // 64-bit
  1113         int offset = ra_->reg2offset(src_first);
  1114         if (cbuf) {
  1115           MacroAssembler _masm(cbuf);
  1116           __ ld(as_Register(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1117 #ifndef PRODUCT
  1118         } else {
  1119 			if(!do_size){
  1120 				if (size != 0) st->print("\n\t");
  1121 				st->print("ld    %s, [SP + #%d]\t# spill 3",
  1122 						  Matcher::regName[dst_first],
  1123 						  offset);
  1125 #endif
  1127 		size += 4;
  1128       } else {
  1129         // 32-bit
  1130         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1131         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1132         int offset = ra_->reg2offset(src_first);
  1133         if (cbuf) {
  1134           MacroAssembler _masm(cbuf);
  1135           if (this->ideal_reg() == Op_RegI)
  1136             __ lw(as_Register(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1137           else
  1138             __ lwu(as_Register(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1139 #ifndef PRODUCT
  1140         } else {
  1141 			if(!do_size){
  1142 				if (size != 0) st->print("\n\t");
  1143           if (this->ideal_reg() == Op_RegI)
  1144 				st->print("lw    %s, [SP + #%d]\t# spill 4",
  1145 						   Matcher::regName[dst_first],
  1146 						   offset);
  1147 		  else
  1148 				st->print("lwu    %s, [SP + #%d]\t# spill 5",
  1149 						   Matcher::regName[dst_first],
  1150 						   offset);
  1152 #endif
  1154 		size += 4;
  1156       return size;
  1157     } else if (dst_first_rc == rc_float) {
  1158       // mem-> xmm
  1159       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1160           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1161         // 64-bit
  1162         int offset = ra_->reg2offset(src_first);
  1163         if (cbuf) {
  1164           MacroAssembler _masm(cbuf);
  1165           __ ldc1( as_FloatRegister(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1166 #ifndef PRODUCT
  1167         } else {
  1168 			if(!do_size){
  1169 				if (size != 0) st->print("\n\t");
  1170 				st->print("ldc1  %s, [SP + #%d]\t# spill 6",
  1171 						  Matcher::regName[dst_first],
  1172 						  offset);
  1174 #endif
  1176 		size += 4;
  1177       } else {
  1178         // 32-bit
  1179         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1180         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1181         int offset = ra_->reg2offset(src_first);
  1182         if (cbuf) {
  1183           MacroAssembler _masm(cbuf);
  1184           __ lwc1( as_FloatRegister(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1185 #ifndef PRODUCT
  1186         } else {
  1187 			if(!do_size){
  1188 				if (size != 0) st->print("\n\t");
  1189 				st->print("lwc1   %s, [SP + #%d]\t# spill 7",
  1190 						  Matcher::regName[dst_first],
  1191 						  offset);
  1193 #endif
  1195 		size += 4;
  1197       return size;
  1199   } else if (src_first_rc == rc_int) {
  1200     // gpr ->
  1201     if (dst_first_rc == rc_stack) {
  1202       // gpr -> mem
  1203       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1204           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1205         // 64-bit
  1206         int offset = ra_->reg2offset(dst_first);
  1207         if (cbuf) {
  1208           MacroAssembler _masm(cbuf);
  1209           __ sd(as_Register(Matcher::_regEncode[src_first]), Address(SP, offset));
  1210 #ifndef PRODUCT
  1211         } else {
  1212 			if(!do_size){
  1213 				if (size != 0) st->print("\n\t");
  1214 				st->print("sd    %s, [SP + #%d] # spill 8",
  1215 						  Matcher::regName[src_first],
  1216 						  offset);
  1218 #endif
  1220 		size += 4;
  1221       } else {
  1222         // 32-bit
  1223         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1224         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1225         int offset = ra_->reg2offset(dst_first);
  1226         if (cbuf) {
  1227           MacroAssembler _masm(cbuf);
  1228           __ sw(as_Register(Matcher::_regEncode[src_first]), Address(SP, offset));
  1229 #ifndef PRODUCT
  1230         } else {
  1231 			if(!do_size){
  1232 				if (size != 0) st->print("\n\t");
  1233 				st->print("sw    %s, [SP + #%d]\t# spill 9",
  1234 						Matcher::regName[src_first], offset);
  1236 #endif
  1238 		size += 4;
  1240       return size;
  1241     } else if (dst_first_rc == rc_int) {
  1242       // gpr -> gpr
  1243       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1244           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1245         // 64-bit
  1246         if (cbuf) {
  1247           MacroAssembler _masm(cbuf);
  1248           __ move(as_Register(Matcher::_regEncode[dst_first]),
  1249                   as_Register(Matcher::_regEncode[src_first]));
  1250 #ifndef PRODUCT
  1251         } else {
  1252 			if(!do_size){
  1253 				if (size != 0) st->print("\n\t");
  1254 				st->print("move(64bit)    %s <-- %s\t# spill 10",
  1255 						  Matcher::regName[dst_first],
  1256 						  Matcher::regName[src_first]);
  1258 #endif
  1260 		size += 4;
  1261         return size;
  1262       } else {
  1263         // 32-bit
  1264         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1265         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1266         if (cbuf) {
  1267           MacroAssembler _masm(cbuf);
  1268           if (this->ideal_reg() == Op_RegI)
  1269               __ move_u32(as_Register(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
  1270           else
  1271               __ daddu(as_Register(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]), R0);
  1273 #ifndef PRODUCT
  1274         } else {
  1275 			if(!do_size){
  1276 				if (size != 0) st->print("\n\t");
  1277 				st->print("move(32-bit)    %s <-- %s\t# spill 11",
  1278 						  Matcher::regName[dst_first],
  1279 						  Matcher::regName[src_first]);
  1281 #endif
  1283 		size += 4;	
  1284         return size;
  1286     } else if (dst_first_rc == rc_float) {
  1287       // gpr -> xmm
  1288       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1289           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1290         // 64-bit
  1291         if (cbuf) {
  1292           MacroAssembler _masm(cbuf);
  1293           __ dmtc1(as_Register(Matcher::_regEncode[src_first]), as_FloatRegister(Matcher::_regEncode[dst_first]));
  1294 #ifndef PRODUCT
  1295         } else {
  1296 			if(!do_size){
  1297 				if (size != 0) st->print("\n\t");
  1298 				st->print("dmtc1   %s, %s\t# spill 12",
  1299 						  Matcher::regName[dst_first],
  1300 						  Matcher::regName[src_first]);
  1302 #endif
  1304 		size += 4;
  1305       } else {
  1306         // 32-bit
  1307         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1308         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1309         if (cbuf) {
  1310           MacroAssembler _masm(cbuf);
  1311           __ mtc1( as_Register(Matcher::_regEncode[src_first]), as_FloatRegister(Matcher::_regEncode[dst_first]) );
  1312 #ifndef PRODUCT
  1313         } else {
  1314 			if(!do_size){
  1315 				if (size != 0) st->print("\n\t");
  1316 				st->print("mtc1   %s, %s\t# spill 13",
  1317 						  Matcher::regName[dst_first],
  1318 						  Matcher::regName[src_first]);
  1320 #endif
  1322 		size += 4;
  1324       return size;
  1326   } else if (src_first_rc == rc_float) {
  1327     // xmm ->
  1328     if (dst_first_rc == rc_stack) {
  1329       // xmm -> mem
  1330       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1331           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1332         // 64-bit
  1333         int offset = ra_->reg2offset(dst_first);
  1334         if (cbuf) {
  1335           MacroAssembler _masm(cbuf);
  1336           __ sdc1( as_FloatRegister(Matcher::_regEncode[src_first]), Address(SP, offset) );
  1337 #ifndef PRODUCT
  1338         } else {
  1339 			if(!do_size){
  1340 				if (size != 0) st->print("\n\t");
  1341 				st->print("sdc1   %s, [SP + #%d]\t# spill 14",
  1342 						  Matcher::regName[src_first],
  1343 						  offset);
  1345 #endif
  1347 		size += 4;
  1348       } else {
  1349         // 32-bit
  1350         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1351         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1352         int offset = ra_->reg2offset(dst_first);
  1353         if (cbuf) {
  1354           MacroAssembler _masm(cbuf);
  1355           __ swc1(as_FloatRegister(Matcher::_regEncode[src_first]), Address(SP, offset));
  1356 #ifndef PRODUCT
  1357         } else {
  1358 			if(!do_size){
  1359 				if (size != 0) st->print("\n\t");
  1360 				st->print("swc1   %s, [SP + #%d]\t# spill 15",
  1361 						Matcher::regName[src_first],
  1362 						offset);
  1364 #endif
  1366 		size += 4;
  1368       return size;
  1369     } else if (dst_first_rc == rc_int) {
  1370       // xmm -> gpr
  1371       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1372           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1373         // 64-bit
  1374         if (cbuf) {
  1375           MacroAssembler _masm(cbuf);
  1376           __ dmfc1( as_Register(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1377 #ifndef PRODUCT
  1378         } else {
  1379 			if(!do_size){
  1380 				if (size != 0) st->print("\n\t");
  1381 				st->print("dmfc1   %s, %s\t# spill 16",
  1382 						  Matcher::regName[dst_first],
  1383 						  Matcher::regName[src_first]);
  1385 #endif
  1387 		size += 4;
  1388       } else {
  1389         // 32-bit
  1390         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1391         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1392         if (cbuf) {
  1393           MacroAssembler _masm(cbuf);
  1394           __ mfc1( as_Register(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1395 #ifndef PRODUCT
  1396         } else {
  1397 			if(!do_size){
  1398 				if (size != 0) st->print("\n\t");
  1399 				st->print("mfc1   %s, %s\t# spill 17",
  1400 						  Matcher::regName[dst_first],
  1401 						  Matcher::regName[src_first]);
  1403 #endif
  1405 		size += 4;
  1407       return size;
  1408     } else if (dst_first_rc == rc_float) {
  1409       // xmm -> xmm
  1410       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1411           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1412         // 64-bit
  1413         if (cbuf) {
  1414           MacroAssembler _masm(cbuf);
  1415           __ mov_d( as_FloatRegister(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1416 #ifndef PRODUCT
  1417         } else {
  1418 			if(!do_size){
  1419 				if (size != 0) st->print("\n\t");
  1420 				st->print("mov_d  %s <-- %s\t# spill 18",
  1421 						  Matcher::regName[dst_first],
  1422 						  Matcher::regName[src_first]);
  1424 #endif
  1426 		size += 4;
  1427       } else {
  1428         // 32-bit
  1429         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1430         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1431         if (cbuf) {
  1432           MacroAssembler _masm(cbuf);
  1433           __ mov_s( as_FloatRegister(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1434 #ifndef PRODUCT
  1435         } else {
  1436 			if(!do_size){
  1437 				if (size != 0) st->print("\n\t");
  1438 				st->print("mov_s  %s <-- %s\t# spill 19",
  1439 						  Matcher::regName[dst_first],
  1440 						  Matcher::regName[src_first]);
  1442 #endif
  1444 		size += 4;
  1446       return size;
  1450   assert(0," foo ");
  1451   Unimplemented();
  1452   return size;
  1456 #ifndef PRODUCT
  1457 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1458   implementation( NULL, ra_, false, st );
  1460 #endif
  1462 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1463   implementation( &cbuf, ra_, false, NULL );
  1466 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1467   return implementation( NULL, ra_, true, NULL );
  1470 //=============================================================================
  1473 #ifndef PRODUCT
  1474 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1475   st->print("INT3");
  1477 #endif
  1479 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc* ra_) const {
  1480   MacroAssembler _masm(&cbuf);
  1481   __ int3();
  1484 uint MachBreakpointNode::size(PhaseRegAlloc* ra_) const {
  1485   return MachNode::size(ra_);
  1489 //=============================================================================
  1490 #ifndef PRODUCT
  1491 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1492   Compile *C = ra_->C;
  1493   int framesize = C->frame_size_in_bytes();
  1495   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1497   st->print("daddiu   SP, SP, %d # Rlease stack @ MachEpilogNode",framesize);
  1498   st->cr(); st->print("\t");
  1499   if (UseLoongsonISA) {
  1500      st->print("gslq  RA, FP, SP, %d # Restore FP & RA @ MachEpilogNode", -wordSize*2);
  1501   } else {
  1502      st->print("ld    RA, SP, %d # Restore RA @ MachEpilogNode", -wordSize);
  1503      st->cr(); st->print("\t");
  1504      st->print("ld    FP, SP, %d # Restore FP @ MachEpilogNode", -wordSize*2);
  1507   if( do_polling() && C->is_method_compilation() ) {
  1508     st->print("Poll Safepoint # MachEpilogNode");
  1511 #endif
  1513 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1514   Compile *C = ra_->C;
  1515   MacroAssembler _masm(&cbuf);
  1516   int framesize = C->frame_size_in_bytes();
  1518   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1520   __ daddiu(SP, SP, framesize);
  1522   if (UseLoongsonISA) {
  1523     __ gslq(RA, FP, SP, -wordSize*2);
  1524   } else {
  1525     __ ld(RA, SP, -wordSize );
  1526     __ ld(FP, SP, -wordSize*2 );
  1529   /* 2012/11/19 Jin: The epilog in a RuntimeStub should not contain a safepoint */
  1530   if( do_polling() && C->is_method_compilation() ) {
  1531 #ifndef OPT_SAFEPOINT
  1532     __ set64(AT, (long)os::get_polling_page());
  1533     __ relocate(relocInfo::poll_return_type);
  1534     __ lw(AT, AT, 0);
  1535 #else
  1536     __ lui(AT, Assembler::split_high((intptr_t)os::get_polling_page()));
  1537     __ relocate(relocInfo::poll_return_type);
  1538     __ lw(AT, AT, Assembler::split_low((intptr_t)os::get_polling_page()));
  1539 #endif
  1543 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1544   return MachNode::size(ra_); // too many variables; just compute it the hard way  fujie debug
  1547 int MachEpilogNode::reloc() const {
  1548   return 0; // a large enough number
  1551 const Pipeline * MachEpilogNode::pipeline() const {
  1552   return MachNode::pipeline_class();
  1555 int MachEpilogNode::safepoint_offset() const { return 0; }
  1557 //=============================================================================
  1559 #ifndef PRODUCT
  1560 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1561   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1562   int reg = ra_->get_reg_first(this);
  1563   st->print("ADDI %s, SP, %d   @BoxLockNode",Matcher::regName[reg],offset);
  1565 #endif
  1568 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1569   return 4;
  1572 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1573   MacroAssembler _masm(&cbuf);
  1574   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1575   int reg = ra_->get_encode(this);
  1577   __ addi(as_Register(reg), SP, offset);
  1578 /*
  1579   if( offset >= 128 ) {
  1580     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1581     emit_rm(cbuf, 0x2, reg, 0x04);
  1582     emit_rm(cbuf, 0x0, 0x04, SP_enc);
  1583     emit_d32(cbuf, offset);
  1585   else {
  1586     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1587     emit_rm(cbuf, 0x1, reg, 0x04);
  1588     emit_rm(cbuf, 0x0, 0x04, SP_enc);
  1589     emit_d8(cbuf, offset);
  1591 */
  1595 //static int sizeof_FFree_Float_Stack_All = -1;
  1597 int MachCallRuntimeNode::ret_addr_offset() {
  1598   //lui
  1599   //ori
  1600   //dsll
  1601   //ori
  1602   //jalr
  1603   //nop
  1604   assert(NativeCall::instruction_size == 24, "in MachCallRuntimeNode::ret_addr_offset()");
  1605   return NativeCall::instruction_size;
  1606 //  return 16;
  1613 //=============================================================================
  1614 #ifndef PRODUCT
  1615 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1616   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1618 #endif
  1620 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1621   MacroAssembler _masm(&cbuf);
  1622   int i = 0;
  1623   for(i = 0; i < _count; i++)
  1624      __ nop();
  1627 uint MachNopNode::size(PhaseRegAlloc *) const {
  1628   return 4 * _count; 
  1630 const Pipeline* MachNopNode::pipeline() const {
  1631   return MachNode::pipeline_class();
  1634 //=============================================================================
  1636 //=============================================================================
  1637 #ifndef PRODUCT
  1638 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1639   st->print_cr("load_klass(AT, T0)");
  1640   st->print_cr("\tbeq(AT, iCache, L)");
  1641   st->print_cr("\tnop");
  1642   st->print_cr("\tjmp(SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type)");
  1643   st->print_cr("\tnop");
  1644   st->print_cr("\tnop");
  1645   st->print_cr("    L:");
  1647 #endif
  1650 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1651   MacroAssembler _masm(&cbuf);
  1652 #ifdef ASSERT
  1653   //uint code_size = cbuf.code_size();
  1654 #endif
  1655   int  ic_reg = Matcher::inline_cache_reg_encode();
  1656   Label L;
  1657   Register receiver = T0;
  1658   Register   iCache = as_Register(ic_reg);
  1659   __ load_klass(AT, receiver);
  1660   __ beq(AT, iCache, L);
  1661   __ nop();
  1663   __ relocate(relocInfo::runtime_call_type);
  1664   __ li48(T9, (long)SharedRuntime::get_ic_miss_stub());
  1665   __ jr(T9);
  1666   __ nop();
  1668   /* WARNING these NOPs are critical so that verified entry point is properly
  1669    *      8 bytes aligned for patching by NativeJump::patch_verified_entry() */
  1670   __ align(CodeEntryAlignment);
  1671   __ bind(L);
  1674 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1675   return MachNode::size(ra_); 
  1680 //=============================================================================
  1682 const RegMask& MachConstantBaseNode::_out_RegMask = P_REG_mask();
  1684 int Compile::ConstantTable::calculate_table_base_offset() const {
  1685   return 0;  // absolute addressing, no offset
  1688 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
  1689 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  1690   ShouldNotReachHere();
  1693 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1694   Compile* C = ra_->C;
  1695   Compile::ConstantTable& constant_table = C->constant_table();
  1696   MacroAssembler _masm(&cbuf);
  1698   Register Rtoc = as_Register(ra_->get_encode(this));
  1699   CodeSection* consts_section = __ code()->consts();
  1700   int consts_size = consts_section->align_at_start(consts_section->size());
  1701   assert(constant_table.size() == consts_size, "must be equal");
  1703   if (consts_section->size()) {
  1704     // Materialize the constant table base.
  1705     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1706     // RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1707     __ relocate(relocInfo::internal_pc_type);
  1708     __ li48(Rtoc, (long)baseaddr);
  1712 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
  1713   // li48 (4 insts)
  1714   return 4 * 4;
  1717 #ifndef PRODUCT
  1718 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1719   Register r = as_Register(ra_->get_encode(this));
  1720   st->print("li48    %s, &constanttable (constant table base) @ MachConstantBaseNode", r->name());
  1722 #endif
  1725 //=============================================================================
  1726 #ifndef PRODUCT
  1727 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1728   Compile* C = ra_->C;
  1730   int framesize = C->frame_size_in_bytes();
  1731   int bangsize = C->bang_size_in_bytes();
  1732   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1734   // Calls to C2R adapters often do not accept exceptional returns.
  1735   // We require that their callers must bang for them.  But be careful, because
  1736   // some VM calls (such as call site linkage) can use several kilobytes of
  1737   // stack.  But the stack safety zone should account for that.
  1738   // See bugs 4446381, 4468289, 4497237.
  1739   if (C->need_stack_bang(bangsize)) {
  1740     st->print_cr("# stack bang"); st->print("\t");
  1742     if (UseLoongsonISA) {
  1743        st->print("gssq     RA, FP, %d(SP)  @ MachPrologNode\n\t", -wordSize*2);
  1744     } else {
  1745        st->print("sd       RA, %d(SP)  @ MachPrologNode\n\t", -wordSize);
  1746        st->print("sd       FP, %d(SP)  @ MachPrologNode\n\t", -wordSize*2);
  1748     st->print("daddiu   FP, SP, -%d \n\t", wordSize*2);
  1749     st->print("daddiu   SP, SP, -%d \t",framesize);
  1751 #endif
  1754 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1755   Compile* C = ra_->C;
  1756   MacroAssembler _masm(&cbuf);
  1758   int framesize = C->frame_size_in_bytes();
  1759   int bangsize = C->bang_size_in_bytes();
  1761 //  __ verified_entry(framesize, C->need_stack_bang(bangsize)?bangsize:0, false);
  1763   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1765   if (C->need_stack_bang(framesize)) {
  1766     __ generate_stack_overflow_check(framesize);
  1769   if (UseLoongsonISA) {
  1770      __ gssq(RA, FP, SP, -wordSize*2); 
  1771   } else {
  1772      __ sd(RA, SP, -wordSize);
  1773      __ sd(FP, SP, -wordSize*2);
  1775   __ daddiu(FP, SP, -wordSize*2);
  1776   __ daddiu(SP, SP, -framesize);
  1777   __ nop(); /* 2013.10.22 Jin: Make enough room for patch_verified_entry() */
  1778   __ nop();
  1780   C->set_frame_complete(cbuf.insts_size());
  1781   if (C->has_mach_constant_base_node()) {
  1782 	  // NOTE: We set the table base offset here because users might be
  1783 	  // emitted before MachConstantBaseNode.
  1784 	  Compile::ConstantTable& constant_table = C->constant_table();
  1785 	  constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1791 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1792 //fprintf(stderr, "\nPrologNode::size(ra_)= %d \n", MachNode::size(ra_));//fujie debug
  1793   return MachNode::size(ra_); // too many variables; just compute it the hard way
  1796 int MachPrologNode::reloc() const {
  1797   return 0; // a large enough number
  1800 %}
  1802 //----------ENCODING BLOCK-----------------------------------------------------
  1803 // This block specifies the encoding classes used by the compiler to output
  1804 // byte streams.  Encoding classes generate functions which are called by
  1805 // Machine Instruction Nodes in order to generate the bit encoding of the
  1806 // instruction.  Operands specify their base encoding interface with the
  1807 // interface keyword.  There are currently supported four interfaces,
  1808 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1809 // operand to generate a function which returns its register number when
  1810 // queried.   CONST_INTER causes an operand to generate a function which
  1811 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1812 // operand to generate four functions which return the Base Register, the
  1813 // Index Register, the Scale Value, and the Offset Value of the operand when
  1814 // queried.  COND_INTER causes an operand to generate six functions which
  1815 // return the encoding code (ie - encoding bits for the instruction)
  1816 // associated with each basic boolean condition for a conditional instruction.
  1817 // Instructions specify two basic values for encoding.  They use the
  1818 // ins_encode keyword to specify their encoding class (which must be one of
  1819 // the class names specified in the encoding block), and they use the
  1820 // opcode keyword to specify, in order, their primary, secondary, and
  1821 // tertiary opcode.  Only the opcode sections which a particular instruction
  1822 // needs for encoding need to be specified.
  1823 encode %{
  1824 /*
  1825 Alias:
  1826 1044   b   java.io.ObjectInputStream::readHandle (130 bytes)
  1827     118   B14: #    B19 B15 <- B13  Freq: 0.899955
  1828     118     add    S1, S2, V0 #@addP_reg_reg
  1829     11c     lb   S0, [S1 + #-8257524] #@loadB
  1830     120     BReq   S0, #3, B19 #@branchConI_reg_imm  P=0.100000 C=-1.000000
  1831 */
  1832   //Load byte signed
  1833   enc_class load_B_enc (mRegI dst, memory mem) %{
  1834      MacroAssembler _masm(&cbuf);
  1835      int  dst = $dst$$reg;
  1836      int  base = $mem$$base;
  1837      int  index = $mem$$index;
  1838      int  scale = $mem$$scale;
  1839      int  disp = $mem$$disp;
  1841      if( index != 0 ) {
  1842         if( Assembler::is_simm16(disp) ) { 
  1843            if( UseLoongsonISA ) {
  1844               if (scale == 0) {
  1845                  __ gslbx(as_Register(dst), as_Register(base), as_Register(index), disp);
  1846               } else {
  1847                  __ dsll(AT, as_Register(index), scale);
  1848                  __ gslbx(as_Register(dst), as_Register(base), AT, disp);
  1850            } else {
  1851               if (scale == 0) {
  1852                  __ addu(AT, as_Register(base), as_Register(index));
  1853               } else {
  1854                  __ dsll(AT, as_Register(index), scale);
  1855                  __ addu(AT, as_Register(base), AT);
  1857               __ lb(as_Register(dst), AT, disp);
  1859         } else {
  1860            if (scale == 0) {
  1861               __ addu(AT, as_Register(base), as_Register(index));
  1862            } else {
  1863               __ dsll(AT, as_Register(index), scale);
  1864               __ addu(AT, as_Register(base), AT);
  1866            __ move(T9, disp);
  1867            if( UseLoongsonISA ) {
  1868               __ gslbx(as_Register(dst), AT, T9, 0);
  1869            } else {
  1870               __ addu(AT, AT, T9); 
  1871               __ lb(as_Register(dst), AT, 0);
  1874      } else {
  1875         if( Assembler::is_simm16(disp) ) { 
  1876            __ lb(as_Register(dst), as_Register(base), disp);
  1877         } else {
  1878            __ move(T9, disp);   
  1879            if( UseLoongsonISA ) {
  1880               __ gslbx(as_Register(dst), as_Register(base), T9, 0);
  1881            } else {
  1882               __ addu(AT, as_Register(base), T9); 
  1883               __ lb(as_Register(dst), AT, 0);
  1887   %}
  1889   //Load byte unsigned
  1890   enc_class load_UB_enc (mRegI dst, memory mem) %{
  1891      MacroAssembler _masm(&cbuf);
  1892      int  dst = $dst$$reg;
  1893      int  base = $mem$$base;
  1894      int  index = $mem$$index;
  1895      int  scale = $mem$$scale;
  1896      int  disp = $mem$$disp;
  1898      if( index != 0 ) {
  1899         if (scale == 0) {
  1900            __ daddu(AT, as_Register(base), as_Register(index));
  1901         } else {
  1902            __ dsll(AT, as_Register(index), scale);
  1903            __ daddu(AT, as_Register(base), AT);
  1905         if( Assembler::is_simm16(disp) ) { 
  1906            __ lbu(as_Register(dst), AT, disp);
  1907         } else {
  1908            __ move(T9, disp);
  1909            __ daddu(AT, AT, T9); 
  1910            __ lbu(as_Register(dst), AT, 0);
  1912      } else {
  1913         if( Assembler::is_simm16(disp) ) { 
  1914            __ lbu(as_Register(dst), as_Register(base), disp);
  1915         } else {
  1916            __ move(T9, disp);   
  1917            __ daddu(AT, as_Register(base), T9); 
  1918            __ lbu(as_Register(dst), AT, 0);
  1921   %}
  1923   enc_class store_B_reg_enc (memory mem, mRegI src) %{
  1924      MacroAssembler _masm(&cbuf);
  1925      int  src = $src$$reg;
  1926      int  base = $mem$$base;
  1927      int  index = $mem$$index;
  1928      int  scale = $mem$$scale;
  1929      int  disp = $mem$$disp;
  1931      if( index != 0 ) {
  1932         if (scale == 0) {
  1933            if( Assembler::is_simm(disp, 8) ) { 
  1934               if (UseLoongsonISA) {
  1935                  __ gssbx(as_Register(src), as_Register(base), as_Register(index), disp);
  1936               } else {
  1937                  __ addu(AT, as_Register(base), as_Register(index));
  1938                  __ sb(as_Register(src), AT, disp);
  1940            } else if( Assembler::is_simm16(disp) ) { 
  1941               __ addu(AT, as_Register(base), as_Register(index));
  1942               __ sb(as_Register(src), AT, disp);
  1943            } else {
  1944               __ addu(AT, as_Register(base), as_Register(index));
  1945               __ move(T9, disp);
  1946               if (UseLoongsonISA) {
  1947                  __ gssbx(as_Register(src), AT, T9, 0);
  1948               } else {
  1949                  __ addu(AT, AT, T9); 
  1950                  __ sb(as_Register(src), AT, 0);
  1953         } else {
  1954            __ dsll(AT, as_Register(index), scale);
  1955            if( Assembler::is_simm(disp, 8) ) { 
  1956               if (UseLoongsonISA) {
  1957                  __ gssbx(as_Register(src), AT, as_Register(base), disp);
  1958               } else {
  1959                  __ addu(AT, as_Register(base), AT);
  1960                  __ sb(as_Register(src), AT, disp);
  1962            } else if( Assembler::is_simm16(disp) ) { 
  1963               __ addu(AT, as_Register(base), AT);
  1964               __ sb(as_Register(src), AT, disp);
  1965            } else {
  1966               __ addu(AT, as_Register(base), AT);
  1967               __ move(T9, disp);
  1968               if (UseLoongsonISA) {
  1969                  __ gssbx(as_Register(src), AT, T9, 0);
  1970               } else {
  1971                  __ addu(AT, AT, T9); 
  1972                  __ sb(as_Register(src), AT, 0);
  1976      } else {
  1977         if( Assembler::is_simm16(disp) ) { 
  1978            __ sb(as_Register(src), as_Register(base), disp);
  1979         } else {
  1980            __ move(T9, disp);   
  1981            if (UseLoongsonISA) {
  1982               __ gssbx(as_Register(src), as_Register(base), T9, 0);
  1983            } else {
  1984               __ addu(AT, as_Register(base), T9); 
  1985               __ sb(as_Register(src), AT, 0);
  1989   %}
  1991   enc_class store_B_immI_enc (memory mem, immI8 src) %{
  1992      MacroAssembler _masm(&cbuf);
  1993      int  base = $mem$$base;
  1994      int  index = $mem$$index;
  1995      int  scale = $mem$$scale;
  1996      int  disp = $mem$$disp;
  1997      int value = $src$$constant;
  1999      if( index != 0 ) {
  2000         if (!UseLoongsonISA) {
  2001            if (scale == 0) {
  2002               __ daddu(AT, as_Register(base), as_Register(index));
  2003            } else {
  2004               __ dsll(AT, as_Register(index), scale);
  2005               __ daddu(AT, as_Register(base), AT);
  2007            if( Assembler::is_simm16(disp) ) { 
  2008               if (value == 0) {
  2009                  __ sb(R0, AT, disp);
  2010               } else {
  2011                  __ move(T9, value);
  2012                  __ sb(T9, AT, disp);
  2014            } else {
  2015               if (value == 0) {
  2016                  __ move(T9, disp);
  2017                  __ daddu(AT, AT, T9); 
  2018                  __ sb(R0, AT, 0);
  2019               } else {
  2020                  __ move(T9, disp);
  2021                  __ daddu(AT, AT, T9); 
  2022                  __ move(T9, value);
  2023                  __ sb(T9, AT, 0);
  2026         } else {
  2028            if (scale == 0) {
  2029               if( Assembler::is_simm(disp, 8) ) { 
  2030                  if (value == 0) {
  2031                     __ gssbx(R0, as_Register(base), as_Register(index), disp);
  2032                  } else {
  2033                     __ move(T9, value);
  2034                     __ gssbx(T9, as_Register(base), as_Register(index), disp);
  2036               } else if( Assembler::is_simm16(disp) ) { 
  2037                  __ daddu(AT, as_Register(base), as_Register(index));
  2038                  if (value == 0) {
  2039                     __ sb(R0, AT, disp);
  2040                  } else {
  2041                     __ move(T9, value);
  2042                     __ sb(T9, AT, disp);
  2044               } else {
  2045                  if (value == 0) {
  2046                     __ daddu(AT, as_Register(base), as_Register(index));
  2047                     __ move(T9, disp);
  2048                     __ gssbx(R0, AT, T9, 0);
  2049                  } else {
  2050                     __ move(AT, disp);
  2051                     __ move(T9, value);
  2052                     __ daddu(AT, as_Register(base), AT);
  2053                     __ gssbx(T9, AT, as_Register(index), 0);
  2057            } else {
  2059               if( Assembler::is_simm(disp, 8) ) { 
  2060                  __ dsll(AT, as_Register(index), scale);
  2061                  if (value == 0) {
  2062                     __ gssbx(R0, as_Register(base), AT, disp);
  2063                  } else {
  2064                     __ move(T9, value);
  2065                     __ gssbx(T9, as_Register(base), AT, disp);
  2067               } else if( Assembler::is_simm16(disp) ) { 
  2068                  __ dsll(AT, as_Register(index), scale);
  2069                  __ daddu(AT, as_Register(base), AT);
  2070                  if (value == 0) {
  2071                     __ sb(R0, AT, disp);
  2072                  } else {
  2073                     __ move(T9, value);
  2074                     __ sb(T9, AT, disp);
  2076               } else {
  2077                  __ dsll(AT, as_Register(index), scale);
  2078                  if (value == 0) {
  2079                     __ daddu(AT, as_Register(base), AT);
  2080                     __ move(T9, disp);
  2081                     __ gssbx(R0, AT, T9, 0);
  2082                  } else {
  2083                     __ move(T9, disp);
  2084                     __ daddu(AT, AT, T9); 
  2085                     __ move(T9, value);
  2086                     __ gssbx(T9, as_Register(base), AT, 0);
  2091      } else {
  2092         if( Assembler::is_simm16(disp) ) { 
  2093            if (value == 0) {
  2094               __ sb(R0, as_Register(base), disp);
  2095            } else {
  2096               __ move(AT, value);
  2097               __ sb(AT, as_Register(base), disp);
  2099         } else {
  2100            if (value == 0) {
  2101               __ move(T9, disp);   
  2102               if (UseLoongsonISA) {
  2103                 __ gssbx(R0, as_Register(base), T9, 0);
  2104               } else {
  2105                 __ daddu(AT, as_Register(base), T9); 
  2106                 __ sb(R0, AT, 0);
  2108            } else {
  2109               __ move(T9, disp);   
  2110               if (UseLoongsonISA) {
  2111                 __ move(AT, value);
  2112                 __ gssbx(AT, as_Register(base), T9, 0);
  2113               } else {
  2114                 __ daddu(AT, as_Register(base), T9); 
  2115                 __ move(T9, value);
  2116                 __ sb(T9, AT, 0);
  2121   %}
  2124   enc_class store_B_immI_enc_sync (memory mem, immI8 src) %{
  2125      MacroAssembler _masm(&cbuf);
  2126      int  base = $mem$$base;
  2127      int  index = $mem$$index;
  2128      int  scale = $mem$$scale;
  2129      int  disp = $mem$$disp;
  2130      int value = $src$$constant;
  2132      if( index != 0 ) {
  2133         if (scale == 0) {
  2134            __ daddu(AT, as_Register(base), as_Register(index));
  2135         } else {
  2136            __ dsll(AT, as_Register(index), scale);
  2137            __ daddu(AT, as_Register(base), AT);
  2139         if( Assembler::is_simm16(disp) ) { 
  2140            if (value == 0) {
  2141               __ sb(R0, AT, disp);
  2142            } else {
  2143               __ move(T9, value);
  2144               __ sb(T9, AT, disp);
  2146         } else {
  2147            if (value == 0) {
  2148               __ move(T9, disp);
  2149               __ daddu(AT, AT, T9); 
  2150               __ sb(R0, AT, 0);
  2151            } else {
  2152               __ move(T9, disp);
  2153               __ daddu(AT, AT, T9); 
  2154               __ move(T9, value);
  2155               __ sb(T9, AT, 0);
  2158      } else {
  2159         if( Assembler::is_simm16(disp) ) { 
  2160            if (value == 0) {
  2161               __ sb(R0, as_Register(base), disp);
  2162            } else {
  2163               __ move(AT, value);
  2164               __ sb(AT, as_Register(base), disp);
  2166         } else {
  2167            if (value == 0) {
  2168               __ move(T9, disp);   
  2169               __ daddu(AT, as_Register(base), T9); 
  2170               __ sb(R0, AT, 0);
  2171            } else {
  2172               __ move(T9, disp);   
  2173               __ daddu(AT, as_Register(base), T9); 
  2174               __ move(T9, value);
  2175               __ sb(T9, AT, 0);
  2180      __ sync();
  2181   %}
  2183   // Load Short (16bit signed)
  2184   enc_class load_S_enc (mRegI dst, memory mem) %{
  2185      MacroAssembler _masm(&cbuf);
  2186      int  dst = $dst$$reg;
  2187      int  base = $mem$$base;
  2188      int  index = $mem$$index;
  2189      int  scale = $mem$$scale;
  2190      int  disp = $mem$$disp;
  2192      if( index != 0 ) {
  2193         if (scale == 0) {
  2194            __ daddu(AT, as_Register(base), as_Register(index));
  2195         } else {
  2196            __ dsll(AT, as_Register(index), scale);
  2197            __ daddu(AT, as_Register(base), AT);
  2199         if( Assembler::is_simm16(disp) ) { 
  2200            __ lh(as_Register(dst), AT, disp);
  2201         } else {
  2202            __ move(T9, disp);
  2203            __ addu(AT, AT, T9); 
  2204            __ lh(as_Register(dst), AT, 0);
  2206      } else {
  2207         if( Assembler::is_simm16(disp) ) { 
  2208            __ lh(as_Register(dst), as_Register(base), disp);
  2209         } else {
  2210            __ move(T9, disp);   
  2211            __ addu(AT, as_Register(base), T9); 
  2212            __ lh(as_Register(dst), AT, 0);
  2215   %}
  2217   // Load Char (16bit unsigned)
  2218   enc_class load_C_enc (mRegI dst, memory mem) %{
  2219      MacroAssembler _masm(&cbuf);
  2220      int  dst = $dst$$reg;
  2221      int  base = $mem$$base;
  2222      int  index = $mem$$index;
  2223      int  scale = $mem$$scale;
  2224      int  disp = $mem$$disp;
  2226      if( index != 0 ) {
  2227         if (scale == 0) {
  2228            __ daddu(AT, as_Register(base), as_Register(index));
  2229         } else {
  2230            __ dsll(AT, as_Register(index), scale);
  2231            __ daddu(AT, as_Register(base), AT);
  2233         if( Assembler::is_simm16(disp) ) { 
  2234            __ lhu(as_Register(dst), AT, disp);
  2235         } else {
  2236            __ move(T9, disp);
  2237            __ addu(AT, AT, T9); 
  2238            __ lhu(as_Register(dst), AT, 0);
  2240      } else {
  2241         if( Assembler::is_simm16(disp) ) { 
  2242            __ lhu(as_Register(dst), as_Register(base), disp);
  2243         } else {
  2244            __ move(T9, disp);   
  2245            __ daddu(AT, as_Register(base), T9); 
  2246            __ lhu(as_Register(dst), AT, 0);
  2249   %}
  2251   // Store Char (16bit unsigned)
  2252   enc_class store_C_reg_enc (memory mem, mRegI src) %{
  2253      MacroAssembler _masm(&cbuf);
  2254      int  src = $src$$reg;
  2255      int  base = $mem$$base;
  2256      int  index = $mem$$index;
  2257      int  scale = $mem$$scale;
  2258      int  disp = $mem$$disp;
  2260      if( index != 0 ) {
  2261         if( Assembler::is_simm16(disp) ) { 
  2262            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2263               if (scale == 0) {
  2264                  __ gsshx(as_Register(src), as_Register(base), as_Register(index), disp);
  2265               } else {
  2266                  __ dsll(AT, as_Register(index), scale);
  2267                  __ gsshx(as_Register(src), as_Register(base), AT, disp);
  2269            } else {
  2270               if (scale == 0) {
  2271                  __ addu(AT, as_Register(base), as_Register(index));
  2272               } else {
  2273                  __ dsll(AT, as_Register(index), scale);
  2274                  __ addu(AT, as_Register(base), AT);
  2276               __ sh(as_Register(src), AT, disp);
  2278         } else {
  2279            if (scale == 0) {
  2280               __ addu(AT, as_Register(base), as_Register(index));
  2281            } else {
  2282               __ dsll(AT, as_Register(index), scale);
  2283               __ addu(AT, as_Register(base), AT);
  2285            __ move(T9, disp);
  2286            if( UseLoongsonISA ) {
  2287               __ gsshx(as_Register(src), AT, T9, 0);
  2288            } else {
  2289               __ addu(AT, AT, T9); 
  2290               __ sh(as_Register(src), AT, 0);
  2293      } else {
  2294         if( Assembler::is_simm16(disp) ) { 
  2295            __ sh(as_Register(src), as_Register(base), disp);
  2296         } else {
  2297            __ move(T9, disp);   
  2298            if( UseLoongsonISA ) {
  2299               __ gsshx(as_Register(src), as_Register(base), T9, 0);
  2300            } else {
  2301               __ addu(AT, as_Register(base), T9); 
  2302               __ sh(as_Register(src), AT, 0);
  2306   %}
  2308   enc_class load_I_enc (mRegI dst, memory mem) %{
  2309      MacroAssembler _masm(&cbuf);
  2310      int  dst = $dst$$reg;
  2311      int  base = $mem$$base;
  2312      int  index = $mem$$index;
  2313      int  scale = $mem$$scale;
  2314      int  disp = $mem$$disp;
  2316      if( index != 0 ) {
  2317         if( Assembler::is_simm16(disp) ) { 
  2318            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2319               if (scale == 0) {
  2320                  __ gslwx(as_Register(dst), as_Register(base), as_Register(index), disp);
  2321               } else {
  2322                  __ dsll(AT, as_Register(index), scale);
  2323                  __ gslwx(as_Register(dst), as_Register(base), AT, disp);
  2325            } else {
  2326               if (scale == 0) {
  2327                  __ addu(AT, as_Register(base), as_Register(index));
  2328               } else {
  2329                  __ dsll(AT, as_Register(index), scale);
  2330                  __ addu(AT, as_Register(base), AT);
  2332               __ lw(as_Register(dst), AT, disp);
  2334         } else {
  2335            if (scale == 0) {
  2336               __ addu(AT, as_Register(base), as_Register(index));
  2337            } else {
  2338               __ dsll(AT, as_Register(index), scale);
  2339               __ addu(AT, as_Register(base), AT);
  2341            __ move(T9, disp);
  2342            if( UseLoongsonISA ) {
  2343               __ gslwx(as_Register(dst), AT, T9, 0);
  2344            } else {
  2345               __ addu(AT, AT, T9); 
  2346               __ lw(as_Register(dst), AT, 0);
  2349      } else {
  2350         if( Assembler::is_simm16(disp) ) { 
  2351            __ lw(as_Register(dst), as_Register(base), disp);
  2352         } else {
  2353            __ move(T9, disp);   
  2354            if( UseLoongsonISA ) {
  2355               __ gslwx(as_Register(dst), as_Register(base), T9, 0);
  2356            } else {
  2357               __ addu(AT, as_Register(base), T9); 
  2358               __ lw(as_Register(dst), AT, 0);
  2362   %}
  2364   enc_class store_I_reg_enc (memory mem, mRegI src) %{
  2365      MacroAssembler _masm(&cbuf);
  2366      int  src = $src$$reg;
  2367      int  base = $mem$$base;
  2368      int  index = $mem$$index;
  2369      int  scale = $mem$$scale;
  2370      int  disp = $mem$$disp;
  2372      if( index != 0 ) {
  2373         if( Assembler::is_simm16(disp) ) { 
  2374            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2375               if (scale == 0) {
  2376                  __ gsswx(as_Register(src), as_Register(base), as_Register(index), disp);
  2377               } else {
  2378                  __ dsll(AT, as_Register(index), scale);
  2379                  __ gsswx(as_Register(src), as_Register(base), AT, disp);
  2381            } else {
  2382               if (scale == 0) {
  2383                  __ addu(AT, as_Register(base), as_Register(index));
  2384               } else {
  2385                  __ dsll(AT, as_Register(index), scale);
  2386                  __ addu(AT, as_Register(base), AT);
  2388               __ sw(as_Register(src), AT, disp);
  2390         } else {
  2391            if (scale == 0) {
  2392               __ addu(AT, as_Register(base), as_Register(index));
  2393            } else {
  2394               __ dsll(AT, as_Register(index), scale);
  2395               __ addu(AT, as_Register(base), AT);
  2397            __ move(T9, disp);
  2398            if( UseLoongsonISA ) {
  2399               __ gsswx(as_Register(src), AT, T9, 0);
  2400            } else {
  2401               __ addu(AT, AT, T9); 
  2402               __ sw(as_Register(src), AT, 0);
  2405      } else {
  2406         if( Assembler::is_simm16(disp) ) { 
  2407            __ sw(as_Register(src), as_Register(base), disp);
  2408         } else {
  2409            __ move(T9, disp);   
  2410            if( UseLoongsonISA ) {
  2411               __ gsswx(as_Register(src), as_Register(base), T9, 0);
  2412            } else {
  2413               __ addu(AT, as_Register(base), T9); 
  2414               __ sw(as_Register(src), AT, 0);
  2418   %}
  2420   enc_class store_I_immI_enc (memory mem, immI src) %{
  2421      MacroAssembler _masm(&cbuf);
  2422      int  base = $mem$$base;
  2423      int  index = $mem$$index;
  2424      int  scale = $mem$$scale;
  2425      int  disp = $mem$$disp;
  2426      int value = $src$$constant;
  2428      if( index != 0 ) {
  2429         if (scale == 0) {
  2430            __ daddu(AT, as_Register(base), as_Register(index));
  2431         } else {
  2432            __ dsll(AT, as_Register(index), scale);
  2433            __ daddu(AT, as_Register(base), AT);
  2435         if( Assembler::is_simm16(disp) ) { 
  2436            if (value == 0) {
  2437               __ sw(R0, AT, disp);
  2438            } else {
  2439               __ move(T9, value);
  2440               __ sw(T9, AT, disp);
  2442         } else {
  2443            if (value == 0) {
  2444               __ move(T9, disp);
  2445               __ addu(AT, AT, T9); 
  2446               __ sw(R0, AT, 0);
  2447            } else {
  2448               __ move(T9, disp);
  2449               __ addu(AT, AT, T9); 
  2450               __ move(T9, value);
  2451               __ sw(T9, AT, 0);
  2454      } else {
  2455         if( Assembler::is_simm16(disp) ) { 
  2456            if (value == 0) {
  2457               __ sw(R0, as_Register(base), disp);
  2458            } else {
  2459               __ move(AT, value);
  2460               __ sw(AT, as_Register(base), disp);
  2462         } else {
  2463            if (value == 0) {
  2464               __ move(T9, disp);   
  2465               __ addu(AT, as_Register(base), T9); 
  2466               __ sw(R0, AT, 0);
  2467            } else {
  2468               __ move(T9, disp);   
  2469               __ addu(AT, as_Register(base), T9); 
  2470               __ move(T9, value);
  2471               __ sw(T9, AT, 0);
  2475   %}
  2477   enc_class load_N_enc (mRegN dst, memory mem) %{
  2478      MacroAssembler _masm(&cbuf);
  2479      int  dst = $dst$$reg;
  2480      int  base = $mem$$base;
  2481      int  index = $mem$$index;
  2482      int  scale = $mem$$scale;
  2483      int  disp = $mem$$disp;
  2484 	 relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2485 	 assert(disp_reloc == relocInfo::none, "cannot have disp");
  2487      if( index != 0 ) {
  2488         if (scale == 0) {
  2489            __ daddu(AT, as_Register(base), as_Register(index));
  2490         } else {
  2491            __ dsll(AT, as_Register(index), scale);
  2492            __ daddu(AT, as_Register(base), AT);
  2494         if( Assembler::is_simm16(disp) ) { 
  2495            __ lwu(as_Register(dst), AT, disp);
  2496         } else {
  2497            __ li(T9, disp);
  2498            __ daddu(AT, AT, T9);
  2499            __ lwu(as_Register(dst), AT, 0);
  2501      } else {
  2502         if( Assembler::is_simm16(disp) ) { 
  2503            __ lwu(as_Register(dst), as_Register(base), disp);
  2504         } else {
  2505            __ li(T9, disp);   
  2506            __ daddu(AT, as_Register(base), T9);
  2507            __ lwu(as_Register(dst), AT, 0);
  2511   %}
  2514   enc_class load_P_enc (mRegP dst, memory mem) %{
  2515      MacroAssembler _masm(&cbuf);
  2516      int  dst = $dst$$reg;
  2517      int  base = $mem$$base;
  2518      int  index = $mem$$index;
  2519      int  scale = $mem$$scale;
  2520      int  disp = $mem$$disp;
  2521 	 relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2522 	 assert(disp_reloc == relocInfo::none, "cannot have disp");
  2524      if( index != 0 ) {
  2525         if (scale == 0) {
  2526            __ daddu(AT, as_Register(base), as_Register(index));
  2527         } else {
  2528            __ dsll(AT, as_Register(index), scale);
  2529            __ daddu(AT, as_Register(base), AT);
  2531         if( Assembler::is_simm16(disp) ) { 
  2532            __ ld(as_Register(dst), AT, disp);
  2533         } else {
  2534            __ li(T9, disp);
  2535            __ daddu(AT, AT, T9);
  2536            __ ld(as_Register(dst), AT, 0);
  2538      } else {
  2539         if( Assembler::is_simm16(disp) ) { 
  2540            __ ld(as_Register(dst), as_Register(base), disp);
  2541         } else {
  2542            __ li(T9, disp);   
  2543            __ daddu(AT, as_Register(base), T9);
  2544            __ ld(as_Register(dst), AT, 0);
  2547 //     if( disp_reloc != relocInfo::none) __ ld(as_Register(dst), as_Register(dst), 0);
  2548   %}
  2550   enc_class store_P_reg_enc (memory mem, mRegP src) %{
  2551      MacroAssembler _masm(&cbuf);
  2552      int  src = $src$$reg;
  2553      int  base = $mem$$base;
  2554      int  index = $mem$$index;
  2555      int  scale = $mem$$scale;
  2556      int  disp = $mem$$disp;
  2558      if( index != 0 ) {
  2559         if (scale == 0) {
  2560            __ daddu(AT, as_Register(base), as_Register(index));
  2561         } else {
  2562            __ dsll(AT, as_Register(index), scale);
  2563            __ daddu(AT, as_Register(base), AT);
  2565         if( Assembler::is_simm16(disp) ) { 
  2566            __ sd(as_Register(src), AT, disp);
  2567         } else {
  2568            __ move(T9, disp);
  2569            __ daddu(AT, AT, T9); 
  2570            __ sd(as_Register(src), AT, 0);
  2572      } else {
  2573         if( Assembler::is_simm16(disp) ) { 
  2574            __ sd(as_Register(src), as_Register(base), disp);
  2575         } else {
  2576            __ move(T9, disp);   
  2577            __ daddu(AT, as_Register(base), T9); 
  2578            __ sd(as_Register(src), AT, 0);
  2581   %}
  2583   enc_class store_N_reg_enc (memory mem, mRegN src) %{
  2584      MacroAssembler _masm(&cbuf);
  2585      int  src = $src$$reg;
  2586      int  base = $mem$$base;
  2587      int  index = $mem$$index;
  2588      int  scale = $mem$$scale;
  2589      int  disp = $mem$$disp;
  2591      if( index != 0 ) {
  2592         if (scale == 0) {
  2593            __ daddu(AT, as_Register(base), as_Register(index));
  2594         } else {
  2595            __ dsll(AT, as_Register(index), scale);
  2596            __ daddu(AT, as_Register(base), AT);
  2598         if( Assembler::is_simm16(disp) ) { 
  2599            __ sw(as_Register(src), AT, disp);
  2600         } else {
  2601            __ move(T9, disp);
  2602            __ addu(AT, AT, T9); 
  2603            __ sw(as_Register(src), AT, 0);
  2605      } else {
  2606         if( Assembler::is_simm16(disp) ) { 
  2607            __ sw(as_Register(src), as_Register(base), disp);
  2608         } else {
  2609            __ move(T9, disp);   
  2610            __ addu(AT, as_Register(base), T9); 
  2611            __ sw(as_Register(src), AT, 0);
  2614   %}
  2616   enc_class store_P_immP_enc (memory mem, immP31 src) %{
  2617      MacroAssembler _masm(&cbuf);
  2618      int  base = $mem$$base;
  2619      int  index = $mem$$index;
  2620      int  scale = $mem$$scale;
  2621      int  disp = $mem$$disp;
  2622      long value = $src$$constant;
  2624      if( index != 0 ) {
  2625         if (scale == 0) {
  2626            __ daddu(AT, as_Register(base), as_Register(index));
  2627         } else {
  2628            __ dsll(AT, as_Register(index), scale);
  2629            __ daddu(AT, as_Register(base), AT);
  2631         if( Assembler::is_simm16(disp) ) { 
  2632            if (value == 0) {
  2633               __ sd(R0, AT, disp);
  2634            } else {
  2635               __ move(T9, value);
  2636               __ sd(T9, AT, disp);
  2638         } else {
  2639            if (value == 0) {
  2640               __ move(T9, disp);
  2641               __ daddu(AT, AT, T9); 
  2642               __ sd(R0, AT, 0);
  2643            } else {
  2644               __ move(T9, disp);
  2645               __ daddu(AT, AT, T9); 
  2646               __ move(T9, value);
  2647               __ sd(T9, AT, 0);
  2650      } else {
  2651         if( Assembler::is_simm16(disp) ) { 
  2652            if (value == 0) {
  2653               __ sd(R0, as_Register(base), disp);
  2654            } else {
  2655               __ move(AT, value);
  2656               __ sd(AT, as_Register(base), disp);
  2658         } else {
  2659            if (value == 0) {
  2660               __ move(T9, disp);   
  2661               __ daddu(AT, as_Register(base), T9); 
  2662               __ sd(R0, AT, 0);
  2663            } else {
  2664               __ move(T9, disp);   
  2665               __ daddu(AT, as_Register(base), T9); 
  2666               __ move(T9, value);
  2667               __ sd(T9, AT, 0);
  2671   %}
  2673 /*
  2674  * 1d4     storeImmN    [S0 + #16 (8-bit)], narrowoop: spec/benchmarks/_213_javac/Identifier:exact *   
  2675  *                      # compressed ptr ! Field: spec/benchmarks/_213_javac/Identifier.value
  2676  *  0x00000055648065d4: daddu at, s0, zero
  2677  *  0x00000055648065d8: lui t9, 0x0       ;   {oop(a 'spec/benchmarks/_213_javac/Identifier')}
  2678  *  0x00000055648065dc: ori t9, t9, 0xfffff610
  2679  *  0x00000055648065e0: dsll t9, t9, 16
  2680  *  0x00000055648065e4: ori t9, t9, 0xffffc628
  2681  *  0x00000055648065e8: sw t9, 0x10(at)
  2682  */
  2683   enc_class storeImmN_enc (memory mem, immN src) %{
  2684      MacroAssembler _masm(&cbuf);
  2685      int  base = $mem$$base;
  2686      int  index = $mem$$index;
  2687      int  scale = $mem$$scale;
  2688      int  disp = $mem$$disp;
  2689      long * value = (long *)$src$$constant;
  2691      if (value == NULL) {
  2692          guarantee(Assembler::is_simm16(disp), "FIXME: disp is not simm16!");
  2693          if (index == 0) {
  2694              __ sw(R0, as_Register(base), disp);
  2695          } else {
  2696              if (scale == 0) {
  2697                 __ daddu(AT, as_Register(base), as_Register(index));
  2698              } else {
  2699                 __ dsll(AT, as_Register(index), scale);
  2700                 __ daddu(AT, as_Register(base), AT);
  2702              __ sw(R0, AT, disp);
  2705          return;
  2708      int oop_index = __ oop_recorder()->find_index((jobject)value);
  2709      RelocationHolder rspec = oop_Relocation::spec(oop_index);
  2711      guarantee(scale == 0, "FIXME: scale is not zero !");
  2712      guarantee(value != 0, "FIXME: value is zero !");
  2714     if (index != 0) {
  2715          if (scale == 0) {
  2716             __ daddu(AT, as_Register(base), as_Register(index));
  2717          } else {
  2718             __ dsll(AT, as_Register(index), scale);
  2719             __ daddu(AT, as_Register(base), AT);
  2721 	 if( Assembler::is_simm16(disp) ) { 
  2722 		 if(rspec.type() != relocInfo::none) {
  2723 			 __ relocate(rspec, Assembler::narrow_oop_operand);
  2724 			 __ li48(T9, oop_index);
  2725 		 } else {
  2726 			 __ set64(T9, oop_index);
  2728 		 __ sw(T9, AT, disp);
  2729 	 } else {
  2730 		 __ move(T9, disp);
  2731 		 __ addu(AT, AT, T9); 
  2733 		 if(rspec.type() != relocInfo::none) {
  2734 			 __ relocate(rspec, Assembler::narrow_oop_operand);
  2735 			 __ li48(T9, oop_index);
  2736 		 } else {
  2737 			 __ set64(T9, oop_index);
  2739 		 __ sw(T9, AT, 0);
  2742      else {
  2743          if( Assembler::is_simm16(disp) ) { 
  2744 		 if($src->constant_reloc() != relocInfo::none) {
  2745 			 __ relocate(rspec, Assembler::narrow_oop_operand);
  2746 			 __ li48(T9, oop_index);
  2747 		 } else {
  2748                          __ set64(T9, oop_index);
  2750 	         __ sw(T9, as_Register(base), disp);
  2751 	 } else {
  2752 		 __ move(T9, disp);
  2753 		 __ daddu(AT, as_Register(base), T9);  
  2755 		 if($src->constant_reloc() != relocInfo::none){
  2756 			 __ relocate(rspec, Assembler::narrow_oop_operand);
  2757 			 __ li48(T9, oop_index);
  2758 		 } else {
  2759 			 __ set64(T9, oop_index);
  2761 		 __ sw(T9, AT, 0);
  2764   %}
  2766   enc_class storeImmNKlass_enc (memory mem, immNKlass src) %{
  2767      MacroAssembler _masm(&cbuf);
  2769      assert (UseCompressedOops, "should only be used for compressed headers");
  2770      assert (__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  2772      int  base = $mem$$base;
  2773      int  index = $mem$$index;
  2774      int  scale = $mem$$scale;
  2775      int  disp = $mem$$disp;
  2776      long value = $src$$constant;
  2778 	 int klass_index = __ oop_recorder()->find_index((Klass*)value);
  2779 	 RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  2780 	 long narrowp = Klass::encode_klass((Klass*)value);
  2782 	 if(index!=0){
  2783                  if (scale == 0) {
  2784                     __ daddu(AT, as_Register(base), as_Register(index));
  2785                  } else {
  2786                     __ dsll(AT, as_Register(index), scale);
  2787                     __ daddu(AT, as_Register(base), AT);
  2790 		 if( Assembler::is_simm16(disp) ) { 
  2791 			 if(rspec.type() != relocInfo::none){
  2792 				 __ relocate(rspec, Assembler::narrow_oop_operand);
  2793 				 __ li48(T9, narrowp);
  2794 			 } else {
  2795 				 __ set64(T9, narrowp);
  2797 			 __ sw(T9, AT, disp);
  2798 		 } else {
  2799 			 __ move(T9, disp);
  2800 			 __ daddu(AT, AT, T9); 
  2802 			 if(rspec.type() != relocInfo::none){
  2803 				 __ relocate(rspec, Assembler::narrow_oop_operand);
  2804 				 __ li48(T9, narrowp);
  2805 			 } else {
  2806 				 __ set64(T9, narrowp);
  2809 			 __ sw(T9, AT, 0);
  2811 	 } else {
  2812 		 if( Assembler::is_simm16(disp) ) { 
  2813 			 if(rspec.type() != relocInfo::none){
  2814 				 __ relocate(rspec, Assembler::narrow_oop_operand);
  2815 				 __ li48(T9, narrowp);
  2817 			 else {
  2818 				 __ set64(T9, narrowp);
  2820 			 __ sw(T9, as_Register(base), disp);
  2821 		 } else {
  2822 			 __ move(T9, disp);
  2823 			 __ daddu(AT, as_Register(base), T9); 
  2825 			 if(rspec.type() != relocInfo::none){
  2826 				 __ relocate(rspec, Assembler::narrow_oop_operand);
  2827 				 __ li48(T9, narrowp);
  2828 			 } else {
  2829 				 __ set64(T9, narrowp);
  2831 			 __ sw(T9, AT, 0);
  2834   %}
  2836   enc_class storeImmN0_enc(memory mem, ImmN0 src) %{
  2837      MacroAssembler _masm(&cbuf);
  2838      int  base = $mem$$base;
  2839      int  index = $mem$$index;
  2840      int  scale = $mem$$scale;
  2841      int  disp = $mem$$disp;
  2843 	 if(index!=0){
  2844                  if (scale == 0) {
  2845                     __ daddu(AT, as_Register(base), as_Register(index));
  2846                  } else {
  2847                     __ dsll(AT, as_Register(index), scale);
  2848                     __ daddu(AT, as_Register(base), AT);
  2851 		 if( Assembler::is_simm16(disp) ) { 
  2852 			 __ sw(R0, AT, disp);
  2853 		 } else {
  2854 			 __ move(T9, disp);
  2855 			 __ daddu(AT, AT, T9); 
  2856 			 __ sw(R0, AT, 0);
  2859      else {
  2860 		 if( Assembler::is_simm16(disp) ) { 
  2861 			 __ sw(R0, as_Register(base), disp);
  2862 		 } else {
  2863 			 __ move(T9, disp);
  2864 			 __ daddu(AT, as_Register(base), T9); 
  2865 			 __ sw(R0, AT, 0);
  2868   %} 
  2870   enc_class load_L_enc (mRegL dst, memory mem) %{
  2871      MacroAssembler _masm(&cbuf);
  2872      int  base = $mem$$base;
  2873      int  index = $mem$$index;
  2874      int  scale = $mem$$scale;
  2875      int  disp = $mem$$disp;
  2876      Register  dst_reg = as_Register($dst$$reg);
  2878      /*********************2013/03/27**************************
  2879       * Jin: $base may contain a null object.
