src/cpu/mips/vm/mips_64.ad

Fri, 17 Mar 2017 22:15:27 +0800

author
fujie
date
Fri, 17 Mar 2017 22:15:27 +0800
changeset 379
00a9fa322917
parent 377
ce48f85bff34
child 380
5d24e411bbe2
permissions
-rw-r--r--

[C2] Use general_jal for static java call & dynamic java call.

     1 //
     2 // Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // Copyright (c) 2015, 2016, Loongson Technology. All rights reserved.
     4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5 //
     6 // This code is free software; you can redistribute it and/or modify it
     7 // under the terms of the GNU General Public License version 2 only, as
     8 // published by the Free Software Foundation.
     9 //
    10 // This code is distributed in the hope that it will be useful, but WITHOUT
    11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13 // version 2 for more details (a copy is included in the LICENSE file that
    14 // accompanied this code).
    15 //
    16 // You should have received a copy of the GNU General Public License version
    17 // 2 along with this work; if not, write to the Free Software Foundation,
    18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19 //
    20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21 // or visit www.oracle.com if you need additional information or have any
    22 // questions.
    23 //
    24 //
    26 // GodSon3 Architecture Description File
    28 //----------REGISTER DEFINITION BLOCK------------------------------------------
    29 // This information is used by the matcher and the register allocator to
    30 // describe individual registers and classes of registers within the target
    31 // archtecture.
    33 // format:
    34 // reg_def name (call convention, c-call convention, ideal type, encoding);
    35 // 		call convention : 
    36 //			NS  = No-Save
    37 //			SOC = Save-On-Call
    38 //			SOE = Save-On-Entry
    39 //			AS  = Always-Save
    40 //		ideal type :
    41 //			see opto/opcodes.hpp for more info
    42 // reg_class name (reg, ...);
    43 // alloc_class name (reg, ...); 
    44 register %{
    46 // General Registers
    47 // Integer Registers
    48 	reg_def R0	    ( NS,  NS, 	Op_RegI,  0, VMRegImpl::Bad());
    49 	reg_def AT		( NS,  NS, 	Op_RegI,  1, AT->as_VMReg());
    50 	reg_def AT_H    ( NS,  NS,  Op_RegI,  1, AT->as_VMReg()->next());
    51 	reg_def V0		(SOC, SOC,	Op_RegI,  2, V0->as_VMReg());
    52 	reg_def V0_H	(SOC, SOC,	Op_RegI,  2, V0->as_VMReg()->next());
    53 	reg_def V1		(SOC, SOC,	Op_RegI,  3, V1->as_VMReg());
    54 	reg_def V1_H	(SOC, SOC,	Op_RegI,  3, V1->as_VMReg()->next());
    55 	reg_def A0		(SOC, SOC,	Op_RegI,  4, A0->as_VMReg());
    56 	reg_def A0_H	(SOC, SOC,	Op_RegI,  4, A0->as_VMReg()->next());
    57 	reg_def A1		(SOC, SOC,	Op_RegI,  5, A1->as_VMReg());
    58 	reg_def A1_H	(SOC, SOC,	Op_RegI,  5, A1->as_VMReg()->next());
    59 	reg_def A2		(SOC, SOC,	Op_RegI,  6, A2->as_VMReg());
    60 	reg_def A2_H	(SOC, SOC,	Op_RegI,  6, A2->as_VMReg()->next());
    61 	reg_def A3		(SOC, SOC,	Op_RegI,  7, A3->as_VMReg());
    62 	reg_def A3_H	(SOC, SOC,	Op_RegI,  7, A3->as_VMReg()->next());
    63 	reg_def A4		(SOC, SOC,	Op_RegI,  8, A4->as_VMReg());
    64 	reg_def A4_H	(SOC, SOC,	Op_RegI,  8, A4->as_VMReg()->next());
    65 	reg_def A5		(SOC, SOC,	Op_RegI,  9, A5->as_VMReg());
    66 	reg_def A5_H	(SOC, SOC,	Op_RegI,  9, A5->as_VMReg()->next());
    67 	reg_def A6		(SOC, SOC,	Op_RegI,  10, A6->as_VMReg());
    68 	reg_def A6_H	(SOC, SOC,	Op_RegI,  10, A6->as_VMReg()->next());
    69 	reg_def A7		(SOC, SOC,	Op_RegI,  11, A7->as_VMReg());
    70 	reg_def A7_H	(SOC, SOC,	Op_RegI,  11, A7->as_VMReg()->next());
    71 	reg_def T0		(SOC, SOC,	Op_RegI,  12, T0->as_VMReg());
    72 	reg_def T0_H	(SOC, SOC,	Op_RegI,  12, T0->as_VMReg()->next());
    73 	reg_def T1		(SOC, SOC,	Op_RegI,  13, T1->as_VMReg());
    74 	reg_def T1_H	(SOC, SOC,	Op_RegI,  13, T1->as_VMReg()->next());
    75 	reg_def T2		(SOC, SOC,	Op_RegI,  14, T2->as_VMReg());
    76 	reg_def T2_H	(SOC, SOC,	Op_RegI,  14, T2->as_VMReg()->next());
    77 	reg_def T3		(SOC, SOC,	Op_RegI,  15, T3->as_VMReg());
    78 	reg_def T3_H	(SOC, SOC,	Op_RegI,  15, T3->as_VMReg()->next());
    79 	reg_def S0		(SOC, SOE,	Op_RegI,  16, S0->as_VMReg());
    80 	reg_def S0_H	(SOC, SOE,	Op_RegI,  16, S0->as_VMReg()->next());
    81 	reg_def S1		(SOC, SOE,	Op_RegI,  17, S1->as_VMReg());
    82 	reg_def S1_H	(SOC, SOE,	Op_RegI,  17, S1->as_VMReg()->next());
    83 	reg_def S2		(SOC, SOE,	Op_RegI,  18, S2->as_VMReg());
    84 	reg_def S2_H	(SOC, SOE,	Op_RegI,  18, S2->as_VMReg()->next());
    85 	reg_def S3		(SOC, SOE,	Op_RegI,  19, S3->as_VMReg());
    86 	reg_def S3_H	(SOC, SOE,	Op_RegI,  19, S3->as_VMReg()->next());
    87 	reg_def S4		(SOC, SOE,	Op_RegI,  20, S4->as_VMReg());
    88 	reg_def S4_H	(SOC, SOE,	Op_RegI,  20, S4->as_VMReg()->next());
    89 	reg_def S5		(SOC, SOE,	Op_RegI,  21, S5->as_VMReg());
    90 	reg_def S5_H	(SOC, SOE,	Op_RegI,  21, S5->as_VMReg()->next());
    91 	reg_def S6		(SOC, SOE,	Op_RegI,  22, S6->as_VMReg());
    92 	reg_def S6_H	(SOC, SOE,	Op_RegI,  22, S6->as_VMReg()->next());
    93 	reg_def S7		(SOC, SOE,	Op_RegI,  23, S7->as_VMReg());
    94 	reg_def S7_H	(SOC, SOE,	Op_RegI,  23, S7->as_VMReg()->next());
    95 	reg_def T8		(SOC, SOC,	Op_RegI,  24, T8->as_VMReg());
    96 	reg_def T8_H	(SOC, SOC,	Op_RegI,  24, T8->as_VMReg()->next());
    97 	reg_def T9		(SOC, SOC,	Op_RegI,  25, T9->as_VMReg());
    98 	reg_def T9_H	(SOC, SOC,	Op_RegI,  25, T9->as_VMReg()->next());
   100 // Special Registers
   101 	reg_def K0		( NS,  NS,	Op_RegI, 26, K0->as_VMReg());
   102 	reg_def K1		( NS,  NS,	Op_RegI, 27, K1->as_VMReg());
   103 	reg_def GP		( NS,  NS,	Op_RegI, 28, GP->as_VMReg());
   104 	reg_def GP_H	( NS,  NS,	Op_RegI, 28, GP->as_VMReg()->next());
   105 	reg_def SP		( NS,  NS,	Op_RegI, 29, SP->as_VMReg());
   106 	reg_def SP_H	( NS,  NS,	Op_RegI, 29, SP->as_VMReg()->next());
   107 	reg_def FP		( NS,  NS,	Op_RegI, 30, FP->as_VMReg());
   108 	reg_def FP_H	( NS,  NS,	Op_RegI, 30, FP->as_VMReg()->next());
   109 	reg_def RA		( NS,  NS,	Op_RegI, 31, RA->as_VMReg());
   110 	reg_def RA_H	( NS,  NS,	Op_RegI, 31, RA->as_VMReg()->next());
   112 // Floating registers. 