  2880       * Server JIT force the exception_offset to be the pos of 
  2881       * the first instruction.
  2882       * I insert such a 'null_check' at the beginning.
  2883       *******************************************************/
  2885      __ lw(AT, as_Register(base), 0);
  2887      /*********************2012/10/04**************************
  2888       * Error case found in SortTest
  2889       * 337   b   java.util.Arrays::sort1 (401 bytes)
  2890       * B73:
  2891       *       d34     lw    T4.lo, [T4 + #16]   #@loadL-lo
  2892       *               lw    T4.hi, [T4 + #16]+4 #@loadL-hi
  2894       * The original instructions generated here are :
  2895       *       __ lw(dst_lo, as_Register(base), disp);
  2896       *       __ lw(dst_hi, as_Register(base), disp + 4);
  2897       *******************************************************/
  2899      if( index != 0 ) {
  2900         if (scale == 0) {
  2901            __ daddu(AT, as_Register(base), as_Register(index));
  2902         } else {
  2903            __ dsll(AT, as_Register(index), scale);
  2904            __ daddu(AT, as_Register(base), AT);
  2906         if( Assembler::is_simm16(disp) ) { 
  2907            __ ld(dst_reg, AT, disp);
  2908         } else {
  2909            __ move(T9, disp);
  2910            __ daddu(AT, AT, T9); 
  2911            __ ld(dst_reg, AT, 0);
  2913      } else {
  2914         if( Assembler::is_simm16(disp) ) { 
  2915            __ move(AT, as_Register(base));
  2916            __ ld(dst_reg, AT, disp);
  2917         } else {
  2918            __ move(T9, disp);   
  2919            __ daddu(AT, as_Register(base), T9); 
  2920            __ ld(dst_reg, AT, 0);
  2923   %}
  2925   enc_class store_L_reg_enc (memory mem, mRegL src) %{
  2926      MacroAssembler _masm(&cbuf);
  2927      int  base = $mem$$base;
  2928      int  index = $mem$$index;
  2929      int  scale = $mem$$scale;
  2930      int  disp = $mem$$disp;
  2931      Register  src_reg = as_Register($src$$reg);
  2933      if( index != 0 ) {
  2934         if (scale == 0) {
  2935            __ daddu(AT, as_Register(base), as_Register(index));
  2936         } else {
  2937            __ dsll(AT, as_Register(index), scale);
  2938            __ daddu(AT, as_Register(base), AT);
  2940         if( Assembler::is_simm16(disp) ) { 
  2941            __ sd(src_reg, AT, disp);
  2942         } else {
  2943            __ move(T9, disp);
  2944            __ daddu(AT, AT, T9); 
  2945            __ sd(src_reg, AT, 0);
  2947      } else {
  2948         if( Assembler::is_simm16(disp) ) { 
  2949            __ move(AT, as_Register(base));
  2950            __ sd(src_reg, AT, disp);
  2951         } else {
  2952            __ move(T9, disp);   
  2953            __ daddu(AT, as_Register(base), T9); 
  2954            __ sd(src_reg, AT, 0);
  2957   %}
  2959   enc_class store_L_immL0_enc (memory mem, immL0 src) %{
  2960      MacroAssembler _masm(&cbuf);
  2961      int  base = $mem$$base;
  2962      int  index = $mem$$index;
  2963      int  scale = $mem$$scale;
  2964      int  disp = $mem$$disp;
  2966      if( index != 0 ) {
  2967         if (scale == 0) {
  2968            __ daddu(AT, as_Register(base), as_Register(index));
  2969         } else {
  2970            __ dsll(AT, as_Register(index), scale);
  2971            __ daddu(AT, as_Register(base), AT);
  2973         if( Assembler::is_simm16(disp) ) { 
  2974            __ sd(R0, AT, disp);
  2975         } else {
  2976            __ move(T9, disp);
  2977            __ addu(AT, AT, T9); 
  2978            __ sd(R0, AT, 0);
  2980      } else {
  2981         if( Assembler::is_simm16(disp) ) { 
  2982            __ move(AT, as_Register(base));
  2983            __ sd(R0, AT, disp);
  2984         } else {
  2985            __ move(T9, disp);   
  2986            __ addu(AT, as_Register(base), T9); 
  2987            __ sd(R0, AT, 0);
  2990   %}
  2992   enc_class store_L_immL_enc (memory mem, immL src) %{
  2993      MacroAssembler _masm(&cbuf);
  2994      int  base = $mem$$base;
  2995      int  index = $mem$$index;
  2996      int  scale = $mem$$scale;
  2997      int  disp = $mem$$disp;
  2998      long  imm = $src$$constant; 
  3000      if( index != 0 ) {
  3001         if (scale == 0) {
  3002            __ daddu(AT, as_Register(base), as_Register(index));
  3003         } else {
  3004            __ dsll(AT, as_Register(index), scale);
  3005            __ daddu(AT, as_Register(base), AT);
  3007         if( Assembler::is_simm16(disp) ) { 
  3008            __ li(T9, imm);
  3009            __ sd(T9, AT, disp);
  3010         } else {
  3011            __ move(T9, disp);
  3012            __ addu(AT, AT, T9); 
  3013            __ li(T9, imm);
  3014            __ sd(T9, AT, 0);
  3016      } else {
  3017         if( Assembler::is_simm16(disp) ) { 
  3018            __ move(AT, as_Register(base));
  3019            __ li(T9, imm);
  3020            __ sd(T9, AT, disp);
  3021         } else {
  3022            __ move(T9, disp);   
  3023            __ addu(AT, as_Register(base), T9); 
  3024            __ li(T9, imm);
  3025            __ sd(T9, AT, 0);
  3028   %}
  3030   enc_class load_F_enc (regF dst, memory mem) %{
  3031      MacroAssembler _masm(&cbuf);
  3032      int  base = $mem$$base;
  3033      int  index = $mem$$index;
  3034      int  scale = $mem$$scale;
  3035      int  disp = $mem$$disp;
  3036      FloatRegister dst = $dst$$FloatRegister;
  3038      if( index != 0 ) {
  3039         if( Assembler::is_simm16(disp) ) { 
  3040            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3041               if (scale == 0) {
  3042                  __ gslwxc1(dst, as_Register(base), as_Register(index), disp);
  3043               } else {
  3044                  __ dsll(AT, as_Register(index), scale);
  3045                  __ gslwxc1(dst, as_Register(base), AT, disp);
  3047            } else {
  3048               if (scale == 0) {
  3049                  __ daddu(AT, as_Register(base), as_Register(index));
  3050               } else {
  3051                  __ dsll(AT, as_Register(index), scale);
  3052                  __ daddu(AT, as_Register(base), AT);
  3054               __ lwc1(dst, AT, disp);
  3056         } else {
  3057            if (scale == 0) {
  3058               __ daddu(AT, as_Register(base), as_Register(index));
  3059            } else {
  3060               __ dsll(AT, as_Register(index), scale);
  3061               __ daddu(AT, as_Register(base), AT);
  3063            __ move(T9, disp);
  3064            if( UseLoongsonISA ) {
  3065               __ gslwxc1(dst, AT, T9, 0);
  3066            } else {
  3067               __ daddu(AT, AT, T9); 
  3068               __ lwc1(dst, AT, 0);
  3071      } else {
  3072         if( Assembler::is_simm16(disp) ) { 
  3073            __ lwc1(dst, as_Register(base), disp);
  3074         } else {
  3075            __ move(T9, disp);   
  3076            if( UseLoongsonISA ) {
  3077               __ gslwxc1(dst, as_Register(base), T9, 0);
  3078            } else {
  3079               __ daddu(AT, as_Register(base), T9); 
  3080               __ lwc1(dst, AT, 0);
  3084   %}
  3086   enc_class store_F_reg_enc (memory mem, regF src) %{
  3087      MacroAssembler _masm(&cbuf);
  3088      int  base = $mem$$base;
  3089      int  index = $mem$$index;
  3090      int  scale = $mem$$scale;
  3091      int  disp = $mem$$disp;
  3092      FloatRegister src = $src$$FloatRegister;
  3094      if( index != 0 ) {
  3095         if( Assembler::is_simm16(disp) ) { 
  3096            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3097               if (scale == 0) {
  3098                  __ gsswxc1(src, as_Register(base), as_Register(index), disp);
  3099               } else {
  3100                  __ dsll(AT, as_Register(index), scale);
  3101                  __ gsswxc1(src, as_Register(base), AT, disp);
  3103            } else {
  3104               if (scale == 0) {
  3105                  __ daddu(AT, as_Register(base), as_Register(index));
  3106               } else {
  3107                  __ dsll(AT, as_Register(index), scale);
  3108                  __ daddu(AT, as_Register(base), AT);
  3110               __ swc1(src, AT, disp);
  3112         } else {
  3113            if (scale == 0) {
  3114               __ daddu(AT, as_Register(base), as_Register(index));
  3115            } else {
  3116               __ dsll(AT, as_Register(index), scale);
  3117               __ daddu(AT, as_Register(base), AT);
  3119            __ move(T9, disp);
  3120            if( UseLoongsonISA ) {
  3121               __ gsswxc1(src, AT, T9, 0);
  3122            } else {
  3123               __ daddu(AT, AT, T9); 
  3124               __ swc1(src, AT, 0);
  3127      } else {
  3128         if( Assembler::is_simm16(disp) ) { 
  3129            __ swc1(src, as_Register(base), disp);
  3130         } else {
  3131            __ move(T9, disp);   
  3132            if( UseLoongsonISA ) {
  3133               __ gslwxc1(src, as_Register(base), T9, 0);
  3134            } else {
  3135               __ daddu(AT, as_Register(base), T9); 
  3136               __ swc1(src, AT, 0);
  3140   %}
  3142   enc_class load_D_enc (regD dst, memory mem) %{
  3143      MacroAssembler _masm(&cbuf);
  3144      int  base = $mem$$base;
  3145      int  index = $mem$$index;
  3146      int  scale = $mem$$scale;
  3147      int  disp = $mem$$disp;
  3148      FloatRegister dst_reg = as_FloatRegister($dst$$reg);
  3150      if( index != 0 ) {
  3151         if( Assembler::is_simm16(disp) ) { 
  3152            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3153               if (scale == 0) {
  3154                  __ gsldxc1(dst_reg, as_Register(base), as_Register(index), disp);
  3155               } else {
  3156                  __ dsll(AT, as_Register(index), scale);
  3157                  __ gsldxc1(dst_reg, as_Register(base), AT, disp);
  3159            } else {
  3160               if (scale == 0) {
  3161                  __ daddu(AT, as_Register(base), as_Register(index));
  3162               } else {
  3163                  __ dsll(AT, as_Register(index), scale);
  3164                  __ daddu(AT, as_Register(base), AT);
  3166               __ ldc1(dst_reg, AT, disp);
  3168         } else {
  3169            if (scale == 0) {
  3170               __ daddu(AT, as_Register(base), as_Register(index));
  3171            } else {
  3172               __ dsll(AT, as_Register(index), scale);
  3173               __ daddu(AT, as_Register(base), AT);
  3175            __ move(T9, disp);
  3176            if( UseLoongsonISA ) {
  3177               __ gsldxc1(dst_reg, AT, T9, 0);
  3178            } else {
  3179               __ addu(AT, AT, T9); 
  3180               __ ldc1(dst_reg, AT, 0);
  3183      } else {
  3184         if( Assembler::is_simm16(disp) ) { 
  3185            __ ldc1(dst_reg, as_Register(base), disp);
  3186         } else {
  3187            __ move(T9, disp);   
  3188            if( UseLoongsonISA ) {
  3189               __ gsldxc1(dst_reg, as_Register(base), T9, 0);
  3190            } else {
  3191               __ addu(AT, as_Register(base), T9); 
  3192               __ ldc1(dst_reg, AT, 0);
  3196   %}
  3198   enc_class store_D_reg_enc (memory mem, regD src) %{
  3199      MacroAssembler _masm(&cbuf);
  3200      int  base = $mem$$base;
  3201      int  index = $mem$$index;
  3202      int  scale = $mem$$scale;
  3203      int  disp = $mem$$disp;
  3204      FloatRegister src_reg = as_FloatRegister($src$$reg);
  3206      if( index != 0 ) {
  3207         if( Assembler::is_simm16(disp) ) { 
  3208            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3209               if (scale == 0) {
  3210                  __ gssdxc1(src_reg, as_Register(base), as_Register(index), disp);
  3211               } else {
  3212                  __ dsll(AT, as_Register(index), scale);
  3213                  __ gssdxc1(src_reg, as_Register(base), AT, disp);
  3215            } else {
  3216               if (scale == 0) {
  3217                  __ daddu(AT, as_Register(base), as_Register(index));
  3218               } else {
  3219                  __ dsll(AT, as_Register(index), scale);
  3220                  __ daddu(AT, as_Register(base), AT);
  3222               __ sdc1(src_reg, AT, disp);
  3224         } else {
  3225            if (scale == 0) {
  3226               __ daddu(AT, as_Register(base), as_Register(index));
  3227            } else {
  3228               __ dsll(AT, as_Register(index), scale);
  3229               __ daddu(AT, as_Register(base), AT);
  3231            __ move(T9, disp);
  3232            if( UseLoongsonISA ) {
  3233               __ gssdxc1(src_reg, AT, T9, 0);
  3234            } else {
  3235               __ addu(AT, AT, T9); 
  3236               __ sdc1(src_reg, AT, 0);
  3239      } else {
  3240         if( Assembler::is_simm16(disp) ) { 
  3241            __ sdc1(src_reg, as_Register(base), disp);
  3242         } else {
  3243            __ move(T9, disp);   
  3244            if( UseLoongsonISA ) {
  3245               __ gssdxc1(src_reg, as_Register(base), T9, 0);
  3246            } else {
  3247               __ addu(AT, as_Register(base), T9); 
  3248               __ sdc1(src_reg, AT, 0);
  3252   %}
  3254   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  3255       MacroAssembler _masm(&cbuf);
  3256     // This is the instruction starting address for relocation info.
  3257     __ block_comment("Java_To_Runtime");
  3258     cbuf.set_insts_mark();
  3259     __ relocate(relocInfo::runtime_call_type);
  3261     __ li48(T9, (long)$meth$$method);
  3262     __ jalr(T9);
  3263     __ nop();
  3264     %}
  3266   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  3267     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  3268     // who we intended to call.
  3269     MacroAssembler _masm(&cbuf);
  3270     cbuf.set_insts_mark();
  3272     if ( !_method ) {
  3273       __ relocate(relocInfo::runtime_call_type);
  3274       //emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  3275       //               runtime_call_Relocation::spec(), RELOC_IMM32 );
  3276     } else if(_optimized_virtual) {
  3277       __ relocate(relocInfo::opt_virtual_call_type);
  3278       //emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  3279       //               opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  3280     } else {
  3281       __ relocate(relocInfo::static_call_type);
  3282       //emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  3283       //               static_call_Relocation::spec(), RELOC_IMM32 );
  3286     __ li(T9, $meth$$method);
  3287     __ jalr(T9);
  3288     __ nop();
  3289     if( _method ) {  // Emit stub for static call
  3290       emit_java_to_interp(cbuf);
  3292   %}
  3295 /*
  3296  * [Ref: LIR_Assembler::ic_call() ]
  3297  */
  3298 enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  3299     MacroAssembler _masm(&cbuf);
  3300 	__ block_comment("Java_Dynamic_Call");
  3301 	__ ic_call((address)$meth$$method);
  3302   %}
  3305   enc_class Set_Flags_After_Fast_Lock_Unlock(FlagsReg cr) %{
  3306     Register flags = $cr$$Register;
  3307     Label  L;
  3309     MacroAssembler _masm(&cbuf);
  3311     __ addu(flags, R0, R0);    
  3312     __ beq(AT, R0, L);
  3313     __ delayed()->nop();
  3314     __ move(flags, 0xFFFFFFFF);
  3315     __ bind(L);
  3316   %}
  3318   enc_class enc_PartialSubtypeCheck(mRegP result, mRegP sub, mRegP super, mRegI tmp) %{
  3319     Register result = $result$$Register;
  3320     Register sub    = $sub$$Register;
  3321     Register super  = $super$$Register;
  3322     Register length = $tmp$$Register;
  3323     Register tmp    = T9;
  3324     Label miss;
  3326     /* 2012/9/28 Jin: result may be the same as sub
  3327      *    47c   B40: #    B21 B41 <- B20  Freq: 0.155379
  3328      *    47c     partialSubtypeCheck result=S1, sub=S1, super=S3, length=S0
  3329      *    4bc     mov   S2, NULL #@loadConP
  3330      *    4c0     beq   S1, S2, B21 #@branchConP  P=0.999999 C=-1.000000
  3331     */
  3332     MacroAssembler _masm(&cbuf);
  3333     Label done;
  3334     __ check_klass_subtype_slow_path(sub, super, length, tmp,
  3335                                      NULL, &miss,
  3336                                      /*set_cond_codes:*/ true);
  3337     /* 2013/7/22 Jin: Refer to X86_64's RDI */
  3338     __ move(result, 0);
  3339     __ b(done);
  3340     __ nop();
  3342     __ bind(miss);
  3343     __ move(result, 1);
  3344     __ bind(done);
  3345   %}
  3347 %}
  3350 //---------MIPS FRAME--------------------------------------------------------------
  3351 // Definition of frame structure and management information.
  3352 //
  3353 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3354 //                             |   (to get allocators register number
  3355 //  G  Owned by    |        |  v    add SharedInfo::stack0)
  3356 //  r   CALLER     |        |
  3357 //  o     |        +--------+      pad to even-align allocators stack-slot 
  3358 //  w     V        |  pad0  |        numbers; owned by CALLER
  3359 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3360 //  h     ^        |   in   |  5   
  3361 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3362 //  |     |    old |        |  3
  3363 //  |     |     SP-+--------+----> Matcher::_old_SP, even aligned
  3364 //  v     |        |  ret   |  3   return address
  3365 //     Owned by    +--------+
  3366 //      Self       |  pad2  |  2   pad to align old SP
  3367 //        |        +--------+  1
  3368 //        |        | locks  |  0
  3369 //        |        +--------+----> SharedInfo::stack0, even aligned  
  3370 //        |        |  pad1  | 11   pad to align new SP
  3371 //        |        +--------+
  3372 //        |        |        | 10
  3373 //        |        | spills |  9   spills
  3374 //        V        |        |  8   (pad0 slot for callee)
  3375 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3376 //        ^        |  out   |  7   
  3377 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3378 //   Owned by  new |				|
  3379 //		Callee    SP-+--------+----> Matcher::_new_SP, even aligned
  3380 //           			 |        |
  3381 //
  3382 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is 
  3383 //         known from SELF's arguments and the Java calling convention.
  3384 //         Region 6-7 is determined per call site.
  3385 // Note 2: If the calling convention leaves holes in the incoming argument 
  3386 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3387 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3388 //         incoming area, as the Java calling convention is completely under
  3389 //         the control of the AD file.  Doubles can be sorted and packed to
  3390 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3391 //         varargs C calling conventions.
  3392 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is 
  3393 //         even aligned with pad0 as needed.
  3394 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3395 //         region 6-11 is even aligned; it may be padded out more so that
  3396 //         the region from SP to FP meets the minimum stack alignment.
  3397 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
  3398 //         alignment.  Region 11, pad1, may be dynamically extended so that
  3399 //         SP meets the minimum alignment.
  3402 frame %{
  3404   stack_direction(TOWARDS_LOW);
  3406   // These two registers define part of the calling convention 
  3407   // between compiled code and the interpreter.
  3408 	// SEE StartI2CNode::calling_convention & StartC2INode::calling_convention & StartOSRNode::calling_convention 
  3409 	// for more information. by yjl 3/16/2006
  3411   inline_cache_reg(T1);                // Inline Cache Register
  3412   interpreter_method_oop_reg(S3);      // Method Oop Register when calling interpreter
  3413  /*
  3414   inline_cache_reg(T1);          // Inline Cache Register or methodOop for I2C
  3415   interpreter_arg_ptr_reg(A0);         // Argument pointer for I2C adapters
  3416 */
  3418   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3419   cisc_spilling_operand_name(indOffset32);  
  3421   // Number of stack slots consumed by locking an object
  3422 	// generate Compile::sync_stack_slots
  3423 #ifdef _LP64
  3424   sync_stack_slots(2);
  3425 #else
  3426   sync_stack_slots(1);
  3427 #endif
  3429   frame_pointer(SP);
  3431   // Interpreter stores its frame pointer in a register which is 
  3432   // stored to the stack by I2CAdaptors.
  3433   // I2CAdaptors convert from interpreted java to compiled java.
  3435   interpreter_frame_pointer(FP);
  3437 	// generate Matcher::stack_alignment
  3438   stack_alignment(StackAlignmentInBytes);  //wordSize = sizeof(char*);            
  3440   // Number of stack slots between incoming argument block and the start of 
  3441   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3442   // EPILOG must remove this many slots.  Intel needs one slot for
  3443   // return address.
  3444 	// generate Matcher::in_preserve_stack_slots
  3445   //in_preserve_stack_slots(VerifyStackAtCalls + 2);  //Now VerifyStackAtCalls is defined as false ! Leave one stack slot for ra and fp
  3446   in_preserve_stack_slots(4);  //Now VerifyStackAtCalls is defined as false ! Leave two stack slots for ra and fp
  3448   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3449   // for calls to C.  Supports the var-args backing area for register parms.
  3450   varargs_C_out_slots_killed(0);
  3452   // The after-PROLOG location of the return address.  Location of
  3453   // return address specifies a type (REG or STACK) and a number
  3454   // representing the register number (i.e. - use a register name) or
  3455   // stack slot.
  3456   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  3457   // Otherwise, it is above the locks and verification slot and alignment word
  3458   //return_addr(STACK -1+ round_to(1+VerifyStackAtCalls+Compile::current()->sync()*Compile::current()->sync_stack_slots(),WordsPerLong));
  3459   return_addr(REG RA);
  3461   // Body of function which returns an integer array locating
  3462   // arguments either in registers or in stack slots.  Passed an array
  3463   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3464   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3465   // arguments for a CALLEE.  Incoming stack arguments are
  3466   // automatically biased by the preserve_stack_slots field above.
  3469 	// will generated to Matcher::calling_convention(OptoRegPair *sig, uint length, bool is_outgoing)
  3470 	// StartNode::calling_convention call this. by yjl 3/16/2006
  3471   calling_convention %{           
  3472     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3473   %}
  3478   // Body of function which returns an integer array locating
  3479   // arguments either in registers or in stack slots.  Passed an array
  3480   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3481   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3482   // arguments for a CALLEE.  Incoming stack arguments are
  3483   // automatically biased by the preserve_stack_slots field above.
  3486 	// SEE CallRuntimeNode::calling_convention for more information. by yjl 3/16/2006
  3487   c_calling_convention %{          
  3488    (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3489   %}
  3492   // Location of C & interpreter return values
  3493 	// register(s) contain(s) return value for Op_StartI2C and Op_StartOSR. 
  3494 	// SEE Matcher::match. by yjl 3/16/2006
  3495   c_return_value %{
  3496     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3497                                /* -- , -- , Op_RegN, Op_RegI, Op_RegP, Op_RegF, Op_RegD, Op_RegL */
  3498     static int lo[Op_RegL+1] = { 0, 0, V0_num,       V0_num,       V0_num,       F0_num,       F0_num,    V0_num };
  3499     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, V0_H_num,     OptoReg::Bad, F0_H_num,  V0_H_num };
  3500     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3501   %}
  3503   // Location of return values
  3504 	// register(s) contain(s) return value for Op_StartC2I and Op_Start. 
  3505 	// SEE Matcher::match. by yjl 3/16/2006
  3507   return_value %{
  3508     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3509                                /* -- , -- , Op_RegN, Op_RegI, Op_RegP, Op_RegF, Op_RegD, Op_RegL */
  3510     static int lo[Op_RegL+1] = { 0, 0, V0_num,       V0_num,       V0_num,       F0_num,       F0_num,     V0_num };
  3511     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, V0_H_num,     OptoReg::Bad, F0_H_num,   V0_H_num};
  3512     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3513   %}
  3515 %}
  3517 //----------ATTRIBUTES---------------------------------------------------------
  3518 //----------Operand Attributes-------------------------------------------------
  3519 op_attrib op_cost(0);        // Required cost attribute
  3521 //----------Instruction Attributes---------------------------------------------
  3522 ins_attrib ins_cost(100);       // Required cost attribute
  3523 ins_attrib ins_size(32);         // Required size attribute (in bits)
  3524 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
  3525 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3526                                 // non-matching short branch variant of some
  3527                                                             // long branch?
  3528 ins_attrib ins_alignment(4);    // Required alignment attribute (must be a power of 2)
  3529                                 // specifies the alignment that some part of the instruction (not
  3530                                 // necessarily the start) requires.  If > 1, a compute_padding()
  3531                                 // function must be provided for the instruction
  3533 //----------OPERANDS-----------------------------------------------------------
  3534 // Operand definitions must precede instruction definitions for correct parsing
  3535 // in the ADLC because operands constitute user defined types which are used in
  3536 // instruction definitions.
  3538 // Vectors
  3539 operand vecD() %{
  3540   constraint(ALLOC_IN_RC(dbl_reg));
  3541   match(VecD);
  3543   format %{ %}
  3544   interface(REG_INTER);
  3545 %}
  3547 // Flags register, used as output of compare instructions
  3548 operand FlagsReg() %{
  3549   constraint(ALLOC_IN_RC(mips_flags));
  3550   match(RegFlags);
  3552   format %{ "EFLAGS" %}
  3553   interface(REG_INTER);
  3554 %}
  3556 //----------Simple Operands----------------------------------------------------
  3557 //TODO: Should we need to define some more special immediate number ?
  3558 // Immediate Operands
  3559 // Integer Immediate
  3560 operand immI() %{
  3561   match(ConI);
  3562   //TODO: should not match immI8 here LEE
  3563   match(immI8);
  3565   op_cost(20);
  3566   format %{ %}
  3567   interface(CONST_INTER);
  3568 %}
  3570 // Long Immediate 8-bit
  3571 operand immL8()
  3572 %{
  3573   predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
  3574   match(ConL);
  3576   op_cost(5);
  3577   format %{ %}
  3578   interface(CONST_INTER);
  3579 %}
  3581 // Constant for test vs zero
  3582 operand immI0() %{
  3583   predicate(n->get_int() == 0);
  3584   match(ConI);
  3586   op_cost(0);
  3587   format %{ %}
  3588   interface(CONST_INTER);
  3589 %}
  3591 // Constant for increment
  3592 operand immI1() %{
  3593   predicate(n->get_int() == 1);
  3594   match(ConI);
  3596   op_cost(0);
  3597   format %{ %}
  3598   interface(CONST_INTER);
  3599 %}
  3601 // Constant for decrement
  3602 operand immI_M1() %{
  3603   predicate(n->get_int() == -1);
  3604   match(ConI);
  3606   op_cost(0);
  3607   format %{ %}
  3608   interface(CONST_INTER);
  3609 %}
  3611 // Valid scale values for addressing modes
  3612 operand immI2() %{
  3613   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  3614   match(ConI);
  3616   format %{ %}
  3617   interface(CONST_INTER);
  3618 %}
  3620 operand immI8() %{
  3621   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  3622   match(ConI);
  3624   op_cost(5);
  3625   format %{ %}
  3626   interface(CONST_INTER);
  3627 %}
  3629 operand immI16() %{
  3630   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  3631   match(ConI);
  3633   op_cost(10);
  3634   format %{ %}
  3635   interface(CONST_INTER);
  3636 %}
  3638 // Constant for long shifts
  3639 operand immI_32() %{
  3640   predicate( n->get_int() == 32 );
  3641   match(ConI);
  3643   op_cost(0);
  3644   format %{ %}
  3645   interface(CONST_INTER);
  3646 %}
  3648 operand immI_63() %{
  3649   predicate( n->get_int() == 63 );
  3650   match(ConI);
  3652   op_cost(0);
  3653   format %{ %}
  3654   interface(CONST_INTER);
  3655 %}
  3657 operand immI_0_31() %{
  3658   predicate( n->get_int() >= 0 && n->get_int() <= 31 );
  3659   match(ConI);
  3661   op_cost(0);
  3662   format %{ %}
  3663   interface(CONST_INTER);
  3664 %}
  3666 // Operand for non-negtive integer mask
  3667 operand immI_nonneg_mask() %{
  3668   predicate( (n->get_int() >= 0) && (Assembler::is_int_mask(n->get_int()) != -1) );
  3669   match(ConI);
  3671   op_cost(0);
  3672   format %{ %}
  3673   interface(CONST_INTER);
  3674 %}
  3676 operand immI_32_63() %{
  3677   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  3678   match(ConI);
  3679   op_cost(0);
  3681   format %{ %}
  3682   interface(CONST_INTER);
  3683 %}
  3685 operand immI16_sub() %{
  3686   predicate((-32767 <= n->get_int()) && (n->get_int() <= 32768));
  3687   match(ConI);
  3689   op_cost(10);
  3690   format %{ %}
  3691   interface(CONST_INTER);
  3692 %}
  3694 operand immI_0_32767() %{
  3695   predicate( n->get_int() >= 0 && n->get_int() <= 32767 );
  3696   match(ConI);
  3697   op_cost(0);
  3699   format %{ %}
  3700   interface(CONST_INTER);
  3701 %}
  3703 operand immI_0_65535() %{
  3704   predicate( n->get_int() >= 0 && n->get_int() <= 65535 );
  3705   match(ConI);
  3706   op_cost(0);
  3708   format %{ %}
  3709   interface(CONST_INTER);
  3710 %}
  3712 operand immI_1() %{
  3713   predicate( n->get_int() == 1 );
  3714   match(ConI);
  3716   op_cost(0);
  3717   format %{ %}
  3718   interface(CONST_INTER);
  3719 %}
  3721 operand immI_2() %{
  3722   predicate( n->get_int() == 2 );
  3723   match(ConI);
  3725   op_cost(0);
  3726   format %{ %}
  3727   interface(CONST_INTER);
  3728 %}
  3730 operand immI_3() %{
  3731   predicate( n->get_int() == 3 );
  3732   match(ConI);
  3734   op_cost(0);
  3735   format %{ %}
  3736   interface(CONST_INTER);
  3737 %}
  3739 operand immI_7() %{
  3740   predicate( n->get_int() == 7 );
  3741   match(ConI);
  3743   format %{ %}
  3744   interface(CONST_INTER);
  3745 %}
  3747 // Immediates for special shifts (sign extend)
  3749 // Constants for increment
  3750 operand immI_16() %{
  3751   predicate( n->get_int() == 16 );
  3752   match(ConI);
  3754   format %{ %}
  3755   interface(CONST_INTER);
  3756 %}
  3758 operand immI_24() %{
  3759   predicate( n->get_int() == 24 );
  3760   match(ConI);
  3762   format %{ %}
  3763   interface(CONST_INTER);
  3764 %}
  3766 // Constant for byte-wide masking
  3767 operand immI_255() %{
  3768   predicate( n->get_int() == 255 );
  3769   match(ConI);
  3771   op_cost(0);
  3772   format %{ %}
  3773   interface(CONST_INTER);
  3774 %}
  3776 operand immI_65535() %{
  3777   predicate( n->get_int() == 65535 );
  3778   match(ConI);
  3780   op_cost(5);
  3781   format %{ %}
  3782   interface(CONST_INTER);
  3783 %}
  3785 operand immI_65536() %{
  3786   predicate( n->get_int() == 65536 );
  3787   match(ConI);
  3789   op_cost(5);
  3790   format %{ %}
  3791   interface(CONST_INTER);
  3792 %}
  3794 operand immI_M65536() %{
  3795   predicate( n->get_int() == -65536 );
  3796   match(ConI);
  3798   op_cost(5);
  3799   format %{ %}
  3800   interface(CONST_INTER);
  3801 %}
  3803 // Pointer Immediate
  3804 operand immP() %{
  3805   match(ConP);
  3807   op_cost(10);
  3808   format %{ %}
  3809   interface(CONST_INTER);
  3810 %}
  3812 operand immP31()
  3813 %{
  3814   predicate(n->as_Type()->type()->reloc() == relocInfo::none
  3815             && (n->get_ptr() >> 31) == 0);
  3816   match(ConP);
  3818   op_cost(5);
  3819   format %{ %} 
  3820   interface(CONST_INTER);
  3821 %}
  3823 // NULL Pointer Immediate
  3824 operand immP0() %{
  3825   predicate( n->get_ptr() == 0 );
  3826   match(ConP);
  3827   op_cost(0);
  3829   format %{ %}
  3830   interface(CONST_INTER);
  3831 %}
  3833 // Pointer Immediate: 64-bit
  3834 operand immP_set() %{
  3835   match(ConP);
  3837   op_cost(5);
  3838   // formats are generated automatically for constants and base registers
  3839   format %{ %}
  3840   interface(CONST_INTER);
  3841 %}
  3843 // Pointer Immediate: 64-bit
  3844 operand immP_load() %{
  3845   predicate(n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set64(n->get_ptr()) > 3));
  3846   match(ConP);
  3848   op_cost(5);
  3849   // formats are generated automatically for constants and base registers
  3850   format %{ %}
  3851   interface(CONST_INTER);
  3852 %}
  3854 // Pointer Immediate: 64-bit
  3855 operand immP_no_oop_cheap() %{
  3856   predicate(!n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set64(n->get_ptr()) <= 3));
  3857   match(ConP);
  3859   op_cost(5);
  3860   // formats are generated automatically for constants and base registers
  3861   format %{ %}
  3862   interface(CONST_INTER);
  3863 %}
  3865 // Pointer for polling page 
  3866 operand immP_poll() %{
  3867   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3868   match(ConP);
  3869   op_cost(5);
  3871   format %{ %}
  3872   interface(CONST_INTER);
  3873 %}
  3875 // Pointer Immediate
  3876 operand immN() %{
  3877   match(ConN);
  3879   op_cost(10);
  3880   format %{ %}
  3881   interface(CONST_INTER);
  3882 %}
  3884 operand immNKlass() %{
  3885   match(ConNKlass);
  3887   op_cost(10);
  3888   format %{ %}
  3889   interface(CONST_INTER);
  3890 %}
  3892 // NULL Pointer Immediate
  3893 operand immN0() %{
  3894   predicate(n->get_narrowcon() == 0);
  3895   match(ConN);
  3897   op_cost(5);
  3898   format %{ %}
  3899   interface(CONST_INTER);
  3900 %}
  3902 // Long Immediate
  3903 operand immL() %{
  3904   match(ConL);
  3906   op_cost(20);
  3907   format %{ %}
  3908   interface(CONST_INTER);
  3909 %}
  3911 // Long Immediate zero
  3912 operand immL0() %{
  3913   predicate( n->get_long() == 0L );
  3914   match(ConL);
  3915   op_cost(0);
  3917   format %{ %}
  3918   interface(CONST_INTER);
  3919 %}
  3921 operand immL7() %{
  3922   predicate( n->get_long() == 7L );
  3923   match(ConL);
  3924   op_cost(0);
  3926   format %{ %}
  3927   interface(CONST_INTER);
  3928 %}
  3930 operand immL_M1() %{
  3931   predicate( n->get_long() == -1L );
  3932   match(ConL);
  3933   op_cost(0);
  3935   format %{ %}
  3936   interface(CONST_INTER);
  3937 %}
  3939 // bit 0..2 zero
  3940 operand immL_M8() %{
  3941   predicate( n->get_long() == -8L );
  3942   match(ConL);
  3943   op_cost(0);
  3945   format %{ %}
  3946   interface(CONST_INTER);
  3947 %}
  3949 // bit 2 zero
  3950 operand immL_M5() %{
  3951   predicate( n->get_long() == -5L );
  3952   match(ConL);
  3953   op_cost(0);
  3955   format %{ %}
  3956   interface(CONST_INTER);
  3957 %}
  3959 // bit 1..2 zero
  3960 operand immL_M7() %{
  3961   predicate( n->get_long() == -7L );
  3962   match(ConL);
  3963   op_cost(0);
  3965   format %{ %}
  3966   interface(CONST_INTER);
  3967 %}
  3969 // bit 0..1 zero
  3970 operand immL_M4() %{
  3971   predicate( n->get_long() == -4L );
  3972   match(ConL);
  3973   op_cost(0);
  3975   format %{ %}
  3976   interface(CONST_INTER);
  3977 %}
  3979 // bit 3..6 zero
  3980 operand immL_M121() %{
  3981   predicate( n->get_long() == -121L );
  3982   match(ConL);
  3983   op_cost(0);
  3985   format %{ %}
  3986   interface(CONST_INTER);
  3987 %}
  3989 // Long immediate from 0 to 127.
  3990 // Used for a shorter form of long mul by 10.
  3991 operand immL_127() %{
  3992   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  3993   match(ConL);
  3994   op_cost(0);
  3996   format %{ %}
  3997   interface(CONST_INTER);
  3998 %}
  4000 // Operand for non-negtive long mask
  4001 operand immL_nonneg_mask() %{
  4002   predicate( (n->get_long() >= 0) && (Assembler::is_jlong_mask(n->get_long()) != -1) );
  4003   match(ConL);
  4005   op_cost(0);
  4006   format %{ %}
  4007   interface(CONST_INTER);
  4008 %}
  4010 operand immL_0_65535() %{
  4011   predicate( n->get_long() >= 0 && n->get_long() <= 65535 );
  4012   match(ConL);
  4013   op_cost(0);
  4015   format %{ %}
  4016   interface(CONST_INTER);
  4017 %}
  4019 // Long Immediate: cheap (materialize in <= 3 instructions)
  4020 operand immL_cheap() %{
  4021   predicate(MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  4022   match(ConL);
  4023   op_cost(0);
  4025   format %{ %}
  4026   interface(CONST_INTER);
  4027 %}
  4029 // Long Immediate: expensive (materialize in > 3 instructions)
  4030 operand immL_expensive() %{
  4031   predicate(MacroAssembler::insts_for_set64(n->get_long()) > 3);
  4032   match(ConL);
  4033   op_cost(0);
  4035   format %{ %}
  4036   interface(CONST_INTER);
  4037 %}
  4039 operand immL16() %{
  4040   predicate((-32768 <= n->get_long()) && (n->get_long() <= 32767));
  4041   match(ConL);
  4043   op_cost(10);
  4044   format %{ %}
  4045   interface(CONST_INTER);
  4046 %}
  4048 operand immL16_sub() %{
  4049   predicate((-32767 <= n->get_long()) && (n->get_long() <= 32768));
  4050   match(ConL);
  4052   op_cost(10);
  4053   format %{ %}
  4054   interface(CONST_INTER);
  4055 %}
  4057 // Long Immediate: low 32-bit mask
  4058 operand immL_32bits() %{
  4059   predicate(n->get_long() == 0xFFFFFFFFL);
  4060   match(ConL);
  4061   op_cost(20);
  4063   format %{ %}
  4064   interface(CONST_INTER);
  4065 %}
  4067 // Long Immediate 32-bit signed
  4068 operand immL32()
  4069 %{
  4070   predicate(n->get_long() == (int) (n->get_long()));
  4071   match(ConL);
  4073   op_cost(15);
  4074   format %{ %}
  4075   interface(CONST_INTER);
  4076 %}
  4079 //single-precision floating-point zero
  4080 operand immF0() %{
  4081   predicate(jint_cast(n->getf()) == 0);
  4082   match(ConF);
  4084   op_cost(5);
  4085   format %{ %}
  4086   interface(CONST_INTER);
  4087 %}
  4089 //single-precision floating-point immediate
  4090 operand immF() %{
  4091   match(ConF);
  4093   op_cost(20);
  4094   format %{ %}
  4095   interface(CONST_INTER);
  4096 %}
  4098 //double-precision floating-point zero 
  4099 operand immD0() %{
  4100   predicate(jlong_cast(n->getd()) == 0);
  4101   match(ConD);
  4103   op_cost(5);
  4104   format %{ %}
  4105   interface(CONST_INTER);
  4106 %}
  4108 //double-precision floating-point immediate
  4109 operand immD() %{
  4110   match(ConD);
  4112   op_cost(20);
  4113   format %{ %}
  4114   interface(CONST_INTER);
  4115 %}
  4117 // Register Operands
  4118 // Integer Register
  4119 operand mRegI() %{
  4120   constraint(ALLOC_IN_RC(int_reg));
  4121   match(RegI);
  4123   format %{ %}
  4124   interface(REG_INTER);
  4125 %}
  4127 operand no_Ax_mRegI() %{
  4128   constraint(ALLOC_IN_RC(no_Ax_int_reg));
  4129   match(RegI);
  4130   match(mRegI);
  4132   format %{  %}
  4133   interface(REG_INTER);
  4134 %} 
  4136 operand mS0RegI() %{
  4137   constraint(ALLOC_IN_RC(s0_reg));
  4138   match(RegI);
  4139   match(mRegI);
  4141   format %{ "S0" %}
  4142   interface(REG_INTER);
  4143 %}
  4145 operand mS1RegI() %{
  4146   constraint(ALLOC_IN_RC(s1_reg));
  4147   match(RegI);
  4148   match(mRegI);
  4150   format %{ "S1" %}
  4151   interface(REG_INTER);
  4152 %}
  4154 operand mS2RegI() %{
  4155   constraint(ALLOC_IN_RC(s2_reg));
  4156   match(RegI);
  4157   match(mRegI);
  4159   format %{ "S2" %}
  4160   interface(REG_INTER);
  4161 %}
  4163 operand mS3RegI() %{
  4164   constraint(ALLOC_IN_RC(s3_reg));
  4165   match(RegI);
  4166   match(mRegI);
  4168   format %{ "S3" %}
  4169   interface(REG_INTER);
  4170 %}
  4172 operand mS4RegI() %{
  4173   constraint(ALLOC_IN_RC(s4_reg));
  4174   match(RegI);
  4175   match(mRegI);
  4177   format %{ "S4" %}
  4178   interface(REG_INTER);
  4179 %}
  4181 operand mS5RegI() %{
  4182   constraint(ALLOC_IN_RC(s5_reg));
  4183   match(RegI);
  4184   match(mRegI);
  4186   format %{ "S5" %}
  4187   interface(REG_INTER);
  4188 %}
  4190 operand mS6RegI() %{
  4191   constraint(ALLOC_IN_RC(s6_reg));
  4192   match(RegI);
  4193   match(mRegI);
  4195   format %{ "S6" %}
  4196   interface(REG_INTER);
  4197 %}
  4199 operand mS7RegI() %{
  4200   constraint(ALLOC_IN_RC(s7_reg));
  4201   match(RegI);
  4202   match(mRegI);
  4204   format %{ "S7" %}
  4205   interface(REG_INTER);
  4206 %}
  4209 operand mT0RegI() %{
  4210   constraint(ALLOC_IN_RC(t0_reg));
  4211   match(RegI);
  4212   match(mRegI);
  4214   format %{ "T0" %}
  4215   interface(REG_INTER);
  4216 %}
  4218 operand mT1RegI() %{
  4219   constraint(ALLOC_IN_RC(t1_reg));
  4220   match(RegI);
  4221   match(mRegI);
  4223   format %{ "T1" %}
  4224   interface(REG_INTER);
  4225 %}
  4227 operand mT2RegI() %{
  4228   constraint(ALLOC_IN_RC(t2_reg));
  4229   match(RegI);
  4230   match(mRegI);
  4232   format %{ "T2" %}
  4233   interface(REG_INTER);
  4234 %}
  4236 operand mT3RegI() %{
  4237   constraint(ALLOC_IN_RC(t3_reg));
  4238   match(RegI);
  4239   match(mRegI);
  4241   format %{ "T3" %}
  4242   interface(REG_INTER);
  4243 %}
  4245 operand mT8RegI() %{
  4246   constraint(ALLOC_IN_RC(t8_reg));
  4247   match(RegI);
  4248   match(mRegI);
  4250   format %{ "T8" %}
  4251   interface(REG_INTER);
  4252 %}
  4254 operand mT9RegI() %{
  4255   constraint(ALLOC_IN_RC(t9_reg));
  4256   match(RegI);
  4257   match(mRegI);
  4259   format %{ "T9" %}
  4260   interface(REG_INTER);
  4261 %}
  4263 operand mA0RegI() %{
  4264   constraint(ALLOC_IN_RC(a0_reg));
  4265   match(RegI);
  4266   match(mRegI);
  4268   format %{ "A0" %}
  4269   interface(REG_INTER);
  4270 %}
  4272 operand mA1RegI() %{
  4273   constraint(ALLOC_IN_RC(a1_reg));
  4274   match(RegI);
  4275   match(mRegI);
  4277   format %{ "A1" %}
  4278   interface(REG_INTER);
  4279 %}
  4281 operand mA2RegI() %{
  4282   constraint(ALLOC_IN_RC(a2_reg));
  4283   match(RegI);
  4284   match(mRegI);
  4286   format %{ "A2" %}
  4287   interface(REG_INTER);
  4288 %}
  4290 operand mA3RegI() %{
  4291   constraint(ALLOC_IN_RC(a3_reg));
  4292   match(RegI);
  4293   match(mRegI);
  4295   format %{ "A3" %}
  4296   interface(REG_INTER);
  4297 %}
  4299 operand mA4RegI() %{
  4300   constraint(ALLOC_IN_RC(a4_reg));
  4301   match(RegI);
  4302   match(mRegI);
  4304   format %{ "A4" %}
  4305   interface(REG_INTER);
  4306 %}
  4308 operand mA5RegI() %{
  4309   constraint(ALLOC_IN_RC(a5_reg));
  4310   match(RegI);
  4311   match(mRegI);
  4313   format %{ "A5" %}
  4314   interface(REG_INTER);
  4315 %}
  4317 operand mA6RegI() %{
  4318   constraint(ALLOC_IN_RC(a6_reg));
  4319   match(RegI);
  4320   match(mRegI);
  4322   format %{ "A6" %}
  4323   interface(REG_INTER);
  4324 %}
  4326 operand mA7RegI() %{
  4327   constraint(ALLOC_IN_RC(a7_reg));
  4328   match(RegI);
  4329   match(mRegI);
  4331   format %{ "A7" %}
  4332   interface(REG_INTER);
  4333 %}
  4335 operand mV0RegI() %{
  4336   constraint(ALLOC_IN_RC(v0_reg));
  4337   match(RegI);
  4338   match(mRegI);
  4340   format %{ "V0" %}
  4341   interface(REG_INTER);
  4342 %}
  4344 operand mV1RegI() %{
  4345   constraint(ALLOC_IN_RC(v1_reg));
  4346   match(RegI);
  4347   match(mRegI);
  4349   format %{ "V1" %}
  4350   interface(REG_INTER);
  4351 %}
  4353 operand mRegN() %{
  4354   constraint(ALLOC_IN_RC(int_reg));
  4355   match(RegN);
  4357   format %{ %}
  4358   interface(REG_INTER);
  4359 %}
  4361 operand t0_RegN() %{
  4362   constraint(ALLOC_IN_RC(t0_reg));
  4363   match(RegN);
  4364   match(mRegN);
  4366   format %{ %}
  4367   interface(REG_INTER);
  4368 %}
  4370 operand t1_RegN() %{
  4371   constraint(ALLOC_IN_RC(t1_reg));
  4372   match(RegN);
  4373   match(mRegN);
  4375   format %{ %}
  4376   interface(REG_INTER);
  4377 %}
  4379 operand t2_RegN() %{
  4380   constraint(ALLOC_IN_RC(t2_reg));
  4381   match(RegN);
  4382   match(mRegN);
  4384   format %{ %}
  4385   interface(REG_INTER);
  4386 %}
  4388 operand t3_RegN() %{
  4389   constraint(ALLOC_IN_RC(t3_reg));
  4390   match(RegN);
  4391   match(mRegN);
  4393   format %{ %}
  4394   interface(REG_INTER);
  4395 %}
  4397 operand t8_RegN() %{
  4398   constraint(ALLOC_IN_RC(t8_reg));
  4399   match(RegN);
  4400   match(mRegN);
  4402   format %{ %}
  4403   interface(REG_INTER);
  4404 %}
  4406 operand t9_RegN() %{
  4407   constraint(ALLOC_IN_RC(t9_reg));
  4408   match(RegN);
  4409   match(mRegN);
  4411   format %{ %}
  4412   interface(REG_INTER);
  4413 %}
  4415 operand a0_RegN() %{
  4416   constraint(ALLOC_IN_RC(a0_reg));
  4417   match(RegN);
  4418   match(mRegN);
  4420   format %{ %}
  4421   interface(REG_INTER);
  4422 %}
  4424 operand a1_RegN() %{
  4425   constraint(ALLOC_IN_RC(a1_reg));
  4426   match(RegN);
  4427   match(mRegN);
  4429   format %{ %}
  4430   interface(REG_INTER);
  4431 %}
  4433 operand a2_RegN() %{
  4434   constraint(ALLOC_IN_RC(a2_reg));
  4435   match(RegN);
  4436   match(mRegN);
  4438   format %{ %}
  4439   interface(REG_INTER);
  4440 %}
  4442 operand a3_RegN() %{
  4443   constraint(ALLOC_IN_RC(a3_reg));
  4444   match(RegN);
  4445   match(mRegN);
  4447   format %{ %}
  4448   interface(REG_INTER);
  4449 %}
  4451 operand a4_RegN() %{
  4452   constraint(ALLOC_IN_RC(a4_reg));
  4453   match(RegN);
  4454   match(mRegN);
  4456   format %{ %}
  4457   interface(REG_INTER);
  4458 %}
  4460 operand a5_RegN() %{
  4461   constraint(ALLOC_IN_RC(a5_reg));
  4462   match(RegN);
  4463   match(mRegN);
  4465   format %{ %}
  4466   interface(REG_INTER);
  4467 %}
  4469 operand a6_RegN() %{
  4470   constraint(ALLOC_IN_RC(a6_reg));
  4471   match(RegN);
  4472   match(mRegN);
  4474   format %{ %}
  4475   interface(REG_INTER);
  4476 %}
  4478 operand a7_RegN() %{
  4479   constraint(ALLOC_IN_RC(a7_reg));
  4480   match(RegN);
  4481   match(mRegN);
  4483   format %{ %}
  4484   interface(REG_INTER);
  4485 %}
  4487 operand s0_RegN() %{
  4488   constraint(ALLOC_IN_RC(s0_reg));
  4489   match(RegN);
  4490   match(mRegN);
  4492   format %{ %}
  4493   interface(REG_INTER);
  4494 %}
  4496 operand s1_RegN() %{
  4497   constraint(ALLOC_IN_RC(s1_reg));
  4498   match(RegN);
  4499   match(mRegN);
  4501   format %{ %}
  4502   interface(REG_INTER);
  4503 %}
  4505 operand s2_RegN() %{
  4506   constraint(ALLOC_IN_RC(s2_reg));
  4507   match(RegN);
  4508   match(mRegN);
  4510   format %{ %}
  4511   interface(REG_INTER);
  4512 %}
  4514 operand s3_RegN() %{
  4515   constraint(ALLOC_IN_RC(s3_reg));
  4516   match(RegN);
  4517   match(mRegN);
  4519   format %{ %}
  4520   interface(REG_INTER);
  4521 %}
  4523 operand s4_RegN() %{
  4524   constraint(ALLOC_IN_RC(s4_reg));
  4525   match(RegN);
  4526   match(mRegN);
  4528   format %{ %}
  4529   interface(REG_INTER);
  4530 %}
  4532 operand s5_RegN() %{
  4533   constraint(ALLOC_IN_RC(s5_reg));
  4534   match(RegN);
  4535   match(mRegN);
  4537   format %{ %}
  4538   interface(REG_INTER);
  4539 %}
  4541 operand s6_RegN() %{
  4542   constraint(ALLOC_IN_RC(s6_reg));
  4543   match(RegN);
  4544   match(mRegN);
  4546   format %{ %}
  4547   interface(REG_INTER);
  4548 %}
  4550 operand s7_RegN() %{
  4551   constraint(ALLOC_IN_RC(s7_reg));
  4552   match(RegN);
  4553   match(mRegN);
  4555   format %{ %}
  4556   interface(REG_INTER);
  4557 %}
  4559 operand v0_RegN() %{
  4560   constraint(ALLOC_IN_RC(v0_reg));
  4561   match(RegN);
  4562   match(mRegN);
  4564   format %{ %}
  4565   interface(REG_INTER);
  4566 %}
  4568 operand v1_RegN() %{
  4569   constraint(ALLOC_IN_RC(v1_reg));
  4570   match(RegN);
  4571   match(mRegN);
  4573   format %{ %}
  4574   interface(REG_INTER);
  4575 %}
  4577 // Pointer Register
  4578 operand mRegP() %{
  4579   constraint(ALLOC_IN_RC(p_reg));
  4580   match(RegP);
  4582   format %{  %}
  4583   interface(REG_INTER);
  4584 %} 
  4586 operand no_T8_mRegP() %{
  4587   constraint(ALLOC_IN_RC(no_T8_p_reg));
  4588   match(RegP);
  4589   match(mRegP);
  4591   format %{  %}
  4592   interface(REG_INTER);
  4593 %} 
  4595 operand s0_RegP()
  4596 %{
  4597   constraint(ALLOC_IN_RC(s0_long_reg));
  4598   match(RegP);
  4599   match(mRegP);
  4600   match(no_T8_mRegP);
  4602   format %{ %}
  4603   interface(REG_INTER);
  4604 %}
  4606 operand s1_RegP()
  4607 %{
  4608   constraint(ALLOC_IN_RC(s1_long_reg));
  4609   match(RegP);
  4610   match(mRegP);
  4611   match(no_T8_mRegP);
  4613   format %{ %}
  4614   interface(REG_INTER);
  4615 %}
  4617 operand s2_RegP()
  4618 %{
  4619   constraint(ALLOC_IN_RC(s2_long_reg));
  4620   match(RegP);
  4621   match(mRegP);
  4622   match(no_T8_mRegP);
  4624   format %{ %}
  4625   interface(REG_INTER);
  4626 %}
  4628 operand s3_RegP()
  4629 %{
  4630   constraint(ALLOC_IN_RC(s3_long_reg));
  4631   match(RegP);
  4632   match(mRegP);
  4633   match(no_T8_mRegP);
  4635   format %{ %}
  4636   interface(REG_INTER);
  4637 %}
  4639 operand s4_RegP()
  4640 %{
  4641   constraint(ALLOC_IN_RC(s4_long_reg));
  4642   match(RegP);
  4643   match(mRegP);
  4644   match(no_T8_mRegP);
  4646   format %{ %}
  4647   interface(REG_INTER);
  4648 %}
  4650 operand s5_RegP()
  4651 %{
  4652   constraint(ALLOC_IN_RC(s5_long_reg));
  4653   match(RegP);
  4654   match(mRegP);
  4655   match(no_T8_mRegP);
  4657   format %{ %}
  4658   interface(REG_INTER);
  4659 %}
  4661 operand s6_RegP()
  4662 %{
  4663   constraint(ALLOC_IN_RC(s6_long_reg));
  4664   match(RegP);
  4665   match(mRegP);
  4666   match(no_T8_mRegP);
  4668   format %{ %}
  4669   interface(REG_INTER);
  4670 %}
  4672 operand s7_RegP()
  4673 %{
  4674   constraint(ALLOC_IN_RC(s7_long_reg));
  4675   match(RegP);
  4676   match(mRegP);
  4677   match(no_T8_mRegP);
  4679   format %{ %}
  4680   interface(REG_INTER);
  4681 %}
  4683 operand t0_RegP()
  4684 %{
  4685   constraint(ALLOC_IN_RC(t0_long_reg));
  4686   match(RegP);
  4687   match(mRegP);
  4688   match(no_T8_mRegP);
  4690   format %{ %}
  4691   interface(REG_INTER);
  4692 %}
  4694 operand t1_RegP()
  4695 %{
  4696   constraint(ALLOC_IN_RC(t1_long_reg));
  4697   match(RegP);
  4698   match(mRegP);
  4699   match(no_T8_mRegP);
  4701   format %{ %}
  4702   interface(REG_INTER);
  4703 %}
  4705 operand t2_RegP()
  4706 %{
  4707   constraint(ALLOC_IN_RC(t2_long_reg));
  4708   match(RegP);
  4709   match(mRegP);
  4710   match(no_T8_mRegP);
  4712   format %{ %}
  4713   interface(REG_INTER);
  4714 %}
  4716 operand t3_RegP()
  4717 %{
  4718   constraint(ALLOC_IN_RC(t3_long_reg));
  4719   match(RegP);
  4720   match(mRegP);
  4721   match(no_T8_mRegP);
  4723   format %{ %}
  4724   interface(REG_INTER);
  4725 %}
  4727 operand t8_RegP()
  4728 %{
  4729   constraint(ALLOC_IN_RC(t8_long_reg));
  4730   match(RegP);
  4731   match(mRegP);
  4733   format %{ %}
  4734   interface(REG_INTER);
  4735 %}
  4737 operand t9_RegP()
  4738 %{
  4739   constraint(ALLOC_IN_RC(t9_long_reg));
  4740   match(RegP);
  4741   match(mRegP);
  4742   match(no_T8_mRegP);
  4744   format %{ %}
  4745   interface(REG_INTER);
  4746 %}
  4748 operand a0_RegP()
  4749 %{
  4750   constraint(ALLOC_IN_RC(a0_long_reg));
  4751   match(RegP);
  4752   match(mRegP);
  4753   match(no_T8_mRegP);
  4755   format %{ %}
  4756   interface(REG_INTER);
  4757 %}
  4759 operand a1_RegP()
  4760 %{
  4761   constraint(ALLOC_IN_RC(a1_long_reg));
  4762   match(RegP);
  4763   match(mRegP);
  4764   match(no_T8_mRegP);
  4766   format %{ %}
  4767   interface(REG_INTER);
  4768 %}
  4770 operand a2_RegP()
  4771 %{
  4772   constraint(ALLOC_IN_RC(a2_long_reg));
  4773   match(RegP);
  4774   match(mRegP);
  4775   match(no_T8_mRegP);
  4777   format %{ %}
  4778   interface(REG_INTER);
  4779 %}
  4781 operand a3_RegP()
  4782 %{
  4783   constraint(ALLOC_IN_RC(a3_long_reg));
  4784   match(RegP);
  4785   match(mRegP);
  4786   match(no_T8_mRegP);
  4788   format %{ %}
  4789   interface(REG_INTER);
  4790 %}
  4792 operand a4_RegP()
  4793 %{
  4794   constraint(ALLOC_IN_RC(a4_long_reg));
  4795   match(RegP);
  4796   match(mRegP);
  4797   match(no_T8_mRegP);
  4799   format %{ %}
  4800   interface(REG_INTER);
  4801 %}
  4804 operand a5_RegP()
  4805 %{
  4806   constraint(ALLOC_IN_RC(a5_long_reg));
  4807   match(RegP);
  4808   match(mRegP);
  4809   match(no_T8_mRegP);
  4811   format %{ %}
  4812   interface(REG_INTER);
  4813 %}
  4815 operand a6_RegP()
  4816 %{
  4817   constraint(ALLOC_IN_RC(a6_long_reg));
  4818   match(RegP);
  4819   match(mRegP);
  4820   match(no_T8_mRegP);
  4822   format %{ %}
  4823   interface(REG_INTER);
  4824 %}
  4826 operand a7_RegP()
  4827 %{
  4828   constraint(ALLOC_IN_RC(a7_long_reg));
  4829   match(RegP);
  4830   match(mRegP);
  4831   match(no_T8_mRegP);
  4833   format %{ %}
  4834   interface(REG_INTER);
  4835 %}
  4837 operand v0_RegP()
  4838 %{
  4839   constraint(ALLOC_IN_RC(v0_long_reg));
  4840   match(RegP);
  4841   match(mRegP);
  4842   match(no_T8_mRegP);
  4844   format %{ %}
  4845   interface(REG_INTER);
  4846 %}
  4848 operand v1_RegP()
  4849 %{
  4850   constraint(ALLOC_IN_RC(v1_long_reg));
  4851   match(RegP);
  4852   match(mRegP);
  4853   match(no_T8_mRegP);
  4855   format %{ %}
  4856   interface(REG_INTER);
  4857 %}
  4859 /*
  4860 operand mSPRegP(mRegP reg) %{
  4861   constraint(ALLOC_IN_RC(sp_reg));
  4862   match(reg);
  4864   format %{ "SP"  %}
  4865   interface(REG_INTER);
  4866 %}
  4868 operand mFPRegP(mRegP reg) %{
  4869   constraint(ALLOC_IN_RC(fp_reg));
  4870   match(reg);
  4872   format %{ "FP"  %}
  4873   interface(REG_INTER);
  4874 %}
  4875 */
  4877 operand mRegL() %{
  4878   constraint(ALLOC_IN_RC(long_reg));
  4879   match(RegL);
  4881   format %{ %}
  4882   interface(REG_INTER);
  4883 %}
  4885 operand v0RegL() %{
  4886   constraint(ALLOC_IN_RC(v0_long_reg));
  4887   match(RegL);
  4888   match(mRegL);
  4890   format %{ %}
  4891   interface(REG_INTER);
  4892 %}
  4894 operand v1RegL() %{
  4895   constraint(ALLOC_IN_RC(v1_long_reg));
  4896   match(RegL);
  4897   match(mRegL);
  4899   format %{ %}
  4900   interface(REG_INTER);
  4901 %}
  4903 operand a0RegL() %{
  4904   constraint(ALLOC_IN_RC(a0_long_reg));
  4905   match(RegL);
  4906   match(mRegL);
  4908   format %{ "A0" %}
  4909   interface(REG_INTER);
  4910 %}
  4912 operand a1RegL() %{
  4913   constraint(ALLOC_IN_RC(a1_long_reg));
  4914   match(RegL);
  4915   match(mRegL);
  4917   format %{ %}
  4918   interface(REG_INTER);
  4919 %}
  4921 operand a2RegL() %{
  4922   constraint(ALLOC_IN_RC(a2_long_reg));
  4923   match(RegL);
  4924   match(mRegL);
  4926   format %{ %}
  4927   interface(REG_INTER);
  4928 %}
  4930 operand a3RegL() %{
  4931   constraint(ALLOC_IN_RC(a3_long_reg));
  4932   match(RegL);
  4933   match(mRegL);
  4935   format %{ %}
  4936   interface(REG_INTER);
  4937 %}
  4939 operand t0RegL() %{
  4940   constraint(ALLOC_IN_RC(t0_long_reg));
  4941   match(RegL);
  4942   match(mRegL);
  4944   format %{ %}
  4945   interface(REG_INTER);
  4946 %}
  4948 operand t1RegL() %{
  4949   constraint(ALLOC_IN_RC(t1_long_reg));
  4950   match(RegL);
  4951   match(mRegL);
  4953   format %{ %}
  4954   interface(REG_INTER);
  4955 %}
  4957 operand t2RegL() %{
  4958   constraint(ALLOC_IN_RC(t2_long_reg));
  4959   match(RegL);
  4960   match(mRegL);
  4962   format %{ %}
  4963   interface(REG_INTER);
  4964 %}
  4966 operand t3RegL() %{
  4967   constraint(ALLOC_IN_RC(t3_long_reg));
  4968   match(RegL);
  4969   match(mRegL);
  4971   format %{ %}
  4972   interface(REG_INTER);
  4973 %}
  4975 operand t8RegL() %{
  4976   constraint(ALLOC_IN_RC(t8_long_reg));
  4977   match(RegL);
  4978   match(mRegL);
  4980   format %{ %}
  4981   interface(REG_INTER);
  4982 %}
  4984 operand a4RegL() %{
  4985   constraint(ALLOC_IN_RC(a4_long_reg));
  4986   match(RegL);
  4987   match(mRegL);
  4989   format %{ %}
  4990   interface(REG_INTER);
  4991 %}
  4993 operand a5RegL() %{
  4994   constraint(ALLOC_IN_RC(a5_long_reg));
  4995   match(RegL);
  4996   match(mRegL);
  4998   format %{ %}
  4999   interface(REG_INTER);
  5000 %}
  5002 operand a6RegL() %{
  5003   constraint(ALLOC_IN_RC(a6_long_reg));
  5004   match(RegL);
  5005   match(mRegL);
  5007   format %{ %}
  5008   interface(REG_INTER);
  5009 %}
  5011 operand a7RegL() %{
  5012   constraint(ALLOC_IN_RC(a7_long_reg));
  5013   match(RegL);
  5014   match(mRegL);
  5016   format %{ %}
  5017   interface(REG_INTER);
  5018 %}
  5020 operand s0RegL() %{
  5021   constraint(ALLOC_IN_RC(s0_long_reg));
  5022   match(RegL);
  5023   match(mRegL);
  5025   format %{ %}
  5026   interface(REG_INTER);
  5027 %}
  5029 operand s1RegL() %{
  5030   constraint(ALLOC_IN_RC(s1_long_reg));
  5031   match(RegL);
  5032   match(mRegL);
  5034   format %{ %}
  5035   interface(REG_INTER);
  5036 %}
  5038 operand s2RegL() %{
  5039   constraint(ALLOC_IN_RC(s2_long_reg));
  5040   match(RegL);
  5041   match(mRegL);
  5043   format %{ %}
  5044   interface(REG_INTER);
  5045 %}
  5047 operand s3RegL() %{
  5048   constraint(ALLOC_IN_RC(s3_long_reg));
  5049   match(RegL);
  5050   match(mRegL);
  5052   format %{ %}
  5053   interface(REG_INTER);
  5054 %}
  5056 operand s4RegL() %{
  5057   constraint(ALLOC_IN_RC(s4_long_reg));
  5058   match(RegL);
  5059   match(mRegL);
  5061   format %{ %}
  5062   interface(REG_INTER);
  5063 %}
  5065 operand s7RegL() %{
  5066   constraint(ALLOC_IN_RC(s7_long_reg));
  5067   match(RegL);
  5068   match(mRegL);
  5070   format %{ %}
  5071   interface(REG_INTER);
  5072 %}
  5074 // Floating register operands
  5075 operand regF() %{
  5076   constraint(ALLOC_IN_RC(flt_reg));
  5077   match(RegF);
  5079   format %{ %}
  5080   interface(REG_INTER);
  5081 %}
  5083 //Double Precision Floating register operands
  5084 operand regD() %{
  5085   constraint(ALLOC_IN_RC(dbl_reg));
  5086   match(RegD);
  5088   format %{ %}
  5089   interface(REG_INTER);
  5090 %}
  5092 //----------Memory Operands----------------------------------------------------
  5093 // Indirect Memory Operand
  5094 operand indirect(mRegP reg) %{
  5095   constraint(ALLOC_IN_RC(p_reg));
  5096   match(reg);
  5098   format %{ "[$reg] @ indirect" %}
  5099   interface(MEMORY_INTER) %{
  5100     base($reg);
  5101     index(0x0);	/* NO_INDEX */
  5102     scale(0x0);
  5103     disp(0x0);
  5104   %}
  5105 %}
  5107 // Indirect Memory Plus Short Offset Operand
  5108 operand indOffset8(mRegP reg, immL8 off)
  5109 %{
  5110   constraint(ALLOC_IN_RC(p_reg));
  5111   match(AddP reg off);
  5113   format %{ "[$reg + $off (8-bit)] @ indOffset8" %}
  5114   interface(MEMORY_INTER) %{
  5115     base($reg);
  5116     index(0x0); /* NO_INDEX */
  5117     scale(0x0);
  5118     disp($off);
  5119   %}
  5120 %}
  5122 // Indirect Memory Times Scale Plus Index Register
  5123 operand indIndexScale(mRegP reg, mRegL lreg, immI2 scale)
  5124 %{
  5125   constraint(ALLOC_IN_RC(p_reg));
  5126   match(AddP reg (LShiftL lreg scale));
  5128   op_cost(10);
  5129   format %{"[$reg + $lreg << $scale] @ indIndexScale" %}
  5130   interface(MEMORY_INTER) %{
  5131     base($reg);
  5132     index($lreg);
  5133     scale($scale);
  5134     disp(0x0);
  5135   %}
  5136 %}
  5139 // [base + index + offset] 
  5140 operand baseIndexOffset8(mRegP base, mRegL index, immL8 off)
  5141 %{
  5142   constraint(ALLOC_IN_RC(p_reg));
  5143   op_cost(5);
  5144   match(AddP (AddP base index) off);
  5146   format %{ "[$base + $index + $off (8-bit)] @ baseIndexOffset8" %}
  5147   interface(MEMORY_INTER) %{
  5148     base($base);
  5149     index($index);
  5150     scale(0x0);
  5151     disp($off);
  5152   %}
  5153 %}
  5155 // [base + index + offset] 
  5156 operand baseIndexOffset8_convI2L(mRegP base, mRegI index, immL8 off)
  5157 %{
  5158   constraint(ALLOC_IN_RC(p_reg));
  5159   op_cost(5);
  5160   match(AddP (AddP base (ConvI2L index)) off);
  5162   format %{ "[$base + $index + $off (8-bit)] @ baseIndexOffset8_convI2L" %}
  5163   interface(MEMORY_INTER) %{
  5164     base($base);
  5165     index($index);
  5166     scale(0x0);
  5167     disp($off);
  5168   %}
  5169 %}
  5171 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5172 operand indIndexScaleOffset8(mRegP reg, immL8 off, mRegL lreg, immI2 scale)
  5173 %{
  5174   constraint(ALLOC_IN_RC(p_reg));
  5175   match(AddP (AddP reg (LShiftL lreg scale)) off);
  5177   op_cost(10);
  5178   format %{"[$reg + $off + $lreg << $scale] @ indIndexScaleOffset8" %}
  5179   interface(MEMORY_INTER) %{
  5180     base($reg);
  5181     index($lreg);
  5182     scale($scale);
  5183     disp($off);
  5184   %}
  5185 %}
  5187 operand indIndexScaleOffset8_convI2L(mRegP reg, immL8 off, mRegI ireg, immI2 scale)
  5188 %{
  5189   constraint(ALLOC_IN_RC(p_reg));
  5190   match(AddP (AddP reg (LShiftL (ConvI2L ireg) scale)) off);
  5192   op_cost(10);
  5193   format %{"[$reg + $off + $ireg << $scale] @ indIndexScaleOffset8_convI2L" %}
  5194   interface(MEMORY_INTER) %{
  5195     base($reg);
  5196     index($ireg);
  5197     scale($scale);
  5198     disp($off);
  5199   %}
  5200 %}
  5202 // [base + index<<scale + offset] 
  5203 operand basePosIndexScaleOffset8(mRegP base, mRegI index, immL8 off, immI_0_31 scale)
  5204 %{
  5205   constraint(ALLOC_IN_RC(p_reg));
  5206   //predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
  5207   op_cost(10);
  5208   match(AddP (AddP base (LShiftL (ConvI2L index) scale)) off);
  5210   format %{ "[$base + $index << $scale + $off (8-bit)] @ basePosIndexScaleOffset8" %}
  5211   interface(MEMORY_INTER) %{
  5212     base($base);
  5213     index($index);
  5214     scale($scale);
  5215     disp($off);
  5216   %}
  5217 %}
  5219 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5220 operand indIndexScaleOffsetNarrow(mRegN reg, immL8 off, mRegL lreg, immI2 scale)
  5221 %{
  5222   predicate(Universe::narrow_oop_shift() == 0);
  5223   constraint(ALLOC_IN_RC(p_reg));
  5224   match(AddP (AddP (DecodeN reg) (LShiftL lreg scale)) off);
  5226   op_cost(10);
  5227   format %{"[$reg + $off + $lreg << $scale] @ indIndexScaleOffsetNarrow" %}
  5228   interface(MEMORY_INTER) %{
  5229     base($reg);
  5230     index($lreg);
  5231     scale($scale);
  5232     disp($off);
  5233   %}
  5234 %}
  5236 // [base + index<<scale + offset] for compressd Oops
  5237 operand indPosIndexI2LScaleOffset8Narrow(mRegN base, mRegI index, immL8 off, immI_0_31 scale)
  5238 %{
  5239   constraint(ALLOC_IN_RC(p_reg));
  5240   //predicate(Universe::narrow_oop_shift() == 0 && n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
  5241   predicate(Universe::narrow_oop_shift() == 0);
  5242   op_cost(10);
  5243   match(AddP (AddP (DecodeN base) (LShiftL (ConvI2L index) scale)) off);
  5245   format %{ "[$base + $index << $scale + $off (8-bit)] @ indPosIndexI2LScaleOffset8Narrow" %}
  5246   interface(MEMORY_INTER) %{
  5247     base($base);
  5248     index($index);
  5249     scale($scale);
  5250     disp($off);
  5251   %}
  5252 %}
  5254 //FIXME: I think it's better to limit the immI to be 16-bit at most!
  5255 // Indirect Memory Plus Long Offset Operand
  5256 operand indOffset32(mRegP reg, immL32 off) %{
  5257   constraint(ALLOC_IN_RC(p_reg));
  5258   op_cost(20);
  5259   match(AddP reg off);
  5261   format %{ "[$reg + $off (32-bit)] @ indOffset32" %}
  5262   interface(MEMORY_INTER) %{
  5263     base($reg);
  5264     index(0x0); 	/* NO_INDEX */
  5265     scale(0x0);
  5266     disp($off);
  5267   %}
  5268 %}
  5270 // Indirect Memory Plus Index Register 
  5271 operand indIndex(mRegP addr, mRegL index) %{
  5272   constraint(ALLOC_IN_RC(p_reg));
  5273   match(AddP addr index);
  5275   op_cost(20);
  5276   format %{"[$addr + $index] @ indIndex" %}
  5277   interface(MEMORY_INTER) %{
  5278     base($addr);
  5279     index($index);
  5280     scale(0x0);
  5281     disp(0x0);
  5282   %}
  5283 %}
  5285 operand indirectNarrowKlass(mRegN reg)
  5286 %{
  5287   predicate(Universe::narrow_klass_shift() == 0);
  5288   constraint(ALLOC_IN_RC(p_reg));
  5289   op_cost(10);
  5290   match(DecodeNKlass reg);
  5292   format %{ "[$reg] @ indirectNarrowKlass" %}
  5293   interface(MEMORY_INTER) %{
  5294     base($reg);
  5295     index(0x0);
  5296     scale(0x0);
  5297     disp(0x0);
  5298   %}
  5299 %}
  5301 operand indOffset8NarrowKlass(mRegN reg, immL8 off)
  5302 %{
  5303   predicate(Universe::narrow_klass_shift() == 0);
  5304   constraint(ALLOC_IN_RC(p_reg));
  5305   op_cost(10);
  5306   match(AddP (DecodeNKlass reg) off);
  5308   format %{ "[$reg + $off (8-bit)] @ indOffset8NarrowKlass" %}
  5309   interface(MEMORY_INTER) %{
  5310     base($reg);
  5311     index(0x0);
  5312     scale(0x0);
  5313     disp($off);
  5314   %}
  5315 %}
  5317 operand indOffset32NarrowKlass(mRegN reg, immL32 off)
  5318 %{
  5319   predicate(Universe::narrow_klass_shift() == 0);
  5320   constraint(ALLOC_IN_RC(p_reg));
  5321   op_cost(10);
  5322   match(AddP (DecodeNKlass reg) off);
  5324   format %{ "[$reg + $off (32-bit)] @ indOffset32NarrowKlass" %}
  5325   interface(MEMORY_INTER) %{
  5326     base($reg);
  5327     index(0x0);
  5328     scale(0x0);
  5329     disp($off);
  5330   %}
  5331 %}
  5333 operand indIndexOffsetNarrowKlass(mRegN reg, mRegL lreg, immL32 off)
  5334 %{
  5335   predicate(Universe::narrow_klass_shift() == 0);
  5336   constraint(ALLOC_IN_RC(p_reg));
  5337   match(AddP (AddP (DecodeNKlass reg) lreg) off);
  5339   op_cost(10);
  5340   format %{"[$reg + $off + $lreg] @ indIndexOffsetNarrowKlass" %}
  5341   interface(MEMORY_INTER) %{
  5342     base($reg);
  5343     index($lreg);
  5344     scale(0x0);
  5345     disp($off);
  5346   %}
  5347 %}
  5349 operand indIndexNarrowKlass(mRegN reg, mRegL lreg)
  5350 %{
  5351   predicate(Universe::narrow_klass_shift() == 0);
  5352   constraint(ALLOC_IN_RC(p_reg));
  5353   match(AddP (DecodeNKlass reg) lreg);
  5355   op_cost(10);
  5356   format %{"[$reg + $lreg] @ indIndexNarrowKlass" %}
  5357   interface(MEMORY_INTER) %{
  5358     base($reg);
  5359     index($lreg);
  5360     scale(0x0);
  5361     disp(0x0);
  5362   %}
  5363 %}
  5365 // Indirect Memory Operand
  5366 operand indirectNarrow(mRegN reg)
  5367 %{
  5368   predicate(Universe::narrow_oop_shift() == 0);
  5369   constraint(ALLOC_IN_RC(p_reg));
  5370   op_cost(10);
  5371   match(DecodeN reg);
  5373   format %{ "[$reg] @ indirectNarrow" %}
  5374   interface(MEMORY_INTER) %{
  5375     base($reg);
  5376     index(0x0);
  5377     scale(0x0);
  5378     disp(0x0);
  5379   %}
  5380 %}
  5382 // Indirect Memory Plus Short Offset Operand
  5383 operand indOffset8Narrow(mRegN reg, immL8 off)
  5384 %{
  5385   predicate(Universe::narrow_oop_shift() == 0);
  5386   constraint(ALLOC_IN_RC(p_reg));
  5387   op_cost(10);
  5388   match(AddP (DecodeN reg) off);
  5390   format %{ "[$reg + $off (8-bit)] @ indOffset8Narrow" %}
  5391   interface(MEMORY_INTER) %{
  5392     base($reg);
  5393     index(0x0);
  5394     scale(0x0);
  5395     disp($off);
  5396   %}
  5397 %}
  5399 // Indirect Memory Plus Index Register Plus Offset Operand
  5400 operand indIndexOffset8Narrow(mRegN reg, mRegL lreg, immL8 off)
  5401 %{
  5402   predicate(Universe::narrow_oop_shift() == 0);
  5403   constraint(ALLOC_IN_RC(p_reg));
  5404   match(AddP (AddP (DecodeN reg) lreg) off);
  5406   op_cost(10);
  5407   format %{"[$reg + $off + $lreg] @ indIndexOffset8Narrow" %}
  5408   interface(MEMORY_INTER) %{
  5409     base($reg);
  5410     index($lreg);
  5411     scale(0x0);
  5412     disp($off);
  5413   %}
  5414 %}
  5416 //----------Load Long Memory Operands------------------------------------------
  5417 // The load-long idiom will use it's address expression again after loading
  5418 // the first word of the long.  If the load-long destination overlaps with
  5419 // registers used in the addressing expression, the 2nd half will be loaded
  5420 // from a clobbered address.  Fix this by requiring that load-long use
  5421 // address registers that do not overlap with the load-long target.
  5423 // load-long support
  5424 operand load_long_RegP() %{
  5425   constraint(ALLOC_IN_RC(p_reg));
  5426   match(RegP);
  5427   match(mRegP);
  5428   op_cost(100);
  5429   format %{  %}
  5430   interface(REG_INTER);
  5431 %}
  5433 // Indirect Memory Operand Long
  5434 operand load_long_indirect(load_long_RegP reg) %{
  5435   constraint(ALLOC_IN_RC(p_reg));
  5436   match(reg);
  5438   format %{ "[$reg]" %}
  5439   interface(MEMORY_INTER) %{
  5440     base($reg);
  5441     index(0x0);
  5442     scale(0x0);
  5443     disp(0x0);
  5444   %}
  5445 %}
  5447 // Indirect Memory Plus Long Offset Operand
  5448 operand load_long_indOffset32(load_long_RegP reg, immL32 off) %{
  5449   match(AddP reg off);
  5451   format %{ "[$reg + $off]" %}
  5452   interface(MEMORY_INTER) %{
  5453     base($reg);
  5454     index(0x0);
  5455     scale(0x0);
  5456     disp($off);
  5457   %}
  5458 %}
  5460 //----------Conditional Branch Operands----------------------------------------
  5461 // Comparison Op  - This is the operation of the comparison, and is limited to
  5462 //                  the following set of codes:
  5463 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5464 //
  5465 // Other attributes of the comparison, such as unsignedness, are specified
  5466 // by the comparison instruction that sets a condition code flags register.
  5467 // That result is represented by a flags operand whose subtype is appropriate
  5468 // to the unsignedness (etc.) of the comparison.
  5469 //
  5470 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5471 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5472 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5474 // Comparision Code
  5475 operand cmpOp() %{
  5476   match(Bool);
  5478   format %{ "" %}
  5479   interface(COND_INTER) %{
  5480     equal(0x01);
  5481     not_equal(0x02);
  5482     greater(0x03);
  5483     greater_equal(0x04);
  5484     less(0x05);
  5485     less_equal(0x06);
  5486     overflow(0x7);
  5487     no_overflow(0x8);
  5488   %}
  5489 %}
  5492 // Comparision Code
  5493 // Comparison Code, unsigned compare.  Used by FP also, with
  5494 // C2 (unordered) turned into GT or LT already.  The other bits
  5495 // C0 and C3 are turned into Carry & Zero flags.
  5496 operand cmpOpU() %{
  5497   match(Bool);
  5499   format %{ "" %}
  5500   interface(COND_INTER) %{
  5501     equal(0x01);
  5502     not_equal(0x02);
  5503     greater(0x03);
  5504     greater_equal(0x04);
  5505     less(0x05);
  5506     less_equal(0x06);
  5507     overflow(0x7);
  5508     no_overflow(0x8);
  5509   %}
  5510 %}
  5512 /*
  5513 // Comparison Code, unsigned compare.  Used by FP also, with
  5514 // C2 (unordered) turned into GT or LT already.  The other bits
  5515 // C0 and C3 are turned into Carry & Zero flags.
  5516 operand cmpOpU() %{
  5517   match(Bool);
  5519   format %{ "" %}
  5520   interface(COND_INTER) %{
  5521     equal(0x4);
  5522     not_equal(0x5);
  5523     less(0x2);
  5524     greater_equal(0x3);
  5525     less_equal(0x6);
  5526     greater(0x7);
  5527   %}
  5528 %}
  5529 */
  5530 /*
  5531 // Comparison Code for FP conditional move
  5532 operand cmpOp_fcmov() %{
  5533   match(Bool);
  5535   format %{ "" %}
  5536   interface(COND_INTER) %{
  5537     equal        (0x01);
  5538     not_equal    (0x02);
  5539     greater      (0x03);
  5540     greater_equal(0x04);
  5541     less         (0x05);
  5542     less_equal   (0x06);
  5543   %}
  5544 %}
  5546 // Comparision Code used in long compares
  5547 operand cmpOp_commute() %{
  5548   match(Bool);
  5550   format %{ "" %}
  5551   interface(COND_INTER) %{
  5552     equal(0x4);
  5553     not_equal(0x5);
  5554     less(0xF);
  5555     greater_equal(0xE);
  5556     less_equal(0xD);
  5557     greater(0xC);
  5558   %}
  5559 %}
  5560 */
  5562 //----------Special Memory Operands--------------------------------------------
  5563 // Stack Slot Operand - This operand is used for loading and storing temporary
  5564 //                      values on the stack where a match requires a value to
  5565 //                      flow through memory.
  5566 operand stackSlotP(sRegP reg) %{
  5567   constraint(ALLOC_IN_RC(stack_slots));
  5568   // No match rule because this operand is only generated in matching
  5569   op_cost(50);
  5570   format %{ "[$reg]" %}
  5571   interface(MEMORY_INTER) %{
  5572     base(0x1d);  // SP
  5573     index(0x0);  // No Index
  5574     scale(0x0);  // No Scale
  5575     disp($reg);  // Stack Offset
  5576   %}
  5577 %}
  5579 operand stackSlotI(sRegI reg) %{
  5580   constraint(ALLOC_IN_RC(stack_slots));
  5581   // No match rule because this operand is only generated in matching
  5582   op_cost(50);
  5583   format %{ "[$reg]" %}
  5584   interface(MEMORY_INTER) %{
  5585     base(0x1d);  // SP
  5586     index(0x0);  // No Index
  5587     scale(0x0);  // No Scale
  5588     disp($reg);  // Stack Offset
  5589   %}
  5590 %}
  5592 operand stackSlotF(sRegF reg) %{
  5593   constraint(ALLOC_IN_RC(stack_slots));
  5594   // No match rule because this operand is only generated in matching
  5595   op_cost(50);
  5596   format %{ "[$reg]" %}
  5597   interface(MEMORY_INTER) %{
  5598     base(0x1d);  // SP
  5599     index(0x0);  // No Index
  5600     scale(0x0);  // No Scale
  5601     disp($reg);  // Stack Offset
  5602   %}
  5603 %}
  5605 operand stackSlotD(sRegD reg) %{
  5606   constraint(ALLOC_IN_RC(stack_slots));
  5607   // No match rule because this operand is only generated in matching
  5608   op_cost(50);
  5609   format %{ "[$reg]" %}
  5610   interface(MEMORY_INTER) %{
  5611     base(0x1d);  // SP
  5612     index(0x0);  // No Index
  5613     scale(0x0);  // No Scale
  5614     disp($reg);  // Stack Offset
  5615   %}
  5616 %}
  5618 operand stackSlotL(sRegL reg) %{
  5619   constraint(ALLOC_IN_RC(stack_slots));
  5620   // No match rule because this operand is only generated in matching
  5621   op_cost(50);
  5622   format %{ "[$reg]" %}
  5623   interface(MEMORY_INTER) %{
  5624     base(0x1d);  // SP
  5625     index(0x0);  // No Index
  5626     scale(0x0);  // No Scale
  5627     disp($reg);  // Stack Offset
  5628   %}
  5629 %}
  5632 //------------------------OPERAND CLASSES--------------------------------------
  5633 //opclass memory( direct, indirect, indOffset16, indOffset32, indOffset32X, indIndexOffset );
  5634 opclass memory( indirect, indirectNarrow, indOffset8, indOffset32, indIndex, indIndexScale, load_long_indirect, load_long_indOffset32, baseIndexOffset8, baseIndexOffset8_convI2L, indIndexScaleOffset8, indIndexScaleOffset8_convI2L, basePosIndexScaleOffset8, indIndexScaleOffsetNarrow, indPosIndexI2LScaleOffset8Narrow, indOffset8Narrow, indIndexOffset8Narrow); 
  5637 //----------PIPELINE-----------------------------------------------------------
  5638 // Rules which define the behavior of the target architectures pipeline.
  5640 pipeline %{
  5642 //----------ATTRIBUTES---------------------------------------------------------
  5643 attributes %{
  5644  	fixed_size_instructions;        	// Fixed size instructions
  5645  	branch_has_delay_slot;			// branch have delay slot in gs2
  5646  	max_instructions_per_bundle = 1;   	// 1 instruction per bundle
  5647  	max_bundles_per_cycle = 4;       	// Up to 4 bundles per cycle
  5648         bundle_unit_size=4;
  5649  	instruction_unit_size = 4;         	// An instruction is 4 bytes long
  5650  	instruction_fetch_unit_size = 16;  	// The processor fetches one line
  5651  	instruction_fetch_units = 1;       	// of 16 bytes
  5653  	// List of nop instructions
  5654  	nops( MachNop );
  5655  %}
  5657  //----------RESOURCES----------------------------------------------------------
  5658  // Resources are the functional units available to the machine
  5660  resources(D1, D2, D3, D4, DECODE = D1 | D2 | D3| D4,  ALU1, ALU2,  ALU = ALU1 | ALU2,  FPU1, FPU2, FPU = FPU1 | FPU2,  MEM,  BR); 
  5662  //----------PIPELINE DESCRIPTION-----------------------------------------------
  5663  // Pipeline Description specifies the stages in the machine's pipeline
  5665  // IF: fetch
  5666  // ID: decode
  5667  // RD: read 
  5668  // CA: caculate 
  5669  // WB: write back 
  5670  // CM: commit 
  5672  pipe_desc(IF, ID, RD, CA, WB, CM);
  5675  //----------PIPELINE CLASSES---------------------------------------------------
  5676  // Pipeline Classes describe the stages in which input and output are
  5677  // referenced by the hardware pipeline.
  5679  //No.1 Integer ALU reg-reg operation : dst <-- reg1 op reg2  
  5680  pipe_class ialu_regI_regI(mRegI dst, mRegI src1, mRegI src2) %{
  5681         single_instruction;
  5682  	src1   : RD(read);
  5683  	src2   : RD(read);
  5684         dst    : WB(write)+1;
  5685         DECODE : ID;
  5686  	ALU    : CA;
  5687  %}
  5689  //No.19 Integer mult operation : dst <-- reg1 mult reg2  
  5690  pipe_class ialu_mult(mRegI dst, mRegI src1, mRegI src2) %{
  5691  	src1   : RD(read);
  5692  	src2   : RD(read);
  5693         dst    : WB(write)+5;
  5694         DECODE : ID;
  5695  	ALU2   : CA;
  5696  %}
  5698  pipe_class mulL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
  5699  	src1   : RD(read);
  5700  	src2   : RD(read);
  5701         dst    : WB(write)+10;
  5702         DECODE : ID;
  5703  	ALU2   : CA;
  5704  %}
  5706  //No.19 Integer div operation : dst <-- reg1 div reg2  
  5707  pipe_class ialu_div(mRegI dst, mRegI src1, mRegI src2) %{
  5708  	src1   : RD(read);
  5709  	src2   : RD(read);
  5710         dst    : WB(write)+10;
  5711         DECODE : ID;
  5712  	ALU2   : CA;
  5713  %}
  5715  //No.19 Integer mod operation : dst <-- reg1 mod reg2  
  5716  pipe_class ialu_mod(mRegI dst, mRegI src1, mRegI src2) %{
  5717         instruction_count(2);
  5718  	src1   : RD(read);
  5719  	src2   : RD(read);
  5720         dst    : WB(write)+10;
  5721         DECODE : ID;
  5722  	ALU2   : CA;
  5723  %}
  5725  //No.15 Long ALU reg-reg operation : dst <-- reg1 op reg2  
  5726  pipe_class ialu_regL_regL(mRegL dst, mRegL src1, mRegL src2) %{
  5727         instruction_count(2);
  5728  	src1   : RD(read);
  5729  	src2   : RD(read);
  5730         dst    : WB(write);
  5731         DECODE : ID;
  5732  	ALU    : CA;
  5733  %}
  5735  //No.18 Long ALU reg-imm16 operation : dst <-- reg1 op imm16 
  5736  pipe_class ialu_regL_imm16(mRegL dst, mRegL src) %{
  5737         instruction_count(2);
  5738  	src    : RD(read);
  5739         dst    : WB(write);
  5740         DECODE : ID;
  5741  	ALU    : CA;
  5742  %}
  5744  //no.16 load Long from memory :                     
  5745  pipe_class ialu_loadL(mRegL dst, memory mem) %{
  5746  	instruction_count(2);
  5747  	mem    : RD(read);
  5748  	dst    : WB(write)+5;
  5749         DECODE : ID;
  5750  	MEM    : RD;
  5751  %}
  5753  //No.17 Store Long to Memory :                     
  5754  pipe_class ialu_storeL(mRegL src, memory mem) %{
  5755  	instruction_count(2);
  5756  	mem    : RD(read);
  5757  	src    : RD(read);
  5758         DECODE : ID;
  5759  	MEM    : RD;
  5760  %}
  5762  //No.2 Integer ALU reg-imm16 operation : dst <-- reg1 op imm16  
  5763  pipe_class ialu_regI_imm16(mRegI dst, mRegI src) %{
  5764         single_instruction;
  5765  	src    : RD(read);
  5766         dst    : WB(write);
  5767         DECODE : ID;
  5768  	ALU    : CA;
  5769  %}
  5771  //No.3 Integer move operation : dst <-- reg  
  5772  pipe_class ialu_regI_mov(mRegI dst, mRegI src) %{
  5773  	src    : RD(read);
  5774         dst    : WB(write);
  5775         DECODE : ID;
  5776  	ALU    : CA;
  5777  %}
  5779  //No.4 No instructions : do nothing 
  5780  pipe_class empty( ) %{
  5781         instruction_count(0);
  5782  %}
  5784  //No.5 UnConditional branch :
  5785  pipe_class pipe_jump( label labl ) %{
  5786         multiple_bundles;
  5787         DECODE : ID;
  5788 	BR     : RD;
  5789  %}
  5791  //No.6 ALU Conditional branch :
  5792  pipe_class pipe_alu_branch(mRegI src1, mRegI src2, label labl ) %{
  5793         multiple_bundles;
  5794         src1   : RD(read);
  5795         src2   : RD(read);
  5796         DECODE : ID;
  5797 	BR     : RD;
  5798  %}
  5800  //no.7 load integer from memory :                     
  5801  pipe_class ialu_loadI(mRegI dst, memory mem) %{
  5802  	mem    : RD(read);
  5803  	dst    : WB(write)+3;
  5804         DECODE : ID;
  5805  	MEM    : RD;
  5806  %}
  5808  //No.8 Store Integer to Memory :                     
  5809  pipe_class ialu_storeI(mRegI src, memory mem) %{
  5810  	mem    : RD(read);
  5811  	src    : RD(read);
  5812         DECODE : ID;
  5813  	MEM    : RD;
  5814  %}
  5817  //No.10 Floating FPU reg-reg operation : dst <-- reg1 op reg2  
  5818  pipe_class fpu_regF_regF(regF dst, regF src1, regF src2) %{
  5819  	src1   : RD(read);
  5820  	src2   : RD(read);
  5821         dst    : WB(write);
  5822         DECODE : ID;
  5823  	FPU    : CA;
  5824  %}
  5826  //No.22 Floating div operation : dst <-- reg1 div reg2  
  5827  pipe_class fpu_div(regF dst, regF src1, regF src2) %{
  5828  	src1   : RD(read);
  5829  	src2   : RD(read);
  5830         dst    : WB(write);
  5831         DECODE : ID;
  5832  	FPU2   : CA;
  5833  %}
  5835  pipe_class fcvt_I2D(regD dst, mRegI src) %{
  5836  	src    : RD(read);
  5837         dst    : WB(write);
  5838         DECODE : ID;
  5839  	FPU1   : CA;
  5840  %}
  5842  pipe_class fcvt_D2I(mRegI dst, regD src) %{
  5843  	src    : RD(read);
  5844         dst    : WB(write);
  5845         DECODE : ID;
  5846  	FPU1   : CA;
  5847  %}
  5849  pipe_class pipe_mfc1(mRegI dst, regD src) %{
  5850  	src    : RD(read);
  5851         dst    : WB(write);
  5852         DECODE : ID;
  5853  	MEM    : RD;
  5854  %}
  5856  pipe_class pipe_mtc1(regD dst, mRegI src) %{
  5857  	src    : RD(read);
  5858         dst    : WB(write);
  5859         DECODE : ID;
  5860  	MEM    : RD(5);
  5861  %}
  5863  //No.23 Floating sqrt operation : dst <-- reg1 sqrt reg2  
  5864  pipe_class fpu_sqrt(regF dst, regF src1, regF src2) %{
  5865         multiple_bundles;
  5866  	src1   : RD(read);
  5867  	src2   : RD(read);
  5868         dst    : WB(write);
  5869         DECODE : ID;
  5870  	FPU2   : CA;
  5871  %}
  5873  //No.11 Load Floating from Memory :                     
  5874  pipe_class fpu_loadF(regF dst, memory mem) %{
  5875         instruction_count(1);
  5876  	mem    : RD(read);
  5877  	dst    : WB(write)+3;
  5878         DECODE : ID;
  5879  	MEM    : RD;
  5880  %}
  5882  //No.12 Store Floating to Memory :                     
  5883  pipe_class fpu_storeF(regF src, memory mem) %{
  5884         instruction_count(1);
  5885  	mem    : RD(read);
  5886  	src    : RD(read);
  5887         DECODE : ID;
  5888  	MEM    : RD;
  5889  %}
  5891  //No.13 FPU Conditional branch :
  5892  pipe_class pipe_fpu_branch(regF src1, regF src2, label labl ) %{
  5893         multiple_bundles;
  5894         src1   : RD(read);
  5895         src2   : RD(read);
  5896         DECODE : ID;
  5897 	BR     : RD;
  5898  %}
  5900 //No.14 Floating FPU reg operation : dst <-- op reg  
  5901  pipe_class fpu1_regF(regF dst, regF src) %{
  5902  	src    : RD(read);
  5903         dst    : WB(write);
  5904         DECODE : ID;
  5905  	FPU    : CA;
  5906  %}
  5908  pipe_class long_memory_op() %{
  5909 	instruction_count(10); multiple_bundles; force_serialization;
  5910 	fixed_latency(30);
  5911  %}
  5913  pipe_class simple_call() %{
  5914 	instruction_count(10); multiple_bundles; force_serialization;
  5915 	fixed_latency(200);
  5916 	BR     : RD;
  5917  %}
  5919  pipe_class call() %{
  5920 	instruction_count(10); multiple_bundles; force_serialization;
  5921 	fixed_latency(200);
  5922  %}
  5924  //FIXME:
  5925  //No.9 Piple slow : for multi-instructions 
  5926  pipe_class pipe_slow(  ) %{
  5927 	instruction_count(20);
  5928         force_serialization;
  5929         multiple_bundles;
  5930 	fixed_latency(50);
  5931  %}
  5933 %}
  5937 //----------INSTRUCTIONS-------------------------------------------------------
  5938 // 
  5939 // match      -- States which machine-independent subtree may be replaced 
  5940 //               by this instruction.
  5941 // ins_cost   -- The estimated cost of this instruction is used by instruction
  5942 //               selection to identify a minimum cost tree of machine 
  5943 //               instructions that matches a tree of machine-independent 
  5944 //               instructions.
  5945 // format     -- A string providing the disassembly for this instruction.
  5946 //               The value of an instruction's operand may be inserted 
  5947 //               by referring to it with a '$' prefix.
  5948 // opcode     -- Three instruction opcodes may be provided.  These are referred 
  5949 //               to within an encode class as $primary, $secondary, and $tertiary
  5950 //               respectively.  The primary opcode is commonly used to 
  5951 //               indicate the type of machine instruction, while secondary 
  5952 //               and tertiary are often used for prefix options or addressing 
  5953 //               modes.
  5954 // ins_encode -- A list of encode classes with parameters. The encode class
  5955 //               name must have been defined in an 'enc_class' specification
  5956 //               in the encode section of the architecture description.
  5959 // Load Integer
  5960 instruct loadI(mRegI dst, memory mem) %{
  5961   match(Set dst (LoadI mem));
  5963   ins_cost(125);
  5964   format %{ "lw    $dst, $mem 	#@loadI" %}
  5965   ins_encode (load_I_enc(dst, mem));
  5966   ins_pipe( ialu_loadI );
  5967 %}
  5969 instruct loadI_convI2L(mRegL dst, memory mem) %{
  5970   match(Set dst (ConvI2L (LoadI mem)));
  5972   ins_cost(125);
  5973   format %{ "lw    $dst, $mem 	#@loadI_convI2L" %}
  5974   ins_encode (load_I_enc(dst, mem));
  5975   ins_pipe( ialu_loadI );
  5976 %}
  5978 // Load Integer (32 bit signed) to Byte (8 bit signed)
  5979 instruct loadI2B(mRegI dst, memory mem, immI_24 twentyfour) %{
  5980   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5982   ins_cost(125);
  5983   format %{ "lb  $dst, $mem\t# int -> byte #@loadI2B" %}
  5984   ins_encode(load_B_enc(dst, mem));
  5985   ins_pipe(ialu_loadI);
  5986 %}
  5988 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  5989 instruct loadI2UB(mRegI dst, memory mem, immI_255 mask) %{
  5990   match(Set dst (AndI (LoadI mem) mask));
  5992   ins_cost(125);
  5993   format %{ "lbu  $dst, $mem\t# int -> ubyte #@loadI2UB" %}
  5994   ins_encode(load_UB_enc(dst, mem));
  5995   ins_pipe(ialu_loadI);
  5996 %}
  5998 // Load Integer (32 bit signed) to Short (16 bit signed)
  5999 instruct loadI2S(mRegI dst, memory mem, immI_16 sixteen) %{
  6000   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6002   ins_cost(125);
  6003   format %{ "lh  $dst, $mem\t# int -> short #@loadI2S" %}
  6004   ins_encode(load_S_enc(dst, mem));
  6005   ins_pipe(ialu_loadI);
  6006 %}
  6008 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6009 instruct loadI2US(mRegI dst, memory mem, immI_65535 mask) %{
  6010   match(Set dst (AndI (LoadI mem) mask));
  6012   ins_cost(125);
  6013   format %{ "lhu  $dst, $mem\t# int -> ushort/char #@loadI2US" %}
  6014   ins_encode(load_C_enc(dst, mem));
  6015   ins_pipe(ialu_loadI);
  6016 %}
  6018 // Load Long.
  6019 instruct loadL(mRegL dst, memory mem) %{
  6020 //  predicate(!((LoadLNode*)n)->require_atomic_access());
  6021   match(Set dst (LoadL mem));
  6023   ins_cost(250);
  6024   format %{ "ld    $dst, $mem   #@loadL" %}
  6025   ins_encode(load_L_enc(dst, mem));
  6026   ins_pipe( ialu_loadL );
  6027 %}
  6029 // Load Long - UNaligned
  6030 instruct loadL_unaligned(mRegL dst, memory mem) %{
  6031   match(Set dst (LoadL_unaligned mem));
  6033   // FIXME: Jin: Need more effective ldl/ldr
  6034   ins_cost(450);
  6035   format %{ "ld    $dst, $mem   #@loadL_unaligned\n\t" %}
  6036   ins_encode(load_L_enc(dst, mem));
  6037   ins_pipe( ialu_loadL );
  6038 %}
  6040 // Store Long
  6041 instruct storeL_reg(memory mem, mRegL src) %{
  6042   predicate(!((StoreLNode*)n)->require_atomic_access());
  6043   match(Set mem (StoreL mem src));
  6045   ins_cost(200);
  6046   format %{ "sd    $mem,   $src #@storeL_reg\n" %}
  6047   ins_encode(store_L_reg_enc(mem, src));
  6048   ins_pipe( ialu_storeL );
  6049 %}
  6051 //FIXME:volatile! atomic!
  6052 // Volatile Store Long.  Must be atomic, so move it into
  6053 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  6054 // target address before the store (for null-ptr checks)
  6055 // so the memory operand is used twice in the encoding.