   113 reg_def F0          ( SOC, SOC, Op_RegF, 0, F0->as_VMReg());
   114 reg_def F0_H        ( SOC, SOC, Op_RegF, 0, F0->as_VMReg()->next());
   115 reg_def F1          ( SOC, SOC, Op_RegF, 1, F1->as_VMReg());
   116 reg_def F1_H        ( SOC, SOC, Op_RegF, 1, F1->as_VMReg()->next());
   117 reg_def F2          ( SOC, SOC, Op_RegF, 2, F2->as_VMReg());
   118 reg_def F2_H        ( SOC, SOC, Op_RegF, 2, F2->as_VMReg()->next());
   119 reg_def F3          ( SOC, SOC, Op_RegF, 3, F3->as_VMReg());
   120 reg_def F3_H        ( SOC, SOC, Op_RegF, 3, F3->as_VMReg()->next());
   121 reg_def F4          ( SOC, SOC, Op_RegF, 4, F4->as_VMReg());
   122 reg_def F4_H        ( SOC, SOC, Op_RegF, 4, F4->as_VMReg()->next());
   123 reg_def F5          ( SOC, SOC, Op_RegF, 5, F5->as_VMReg());
   124 reg_def F5_H        ( SOC, SOC, Op_RegF, 5, F5->as_VMReg()->next());
   125 reg_def F6          ( SOC, SOC, Op_RegF, 6, F6->as_VMReg());
   126 reg_def F6_H        ( SOC, SOC, Op_RegF, 6, F6->as_VMReg()->next());
   127 reg_def F7          ( SOC, SOC, Op_RegF, 7, F7->as_VMReg());
   128 reg_def F7_H        ( SOC, SOC, Op_RegF, 7, F7->as_VMReg()->next());
   129 reg_def F8          ( SOC, SOC, Op_RegF, 8, F8->as_VMReg());
   130 reg_def F8_H        ( SOC, SOC, Op_RegF, 8, F8->as_VMReg()->next());
   131 reg_def F9          ( SOC, SOC, Op_RegF, 9, F9->as_VMReg());
   132 reg_def F9_H        ( SOC, SOC, Op_RegF, 9, F9->as_VMReg()->next());
   133 reg_def F10         ( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   134 reg_def F10_H       ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()->next());
   135 reg_def F11         ( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   136 reg_def F11_H       ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()->next());
   137 reg_def F12         ( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   138 reg_def F12_H       ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()->next());
   139 reg_def F13         ( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   140 reg_def F13_H       ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()->next());
   141 reg_def F14         ( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   142 reg_def F14_H       ( SOC, SOC, Op_RegF, 14, F14->as_VMReg()->next());
   143 reg_def F15         ( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   144 reg_def F15_H       ( SOC, SOC, Op_RegF, 15, F15->as_VMReg()->next());
   145 reg_def F16         ( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   146 reg_def F16_H       ( SOC, SOC, Op_RegF, 16, F16->as_VMReg()->next());
   147 reg_def F17         ( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   148 reg_def F17_H       ( SOC, SOC, Op_RegF, 17, F17->as_VMReg()->next());
   149 reg_def F18         ( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   150 reg_def F18_H       ( SOC, SOC, Op_RegF, 18, F18->as_VMReg()->next());
   151 reg_def F19         ( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   152 reg_def F19_H       ( SOC, SOC, Op_RegF, 19, F19->as_VMReg()->next());
   153 reg_def F20         ( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   154 reg_def F20_H       ( SOC, SOC, Op_RegF, 20, F20->as_VMReg()->next());
   155 reg_def F21         ( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   156 reg_def F21_H       ( SOC, SOC, Op_RegF, 21, F21->as_VMReg()->next());
   157 reg_def F22         ( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   158 reg_def F22_H       ( SOC, SOC, Op_RegF, 22, F22->as_VMReg()->next());
   159 reg_def F23         ( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   160 reg_def F23_H       ( SOC, SOC, Op_RegF, 23, F23->as_VMReg()->next());
   161 reg_def F24         ( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   162 reg_def F24_H       ( SOC, SOC, Op_RegF, 24, F24->as_VMReg()->next());
   163 reg_def F25         ( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   164 reg_def F25_H       ( SOC, SOC, Op_RegF, 25, F25->as_VMReg()->next());
   165 reg_def F26         ( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   166 reg_def F26_H       ( SOC, SOC, Op_RegF, 26, F26->as_VMReg()->next());
   167 reg_def F27         ( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   168 reg_def F27_H       ( SOC, SOC, Op_RegF, 27, F27->as_VMReg()->next());
   169 reg_def F28         ( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   170 reg_def F28_H       ( SOC, SOC, Op_RegF, 28, F28->as_VMReg()->next());