  6056 instruct storeL_reg_atomic(memory mem, mRegL src) %{
  6057   predicate(((StoreLNode*)n)->require_atomic_access());
  6058   match(Set mem (StoreL mem src));
  6060   ins_cost(200);
  6061   format %{ "sw    $mem,   $src #@storeL_reg_atomic\n" %}
  6062   ins_encode %{
  6063     Register src = as_Register($src$$reg);
  6065     int      base = $mem$$base;
  6066     int     index = $mem$$index;
  6067     int     scale = $mem$$scale;
  6068     int      disp = $mem$$disp;
  6070     if( index != 0 ) {
  6071        if( Assembler::is_simm16(disp) ) { 
  6072           if (scale == 0) {
  6073              __ addu(AT, as_Register(base), as_Register(index));
  6074           } else {
  6075              __ dsll(AT, as_Register(index), scale);
  6076              __ addu(AT, as_Register(base), AT);
  6078           __ sd(src, AT, disp);
  6079        } else {
  6080           if (scale == 0) {
  6081              __ addu(AT, as_Register(base), as_Register(index));
  6082           } else {
  6083              __ dsll(AT, as_Register(index), scale);
  6084              __ addu(AT, as_Register(base), AT);
  6086           __ move(T9, disp);
  6087           __ addu(AT, AT, T9);
  6088           __ sd(src, AT, 0);
  6090     } else {
  6091        if( Assembler::is_simm16(disp) ) { 
  6092           __ move(AT, as_Register(base));
  6093           __ sd(src, AT, disp);
  6094        } else {
  6095           __ move(AT, as_Register(base));
  6096           __ move(T9, disp);
  6097           __ addu(AT, AT, T9);
  6098           __ sd(src, AT, 0);
  6102   %}
  6103   ins_pipe( ialu_storeL );
  6104 %}
  6106 instruct storeL_immL0(memory mem, immL0 zero) %{
  6107   match(Set mem (StoreL mem zero));
  6109   ins_cost(180);
  6110   format %{ "sd    $mem,   zero #@storeL_immL0" %}
  6111   ins_encode(store_L_immL0_enc(mem, zero));
  6112   ins_pipe( ialu_storeL );
  6113 %}
  6115 instruct storeL_imm(memory mem, immL src) %{
  6116   match(Set mem (StoreL mem src));
  6118   ins_cost(200);
  6119   format %{ "sw    $mem,   $src #@storeL_imm" %}
  6120   ins_encode(store_L_immL_enc(mem, src));
  6121   ins_pipe( ialu_storeL );
  6122 %}
  6124 // Load Compressed Pointer
  6125 instruct loadN(mRegN dst, memory mem)
  6126 %{
  6127    match(Set dst (LoadN mem));
  6129    ins_cost(125); // XXX
  6130    format %{ "lwu    $dst, $mem\t# compressed ptr @ loadN" %}
  6131    ins_encode (load_N_enc(dst, mem));
  6132    ins_pipe( ialu_loadI ); // XXX
  6133 %}
  6135 // Load Pointer
  6136 instruct loadP(mRegP dst, memory mem) %{
  6137   match(Set dst (LoadP mem));
  6139   ins_cost(125);
  6140   format %{ "ld    $dst, $mem #@loadP" %}
  6141   ins_encode (load_P_enc(dst, mem));
  6142   ins_pipe( ialu_loadI );
  6143 %}
  6145 // Load Klass Pointer
  6146 instruct loadKlass(mRegP dst, memory mem) %{
  6147   match(Set dst (LoadKlass mem));
  6149   ins_cost(125);
  6150   format %{ "MOV    $dst,$mem @ loadKlass" %}
  6151   ins_encode (load_P_enc(dst, mem));
  6152   ins_pipe( ialu_loadI );
  6153 %}
  6155 // Load narrow Klass Pointer
  6156 instruct loadNKlass(mRegN dst, memory mem)
  6157 %{
  6158   match(Set dst (LoadNKlass mem));
  6160   ins_cost(125); // XXX
  6161   format %{ "lwu    $dst, $mem\t# compressed klass ptr @ loadNKlass" %}
  6162   ins_encode (load_N_enc(dst, mem));
  6163   ins_pipe( ialu_loadI ); // XXX
  6164 %}
  6166 // Load Constant
  6167 instruct loadConI(mRegI dst, immI src) %{
  6168   match(Set dst src);
  6170   ins_cost(150);
  6171   format %{ "mov    $dst, $src #@loadConI" %}
  6172   ins_encode %{
  6173     Register dst = $dst$$Register;
  6174     int    value = $src$$constant;
  6175     __ move(dst, value);
  6176   %}
  6177   ins_pipe( ialu_regI_regI );
  6178 %}
  6181 instruct loadConL_set64(mRegL dst, immL src) %{
  6182   match(Set dst src);
  6183   ins_cost(120);
  6184   format %{ "li   $dst, $src @ loadConL_set64" %}
  6185   ins_encode %{
  6186     __ set64($dst$$Register, $src$$constant);
  6187   %}
  6188   ins_pipe(ialu_regL_regL);
  6189 %}
  6191 /*
  6192 // Load long value from constant table (predicated by immL_expensive).
  6193 instruct loadConL_load(mRegL dst, immL_expensive src) %{
  6194   match(Set dst src);
  6195   ins_cost(150);
  6196   format %{ "ld  $dst, $constantoffset[$constanttablebase] # load long $src from table @ loadConL_ldx" %}
  6197   ins_encode %{
  6198     int con_offset = $constantoffset($src);
  6200     if (Assembler::is_simm16(con_offset)) {
  6201        __ ld($dst$$Register, $constanttablebase, con_offset);
  6202     } else {
  6203        __ set64(AT, con_offset);
  6204        if (UseLoongsonISA) {
  6205           __ gsldx($dst$$Register, $constanttablebase, AT, 0);
  6206        } else {
  6207           __ daddu(AT, $constanttablebase, AT);
  6208           __ ld($dst$$Register, AT, 0);
  6211   %}
  6212   ins_pipe(ialu_loadI);
  6213 %}
  6214 */
  6216 instruct loadConL16(mRegL dst, immL16 src) %{
  6217   match(Set dst src);
  6218   ins_cost(105);
  6219   format %{ "mov    $dst, $src #@loadConL16" %}
  6220   ins_encode %{
  6221     Register dst_reg = as_Register($dst$$reg);
  6222     int      value   = $src$$constant;
  6223     __ daddiu(dst_reg, R0, value);
  6224   %}
  6225   ins_pipe( ialu_regL_regL );
  6226 %}
  6229 instruct loadConL0(mRegL dst, immL0 src) %{
  6230   match(Set dst src);
  6231   ins_cost(100);
  6232   format %{ "mov    $dst, zero #@loadConL0" %}
  6233   ins_encode %{
  6234     Register dst_reg = as_Register($dst$$reg);
  6235     __ daddu(dst_reg, R0, R0);
  6236   %}
  6237   ins_pipe( ialu_regL_regL );
  6238 %}
  6240 // Load Range
  6241 instruct loadRange(mRegI dst, memory mem) %{
  6242   match(Set dst (LoadRange mem));
  6244   ins_cost(125);
  6245   format %{ "MOV    $dst,$mem @ loadRange" %}
  6246   ins_encode(load_I_enc(dst, mem));
  6247   ins_pipe( ialu_loadI );
  6248 %}
  6251 instruct storeP(memory mem, mRegP src ) %{
  6252   match(Set mem (StoreP mem src));
  6254   ins_cost(125);
  6255   format %{ "sd    $src, $mem #@storeP" %}
  6256   ins_encode(store_P_reg_enc(mem, src));
  6257   ins_pipe( ialu_storeI );
  6258 %}
  6260 /*
  6261 [Ref: loadConP]
  6263 Error:
  6264   0x2d4b6d40: lui t9, 0x4f			<--- handle
  6265   0x2d4b6d44: addiu t9, t9, 0xffff808c
  6266   0x2d4b6d48: sw t9, 0x4(s2)
  6268 OK:
  6269   0x2cc5ed40: lui t9, 0x336a 			<--- klass
  6270   0x2cc5ed44: addiu t9, t9, 0x5a10 
  6271   0x2cc5ed48: sw t9, 0x4(s2)
  6272 */
  6273 // Store Pointer Immediate; null pointers or constant oops that do not
  6274 // need card-mark barriers.
  6276 // Store NULL Pointer, mark word, or other simple pointer constant.
  6277 instruct storeImmP(memory mem, immP31 src) %{
  6278   match(Set mem (StoreP mem src));
  6280   ins_cost(150);
  6281   format %{ "mov    $mem, $src #@storeImmP" %}
  6282   ins_encode(store_P_immP_enc(mem, src));
  6283   ins_pipe( ialu_storeI );
  6284 %}
  6286 // Store Byte Immediate
  6287 instruct storeImmB(memory mem, immI8 src) %{
  6288   match(Set mem (StoreB mem src));
  6290   ins_cost(150);
  6291   format %{ "movb   $mem, $src #@storeImmB" %}
  6292   ins_encode(store_B_immI_enc(mem, src));
  6293   ins_pipe( ialu_storeI );
  6294 %}
  6296 // Store Compressed Pointer
  6297 instruct storeN(memory mem, mRegN src)
  6298 %{
  6299   match(Set mem (StoreN mem src));
  6301   ins_cost(125); // XXX
  6302   format %{ "sw    $mem, $src\t# compressed ptr @ storeN" %}
  6303   ins_encode(store_N_reg_enc(mem, src)); 
  6304   ins_pipe( ialu_storeI );
  6305 %}
  6307 instruct storeNKlass(memory mem, mRegN src)
  6308 %{
  6309   match(Set mem (StoreNKlass mem src));
  6311   ins_cost(125); // XXX
  6312   format %{ "sw    $mem, $src\t# compressed klass ptr @ storeNKlass" %}
  6313   ins_encode(store_N_reg_enc(mem, src));
  6314   ins_pipe( ialu_storeI );
  6315 %}
  6317 instruct storeImmN0(memory mem, immN0 zero)
  6318 %{
  6319   predicate(Universe::narrow_oop_base() == NULL && Universe::narrow_klass_base() == NULL);
  6320   match(Set mem (StoreN mem zero));
  6322   ins_cost(125); // XXX
  6323   format %{ "storeN0    $mem, R12\t# compressed ptr" %}
  6324   ins_encode(storeImmN0_enc(mem, zero));
  6325   ins_pipe( ialu_storeI );
  6326 %}
  6328 instruct storeImmN(memory mem, immN src)
  6329 %{
  6330   match(Set mem (StoreN mem src));
  6332   ins_cost(150); // XXX
  6333   format %{ "storeImmN    $mem, $src\t# compressed ptr @ storeImmN" %}
  6334   ins_encode(storeImmN_enc(mem, src));
  6335   ins_pipe( ialu_storeI );
  6336 %}
  6338 instruct storeImmNKlass(memory mem, immNKlass src)
  6339 %{
  6340   match(Set mem (StoreNKlass mem src));
  6342   ins_cost(150); // XXX
  6343   format %{ "sw    $mem, $src\t# compressed klass ptr @ storeImmNKlass" %}
  6344   ins_encode(storeImmNKlass_enc(mem, src));
  6345   ins_pipe( ialu_storeI );
  6346 %}
  6348 // Store Byte
  6349 instruct storeB(memory mem, mRegI src) %{
  6350   match(Set mem (StoreB mem src));
  6352   ins_cost(125);
  6353   format %{ "sb    $src, $mem #@storeB" %}
  6354   ins_encode(store_B_reg_enc(mem, src));
  6355   ins_pipe( ialu_storeI );
  6356 %}
  6358 // Load Byte (8bit signed)
  6359 instruct loadB(mRegI dst, memory mem) %{
  6360   match(Set dst (LoadB mem));
  6362   ins_cost(125);
  6363   format %{ "lb   $dst, $mem #@loadB" %}
  6364   ins_encode(load_B_enc(dst, mem));
  6365   ins_pipe( ialu_loadI );
  6366 %}
  6368 instruct loadB_convI2L(mRegL dst, memory mem) %{
  6369   match(Set dst (ConvI2L (LoadB mem)));
  6371   ins_cost(125);
  6372   format %{ "lb   $dst, $mem #@loadB_convI2L" %}
  6373   ins_encode(load_B_enc(dst, mem));
  6374   ins_pipe( ialu_loadI );
  6375 %}
  6377 // Load Byte (8bit UNsigned)
  6378 instruct loadUB(mRegI dst, memory mem) %{
  6379   match(Set dst (LoadUB mem));
  6381   ins_cost(125);
  6382   format %{ "lbu   $dst, $mem #@loadUB" %}
  6383   ins_encode(load_UB_enc(dst, mem));
  6384   ins_pipe( ialu_loadI );
  6385 %}
  6387 instruct loadUB_convI2L(mRegL dst, memory mem) %{
  6388   match(Set dst (ConvI2L (LoadUB mem)));
  6390   ins_cost(125);
  6391   format %{ "lbu   $dst, $mem #@loadUB_convI2L" %}
  6392   ins_encode(load_UB_enc(dst, mem));
  6393   ins_pipe( ialu_loadI );
  6394 %}
  6396 // Load Short (16bit signed)
  6397 instruct loadS(mRegI dst, memory mem) %{
  6398   match(Set dst (LoadS mem));
  6400   ins_cost(125);
  6401   format %{ "lh   $dst, $mem #@loadS" %}
  6402   ins_encode(load_S_enc(dst, mem));
  6403   ins_pipe( ialu_loadI );
  6404 %}
  6406 // Load Short (16 bit signed) to Byte (8 bit signed)
  6407 instruct loadS2B(mRegI dst, memory mem, immI_24 twentyfour) %{
  6408   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  6410   ins_cost(125);
  6411   format %{ "lb $dst, $mem\t# short -> byte #@loadS2B" %}
  6412   ins_encode(load_B_enc(dst, mem));
  6413   ins_pipe(ialu_loadI);
  6414 %}
  6416 instruct loadS_convI2L(mRegL dst, memory mem) %{
  6417   match(Set dst (ConvI2L (LoadS mem)));
  6419   ins_cost(125);
  6420   format %{ "lh   $dst, $mem #@loadS_convI2L" %}
  6421   ins_encode(load_S_enc(dst, mem));
  6422   ins_pipe( ialu_loadI );
  6423 %}
  6425 // Store Integer Immediate
  6426 instruct storeImmI(memory mem, immI src) %{
  6427   match(Set mem (StoreI mem src));
  6429   ins_cost(150);
  6430   format %{ "mov    $mem, $src #@storeImmI" %}
  6431   ins_encode(store_I_immI_enc(mem, src));
  6432   ins_pipe( ialu_storeI );
  6433 %}
  6435 // Store Integer
  6436 instruct storeI(memory mem, mRegI src) %{
  6437   match(Set mem (StoreI mem src));
  6439   ins_cost(125);
  6440   format %{ "sw    $mem, $src #@storeI" %}
  6441   ins_encode(store_I_reg_enc(mem, src));
  6442   ins_pipe( ialu_storeI );
  6443 %}
  6445 instruct storeI_convL2I(memory mem, mRegL src) %{
  6446   match(Set mem (StoreI mem (ConvL2I src)));
  6448   ins_cost(125);
  6449   format %{ "sw    $mem, $src #@storeI_convL2I" %}
  6450   ins_encode(store_I_reg_enc(mem, src));
  6451   ins_pipe( ialu_storeI );
  6452 %}
  6454 // Load Float
  6455 instruct loadF(regF dst, memory mem) %{
  6456   match(Set dst (LoadF mem));
  6458   ins_cost(150);
  6459   format %{ "loadF $dst, $mem #@loadF" %}
  6460   ins_encode(load_F_enc(dst, mem));
  6461   ins_pipe( ialu_loadI );
  6462 %}
  6464 instruct loadConP_general(mRegP dst, immP src) %{
  6465   match(Set dst src);
  6467   ins_cost(120);
  6468   format %{ "li   $dst, $src #@loadConP_general" %}
  6470   ins_encode %{
  6471     Register dst = $dst$$Register;
  6472 	long* value = (long*)$src$$constant;
  6473 	bool is_need_reloc = $src->constant_reloc() != relocInfo::none;
  6475     /* During GC, klassOop may be moved to new position in the heap.
  6476      * It must be relocated.
  6477      * Refer: [c1_LIRAssembler_mips.cpp] jobject2reg()
  6478      */
  6479     if (is_need_reloc) {
  6480 		if($src->constant_reloc() == relocInfo::metadata_type){
  6481 			int klass_index = __ oop_recorder()->find_index((Klass*)value);
  6482 			RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6484 			__ relocate(rspec);
  6485 			__ li48(dst, (long)value);
  6488 		if($src->constant_reloc() == relocInfo::oop_type){
  6489 			int oop_index = __ oop_recorder()->find_index((jobject)value);
  6490 			RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6492 			__ relocate(rspec);
  6493 			__ li48(dst, (long)value);
  6495     } else {
  6496                 __ set64(dst, (long)value);
  6498   %}
  6500   ins_pipe( ialu_regI_regI );
  6501 %}
  6503 /*
  6504 instruct loadConP_load(mRegP dst, immP_load src) %{
  6505   match(Set dst src);
  6507   ins_cost(100);
  6508   format %{ "ld     $dst, [$constanttablebase + $constantoffset] load from constant table: ptr=$src @ loadConP_load" %}
  6510   ins_encode %{
  6512     int con_offset = $constantoffset($src);
  6514     if (Assembler::is_simm16(con_offset)) {
  6515        __ ld($dst$$Register, $constanttablebase, con_offset);
  6516     } else {
  6517        __ set64(AT, con_offset);
  6518        if (UseLoongsonISA) {
  6519           __ gsldx($dst$$Register, $constanttablebase, AT, 0);
  6520        } else {
  6521           __ daddu(AT, $constanttablebase, AT);
  6522           __ ld($dst$$Register, AT, 0);
  6525   %}
  6527   ins_pipe(ialu_loadI);
  6528 %}
  6529 */
  6531 instruct loadConP_no_oop_cheap(mRegP dst, immP_no_oop_cheap src) %{
  6532   match(Set dst src);
  6534   ins_cost(80);
  6535   format %{ "li    $dst, $src @ loadConP_no_oop_cheap" %}
  6537   ins_encode %{
  6538     __ set64($dst$$Register, $src$$constant);
  6539   %}
  6541   ins_pipe(ialu_regI_regI);
  6542 %}
  6545 instruct loadConP_poll(mRegP dst, immP_poll src) %{
  6546   match(Set dst src);
  6548   ins_cost(50);
  6549   format %{ "li   $dst, $src #@loadConP_poll" %}
  6551   ins_encode %{
  6552     Register dst = $dst$$Register;
  6553     intptr_t value = (intptr_t)$src$$constant;
  6555     __ set64(dst, (jlong)value);
  6556   %}
  6558   ins_pipe( ialu_regI_regI );
  6559 %}
  6561 instruct loadConP0(mRegP dst, immP0 src)
  6562 %{
  6563   match(Set dst src); 
  6565   ins_cost(50);
  6566   format %{ "mov    $dst, R0\t# ptr" %}
  6567   ins_encode %{
  6568      Register dst_reg = $dst$$Register;
  6569      __ daddu(dst_reg, R0, R0);
  6570   %}
  6571   ins_pipe( ialu_regI_regI );
  6572 %}
  6574 instruct loadConN0(mRegN dst, immN0 src) %{
  6575   match(Set dst src);
  6576   format %{ "move    $dst, R0\t# compressed NULL ptr" %}
  6577   ins_encode %{
  6578     __ move($dst$$Register, R0);
  6579   %}
  6580   ins_pipe( ialu_regI_regI );
  6581 %}
  6583 instruct loadConN(mRegN dst, immN src) %{
  6584   match(Set dst src);
  6586   ins_cost(125);
  6587   format %{ "li    $dst, $src\t# compressed ptr @ loadConN" %}
  6588   ins_encode %{
  6589     address con = (address)$src$$constant;
  6590     if (con == NULL) {
  6591       ShouldNotReachHere();
  6592     } else {
  6593 		assert (UseCompressedOops, "should only be used for compressed headers");
  6594 		assert (Universe::heap() != NULL, "java heap should be initialized");
  6595 		assert (__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6597 		Register dst = $dst$$Register;
  6598 		long*   value = (long*)$src$$constant;
  6599 		int oop_index = __ oop_recorder()->find_index((jobject)value);
  6600 		RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6601 		if(rspec.type()!=relocInfo::none){
  6602 			__ relocate(rspec, Assembler::narrow_oop_operand);
  6603 			__ li48(dst, oop_index);
  6604 		} else {
  6605 			__ set64(dst, oop_index);
  6608   %}
  6609   ins_pipe( ialu_regI_regI ); // XXX
  6610 %}
  6612 instruct loadConNKlass(mRegN dst, immNKlass src) %{
  6613   match(Set dst src);
  6615   ins_cost(125);
  6616   format %{ "li    $dst, $src\t# compressed klass ptr @ loadConNKlass" %}
  6617   ins_encode %{
  6618     address con = (address)$src$$constant;
  6619     if (con == NULL) {
  6620       ShouldNotReachHere();
  6621     } else {
  6622 		Register dst = $dst$$Register;
  6623 		long*   value = (long*)$src$$constant;
  6625 		int klass_index = __ oop_recorder()->find_index((Klass*)value);
  6626 		RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6627 		long narrowp = (long)Klass::encode_klass((Klass*)value);
  6629 		if(rspec.type()!=relocInfo::none){
  6630 			__ relocate(rspec, Assembler::narrow_oop_operand);
  6631 			__ li48(dst, narrowp);
  6632 		} else {
  6633 			__ set64(dst, narrowp);
  6636   %}
  6637   ins_pipe( ialu_regI_regI ); // XXX
  6638 %}
  6640 //FIXME
  6641 // Tail Call; Jump from runtime stub to Java code.
  6642 // Also known as an 'interprocedural jump'.
  6643 // Target of jump will eventually return to caller.
  6644 // TailJump below removes the return address.
  6645 instruct TailCalljmpInd(mRegP jump_target, mRegP method_oop) %{
  6646   match(TailCall jump_target method_oop );
  6647   ins_cost(300);
  6648   format %{ "JMP    $jump_target \t# @TailCalljmpInd" %}
  6650   ins_encode %{
  6651     Register target = $jump_target$$Register;
  6652     Register    oop = $method_oop$$Register;
  6654     /* 2012/10/12 Jin: RA will be used in generate_forward_exception() */
  6655     __ push(RA);
  6657     __ move(S3, oop);
  6658     __ jr(target);
  6659     __ nop();
  6660   %}
  6662   ins_pipe( pipe_jump );
  6663 %}
  6665 // Create exception oop: created by stack-crawling runtime code.
  6666 // Created exception is now available to this handler, and is setup
  6667 // just prior to jumping to this handler.  No code emitted.
  6668 instruct CreateException( a0_RegP ex_oop )
  6669 %{
  6670   match(Set ex_oop (CreateEx));
  6672   // use the following format syntax
  6673   format %{ "# exception oop is in A0; no code emitted @CreateException" %}
  6674   ins_encode %{
  6675     /* Jin: X86 leaves this function empty */
  6676     __ block_comment("CreateException is empty in X86/MIPS");
  6677   %}
  6678   ins_pipe( empty );
  6679 //  ins_pipe( pipe_jump );
  6680 %}
  6683 /* 2012/9/14 Jin: The mechanism of exception handling is clear now.
  6685 - Common try/catch:
  6686  2012/9/14 Jin: [stubGenerator_mips.cpp] generate_forward_exception()
  6687                     |- V0, V1 are created
  6688                     |- T9 <= SharedRuntime::exception_handler_for_return_address
  6689                     `- jr T9
  6690                          `- the caller's exception_handler
  6691                                `- jr OptoRuntime::exception_blob
  6692                                       `- here
  6693 - Rethrow(e.g. 'unwind'):
  6694   * The callee:
  6695      |- an exception is triggered during execution
  6696      `- exits the callee method through RethrowException node
  6697           |- The callee pushes exception_oop(T0) and exception_pc(RA)
  6698           `- The callee jumps to OptoRuntime::rethrow_stub()
  6699   * In OptoRuntime::rethrow_stub:
  6700      |- The VM calls _rethrow_Java to determine the return address in the caller method
  6701      `- exits the stub with tailjmpInd
  6702           |- pops exception_oop(V0) and exception_pc(V1)
  6703           `- jumps to the return address(usually an exception_handler)
  6704   * The caller:
  6705      `- continues processing the exception_blob with V0/V1
  6706 */
  6708 /*
  6709 Disassembling OptoRuntime::rethrow_stub()
  6711 ; locals
  6712    0x2d3bf320: addiu sp, sp, 0xfffffff8
  6713    0x2d3bf324: sw ra, 0x4(sp)
  6714    0x2d3bf328: sw fp, 0x0(sp)
  6715    0x2d3bf32c: addu fp, sp, zero
  6716    0x2d3bf330: addiu sp, sp, 0xfffffff0
  6717    0x2d3bf334: sw ra, 0x8(sp)
  6718    0x2d3bf338: sw t0, 0x4(sp)
  6719    0x2d3bf33c: sw sp, 0x0(sp)
  6721 ; get_thread(S2)
  6722    0x2d3bf340: addu s2, sp, zero
  6723    0x2d3bf344: srl s2, s2, 12
  6724    0x2d3bf348: sll s2, s2, 2
  6725    0x2d3bf34c: lui at, 0x2c85
  6726    0x2d3bf350: addu at, at, s2
  6727    0x2d3bf354: lw s2, 0xffffcc80(at)
  6729    0x2d3bf358: lw s0, 0x0(sp)
  6730    0x2d3bf35c: sw s0, 0x118(s2)		// last_sp -> threa
  6731    0x2d3bf360: sw s2, 0xc(sp)
  6733 ; OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc)
  6734    0x2d3bf364: lw a0, 0x4(sp)
  6735    0x2d3bf368: lw a1, 0xc(sp)
  6736    0x2d3bf36c: lw a2, 0x8(sp)
  6737   ;; Java_To_Runtime
  6738    0x2d3bf370: lui t9, 0x2c34
  6739    0x2d3bf374: addiu t9, t9, 0xffff8a48
  6740    0x2d3bf378: jalr t9
  6741    0x2d3bf37c: nop
  6743    0x2d3bf380: addu s3, v0, zero		 ; S3: SharedRuntime::raw_exception_handler_for_return_address()
  6745    0x2d3bf384: lw s0, 0xc(sp)
  6746    0x2d3bf388: sw zero, 0x118(s0)
  6747    0x2d3bf38c: sw zero, 0x11c(s0)
  6748    0x2d3bf390: lw s1, 0x144(s0)			; ex_oop: S1
  6749    0x2d3bf394: addu s2, s0, zero
  6750    0x2d3bf398: sw zero, 0x144(s2)
  6751    0x2d3bf39c: lw s0, 0x4(s2)
  6752    0x2d3bf3a0: addiu s4, zero, 0x0
  6753    0x2d3bf3a4: bne s0, s4, 0x2d3bf3d4
  6754    0x2d3bf3a8: nop
  6755    0x2d3bf3ac: addiu sp, sp, 0x10
  6756    0x2d3bf3b0: addiu sp, sp, 0x8
  6757    0x2d3bf3b4: lw ra, 0xfffffffc(sp)
  6758    0x2d3bf3b8: lw fp, 0xfffffff8(sp)
  6759    0x2d3bf3bc: lui at, 0x2b48
  6760    0x2d3bf3c0: lw at, 0x100(at)
  6762 ; tailjmpInd: Restores exception_oop & exception_pc
  6763    0x2d3bf3c4: addu v1, ra, zero
  6764    0x2d3bf3c8: addu v0, s1, zero
  6765    0x2d3bf3cc: jr s3
  6766    0x2d3bf3d0: nop
  6767 ; Exception:
  6768    0x2d3bf3d4: lui s1, 0x2cc8		; generate_forward_exception()
  6769    0x2d3bf3d8: addiu s1, s1, 0x40
  6770    0x2d3bf3dc: addiu s2, zero, 0x0
  6771    0x2d3bf3e0: addiu sp, sp, 0x10
  6772    0x2d3bf3e4: addiu sp, sp, 0x8
  6773    0x2d3bf3e8: lw ra, 0xfffffffc(sp)
  6774    0x2d3bf3ec: lw fp, 0xfffffff8(sp)
  6775    0x2d3bf3f0: lui at, 0x2b48
  6776    0x2d3bf3f4: lw at, 0x100(at)
  6777 ; TailCalljmpInd 
  6778               __ push(RA);		; to be used in generate_forward_exception()
  6779    0x2d3bf3f8: addu t7, s2, zero
  6780    0x2d3bf3fc: jr s1
  6781    0x2d3bf400: nop
  6782 */
  6783 // Rethrow exception:
  6784 // The exception oop will come in the first argument position.
  6785 // Then JUMP (not call) to the rethrow stub code.
  6786 instruct RethrowException()
  6787 %{
  6788   match(Rethrow);
  6790   // use the following format syntax
  6791   format %{ "JMP    rethrow_stub #@RethrowException" %}
  6792   ins_encode %{
  6793     __ block_comment("@ RethrowException");
  6795     cbuf.set_insts_mark();
  6796     cbuf.relocate(cbuf.insts_mark(), runtime_call_Relocation::spec());
  6798     // call OptoRuntime::rethrow_stub to get the exception handler in parent method
  6799     __ li(T9, OptoRuntime::rethrow_stub());
  6800     __ jr(T9);
  6801     __ nop();
  6802   %}
  6803   ins_pipe( pipe_jump );
  6804 %}
  6806 instruct branchConP_zero(cmpOpU cmp, mRegP op1, immP0 zero, label labl) %{
  6807   match(If cmp (CmpP op1 zero));
  6808   effect(USE labl);
  6810   ins_cost(180);
  6811   format %{ "b$cmp   $op1, R0, $labl #@branchConP_zero" %}
  6813   ins_encode %{
  6814     Register op1 = $op1$$Register;
  6815     Register op2 = R0;
  6816     Label    &L  = *($labl$$label);
  6817     int     flag = $cmp$$cmpcode;
  6819     switch(flag)
  6821       case 0x01: //equal
  6822 	if (&L)
  6823         	__ beq(op1, op2, L); 
  6824 	else 
  6825         	__ beq(op1, op2, (int)0); 
  6826         break;
  6827       case 0x02: //not_equal
  6828 	if (&L)
  6829         	__ bne(op1, op2, L); 
  6830 	else
  6831         	__ bne(op1, op2, (int)0); 
  6832         break;
  6833 /*
  6834       case 0x03: //above
  6835         __ sltu(AT, op2, op1);
  6836         if(&L)
  6837         	__ bne(R0, AT, L); 
  6838         else
  6839                 __ bne(R0, AT, (int)0);
  6840         break;
  6841       case 0x04: //above_equal
  6842         __ sltu(AT, op1, op2);
  6843         if(&L)
  6844        	        __ beq(AT, R0, L);
  6845         else
  6846        	        __ beq(AT, R0, (int)0);
  6847         break;
  6848       case 0x05: //below
  6849         __ sltu(AT, op1, op2);
  6850         if(&L)
  6851       		 __ bne(R0, AT, L); 
  6852         else
  6853         	 __ bne(R0, AT, (int)0);
  6854         break;
  6855       case 0x06: //below_equal
  6856         __ sltu(AT, op2, op1);
  6857         if(&L)
  6858         	__ beq(AT, R0, L);
  6859         else
  6860         	__ beq(AT, R0, (int)0);
  6861        break;
  6862 */
  6863       default:
  6864           Unimplemented();
  6866     __ nop();
  6867   %}
  6869   ins_pc_relative(1);
  6870   ins_pipe( pipe_alu_branch );
  6871 %}
  6874 instruct branchConP(cmpOpU cmp, mRegP op1, mRegP op2, label labl) %{
  6875   match(If cmp (CmpP op1 op2));
  6876 //  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  6877   effect(USE labl);
  6879   ins_cost(200);
  6880   format %{ "b$cmp   $op1, $op2, $labl #@branchConP" %}
  6882   ins_encode %{
  6883     Register op1 = $op1$$Register;
  6884     Register op2 = $op2$$Register;
  6885     Label    &L  = *($labl$$label);
  6886     int     flag = $cmp$$cmpcode;
  6888     switch(flag)
  6890       case 0x01: //equal
  6891 	if (&L)
  6892         	__ beq(op1, op2, L); 
  6893 	else 
  6894         	__ beq(op1, op2, (int)0); 
  6895         break;
  6896       case 0x02: //not_equal
  6897 	if (&L)
  6898         	__ bne(op1, op2, L); 
  6899 	else
  6900         	__ bne(op1, op2, (int)0); 
  6901         break;
  6902       case 0x03: //above
  6903         __ sltu(AT, op2, op1);
  6904         if(&L)
  6905         	__ bne(R0, AT, L); 
  6906         else
  6907                 __ bne(R0, AT, (int)0);
  6908         break;
  6909       case 0x04: //above_equal
  6910         __ sltu(AT, op1, op2);
  6911         if(&L)
  6912        	        __ beq(AT, R0, L);
  6913         else
  6914        	        __ beq(AT, R0, (int)0);
  6915         break;
  6916       case 0x05: //below
  6917         __ sltu(AT, op1, op2);
  6918         if(&L)
  6919       		 __ bne(R0, AT, L); 
  6920         else
  6921         	 __ bne(R0, AT, (int)0);
  6922         break;
  6923       case 0x06: //below_equal
  6924         __ sltu(AT, op2, op1);
  6925         if(&L)
  6926         	__ beq(AT, R0, L);
  6927         else
  6928         	__ beq(AT, R0, (int)0);
  6929        break;
  6930       default:
  6931           Unimplemented();
  6933     __ nop();
  6934   %}
  6936   ins_pc_relative(1);
  6937   ins_pipe( pipe_alu_branch );
  6938 %}
  6940 instruct cmpN_null_branch(cmpOp cmp, mRegN op1, immN0 null, label labl) %{
  6941   match(If cmp (CmpN op1 null));
  6942   effect(USE labl);
  6944   ins_cost(180);
  6945   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  6946             "BP$cmp   $labl @ cmpN_null_branch" %}
  6947   ins_encode %{
  6948     Register op1 = $op1$$Register;
  6949     Register op2 = R0;
  6950     Label    &L  = *($labl$$label);
  6951     int     flag = $cmp$$cmpcode;
  6953     switch(flag)
  6955 		case 0x01: //equal
  6956 			if (&L)
  6957 				__ beq(op1, op2, L); 
  6958 			else 
  6959 				__ beq(op1, op2, (int)0); 
  6960 			break;
  6961 		case 0x02: //not_equal
  6962 			if (&L)
  6963 				__ bne(op1, op2, L); 
  6964 			else
  6965 				__ bne(op1, op2, (int)0); 
  6966 			break;
  6967 		default:
  6968           Unimplemented();
  6970     __ nop();
  6971   %}
  6972 //TODO: pipe_branchP or create pipe_branchN LEE
  6973   ins_pc_relative(1);
  6974   ins_pipe( pipe_alu_branch );
  6975 %}
  6977 instruct cmpN_reg_branch(cmpOp cmp, mRegN op1, mRegN op2, label labl) %{
  6978   match(If cmp (CmpN op1 op2));
  6979   effect(USE labl);
  6981   ins_cost(180);
  6982   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  6983             "BP$cmp   $labl" %}
  6984   ins_encode %{
  6985     Register op1_reg = $op1$$Register;
  6986     Register op2_reg = $op2$$Register;
  6987     Label    &L  = *($labl$$label);
  6988     int     flag = $cmp$$cmpcode;
  6990     switch(flag)
  6992 		case 0x01: //equal
  6993 			if (&L)
  6994 				__ beq(op1_reg, op2_reg, L); 
  6995 			else 
  6996 				__ beq(op1_reg, op2_reg, (int)0); 
  6997 			break;
  6998 		case 0x02: //not_equal
  6999 			if (&L)
  7000 				__ bne(op1_reg, op2_reg, L); 
  7001 			else
  7002 				__ bne(op1_reg, op2_reg, (int)0); 
  7003 			break;
  7004 		case 0x03: //above
  7005 			__ sltu(AT, op2_reg, op1_reg);
  7006 			if(&L)
  7007 				__ bne(R0, AT, L); 
  7008 			else
  7009 				__ bne(R0, AT, (int)0);
  7010 			break;
  7011 		case 0x04: //above_equal
  7012 			__ sltu(AT, op1_reg, op2_reg);
  7013 			if(&L)
  7014 				__ beq(AT, R0, L);
  7015 			else
  7016 				__ beq(AT, R0, (int)0);
  7017 			break;
  7018 		case 0x05: //below
  7019 			__ sltu(AT, op1_reg, op2_reg);
  7020 			if(&L)
  7021 				__ bne(R0, AT, L); 
  7022 			else
  7023 				__ bne(R0, AT, (int)0);
  7024 			break;
  7025 		case 0x06: //below_equal
  7026 			__ sltu(AT, op2_reg, op1_reg);
  7027 			if(&L)
  7028 				__ beq(AT, R0, L);
  7029 			else
  7030 				__ beq(AT, R0, (int)0);
  7031 			break;
  7032 		default:
  7033           Unimplemented();
  7035     __ nop();
  7036   %}
  7037   ins_pc_relative(1);
  7038   ins_pipe( pipe_alu_branch );
  7039 %}
  7041 instruct branchConIU_reg_reg(cmpOpU cmp, mRegI src1, mRegI src2, label labl) %{
  7042   match( If cmp (CmpU src1 src2) );
  7043   effect(USE labl);
  7044   format %{ "BR$cmp   $src1, $src2, $labl #@branchConIU_reg_reg" %}
  7046   ins_encode %{
  7047     Register op1 = $src1$$Register;
  7048     Register op2 = $src2$$Register;
  7049     Label     &L = *($labl$$label);
  7050     int     flag = $cmp$$cmpcode;
  7052     switch(flag)
  7054       case 0x01: //equal
  7055 	if (&L)
  7056         	__ beq(op1, op2, L); 
  7057 	else 
  7058         	__ beq(op1, op2, (int)0); 
  7059         break;
  7060       case 0x02: //not_equal
  7061 	if (&L)
  7062         	__ bne(op1, op2, L); 
  7063 	else
  7064         	__ bne(op1, op2, (int)0); 
  7065         break;
  7066       case 0x03: //above
  7067         __ sltu(AT, op2, op1);
  7068         if(&L)
  7069         	__ bne(AT, R0, L); 
  7070         else
  7071                 __ bne(AT, R0, (int)0);
  7072         break;
  7073       case 0x04: //above_equal
  7074         __ sltu(AT, op1, op2);
  7075         if(&L)
  7076         	__ beq(AT, R0, L);
  7077         else
  7078                 __ beq(AT, R0, (int)0);
  7079         break;
  7080       case 0x05: //below
  7081         __ sltu(AT, op1, op2);
  7082         if(&L)
  7083       		 __ bne(AT, R0, L); 
  7084         else
  7085         	 __ bne(AT, R0, (int)0);
  7086         break;
  7087       case 0x06: //below_equal
  7088         __ sltu(AT, op2, op1);
  7089         if(&L)
  7090         	__ beq(AT, R0, L);
  7091         else
  7092         	__ beq(AT, R0, (int)0);
  7093         break;
  7094       default:
  7095           Unimplemented();
  7097     __ nop();
  7098   %}
  7100   ins_pc_relative(1);
  7101   ins_pipe( pipe_alu_branch );
  7102 %}
  7105 instruct branchConIU_reg_imm(cmpOpU cmp, mRegI src1, immI src2, label labl) %{
  7106   match( If cmp (CmpU src1 src2) );
  7107   effect(USE labl);
  7108   format %{ "BR$cmp   $src1, $src2, $labl #@branchConIU_reg_imm" %}
  7110   ins_encode %{
  7111     Register op1 = $src1$$Register;
  7112     int      val = $src2$$constant;
  7113     Label     &L = *($labl$$label);
  7114     int     flag = $cmp$$cmpcode;
  7116     __ move(AT, val);
  7117     switch(flag)
  7119       case 0x01: //equal
  7120 	if (&L)
  7121         	__ beq(op1, AT, L); 
  7122 	else 
  7123         	__ beq(op1, AT, (int)0); 
  7124         break;
  7125       case 0x02: //not_equal
  7126 	if (&L)
  7127         	__ bne(op1, AT, L); 
  7128 	else
  7129         	__ bne(op1, AT, (int)0); 
  7130         break;
  7131       case 0x03: //above
  7132         __ sltu(AT, AT, op1);
  7133         if(&L)
  7134         	__ bne(R0, AT, L); 
  7135         else
  7136                 __ bne(R0, AT, (int)0);
  7137         break;
  7138       case 0x04: //above_equal
  7139         __ sltu(AT, op1, AT);
  7140         if(&L)
  7141         	__ beq(AT, R0, L);
  7142         else
  7143                 __ beq(AT, R0, (int)0);
  7144         break;
  7145       case 0x05: //below
  7146         __ sltu(AT, op1, AT);
  7147         if(&L)
  7148       		 __ bne(R0, AT, L); 
  7149         else
  7150         	 __ bne(R0, AT, (int)0);
  7151         break;
  7152       case 0x06: //below_equal
  7153         __ sltu(AT, AT, op1);
  7154         if(&L)
  7155         	__ beq(AT, R0, L);
  7156         else
  7157         	__ beq(AT, R0, (int)0);
  7158        break;
  7159       default:
  7160           Unimplemented();
  7162     __ nop();
  7163   %}
  7165   ins_pc_relative(1);
  7166   ins_pipe( pipe_alu_branch );
  7167 %}
  7169 instruct branchConI_reg_reg(cmpOp cmp, mRegI src1, mRegI src2, label labl) %{
  7170   match( If cmp (CmpI src1 src2) );
  7171   effect(USE labl);
  7172   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_reg" %}
  7174   ins_encode %{
  7175     Register op1 = $src1$$Register;
  7176     Register op2 = $src2$$Register;
  7177     Label     &L = *($labl$$label);
  7178     int     flag = $cmp$$cmpcode;
  7180     switch(flag)
  7182       case 0x01: //equal
  7183 	if (&L)
  7184         	__ beq(op1, op2, L); 
  7185 	else 
  7186         	__ beq(op1, op2, (int)0); 
  7187         break;
  7188       case 0x02: //not_equal
  7189 	if (&L)
  7190         	__ bne(op1, op2, L); 
  7191 	else
  7192         	__ bne(op1, op2, (int)0); 
  7193         break;
  7194       case 0x03: //above
  7195         __ slt(AT, op2, op1);
  7196         if(&L)
  7197         	__ bne(R0, AT, L); 
  7198         else
  7199                 __ bne(R0, AT, (int)0);
  7200         break;
  7201       case 0x04: //above_equal
  7202         __ slt(AT, op1, op2);
  7203         if(&L)
  7204         	__ beq(AT, R0, L);
  7205         else
  7206                 __ beq(AT, R0, (int)0);
  7207         break;
  7208       case 0x05: //below
  7209         __ slt(AT, op1, op2);
  7210         if(&L)
  7211       		 __ bne(R0, AT, L); 
  7212         else
  7213         	 __ bne(R0, AT, (int)0);
  7214         break;
  7215       case 0x06: //below_equal
  7216         __ slt(AT, op2, op1);
  7217         if(&L)
  7218         	__ beq(AT, R0, L);
  7219         else
  7220         	__ beq(AT, R0, (int)0);
  7221        break;
  7222       default:
  7223           Unimplemented();
  7225     __ nop();
  7226   %}
  7228   ins_pc_relative(1);
  7229   ins_pipe( pipe_alu_branch );
  7230 %}
  7232 instruct branchConI_reg_imm0(cmpOp cmp, mRegI src1, immI0 src2, label labl) %{
  7233   match( If cmp (CmpI src1 src2) );
  7234   effect(USE labl);
  7235   ins_cost(170);
  7236   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_imm0" %}
  7238   ins_encode %{
  7239     Register op1 = $src1$$Register;
  7240 //    int      val = $src2$$constant;
  7241     Label     &L =  *($labl$$label);
  7242     int     flag = $cmp$$cmpcode;
  7244     //__ move(AT, val);
  7245     switch(flag)
  7247       case 0x01: //equal
  7248 	if (&L)
  7249         	__ beq(op1, R0, L); 
  7250 	else 
  7251         	__ beq(op1, R0, (int)0); 
  7252         break;
  7253       case 0x02: //not_equal
  7254 	if (&L)
  7255         	__ bne(op1, R0, L); 
  7256 	else
  7257         	__ bne(op1, R0, (int)0); 
  7258         break;
  7259       case 0x03: //greater
  7260         if(&L)
  7261                __ bgtz(op1, L);
  7262         else
  7263                __ bgtz(op1, (int)0);
  7264         break;
  7265       case 0x04: //greater_equal
  7266         if(&L)
  7267                __ bgez(op1, L);
  7268         else
  7269                __ bgez(op1, (int)0);
  7270         break;
  7271       case 0x05: //less
  7272         if(&L)
  7273                 __ bltz(op1, L);
  7274         else
  7275                 __ bltz(op1, (int)0);
  7276         break;
  7277       case 0x06: //less_equal
  7278         if(&L)
  7279                __ blez(op1, L);
  7280         else
  7281                __ blez(op1, (int)0);
  7282        break;
  7283       default:
  7284           Unimplemented();
  7286     __ nop();
  7287   %}
  7289   ins_pc_relative(1);
  7290   ins_pipe( pipe_alu_branch );
  7291 %}
  7294 instruct branchConI_reg_imm(cmpOp cmp, mRegI src1, immI src2, label labl) %{
  7295   match( If cmp (CmpI src1 src2) );
  7296   effect(USE labl);
  7297   ins_cost(200);
  7298   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_imm" %}
  7300   ins_encode %{
  7301     Register op1 = $src1$$Register;
  7302     int      val = $src2$$constant;
  7303     Label     &L =  *($labl$$label);
  7304     int     flag = $cmp$$cmpcode;
  7306     __ move(AT, val);
  7307     switch(flag)
  7309       case 0x01: //equal
  7310 	if (&L)
  7311         	__ beq(op1, AT, L); 
  7312 	else 
  7313         	__ beq(op1, AT, (int)0); 
  7314         break;
  7315       case 0x02: //not_equal
  7316 	if (&L)
  7317         	__ bne(op1, AT, L); 
  7318 	else
  7319         	__ bne(op1, AT, (int)0); 
  7320         break;
  7321       case 0x03: //greater
  7322         __ slt(AT, AT, op1);
  7323         if(&L)
  7324         	__ bne(R0, AT, L); 
  7325         else
  7326                 __ bne(R0, AT, (int)0);
  7327         break;
  7328       case 0x04: //greater_equal
  7329         __ slt(AT, op1, AT);
  7330         if(&L)
  7331         	__ beq(AT, R0, L);
  7332         else
  7333                 __ beq(AT, R0, (int)0);
  7334         break;
  7335       case 0x05: //less
  7336         __ slt(AT, op1, AT);
  7337         if(&L)
  7338       		 __ bne(R0, AT, L); 
  7339         else
  7340         	 __ bne(R0, AT, (int)0);
  7341         break;
  7342       case 0x06: //less_equal
  7343         __ slt(AT, AT, op1);
  7344         if(&L)
  7345         	__ beq(AT, R0, L);
  7346         else
  7347         	__ beq(AT, R0, (int)0);
  7348        break;
  7349       default:
  7350           Unimplemented();
  7352     __ nop();
  7353   %}
  7355   ins_pc_relative(1);
  7356   ins_pipe( pipe_alu_branch );
  7357 %}
  7359 instruct branchConIU_reg_imm0(cmpOpU cmp, mRegI src1, immI0 zero, label labl) %{
  7360   match( If cmp (CmpU src1 zero) );
  7361   effect(USE labl);
  7362   format %{ "BR$cmp   $src1, zero, $labl #@branchConIU_reg_imm0" %}
  7364   ins_encode %{
  7365     Register op1 = $src1$$Register;
  7366     Label     &L = *($labl$$label);
  7367     int     flag = $cmp$$cmpcode;
  7369     switch(flag)
  7371       case 0x01: //equal
  7372        if (&L)
  7373                __ beq(op1, R0, L); 
  7374        else 
  7375                __ beq(op1, R0, (int)0); 
  7376         break;
  7377       case 0x02: //not_equal
  7378        if (&L)
  7379                __ bne(op1, R0, L); 
  7380        else
  7381                __ bne(op1, R0, (int)0); 
  7382         break;
  7383       case 0x03: //above
  7384         if(&L)
  7385                __ bne(R0, op1, L); 
  7386         else
  7387                 __ bne(R0, op1, (int)0);
  7388         break;
  7389       case 0x04: //above_equal
  7390         if(&L)
  7391                __ beq(R0, R0, L);
  7392         else
  7393                 __ beq(R0, R0, (int)0);
  7394         break;
  7395       case 0x05: //below
  7396         return;
  7397         break;
  7398       case 0x06: //below_equal
  7399         if(&L)
  7400                __ beq(op1, R0, L);
  7401         else
  7402                __ beq(op1, R0, (int)0);
  7403        break;
  7404       default:
  7405           Unimplemented();
  7407     __ nop();
  7408   %}
  7410   ins_pc_relative(1);
  7411   ins_pipe( pipe_alu_branch );
  7412 %}
  7415 instruct branchConIU_reg_immI16(cmpOpU cmp, mRegI src1, immI16 src2, label labl) %{
  7416   match( If cmp (CmpU src1 src2) );
  7417   effect(USE labl);
  7418   ins_cost(180);
  7419   format %{ "BR$cmp   $src1, $src2, $labl #@branchConIU_reg_immI16" %}
  7421   ins_encode %{
  7422     Register op1 = $src1$$Register;
  7423     int      val = $src2$$constant;
  7424     Label     &L = *($labl$$label);
  7425     int     flag = $cmp$$cmpcode;
  7427     switch(flag)
  7429       case 0x01: //equal
  7430         __ move(AT, val);
  7431        if (&L)
  7432                __ beq(op1, AT, L); 
  7433        else 
  7434                __ beq(op1, AT, (int)0); 
  7435         break;
  7436       case 0x02: //not_equal
  7437         __ move(AT, val);
  7438        if (&L)
  7439                __ bne(op1, AT, L); 
  7440        else
  7441                __ bne(op1, AT, (int)0); 
  7442         break;
  7443       case 0x03: //above
  7444         __ move(AT, val);
  7445         __ sltu(AT, AT, op1);
  7446         if(&L)
  7447                __ bne(R0, AT, L); 
  7448         else
  7449                 __ bne(R0, AT, (int)0);
  7450         break;
  7451       case 0x04: //above_equal
  7452         __ sltiu(AT, op1, val);
  7453         if(&L)
  7454                __ beq(AT, R0, L);
  7455         else
  7456                 __ beq(AT, R0, (int)0);
  7457         break;
  7458       case 0x05: //below
  7459         __ sltiu(AT, op1, val);
  7460         if(&L)
  7461                 __ bne(R0, AT, L); 
  7462         else
  7463                 __ bne(R0, AT, (int)0);
  7464         break;
  7465       case 0x06: //below_equal
  7466         __ move(AT, val);
  7467         __ sltu(AT, AT, op1);
  7468         if(&L)
  7469                __ beq(AT, R0, L);
  7470         else
  7471                __ beq(AT, R0, (int)0);
  7472        break;
  7473       default:
  7474           Unimplemented();
  7476     __ nop();
  7477   %}
  7479   ins_pc_relative(1);
  7480   ins_pipe( pipe_alu_branch );
  7481 %}
  7484 instruct branchConL_regL_regL(cmpOp cmp, mRegL src1, mRegL src2, label labl) %{
  7485   match( If cmp (CmpL src1 src2) );
  7486   effect(USE labl);
  7487   format %{ "BR$cmp   $src1, $src2, $labl #@branchConL_regL_regL" %}
  7488   ins_cost(250);
  7490   ins_encode %{
  7491     Register opr1_reg = as_Register($src1$$reg);
  7492     Register opr2_reg = as_Register($src2$$reg);
  7494     Label   &target = *($labl$$label);
  7495     int     flag = $cmp$$cmpcode;
  7497     switch(flag)
  7499       case 0x01: //equal
  7500         if (&target) 
  7501 			__ beq(opr1_reg, opr2_reg, target);
  7502         else
  7503 			__ beq(opr1_reg, opr2_reg, (int)0);
  7504         __ delayed()->nop();
  7505         break;
  7507       case 0x02: //not_equal
  7508         if(&target)
  7509            __ bne(opr1_reg, opr2_reg, target);
  7510         else
  7511            __ bne(opr1_reg, opr2_reg, (int)0);
  7512         __ delayed()->nop();
  7513         break;
  7515       case 0x03: //greater
  7516         __ slt(AT, opr2_reg, opr1_reg);
  7517         if(&target)
  7518            __ bne(AT, R0, target);
  7519         else
  7520            __ bne(AT, R0, (int)0);
  7521         __ delayed()->nop();
  7522         break;
  7524       case 0x04: //greater_equal
  7525         __ slt(AT, opr1_reg, opr2_reg);
  7526         if(&target)
  7527            __ beq(AT, R0, target);
  7528         else
  7529            __ beq(AT, R0, (int)0);
  7530         __ delayed()->nop();
  7532         break;
  7534       case 0x05: //less
  7535         __ slt(AT, opr1_reg, opr2_reg);
  7536         if(&target)
  7537            __ bne(AT, R0, target);
  7538         else
  7539            __ bne(AT, R0, (int)0);
  7540         __ delayed()->nop();
  7542         break;
  7544       case 0x06: //less_equal
  7545        __ slt(AT, opr2_reg, opr1_reg);
  7547        if(&target)
  7548           __ beq(AT, R0, target);
  7549        else
  7550           __ beq(AT, R0, (int)0);
  7551        __ delayed()->nop();
  7553        break;
  7555       default:
  7556           Unimplemented();
  7558   %}
  7561   ins_pc_relative(1);
  7562   ins_pipe( pipe_alu_branch );
  7563 %}
  7565 instruct branchConL_reg_immL16_sub(cmpOp cmp, mRegL src1, immL16_sub src2, label labl) %{
  7566   match( If cmp (CmpL src1 src2) );
  7567   effect(USE labl);
  7568   ins_cost(180);
  7569   format %{ "BR$cmp   $src1, $src2, $labl #@branchConL_reg_immL16_sub" %}
  7571   ins_encode %{
  7572     Register op1 = $src1$$Register;
  7573     int      val = $src2$$constant;
  7574     Label     &L =  *($labl$$label);
  7575     int     flag = $cmp$$cmpcode;
  7577     __ daddiu(AT, op1, -1 * val);
  7578     switch(flag)
  7580       case 0x01: //equal
  7581        if (&L)
  7582                __ beq(R0, AT, L); 
  7583        else 
  7584                __ beq(R0, AT, (int)0); 
  7585         break;
  7586       case 0x02: //not_equal
  7587        if (&L)
  7588                __ bne(R0, AT, L); 
  7589        else
  7590                __ bne(R0, AT, (int)0); 
  7591         break;
  7592       case 0x03: //greater
  7593         if(&L)
  7594                __ bgtz(AT, L); 
  7595         else
  7596                 __ bgtz(AT, (int)0);
  7597         break;
  7598       case 0x04: //greater_equal
  7599         if(&L)
  7600                __ bgez(AT, L);
  7601         else
  7602                 __ bgez(AT, (int)0);
  7603         break;
  7604       case 0x05: //less
  7605         if(&L)
  7606                 __ bltz(AT, L); 
  7607         else
  7608                 __ bltz(AT, (int)0);
  7609         break;
  7610       case 0x06: //less_equal
  7611         if(&L)
  7612                __ blez(AT, L);
  7613         else
  7614                __ blez(AT, (int)0);
  7615        break;
  7616       default:
  7617           Unimplemented();
  7619     __ nop();
  7620   %}
  7622   ins_pc_relative(1);
  7623   ins_pipe( pipe_alu_branch );
  7624 %}
  7627 instruct branchConI_reg_imm16_sub(cmpOp cmp, mRegI src1, immI16_sub src2, label labl) %{
  7628   match( If cmp (CmpI src1 src2) );
  7629   effect(USE labl);
  7630   ins_cost(180);
  7631   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_imm16_sub" %}
  7633   ins_encode %{
  7634     Register op1 = $src1$$Register;
  7635     int      val = $src2$$constant;
  7636     Label     &L =  *($labl$$label);
  7637     int     flag = $cmp$$cmpcode;
  7639     __ addiu32(AT, op1, -1 * val);
  7640     switch(flag)
  7642       case 0x01: //equal
  7643        if (&L)
  7644                __ beq(R0, AT, L); 
  7645        else 
  7646                __ beq(R0, AT, (int)0); 
  7647         break;
  7648       case 0x02: //not_equal
  7649        if (&L)
  7650                __ bne(R0, AT, L); 
  7651        else
  7652                __ bne(R0, AT, (int)0); 
  7653         break;
  7654       case 0x03: //greater
  7655         if(&L)
  7656                __ bgtz(AT, L); 
  7657         else
  7658                 __ bgtz(AT, (int)0);
  7659         break;
  7660       case 0x04: //greater_equal
  7661         if(&L)
  7662                __ bgez(AT, L);
  7663         else
  7664                 __ bgez(AT, (int)0);
  7665         break;
  7666       case 0x05: //less
  7667         if(&L)
  7668                 __ bltz(AT, L); 
  7669         else
  7670                 __ bltz(AT, (int)0);
  7671         break;
  7672       case 0x06: //less_equal
  7673         if(&L)
  7674                __ blez(AT, L);
  7675         else
  7676                __ blez(AT, (int)0);
  7677        break;
  7678       default:
  7679           Unimplemented();
  7681     __ nop();
  7682   %}
  7684   ins_pc_relative(1);
  7685   ins_pipe( pipe_alu_branch );
  7686 %}
  7688 instruct branchConL_regL_immL0(cmpOp cmp, mRegL src1, immL0 zero, label labl) %{
  7689   match( If cmp (CmpL src1 zero) );
  7690   effect(USE labl);
  7691   format %{ "BR$cmp   $src1, zero, $labl #@branchConL_regL_immL0" %}
  7692   ins_cost(150);
  7694   ins_encode %{
  7695     Register opr1_reg = as_Register($src1$$reg);
  7696     Label   &target = *($labl$$label);
  7697     int     flag = $cmp$$cmpcode;
  7699     switch(flag)
  7701       case 0x01: //equal
  7702         if (&target) 
  7703            __ beq(opr1_reg, R0, target);
  7704         else
  7705            __ beq(opr1_reg, R0, int(0));
  7706         break;
  7708       case 0x02: //not_equal
  7709         if(&target)
  7710            __ bne(opr1_reg, R0, target);
  7711         else
  7712            __ bne(opr1_reg, R0, (int)0);
  7713         break;
  7715       case 0x03: //greater
  7716         if(&target)
  7717            __ bgtz(opr1_reg, target);
  7718         else
  7719            __ bgtz(opr1_reg, (int)0);
  7720        break;
  7722       case 0x04: //greater_equal
  7723         if(&target)
  7724            __ bgez(opr1_reg, target);
  7725         else
  7726            __ bgez(opr1_reg, (int)0);
  7727         break;
  7729       case 0x05: //less
  7730         __ slt(AT, opr1_reg, R0);
  7731         if(&target)
  7732            __ bne(AT, R0, target);
  7733         else
  7734            __ bne(AT, R0, (int)0);
  7735         break;
  7737       case 0x06: //less_equal
  7738         if (&target) 
  7739            __ blez(opr1_reg, target);
  7740         else
  7741            __ blez(opr1_reg, int(0));
  7742         break;
  7744       default:
  7745           Unimplemented();
  7747 	__ delayed()->nop();
  7748   %}
  7751   ins_pc_relative(1);
  7752   ins_pipe( pipe_alu_branch );
  7753 %}
  7756 //FIXME
  7757 instruct branchConF_reg_reg(cmpOp cmp, regF src1, regF src2, label labl) %{
  7758   match( If cmp (CmpF src1 src2) );
  7759   effect(USE labl);
  7760   format %{ "BR$cmp   $src1, $src2, $labl #@branchConF_reg_reg" %}
  7762   ins_encode %{
  7763     FloatRegister reg_op1 = $src1$$FloatRegister;
  7764     FloatRegister reg_op2 = $src2$$FloatRegister;
  7765     Label     &L =  *($labl$$label);
  7766     int     flag = $cmp$$cmpcode;
  7768     switch(flag)
  7770       case 0x01: //equal
  7771         __ c_eq_s(reg_op1, reg_op2);
  7772 	if (&L)
  7773                 __ bc1t(L);
  7774 	else 
  7775                 __ bc1t((int)0);
  7776         break;
  7777       case 0x02: //not_equal
  7778         __ c_eq_s(reg_op1, reg_op2);
  7779 	if (&L)
  7780                 __ bc1f(L);
  7781 	else
  7782                 __ bc1f((int)0);
  7783         break;
  7784       case 0x03: //greater
  7785         __ c_ule_s(reg_op1, reg_op2);
  7786         if(&L)
  7787                 __ bc1f(L);
  7788         else
  7789                 __ bc1f((int)0);
  7790         break;
  7791       case 0x04: //greater_equal
  7792         __ c_ult_s(reg_op1, reg_op2);
  7793         if(&L)
  7794                 __ bc1f(L);
  7795         else
  7796                 __ bc1f((int)0);
  7797         break;
  7798       case 0x05: //less
  7799         __ c_ult_s(reg_op1, reg_op2);
  7800         if(&L)
  7801                 __ bc1t(L);
  7802         else
  7803                 __ bc1t((int)0);
  7804         break;
  7805       case 0x06: //less_equal
  7806         __ c_ule_s(reg_op1, reg_op2);
  7807         if(&L)
  7808                 __ bc1t(L);
  7809         else
  7810                 __ bc1t((int)0);
  7811        break;
  7812       default:
  7813           Unimplemented();
  7815     __ nop();
  7816   %}
  7818   ins_pc_relative(1);
  7819   ins_pipe(pipe_slow);
  7820 %}
  7822 instruct branchConD_reg_reg(cmpOp cmp, regD src1, regD src2, label labl) %{
  7823   match( If cmp (CmpD src1 src2) );
  7824   effect(USE labl);
  7825   format %{ "BR$cmp   $src1, $src2, $labl #@branchConD_reg_reg" %}
  7827   ins_encode %{
  7828     FloatRegister reg_op1 = $src1$$FloatRegister;
  7829     FloatRegister reg_op2 = $src2$$FloatRegister;
  7830     Label     &L =  *($labl$$label);
  7831     int     flag = $cmp$$cmpcode;
  7833     switch(flag)
  7835       case 0x01: //equal
  7836         __ c_eq_d(reg_op1, reg_op2);
  7837 	if (&L)
  7838                 __ bc1t(L);
  7839 	else 
  7840                 __ bc1t((int)0);
  7841         break;
  7842       case 0x02: //not_equal
  7843 //2016/4/19 aoqi: c_ueq_d cannot distinguish NaN from equal. Double.isNaN(Double) is implemented by 'f != f', so the use of c_ueq_d causes bugs.
  7844         __ c_eq_d(reg_op1, reg_op2);
  7845 	if (&L)
  7846                 __ bc1f(L);
  7847 	else
  7848                 __ bc1f((int)0);
  7849         break;
  7850       case 0x03: //greater
  7851         __ c_ule_d(reg_op1, reg_op2);
  7852         if(&L)
  7853                 __ bc1f(L);
  7854         else
  7855                 __ bc1f((int)0);
  7856         break;
  7857       case 0x04: //greater_equal
  7858         __ c_ult_d(reg_op1, reg_op2);
  7859         if(&L)
  7860                 __ bc1f(L);
  7861         else
  7862                 __ bc1f((int)0);
  7863         break;
  7864       case 0x05: //less
  7865         __ c_ult_d(reg_op1, reg_op2);
  7866         if(&L)
  7867                 __ bc1t(L);
  7868         else
  7869                 __ bc1t((int)0);
  7870         break;
  7871       case 0x06: //less_equal
  7872         __ c_ule_d(reg_op1, reg_op2);
  7873         if(&L)
  7874                 __ bc1t(L);
  7875         else
  7876                 __ bc1t((int)0);
  7877        break;
  7878       default:
  7879           Unimplemented();
  7881     __ nop();
  7882   %}
  7884   ins_pc_relative(1);
  7885   ins_pipe(pipe_slow);
  7886 %}
  7889 // Call Runtime Instruction
  7890 instruct CallRuntimeDirect(method meth) %{
  7891   match(CallRuntime );
  7892   effect(USE meth);
  7894   ins_cost(300);
  7895   format %{ "CALL,runtime #@CallRuntimeDirect" %}
  7896   ins_encode( Java_To_Runtime( meth ) );
  7897   ins_pipe( pipe_slow );
  7898   ins_alignment(16);
  7899 %}
  7903 //------------------------MemBar Instructions-------------------------------
  7904 //Memory barrier flavors
  7906 instruct membar_acquire() %{
  7907   match(MemBarAcquire);
  7908   ins_cost(0);
  7910   size(0);
  7911   format %{ "MEMBAR-acquire (empty) @ membar_acquire" %}
  7912   ins_encode();
  7913   ins_pipe(empty);
  7914 %}
  7916 instruct load_fence() %{
  7917   match(LoadFence);
  7918   ins_cost(400);
  7920   format %{ "MEMBAR @ load_fence" %}
  7921   ins_encode %{
  7922     __ sync(); 
  7923   %}
  7924   ins_pipe(pipe_slow);
  7925 %}
  7927 instruct membar_acquire_lock()
  7928 %{
  7929   match(MemBarAcquireLock);
  7930   ins_cost(0);
  7932   size(0);
  7933   format %{ "MEMBAR-acquire (acquire as part of CAS in prior FastLock so empty encoding) @ membar_acquire_lock" %}
  7934   ins_encode();
  7935   ins_pipe(empty);
  7936 %}
  7938 instruct membar_release() %{
  7939   match(MemBarRelease);
  7940   ins_cost(0);
  7942   size(0);
  7943   format %{ "MEMBAR-release (empty) @ membar_release" %}
  7944   ins_encode();
  7945   ins_pipe(empty);
  7946 %}
  7948 instruct store_fence() %{
  7949   match(StoreFence);
  7950   ins_cost(400);
  7952   format %{ "MEMBAR @ store_fence" %}
  7954   ins_encode %{
  7955     __ sync(); 
  7956   %}
  7958   ins_pipe(pipe_slow);
  7959 %}
  7961 instruct membar_release_lock()
  7962 %{
  7963   match(MemBarReleaseLock);
  7964   ins_cost(0);
  7966   size(0);
  7967   format %{ "MEMBAR-release-lock (release in FastUnlock so empty) @ membar_release_lock" %}
  7968   ins_encode();
  7969   ins_pipe(empty);
  7970 %}
  7973 instruct membar_volatile() %{
  7974   match(MemBarVolatile);
  7975   ins_cost(400);
  7977   format %{ "MEMBAR-volatile" %}
  7978   ins_encode %{
  7979     if( !os::is_MP() ) return;     // Not needed on single CPU
  7980     __ sync();
  7982   %}
  7983   ins_pipe(pipe_slow);
  7984 %}
  7986 instruct unnecessary_membar_volatile() %{
  7987   match(MemBarVolatile);
  7988   predicate(Matcher::post_store_load_barrier(n));
  7989   ins_cost(0);
  7991   size(0);
  7992   format %{ "MEMBAR-volatile (unnecessary so empty encoding) @ unnecessary_membar_volatile" %}
  7993   ins_encode( );
  7994   ins_pipe(empty);
  7995 %}
  7997 instruct membar_storestore() %{
  7998   match(MemBarStoreStore);
  8000   ins_cost(0);
  8001   size(0);
  8002   format %{ "MEMBAR-storestore (empty encoding) @ membar_storestore" %}
  8003   ins_encode( );
  8004   ins_pipe(empty);
  8005 %}
  8007 //----------Move Instructions--------------------------------------------------
  8008 instruct castX2P(mRegP dst, mRegL src) %{
  8009   match(Set dst (CastX2P src));
  8010   format %{ "castX2P  $dst, $src @ castX2P" %}
  8011   ins_encode %{
  8012     Register src = $src$$Register;
  8013     Register dst = $dst$$Register;
  8015 	if(src != dst)
  8016 		__ move(dst, src);
  8017   %}
  8018   ins_cost(10);
  8019   ins_pipe( ialu_regI_mov );
  8020 %}
  8022 instruct castP2X(mRegL dst, mRegP src ) %{
  8023   match(Set dst (CastP2X src));
  8025   format %{ "mov    $dst, $src\t  #@castP2X" %}
  8026   ins_encode %{
  8027     Register src = $src$$Register;
  8028     Register dst = $dst$$Register;
  8030 	if(src != dst)
  8031 		__ move(dst, src);    
  8032   %}
  8033   ins_pipe( ialu_regI_mov );
  8034 %}
  8036 instruct MoveF2I_reg_reg(mRegI dst, regF src) %{
  8037   match(Set dst (MoveF2I src));
  8038   effect(DEF dst, USE src);
  8039   ins_cost(85);
  8040   format %{ "MoveF2I   $dst, $src @ MoveF2I_reg_reg" %}
  8041   ins_encode %{
  8042     Register dst = as_Register($dst$$reg);
  8043     FloatRegister src = as_FloatRegister($src$$reg);
  8045     __ mfc1(dst, src);
  8046   %}
  8047   ins_pipe( pipe_slow );
  8048 %}
  8050 instruct MoveI2F_reg_reg(regF dst, mRegI src) %{
  8051   match(Set dst (MoveI2F src));
  8052   effect(DEF dst, USE src);
  8053   ins_cost(85);
  8054   format %{ "MoveI2F   $dst, $src @ MoveI2F_reg_reg" %}
  8055   ins_encode %{
  8056     Register src = as_Register($src$$reg);
  8057     FloatRegister dst = as_FloatRegister($dst$$reg);
  8059     __ mtc1(src, dst);
  8060   %}
  8061   ins_pipe( pipe_slow );
  8062 %}
  8064 instruct MoveD2L_reg_reg(mRegL dst, regD src) %{
  8065   match(Set dst (MoveD2L src));
  8066   effect(DEF dst, USE src);
  8067   ins_cost(85);
  8068   format %{ "MoveD2L   $dst, $src @ MoveD2L_reg_reg" %}
  8069   ins_encode %{
  8070     Register dst = as_Register($dst$$reg);
  8071     FloatRegister src = as_FloatRegister($src$$reg);
  8073     __ dmfc1(dst, src);
  8074   %}
  8075   ins_pipe( pipe_slow );
  8076 %}
  8078 instruct MoveL2D_reg_reg(regD dst, mRegL src) %{
  8079   match(Set dst (MoveL2D src));
  8080   effect(DEF dst, USE src);
  8081   ins_cost(85);
  8082   format %{ "MoveL2D   $dst, $src @ MoveL2D_reg_reg" %}
  8083   ins_encode %{
  8084     FloatRegister dst = as_FloatRegister($dst$$reg);
  8085     Register src = as_Register($src$$reg);
  8087     __ dmtc1(src, dst);
  8088   %}
  8089   ins_pipe( pipe_slow );
  8090 %}
  8092 //----------Conditional Move---------------------------------------------------
  8093 // Conditional move
  8094 instruct cmovI_cmpI_reg_reg(mRegI dst, mRegI src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8095   match(Set dst (CMoveI (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8096   ins_cost(80);
  8097   format %{
  8098              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpI_reg_reg\n"
  8099              "\tCMOV  $dst,$src \t @cmovI_cmpI_reg_reg"
  8100          %}
  8102   ins_encode %{
  8103     Register op1 = $tmp1$$Register;
  8104     Register op2 = $tmp2$$Register;
  8105     Register dst = $dst$$Register;
  8106     Register src = $src$$Register;
  8107     int     flag = $cop$$cmpcode;
  8109     switch(flag)
  8111       case 0x01: //equal
  8112         __ subu32(AT, op1, op2);
  8113         __ movz(dst, src, AT);
  8114         break;
  8116       case 0x02: //not_equal
  8117         __ subu32(AT, op1, op2);
  8118         __ movn(dst, src, AT);
  8119         break;
  8121       case 0x03: //great
  8122         __ slt(AT, op2, op1);
  8123         __ movn(dst, src, AT);
  8124         break;
  8126       case 0x04: //great_equal
  8127         __ slt(AT, op1, op2);
  8128         __ movz(dst, src, AT);
  8129         break;
  8131       case 0x05: //less
  8132         __ slt(AT, op1, op2);
  8133         __ movn(dst, src, AT);
  8134         break;
  8136       case 0x06: //less_equal
  8137         __ slt(AT, op2, op1);
  8138         __ movz(dst, src, AT);
  8139        break;
  8141       default:
  8142           Unimplemented();
  8144   %}
  8146   ins_pipe( pipe_slow );
  8147 %}
  8149 instruct cmovI_cmpP_reg_reg(mRegI dst, mRegI src, mRegP tmp1, mRegP tmp2, cmpOpU cop ) %{
  8150   match(Set dst (CMoveI (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  8151   ins_cost(80);
  8152   format %{
  8153              "CMPU$cop $tmp1,$tmp2\t @cmovI_cmpP_reg_reg\n\t"
  8154              "CMOV $dst,$src\t @cmovI_cmpP_reg_reg"
  8155          %}
  8156   ins_encode %{
  8157     Register op1 = $tmp1$$Register;
  8158     Register op2 = $tmp2$$Register;
  8159     Register dst = $dst$$Register;
  8160     Register src = $src$$Register;
  8161     int     flag = $cop$$cmpcode;
  8163     switch(flag)
  8165       case 0x01: //equal
  8166         __ subu(AT, op1, op2);
  8167         __ movz(dst, src, AT);
  8168         break;
  8170       case 0x02: //not_equal
  8171         __ subu(AT, op1, op2);
  8172         __ movn(dst, src, AT);
  8173         break;
  8175       case 0x03: //above
  8176         __ sltu(AT, op2, op1);
  8177         __ movn(dst, src, AT);
  8178         break;
  8180       case 0x04: //above_equal
  8181         __ sltu(AT, op1, op2);
  8182         __ movz(dst, src, AT);
  8183         break;
  8185       case 0x05: //below
  8186         __ sltu(AT, op1, op2);
  8187         __ movn(dst, src, AT);
  8188         break;
  8190       case 0x06: //below_equal
  8191         __ sltu(AT, op2, op1);
  8192         __ movz(dst, src, AT);
  8193        break;
  8195       default:
  8196           Unimplemented();
  8198   %}
  8200   ins_pipe( pipe_slow );
  8201 %}
  8203 instruct cmovI_cmpN_reg_reg(mRegI dst, mRegI src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8204   match(Set dst (CMoveI (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8205   ins_cost(80);
  8206   format %{
  8207              "CMPU$cop $tmp1,$tmp2\t @cmovI_cmpN_reg_reg\n\t"
  8208              "CMOV $dst,$src\t @cmovI_cmpN_reg_reg"
  8209          %}
  8210   ins_encode %{
  8211     Register op1 = $tmp1$$Register;
  8212     Register op2 = $tmp2$$Register;
  8213     Register dst = $dst$$Register;
  8214     Register src = $src$$Register;
  8215     int     flag = $cop$$cmpcode;
  8217     switch(flag)
  8219       case 0x01: //equal
  8220         __ subu32(AT, op1, op2);
  8221         __ movz(dst, src, AT);
  8222         break;
  8224       case 0x02: //not_equal
  8225         __ subu32(AT, op1, op2);
  8226         __ movn(dst, src, AT);
  8227         break;
  8229       case 0x03: //above
  8230         __ sltu(AT, op2, op1);
  8231         __ movn(dst, src, AT);
  8232         break;
  8234       case 0x04: //above_equal
  8235         __ sltu(AT, op1, op2);
  8236         __ movz(dst, src, AT);
  8237         break;
  8239       case 0x05: //below
  8240         __ sltu(AT, op1, op2);
  8241         __ movn(dst, src, AT);
  8242         break;
  8244       case 0x06: //below_equal
  8245         __ sltu(AT, op2, op1);
  8246         __ movz(dst, src, AT);
  8247        break;
  8249       default:
  8250           Unimplemented();
  8252   %}
  8254   ins_pipe( pipe_slow );
  8255 %}
  8257 instruct cmovP_cmpN_reg_reg(mRegP dst, mRegP src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8258   match(Set dst (CMoveP (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8259   ins_cost(80);
  8260   format %{
  8261              "CMPU$cop $tmp1,$tmp2\t @cmovP_cmpN_reg_reg\n\t"
  8262              "CMOV $dst,$src\t @cmovP_cmpN_reg_reg"
  8263          %}
  8264   ins_encode %{
  8265     Register op1 = $tmp1$$Register;
  8266     Register op2 = $tmp2$$Register;
  8267     Register dst = $dst$$Register;
  8268     Register src = $src$$Register;
  8269     int     flag = $cop$$cmpcode;
  8271     switch(flag)
  8273       case 0x01: //equal
  8274         __ subu32(AT, op1, op2);
  8275         __ movz(dst, src, AT);
  8276         break;
  8278       case 0x02: //not_equal
  8279         __ subu32(AT, op1, op2);
  8280         __ movn(dst, src, AT);
  8281         break;
  8283       case 0x03: //above
  8284         __ sltu(AT, op2, op1);
  8285         __ movn(dst, src, AT);
  8286         break;
  8288       case 0x04: //above_equal
  8289         __ sltu(AT, op1, op2);
  8290         __ movz(dst, src, AT);
  8291         break;
  8293       case 0x05: //below
  8294         __ sltu(AT, op1, op2);
  8295         __ movn(dst, src, AT);
  8296         break;
  8298       case 0x06: //below_equal
  8299         __ sltu(AT, op2, op1);
  8300         __ movz(dst, src, AT);
  8301        break;
  8303       default:
  8304           Unimplemented();
  8306   %}
  8308   ins_pipe( pipe_slow );
  8309 %}
  8311 instruct cmovN_cmpP_reg_reg(mRegN dst, mRegN src, mRegP tmp1, mRegP tmp2, cmpOpU cop ) %{
  8312   match(Set dst (CMoveN (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  8313   ins_cost(80);
  8314   format %{
  8315              "CMPU$cop $tmp1,$tmp2\t @cmovN_cmpP_reg_reg\n\t"
  8316              "CMOV $dst,$src\t @cmovN_cmpP_reg_reg"
  8317          %}
  8318   ins_encode %{
  8319     Register op1 = $tmp1$$Register;
  8320     Register op2 = $tmp2$$Register;
  8321     Register dst = $dst$$Register;
  8322     Register src = $src$$Register;
  8323     int     flag = $cop$$cmpcode;
  8325     switch(flag)
  8327       case 0x01: //equal
  8328         __ subu(AT, op1, op2);
  8329         __ movz(dst, src, AT);
  8330         break;
  8332       case 0x02: //not_equal
  8333         __ subu(AT, op1, op2);
  8334         __ movn(dst, src, AT);
  8335         break;
  8337       case 0x03: //above
  8338         __ sltu(AT, op2, op1);
  8339         __ movn(dst, src, AT);
  8340         break;
  8342       case 0x04: //above_equal
  8343         __ sltu(AT, op1, op2);
  8344         __ movz(dst, src, AT);
  8345         break;
  8347       case 0x05: //below
  8348         __ sltu(AT, op1, op2);
  8349         __ movn(dst, src, AT);
  8350         break;
  8352       case 0x06: //below_equal
  8353         __ sltu(AT, op2, op1);
  8354         __ movz(dst, src, AT);
  8355        break;
  8357       default:
  8358           Unimplemented();
  8360   %}
  8362   ins_pipe( pipe_slow );
  8363 %}
  8365 instruct cmovP_cmpD_reg_reg(mRegP dst, mRegP src, regD tmp1, regD tmp2, cmpOp cop ) %{
  8366   match(Set dst (CMoveP (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  8367   ins_cost(80);
  8368   format %{
  8369              "CMP$cop  $tmp1, $tmp2\t  @cmovP_cmpD_reg_reg\n"
  8370              "\tCMOV  $dst,$src \t @cmovP_cmpD_reg_reg"
  8371          %}
  8372   ins_encode %{
  8373     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  8374     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  8375     Register dst = as_Register($dst$$reg);
  8376     Register src = as_Register($src$$reg);
  8378     int     flag = $cop$$cmpcode;
  8380     switch(flag)
  8382       case 0x01: //equal
  8383         __ c_eq_d(reg_op1, reg_op2);
  8384         __ movt(dst, src);
  8385         break;
  8386       case 0x02: //not_equal
  8387         __ c_eq_d(reg_op1, reg_op2);
  8388         __ movf(dst, src);
  8389         break;
  8390       case 0x03: //greater
  8391         __ c_ole_d(reg_op1, reg_op2);
  8392         __ movf(dst, src);
  8393         break;
  8394       case 0x04: //greater_equal
  8395         __ c_olt_d(reg_op1, reg_op2);
  8396         __ movf(dst, src);
  8397         break;
  8398       case 0x05: //less
  8399         __ c_ult_d(reg_op1, reg_op2);
  8400         __ movt(dst, src);
  8401         break;
  8402       case 0x06: //less_equal
  8403         __ c_ule_d(reg_op1, reg_op2);
  8404         __ movt(dst, src);
  8405         break;
  8406       default:
  8407           Unimplemented();
  8409   %}
  8411   ins_pipe( pipe_slow );
  8412 %}
  8415 instruct cmovN_cmpN_reg_reg(mRegN dst, mRegN src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8416   match(Set dst (CMoveN (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8417   ins_cost(80);
  8418   format %{
  8419              "CMPU$cop $tmp1,$tmp2\t @cmovN_cmpN_reg_reg\n\t"
  8420              "CMOV $dst,$src\t @cmovN_cmpN_reg_reg"
  8421          %}
  8422   ins_encode %{
  8423     Register op1 = $tmp1$$Register;
  8424     Register op2 = $tmp2$$Register;
  8425     Register dst = $dst$$Register;
  8426     Register src = $src$$Register;
  8427     int     flag = $cop$$cmpcode;
  8429     switch(flag)
  8431       case 0x01: //equal
  8432         __ subu32(AT, op1, op2);
  8433         __ movz(dst, src, AT);
  8434         break;
  8436       case 0x02: //not_equal
  8437         __ subu32(AT, op1, op2);
  8438         __ movn(dst, src, AT);
  8439         break;
  8441       case 0x03: //above
  8442         __ sltu(AT, op2, op1);
  8443         __ movn(dst, src, AT);
  8444         break;
  8446       case 0x04: //above_equal
  8447         __ sltu(AT, op1, op2);
  8448         __ movz(dst, src, AT);
  8449         break;
  8451       case 0x05: //below
  8452         __ sltu(AT, op1, op2);
  8453         __ movn(dst, src, AT);
  8454         break;
  8456       case 0x06: //below_equal
  8457         __ sltu(AT, op2, op1);
  8458         __ movz(dst, src, AT);
  8459        break;
  8461       default:
  8462           Unimplemented();
  8464   %}
  8466   ins_pipe( pipe_slow );
  8467 %}
  8470 instruct cmovI_cmpU_reg_reg(mRegI dst, mRegI src, mRegI tmp1, mRegI tmp2, cmpOpU cop ) %{
  8471   match(Set dst (CMoveI (Binary cop (CmpU tmp1 tmp2)) (Binary dst src)));
  8472   ins_cost(80);
  8473   format %{
  8474              "CMPU$cop $tmp1,$tmp2\t @cmovI_cmpU_reg_reg\n\t"
  8475              "CMOV $dst,$src\t @cmovI_cmpU_reg_reg"
  8476          %}
  8477   ins_encode %{
  8478     Register op1 = $tmp1$$Register;
  8479     Register op2 = $tmp2$$Register;
  8480     Register dst = $dst$$Register;
  8481     Register src = $src$$Register;
  8482     int     flag = $cop$$cmpcode;
  8484     switch(flag)
  8486       case 0x01: //equal
  8487         __ subu(AT, op1, op2);
  8488         __ movz(dst, src, AT);
  8489         break;
  8491       case 0x02: //not_equal
  8492         __ subu(AT, op1, op2);
  8493         __ movn(dst, src, AT);
  8494         break;
  8496       case 0x03: //above
  8497         __ sltu(AT, op2, op1);
  8498         __ movn(dst, src, AT);
  8499         break;
  8501       case 0x04: //above_equal
  8502         __ sltu(AT, op1, op2);
  8503         __ movz(dst, src, AT);
  8504         break;
  8506       case 0x05: //below
  8507         __ sltu(AT, op1, op2);
  8508         __ movn(dst, src, AT);
  8509         break;
  8511       case 0x06: //below_equal
  8512         __ sltu(AT, op2, op1);
  8513         __ movz(dst, src, AT);
  8514        break;
  8516       default:
  8517           Unimplemented();
  8519   %}
  8521   ins_pipe( pipe_slow );
  8522 %}
  8524 instruct cmovI_cmpL_reg_reg(mRegI dst, mRegI src, mRegL tmp1, mRegL tmp2, cmpOp cop ) %{
  8525   match(Set dst (CMoveI (Binary cop (CmpL tmp1 tmp2)) (Binary dst src)));
  8526   ins_cost(80);
  8527   format %{
  8528              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpL_reg_reg\n"
  8529              "\tCMOV  $dst,$src \t @cmovI_cmpL_reg_reg"
  8530          %}
  8531   ins_encode %{
  8532     Register opr1 = as_Register($tmp1$$reg);
  8533     Register opr2 = as_Register($tmp2$$reg);
  8534     Register dst     = $dst$$Register;
  8535     Register src     = $src$$Register;
  8536     int     flag = $cop$$cmpcode;
  8538     switch(flag)
  8540       case 0x01: //equal
  8541         __ subu(AT, opr1, opr2);
  8542         __ movz(dst, src, AT);
  8543         break;
  8545       case 0x02: //not_equal
  8546         __ subu(AT, opr1, opr2);
  8547         __ movn(dst, src, AT);
  8548         break;
  8550       case 0x03: //greater
  8551 	__ slt(AT, opr2, opr1);
  8552         __ movn(dst, src, AT);
  8553         break;
  8555       case 0x04: //greater_equal
  8556         __ slt(AT, opr1, opr2);
  8557         __ movz(dst, src, AT);
  8558         break;
  8560       case 0x05: //less
  8561         __ slt(AT, opr1, opr2);
  8562         __ movn(dst, src, AT);
  8563         break;
  8565       case 0x06: //less_equal
  8566         __ slt(AT, opr2, opr1);
  8567         __ movz(dst, src, AT);
  8568         break;
  8570       default:
  8571           Unimplemented();
  8573   %}
  8575   ins_pipe( pipe_slow );
  8576 %}
  8578 instruct cmovP_cmpL_reg_reg(mRegP dst, mRegP src, mRegL tmp1, mRegL tmp2, cmpOp cop ) %{
  8579   match(Set dst (CMoveP (Binary cop (CmpL tmp1 tmp2)) (Binary dst src)));
  8580   ins_cost(80);
  8581   format %{
  8582              "CMP$cop  $tmp1, $tmp2\t  @cmovP_cmpL_reg_reg\n"
  8583              "\tCMOV  $dst,$src \t @cmovP_cmpL_reg_reg"
  8584          %}
  8585   ins_encode %{
  8586     Register opr1 = as_Register($tmp1$$reg);
  8587     Register opr2 = as_Register($tmp2$$reg);
  8588     Register dst     = $dst$$Register;
  8589     Register src     = $src$$Register;
  8590     int     flag = $cop$$cmpcode;
  8592     switch(flag)
  8594       case 0x01: //equal
  8595         __ subu(AT, opr1, opr2);
  8596         __ movz(dst, src, AT);
  8597         break;
  8599       case 0x02: //not_equal
  8600         __ subu(AT, opr1, opr2);
  8601         __ movn(dst, src, AT);
  8602         break;
  8604       case 0x03: //greater
  8605         __ slt(AT, opr2, opr1);
  8606         __ movn(dst, src, AT);
  8607         break;
  8609       case 0x04: //greater_equal
  8610         __ slt(AT, opr1, opr2);
  8611         __ movz(dst, src, AT);
  8612         break;
  8614       case 0x05: //less
  8615         __ slt(AT, opr1, opr2);
  8616         __ movn(dst, src, AT);
  8617         break;
  8619       case 0x06: //less_equal
  8620         __ slt(AT, opr2, opr1);
  8621         __ movz(dst, src, AT);
  8622         break;
  8624       default:
  8625           Unimplemented();
  8627   %}
  8629   ins_pipe( pipe_slow );
  8630 %}
  8632 instruct cmovI_cmpD_reg_reg(mRegI dst, mRegI src, regD tmp1, regD tmp2, cmpOp cop ) %{
  8633   match(Set dst (CMoveI (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  8634   ins_cost(80);
  8635   format %{
  8636              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpD_reg_reg\n"
  8637              "\tCMOV  $dst,$src \t @cmovI_cmpD_reg_reg"
  8638          %}
  8639   ins_encode %{
  8640     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  8641     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  8642     Register dst = as_Register($dst$$reg);
  8643     Register src = as_Register($src$$reg);
  8645     int     flag = $cop$$cmpcode;
  8647     switch(flag)
  8649       case 0x01: //equal
  8650         __ c_eq_d(reg_op1, reg_op2);
  8651         __ movt(dst, src);
  8652         break;
  8653       case 0x02: //not_equal
  8654 //2016/4/19 aoqi: See instruct branchConD_reg_reg. The change in branchConD_reg_reg fixed a bug. It seems similar here, so I made thesame change.
  8655         __ c_eq_d(reg_op1, reg_op2);
  8656         __ movf(dst, src);
  8657         break;
  8658       case 0x03: //greater
  8659         __ c_ole_d(reg_op1, reg_op2);
  8660         __ movf(dst, src);
  8661         break;
  8662       case 0x04: //greater_equal
  8663         __ c_olt_d(reg_op1, reg_op2);
  8664         __ movf(dst, src);
  8665         break;
  8666       case 0x05: //less
  8667         __ c_ult_d(reg_op1, reg_op2);
  8668         __ movt(dst, src);
  8669         break;
  8670       case 0x06: //less_equal
  8671         __ c_ule_d(reg_op1, reg_op2);
  8672         __ movt(dst, src);
  8673         break;
  8674       default:
  8675           Unimplemented();
  8677   %}
  8679   ins_pipe( pipe_slow );
  8680 %}
  8683 instruct cmovP_cmpP_reg_reg(mRegP dst, mRegP src, mRegP tmp1, mRegP tmp2, cmpOpU cop ) %{
  8684   match(Set dst (CMoveP (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  8685   ins_cost(80);
  8686   format %{
  8687              "CMPU$cop $tmp1,$tmp2\t @cmovP_cmpP_reg_reg\n\t"
  8688              "CMOV $dst,$src\t @cmovP_cmpP_reg_reg"
  8689          %}
  8690   ins_encode %{
  8691     Register op1 = $tmp1$$Register;
  8692     Register op2 = $tmp2$$Register;
  8693     Register dst = $dst$$Register;
  8694     Register src = $src$$Register;
  8695     int     flag = $cop$$cmpcode;
  8697     switch(flag)
  8699       case 0x01: //equal
  8700         __ subu(AT, op1, op2);
  8701         __ movz(dst, src, AT);
  8702         break;
  8704       case 0x02: //not_equal
  8705         __ subu(AT, op1, op2);
  8706         __ movn(dst, src, AT);
  8707         break;
  8709       case 0x03: //above
  8710         __ sltu(AT, op2, op1);
  8711         __ movn(dst, src, AT);
  8712         break;
  8714       case 0x04: //above_equal
  8715         __ sltu(AT, op1, op2);
  8716         __ movz(dst, src, AT);
  8717         break;
  8719       case 0x05: //below
  8720         __ sltu(AT, op1, op2);
  8721         __ movn(dst, src, AT);
  8722         break;
  8724       case 0x06: //below_equal
  8725         __ sltu(AT, op2, op1);
  8726         __ movz(dst, src, AT);
  8727        break;
  8729       default:
  8730           Unimplemented();
  8732   %}
  8734   ins_pipe( pipe_slow );
  8735 %}
  8737 instruct cmovP_cmpI_reg_reg(mRegP dst, mRegP src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8738   match(Set dst (CMoveP (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8739   ins_cost(80);
  8740   format %{
  8741              "CMP$cop $tmp1,$tmp2\t @cmovP_cmpI_reg_reg\n\t"
  8742              "CMOV $dst,$src\t @cmovP_cmpI_reg_reg"
  8743          %}
  8744   ins_encode %{
  8745     Register op1 = $tmp1$$Register;
  8746     Register op2 = $tmp2$$Register;
  8747     Register dst = $dst$$Register;
  8748     Register src = $src$$Register;
  8749     int     flag = $cop$$cmpcode;
  8751     switch(flag)
  8753       case 0x01: //equal
  8754         __ subu32(AT, op1, op2);
  8755         __ movz(dst, src, AT);
  8756         break;
  8758       case 0x02: //not_equal
  8759         __ subu32(AT, op1, op2);
  8760         __ movn(dst, src, AT);
  8761         break;
  8763       case 0x03: //above
  8764         __ slt(AT, op2, op1);
  8765         __ movn(dst, src, AT);
  8766         break;
  8768       case 0x04: //above_equal
  8769         __ slt(AT, op1, op2);
  8770         __ movz(dst, src, AT);
  8771         break;
  8773       case 0x05: //below
  8774         __ slt(AT, op1, op2);
  8775         __ movn(dst, src, AT);
  8776         break;
  8778       case 0x06: //below_equal
  8779         __ slt(AT, op2, op1);
  8780         __ movz(dst, src, AT);
  8781        break;
  8783       default:
  8784           Unimplemented();
  8786   %}
  8788   ins_pipe( pipe_slow );
  8789 %}
  8791 instruct cmovN_cmpI_reg_reg(mRegN dst, mRegN src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8792   match(Set dst (CMoveN (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8793   ins_cost(80);
  8794   format %{
  8795              "CMP$cop $tmp1,$tmp2\t @cmovN_cmpI_reg_reg\n\t"
  8796              "CMOV $dst,$src\t @cmovN_cmpI_reg_reg"
  8797          %}
  8798   ins_encode %{
  8799     Register op1 = $tmp1$$Register;
  8800     Register op2 = $tmp2$$Register;
  8801     Register dst = $dst$$Register;
  8802     Register src = $src$$Register;
  8803     int     flag = $cop$$cmpcode;
  8805     switch(flag)
  8807       case 0x01: //equal
  8808         __ subu32(AT, op1, op2);
  8809         __ movz(dst, src, AT);
  8810         break;
  8812       case 0x02: //not_equal
  8813         __ subu32(AT, op1, op2);
  8814         __ movn(dst, src, AT);
  8815         break;
  8817       case 0x03: //above
  8818         __ slt(AT, op2, op1);
  8819         __ movn(dst, src, AT);
  8820         break;
  8822       case 0x04: //above_equal
  8823         __ slt(AT, op1, op2);
  8824         __ movz(dst, src, AT);
  8825         break;
  8827       case 0x05: //below
  8828         __ slt(AT, op1, op2);
  8829         __ movn(dst, src, AT);
  8830         break;
  8832       case 0x06: //below_equal
  8833         __ slt(AT, op2, op1);
  8834         __ movz(dst, src, AT);
  8835        break;
  8837       default:
  8838           Unimplemented();
  8840   %}
  8842   ins_pipe( pipe_slow );
  8843 %}
  8846 instruct cmovL_cmpI_reg_reg(mRegL dst, mRegL src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8847   match(Set dst (CMoveL (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8848   ins_cost(80);
  8849   format %{
  8850              "CMP$cop  $tmp1, $tmp2\t  @cmovL_cmpI_reg_reg\n"
  8851              "\tCMOV  $dst,$src \t @cmovL_cmpI_reg_reg"
  8852          %}
  8854   ins_encode %{
  8855     Register op1 = $tmp1$$Register;
  8856     Register op2 = $tmp2$$Register;
  8857     Register dst = as_Register($dst$$reg);
  8858     Register src = as_Register($src$$reg);
  8859     int     flag = $cop$$cmpcode;
  8861     switch(flag)
  8863       case 0x01: //equal
  8864         __ subu32(AT, op1, op2);
  8865         __ movz(dst, src, AT);
  8866         break;
  8868       case 0x02: //not_equal
  8869         __ subu32(AT, op1, op2);
  8870         __ movn(dst, src, AT);
  8871         break;
  8873       case 0x03: //great
  8874         __ slt(AT, op2, op1);
  8875         __ movn(dst, src, AT);
  8876         break;
  8878       case 0x04: //great_equal
  8879         __ slt(AT, op1, op2);
  8880         __ movz(dst, src, AT);
  8881         break;
  8883       case 0x05: //less
  8884         __ slt(AT, op1, op2);
  8885         __ movn(dst, src, AT);
  8886         break;
  8888       case 0x06: //less_equal
  8889         __ slt(AT, op2, op1);
  8890         __ movz(dst, src, AT);
  8891        break;
  8893       default:
  8894           Unimplemented();
  8896   %}
  8898   ins_pipe( pipe_slow );
  8899 %}
  8901 instruct cmovL_cmpL_reg_reg(mRegL dst, mRegL src, mRegL tmp1, mRegL tmp2, cmpOp cop ) %{
  8902   match(Set dst (CMoveL (Binary cop (CmpL tmp1 tmp2)) (Binary dst src)));
  8903   ins_cost(80);
  8904   format %{
  8905              "CMP$cop  $tmp1, $tmp2\t  @cmovL_cmpL_reg_reg\n"
  8906              "\tCMOV  $dst,$src \t @cmovL_cmpL_reg_reg"
  8907          %}
  8908   ins_encode %{
  8909     Register opr1 = as_Register($tmp1$$reg);
  8910     Register opr2 = as_Register($tmp2$$reg);
  8911     Register dst  = as_Register($dst$$reg);
  8912     Register src  = as_Register($src$$reg);
  8913     int     flag = $cop$$cmpcode;
  8915     switch(flag)
  8917       case 0x01: //equal
  8918         __ subu(AT, opr1, opr2);
  8919         __ movz(dst, src, AT);
  8920         break;
  8922       case 0x02: //not_equal
  8923         __ subu(AT, opr1, opr2);
  8924         __ movn(dst, src, AT);
  8925         break;
  8927       case 0x03: //greater
  8928         __ slt(AT, opr2, opr1);
  8929         __ movn(dst, src, AT);
  8930         break;
  8932       case 0x04: //greater_equal
  8933         __ slt(AT, opr1, opr2);
  8934         __ movz(dst, src, AT);
  8935         break;
  8937       case 0x05: //less
  8938         __ slt(AT, opr1, opr2);
  8939         __ movn(dst, src, AT);
  8940         break;
  8942       case 0x06: //less_equal
  8943        __ slt(AT, opr2, opr1);
  8944        __ movz(dst, src, AT);
  8945        break;
  8947       default:
  8948           Unimplemented();
  8950   %}
  8952   ins_pipe( pipe_slow );
  8953 %}
  8955 instruct cmovL_cmpN_reg_reg(mRegL dst, mRegL src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8956   match(Set dst (CMoveL (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8957   ins_cost(80);
  8958   format %{
  8959              "CMPU$cop $tmp1,$tmp2\t @cmovL_cmpN_reg_reg\n\t"
  8960              "CMOV $dst,$src\t @cmovL_cmpN_reg_reg"
  8961          %}
  8962   ins_encode %{
  8963     Register op1 = $tmp1$$Register;
  8964     Register op2 = $tmp2$$Register;
  8965     Register dst = $dst$$Register;
  8966     Register src = $src$$Register;
  8967     int     flag = $cop$$cmpcode;
  8969     switch(flag)
  8971       case 0x01: //equal
  8972         __ subu32(AT, op1, op2);
  8973         __ movz(dst, src, AT);
  8974         break;
  8976       case 0x02: //not_equal
  8977         __ subu32(AT, op1, op2);
  8978         __ movn(dst, src, AT);
  8979         break;
  8981       case 0x03: //above
  8982         __ sltu(AT, op2, op1);
  8983         __ movn(dst, src, AT);
  8984         break;
  8986       case 0x04: //above_equal
  8987         __ sltu(AT, op1, op2);
  8988         __ movz(dst, src, AT);
  8989         break;
  8991       case 0x05: //below
  8992         __ sltu(AT, op1, op2);
  8993         __ movn(dst, src, AT);
  8994         break;
  8996       case 0x06: //below_equal
  8997         __ sltu(AT, op2, op1);
  8998         __ movz(dst, src, AT);
  8999         break;
  9001       default:
  9002           Unimplemented();
  9004   %}
  9006   ins_pipe( pipe_slow );
  9007 %}
  9010 instruct cmovL_cmpD_reg_reg(mRegL dst, mRegL src, regD tmp1, regD tmp2, cmpOp cop ) %{
  9011   match(Set dst (CMoveL (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  9012   ins_cost(80);
  9013   format %{
  9014              "CMP$cop  $tmp1, $tmp2\t  @cmovL_cmpD_reg_reg\n"
  9015              "\tCMOV  $dst,$src \t @cmovL_cmpD_reg_reg"
  9016          %}
  9017   ins_encode %{
  9018     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  9019     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  9020     Register dst = as_Register($dst$$reg);
  9021     Register src = as_Register($src$$reg);
  9023     int     flag = $cop$$cmpcode;
  9025     switch(flag)
  9027       case 0x01: //equal
  9028         __ c_eq_d(reg_op1, reg_op2);
  9029         __ movt(dst, src);
  9030         break;
  9031       case 0x02: //not_equal
  9032         __ c_eq_d(reg_op1, reg_op2);
  9033         __ movf(dst, src);
  9034         break;
  9035       case 0x03: //greater
  9036         __ c_ole_d(reg_op1, reg_op2);
  9037         __ movf(dst, src);
  9038         break;
  9039       case 0x04: //greater_equal
  9040         __ c_olt_d(reg_op1, reg_op2);
  9041         __ movf(dst, src);
  9042         break;
  9043       case 0x05: //less
  9044         __ c_ult_d(reg_op1, reg_op2);
  9045         __ movt(dst, src);
  9046         break;
  9047       case 0x06: //less_equal
  9048         __ c_ule_d(reg_op1, reg_op2);
  9049         __ movt(dst, src);
  9050         break;
  9051       default:
  9052           Unimplemented();
  9054   %}
  9056   ins_pipe( pipe_slow );
  9057 %}
  9059 instruct cmovD_cmpD_reg_reg(regD dst, regD src, regD tmp1, regD tmp2, cmpOp cop ) %{
  9060   match(Set dst (CMoveD (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  9061   ins_cost(200);
  9062   format %{
  9063              "CMP$cop  $tmp1, $tmp2\t  @cmovD_cmpD_reg_reg\n"
  9064              "\tCMOV  $dst,$src \t @cmovD_cmpD_reg_reg"
  9065          %}
  9066   ins_encode %{
  9067     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  9068     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  9069     FloatRegister dst = as_FloatRegister($dst$$reg);
  9070     FloatRegister src = as_FloatRegister($src$$reg);
  9072     int     flag = $cop$$cmpcode;
  9074     Label L;
  9076     switch(flag)
  9078       case 0x01: //equal
  9079         __ c_eq_d(reg_op1, reg_op2);
  9080         __ bc1f(L);
  9081         __ nop();
  9082         __ mov_d(dst, src);
  9083         __ bind(L); 
  9084         break;
  9085       case 0x02: //not_equal
  9086 //2016/4/19 aoqi: See instruct branchConD_reg_reg. The change in branchConD_reg_reg fixed a bug. It seems similar here, so I made thesame change.
  9087         __ c_eq_d(reg_op1, reg_op2);
  9088         __ bc1t(L);
  9089         __ nop();
  9090         __ mov_d(dst, src);
  9091         __ bind(L); 
  9092         break;
  9093       case 0x03: //greater
  9094         __ c_ole_d(reg_op1, reg_op2);
  9095         __ bc1t(L);
  9096         __ nop();
  9097         __ mov_d(dst, src);
  9098         __ bind(L); 
  9099         break;
  9100       case 0x04: //greater_equal
  9101         __ c_olt_d(reg_op1, reg_op2);
  9102         __ bc1t(L);
  9103         __ nop();
  9104         __ mov_d(dst, src);
  9105         __ bind(L); 
  9106         break;
  9107       case 0x05: //less
  9108         __ c_ult_d(reg_op1, reg_op2);
  9109         __ bc1f(L);
  9110         __ nop();
  9111         __ mov_d(dst, src);
  9112         __ bind(L); 
  9113         break;
  9114       case 0x06: //less_equal
  9115         __ c_ule_d(reg_op1, reg_op2);
  9116         __ bc1f(L);
  9117         __ nop();
  9118         __ mov_d(dst, src);
  9119         __ bind(L); 
  9120         break;
  9121       default:
  9122           Unimplemented();
  9124   %}
  9126   ins_pipe( pipe_slow );
  9127 %}
  9129 instruct cmovF_cmpI_reg_reg(regF dst, regF src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  9130   match(Set dst (CMoveF (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  9131   ins_cost(200);
  9132   format %{
  9133              "CMP$cop  $tmp1, $tmp2\t  @cmovF_cmpI_reg_reg\n"
  9134              "\tCMOV  $dst, $src \t @cmovF_cmpI_reg_reg"
  9135          %}
  9137   ins_encode %{
  9138     Register op1 = $tmp1$$Register;
  9139     Register op2 = $tmp2$$Register;
  9140     FloatRegister dst = as_FloatRegister($dst$$reg);
  9141     FloatRegister src = as_FloatRegister($src$$reg);
  9142     int     flag = $cop$$cmpcode;
  9143     Label      L; 
  9145     switch(flag)
  9147       case 0x01: //equal
  9148        	__ bne(op1, op2, L); 
  9149         __ nop();
  9150         __ mov_s(dst, src);
  9151         __ bind(L);
  9152         break;
  9153       case 0x02: //not_equal
  9154        	__ beq(op1, op2, L); 
  9155         __ nop();
  9156         __ mov_s(dst, src);
  9157         __ bind(L);
  9158         break;
  9159       case 0x03: //great
  9160         __ slt(AT, op2, op1);
  9161        	__ beq(AT, R0, L);
  9162         __ nop();
  9163         __ mov_s(dst, src);
  9164         __ bind(L);
  9165         break;
  9166       case 0x04: //great_equal
  9167         __ slt(AT, op1, op2);
  9168         __ bne(AT, R0, L); 
  9169         __ nop();
  9170         __ mov_s(dst, src);
  9171         __ bind(L);
  9172         break;
  9173       case 0x05: //less
  9174         __ slt(AT, op1, op2);
  9175        	__ beq(AT, R0, L);
  9176         __ nop();
  9177         __ mov_s(dst, src);
  9178         __ bind(L);
  9179         break;
  9180       case 0x06: //less_equal
  9181         __ slt(AT, op2, op1);
  9182        	__ bne(AT, R0, L); 
  9183         __ nop();
  9184         __ mov_s(dst, src);
  9185         __ bind(L);
  9186        break;
  9187       default:
  9188           Unimplemented();
  9190   %}
  9192   ins_pipe( pipe_slow );
  9193 %}
  9195 instruct cmovD_cmpI_reg_reg(regD dst, regD src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  9196   match(Set dst (CMoveD (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  9197   ins_cost(200);
  9198   format %{
  9199              "CMP$cop  $tmp1, $tmp2\t  @cmovD_cmpI_reg_reg\n"
  9200              "\tCMOV  $dst, $src \t @cmovD_cmpI_reg_reg"
  9201          %}
  9203   ins_encode %{
  9204     Register op1 = $tmp1$$Register;
  9205     Register op2 = $tmp2$$Register;
  9206     FloatRegister dst = as_FloatRegister($dst$$reg);
  9207     FloatRegister src = as_FloatRegister($src$$reg);
  9208     int     flag = $cop$$cmpcode;
  9209     Label      L; 
  9211     switch(flag)
  9213       case 0x01: //equal
  9214        	__ bne(op1, op2, L); 
  9215         __ nop();
  9216         __ mov_d(dst, src);
  9217         __ bind(L);
  9218         break;
  9219       case 0x02: //not_equal
  9220        	__ beq(op1, op2, L); 
  9221         __ nop();
  9222         __ mov_d(dst, src);
  9223         __ bind(L);
  9224         break;
  9225       case 0x03: //great
  9226         __ slt(AT, op2, op1);
  9227        	__ beq(AT, R0, L);
  9228         __ nop();
  9229         __ mov_d(dst, src);
  9230         __ bind(L);
  9231         break;
  9232       case 0x04: //great_equal
  9233         __ slt(AT, op1, op2);
  9234         __ bne(AT, R0, L); 
  9235         __ nop();
  9236         __ mov_d(dst, src);
  9237         __ bind(L);
  9238         break;
  9239       case 0x05: //less
  9240         __ slt(AT, op1, op2);
  9241        	__ beq(AT, R0, L);
  9242         __ nop();
  9243         __ mov_d(dst, src);
  9244         __ bind(L);
  9245         break;
  9246       case 0x06: //less_equal
  9247         __ slt(AT, op2, op1);
  9248        	__ bne(AT, R0, L); 
  9249         __ nop();
  9250         __ mov_d(dst, src);
  9251         __ bind(L);
  9252        break;
  9253       default:
  9254           Unimplemented();
  9256   %}
  9258   ins_pipe( pipe_slow );
  9259 %}
  9261 instruct cmovD_cmpP_reg_reg(regD dst, regD src, mRegP tmp1, mRegP tmp2, cmpOp cop ) %{
  9262   match(Set dst (CMoveD (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  9263   ins_cost(200);
  9264   format %{
  9265              "CMP$cop  $tmp1, $tmp2\t  @cmovD_cmpP_reg_reg\n"
  9266              "\tCMOV  $dst, $src \t @cmovD_cmpP_reg_reg"
  9267          %}
  9269   ins_encode %{
  9270     Register op1 = $tmp1$$Register;
  9271     Register op2 = $tmp2$$Register;
  9272     FloatRegister dst = as_FloatRegister($dst$$reg);
  9273     FloatRegister src = as_FloatRegister($src$$reg);
  9274     int     flag = $cop$$cmpcode;
  9275     Label      L; 
  9277     switch(flag)
  9279       case 0x01: //equal
  9280        	__ bne(op1, op2, L); 
  9281         __ nop();
  9282         __ mov_d(dst, src);
  9283         __ bind(L);
  9284         break;
  9285       case 0x02: //not_equal
  9286        	__ beq(op1, op2, L); 
  9287         __ nop();
  9288         __ mov_d(dst, src);
  9289         __ bind(L);
  9290         break;
  9291       case 0x03: //great
  9292         __ slt(AT, op2, op1);
  9293        	__ beq(AT, R0, L);
  9294         __ nop();
  9295         __ mov_d(dst, src);
  9296         __ bind(L);
  9297         break;
  9298       case 0x04: //great_equal
  9299         __ slt(AT, op1, op2);
  9300         __ bne(AT, R0, L); 
  9301         __ nop();
  9302         __ mov_d(dst, src);
  9303         __ bind(L);
  9304         break;
  9305       case 0x05: //less
  9306         __ slt(AT, op1, op2);
  9307        	__ beq(AT, R0, L);
  9308         __ nop();
  9309         __ mov_d(dst, src);
  9310         __ bind(L);
  9311         break;
  9312       case 0x06: //less_equal
  9313         __ slt(AT, op2, op1);
  9314        	__ bne(AT, R0, L); 
  9315         __ nop();
  9316         __ mov_d(dst, src);
  9317         __ bind(L);
  9318        break;
  9319       default:
  9320           Unimplemented();
  9322   %}
  9324   ins_pipe( pipe_slow );
  9325 %}
  9327 //FIXME
  9328 instruct cmovI_cmpF_reg_reg(mRegI dst, mRegI src, regF tmp1, regF tmp2, cmpOp cop ) %{
  9329   match(Set dst (CMoveI (Binary cop (CmpF tmp1 tmp2)) (Binary dst src)));
  9330   ins_cost(80);
  9331   format %{
  9332              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpF_reg_reg\n"
  9333              "\tCMOV  $dst,$src \t @cmovI_cmpF_reg_reg"
  9334          %}
  9336   ins_encode %{
  9337     FloatRegister reg_op1 = $tmp1$$FloatRegister;
  9338     FloatRegister reg_op2 = $tmp2$$FloatRegister;
  9339     Register dst = $dst$$Register;
  9340     Register src = $src$$Register;
  9341     int     flag = $cop$$cmpcode;
  9343     switch(flag)
  9345       case 0x01: //equal
  9346         __ c_eq_s(reg_op1, reg_op2);
  9347         __ movt(dst, src);
  9348         break;
  9349       case 0x02: //not_equal
  9350         __ c_eq_s(reg_op1, reg_op2);
  9351         __ movf(dst, src);
  9352         break;
  9353       case 0x03: //greater
  9354         __ c_ole_s(reg_op1, reg_op2);
  9355         __ movf(dst, src);
  9356         break;
  9357       case 0x04: //greater_equal
  9358         __ c_olt_s(reg_op1, reg_op2);
  9359         __ movf(dst, src);
  9360         break;
  9361       case 0x05: //less
  9362         __ c_ult_s(reg_op1, reg_op2);
  9363         __ movt(dst, src);
  9364         break;
  9365       case 0x06: //less_equal
  9366         __ c_ule_s(reg_op1, reg_op2);
  9367         __ movt(dst, src);
  9368        break;
  9369       default:
  9370           Unimplemented();
  9372   %}
  9373   ins_pipe( pipe_slow );
  9374 %}
  9376 instruct cmovF_cmpF_reg_reg(regF dst, regF src, regF tmp1, regF tmp2, cmpOp cop ) %{
  9377   match(Set dst (CMoveF (Binary cop (CmpF tmp1 tmp2)) (Binary dst src)));
  9378   ins_cost(200);
  9379   format %{
  9380              "CMP$cop  $tmp1, $tmp2\t  @cmovF_cmpF_reg_reg\n"
  9381              "\tCMOV  $dst,$src \t @cmovF_cmpF_reg_reg"
  9382          %}
  9384   ins_encode %{
  9385     FloatRegister reg_op1 = $tmp1$$FloatRegister;
  9386     FloatRegister reg_op2 = $tmp2$$FloatRegister;
  9387     FloatRegister dst = $dst$$FloatRegister;
  9388     FloatRegister src = $src$$FloatRegister;
  9389     Label  L;
  9390     int    flag = $cop$$cmpcode;
  9392     switch(flag)
  9394       case 0x01: //equal
  9395         __ c_eq_s(reg_op1, reg_op2);
  9396         __ bc1f(L);
  9397         __ nop();
  9398         __ mov_s(dst, src);
  9399         __ bind(L);
  9400         break;
  9401       case 0x02: //not_equal
  9402         __ c_eq_s(reg_op1, reg_op2);
  9403         __ bc1t(L);
  9404         __ nop();
  9405         __ mov_s(dst, src);
  9406         __ bind(L);
  9407         break;
  9408       case 0x03: //greater
  9409         __ c_ole_s(reg_op1, reg_op2);
  9410         __ bc1t(L);
  9411         __ nop();
  9412         __ mov_s(dst, src);
  9413         __ bind(L);
  9414         break;
  9415       case 0x04: //greater_equal
  9416         __ c_olt_s(reg_op1, reg_op2);
  9417         __ bc1t(L);
  9418         __ nop();
  9419         __ mov_s(dst, src);
  9420         __ bind(L);
  9421         break;
  9422       case 0x05: //less
  9423         __ c_ult_s(reg_op1, reg_op2);
  9424         __ bc1f(L);
  9425         __ nop();
  9426         __ mov_s(dst, src);
  9427         __ bind(L);
  9428         break;
  9429       case 0x06: //less_equal
  9430         __ c_ule_s(reg_op1, reg_op2);
  9431         __ bc1f(L);
  9432         __ nop();
  9433         __ mov_s(dst, src);
  9434         __ bind(L);
  9435        break;
  9436       default:
  9437           Unimplemented();
  9439   %}
  9440   ins_pipe( pipe_slow );
  9441 %}
  9443 // Manifest a CmpL result in an integer register.  Very painful.