   171 reg_def F29         ( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   172 reg_def F29_H       ( SOC, SOC, Op_RegF, 29, F29->as_VMReg()->next());
   173 reg_def F30         ( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   174 reg_def F30_H       ( SOC, SOC, Op_RegF, 30, F30->as_VMReg()->next());
   175 reg_def F31         ( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   176 reg_def F31_H       ( SOC, SOC, Op_RegF, 31, F31->as_VMReg()->next());
   179 // ----------------------------
   180 // Special Registers
   181 // Condition Codes Flag Registers
   182 reg_def MIPS_FLAG (SOC, SOC,  Op_RegFlags, 1, as_Register(1)->as_VMReg());
   183 //S6 is used for get_thread(S6)
   184 //S5 is uesd for heapbase of compressed oop
   185 alloc_class chunk0(  
   186                      S7, S7_H,
   187                      S0, S0_H,
   188                      S1, S1_H,
   189                      S2, S2_H,
   190                      S4, S4_H,
   191                      S5, S5_H,
   192                      S6, S6_H,
   193                      S3, S3_H,
   194                      T2, T2_H,
   195                      T3, T3_H,
   196                      T8, T8_H,
   197                      T9, T9_H,
   198                      T1, T1_H, // inline_cache_reg
   199                      V1, V1_H,
   200                      A7, A7_H,
   201                      A6, A6_H,
   202                      A5, A5_H,
   203                      A4, A4_H,
   204                      V0, V0_H,
   205                      A3, A3_H,
   206                      A2, A2_H,
   207                      A1, A1_H,
   208                      A0, A0_H,
   209                      T0, T0_H,
   210                      GP, GP_H 
   211                      RA, RA_H,
   212                      SP, SP_H, // stack_pointer
   213                      FP, FP_H  // frame_pointer
   214                  );
   216 alloc_class chunk1(  F0, F0_H,
   217                      F1, F1_H,
   218                      F2, F2_H,
   219                      F3, F3_H,
   220                      F4, F4_H,
   221                      F5, F5_H,
   222                      F6, F6_H,
   223                      F7, F7_H,
   224                      F8, F8_H,
   225                      F9, F9_H,
   226                      F10, F10_H,
   227                      F11, F11_H,
   228                      F20, F20_H,
   229                      F21, F21_H,
   230                      F22, F22_H,
   231                      F23, F23_H,
   232                      F24, F24_H,
   233                      F25, F25_H,
   234                      F26, F26_H,
   235                      F27, F27_H,
   236                      F28, F28_H,
   237                      F19, F19_H,
   238                      F18, F18_H,
   239                      F17, F17_H,
   240                      F16, F16_H,
   241                      F15, F15_H,
   242                      F14, F14_H,
   243                      F13, F13_H,
   244                      F12, F12_H,
   245                      F29, F29_H,
   246                      F30, F30_H,
   247                      F31, F31_H);
   249 alloc_class chunk2(MIPS_FLAG);
   251 reg_class s_reg( S0, S1, S2, S3, S4, S5, S6, S7 );
   252 reg_class s0_reg( S0 );
   253 reg_class s1_reg( S1 );
   254 reg_class s2_reg( S2 );
   255 reg_class s3_reg( S3 );
   256 reg_class s4_reg( S4 );
   257 reg_class s5_reg( S5 );
   258 reg_class s6_reg( S6 );
   259 reg_class s7_reg( S7 );
   261 reg_class t_reg( T0, T1, T2, T3, T8, T9 );
   262 reg_class t0_reg( T0 );
   263 reg_class t1_reg( T1 );
   264 reg_class t2_reg( T2 );
   265 reg_class t3_reg( T3 );
   266 reg_class t8_reg( T8 );
   267 reg_class t9_reg( T9 );
   269 reg_class a_reg( A0, A1, A2, A3, A4, A5, A6, A7 );
   270 reg_class a0_reg( A0 );
   271 reg_class a1_reg( A1 );
   272 reg_class a2_reg( A2 );
   273 reg_class a3_reg( A3 );
   274 reg_class a4_reg( A4 );
   275 reg_class a5_reg( A5 );
   276 reg_class a6_reg( A6 );
   277 reg_class a7_reg( A7 );
   279 reg_class v0_reg( V0 );
   280 reg_class v1_reg( V1 );
   282 reg_class sp_reg( SP, SP_H );
   283 reg_class fp_reg( FP, FP_H );
   285 reg_class mips_flags(MIPS_FLAG);
   287 reg_class v0_long_reg( V0, V0_H );
   288 reg_class v1_long_reg( V1, V1_H );
   289 reg_class a0_long_reg( A0, A0_H );