  9444 // This is the test to avoid.
  9445 instruct cmpL3_reg_reg(mRegI dst, mRegL src1, mRegL src2) %{
  9446   match(Set dst (CmpL3 src1 src2));
  9447   ins_cost(1000);
  9448   format %{ "cmpL3  $dst, $src1, $src2 @ cmpL3_reg_reg" %}
  9449   ins_encode %{
  9450     Register opr1 = as_Register($src1$$reg);
  9451     Register opr2 = as_Register($src2$$reg);
  9452     Register dst  = as_Register($dst$$reg);
  9454     Label Done;
  9456     __ subu(AT, opr1, opr2);
  9457     __ bltz(AT, Done);
  9458     __ delayed()->daddiu(dst, R0, -1);
  9460     __ move(dst, 1);
  9461     __ movz(dst, R0, AT);
  9463     __ bind(Done);
  9464   %}
  9465   ins_pipe( pipe_slow );
  9466 %}
  9468 //
  9469 // less_rsult     = -1 
  9470 // greater_result =  1
  9471 // equal_result   =  0 
  9472 // nan_result     = -1
  9473 //
  9474 instruct cmpF3_reg_reg(mRegI dst, regF src1, regF src2) %{
  9475   match(Set dst (CmpF3 src1 src2));
  9476   ins_cost(1000);
  9477   format %{ "cmpF3  $dst, $src1, $src2 @ cmpF3_reg_reg" %}
  9478   ins_encode %{
  9479     FloatRegister src1 = as_FloatRegister($src1$$reg);
  9480     FloatRegister src2 = as_FloatRegister($src2$$reg);
  9481     Register dst = as_Register($dst$$reg);
  9483     Label Done;
  9485     __ c_ult_s(src1, src2);
  9486     __ bc1t(Done);
  9487     __ delayed()->daddiu(dst, R0, -1);
  9489     __ c_eq_s(src1, src2);
  9490     __ move(dst, 1);
  9491     __ movt(dst, R0);
  9493     __ bind(Done);
  9494   %}
  9495   ins_pipe( pipe_slow );
  9496 %}
  9498 instruct cmpD3_reg_reg(mRegI dst, regD src1, regD src2) %{
  9499   match(Set dst (CmpD3 src1 src2));
  9500   ins_cost(1000);
  9501   format %{ "cmpD3  $dst, $src1, $src2 @ cmpD3_reg_reg" %}
  9502   ins_encode %{
  9503     FloatRegister src1 = as_FloatRegister($src1$$reg);
  9504     FloatRegister src2 = as_FloatRegister($src2$$reg);
  9505     Register dst = as_Register($dst$$reg);
  9507     Label Done;
  9509     __ c_ult_d(src1, src2);
  9510     __ bc1t(Done);
  9511     __ delayed()->daddiu(dst, R0, -1);
  9513     __ c_eq_d(src1, src2);
  9514     __ move(dst, 1);
  9515     __ movt(dst, R0);
  9517     __ bind(Done);
  9518   %}
  9519   ins_pipe( pipe_slow );
  9520 %}
  9522 instruct clear_array(mRegL cnt, mRegP base, Universe dummy) %{
  9523   match(Set dummy (ClearArray cnt base));
  9524   format %{ "CLEAR_ARRAY base = $base, cnt = $cnt # Clear doublewords" %}
  9525   ins_encode %{
  9526     //Assume cnt is the number of bytes in an array to be cleared,
  9527     //and base points to the starting address of the array.
  9528     Register base = $base$$Register;
  9529     Register num  = $cnt$$Register;
  9530     Label Loop, done;
  9532     /* 2012/9/21 Jin: according to X86, $cnt is caculated by doublewords(8 bytes) */
  9533     __ move(T9, num);	/* T9 = words */
  9534     __ beq(T9, R0, done);
  9535     __ nop();
  9536     __ move(AT, base);
  9538     __ bind(Loop);
  9539     __ sd(R0, Address(AT, 0));
  9540     __ daddi(AT, AT, wordSize);
  9541     __ daddi(T9, T9, -1);
  9542     __ bne(T9, R0, Loop);
  9543     __ delayed()->nop();
  9544     __ bind(done);
  9545   %}
  9546   ins_pipe( pipe_slow );
  9547 %}
  9549 instruct string_compare(a4_RegP str1, mA5RegI cnt1, a6_RegP str2,  mA7RegI cnt2, no_Ax_mRegI result) %{
  9550   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
  9551   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2);
  9553   format %{ "String Compare $str1[len: $cnt1], $str2[len: $cnt2] -> $result @ string_compare" %}
  9554   ins_encode %{
  9555     // Get the first character position in both strings
  9556     //         [8] char array, [12] offset, [16] count 
  9557     Register str1   = $str1$$Register;
  9558     Register str2   = $str2$$Register;
  9559     Register cnt1   = $cnt1$$Register;
  9560     Register cnt2   = $cnt2$$Register;
  9561     Register result = $result$$Register;
  9563     Label L, Loop, haveResult, done;
  9565    // compute the and difference of lengths (in result)
  9566    __ subu(result, cnt1, cnt2); // result holds the difference of two lengths
  9568    // compute the shorter length (in cnt1)
  9569    __ slt(AT, cnt2, cnt1);
  9570    __ movn(cnt1, cnt2, AT);
  9572    // Now the shorter length is in cnt1 and cnt2 can be used as a tmp register 
  9573    __ bind(Loop);                        // Loop begin
  9574    __ beq(cnt1, R0, done);
  9575    __ delayed()->lhu(AT, str1, 0);;
  9577    // compare current character
  9578    __ lhu(cnt2, str2, 0);
  9579    __ bne(AT, cnt2, haveResult);
  9580    __ delayed()->addi(str1, str1, 2);
  9581    __ addi(str2, str2, 2);
  9582    __ b(Loop);
  9583    __ delayed()->addi(cnt1, cnt1, -1);   // Loop end
  9585    __ bind(haveResult);
  9586    __ subu(result, AT, cnt2);
  9588    __ bind(done);
  9589   %}
  9591   ins_pipe( pipe_slow );
  9592 %}
  9594 // intrinsic optimization
  9595 instruct string_equals(a4_RegP str1, a5_RegP str2, mA6RegI cnt, mA7RegI temp, no_Ax_mRegI result) %{
  9596   match(Set result (StrEquals (Binary str1 str2) cnt));
  9597   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL temp);
  9599   format %{ "String Equal $str1, $str2, len:$cnt  tmp:$temp -> $result @ string_equals" %}
  9600   ins_encode %{
  9601     // Get the first character position in both strings
  9602     //         [8] char array, [12] offset, [16] count 
  9603     Register str1   = $str1$$Register;
  9604     Register str2   = $str2$$Register;
  9605     Register cnt    = $cnt$$Register;
  9606     Register tmp    = $temp$$Register;
  9607     Register result = $result$$Register;
  9609     Label    Loop, done;
  9612    __ beq(str1, str2, done);  // same char[] ?
  9613    __ daddiu(result, R0, 1);
  9615    __ bind(Loop);             // Loop begin
  9616    __ beq(cnt, R0, done);
  9617    __ daddiu(result, R0, 1); // count == 0
  9619    // compare current character
  9620    __ lhu(AT, str1, 0);;
  9621    __ lhu(tmp, str2, 0);
  9622    __ bne(AT, tmp, done);
  9623    __ delayed()->daddi(result, R0, 0);
  9624    __ addi(str1, str1, 2);
  9625    __ addi(str2, str2, 2);
  9626    __ b(Loop);
  9627    __ delayed()->addi(cnt, cnt, -1);  // Loop end
  9629    __ bind(done);
  9630   %}
  9632   ins_pipe( pipe_slow );
  9633 %}
  9635 //----------Arithmetic Instructions-------------------------------------------
  9636 //----------Addition Instructions---------------------------------------------
  9637 instruct addI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9638   match(Set dst (AddI src1 src2));
  9640   format %{ "add   $dst, $src1, $src2 #@addI_Reg_Reg" %}
  9641   ins_encode %{
  9642     Register  dst = $dst$$Register;
  9643     Register src1 = $src1$$Register;
  9644     Register src2 = $src2$$Register;
  9645     __ addu32(dst, src1, src2);
  9646   %}
  9647   ins_pipe( ialu_regI_regI );
  9648 %}
  9650 instruct addI_Reg_imm(mRegI dst, mRegI src1,  immI src2) %{
  9651   match(Set dst (AddI src1 src2));
  9653   format %{ "add    $dst, $src1, $src2 #@addI_Reg_imm" %}
  9654   ins_encode %{
  9655     Register  dst = $dst$$Register;
  9656     Register src1 = $src1$$Register;
  9657     int       imm = $src2$$constant;
  9659     if(Assembler::is_simm16(imm)) {
  9660        __ addiu32(dst, src1, imm);
  9661     } else {
  9662        __ move(AT, imm);
  9663        __ addu32(dst, src1, AT);
  9665   %}
  9666   ins_pipe( ialu_regI_regI );
  9667 %}
  9669 instruct addP_reg_reg(mRegP dst, mRegP src1, mRegL src2) %{
  9670   match(Set dst (AddP src1 src2));
  9672   format %{ "dadd    $dst, $src1, $src2 #@addP_reg_reg" %}
  9674   ins_encode %{
  9675     Register  dst = $dst$$Register;
  9676     Register src1 = $src1$$Register;
  9677     Register src2 = $src2$$Register;
  9678     __ daddu(dst, src1, src2);  
  9679   %}
  9681   ins_pipe( ialu_regI_regI );
  9682 %}
  9684 instruct addP_reg_reg_convI2L(mRegP dst, mRegP src1, mRegI src2) %{
  9685   match(Set dst (AddP src1 (ConvI2L src2)));
  9687   format %{ "dadd    $dst, $src1, $src2 #@addP_reg_reg_convI2L" %}
  9689   ins_encode %{
  9690     Register  dst = $dst$$Register;
  9691     Register src1 = $src1$$Register;
  9692     Register src2 = $src2$$Register;
  9693     __ daddu(dst, src1, src2);  
  9694   %}
  9696   ins_pipe( ialu_regI_regI );
  9697 %}
  9699 instruct addP_reg_imm(mRegP dst, mRegP src1,  immL src2) %{
  9700   match(Set dst (AddP src1 src2));
  9702   format %{ "daddi   $dst, $src1, $src2 #@addP_reg_imm" %}
  9703   ins_encode %{
  9704     Register src1 = $src1$$Register;
  9705     long      src2 = $src2$$constant;
  9706     Register  dst = $dst$$Register;
  9708     if(Assembler::is_simm16(src2)) {
  9709        __ daddiu(dst, src1, src2);
  9710     } else {
  9711        __ set64(AT, src2);
  9712        __ daddu(dst, src1, AT);
  9714   %}
  9715   ins_pipe( ialu_regI_imm16 );
  9716 %}
  9718 // Add Long Register with Register
  9719 instruct addL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
  9720   match(Set dst (AddL src1 src2));
  9721   ins_cost(200);
  9722   format %{ "ADD    $dst, $src1, $src2 #@addL_Reg_Reg\t" %}
  9724   ins_encode %{
  9725     Register dst_reg = as_Register($dst$$reg);
  9726     Register src1_reg = as_Register($src1$$reg);
  9727     Register src2_reg = as_Register($src2$$reg);
  9729     __ daddu(dst_reg, src1_reg, src2_reg);
  9730   %}
  9732   ins_pipe( ialu_regL_regL );
  9733 %}
  9735 instruct addL_Reg_imm(mRegL dst, mRegL src1, immL16 src2)
  9736 %{
  9737   match(Set dst (AddL src1 src2));
  9739   format %{ "ADD    $dst, $src1, $src2 #@addL_Reg_imm " %}
  9740   ins_encode %{
  9741     Register dst_reg  = as_Register($dst$$reg);
  9742     Register src1_reg = as_Register($src1$$reg);
  9743     int      src2_imm = $src2$$constant;
  9745     __ daddiu(dst_reg, src1_reg, src2_imm);
  9746   %}
  9748   ins_pipe( ialu_regL_regL );
  9749 %}
  9751 instruct addL_RegI2L_imm(mRegL dst, mRegI src1, immL16 src2)
  9752 %{
  9753   match(Set dst (AddL (ConvI2L src1) src2));
  9755   format %{ "ADD    $dst, $src1, $src2 #@addL_RegI2L_imm " %}
  9756   ins_encode %{
  9757     Register dst_reg  = as_Register($dst$$reg);
  9758     Register src1_reg = as_Register($src1$$reg);
  9759     int      src2_imm = $src2$$constant;
  9761     __ daddiu(dst_reg, src1_reg, src2_imm);
  9762   %}
  9764   ins_pipe( ialu_regL_regL );
  9765 %}
  9767 instruct addL_RegI2L_Reg(mRegL dst, mRegI src1, mRegL src2) %{
  9768   match(Set dst (AddL (ConvI2L src1) src2));
  9769   ins_cost(200);
  9770   format %{ "ADD    $dst, $src1, $src2 #@addL_RegI2L_Reg\t" %}
  9772   ins_encode %{
  9773     Register dst_reg = as_Register($dst$$reg);
  9774     Register src1_reg = as_Register($src1$$reg);
  9775     Register src2_reg = as_Register($src2$$reg);
  9777     __ daddu(dst_reg, src1_reg, src2_reg);
  9778   %}
  9780   ins_pipe( ialu_regL_regL );
  9781 %}
  9783 instruct addL_RegI2L_RegI2L(mRegL dst, mRegI src1, mRegI src2) %{
  9784   match(Set dst (AddL (ConvI2L src1) (ConvI2L src2)));
  9785   ins_cost(200);
  9786   format %{ "ADD    $dst, $src1, $src2 #@addL_RegI2L_RegI2L\t" %}
  9788   ins_encode %{
  9789     Register dst_reg = as_Register($dst$$reg);
  9790     Register src1_reg = as_Register($src1$$reg);
  9791     Register src2_reg = as_Register($src2$$reg);
  9793     __ daddu(dst_reg, src1_reg, src2_reg);
  9794   %}
  9796   ins_pipe( ialu_regL_regL );
  9797 %}
  9799 instruct addL_Reg_RegI2L(mRegL dst, mRegL src1, mRegI src2) %{
  9800   match(Set dst (AddL src1 (ConvI2L src2)));
  9801   ins_cost(200);
  9802   format %{ "ADD    $dst, $src1, $src2 #@addL_Reg_RegI2L\t" %}
  9804   ins_encode %{
  9805     Register dst_reg = as_Register($dst$$reg);
  9806     Register src1_reg = as_Register($src1$$reg);
  9807     Register src2_reg = as_Register($src2$$reg);
  9809     __ daddu(dst_reg, src1_reg, src2_reg);
  9810   %}
  9812   ins_pipe( ialu_regL_regL );
  9813 %}
  9815 //----------Subtraction Instructions-------------------------------------------
  9816 // Integer Subtraction Instructions
  9817 instruct subI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9818   match(Set dst (SubI src1 src2));
  9819   ins_cost(100);
  9821   format %{ "sub    $dst, $src1, $src2 #@subI_Reg_Reg" %}
  9822   ins_encode %{
  9823     Register  dst = $dst$$Register;
  9824     Register src1 = $src1$$Register;
  9825     Register src2 = $src2$$Register;
  9826     __ subu32(dst, src1, src2);
  9827   %}
  9828   ins_pipe( ialu_regI_regI );
  9829 %}
  9831 instruct subI_Reg_immI16_sub(mRegI dst, mRegI src1,  immI16_sub src2) %{
  9832   match(Set dst (SubI src1 src2));
  9833   ins_cost(80);
  9835   format %{ "sub    $dst, $src1, $src2 #@subI_Reg_immI16_sub" %}
  9836   ins_encode %{
  9837     Register  dst = $dst$$Register;
  9838     Register src1 = $src1$$Register;
  9839     __ addiu32(dst, src1, -1 * $src2$$constant);
  9840   %}
  9841   ins_pipe( ialu_regI_regI );
  9842 %}
  9844 instruct negI_Reg(mRegI dst, immI0 zero,  mRegI src) %{
  9845   match(Set dst (SubI zero src));
  9846   ins_cost(80);
  9848   format %{ "neg    $dst, $src #@negI_Reg" %}
  9849   ins_encode %{
  9850     Register  dst = $dst$$Register;
  9851     Register  src = $src$$Register;
  9852     __ subu32(dst, R0, src);
  9853   %}
  9854   ins_pipe( ialu_regI_regI );
  9855 %}
  9857 instruct negL_Reg(mRegL dst, immL0 zero,  mRegL src) %{
  9858   match(Set dst (SubL zero src));
  9859   ins_cost(80);
  9861   format %{ "neg    $dst, $src #@negL_Reg" %}
  9862   ins_encode %{
  9863     Register  dst = $dst$$Register;
  9864     Register  src = $src$$Register;
  9865     __ subu(dst, R0, src);
  9866   %}
  9867   ins_pipe( ialu_regI_regI );
  9868 %}
  9870 instruct subL_Reg_immL16_sub(mRegL dst, mRegL src1,  immL16_sub src2) %{
  9871   match(Set dst (SubL src1 src2));
  9872   ins_cost(80);
  9874   format %{ "sub    $dst, $src1, $src2 #@subL_Reg_immL16_sub" %}
  9875   ins_encode %{
  9876     Register  dst = $dst$$Register;
  9877     Register src1 = $src1$$Register;
  9878     __ daddiu(dst, src1, -1 * $src2$$constant);
  9879   %}
  9880   ins_pipe( ialu_regI_regI );
  9881 %}
  9883 // Subtract Long Register with Register.
  9884 instruct subL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
  9885   match(Set dst (SubL src1 src2));
  9886   ins_cost(100);
  9887   format %{ "SubL    $dst, $src1, $src2 @ subL_Reg_Reg" %}
  9888   ins_encode %{
  9889     Register dst  = as_Register($dst$$reg);
  9890     Register src1 = as_Register($src1$$reg);
  9891     Register src2 = as_Register($src2$$reg);
  9893     __ subu(dst, src1, src2);
  9894   %}
  9895   ins_pipe( ialu_regL_regL );
  9896 %}
  9898 instruct subL_Reg_RegI2L(mRegL dst, mRegL src1, mRegI src2) %{
  9899   match(Set dst (SubL src1 (ConvI2L src2)));
  9900   ins_cost(100);
  9901   format %{ "SubL    $dst, $src1, $src2 @ subL_Reg_RegI2L" %}
  9902   ins_encode %{
  9903     Register dst  = as_Register($dst$$reg);
  9904     Register src1 = as_Register($src1$$reg);
  9905     Register src2 = as_Register($src2$$reg);
  9907     __ subu(dst, src1, src2);
  9908   %}
  9909   ins_pipe( ialu_regL_regL );
  9910 %}
  9912 instruct subL_RegI2L_Reg(mRegL dst, mRegI src1, mRegL src2) %{
  9913   match(Set dst (SubL (ConvI2L src1) src2));
  9914   ins_cost(200);
  9915   format %{ "SubL    $dst, $src1, $src2 @ subL_RegI2L_Reg" %}
  9916   ins_encode %{
  9917     Register dst  = as_Register($dst$$reg);
  9918     Register src1 = as_Register($src1$$reg);
  9919     Register src2 = as_Register($src2$$reg);
  9921     __ subu(dst, src1, src2);
  9922   %}
  9923   ins_pipe( ialu_regL_regL );
  9924 %}
  9926 instruct subL_RegI2L_RegI2L(mRegL dst, mRegI src1, mRegI src2) %{
  9927   match(Set dst (SubL (ConvI2L src1) (ConvI2L src2)));
  9928   ins_cost(200);
  9929   format %{ "SubL    $dst, $src1, $src2 @ subL_RegI2L_RegI2L" %}
  9930   ins_encode %{
  9931     Register dst  = as_Register($dst$$reg);
  9932     Register src1 = as_Register($src1$$reg);
  9933     Register src2 = as_Register($src2$$reg);
  9935     __ subu(dst, src1, src2);
  9936   %}
  9937   ins_pipe( ialu_regL_regL );
  9938 %}
  9940 // Integer MOD with Register
  9941 instruct modI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9942   match(Set dst (ModI src1 src2));
  9943   ins_cost(300);
  9944   format %{ "modi   $dst, $src1, $src2 @ modI_Reg_Reg" %}
  9945   ins_encode %{
  9946     Register  dst = $dst$$Register;
  9947     Register src1 = $src1$$Register;
  9948     Register src2 = $src2$$Register;
  9950     //if (UseLoongsonISA) {
  9951     if (0) {
  9952       // 2016.08.10 
  9953       // Experiments show that gsmod is slower that div+mfhi.
  9954       // So I just disable it here.
  9955       __ gsmod(dst, src1, src2);
  9956     } else {
  9957       __ div(src1, src2); 
  9958       __ mfhi(dst);  
  9960   %}
  9962   //ins_pipe( ialu_mod );
  9963   ins_pipe( ialu_regI_regI );
  9964 %}
  9966 instruct modL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
  9967   match(Set dst (ModL src1 src2));
  9968   format %{ "modL  $dst, $src1, $src2 @modL_reg_reg" %}
  9970   ins_encode %{
  9971     Register dst = as_Register($dst$$reg);
  9972     Register op1 = as_Register($src1$$reg);
  9973     Register op2 = as_Register($src2$$reg);
  9975     if (UseLoongsonISA) {
  9976       __ gsdmod(dst, op1, op2);
  9977     } else {
  9978       __ ddiv(op1, op2);
  9979       __ mfhi(dst);
  9981   %}
  9982   ins_pipe( pipe_slow );
  9983 %}
  9985 instruct mulI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9986   match(Set dst (MulI src1 src2));
  9988   ins_cost(300);
  9989   format %{ "mul   $dst, $src1, $src2 @ mulI_Reg_Reg" %}
  9990   ins_encode %{
  9991      Register src1 = $src1$$Register;
  9992      Register src2 = $src2$$Register;
  9993      Register dst  = $dst$$Register;
  9995      __ mul(dst, src1, src2);
  9996   %}
  9997   ins_pipe( ialu_mult );
  9998 %}
 10000 instruct maddI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2, mRegI src3) %{
 10001   match(Set dst (AddI (MulI src1 src2) src3));
 10003   ins_cost(999);
 10004   format %{ "madd   $dst, $src1 * $src2 + $src3 #@maddI_Reg_Reg" %}
 10005   ins_encode %{
 10006      Register src1 = $src1$$Register;
 10007      Register src2 = $src2$$Register;
 10008      Register src3 = $src3$$Register;
 10009      Register dst  = $dst$$Register;
 10011      __ mtlo(src3);
 10012      __ madd(src1, src2);
 10013      __ mflo(dst);
 10014   %}
 10015   ins_pipe( ialu_mult );
 10016 %}
 10018 instruct divI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
 10019   match(Set dst (DivI src1 src2));
 10021   ins_cost(300);
 10022   format %{ "div   $dst, $src1, $src2 @ divI_Reg_Reg" %}
 10023   ins_encode %{
 10024      Register src1 = $src1$$Register;
 10025      Register src2 = $src2$$Register;
 10026      Register dst  = $dst$$Register;
 10028     /* 2012/4/21 Jin: In MIPS, div does not cause exception.
 10029        We must trap an exception manually. */   
 10030     __ teq(R0, src2, 0x7);
 10032     if (UseLoongsonISA) {
 10033       __ gsdiv(dst, src1, src2);
 10034     } else {
 10035       __ div(src1, src2);
 10037       __ nop();
 10038       __ nop();
 10039       __ mflo(dst);
 10041   %}
 10042   ins_pipe( ialu_mod );
 10043 %}
 10045 instruct divF_Reg_Reg(regF dst, regF src1, regF src2) %{
 10046   match(Set dst (DivF src1 src2));
 10048   ins_cost(300);
 10049   format %{ "divF   $dst, $src1, $src2 @ divF_Reg_Reg" %}
 10050   ins_encode %{
 10051      FloatRegister src1 = $src1$$FloatRegister;
 10052      FloatRegister src2 = $src2$$FloatRegister;
 10053      FloatRegister dst  = $dst$$FloatRegister;
 10055     /* Here do we need to trap an exception manually ? */   
 10056     __ div_s(dst, src1, src2);
 10057   %}
 10058   ins_pipe( pipe_slow );
 10059 %}
 10061 instruct divD_Reg_Reg(regD dst, regD src1, regD src2) %{
 10062   match(Set dst (DivD src1 src2));
 10064   ins_cost(300);
 10065   format %{ "divD   $dst, $src1, $src2 @ divD_Reg_Reg" %}
 10066   ins_encode %{
 10067      FloatRegister src1 = $src1$$FloatRegister;
 10068      FloatRegister src2 = $src2$$FloatRegister;
 10069      FloatRegister dst  = $dst$$FloatRegister;
 10071     /* Here do we need to trap an exception manually ? */   
 10072     __ div_d(dst, src1, src2);
 10073   %}
 10074   ins_pipe( pipe_slow );
 10075 %}
 10077 instruct mulL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
 10078   match(Set dst (MulL src1 src2));
 10079   format %{ "mulL  $dst, $src1, $src2 @mulL_reg_reg" %}
 10080   ins_encode %{
 10081     Register dst = as_Register($dst$$reg);
 10082     Register op1 = as_Register($src1$$reg);
 10083     Register op2 = as_Register($src2$$reg);
 10085     if (UseLoongsonISA) {
 10086       __ gsdmult(dst, op1, op2);
 10087     } else {
 10088       __ dmult(op1, op2);
 10089       __ mflo(dst);
 10091   %}
 10092   ins_pipe( pipe_slow );
 10093 %}
 10095 instruct mulL_reg_regI2L(mRegL dst, mRegL src1, mRegI src2) %{
 10096   match(Set dst (MulL src1 (ConvI2L src2)));
 10097   format %{ "mulL  $dst, $src1, $src2 @mulL_reg_regI2L" %}
 10098   ins_encode %{
 10099     Register dst = as_Register($dst$$reg);
 10100     Register op1 = as_Register($src1$$reg);
 10101     Register op2 = as_Register($src2$$reg);
 10103     if (UseLoongsonISA) {
 10104       __ gsdmult(dst, op1, op2);
 10105     } else {
 10106       __ dmult(op1, op2);
 10107       __ mflo(dst);
 10109   %}
 10110   ins_pipe( pipe_slow );
 10111 %}
 10113 instruct divL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
 10114   match(Set dst (DivL src1 src2));
 10115   format %{ "divL  $dst, $src1, $src2 @divL_reg_reg" %}
 10117   ins_encode %{
 10118     Register dst = as_Register($dst$$reg);
 10119     Register op1 = as_Register($src1$$reg);
 10120     Register op2 = as_Register($src2$$reg);
 10122     if (UseLoongsonISA) {
 10123       __ gsddiv(dst, op1, op2);
 10124     } else {
 10125       __ ddiv(op1, op2);
 10126       __ mflo(dst);
 10128   %}
 10129   ins_pipe( pipe_slow );
 10130 %}
 10132 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
 10133   match(Set dst (AddF src1 src2));
 10134   format %{ "AddF  $dst, $src1, $src2 @addF_reg_reg" %}
 10135   ins_encode %{
 10136     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10137     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10138     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10140     __ add_s(dst, src1, src2);  
 10141   %}
 10142   ins_pipe( fpu_regF_regF );
 10143 %}
 10145 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
 10146   match(Set dst (SubF src1 src2));
 10147   format %{ "SubF  $dst, $src1, $src2 @subF_reg_reg" %}
 10148   ins_encode %{
 10149     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10150     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10151     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10153     __ sub_s(dst, src1, src2);  
 10154   %}
 10155   ins_pipe( fpu_regF_regF );
 10156 %}
 10157 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
 10158   match(Set dst (AddD src1 src2));
 10159   format %{ "AddD  $dst, $src1, $src2 @addD_reg_reg" %}
 10160   ins_encode %{
 10161     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10162     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10163     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10165     __ add_d(dst, src1, src2);  
 10166   %}
 10167   ins_pipe( fpu_regF_regF );
 10168 %}
 10170 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
 10171   match(Set dst (SubD src1 src2));
 10172   format %{ "SubD  $dst, $src1, $src2 @subD_reg_reg" %}
 10173   ins_encode %{
 10174     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10175     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10176     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10178     __ sub_d(dst, src1, src2);  
 10179   %}
 10180   ins_pipe( fpu_regF_regF );
 10181 %}
 10183 instruct negF_reg(regF dst, regF src) %{
 10184   match(Set dst (NegF src));
 10185   format %{ "negF  $dst, $src @negF_reg" %}
 10186   ins_encode %{
 10187     FloatRegister src = as_FloatRegister($src$$reg);
 10188     FloatRegister dst = as_FloatRegister($dst$$reg);
 10190     __ neg_s(dst, src);
 10191   %}
 10192   ins_pipe( fpu_regF_regF );
 10193 %}
 10195 instruct negD_reg(regD dst, regD src) %{
 10196   match(Set dst (NegD src));
 10197   format %{ "negD  $dst, $src @negD_reg" %}
 10198   ins_encode %{
 10199     FloatRegister src = as_FloatRegister($src$$reg);
 10200     FloatRegister dst = as_FloatRegister($dst$$reg);
 10202     __ neg_d(dst, src);  
 10203   %}
 10204   ins_pipe( fpu_regF_regF );
 10205 %}
 10208 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
 10209   match(Set dst (MulF src1 src2));
 10210   format %{ "MULF  $dst, $src1, $src2 @mulF_reg_reg" %}
 10211   ins_encode %{
 10212     FloatRegister src1 = $src1$$FloatRegister;
 10213     FloatRegister src2 = $src2$$FloatRegister;
 10214     FloatRegister dst  = $dst$$FloatRegister;
 10216     __ mul_s(dst, src1, src2);  
 10217   %}
 10218   ins_pipe( fpu_regF_regF );
 10219 %}
 10221 instruct maddF_reg_reg(regF dst, regF src1, regF src2, regF src3) %{
 10222   match(Set dst (AddF (MulF src1 src2) src3));
 10223   // For compatibility reason (e.g. on the Loongson platform), disable this guy.
 10224   ins_cost(44444);
 10225   format %{ "maddF  $dst, $src1, $src2, $src3 @maddF_reg_reg" %}
 10226   ins_encode %{
 10227     FloatRegister src1 = $src1$$FloatRegister;
 10228     FloatRegister src2 = $src2$$FloatRegister;
 10229     FloatRegister src3 = $src3$$FloatRegister;
 10230     FloatRegister dst  = $dst$$FloatRegister;
 10232     __ madd_s(dst, src1, src2, src3);  
 10233   %}
 10234   ins_pipe( fpu_regF_regF );
 10235 %}
 10237 // Mul two double precision floating piont number
 10238 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
 10239   match(Set dst (MulD src1 src2));
 10240   format %{ "MULD  $dst, $src1, $src2 @mulD_reg_reg" %}
 10241   ins_encode %{
 10242     FloatRegister src1 = $src1$$FloatRegister;
 10243     FloatRegister src2 = $src2$$FloatRegister;
 10244     FloatRegister dst  = $dst$$FloatRegister;
 10246     __ mul_d(dst, src1, src2);  
 10247   %}
 10248   ins_pipe( fpu_regF_regF );
 10249 %}
 10251 instruct maddD_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
 10252   match(Set dst (AddD (MulD src1 src2) src3));
 10253   // For compatibility reason (e.g. on the Loongson platform), disable this guy.
 10254   ins_cost(44444);
 10255   format %{ "maddD  $dst, $src1, $src2, $src3 @maddD_reg_reg" %}
 10256   ins_encode %{
 10257     FloatRegister src1 = $src1$$FloatRegister;
 10258     FloatRegister src2 = $src2$$FloatRegister;
 10259     FloatRegister src3 = $src3$$FloatRegister;
 10260     FloatRegister dst  = $dst$$FloatRegister;
 10262     __ madd_d(dst, src1, src2, src3);  
 10263   %}
 10264   ins_pipe( fpu_regF_regF );
 10265 %}
 10267 instruct absF_reg(regF dst, regF src) %{
 10268   match(Set dst (AbsF src));
 10269   ins_cost(100);
 10270   format %{ "absF  $dst, $src @absF_reg" %}
 10271   ins_encode %{
 10272     FloatRegister src = as_FloatRegister($src$$reg);
 10273     FloatRegister dst = as_FloatRegister($dst$$reg);
 10275     __ abs_s(dst, src);  
 10276   %}
 10277   ins_pipe( fpu_regF_regF );
 10278 %}
 10281 // intrinsics for math_native.
 10282 // AbsD  SqrtD  CosD  SinD  TanD  LogD  Log10D
 10284 instruct absD_reg(regD dst, regD src) %{
 10285   match(Set dst (AbsD src));
 10286   ins_cost(100);
 10287   format %{ "absD  $dst, $src @absD_reg" %}
 10288   ins_encode %{
 10289     FloatRegister src = as_FloatRegister($src$$reg);
 10290     FloatRegister dst = as_FloatRegister($dst$$reg);
 10292     __ abs_d(dst, src);  
 10293   %}
 10294   ins_pipe( fpu_regF_regF );
 10295 %}
 10297 instruct sqrtD_reg(regD dst, regD src) %{
 10298   match(Set dst (SqrtD src));
 10299   ins_cost(100);
 10300   format %{ "SqrtD  $dst, $src @sqrtD_reg" %}
 10301   ins_encode %{
 10302     FloatRegister src = as_FloatRegister($src$$reg);
 10303     FloatRegister dst = as_FloatRegister($dst$$reg);
 10305     __ sqrt_d(dst, src);  
 10306   %}
 10307   ins_pipe( fpu_regF_regF );
 10308 %}
 10310 instruct sqrtF_reg(regF dst, regF src) %{
 10311   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 10312   ins_cost(100);
 10313   format %{ "SqrtF  $dst, $src @sqrtF_reg" %}
 10314   ins_encode %{
 10315     FloatRegister src = as_FloatRegister($src$$reg);
 10316     FloatRegister dst = as_FloatRegister($dst$$reg);
 10318     __ sqrt_s(dst, src);
 10319   %}
 10320   ins_pipe( fpu_regF_regF );
 10321 %}
 10322 //----------------------------------Logical Instructions----------------------
 10323 //__________________________________Integer Logical Instructions-------------
 10325 //And Instuctions
 10326 // And Register with Immediate
 10327 instruct andI_Reg_immI(mRegI dst, mRegI src1,  immI src2) %{
 10328   match(Set dst (AndI src1 src2));
 10330   format %{ "and  $dst, $src1, $src2 #@andI_Reg_immI" %}
 10331   ins_encode %{
 10332     Register dst = $dst$$Register;
 10333     Register src = $src1$$Register;
 10334     int      val = $src2$$constant;
 10336        __ move(AT, val);
 10337        __ andr(dst, src, AT);
 10338   %}
 10339   ins_pipe( ialu_regI_regI );
 10340 %}
 10342 instruct andI_Reg_imm_0_65535(mRegI dst, mRegI src1,  immI_0_65535 src2) %{
 10343   match(Set dst (AndI src1 src2));
 10344   ins_cost(60);
 10346   format %{ "and  $dst, $src1, $src2 #@andI_Reg_imm_0_65535" %}
 10347   ins_encode %{
 10348     Register dst = $dst$$Register;
 10349     Register src = $src1$$Register;
 10350     int      val = $src2$$constant;
 10352        __ andi(dst, src, val);
 10353   %}
 10354   ins_pipe( ialu_regI_regI );
 10355 %}
 10357 instruct andI_Reg_immI_nonneg_mask(mRegI dst, mRegI src1,  immI_nonneg_mask mask) %{
 10358   match(Set dst (AndI src1 mask));
 10359   ins_cost(60);
 10361   format %{ "and  $dst, $src1, $mask #@andI_Reg_immI_nonneg_mask" %}
 10362   ins_encode %{
 10363     Register dst = $dst$$Register;
 10364     Register src = $src1$$Register;
 10365     int     size = Assembler::is_int_mask($mask$$constant);
 10367     __ ext(dst, src, 0, size);
 10368   %}
 10369   ins_pipe( ialu_regI_regI );
 10370 %}
 10372 instruct andL_Reg_immL_nonneg_mask(mRegL dst, mRegL src1,  immL_nonneg_mask mask) %{
 10373   match(Set dst (AndL src1 mask));
 10374   ins_cost(60);
 10376   format %{ "and  $dst, $src1, $mask #@andL_Reg_immL_nonneg_mask" %}
 10377   ins_encode %{
 10378     Register dst = $dst$$Register;
 10379     Register src = $src1$$Register;
 10380     int     size = Assembler::is_jlong_mask($mask$$constant);
 10382     __ dext(dst, src, 0, size);
 10383   %}
 10384   ins_pipe( ialu_regI_regI );
 10385 %}
 10387 instruct xorI_Reg_imm_0_65535(mRegI dst, mRegI src1,  immI_0_65535 src2) %{
 10388   match(Set dst (XorI src1 src2));
 10389   ins_cost(60);
 10391   format %{ "xori  $dst, $src1, $src2 #@xorI_Reg_imm_0_65535" %}
 10392   ins_encode %{
 10393     Register dst = $dst$$Register;
 10394     Register src = $src1$$Register;
 10395     int      val = $src2$$constant;
 10397        __ xori(dst, src, val);
 10398   %}
 10399   ins_pipe( ialu_regI_regI );
 10400 %}
 10402 instruct xorI_Reg_immI_M1(mRegI dst, mRegI src1,  immI_M1 M1) %{
 10403   match(Set dst (XorI src1 M1));
 10404   predicate(UseLoongsonISA);
 10405   ins_cost(60);
 10407   format %{ "xor  $dst, $src1, $M1 #@xorI_Reg_immI_M1" %}
 10408   ins_encode %{
 10409     Register dst = $dst$$Register;
 10410     Register src = $src1$$Register;
 10412        __ gsorn(dst, R0, src);
 10413   %}
 10414   ins_pipe( ialu_regI_regI );
 10415 %}
 10417 instruct xorL_Reg_imm_0_65535(mRegL dst, mRegL src1,  immL_0_65535 src2) %{
 10418   match(Set dst (XorL src1 src2));
 10419   ins_cost(60);
 10421   format %{ "xori  $dst, $src1, $src2 #@xorL_Reg_imm_0_65535" %}
 10422   ins_encode %{
 10423     Register dst = $dst$$Register;
 10424     Register src = $src1$$Register;
 10425     int      val = $src2$$constant;
 10427        __ xori(dst, src, val);
 10428   %}
 10429   ins_pipe( ialu_regI_regI );
 10430 %}
 10432 /*
 10433 instruct xorL_Reg_immL_M1(mRegL dst, mRegL src1,  immL_M1 M1) %{
 10434   match(Set dst (XorL src1 M1));
 10435   predicate(UseLoongsonISA);
 10436   ins_cost(60);
 10438   format %{ "xor  $dst, $src1, $M1 #@xorL_Reg_immL_M1" %}
 10439   ins_encode %{
 10440     Register dst = $dst$$Register;
 10441     Register src = $src1$$Register;
 10443        __ gsorn(dst, R0, src);
 10444   %}
 10445   ins_pipe( ialu_regI_regI );
 10446 %}
 10447 */
 10449 instruct lbu_and_lmask(mRegI dst, memory mem,  immI_255 mask) %{
 10450   match(Set dst (AndI mask (LoadB mem)));
 10451   ins_cost(60);
 10453   format %{ "lhu  $dst, $mem #@lbu_and_lmask" %}
 10454   ins_encode(load_UB_enc(dst, mem));
 10455   ins_pipe( ialu_loadI );
 10456 %}
 10458 instruct lbu_and_rmask(mRegI dst, memory mem,  immI_255 mask) %{
 10459   match(Set dst (AndI (LoadB mem) mask));
 10460   ins_cost(60);
 10462   format %{ "lhu  $dst, $mem #@lbu_and_rmask" %}
 10463   ins_encode(load_UB_enc(dst, mem));
 10464   ins_pipe( ialu_loadI );
 10465 %}
 10467 instruct andI_Reg_Reg(mRegI dst, mRegI src1,  mRegI src2) %{
 10468   match(Set dst (AndI src1 src2));
 10470   format %{ "and    $dst, $src1, $src2 #@andI_Reg_Reg" %}
 10471   ins_encode %{
 10472     Register dst = $dst$$Register;
 10473     Register src1 = $src1$$Register;
 10474     Register src2 = $src2$$Register;
 10475     __ andr(dst, src1, src2);
 10476   %}
 10477   ins_pipe( ialu_regI_regI );
 10478 %}
 10480 instruct andnI_Reg_nReg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10481   match(Set dst (AndI src1 (XorI src2 M1)));
 10482   predicate(UseLoongsonISA);
 10484   format %{ "andn   $dst, $src1, $src2 #@andnI_Reg_nReg" %}
 10485   ins_encode %{
 10486     Register dst = $dst$$Register;
 10487     Register src1 = $src1$$Register;
 10488     Register src2 = $src2$$Register;
 10490     __ gsandn(dst, src1, src2);
 10491   %}
 10492   ins_pipe( ialu_regI_regI );
 10493 %}
 10495 instruct ornI_Reg_nReg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10496   match(Set dst (OrI src1 (XorI src2 M1)));
 10497   predicate(UseLoongsonISA);
 10499   format %{ "orn    $dst, $src1, $src2 #@ornI_Reg_nReg" %}
 10500   ins_encode %{
 10501     Register dst = $dst$$Register;
 10502     Register src1 = $src1$$Register;
 10503     Register src2 = $src2$$Register;
 10505     __ gsorn(dst, src1, src2);
 10506   %}
 10507   ins_pipe( ialu_regI_regI );
 10508 %}
 10510 instruct andnI_nReg_Reg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10511   match(Set dst (AndI (XorI src1 M1) src2));
 10512   predicate(UseLoongsonISA);
 10514   format %{ "andn   $dst, $src2, $src1 #@andnI_nReg_Reg" %}
 10515   ins_encode %{
 10516     Register dst = $dst$$Register;
 10517     Register src1 = $src1$$Register;
 10518     Register src2 = $src2$$Register;
 10520     __ gsandn(dst, src2, src1);
 10521   %}
 10522   ins_pipe( ialu_regI_regI );
 10523 %}
 10525 instruct ornI_nReg_Reg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10526   match(Set dst (OrI (XorI src1 M1) src2));
 10527   predicate(UseLoongsonISA);
 10529   format %{ "orn    $dst, $src2, $src1 #@ornI_nReg_Reg" %}
 10530   ins_encode %{
 10531     Register dst = $dst$$Register;
 10532     Register src1 = $src1$$Register;
 10533     Register src2 = $src2$$Register;
 10535     __ gsorn(dst, src2, src1);
 10536   %}
 10537   ins_pipe( ialu_regI_regI );
 10538 %}
 10540 // And Long Register with Register
 10541 instruct andL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
 10542   match(Set dst (AndL src1 src2));
 10543   format %{ "AND    $dst, $src1, $src2 @ andL_Reg_Reg\n\t" %}
 10544   ins_encode %{
 10545     Register dst_reg = as_Register($dst$$reg);
 10546     Register src1_reg = as_Register($src1$$reg);
 10547     Register src2_reg = as_Register($src2$$reg);
 10549     __ andr(dst_reg, src1_reg, src2_reg);
 10550   %}
 10551   ins_pipe( ialu_regL_regL );
 10552 %}
 10554 instruct andL_Reg_Reg_convI2L(mRegL dst, mRegL src1, mRegI src2) %{
 10555   match(Set dst (AndL src1 (ConvI2L src2)));
 10556   format %{ "AND    $dst, $src1, $src2 @ andL_Reg_Reg_convI2L\n\t" %}
 10557   ins_encode %{
 10558     Register dst_reg = as_Register($dst$$reg);
 10559     Register src1_reg = as_Register($src1$$reg);
 10560     Register src2_reg = as_Register($src2$$reg);
 10562     __ andr(dst_reg, src1_reg, src2_reg);
 10563   %}
 10564   ins_pipe( ialu_regL_regL );
 10565 %}
 10567 instruct andL_Reg_imm_0_65535(mRegL dst, mRegL src1,  immL_0_65535 src2) %{
 10568   match(Set dst (AndL src1 src2));
 10569   ins_cost(60);
 10571   format %{ "and  $dst, $src1, $src2 #@andL_Reg_imm_0_65535" %}
 10572   ins_encode %{
 10573     Register dst = $dst$$Register;
 10574     Register src = $src1$$Register;
 10575     long     val = $src2$$constant;
 10577        __ andi(dst, src, val);
 10578   %}
 10579   ins_pipe( ialu_regI_regI );
 10580 %}
 10582 /*
 10583 instruct andnL_Reg_nReg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10584   match(Set dst (AndL src1 (XorL src2 M1)));
 10585   predicate(UseLoongsonISA);
 10587   format %{ "andn   $dst, $src1, $src2 #@andnL_Reg_nReg" %}
 10588   ins_encode %{
 10589     Register dst = $dst$$Register;
 10590     Register src1 = $src1$$Register;
 10591     Register src2 = $src2$$Register;
 10593     __ gsandn(dst, src1, src2);
 10594   %}
 10595   ins_pipe( ialu_regI_regI );
 10596 %}
 10597 */
 10599 /*
 10600 instruct ornL_Reg_nReg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10601   match(Set dst (OrL src1 (XorL src2 M1)));
 10602   predicate(UseLoongsonISA);
 10604   format %{ "orn    $dst, $src1, $src2 #@ornL_Reg_nReg" %}
 10605   ins_encode %{
 10606     Register dst = $dst$$Register;
 10607     Register src1 = $src1$$Register;
 10608     Register src2 = $src2$$Register;
 10610     __ gsorn(dst, src1, src2);
 10611   %}
 10612   ins_pipe( ialu_regI_regI );
 10613 %}
 10614 */
 10616 /*
 10617 instruct andnL_nReg_Reg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10618   match(Set dst (AndL (XorL src1 M1) src2));
 10619   predicate(UseLoongsonISA);
 10621   format %{ "andn   $dst, $src2, $src1 #@andnL_nReg_Reg" %}
 10622   ins_encode %{
 10623     Register dst = $dst$$Register;
 10624     Register src1 = $src1$$Register;
 10625     Register src2 = $src2$$Register;
 10627     __ gsandn(dst, src2, src1);
 10628   %}
 10629   ins_pipe( ialu_regI_regI );
 10630 %}
 10631 */
 10633 /*
 10634 instruct ornL_nReg_Reg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10635   match(Set dst (OrL (XorL src1 M1) src2));
 10636   predicate(UseLoongsonISA);
 10638   format %{ "orn    $dst, $src2, $src1 #@ornL_nReg_Reg" %}
 10639   ins_encode %{
 10640     Register dst = $dst$$Register;
 10641     Register src1 = $src1$$Register;
 10642     Register src2 = $src2$$Register;
 10644     __ gsorn(dst, src2, src1);
 10645   %}
 10646   ins_pipe( ialu_regI_regI );
 10647 %}
 10648 */
 10650 instruct andL_Reg_immL_M8(mRegL dst,  immL_M8 M8) %{
 10651   match(Set dst (AndL dst M8));
 10652   ins_cost(60);
 10654   format %{ "and  $dst, $dst, $M8 #@andL_Reg_immL_M8" %}
 10655   ins_encode %{
 10656     Register dst = $dst$$Register;
 10658     __ dins(dst, R0, 0, 3);
 10659   %}
 10660   ins_pipe( ialu_regI_regI );
 10661 %}
 10663 instruct andL_Reg_immL_M5(mRegL dst,  immL_M5 M5) %{
 10664   match(Set dst (AndL dst M5));
 10665   ins_cost(60);
 10667   format %{ "and  $dst, $dst, $M5 #@andL_Reg_immL_M5" %}
 10668   ins_encode %{
 10669     Register dst = $dst$$Register;
 10671     __ dins(dst, R0, 2, 1);
 10672   %}
 10673   ins_pipe( ialu_regI_regI );
 10674 %}
 10676 instruct andL_Reg_immL_M7(mRegL dst,  immL_M7 M7) %{
 10677   match(Set dst (AndL dst M7));
 10678   ins_cost(60);
 10680   format %{ "and  $dst, $dst, $M7 #@andL_Reg_immL_M7" %}
 10681   ins_encode %{
 10682     Register dst = $dst$$Register;
 10684     __ dins(dst, R0, 1, 2);
 10685   %}
 10686   ins_pipe( ialu_regI_regI );
 10687 %}
 10689 instruct andL_Reg_immL_M4(mRegL dst,  immL_M4 M4) %{
 10690   match(Set dst (AndL dst M4));
 10691   ins_cost(60);
 10693   format %{ "and  $dst, $dst, $M4 #@andL_Reg_immL_M4" %}
 10694   ins_encode %{
 10695     Register dst = $dst$$Register;
 10697     __ dins(dst, R0, 0, 2);
 10698   %}
 10699   ins_pipe( ialu_regI_regI );
 10700 %}
 10702 instruct andL_Reg_immL_M121(mRegL dst,  immL_M121 M121) %{
 10703   match(Set dst (AndL dst M121));
 10704   ins_cost(60);
 10706   format %{ "and  $dst, $dst, $M121 #@andL_Reg_immL_M121" %}
 10707   ins_encode %{
 10708     Register dst = $dst$$Register;
 10710     __ dins(dst, R0, 3, 4);
 10711   %}
 10712   ins_pipe( ialu_regI_regI );
 10713 %}
 10715 // Or Long Register with Register
 10716 instruct orL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
 10717   match(Set dst (OrL src1 src2));
 10718   format %{ "OR    $dst, $src1, $src2 @ orL_Reg_Reg\t" %}
 10719   ins_encode %{
 10720     Register dst_reg  = $dst$$Register;
 10721     Register src1_reg = $src1$$Register;
 10722     Register src2_reg = $src2$$Register;
 10724     __ orr(dst_reg, src1_reg, src2_reg);
 10725   %}
 10726   ins_pipe( ialu_regL_regL );
 10727 %}
 10729 instruct orL_Reg_P2XReg(mRegL dst, mRegP src1, mRegL src2) %{
 10730   match(Set dst (OrL (CastP2X src1) src2));
 10731   format %{ "OR    $dst, $src1, $src2 @ orL_Reg_P2XReg\t" %}
 10732   ins_encode %{
 10733     Register dst_reg  = $dst$$Register;
 10734     Register src1_reg = $src1$$Register;
 10735     Register src2_reg = $src2$$Register;
 10737     __ orr(dst_reg, src1_reg, src2_reg);
 10738   %}
 10739   ins_pipe( ialu_regL_regL );
 10740 %}
 10742 // Xor Long Register with Register
 10743 instruct xorL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
 10744   match(Set dst (XorL src1 src2));
 10745   format %{ "XOR    $dst, $src1, $src2 @ xorL_Reg_Reg\t" %}
 10746   ins_encode %{
 10747     Register dst_reg = as_Register($dst$$reg);
 10748     Register src1_reg = as_Register($src1$$reg);
 10749     Register src2_reg = as_Register($src2$$reg);
 10751     __ xorr(dst_reg, src1_reg, src2_reg);
 10752   %}
 10753   ins_pipe( ialu_regL_regL );
 10754 %}
 10756 // Shift Left by 8-bit immediate
 10757 instruct salI_Reg_imm(mRegI dst, mRegI src, immI8 shift) %{
 10758   match(Set dst (LShiftI src shift));
 10760   format %{ "SHL    $dst, $src, $shift #@salI_Reg_imm" %}
 10761   ins_encode %{
 10762     Register src = $src$$Register;
 10763     Register dst = $dst$$Register;
 10764     int    shamt = $shift$$constant;
 10766     __ sll(dst, src, shamt);
 10767   %}
 10768   ins_pipe( ialu_regI_regI );
 10769 %}
 10771 instruct salI_Reg_imm_and_M65536(mRegI dst, mRegI src, immI_16 shift, immI_M65536 mask) %{
 10772   match(Set dst (AndI (LShiftI src shift) mask));
 10774   format %{ "SHL    $dst, $src, $shift #@salI_Reg_imm_and_M65536" %}
 10775   ins_encode %{
 10776     Register src = $src$$Register;
 10777     Register dst = $dst$$Register;
 10779     __ sll(dst, src, 16);
 10780   %}
 10781   ins_pipe( ialu_regI_regI );
 10782 %}
 10784 instruct land7_2_s(mRegI dst, mRegL src, immL7 seven, immI_16 sixteen)
 10785 %{
 10786   match(Set dst (RShiftI (LShiftI (ConvL2I (AndL src seven)) sixteen) sixteen));
 10788   format %{ "andi  $dst, $src, 7\t# @land7_2_s" %}
 10789   ins_encode %{
 10790     Register src = $src$$Register;
 10791     Register dst = $dst$$Register;
 10793     __ andi(dst, src, 7);
 10794   %}
 10795   ins_pipe(ialu_regI_regI);
 10796 %}
 10798 instruct ori2s(mRegI dst, mRegI src1, immI_0_32767 src2, immI_16 sixteen)
 10799 %{
 10800   match(Set dst (RShiftI (LShiftI (OrI src1 src2) sixteen) sixteen));
 10802   format %{ "ori  $dst, $src1, $src2\t# @ori2s" %}
 10803   ins_encode %{
 10804     Register src = $src1$$Register;
 10805     int      val = $src2$$constant;
 10806     Register dst = $dst$$Register;
 10808     __ ori(dst, src, val);
 10809   %}
 10810   ins_pipe(ialu_regI_regI);
 10811 %}
 10813 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
 10814 // This idiom is used by the compiler the i2s bytecode.
 10815 instruct i2s(mRegI dst, mRegI src, immI_16 sixteen)
 10816 %{
 10817   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
 10819   format %{ "i2s  $dst, $src\t# @i2s" %}
 10820   ins_encode %{
 10821     Register src = $src$$Register;
 10822     Register dst = $dst$$Register;
 10824     __ seh(dst, src);
 10825   %}
 10826   ins_pipe(ialu_regI_regI);
 10827 %}
 10829 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
 10830 // This idiom is used by the compiler for the i2b bytecode.
 10831 instruct i2b(mRegI dst, mRegI src, immI_24 twentyfour)
 10832 %{
 10833   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
 10835   format %{ "i2b  $dst, $src\t# @i2b" %}
 10836   ins_encode %{
 10837     Register src = $src$$Register;
 10838     Register dst = $dst$$Register;
 10840     __ seb(dst, src);
 10841   %}
 10842   ins_pipe(ialu_regI_regI);
 10843 %}
 10846 instruct salI_RegL2I_imm(mRegI dst, mRegL src, immI8 shift) %{
 10847   match(Set dst (LShiftI (ConvL2I src) shift));
 10849   format %{ "SHL    $dst, $src, $shift #@salI_RegL2I_imm" %}
 10850   ins_encode %{
 10851     Register src = $src$$Register;
 10852     Register dst = $dst$$Register;
 10853     int    shamt = $shift$$constant;
 10855     __ sll(dst, src, shamt);
 10856   %}
 10857   ins_pipe( ialu_regI_regI );
 10858 %}
 10860 // Shift Left by 8-bit immediate
 10861 instruct salI_Reg_Reg(mRegI dst, mRegI src, mRegI shift) %{
 10862   match(Set dst (LShiftI src shift));
 10864   format %{ "SHL    $dst, $src, $shift #@salI_Reg_Reg" %}
 10865   ins_encode %{
 10866     Register src = $src$$Register;
 10867     Register dst = $dst$$Register;
 10868     Register shamt = $shift$$Register;
 10869     __ sllv(dst, src, shamt);
 10870   %}
 10871   ins_pipe( ialu_regI_regI );
 10872 %}
 10875 // Shift Left Long 
 10876 instruct salL_Reg_imm(mRegL dst, mRegL src, immI8 shift) %{
 10877   //predicate(UseNewLongLShift);
 10878   match(Set dst (LShiftL src shift));
 10879   ins_cost(100);
 10880   format %{ "salL    $dst, $src, $shift @ salL_Reg_imm" %}
 10881   ins_encode %{
 10882     Register src_reg = as_Register($src$$reg);
 10883     Register dst_reg = as_Register($dst$$reg);
 10884     int      shamt = $shift$$constant;
 10886     if (__ is_simm(shamt, 5))
 10887         __ dsll(dst_reg, src_reg, shamt);
 10888     else
 10890        int sa = Assembler::low(shamt, 6);
 10891        if (sa < 32) { 
 10892           __ dsll(dst_reg, src_reg, sa);
 10893        } else {
 10894           __ dsll32(dst_reg, src_reg, sa - 32);
 10897   %}
 10898   ins_pipe( ialu_regL_regL );
 10899 %}
 10901 instruct salL_RegI2L_imm(mRegL dst, mRegI src, immI8 shift) %{
 10902   //predicate(UseNewLongLShift);
 10903   match(Set dst (LShiftL (ConvI2L src) shift));
 10904   ins_cost(100);
 10905   format %{ "salL    $dst, $src, $shift @ salL_RegI2L_imm" %}
 10906   ins_encode %{
 10907     Register src_reg = as_Register($src$$reg);
 10908     Register dst_reg = as_Register($dst$$reg);
 10909     int      shamt = $shift$$constant;
 10911     if (__ is_simm(shamt, 5))
 10912         __ dsll(dst_reg, src_reg, shamt);
 10913     else
 10915        int sa = Assembler::low(shamt, 6);
 10916        if (sa < 32) { 
 10917           __ dsll(dst_reg, src_reg, sa);
 10918        } else {
 10919           __ dsll32(dst_reg, src_reg, sa - 32);
 10922   %}
 10923   ins_pipe( ialu_regL_regL );
 10924 %}
 10926 // Shift Left Long 
 10927 instruct salL_Reg_Reg(mRegL dst, mRegL src, mRegI shift) %{
 10928   //predicate(UseNewLongLShift);
 10929   match(Set dst (LShiftL src shift));
 10930   ins_cost(100);
 10931   format %{ "salL    $dst, $src, $shift @ salL_Reg_Reg" %}
 10932   ins_encode %{
 10933     Register src_reg = as_Register($src$$reg);
 10934     Register dst_reg = as_Register($dst$$reg);
 10936     __ dsllv(dst_reg, src_reg, $shift$$Register);
 10937   %}
 10938   ins_pipe( ialu_regL_regL );
 10939 %}
 10941 instruct salL_convI2L_Reg_imm(mRegL dst, mRegI src, immI8 shift) %{
 10942   match(Set dst (LShiftL (ConvI2L src) shift));
 10943   ins_cost(100);
 10944   format %{ "salL    $dst, $src, $shift @ salL_convI2L_Reg_imm" %}
 10945   ins_encode %{
 10946     Register src_reg = as_Register($src$$reg);
 10947     Register dst_reg = as_Register($dst$$reg);
 10948     int      shamt = $shift$$constant;
 10950     if (__ is_simm(shamt, 5)) {
 10951         __ dsll(dst_reg, src_reg, shamt);
 10952     } else {
 10953        int sa = Assembler::low(shamt, 6);
 10954        if (sa < 32) { 
 10955           __ dsll(dst_reg, src_reg, sa);
 10956        } else {
 10957           __ dsll32(dst_reg, src_reg, sa - 32);
 10960   %}
 10961   ins_pipe( ialu_regL_regL );
 10962 %}
 10964 // Shift Right Long 
 10965 instruct sarL_Reg_imm(mRegL dst, mRegL src, immI8 shift) %{
 10966   //predicate(UseNewLongLShift);
 10967   match(Set dst (RShiftL src shift));
 10968   ins_cost(100);
 10969   format %{ "sarL    $dst, $src, $shift @ sarL_Reg_imm" %}
 10970   ins_encode %{
 10971     Register src_reg = as_Register($src$$reg);
 10972     Register dst_reg = as_Register($dst$$reg);
 10973     int      shamt = ($shift$$constant & 0x3f);
 10974     if (__  is_simm(shamt, 5))
 10975 	__ dsra(dst_reg, src_reg, shamt);
 10976     else {
 10977         int sa = Assembler::low(shamt, 6);
 10978         if (sa < 32) {
 10979 	   __ dsra(dst_reg, src_reg, sa);
 10980         } else {
 10981 	   __ dsra32(dst_reg, src_reg, sa - 32);
 10984   %}
 10985   ins_pipe( ialu_regL_regL );
 10986 %}
 10988 // Shift Right Long arithmetically
 10989 instruct sarL_Reg_Reg(mRegL dst, mRegL src, mRegI shift) %{
 10990   //predicate(UseNewLongLShift);
 10991   match(Set dst (RShiftL src shift));
 10992   ins_cost(100);
 10993   format %{ "sarL    $dst, $src, $shift @ sarL_Reg_Reg" %}
 10994   ins_encode %{
 10995     Register src_reg = as_Register($src$$reg);
 10996     Register dst_reg = as_Register($dst$$reg);
 10998     __ dsrav(dst_reg, src_reg, $shift$$Register);
 10999   %}
 11000   ins_pipe( ialu_regL_regL );
 11001 %}
 11003 // Shift Right Long logically
 11004 instruct slrL_Reg_Reg(mRegL dst, mRegL src, mRegI shift) %{
 11005   match(Set dst (URShiftL src shift));
 11006   ins_cost(100);
 11007   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_Reg" %}
 11008   ins_encode %{
 11009     Register src_reg = as_Register($src$$reg);
 11010     Register dst_reg = as_Register($dst$$reg);
 11012     __ dsrlv(dst_reg, src_reg, $shift$$Register);
 11013   %}
 11014   ins_pipe( ialu_regL_regL );
 11015 %}
 11017 instruct slrL_Reg_immI_0_31(mRegL dst, mRegL src, immI_0_31 shift) %{
 11018   match(Set dst (URShiftL src shift));
 11019   ins_cost(80);
 11020   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_immI_0_31" %}
 11021   ins_encode %{
 11022     Register src_reg = as_Register($src$$reg);
 11023     Register dst_reg = as_Register($dst$$reg);
 11024     int        shamt = $shift$$constant;
 11026     __ dsrl(dst_reg, src_reg, shamt);
 11027   %}
 11028   ins_pipe( ialu_regL_regL );
 11029 %}
 11031 instruct slrL_P2XReg_immI_0_31(mRegL dst, mRegP src, immI_0_31 shift) %{
 11032   match(Set dst (URShiftL (CastP2X src) shift));
 11033   ins_cost(80);
 11034   format %{ "slrL    $dst, $src, $shift @ slrL_P2XReg_immI_0_31" %}
 11035   ins_encode %{
 11036     Register src_reg = as_Register($src$$reg);
 11037     Register dst_reg = as_Register($dst$$reg);
 11038     int        shamt = $shift$$constant;
 11040     __ dsrl(dst_reg, src_reg, shamt);
 11041   %}
 11042   ins_pipe( ialu_regL_regL );
 11043 %}
 11045 instruct slrL_Reg_immI_32_63(mRegL dst, mRegL src, immI_32_63 shift) %{
 11046   match(Set dst (URShiftL src shift));
 11047   ins_cost(80);
 11048   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_immI_32_63" %}
 11049   ins_encode %{
 11050     Register src_reg = as_Register($src$$reg);
 11051     Register dst_reg = as_Register($dst$$reg);
 11052     int        shamt = $shift$$constant;
 11054     __ dsrl32(dst_reg, src_reg, shamt - 32);
 11055   %}
 11056   ins_pipe( ialu_regL_regL );
 11057 %}
 11059 instruct slrL_P2XReg_immI_32_63(mRegL dst, mRegP src, immI_32_63 shift) %{
 11060   match(Set dst (URShiftL (CastP2X src) shift));
 11061   ins_cost(80);
 11062   format %{ "slrL    $dst, $src, $shift @ slrL_P2XReg_immI_32_63" %}
 11063   ins_encode %{
 11064     Register src_reg = as_Register($src$$reg);
 11065     Register dst_reg = as_Register($dst$$reg);
 11066     int        shamt = $shift$$constant;
 11068     __ dsrl32(dst_reg, src_reg, shamt - 32);
 11069   %}
 11070   ins_pipe( ialu_regL_regL );
 11071 %}
 11073 // Xor Instructions
 11074 // Xor Register with Register
 11075 instruct xorI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
 11076   match(Set dst (XorI src1 src2));
 11078   format %{ "XOR    $dst, $src1, $src2 #@xorI_Reg_Reg" %}
 11080   ins_encode %{
 11081     Register  dst = $dst$$Register;
 11082     Register src1 = $src1$$Register;
 11083     Register src2 = $src2$$Register;
 11084     __ xorr(dst, src1, src2);
 11085     __ sll(dst, dst, 0); /* long -> int */
 11086   %}
 11088   ins_pipe( ialu_regI_regI );
 11089 %}
 11091 // Or Instructions
 11092 // Or Register with Register
 11093 instruct orI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
 11094   match(Set dst (OrI src1 src2));
 11096   format %{ "OR     $dst, $src1, $src2 #@orI_Reg_Reg" %}
 11097   ins_encode %{
 11098     Register  dst = $dst$$Register;
 11099     Register src1 = $src1$$Register;
 11100     Register src2 = $src2$$Register;
 11101     __ orr(dst, src1, src2);
 11102   %}
 11104   ins_pipe( ialu_regI_regI );
 11105 %}
 11107 instruct rotI_shr_logical_Reg(mRegI dst, mRegI src, immI_0_31 rshift, immI_0_31 lshift, immI_1 one) %{
 11108   match(Set dst (OrI (URShiftI src rshift) (LShiftI (AndI src one) lshift)));
 11109   predicate(32 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int())));
 11111   format %{ "rotr     $dst, $src, 1 ...\n\t" 
 11112             "srl      $dst, $dst, ($rshift-1) @ rotI_shr_logical_Reg" %}
 11113   ins_encode %{
 11114     Register   dst = $dst$$Register;
 11115     Register   src = $src$$Register;
 11116     int     rshift = $rshift$$constant;
 11118     __ rotr(dst, src, 1);
 11119     if (rshift - 1) {
 11120        __ srl(dst, dst, rshift - 1);
 11122   %}
 11124   ins_pipe( ialu_regI_regI );
 11125 %}
 11127 instruct orI_Reg_castP2X(mRegL dst, mRegL src1, mRegP src2) %{
 11128   match(Set dst (OrI src1 (CastP2X src2)));
 11130   format %{ "OR     $dst, $src1, $src2 #@orI_Reg_castP2X" %}
 11131   ins_encode %{
 11132     Register  dst = $dst$$Register;
 11133     Register src1 = $src1$$Register;
 11134     Register src2 = $src2$$Register;
 11135     __ orr(dst, src1, src2);
 11136   %}
 11138   ins_pipe( ialu_regI_regI );
 11139 %}
 11141 // Logical Shift Right by 8-bit immediate
 11142 instruct shr_logical_Reg_imm(mRegI dst, mRegI src, immI8 shift) %{
 11143   match(Set dst (URShiftI src shift));
 11144  // effect(KILL cr);
 11146   format %{ "SRL    $dst, $src, $shift #@shr_logical_Reg_imm" %}
 11147   ins_encode %{
 11148     Register src = $src$$Register;
 11149     Register dst = $dst$$Register;
 11150     int    shift = $shift$$constant;
 11152     __ srl(dst, src, shift);
 11153   %}
 11154   ins_pipe( ialu_regI_regI );
 11155 %}
 11157 instruct shr_logical_Reg_imm_nonneg_mask(mRegI dst, mRegI src, immI_0_31 shift, immI_nonneg_mask mask) %{
 11158   match(Set dst (AndI (URShiftI src shift) mask));
 11160   format %{ "ext    $dst, $src, $shift, one-bits($mask) #@shr_logical_Reg_imm_nonneg_mask" %}
 11161   ins_encode %{
 11162     Register src = $src$$Register;
 11163     Register dst = $dst$$Register;
 11164     int      pos = $shift$$constant;
 11165     int     size = Assembler::is_int_mask($mask$$constant);
 11167     __ ext(dst, src, pos, size);
 11168   %}
 11169   ins_pipe( ialu_regI_regI );
 11170 %}
 11172 instruct rolI_Reg_immI_0_31(mRegI dst, immI_0_31 lshift, immI_0_31 rshift)
 11173 %{
 11174   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
 11175   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
 11177   ins_cost(100);
 11178   format %{ "rotr    $dst, $dst, $rshift #@rolI_Reg_immI_0_31" %}
 11179   ins_encode %{
 11180     Register dst = $dst$$Register;
 11181     int      sa  = $rshift$$constant;
 11183     __ rotr(dst, dst, sa);
 11184   %}
 11185   ins_pipe( ialu_regI_regI );
 11186 %}
 11188 instruct rolL_Reg_immI_0_31(mRegL dst, immI_32_63 lshift, immI_0_31 rshift)
 11189 %{
 11190   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
 11191   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
 11193   ins_cost(100);
 11194   format %{ "rotr    $dst, $dst, $rshift #@rolL_Reg_immI_0_31" %}
 11195   ins_encode %{
 11196     Register dst = $dst$$Register;
 11197     int      sa  = $rshift$$constant;
 11199     __ drotr(dst, dst, sa);
 11200   %}
 11201   ins_pipe( ialu_regI_regI );
 11202 %}
 11204 instruct rolL_Reg_immI_32_63(mRegL dst, immI_0_31 lshift, immI_32_63 rshift)
 11205 %{
 11206   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
 11207   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
 11209   ins_cost(100);
 11210   format %{ "rotr    $dst, $dst, $rshift #@rolL_Reg_immI_32_63" %}
 11211   ins_encode %{
 11212     Register dst = $dst$$Register;
 11213     int      sa  = $rshift$$constant;
 11215     __ drotr32(dst, dst, sa - 32);
 11216   %}
 11217   ins_pipe( ialu_regI_regI );
 11218 %}
 11220 instruct rorI_Reg_immI_0_31(mRegI dst, immI_0_31 rshift, immI_0_31 lshift)
 11221 %{
 11222   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
 11223   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
 11225   ins_cost(100);
 11226   format %{ "rotr    $dst, $dst, $rshift #@rorI_Reg_immI_0_31" %}
 11227   ins_encode %{
 11228     Register dst = $dst$$Register;
 11229     int      sa  = $rshift$$constant;
 11231     __ rotr(dst, dst, sa);
 11232   %}
 11233   ins_pipe( ialu_regI_regI );
 11234 %}
 11236 instruct rorL_Reg_immI_0_31(mRegL dst, immI_0_31 rshift, immI_32_63 lshift)
 11237 %{
 11238   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
 11239   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
 11241   ins_cost(100);
 11242   format %{ "rotr    $dst, $dst, $rshift #@rorL_Reg_immI_0_31" %}
 11243   ins_encode %{
 11244     Register dst = $dst$$Register;
 11245     int      sa  = $rshift$$constant;
 11247     __ drotr(dst, dst, sa);
 11248   %}
 11249   ins_pipe( ialu_regI_regI );
 11250 %}
 11252 instruct rorL_Reg_immI_32_63(mRegL dst, immI_32_63 rshift, immI_0_31 lshift)
 11253 %{
 11254   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
 11255   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
 11257   ins_cost(100);
 11258   format %{ "rotr    $dst, $dst, $rshift #@rorL_Reg_immI_32_63" %}
 11259   ins_encode %{
 11260     Register dst = $dst$$Register;
 11261     int      sa  = $rshift$$constant;
 11263     __ drotr32(dst, dst, sa - 32);
 11264   %}
 11265   ins_pipe( ialu_regI_regI );
 11266 %}
 11268 // Logical Shift Right 
 11269 instruct shr_logical_Reg_Reg(mRegI dst, mRegI src, mRegI shift) %{
 11270   match(Set dst (URShiftI src shift));
 11272   format %{ "SRL    $dst, $src, $shift #@shr_logical_Reg_Reg" %}
 11273   ins_encode %{
 11274     Register src = $src$$Register;
 11275     Register dst = $dst$$Register;
 11276     Register shift = $shift$$Register;
 11277     __ srlv(dst, src, shift);
 11278   %}
 11279   ins_pipe( ialu_regI_regI );
 11280 %}
 11283 instruct shr_arith_Reg_imm(mRegI dst, mRegI src, immI8 shift) %{
 11284   match(Set dst (RShiftI src shift));
 11285  // effect(KILL cr);
 11287   format %{ "SRA    $dst, $src, $shift #@shr_arith_Reg_imm" %}
 11288   ins_encode %{
 11289     Register src = $src$$Register;
 11290     Register dst = $dst$$Register;
 11291     int    shift = $shift$$constant;
 11292     __ sra(dst, src, shift);
 11293   %}
 11294   ins_pipe( ialu_regI_regI );
 11295 %}
 11297 instruct shr_arith_Reg_Reg(mRegI dst, mRegI src, mRegI shift) %{
 11298   match(Set dst (RShiftI src shift));
 11299  // effect(KILL cr);
 11301   format %{ "SRA    $dst, $src, $shift #@shr_arith_Reg_Reg" %}
 11302   ins_encode %{
 11303     Register src = $src$$Register;
 11304     Register dst = $dst$$Register;
 11305     Register shift = $shift$$Register;
 11306     __ srav(dst, src, shift);
 11307   %}
 11308   ins_pipe( ialu_regI_regI );
 11309 %}
 11311 //----------Convert Int to Boolean---------------------------------------------
 11313 instruct convI2B(mRegI dst, mRegI src) %{
 11314   match(Set dst (Conv2B src));
 11316   ins_cost(100);
 11317   format %{ "convI2B    $dst, $src @ convI2B"  %}
 11318   ins_encode %{
 11319     Register dst = as_Register($dst$$reg);
 11320     Register src = as_Register($src$$reg);
 11322     if (dst != src) {
 11323       __ daddiu(dst, R0, 1);
 11324       __ movz(dst, R0, src);
 11325     } else {
 11326       __ move(AT, src);
 11327       __ daddiu(dst, R0, 1);
 11328       __ movz(dst, R0, AT);
 11330   %}
 11332   ins_pipe( ialu_regL_regL );
 11333 %}
 11335 instruct convI2L_reg( mRegL dst, mRegI src) %{
 11336   match(Set dst (ConvI2L src));
 11338   ins_cost(100);
 11339   format %{ "SLL    $dst, $src @ convI2L_reg\t"  %}
 11340   ins_encode %{
 11341     Register dst = as_Register($dst$$reg);
 11342     Register src = as_Register($src$$reg);
 11344     if(dst != src) __ sll(dst, src, 0);
 11345   %}
 11346   ins_pipe( ialu_regL_regL );
 11347 %}
 11350 instruct convL2I_reg( mRegI dst, mRegL src ) %{
 11351   match(Set dst (ConvL2I src));
 11353   format %{ "MOV    $dst, $src @ convL2I_reg" %}
 11354   ins_encode %{
 11355     Register dst = as_Register($dst$$reg);
 11356     Register src = as_Register($src$$reg);
 11358     __ sll(dst, src, 0);
 11359   %}
 11361   ins_pipe( ialu_regI_regI );
 11362 %}
 11364 instruct convL2I2L_reg( mRegL dst, mRegL src ) %{
 11365   match(Set dst (ConvI2L (ConvL2I src)));
 11367   format %{ "sll    $dst, $src, 0 @ convL2I2L_reg" %}
 11368   ins_encode %{
 11369     Register dst = as_Register($dst$$reg);
 11370     Register src = as_Register($src$$reg);
 11372     __ sll(dst, src, 0);
 11373   %}
 11375   ins_pipe( ialu_regI_regI );
 11376 %}
 11378 instruct convL2D_reg( regD dst, mRegL src ) %{
 11379   match(Set dst (ConvL2D src));
 11380   format %{ "convL2D    $dst, $src @ convL2D_reg" %}
 11381   ins_encode %{
 11382     Register src = as_Register($src$$reg);
 11383     FloatRegister dst = as_FloatRegister($dst$$reg);
 11385     __ dmtc1(src, dst);
 11386     __ cvt_d_l(dst, dst);
 11387   %}
 11389   ins_pipe( pipe_slow );
 11390 %}
 11392 instruct convD2L_reg_fast( mRegL dst, regD src ) %{
 11393   match(Set dst (ConvD2L src));
 11394   ins_cost(150);
 11395   format %{ "convD2L    $dst, $src @ convD2L_reg_fast" %}
 11396   ins_encode %{
 11397     Register dst = as_Register($dst$$reg);
 11398     FloatRegister src = as_FloatRegister($src$$reg);
 11400     Label Done;
 11402     __ trunc_l_d(F30, src);
 11403     // max_long:    0x7fffffffffffffff 
 11404     // __ set64(AT, 0x7fffffffffffffff);
 11405     __ daddiu(AT, R0, -1);
 11406     __ dsrl(AT, AT, 1);
 11407     __ dmfc1(dst, F30);
 11409     __ bne(dst, AT, Done);
 11410     __ delayed()->mtc1(R0, F30);
 11412     __ cvt_d_w(F30, F30);
 11413     __ c_ult_d(src, F30);
 11414     __ bc1f(Done);
 11415     __ delayed()->daddiu(T9, R0, -1);
 11417     __ c_un_d(src, src);    //NaN?
 11418     __ subu(dst, T9, AT);
 11419     __ movt(dst, R0);
 11421     __ bind(Done);
 11422   %}
 11424   ins_pipe( pipe_slow );
 11425 %}
 11427 instruct convD2L_reg_slow( mRegL dst, regD src ) %{
 11428   match(Set dst (ConvD2L src));
 11429   ins_cost(250);
 11430   format %{ "convD2L    $dst, $src @ convD2L_reg_slow" %}
 11431   ins_encode %{
 11432     Register dst = as_Register($dst$$reg);
 11433     FloatRegister src = as_FloatRegister($src$$reg);
 11435     Label L;
 11437     __ c_un_d(src, src);    //NaN?
 11438     __ bc1t(L);
 11439     __ delayed();
 11440     __ move(dst, R0);
 11442     __ trunc_l_d(F30, src);
 11443     __ cfc1(AT, 31);
 11444     __ li(T9, 0x10000);
 11445     __ andr(AT, AT, T9);
 11446     __ beq(AT, R0, L);
 11447     __ delayed()->dmfc1(dst, F30);
 11449     __ mov_d(F12, src);
 11450     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
 11451     __ move(dst, V0);
 11452     __ bind(L);
 11453   %}
 11455   ins_pipe( pipe_slow );
 11456 %}
 11458 instruct convF2I_reg_fast( mRegI dst, regF src ) %{
 11459   match(Set dst (ConvF2I src));
 11460   ins_cost(150);
 11461   format %{ "convf2i    $dst, $src @ convF2I_reg_fast" %}
 11462   ins_encode %{
 11463     Register      dreg = $dst$$Register;
 11464     FloatRegister fval = $src$$FloatRegister;
 11466     __ trunc_w_s(F30, fval);
 11467     __ mfc1(dreg, F30);
 11468     __ c_un_s(fval, fval);    //NaN?
 11469     __ movt(dreg, R0);
 11470   %}
 11472   ins_pipe( pipe_slow );
 11473 %}
 11475 instruct convF2I_reg_slow( mRegI dst, regF src ) %{
 11476   match(Set dst (ConvF2I src));
 11477   ins_cost(250);
 11478   format %{ "convf2i    $dst, $src @ convF2I_reg_slow" %}
 11479   ins_encode %{
 11480     Register      dreg = $dst$$Register;
 11481     FloatRegister fval = $src$$FloatRegister;
 11482     Label L;
 11484     __ c_un_s(fval, fval);    //NaN?
 11485     __ bc1t(L);
 11486     __ delayed();
 11487     __ move(dreg, R0);
 11489     __ trunc_w_s(F30, fval);
 11491     /* Call SharedRuntime:f2i() to do valid convention */
 11492     __ cfc1(AT, 31);
 11493     __ li(T9, 0x10000);
 11494     __ andr(AT, AT, T9);
 11495     __ beq(AT, R0, L);
 11496     __ delayed()->mfc1(dreg, F30);
 11498     __ mov_s(F12, fval);
 11500     /* 2014/01/08 Fu : This bug was found when running ezDS's control-panel.
 11501      *    J 982 C2 javax.swing.text.BoxView.layoutMajorAxis(II[I[I)V (283 bytes) @ 0x000000555c46aa74
 11503      * An interger array index has been assigned to V0, and then changed from 1 to Integer.MAX_VALUE. 
 11504      * V0 is corrupted during call_VM_leaf(), and should be preserved.
 11505      */
 11506     if(dreg != V0) {
 11507       __ push(V0); 
 11509     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
 11510     if(dreg != V0) {
 11511       __ move(dreg, V0);
 11512       __ pop(V0);
 11514     __ bind(L);
 11515   %}
 11517   ins_pipe( pipe_slow );
 11518 %}
 11520 instruct convF2L_reg_fast( mRegL dst, regF src ) %{
 11521   match(Set dst (ConvF2L src));
 11522   ins_cost(150);
 11523   format %{ "convf2l    $dst, $src @ convF2L_reg_fast" %}
 11524   ins_encode %{
 11525     Register      dreg = $dst$$Register;
 11526     FloatRegister fval = $src$$FloatRegister;
 11528     __ trunc_l_s(F30, fval);
 11529     __ dmfc1(dreg, F30);
 11530     __ c_un_s(fval, fval);    //NaN?
 11531     __ movt(dreg, R0);
 11532   %}
 11534   ins_pipe( pipe_slow );
 11535 %}
 11537 instruct convF2L_reg_slow( mRegL dst, regF src ) %{
 11538   match(Set dst (ConvF2L src));
 11539   ins_cost(250);
 11540   format %{ "convf2l    $dst, $src @ convF2L_reg_slow" %}
 11541   ins_encode %{
 11542     Register dst = as_Register($dst$$reg);
 11543     FloatRegister fval = $src$$FloatRegister;
 11544     Label L;
 11546     __ c_un_s(fval, fval);    //NaN?
 11547     __ bc1t(L);
 11548     __ delayed();
 11549     __ move(dst, R0);
 11551     __ trunc_l_s(F30, fval);
 11552     __ cfc1(AT, 31);
 11553     __ li(T9, 0x10000);
 11554     __ andr(AT, AT, T9);
 11555     __ beq(AT, R0, L);
 11556     __ delayed()->dmfc1(dst, F30);
 11558     __ mov_s(F12, fval);
 11559     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
 11560     __ move(dst, V0);
 11561     __ bind(L);
 11562   %}
 11564   ins_pipe( pipe_slow );
 11565 %}
 11567 instruct convL2F_reg( regF dst, mRegL src ) %{
 11568   match(Set dst (ConvL2F src));
 11569   format %{ "convl2f    $dst, $src @ convL2F_reg" %}
 11570   ins_encode %{
 11571     FloatRegister dst = $dst$$FloatRegister;
 11572     Register src = as_Register($src$$reg);
 11573     Label L;
 11575     __ dmtc1(src, dst);
 11576     __ cvt_s_l(dst, dst);
 11577   %}
 11579   ins_pipe( pipe_slow );
 11580 %}
 11582 instruct convI2F_reg( regF dst, mRegI src ) %{
 11583   match(Set dst (ConvI2F src));
 11584   format %{ "convi2f    $dst, $src @ convI2F_reg" %}
 11585   ins_encode %{
 11586     Register      src = $src$$Register;
 11587     FloatRegister dst = $dst$$FloatRegister;
 11589     __ mtc1(src, dst);
 11590     __ cvt_s_w(dst, dst);
 11591   %}
 11593   ins_pipe( fpu_regF_regF );
 11594 %}
 11596 instruct cmpLTMask_immI0( mRegI dst, mRegI p, immI0 zero ) %{
 11597   match(Set dst (CmpLTMask p zero));
 11598   ins_cost(100);
 11600   format %{ "sra    $dst, $p, 31 @ cmpLTMask_immI0" %}
 11601     ins_encode %{
 11602        Register src = $p$$Register;
 11603        Register dst = $dst$$Register;
 11605        __ sra(dst, src, 31);
 11606     %}
 11607     ins_pipe( pipe_slow );
 11608 %}
 11611 instruct cmpLTMask( mRegI dst, mRegI p, mRegI q ) %{
 11612   match(Set dst (CmpLTMask p q));
 11613   ins_cost(400);
 11615   format %{ "cmpLTMask    $dst, $p, $q @ cmpLTMask" %}
 11616     ins_encode %{
 11617        Register p   = $p$$Register;
 11618        Register q   = $q$$Register;
 11619        Register dst = $dst$$Register;
 11621        __ slt(dst, p, q);
 11622        __ subu(dst, R0, dst);
 11623     %}
 11624     ins_pipe( pipe_slow );
 11625 %}
 11627 instruct convP2B(mRegI dst, mRegP src) %{
 11628   match(Set dst (Conv2B src));
 11630   ins_cost(100);
 11631   format %{ "convP2B    $dst, $src @ convP2B"  %}
 11632   ins_encode %{
 11633     Register dst = as_Register($dst$$reg);
 11634     Register src = as_Register($src$$reg);
 11636     if (dst != src) {
 11637       __ daddiu(dst, R0, 1);
 11638       __ movz(dst, R0, src);
 11639     } else {
 11640       __ move(AT, src);
 11641       __ daddiu(dst, R0, 1);
 11642       __ movz(dst, R0, AT);
 11644   %}
 11646   ins_pipe( ialu_regL_regL );
 11647 %}
 11650 instruct convI2D_reg_reg(regD dst, mRegI src) %{
 11651   match(Set dst (ConvI2D src));
 11652   format %{ "conI2D $dst, $src @convI2D_reg" %}
 11653   ins_encode %{
 11654      Register      src = $src$$Register;
 11655      FloatRegister dst = $dst$$FloatRegister;
 11656      __ mtc1(src, dst);
 11657      __ cvt_d_w(dst, dst);
 11658   %}
 11659   ins_pipe( fpu_regF_regF );
 11660 %}
 11662 instruct convF2D_reg_reg(regD dst, regF src) %{
 11663   match(Set dst (ConvF2D src));
 11664   format %{ "convF2D  $dst, $src\t# @convF2D_reg_reg" %}
 11665   ins_encode %{
 11666     FloatRegister dst = $dst$$FloatRegister;
 11667     FloatRegister src = $src$$FloatRegister;
 11669     __ cvt_d_s(dst, src);
 11670   %}
 11671   ins_pipe( fpu_regF_regF );
 11672 %}
 11674 instruct convD2F_reg_reg(regF dst, regD src) %{
 11675   match(Set dst (ConvD2F src));
 11676   format %{ "convD2F  $dst, $src\t# @convD2F_reg_reg" %}
 11677   ins_encode %{
 11678     FloatRegister dst = $dst$$FloatRegister;
 11679     FloatRegister src = $src$$FloatRegister;
 11681     __ cvt_s_d(dst, src);
 11682   %}
 11683   ins_pipe( fpu_regF_regF );
 11684 %}
 11686 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11687 instruct convD2I_reg_reg_fast( mRegI dst, regD src ) %{
 11688   match(Set dst (ConvD2I src));
 11690   ins_cost(150);
 11691   format %{ "convD2I $dst, $src\t# @ convD2I_reg_reg_fast" %}
 11693   ins_encode %{
 11694       FloatRegister src = $src$$FloatRegister;
 11695       Register      dst = $dst$$Register;
 11697       Label Done;
 11699       __ trunc_w_d(F30, src);
 11700       // max_int: 2147483647
 11701       __ move(AT, 0x7fffffff);
 11702       __ mfc1(dst, F30);
 11704       __ bne(dst, AT, Done);
 11705       __ delayed()->mtc1(R0, F30);
 11707       __ cvt_d_w(F30, F30); 
 11708       __ c_ult_d(src, F30);
 11709       __ bc1f(Done);
 11710       __ delayed()->addiu(T9, R0, -1);
 11712       __ c_un_d(src, src);    //NaN?
 11713       __ subu32(dst, T9, AT);
 11714       __ movt(dst, R0);
 11716       __ bind(Done);
 11717   %}
 11718   ins_pipe( pipe_slow );
 11719 %}
 11721 instruct convD2I_reg_reg_slow( mRegI dst, regD src ) %{
 11722   match(Set dst (ConvD2I src));
 11724   ins_cost(250);
 11725   format %{ "convD2I $dst, $src\t# @ convD2I_reg_reg_slow" %}
 11727   ins_encode %{
 11728       FloatRegister src = $src$$FloatRegister;
 11729       Register      dst = $dst$$Register;
 11730       Label L;
 11732       __ trunc_w_d(F30, src);
 11733       __ cfc1(AT, 31);
 11734       __ li(T9, 0x10000);
 11735       __ andr(AT, AT, T9);
 11736       __ beq(AT, R0, L);
 11737       __ delayed()->mfc1(dst, F30);
 11739       __ mov_d(F12, src);
 11740       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
 11741       __ move(dst, V0);
 11742       __ bind(L);
 11744   %}
 11745   ins_pipe( pipe_slow );
 11746 %}
 11748 // Convert oop pointer into compressed form
 11749 instruct encodeHeapOop(mRegN dst, mRegP src) %{
 11750   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
 11751   match(Set dst (EncodeP src));
 11752   format %{ "encode_heap_oop $dst,$src" %}
 11753   ins_encode %{
 11754     Register src = $src$$Register;
 11755     Register dst = $dst$$Register;
 11756     if (src != dst) {
 11757       __ move(dst, src);
 11759     __ encode_heap_oop(dst);
 11760   %}
 11761   ins_pipe( ialu_regL_regL );
 11762 %}
 11764 instruct encodeHeapOop_not_null(mRegN dst, mRegP src) %{
 11765   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
 11766   match(Set dst (EncodeP src));
 11767   format %{ "encode_heap_oop_not_null $dst,$src @ encodeHeapOop_not_null" %}
 11768   ins_encode %{
 11769     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
 11770   %}
 11771   ins_pipe( ialu_regL_regL );
 11772 %}
 11774 instruct decodeHeapOop(mRegP dst, mRegN src) %{
 11775   predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
 11776             n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
 11777   match(Set dst (DecodeN src));
 11778   format %{ "decode_heap_oop $dst,$src @ decodeHeapOop" %}
 11779   ins_encode %{
 11780     Register s = $src$$Register;
 11781     Register d = $dst$$Register;
 11782     if (s != d) {
 11783       __ move(d, s);
 11785     __ decode_heap_oop(d);
 11786   %}
 11787   ins_pipe( ialu_regL_regL );
 11788 %}
 11790 instruct decodeHeapOop_not_null(mRegP dst, mRegN src) %{
 11791   predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
 11792             n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
 11793   match(Set dst (DecodeN src));
 11794   format %{ "decode_heap_oop_not_null $dst,$src @ decodeHeapOop_not_null" %}
 11795   ins_encode %{
 11796     Register s = $src$$Register;
 11797     Register d = $dst$$Register;
 11798     if (s != d) {
 11799       __ decode_heap_oop_not_null(d, s);
 11800     } else {
 11801       __ decode_heap_oop_not_null(d);
 11803   %}
 11804   ins_pipe( ialu_regL_regL );
 11805 %}
 11807 instruct encodeKlass_not_null(mRegN dst, mRegP src) %{
 11808   match(Set dst (EncodePKlass src));
 11809   format %{ "encode_heap_oop_not_null $dst,$src @ encodeKlass_not_null" %}
 11810   ins_encode %{
 11811     __ encode_klass_not_null($dst$$Register, $src$$Register);
 11812   %}
 11813   ins_pipe( ialu_regL_regL );
 11814 %}
 11816 instruct decodeKlass_not_null(mRegP dst, mRegN src) %{
 11817   match(Set dst (DecodeNKlass src));
 11818   format %{ "decode_heap_klass_not_null $dst,$src" %}
 11819   ins_encode %{
 11820     Register s = $src$$Register;
 11821     Register d = $dst$$Register;
 11822     if (s != d) {
 11823       __ decode_klass_not_null(d, s);
 11824     } else {
 11825       __ decode_klass_not_null(d);
 11827   %}
 11828   ins_pipe( ialu_regL_regL );
 11829 %}
 11831 //FIXME
 11832 instruct tlsLoadP(mRegP dst) %{
 11833   match(Set dst (ThreadLocal));
 11835   ins_cost(0);
 11836   format %{ " get_thread in $dst #@tlsLoadP" %}
 11837   ins_encode %{
 11838     Register dst = $dst$$Register;
 11839 #ifdef OPT_THREAD
 11840     __ move(dst, TREG);
 11841 #else
 11842     __ get_thread(dst);
 11843 #endif
 11844   %}
 11846   ins_pipe( ialu_loadI );
 11847 %}
 11850 instruct checkCastPP( mRegP dst ) %{
 11851   match(Set dst (CheckCastPP dst));
 11853   format %{ "#checkcastPP of $dst (empty encoding) #@chekCastPP" %}
 11854   ins_encode( /*empty encoding*/ );
 11855   ins_pipe( empty );
 11856 %}
 11858 instruct castPP(mRegP dst)
 11859 %{
 11860   match(Set dst (CastPP dst));
 11862   size(0);
 11863   format %{ "# castPP of $dst" %}
 11864   ins_encode(/* empty encoding */);
 11865   ins_pipe(empty);
 11866 %}
 11868 instruct castII( mRegI dst ) %{
 11869   match(Set dst (CastII dst));
 11870   format %{ "#castII of $dst  empty encoding" %}
 11871   ins_encode( /*empty encoding*/ );
 11872   ins_cost(0);
 11873   ins_pipe( empty );
 11874 %}
 11876 // Return Instruction
 11877 // Remove the return address & jump to it.
 11878 instruct Ret() %{
 11879   match(Return);
 11880   format %{ "RET #@Ret" %}
 11882   ins_encode %{
 11883    __ jr(RA); 
 11884    __ nop();
 11885   %}
 11887   ins_pipe( pipe_jump );
 11888 %}
 11890 /*
 11891 // For Loongson CPUs, jr seems too slow, so this rule shouldn't be imported.
 11892 instruct jumpXtnd(mRegL switch_val) %{
 11893   match(Jump switch_val);
 11895   ins_cost(350);
 11897   format %{  "load   T9 <-- [$constanttablebase, $switch_val, $constantoffset] @ jumpXtnd\n\t"
 11898              "jr     T9\n\t"
 11899              "nop" %}
 11900   ins_encode %{
 11901     Register table_base = $constanttablebase;
 11902     int      con_offset = $constantoffset;
 11903     Register switch_reg = $switch_val$$Register;
 11905     if (UseLoongsonISA) {
 11906        if (Assembler::is_simm(con_offset, 8)) {
 11907          __ gsldx(T9, table_base, switch_reg, con_offset);
 11908        } else if (Assembler::is_simm16(con_offset)) {
 11909          __ daddu(T9, table_base, switch_reg);
 11910          __ ld(T9, T9, con_offset);
 11911        } else {
 11912          __ move(T9, con_offset);
 11913          __ daddu(AT, table_base, switch_reg);
 11914          __ gsldx(T9, AT, T9, 0);
 11916     } else {
 11917        if (Assembler::is_simm16(con_offset)) {
 11918          __ daddu(T9, table_base, switch_reg);
 11919          __ ld(T9, T9, con_offset);
 11920        } else {
 11921          __ move(T9, con_offset);
 11922          __ daddu(AT, table_base, switch_reg);
 11923          __ daddu(AT, T9, AT);
 11924          __ ld(T9, AT, 0);
 11928     __ jr(T9);
 11929     __ nop();
 11931   %}
 11932   ins_pipe(pipe_jump);
 11933 %}
 11934 */
 11936 // Jump Direct - Label defines a relative address from JMP
 11937 instruct jmpDir(label labl) %{
 11938   match(Goto);
 11939   effect(USE labl);
 11941   ins_cost(300);
 11942   format %{ "JMP    $labl #@jmpDir" %}
 11944   ins_encode %{
 11945     Label &L = *($labl$$label);
 11946     if(&L)
 11947     	 __ b(L);
 11948     else
 11949          __ b(int(0));
 11950     __ nop();
 11951   %}
 11953     ins_pipe( pipe_jump );
 11954     ins_pc_relative(1);
 11955 %}
 11959 // Tail Jump; remove the return address; jump to target.
 11960 // TailCall above leaves the return address around.
 11961 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 11962 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 11963 // "restore" before this instruction (in Epilogue), we need to materialize it
 11964 // in %i0.
 11965 //FIXME
 11966 instruct tailjmpInd(mRegP jump_target,mRegP ex_oop) %{
 11967   match( TailJump jump_target ex_oop );
 11968   ins_cost(200);
 11969   format %{ "Jmp     $jump_target  ; ex_oop = $ex_oop #@tailjmpInd" %}
 11970   ins_encode %{
 11971     Register target = $jump_target$$Register;
 11973     /* 2012/9/14 Jin: V0, V1 are indicated in:
 11974      *      [stubGenerator_mips.cpp] generate_forward_exception()
 11975      *      [runtime_mips.cpp] OptoRuntime::generate_exception_blob()
 11976      */
 11977     Register oop  = $ex_oop$$Register;
 11978     Register exception_oop = V0;
 11979     Register exception_pc = V1;
 11981     __ move(exception_pc, RA);
 11982     __ move(exception_oop, oop);
 11984     __ jr(target);  
 11985     __ nop();
 11986   %}
 11987   ins_pipe( pipe_jump ); 
 11988 %}
 11990 // ============================================================================
 11991 // Procedure Call/Return Instructions
 11992 // Call Java Static Instruction
 11993 // Note: If this code changes, the corresponding ret_addr_offset() and
 11994 //       compute_padding() functions will have to be adjusted.
 11995 instruct CallStaticJavaDirect(method meth) %{
 11996   match(CallStaticJava);
 11997   effect(USE meth);
 11999   ins_cost(300);
 12000   format %{ "CALL,static #@CallStaticJavaDirect " %}
 12001   ins_encode( Java_Static_Call( meth ) );
 12002   ins_pipe( pipe_slow );
 12003   ins_pc_relative(1);
 12004   ins_alignment(16);
 12005 %}
 12007 // Call Java Dynamic Instruction
 12008 // Note: If this code changes, the corresponding ret_addr_offset() and
 12009 //       compute_padding() functions will have to be adjusted.
 12010 instruct CallDynamicJavaDirect(method meth) %{
 12011   match(CallDynamicJava);
 12012   effect(USE meth);
 12014   ins_cost(300);
 12015   format %{"MOV IC_Klass, (oop)-1 @ CallDynamicJavaDirect\n\t"
 12016            "CallDynamic @ CallDynamicJavaDirect" %}
 12017   ins_encode( Java_Dynamic_Call( meth ) );
 12018   ins_pipe( pipe_slow );
 12019   ins_pc_relative(1);
 12020   ins_alignment(16);
 12021 %}
 12023 instruct CallLeafNoFPDirect(method meth) %{
 12024   match(CallLeafNoFP);
 12025   effect(USE meth);
 12027   ins_cost(300);
 12028   format %{ "CALL_LEAF_NOFP,runtime " %}
 12029   ins_encode(Java_To_Runtime(meth));
 12030   ins_pipe( pipe_slow );
 12031   ins_pc_relative(1);
 12032   ins_alignment(16);
 12033 %}
 12035 // Prefetch instructions.
 12037 instruct prefetchrNTA( memory mem ) %{
 12038   match(PrefetchRead mem);
 12039   ins_cost(125);
 12041   format %{ "pref $mem\t# Prefetch into non-temporal cache for read @ prefetchrNTA" %}
 12042   ins_encode %{
 12043     int  base = $mem$$base;
 12044     int  index = $mem$$index;
 12045     int  scale = $mem$$scale;
 12046     int  disp = $mem$$disp;
 12048     if( index != 0 ) {
 12049       if (scale == 0) {
 12050         __ daddu(AT, as_Register(base), as_Register(index));
 12051       } else {
 12052         __ dsll(AT, as_Register(index), scale);
 12053         __ daddu(AT, as_Register(base), AT);
 12055     } else {
 12056       __ move(AT, as_Register(base));
 12058     if( Assembler::is_simm16(disp) ) {
 12059       __ daddiu(AT, as_Register(base), disp);
 12060       __ daddiu(AT, AT, disp);
 12061     } else {
 12062       __ move(T9, disp);
 12063       __ daddu(AT, as_Register(base), T9);
 12065     __ pref(0, AT, 0); //hint: 0:load
 12066   %}
 12067   ins_pipe(pipe_slow);
 12068 %}
 12070 instruct prefetchwNTA( memory mem ) %{
 12071   match(PrefetchWrite mem);
 12072   ins_cost(125);
 12073   format %{ "pref $mem\t# Prefetch to non-temporal cache for write @ prefetchwNTA" %}
 12074   ins_encode %{
 12075     int  base = $mem$$base;
 12076     int  index = $mem$$index;
 12077     int  scale = $mem$$scale;
 12078     int  disp = $mem$$disp;
 12080     if( index != 0 ) {
 12081       if (scale == 0) {
 12082         __ daddu(AT, as_Register(base), as_Register(index));
 12083       } else {
 12084         __ dsll(AT, as_Register(index), scale);
 12085         __ daddu(AT, as_Register(base), AT);
 12087     } else {
 12088       __ move(AT, as_Register(base));
 12090     if( Assembler::is_simm16(disp) ) {
 12091       __ daddiu(AT, as_Register(base), disp);
 12092       __ daddiu(AT, AT, disp);
 12093     } else {
 12094       __ move(T9, disp);
 12095       __ daddu(AT, as_Register(base), T9);
 12097      __ pref(1, AT, 0); //hint: 1:store
 12098   %}
 12099   ins_pipe(pipe_slow);
 12100 %}
 12102 // Prefetch instructions for allocation.
 12104 instruct prefetchAllocNTA( memory mem ) %{
 12105   match(PrefetchAllocation mem);
 12106   ins_cost(125);
 12107   format %{ "pref $mem\t# Prefetch allocation @ prefetchAllocNTA" %}
 12108   ins_encode %{
 12109      int  base = $mem$$base;
 12110      int  index = $mem$$index;
 12111      int  scale = $mem$$scale;
 12112      int  disp = $mem$$disp;
 12114      Register dst = R0;
 12116      if( index != 0 ) {
 12117         if( Assembler::is_simm16(disp) ) { 
 12118            if( UseLoongsonISA ) {
 12119               if (scale == 0) {
 12120                  __ gslbx(dst, as_Register(base), as_Register(index), disp);
 12121               } else {
 12122                  __ dsll(AT, as_Register(index), scale);
 12123                  __ gslbx(dst, as_Register(base), AT, disp);
 12125            } else {
 12126               if (scale == 0) {
 12127                  __ addu(AT, as_Register(base), as_Register(index));
 12128               } else {
 12129                  __ dsll(AT, as_Register(index), scale);
 12130                  __ addu(AT, as_Register(base), AT);
 12132               __ lb(dst, AT, disp);
 12134         } else {
 12135            if (scale == 0) {
 12136               __ addu(AT, as_Register(base), as_Register(index));
 12137            } else {
 12138               __ dsll(AT, as_Register(index), scale);
 12139               __ addu(AT, as_Register(base), AT);
 12141            __ move(T9, disp);
 12142            if( UseLoongsonISA ) {
 12143               __ gslbx(dst, AT, T9, 0);
 12144            } else {
 12145               __ addu(AT, AT, T9); 
 12146               __ lb(dst, AT, 0);
 12149      } else {
 12150         if( Assembler::is_simm16(disp) ) { 
 12151            __ lb(dst, as_Register(base), disp);
 12152         } else {
 12153            __ move(T9, disp);   
 12154            if( UseLoongsonISA ) {
 12155               __ gslbx(dst, as_Register(base), T9, 0);
 12156            } else {
 12157               __ addu(AT, as_Register(base), T9); 
 12158               __ lb(dst, AT, 0);
 12162   %}
 12163   ins_pipe(pipe_slow);
 12164 %}
 12167 // Call runtime without safepoint
 12168 instruct CallLeafDirect(method meth) %{
 12169   match(CallLeaf);
 12170   effect(USE meth);
 12172   ins_cost(300);
 12173   format %{ "CALL_LEAF,runtime #@CallLeafDirect " %}
 12174   ins_encode(Java_To_Runtime(meth));
 12175   ins_pipe( pipe_slow );
 12176   ins_pc_relative(1);
 12177   ins_alignment(16);
 12178 %}
 12180 // Load Char (16bit unsigned)
 12181 instruct loadUS(mRegI dst, memory mem) %{
 12182   match(Set dst (LoadUS mem));
 12184   ins_cost(125);
 12185   format %{ "loadUS  $dst,$mem @ loadC" %}
 12186   ins_encode(load_C_enc(dst, mem));
 12187   ins_pipe( ialu_loadI );
 12188 %}
 12190 instruct loadUS_convI2L(mRegL dst, memory mem) %{
 12191   match(Set dst (ConvI2L (LoadUS mem)));
 12193   ins_cost(125);
 12194   format %{ "loadUS  $dst,$mem @ loadUS_convI2L" %}
 12195   ins_encode(load_C_enc(dst, mem));
 12196   ins_pipe( ialu_loadI );
 12197 %}
 12199 // Store Char (16bit unsigned)
 12200 instruct storeC(memory mem, mRegI src) %{
 12201   match(Set mem (StoreC mem src));
 12203   ins_cost(125);
 12204   format %{ "storeC  $src,$mem @ storeC" %}
 12205   ins_encode(store_C_reg_enc(mem, src));
 12206   ins_pipe( ialu_loadI );
 12207 %}
 12210 instruct loadConF0(regF dst, immF0 zero) %{
 12211   match(Set dst zero);
 12212   ins_cost(100);
 12214   format %{ "mov  $dst, zero @ loadConF0\n"%}
 12215   ins_encode %{
 12216     FloatRegister dst = $dst$$FloatRegister;
 12218     __ mtc1(R0, dst);
 12219   %}
 12220   ins_pipe( fpu_loadF );
 12221 %}
 12224 instruct loadConF(regF dst, immF src) %{
 12225   match(Set dst src);
 12226   ins_cost(125);
 12228   format %{ "lwc1  $dst, $constantoffset[$constanttablebase] # load FLOAT $src from table @ loadConF" %}
 12229   ins_encode %{
 12230     int con_offset = $constantoffset($src);
 12232     if (Assembler::is_simm16(con_offset)) {
 12233        __ lwc1($dst$$FloatRegister, $constanttablebase, con_offset);
 12234     } else {
 12235        __ set64(AT, con_offset);
 12236        if (UseLoongsonISA) {
 12237           __ gslwxc1($dst$$FloatRegister, $constanttablebase, AT, 0);
 12238        } else {
 12239           __ daddu(AT, $constanttablebase, AT);
 12240           __ lwc1($dst$$FloatRegister, AT, 0);
 12243   %}
 12244   ins_pipe( fpu_loadF );
 12245 %}
 12248 instruct loadConD0(regD dst, immD0 zero) %{
 12249   match(Set dst zero);
 12250   ins_cost(100);
 12252   format %{ "mov  $dst, zero @ loadConD0"%}
 12253   ins_encode %{
 12254     FloatRegister dst = as_FloatRegister($dst$$reg);
 12256       __ dmtc1(R0, dst);
 12257   %}
 12258   ins_pipe( fpu_loadF );
 12259 %}
 12261 instruct loadConD(regD dst, immD src) %{
 12262   match(Set dst src);
 12263   ins_cost(125);
 12265   format %{ "ldc1  $dst, $constantoffset[$constanttablebase] # load DOUBLE $src from table @ loadConD" %}
 12266   ins_encode %{
 12267     int con_offset = $constantoffset($src);
 12269     if (Assembler::is_simm16(con_offset)) {
 12270        __ ldc1($dst$$FloatRegister, $constanttablebase, con_offset);
 12271     } else {
 12272        __ set64(AT, con_offset);
 12273        if (UseLoongsonISA) {
 12274           __ gsldxc1($dst$$FloatRegister, $constanttablebase, AT, 0);
 12275        } else {
 12276           __ daddu(AT, $constanttablebase, AT);
 12277           __ ldc1($dst$$FloatRegister, AT, 0);
 12280   %}
 12281   ins_pipe( fpu_loadF );
 12282 %}
 12284 // Store register Float value (it is faster than store from FPU register)
 12285 instruct storeF_reg( memory mem, regF src) %{
 12286   match(Set mem (StoreF mem src));
 12288   ins_cost(50);
 12289   format %{ "store   $mem, $src\t# store float @ storeF_reg" %}
 12290   ins_encode(store_F_reg_enc(mem, src));
 12291   ins_pipe( fpu_storeF );
 12292 %}
 12294 instruct storeF_imm0( memory mem, immF0 zero) %{
 12295   match(Set mem (StoreF mem zero));
 12297   ins_cost(40);
 12298   format %{ "store   $mem, zero\t# store float @ storeF_imm0" %}
 12299   ins_encode %{
 12300     int      base = $mem$$base;
 12301     int     index = $mem$$index;
 12302     int     scale = $mem$$scale;
 12303     int      disp = $mem$$disp;
 12305     if( index != 0 ) {
 12306         if(scale != 0) {
 12307            __ dsll(T9, as_Register(index), scale);
 12308            __ addu(AT, as_Register(base), T9);
 12309         } else {
 12310            __ daddu(AT, as_Register(base), as_Register(index));
 12312        if( Assembler::is_simm16(disp) ) { 
 12313           __ sw(R0, AT, disp);
 12314        } else {
 12315           __ move(T9, disp);
 12316           __ addu(AT, AT, T9);
 12317           __ sw(R0, AT, 0);
 12320     } else {
 12321        if( Assembler::is_simm16(disp) ) { 
 12322           __ sw(R0, as_Register(base), disp);
 12323        } else {
 12324           __ move(T9, disp);
 12325           __ addu(AT, as_Register(base), T9);
 12326           __ sw(R0, AT, 0);
 12329   %}
 12330   ins_pipe( ialu_storeI );
 12331 %}
 12333 // Load Double
 12334 instruct loadD(regD dst, memory mem) %{
 12335   match(Set dst (LoadD mem));
 12337   ins_cost(150);
 12338   format %{ "loadD   $dst, $mem #@loadD" %}
 12339   ins_encode(load_D_enc(dst, mem));
 12340   ins_pipe( ialu_loadI );
 12341 %}
 12343 // Load Double - UNaligned
 12344 instruct loadD_unaligned(regD dst, memory mem ) %{
 12345   match(Set dst (LoadD_unaligned mem));
 12346   ins_cost(250);
 12347   // FIXME: Jin: Need more effective ldl/ldr
 12348   format %{ "loadD_unaligned   $dst, $mem #@loadD_unaligned" %}
 12349   ins_encode(load_D_enc(dst, mem));
 12350   ins_pipe( ialu_loadI );
 12351 %}
 12353 instruct storeD_reg( memory mem, regD src) %{
 12354   match(Set mem (StoreD mem src));
 12356   ins_cost(50);
 12357   format %{ "store   $mem, $src\t# store float @ storeD_reg" %}
 12358   ins_encode(store_D_reg_enc(mem, src));
 12359   ins_pipe( fpu_storeF );
 12360 %}
 12362 instruct storeD_imm0( memory mem, immD0 zero) %{
 12363   match(Set mem (StoreD mem zero));
 12365   ins_cost(40);
 12366   format %{ "store   $mem, zero\t# store float @ storeD_imm0" %}
 12367   ins_encode %{
 12368     int      base = $mem$$base;
 12369     int     index = $mem$$index;
 12370     int     scale = $mem$$scale;
 12371     int      disp = $mem$$disp;
 12373     __ mtc1(R0, F30);
 12374     __ cvt_d_w(F30, F30);
 12376     if( index != 0 ) {
 12377         if(scale != 0) {
 12378            __ dsll(T9, as_Register(index), scale);
 12379            __ addu(AT, as_Register(base), T9);
 12380         } else {
 12381            __ daddu(AT, as_Register(base), as_Register(index));
 12383        if( Assembler::is_simm16(disp) ) { 
 12384           __ sdc1(F30, AT, disp);
 12385        } else {
 12386           __ move(T9, disp);
 12387           __ addu(AT, AT, T9);
 12388           __ sdc1(F30, AT, 0);
 12391     } else {
 12392        if( Assembler::is_simm16(disp) ) { 
 12393           __ sdc1(F30, as_Register(base), disp);
 12394        } else {
 12395           __ move(T9, disp);
 12396           __ addu(AT, as_Register(base), T9);
 12397           __ sdc1(F30, AT, 0);
 12400   %}
 12401   ins_pipe( ialu_storeI );
 12402 %}
 12404 instruct loadSSI(mRegI dst, stackSlotI src)
 12405 %{
 12406   match(Set dst src);
 12408   ins_cost(125);
 12409   format %{ "lw    $dst, $src\t# int stk @ loadSSI" %}
 12410   ins_encode %{
 12411     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSI) !");
 12412     __ lw($dst$$Register, SP, $src$$disp);
 12413   %}
 12414   ins_pipe(ialu_loadI);
 12415 %}
 12417 instruct storeSSI(stackSlotI dst, mRegI src)
 12418 %{
 12419   match(Set dst src);
 12421   ins_cost(100);
 12422   format %{ "sw    $dst, $src\t# int stk @ storeSSI" %}
 12423   ins_encode %{
 12424     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSI) !");
 12425     __ sw($src$$Register, SP, $dst$$disp);
 12426   %}
 12427   ins_pipe(ialu_storeI);
 12428 %}
 12430 instruct loadSSL(mRegL dst, stackSlotL src)
 12431 %{
 12432   match(Set dst src);
 12434   ins_cost(125);
 12435   format %{ "ld    $dst, $src\t# long stk @ loadSSL" %}
 12436   ins_encode %{
 12437     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSL) !");
 12438     __ ld($dst$$Register, SP, $src$$disp);
 12439   %}
 12440   ins_pipe(ialu_loadI);
 12441 %}
 12443 instruct storeSSL(stackSlotL dst, mRegL src)
 12444 %{
 12445   match(Set dst src);
 12447   ins_cost(100);
 12448   format %{ "sd    $dst, $src\t# long stk @ storeSSL" %}
 12449   ins_encode %{
 12450     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSL) !");
 12451     __ sd($src$$Register, SP, $dst$$disp);
 12452   %}
 12453   ins_pipe(ialu_storeI);
 12454 %}
 12456 instruct loadSSP(mRegP dst, stackSlotP src)
 12457 %{
 12458   match(Set dst src);
 12460   ins_cost(125);
 12461   format %{ "ld    $dst, $src\t# ptr stk @ loadSSP" %}
 12462   ins_encode %{
 12463     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSP) !");
 12464     __ ld($dst$$Register, SP, $src$$disp);
 12465   %}
 12466   ins_pipe(ialu_loadI);
 12467 %}
 12469 instruct storeSSP(stackSlotP dst, mRegP src)
 12470 %{
 12471   match(Set dst src);
 12473   ins_cost(100);
 12474   format %{ "sd    $dst, $src\t# ptr stk @ storeSSP" %}
 12475   ins_encode %{
 12476     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSP) !");
 12477     __ sd($src$$Register, SP, $dst$$disp);
 12478   %}
 12479   ins_pipe(ialu_storeI);
 12480 %}
 12482 instruct loadSSF(regF dst, stackSlotF src)
 12483 %{
 12484   match(Set dst src);
 12486   ins_cost(125);
 12487   format %{ "lwc1   $dst, $src\t# float stk @ loadSSF" %}
 12488   ins_encode %{
 12489     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSF) !");
 12490     __ lwc1($dst$$FloatRegister, SP, $src$$disp);
 12491   %}
 12492   ins_pipe(ialu_loadI);
 12493 %}
 12495 instruct storeSSF(stackSlotF dst, regF src)
 12496 %{
 12497   match(Set dst src);
 12499   ins_cost(100);
 12500   format %{ "swc1    $dst, $src\t# float stk @ storeSSF" %}
 12501   ins_encode %{
 12502     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSF) !");
 12503     __ swc1($src$$FloatRegister, SP, $dst$$disp);
 12504   %}
 12505   ins_pipe(fpu_storeF);
 12506 %}
 12508 // Use the same format since predicate() can not be used here.
 12509 instruct loadSSD(regD dst, stackSlotD src)
 12510 %{
 12511   match(Set dst src);
 12513   ins_cost(125);
 12514   format %{ "ldc1   $dst, $src\t# double stk @ loadSSD" %}
 12515   ins_encode %{
 12516     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSD) !");
 12517     __ ldc1($dst$$FloatRegister, SP, $src$$disp);
 12518   %}
 12519   ins_pipe(ialu_loadI);
 12520 %}
 12522 instruct storeSSD(stackSlotD dst, regD src)
 12523 %{
 12524   match(Set dst src);
 12526   ins_cost(100);
 12527   format %{ "sdc1    $dst, $src\t# double stk @ storeSSD" %}
 12528   ins_encode %{
 12529     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSD) !");
 12530     __ sdc1($src$$FloatRegister, SP, $dst$$disp);
 12531   %}
 12532   ins_pipe(fpu_storeF);
 12533 %}
 12535 instruct cmpFastLock( FlagsReg cr, mRegP object, s0_RegP box, mRegI tmp, mRegP scr) %{
 12536   match( Set cr (FastLock object box) );
 12537   effect( TEMP tmp, TEMP scr, USE_KILL box );
 12538   ins_cost(300);
 12539   format %{ "FASTLOCK $cr $object, $box, $tmp #@ cmpFastLock" %}
 12540   ins_encode %{
 12541     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register, $scr$$Register);
 12542   %}
 12544   ins_pipe( pipe_slow );
 12545   ins_pc_relative(1);
 12546 %}
 12548 instruct cmpFastUnlock( FlagsReg cr, mRegP object, s0_RegP box, mRegP tmp ) %{
 12549   match( Set cr (FastUnlock object box) );
 12550   effect( TEMP tmp, USE_KILL box );
 12551   ins_cost(300);
 12552   format %{ "FASTUNLOCK $object, $box, $tmp #@cmpFastUnlock" %}
 12553   ins_encode %{
 12554     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register);
 12555   %}
 12557   ins_pipe( pipe_slow );
 12558   ins_pc_relative(1);
 12559 %}
 12561 // Store CMS card-mark Immediate
 12562 instruct storeImmCM(memory mem, immI8 src) %{
 12563   match(Set mem (StoreCM mem src));
 12565   ins_cost(150);
 12566   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
 12567 //  opcode(0xC6);
 12568   ins_encode(store_B_immI_enc_sync(mem, src));
 12569   ins_pipe( ialu_storeI );
 12570 %}
 12572 // Die now
 12573 instruct ShouldNotReachHere( )
 12574 %{
 12575   match(Halt);
 12576   ins_cost(300);
 12578   // Use the following format syntax
 12579   format %{ "ILLTRAP   ;#@ShouldNotReachHere" %}
 12580   ins_encode %{
 12581     // Here we should emit illtrap !
 12583     __ stop("in ShoudNotReachHere");
 12585   %}
 12586   ins_pipe( pipe_jump );
 12587 %}
 12589 instruct leaP8Narrow(mRegP dst, indOffset8Narrow mem)
 12590 %{
 12591   predicate(Universe::narrow_oop_shift() == 0);
 12592   match(Set dst mem);
 12594   ins_cost(110); 
 12595   format %{ "leaq    $dst, $mem\t# ptr off8narrow @ leaP8Narrow" %}
 12596   ins_encode %{
 12597     Register  dst  = $dst$$Register;
 12598     Register  base = as_Register($mem$$base);
 12599     int       disp = $mem$$disp;
 12601     __ daddiu(dst, base, disp);
 12602   %}
 12603   ins_pipe( ialu_regI_imm16 );
 12604 %}
 12606 instruct leaPPosIdxScaleOff8(mRegP dst, basePosIndexScaleOffset8 mem)
 12607 %{
 12608   match(Set dst mem);
 12610   ins_cost(110);
 12611   format %{ "leaq    $dst, $mem\t# @ PosIdxScaleOff8" %}
 12612   ins_encode %{
 12613     Register  dst   = $dst$$Register;
 12614     Register  base  = as_Register($mem$$base);
 12615     Register  index = as_Register($mem$$index);
 12616     int       scale = $mem$$scale;
 12617     int       disp  = $mem$$disp;
 12619     if (scale == 0) {
 12620        __ daddu(AT, base, index);
 12621        __ daddiu(dst, AT, disp);
 12622     } else {
 12623        __ dsll(AT, index, scale);
 12624        __ daddu(AT, base, AT);
 12625        __ daddiu(dst, AT, disp);
 12627  %}
 12629   ins_pipe( ialu_regI_imm16 );
 12630 %}
 12632 instruct leaPIdxScale(mRegP dst, indIndexScale mem)
 12633 %{
 12634   match(Set dst mem);
 12636   ins_cost(110);
 12637   format %{ "leaq    $dst, $mem\t# @ leaPIdxScale" %}
 12638   ins_encode %{
 12639     Register  dst   = $dst$$Register;
 12640     Register  base  = as_Register($mem$$base);
 12641     Register  index = as_Register($mem$$index);
 12642     int       scale = $mem$$scale;
 12644     if (scale == 0) {
 12645        __ daddu(dst, base, index);
 12646     } else {
 12647        __ dsll(AT, index, scale);
 12648        __ daddu(dst, base, AT);
 12650  %}
 12652   ins_pipe( ialu_regI_imm16 );
 12653 %}
 12655 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12656 instruct  jmpLoopEnd(cmpOp cop, mRegI src1, mRegI src2, label labl) %{
 12657   match(CountedLoopEnd cop (CmpI src1 src2));
 12658   effect(USE labl);
 12660   ins_cost(300);
 12661   format %{ "J$cop  $src1, $src2,  $labl\t# Loop end @ jmpLoopEnd" %}
 12662   ins_encode %{
 12663     Register op1 = $src1$$Register;
 12664     Register op2 = $src2$$Register;
 12665     Label     &L = *($labl$$label);
 12666     int     flag = $cop$$cmpcode;
 12668     switch(flag)
 12670       case 0x01: //equal
 12671 	if (&L)
 12672         	__ beq(op1, op2, L); 
 12673 	else 
 12674         	__ beq(op1, op2, (int)0); 
 12675         break;
 12676       case 0x02: //not_equal
 12677 	if (&L)
 12678         	__ bne(op1, op2, L); 
 12679 	else
 12680         	__ bne(op1, op2, (int)0); 
 12681         break;
 12682       case 0x03: //above
 12683         __ slt(AT, op2, op1);
 12684         if(&L)
 12685         	__ bne(AT, R0, L); 
 12686         else
 12687                 __ bne(AT, R0, (int)0);
 12688         break;
 12689       case 0x04: //above_equal
 12690         __ slt(AT, op1, op2);
 12691         if(&L)
 12692         	__ beq(AT, R0, L);
 12693         else
 12694                 __ beq(AT, R0, (int)0);
 12695         break;
 12696       case 0x05: //below
 12697         __ slt(AT, op1, op2);
 12698         if(&L)
 12699       		 __ bne(AT, R0, L); 
 12700         else
 12701         	 __ bne(AT, R0, (int)0);
 12702         break;
 12703       case 0x06: //below_equal
 12704         __ slt(AT, op2, op1);
 12705         if(&L)
 12706         	__ beq(AT, R0, L);
 12707         else
 12708         	__ beq(AT, R0, (int)0);
 12709        break;
 12710       default:
 12711           Unimplemented();
 12713     __ nop();
 12714   %}
 12715   ins_pipe( pipe_jump );
 12716   ins_pc_relative(1);
 12717 %}
 12720  instruct  jmpLoopEnd_reg_imm16_sub(cmpOp cop, mRegI src1, immI16_sub src2, label labl) %{
 12721   match(CountedLoopEnd cop (CmpI src1 src2));
 12722   effect(USE labl);
 12724   ins_cost(250);
 12725   format %{ "J$cop  $src1, $src2,  $labl\t# Loop end @ jmpLoopEnd_reg_imm16_sub" %}
 12726   ins_encode %{
 12727     Register op1 = $src1$$Register;
 12728     int      op2 = $src2$$constant;
 12729     Label     &L = *($labl$$label);
 12730     int     flag = $cop$$cmpcode;
 12732     __ addiu32(AT, op1, -1 * op2);
 12734     switch(flag)
 12736       case 0x01: //equal
 12737        if (&L)
 12738                __ beq(AT, R0, L); 
 12739        else 
 12740                __ beq(AT, R0, (int)0); 
 12741         break;
 12742       case 0x02: //not_equal
 12743        if (&L)
 12744                __ bne(AT, R0, L); 
 12745        else
 12746                __ bne(AT, R0, (int)0); 
 12747         break;
 12748       case 0x03: //above
 12749         if(&L)
 12750                __ bgtz(AT, L); 
 12751         else
 12752                 __ bgtz(AT, (int)0);
 12753         break;
 12754       case 0x04: //above_equal
 12755         if(&L)
 12756                __ bgez(AT, L);
 12757         else
 12758                 __ bgez(AT,(int)0);
 12759         break;
 12760       case 0x05: //below
 12761         if(&L)
 12762                 __ bltz(AT, L); 
 12763         else
 12764                 __ bltz(AT, (int)0);
 12765         break;
 12766       case 0x06: //below_equal
 12767         if(&L)
 12768                __ blez(AT, L);
 12769         else
 12770                __ blez(AT, (int)0);
 12771        break;
 12772       default:
 12773           Unimplemented();
 12775     __ nop();
 12776   %}
 12777   ins_pipe( pipe_jump );
 12778   ins_pc_relative(1);
 12779 %}
 12782 /*  
 12783 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12784 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12785   match(CountedLoopEnd cop cmp);
 12786   effect(USE labl);
 12788   ins_cost(300);
 12789   format %{ "J$cop,u  $labl\t# Loop end" %}
 12790   size(6);
 12791   opcode(0x0F, 0x80);
 12792   ins_encode( Jcc( cop, labl) );
 12793   ins_pipe( pipe_jump );
 12794   ins_pc_relative(1);
 12795 %}
 12797 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12798   match(CountedLoopEnd cop cmp);
 12799   effect(USE labl);
 12801   ins_cost(200);
 12802   format %{ "J$cop,u  $labl\t# Loop end" %}
 12803   opcode(0x0F, 0x80);
 12804   ins_encode( Jcc( cop, labl) );
 12805   ins_pipe( pipe_jump );
 12806   ins_pc_relative(1);
 12807 %}
 12808 */
 12810 // This match pattern is created for StoreIConditional since I cannot match IfNode without a RegFlags! fujie 2012/07/17
 12811 instruct jmpCon_flags(cmpOp cop, FlagsReg cr, label labl) %{
 12812   match(If cop cr);
 12813   effect(USE labl);
 12815   ins_cost(300);
 12816   format %{ "J$cop    $labl  #mips uses AT as eflag @jmpCon_flags" %}
 12818   ins_encode %{
 12819     Label    &L =  *($labl$$label);
 12820     switch($cop$$cmpcode)
 12822       case 0x01: //equal
 12823 	if (&L)
 12824         	__ bne(AT, R0, L); 
 12825 	else 
 12826         	__ bne(AT, R0, (int)0); 
 12827         break;
 12828       case 0x02: //not equal
 12829 	if (&L)
 12830         	__ beq(AT, R0, L); 
 12831 	else 
 12832         	__ beq(AT, R0, (int)0); 
 12833         break;
 12834       default:
 12835          Unimplemented(); 
 12837     __ nop();
 12838   %}
 12840   ins_pipe( pipe_jump );
 12841   ins_pc_relative(1);
 12842 %}
 12845 // ============================================================================
 12846 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12847 // array for an instance of the superklass.  Set a hidden internal cache on a
 12848 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12849 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12850 instruct partialSubtypeCheck( mRegP result, no_T8_mRegP sub, no_T8_mRegP super, mT8RegI tmp ) %{
 12851   match(Set result (PartialSubtypeCheck sub super));
 12852   effect(KILL tmp);
 12853   ins_cost(1100);  // slightly larger than the next version
 12854   format %{ "partialSubtypeCheck result=$result, sub=$sub, super=$super, tmp=$tmp " %}
 12856   ins_encode( enc_PartialSubtypeCheck(result, sub, super, tmp) );
 12857   ins_pipe( pipe_slow );
 12858 %}
 12861 // Conditional-store of an int value.
 12862 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
 12863 instruct storeIConditional( memory mem, mRegI oldval, mRegI newval, FlagsReg cr ) %{
 12864   match(Set cr (StoreIConditional mem (Binary oldval newval)));
 12865 //  effect(KILL oldval);
 12866   format %{ "CMPXCHG  $newval, $mem, $oldval \t# @storeIConditional" %}
 12868   ins_encode %{
 12869     Register oldval = $oldval$$Register;
 12870     Register newval = $newval$$Register;
 12871     Address  addr(as_Register($mem$$base), $mem$$disp);
 12872     Label    again, failure;
 12874 //    int      base = $mem$$base;
 12875     int     index = $mem$$index;
 12876     int     scale = $mem$$scale;
 12877     int      disp = $mem$$disp;
 12879     guarantee(Assembler::is_simm16(disp), ""); 
 12881     if( index != 0 ) {
 12882        __ stop("in storeIConditional: index != 0");
 12883     } else {
 12884        __ bind(again);
 12885        __ sync();
 12886        __ ll(AT, addr);
 12887        __ bne(AT, oldval, failure);
 12888        __ delayed()->addu(AT, R0, R0);
 12890        __ addu(AT, newval, R0);
 12891        __ sc(AT, addr);
 12892        __ beq(AT, R0, again);
 12893        __ delayed()->addiu(AT, R0, 0xFF);
 12894        __ bind(failure);
 12895        __ sync();
 12897 %}
 12899   ins_pipe( long_memory_op );
 12900 %}
 12902 // Conditional-store of a long value.
 12903 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
 12904 instruct storeLConditional(memory mem, t2RegL oldval, mRegL newval, FlagsReg cr )
 12905 %{
 12906   match(Set cr (StoreLConditional mem (Binary oldval newval)));
 12907   effect(KILL oldval);
 12909   format %{ "cmpxchg $mem, $newval\t# If $oldval == $mem then store $newval into $mem" %}
 12910   ins_encode%{
 12911 		Register oldval = $oldval$$Register;
 12912 		Register newval = $newval$$Register;
 12913 		Address addr((Register)$mem$$base, $mem$$disp);  
 12915 		int     index = $mem$$index;
 12916 		int     scale = $mem$$scale;
 12917 		int      disp = $mem$$disp;
 12919 		guarantee(Assembler::is_simm16(disp), ""); 
 12921 		if( index != 0 ) {
 12922 			__ stop("in storeIConditional: index != 0");
 12923 		} else {
 12924 			__ cmpxchg(newval, addr, oldval);
 12926   %}
 12927   ins_pipe( long_memory_op );
 12928 %}
 12931 instruct compareAndSwapI( mRegI res, mRegP mem_ptr, mS2RegI oldval, mRegI newval) %{
 12932   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
 12933   effect(KILL oldval);
 12934 //  match(CompareAndSwapI mem_ptr (Binary oldval newval));
 12935   format %{ "CMPXCHG $newval, [$mem_ptr], $oldval @ compareAndSwapI\n\t"
 12936             "MOV    $res, 1 @ compareAndSwapI\n\t"
 12937             "BNE    AT, R0 @ compareAndSwapI\n\t"
 12938             "MOV    $res, 0 @ compareAndSwapI\n"
 12939           "L:" %}
 12940   ins_encode %{
 12941     Register newval = $newval$$Register;
 12942     Register oldval = $oldval$$Register;
 12943     Register res    = $res$$Register;
 12944     Address  addr($mem_ptr$$Register, 0);    
 12945     Label L;
 12947     __ cmpxchg32(newval, addr, oldval);
 12948     __ move(res, AT);
 12949   %}
 12950   ins_pipe( long_memory_op );
 12951 %}
 12953 //FIXME:
 12954 instruct compareAndSwapP( mRegI res, mRegP mem_ptr, s2_RegP oldval, mRegP newval) %{
 12955   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
 12956   effect(KILL oldval);
 12957   format %{ "CMPXCHG $newval, [$mem_ptr], $oldval @ compareAndSwapP\n\t"
 12958             "MOV    $res, AT @ compareAndSwapP\n\t"
 12959           "L:" %}
 12960   ins_encode %{
 12961     Register newval = $newval$$Register;
 12962     Register oldval = $oldval$$Register;
 12963     Register res    = $res$$Register;
 12964     Address  addr($mem_ptr$$Register, 0);    
 12965     Label L;
 12967     __ cmpxchg(newval, addr, oldval);
 12968     __ move(res, AT);
 12969   %}
 12970   ins_pipe( long_memory_op );
 12971 %}
 12973 instruct compareAndSwapN( mRegI res, mRegP mem_ptr, t2_RegN oldval, mRegN newval) %{
 12974   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
 12975   effect(KILL oldval);
 12976   format %{ "CMPXCHG $newval, [$mem_ptr], $oldval @ compareAndSwapN\n\t"
 12977             "MOV    $res, AT @ compareAndSwapN\n\t"
 12978           "L:" %}
 12979   ins_encode %{
 12980     Register newval = $newval$$Register;
 12981     Register oldval = $oldval$$Register;
 12982     Register res    = $res$$Register;
 12983     Address  addr($mem_ptr$$Register, 0);    
 12984     Label L;
 12986     /* 2013/7/19 Jin: cmpxchg32 is implemented with ll/sc, which will do sign extension.
 12987      *      Thus, we should extend oldval's sign for correct comparision.
 12988      */
 12989     __ sll(oldval, oldval, 0);
 12991     __ cmpxchg32(newval, addr, oldval);
 12992     __ move(res, AT);
 12993   %}
 12994   ins_pipe( long_memory_op );
 12995 %}
 12997 //----------Max and Min--------------------------------------------------------
 12998 // Min Instructions
 12999 ////
 13000 //   *** Min and Max using the conditional move are slower than the
 13001 //   *** branch version on a Pentium III.
 13002 // // Conditional move for min
 13003 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 13004 //  effect( USE_DEF op2, USE op1, USE cr );
 13005 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 13006 //  opcode(0x4C,0x0F);
 13007 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 13008 //  ins_pipe( pipe_cmov_reg );
 13009 //%}
 13010 //
 13011 //// Min Register with Register (P6 version)
 13012 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 13013 //  predicate(VM_Version::supports_cmov() );
 13014 //  match(Set op2 (MinI op1 op2));
 13015 //  ins_cost(200);
 13016 //  expand %{
 13017 //    eFlagsReg cr;
 13018 //    compI_eReg(cr,op1,op2);
 13019 //    cmovI_reg_lt(op2,op1,cr);
 13020 //  %}
 13021 //%}
 13023 // Min Register with Register (generic version)
 13024 instruct minI_Reg_Reg(mRegI dst, mRegI src) %{
 13025   match(Set dst (MinI dst src));
 13026   //effect(KILL flags);
 13027   ins_cost(80);
 13029   format %{ "MIN    $dst, $src @minI_Reg_Reg" %}
 13030   ins_encode %{
 13031     Register dst   = $dst$$Register;
 13032     Register src   = $src$$Register;
 13034     __ slt(AT, src, dst);
 13035     __ movn(dst, src, AT);
 13037   %}
 13039   ins_pipe( pipe_slow );
 13040 %}
 13042 // Max Register with Register
 13043 //   *** Min and Max using the conditional move are slower than the
 13044 //   *** branch version on a Pentium III.
 13045 // // Conditional move for max
 13046 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 13047 //  effect( USE_DEF op2, USE op1, USE cr );
 13048 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 13049 //  opcode(0x4F,0x0F);
 13050 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 13051 //  ins_pipe( pipe_cmov_reg );
 13052 //%}
 13053 //
 13054 // // Max Register with Register (P6 version)
 13055 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 13056 //  predicate(VM_Version::supports_cmov() );
 13057 //  match(Set op2 (MaxI op1 op2));
 13058 //  ins_cost(200);
 13059 //  expand %{
 13060 //    eFlagsReg cr;
 13061 //    compI_eReg(cr,op1,op2);
 13062 //    cmovI_reg_gt(op2,op1,cr);
 13063 //  %}
 13064 //%}
 13066 // Max Register with Register (generic version)
 13067 instruct maxI_Reg_Reg(mRegI dst, mRegI src) %{
 13068   match(Set dst (MaxI dst src));
 13069   ins_cost(80);
 13071   format %{ "MAX    $dst, $src @maxI_Reg_Reg" %}
 13073   ins_encode %{
 13074     Register dst   = $dst$$Register;
 13075     Register src   = $src$$Register;
 13077     __ slt(AT, dst, src);
 13078     __ movn(dst, src, AT);
 13080   %}
 13082   ins_pipe( pipe_slow );
 13083 %}
 13085 instruct maxI_Reg_zero(mRegI dst, immI0 zero) %{
 13086   match(Set dst (MaxI dst zero));
 13087   ins_cost(50);
 13089   format %{ "MAX    $dst, 0 @maxI_Reg_zero" %}
 13091   ins_encode %{
 13092     Register dst   = $dst$$Register;
 13094     __ slt(AT, dst, R0);
 13095     __ movn(dst, R0, AT);
 13097   %}
 13099   ins_pipe( pipe_slow );
 13100 %}
 13102 instruct zerox_long_reg_reg(mRegL dst, mRegL src, immL_32bits mask)
 13103 %{
 13104   match(Set dst (AndL src mask));
 13106   format %{ "movl    $dst, $src\t# zero-extend long @ zerox_long_reg_reg" %}
 13107   ins_encode %{
 13108     Register dst = $dst$$Register;
 13109     Register src = $src$$Register;
 13111     __ dext(dst, src, 0, 32);
 13112   %}
 13113   ins_pipe(ialu_regI_regI);
 13114 %}
 13116 instruct combine_i2l(mRegL dst, mRegI src1, immL_32bits mask, mRegI src2, immI_32 shift32)
 13117 %{
 13118   match(Set dst (OrL (AndL (ConvI2L src1) mask) (LShiftL (ConvI2L src2) shift32)));
 13120   format %{ "combine_i2l    $dst, $src2(H), $src1(L) @ combine_i2l" %}
 13121   ins_encode %{
 13122     Register dst  = $dst$$Register;
 13123     Register src1 = $src1$$Register;
 13124     Register src2 = $src2$$Register;
 13126     if (src1 == dst) {
 13127        __ dinsu(dst, src2, 32, 32);
 13128     } else if (src2 == dst) {
 13129        __ dsll32(dst, dst, 0); 
 13130        __ dins(dst, src1, 0, 32);
 13131     } else {
 13132        __ dext(dst, src1, 0, 32);
 13133        __ dinsu(dst, src2, 32, 32);
 13135   %}
 13136   ins_pipe(ialu_regI_regI);
 13137 %}
 13139 // Zero-extend convert int to long
 13140 instruct convI2L_reg_reg_zex(mRegL dst, mRegI src, immL_32bits mask)
 13141 %{
 13142   match(Set dst (AndL (ConvI2L src) mask));
 13144   format %{ "movl    $dst, $src\t# i2l zero-extend @ convI2L_reg_reg_zex" %}
 13145   ins_encode %{
 13146     Register dst = $dst$$Register;
 13147     Register src = $src$$Register;
 13149     __ dext(dst, src, 0, 32);
 13150   %}
 13151   ins_pipe(ialu_regI_regI);
 13152 %}
 13154 instruct convL2I2L_reg_reg_zex(mRegL dst, mRegL src, immL_32bits mask)
 13155 %{
 13156   match(Set dst (AndL (ConvI2L (ConvL2I src)) mask));
 13158   format %{ "movl    $dst, $src\t# i2l zero-extend @ convL2I2L_reg_reg_zex" %}
 13159   ins_encode %{
 13160     Register dst = $dst$$Register;
 13161     Register src = $src$$Register;
 13163     __ dext(dst, src, 0, 32);
 13164   %}
 13165   ins_pipe(ialu_regI_regI);
 13166 %}
 13168 // Match loading integer and casting it to unsigned int in long register.
 13169 // LoadI + ConvI2L + AndL 0xffffffff.
 13170 instruct loadUI2L_rmask(mRegL dst, memory mem, immL_32bits mask) %{
 13171   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
 13173   format %{ "lwu     $dst, $mem \t// zero-extend to long @ loadUI2L_rmask" %}
 13174   ins_encode (load_N_enc(dst, mem));
 13175   ins_pipe(ialu_loadI);
 13176 %}
 13178 instruct loadUI2L_lmask(mRegL dst, memory mem, immL_32bits mask) %{
 13179   match(Set dst (AndL mask (ConvI2L (LoadI mem))));
 13181   format %{ "lwu     $dst, $mem \t// zero-extend to long @ loadUI2L_lmask" %}
 13182   ins_encode (load_N_enc(dst, mem));
 13183   ins_pipe(ialu_loadI);
 13184 %}
 13187 // ============================================================================
 13188 // Safepoint Instruction
 13189 instruct safePoint_poll(mRegP poll) %{
 13190   match(SafePoint poll);
 13191   effect(USE poll);
 13193   ins_cost(125);
 13194   format %{ "Safepoint @ [$poll] : poll for GC @ safePoint_poll" %}
 13196   ins_encode %{
 13197     Register poll_reg = $poll$$Register;
 13199     __ block_comment("Safepoint:");
 13200     __ relocate(relocInfo::poll_type);
 13201     __ lw(AT, poll_reg, 0);
 13202   %}
 13204   ins_pipe( ialu_storeI );
 13205 %}
 13207 //----------Arithmetic Conversion Instructions---------------------------------
 13209 instruct roundFloat_nop(regF dst)
 13210 %{
 13211   match(Set dst (RoundFloat dst));
 13213   ins_cost(0);
 13214   ins_encode();
 13215   ins_pipe(empty);
 13216 %}
 13218 instruct roundDouble_nop(regD dst)
 13219 %{
 13220   match(Set dst (RoundDouble dst));
 13222   ins_cost(0);
 13223   ins_encode();
 13224   ins_pipe(empty);
 13225 %}
 13227 //---------- Zeros Count Instructions ------------------------------------------
 13228 // CountLeadingZerosINode CountTrailingZerosINode 
 13229 instruct countLeadingZerosI(mRegI dst, mRegI src) %{
 13230   predicate(UseCountLeadingZerosInstruction);
 13231   match(Set dst (CountLeadingZerosI src));
 13233   format %{ "clz  $dst, $src\t# count leading zeros (int)" %}
 13234   ins_encode %{
 13235     __ clz($dst$$Register, $src$$Register);
 13236   %}
 13237   ins_pipe( ialu_regL_regL );
 13238 %}
 13240 instruct countLeadingZerosL(mRegI dst, mRegL src) %{
 13241   predicate(UseCountLeadingZerosInstruction);
 13242   match(Set dst (CountLeadingZerosL src));
 13244   format %{ "dclz  $dst, $src\t# count leading zeros (long)" %}
 13245   ins_encode %{
 13246     __ dclz($dst$$Register, $src$$Register);
 13247   %}
 13248   ins_pipe( ialu_regL_regL );
 13249 %}
 13251 instruct countTrailingZerosI(mRegI dst, mRegI src) %{
 13252   predicate(UseCountTrailingZerosInstruction);
 13253   match(Set dst (CountTrailingZerosI src));
 13255   format %{ "ctz    $dst, $src\t# count trailing zeros (int)" %}
 13256   ins_encode %{
 13257     // ctz and dctz is gs instructions.
 13258     __ ctz($dst$$Register, $src$$Register);
 13259   %}
 13260   ins_pipe( ialu_regL_regL );
 13261 %}
 13263 instruct countTrailingZerosL(mRegI dst, mRegL src) %{
 13264   predicate(UseCountTrailingZerosInstruction);
 13265   match(Set dst (CountTrailingZerosL src));
 13267   format %{ "dcto    $dst, $src\t# count trailing zeros (long)" %}
 13268   ins_encode %{
 13269     __ dctz($dst$$Register, $src$$Register);
 13270   %}
 13271   ins_pipe( ialu_regL_regL );
 13272 %}
 13274 // ====================VECTOR INSTRUCTIONS=====================================
 13276 // Load vectors (8 bytes long)
 13277 instruct loadV8(vecD dst, memory mem) %{
 13278   predicate(n->as_LoadVector()->memory_size() == 8);
 13279   match(Set dst (LoadVector mem));
 13280   ins_cost(125);
 13281   format %{ "load    $dst, $mem\t! load vector (8 bytes)" %}
 13282   ins_encode(load_D_enc(dst, mem));
 13283   ins_pipe( fpu_loadF );
 13284 %}
 13286 // Store vectors (8 bytes long)
 13287 instruct storeV8(memory mem, vecD src) %{
 13288   predicate(n->as_StoreVector()->memory_size() == 8);
 13289   match(Set mem (StoreVector mem src));
 13290   ins_cost(145);
 13291   format %{ "store    $mem, $src\t! store vector (8 bytes)" %}
 13292   ins_encode(store_D_reg_enc(mem, src));
 13293   ins_pipe( fpu_storeF );
 13294 %}
 13296 instruct Repl8B(vecD dst, mRegI src) %{
 13297   predicate(n->as_Vector()->length() == 8);
 13298   match(Set dst (ReplicateB src));
 13299   format %{ "replv_ob    AT, $src\n\t"
 13300             "dmtc1 AT, $dst\t! replicate8B" %}
 13301   ins_encode %{
 13302     __ replv_ob(AT, $src$$Register);
 13303     __ dmtc1(AT, $dst$$FloatRegister);
 13304   %}
 13305   ins_pipe( pipe_mtc1 );
 13306 %}
 13308 instruct Repl8B_imm(vecD dst, immI con) %{
 13309   predicate(n->as_Vector()->length() == 8);
 13310   match(Set dst (ReplicateB con));
 13311   format %{ "repl_ob    AT, [$con]\n\t"
 13312             "dmtc1 AT, $dst,0x00\t! replicate8B($con)" %}
 13313   ins_encode %{
 13314     int      val = $con$$constant;
 13315     __ repl_ob(AT, val);
 13316     __ dmtc1(AT, $dst$$FloatRegister);
 13317   %}
 13318   ins_pipe( pipe_mtc1 );
 13319 %}
 13321 instruct Repl8B_zero(vecD dst, immI0 zero) %{
 13322   predicate(n->as_Vector()->length() == 8);
 13323   match(Set dst (ReplicateB zero));
 13324   format %{ "dmtc1    R0, $dst\t! replicate8B zero" %}
 13325   ins_encode %{
 13326     __ dmtc1(R0, $dst$$FloatRegister);
 13327   %}
 13328   ins_pipe( pipe_mtc1 );
 13329 %}
 13331 instruct Repl8B_M1(vecD dst, immI_M1 M1) %{
 13332   predicate(n->as_Vector()->length() == 8);
 13333   match(Set dst (ReplicateB M1));
 13334   format %{ "dmtc1    -1, $dst\t! replicate8B -1" %}
 13335   ins_encode %{
 13336     __ nor(AT, R0, R0);
 13337     __ dmtc1(AT, $dst$$FloatRegister);
 13338   %}
 13339   ins_pipe( pipe_mtc1 );
 13340 %}
 13342 instruct Repl4S(vecD dst, mRegI src) %{
 13343   predicate(n->as_Vector()->length() == 4);
 13344   match(Set dst (ReplicateS src));
 13345   format %{ "replv_qh    AT, $src\n\t"
 13346             "dmtc1 AT, $dst\t! replicate4S" %}
 13347   ins_encode %{
 13348     __ replv_qh(AT, $src$$Register);
 13349     __ dmtc1(AT, $dst$$FloatRegister);
 13350   %}
 13351   ins_pipe( pipe_mtc1 );
 13352 %}
 13354 instruct Repl4S_imm(vecD dst, immI con) %{
 13355   predicate(n->as_Vector()->length() == 4);
 13356   match(Set dst (ReplicateS con));
 13357   format %{ "replv_qh    AT, [$con]\n\t"
 13358             "dmtc1 AT, $dst\t! replicate4S($con)" %}
 13359   ins_encode %{
 13360     int      val = $con$$constant;
 13361     if ( Assembler::is_simm(val, 10)) {
 13362       //repl_qh supports 10 bits immediate
 13363       __ repl_qh(AT, val);
 13364     } else {
 13365       __ li32(AT, val);
 13366       __ replv_qh(AT, AT);
 13368     __ dmtc1(AT, $dst$$FloatRegister);
 13369   %}
 13370   ins_pipe( pipe_mtc1 );
 13371 %}
 13373 instruct Repl4S_zero(vecD dst, immI0 zero) %{
 13374   predicate(n->as_Vector()->length() == 4);
 13375   match(Set dst (ReplicateS zero));
 13376   format %{ "dmtc1    R0, $dst\t! replicate4S zero" %}
 13377   ins_encode %{
 13378     __ dmtc1(R0, $dst$$FloatRegister);
 13379   %}
 13380   ins_pipe( pipe_mtc1 );
 13381 %}
 13383 instruct Repl4S_M1(vecD dst, immI_M1 M1) %{
 13384   predicate(n->as_Vector()->length() == 4);
 13385   match(Set dst (ReplicateS M1));
 13386   format %{ "dmtc1    -1, $dst\t! replicate4S -1" %}
 13387   ins_encode %{
 13388     __ nor(AT, R0, R0);
 13389     __ dmtc1(AT, $dst$$FloatRegister);
 13390   %}
 13391   ins_pipe( pipe_mtc1 );
 13392 %}
 13394 // Replicate integer (4 byte) scalar to be vector
 13395 instruct Repl2I(vecD dst, mRegI src) %{
 13396   predicate(n->as_Vector()->length() == 2);
 13397   match(Set dst (ReplicateI src));
 13398   format %{ "dins    AT, $src, 0, 32\n\t"
 13399             "dinsu   AT, $src, 32, 32\n\t"
 13400             "dmtc1   AT, $dst\t! replicate2I" %}
 13401   ins_encode %{
 13402     __ dins(AT, $src$$Register, 0, 32);
 13403     __ dinsu(AT, $src$$Register, 32, 32);
 13404     __ dmtc1(AT, $dst$$FloatRegister);
 13405   %}
 13406   ins_pipe( pipe_mtc1 );
 13407 %}
 13409 // Replicate integer (4 byte) scalar immediate to be vector by loading from const table.
 13410 instruct Repl2I_imm(vecD dst, immI con, mA7RegI tmp) %{
 13411   predicate(n->as_Vector()->length() == 2);
 13412   match(Set dst (ReplicateI con));
 13413   effect(KILL tmp);
 13414   format %{ "li32    AT, [$con], 32\n\t"
 13415             "replv_pw   AT, AT\n\t"
 13416             "dmtc1   AT, $dst\t! replicate2I($con)" %}
 13417   ins_encode %{
 13418     int      val = $con$$constant;
 13419     __ li32(AT, val);
 13420     __ replv_pw(AT, AT);
 13421     __ dmtc1(AT, $dst$$FloatRegister);
 13422   %}
 13423   ins_pipe( pipe_mtc1 );
 13424 %}
 13426 // Replicate integer (4 byte) scalar zero to be vector
 13427 instruct Repl2I_zero(vecD dst, immI0 zero) %{
 13428   predicate(n->as_Vector()->length() == 2);
 13429   match(Set dst (ReplicateI zero));
 13430   format %{ "dmtc1    R0, $dst\t! replicate2I zero" %}
 13431   ins_encode %{
 13432     __ dmtc1(R0, $dst$$FloatRegister);
 13433   %}
 13434   ins_pipe( pipe_mtc1 );
 13435 %}
 13437 // Replicate integer (4 byte) scalar -1 to be vector
 13438 instruct Repl2I_M1(vecD dst, immI_M1 M1) %{
 13439   predicate(n->as_Vector()->length() == 2);
 13440   match(Set dst (ReplicateI M1));
 13441   format %{ "dmtc1    -1, $dst\t! replicate2I -1, use AT" %}
 13442   ins_encode %{
 13443     __ nor(AT, R0, R0);
 13444     __ dmtc1(AT, $dst$$FloatRegister);
 13445   %}
 13446   ins_pipe( pipe_mtc1 );
 13447 %}
 13449 // Replicate float (4 byte) scalar to be vector
 13450 instruct Repl2F(vecD dst, regF src) %{
 13451   predicate(n->as_Vector()->length() == 2);
 13452   match(Set dst (ReplicateF src));
 13453   format %{ "cvt.ps  $dst, $src, $src\t! replicate2F" %}
 13454   ins_encode %{
 13455     __ cvt_ps_s($dst$$FloatRegister, $src$$FloatRegister, $src$$FloatRegister);
 13456   %}
 13457   ins_pipe( pipe_slow );
 13458 %}
 13460 // Replicate float (4 byte) scalar zero to be vector
 13461 instruct Repl2F_zero(vecD dst, immF0 zero) %{
 13462   predicate(n->as_Vector()->length() == 2);
 13463   match(Set dst (ReplicateF zero));
 13464   format %{ "dmtc1   R0, $dst\t! replicate2F zero" %}
 13465   ins_encode %{
 13466     __ dmtc1(R0, $dst$$FloatRegister);
 13467   %}
 13468   ins_pipe( pipe_mtc1 );
 13469 %}
 13472 // ====================VECTOR ARITHMETIC=======================================
 13474 // --------------------------------- ADD --------------------------------------
 13476 // Floats vector add
 13477 instruct vadd2F(vecD dst, vecD src) %{
 13478   predicate(n->as_Vector()->length() == 2);
 13479   match(Set dst (AddVF dst src));
 13480   format %{ "add.ps   $dst,$src\t! add packed2F" %}
 13481   ins_encode %{
 13482     __ add_ps($dst$$FloatRegister, $dst$$FloatRegister, $src$$FloatRegister);
 13483   %}
 13484   ins_pipe( pipe_slow );
 13485 %}
 13487 instruct vadd2F3(vecD dst, vecD src1, vecD src2) %{
 13488   predicate(n->as_Vector()->length() == 2);
 13489   match(Set dst (AddVF src1 src2));
 13490   format %{ "add.ps   $dst,$src1,$src2\t! add packed2F" %}
 13491   ins_encode %{
 13492     __ add_ps($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 13493   %}
 13494   ins_pipe( fpu_regF_regF );
 13495 %}
 13497 // --------------------------------- SUB --------------------------------------
 13499 // Floats vector sub
 13500 instruct vsub2F(vecD dst, vecD src) %{
 13501   predicate(n->as_Vector()->length() == 2);
 13502   match(Set dst (SubVF dst src));
 13503   format %{ "sub.ps   $dst,$src\t! sub packed2F" %}
 13504   ins_encode %{
 13505     __ sub_ps($dst$$FloatRegister, $dst$$FloatRegister, $src$$FloatRegister);
 13506   %}
 13507   ins_pipe( fpu_regF_regF );
 13508 %}
 13510 // --------------------------------- MUL --------------------------------------
 13512 // Floats vector mul
 13513 instruct vmul2F(vecD dst, vecD src) %{
 13514   predicate(n->as_Vector()->length() == 2);
 13515   match(Set dst (MulVF dst src));
 13516   format %{ "mul.ps   $dst, $src\t! mul packed2F" %}
 13517   ins_encode %{
 13518     __ mul_ps($dst$$FloatRegister, $dst$$FloatRegister, $src$$FloatRegister);
 13519   %}
 13520   ins_pipe( fpu_regF_regF );
 13521 %}
 13523 instruct vmul2F3(vecD dst, vecD src1, vecD src2) %{
 13524   predicate(n->as_Vector()->length() == 2);
 13525   match(Set dst (MulVF src1 src2));
 13526   format %{ "mul.ps   $dst, $src1, $src2\t! mul packed2F" %}
 13527   ins_encode %{
 13528     __ mul_ps($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 13529   %}
 13530   ins_pipe( fpu_regF_regF );
 13531 %}
 13533 // --------------------------------- DIV --------------------------------------
 13534 // MIPS do not have div.ps
 13537 //----------PEEPHOLE RULES-----------------------------------------------------
 13538 // These must follow all instruction definitions as they use the names
 13539 // defined in the instructions definitions.
 13540 // 
 13541 // peepmatch ( root_instr_name [preceeding_instruction]* );
 13542 //
 13543 // peepconstraint %{
 13544 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13545 //  [, ...] );
 13546 // // instruction numbers are zero-based using left to right order in peepmatch
 13547 //
 13548 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13549 // // provide an instruction_number.operand_name for each operand that appears
 13550 // // in the replacement instruction's match rule
 13551 //
 13552 // ---------VM FLAGS---------------------------------------------------------
 13553 // 
 13554 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13555 // 
 13556 // Each peephole rule is given an identifying number starting with zero and
 13557 // increasing by one in the order seen by the parser.  An individual peephole
 13558 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13559 // on the command-line.
 13560 // 
 13561 // ---------CURRENT LIMITATIONS----------------------------------------------
 13562 // 
 13563 // Only match adjacent instructions in same basic block
 13564 // Only equality constraints
 13565 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13566 // Only one replacement instruction
 13567 //
 13568 // ---------EXAMPLE----------------------------------------------------------
 13569 //
 13570 // // pertinent parts of existing instructions in architecture description
 13571 // instruct movI(eRegI dst, eRegI src) %{
 13572 //   match(Set dst (CopyI src));
 13573 // %}
 13574 // 
 13575 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 13576 //   match(Set dst (AddI dst src));
 13577 //   effect(KILL cr);
 13578 // %}
 13579 // 
 13580 // // Change (inc mov) to lea
 13581 // peephole %{
 13582 //   // increment preceeded by register-register move
 13583 //   peepmatch ( incI_eReg movI );
 13584 //   // require that the destination register of the increment 
 13585 //   // match the destination register of the move
 13586 //   peepconstraint ( 0.dst == 1.dst );
 13587 //   // construct a replacement instruction that sets
 13588 //   // the destination to ( move's source register + one )
 13589 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13590 // %}
 13591 // 
 13592 // Implementation no longer uses movX instructions since 
 13593 // machine-independent system no longer uses CopyX nodes.
 13594 // 
 13595 // peephole %{
 13596 //   peepmatch ( incI_eReg movI );
 13597 //   peepconstraint ( 0.dst == 1.dst );
 13598 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13599 // %}
 13600 // 
 13601 // peephole %{
 13602 //   peepmatch ( decI_eReg movI );
 13603 //   peepconstraint ( 0.dst == 1.dst );
 13604 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13605 // %}
 13606 // 
 13607 // peephole %{
 13608 //   peepmatch ( addI_eReg_imm movI );
 13609 //   peepconstraint ( 0.dst == 1.dst );
 13610 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13611 // %}
 13612 // 
 13613 // peephole %{
 13614 //   peepmatch ( addP_eReg_imm movP );
 13615 //   peepconstraint ( 0.dst == 1.dst );
 13616 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13617 // %}
 13619 // // Change load of spilled value to only a spill
 13620 // instruct storeI(memory mem, eRegI src) %{
 13621 //   match(Set mem (StoreI mem src));
 13622 // %}
 13623 // 
 13624 // instruct loadI(eRegI dst, memory mem) %{
 13625 //   match(Set dst (LoadI mem));
 13626 // %}
 13627 // 
 13628 //peephole %{
 13629 //  peepmatch ( loadI storeI );
 13630 //  peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13631 //  peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13632 //%}
 13634 //----------SMARTSPILL RULES---------------------------------------------------
 13635 // These must follow all instruction definitions as they use the names
 13636 // defined in the instructions definitions.

mercurial