   290 reg_class a1_long_reg( A1, A1_H );
   291 reg_class a2_long_reg( A2, A2_H );
   292 reg_class a3_long_reg( A3, A3_H );
   293 reg_class a4_long_reg( A4, A4_H );
   294 reg_class a5_long_reg( A5, A5_H );
   295 reg_class a6_long_reg( A6, A6_H );
   296 reg_class a7_long_reg( A7, A7_H );
   297 reg_class t0_long_reg( T0, T0_H );
   298 reg_class t1_long_reg( T1, T1_H );
   299 reg_class t2_long_reg( T2, T2_H );
   300 reg_class t3_long_reg( T3, T3_H );
   301 reg_class t8_long_reg( T8, T8_H );
   302 reg_class t9_long_reg( T9, T9_H );
   303 reg_class s0_long_reg( S0, S0_H );
   304 reg_class s1_long_reg( S1, S1_H );
   305 reg_class s2_long_reg( S2, S2_H );
   306 reg_class s3_long_reg( S3, S3_H );
   307 reg_class s4_long_reg( S4, S4_H );
   308 reg_class s5_long_reg( S5, S5_H );
   309 reg_class s6_long_reg( S6, S6_H );
   310 reg_class s7_long_reg( S7, S7_H );
   312 reg_class int_reg( S7, S0, S1, S2, S4, S3, T8, T2, T3, T1, V1, A7, A6, A5, A4, V0, A3, A2, A1, A0, T0 );
   314 reg_class no_Ax_int_reg( S7, S0, S1, S2, S4, S3, T8, T2, T3, T1, V1, V0, T0 );
   316 reg_class p_reg( 
   317                  S7, S7_H,
   318                  S0, S0_H,
   319                  S1, S1_H,
   320                  S2, S2_H,
   321                  S4, S4_H,
   322                  S3, S3_H,
   323                  T8, T8_H,
   324                  T2, T2_H,
   325                  T3, T3_H,
   326                  T1, T1_H,
   327                  A7, A7_H,
   328                  A6, A6_H,
   329                  A5, A5_H,
   330                  A4, A4_H,
   331                  A3, A3_H,
   332                  A2, A2_H,
   333                  A1, A1_H,
   334                  A0, A0_H,
   335                  T0, T0_H
   336                );
   338 reg_class no_T8_p_reg( 
   339                  S7, S7_H,
   340                  S0, S0_H,
   341                  S1, S1_H,
   342                  S2, S2_H,
   343                  S4, S4_H,
   344                  S3, S3_H,
   345                  T2, T2_H,
   346                  T3, T3_H,
   347                  T1, T1_H,
   348                  A7, A7_H,
   349                  A6, A6_H,
   350                  A5, A5_H,
   351                  A4, A4_H,
   352                  A3, A3_H,
   353                  A2, A2_H,
   354                  A1, A1_H,
   355                  A0, A0_H,
   356                  T0, T0_H
   357                );
   359 reg_class long_reg( 
   360                     S7, S7_H,
   361                     S0, S0_H,
   362                     S1, S1_H,
   363                     S2, S2_H,
   364                     S4, S4_H,
   365                     S3, S3_H,
   366                     T8, T8_H,
   367                     T2, T2_H,
   368                     T3, T3_H,
   369                     T1, T1_H,
   370                     A7, A7_H,
   371                     A6, A6_H,
   372                     A5, A5_H,
   373                     A4, A4_H,
   374                     A3, A3_H,
   375                     A2, A2_H,
   376                     A1, A1_H,
   377                     A0, A0_H,
   378                     T0, T0_H
   379                   );
   382 // Floating point registers.
   383 // 2012/8/23 Fu: F30/F31 are used as temporary registers in D2I
   384 // 2016/12/1 aoqi: F31 are not used as temporary registers in D2I
   385 reg_class flt_reg( F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17 F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F31);
   386 reg_class dbl_reg( F0, F0_H,
   387                    F1, F1_H,
   388                    F2, F2_H,
   389                    F3, F3_H,
   390                    F4, F4_H,
   391                    F5, F5_H,
   392                    F6, F6_H,
   393                    F7, F7_H,
   394                    F8, F8_H,
   395                    F9, F9_H,
   396                    F10, F10_H, 
   397                    F11, F11_H, 
   398                    F12, F12_H, 
   399                    F13, F13_H, 
   400                    F14, F14_H, 
   401                    F15, F15_H, 
   402                    F16, F16_H, 
   403                    F17, F17_H, 
   404                    F18, F18_H, 
   405                    F19, F19_H, 
   406                    F20, F20_H, 
   407                    F21, F21_H, 
   408                    F22, F22_H, 
   409                    F23, F23_H, 
   410                    F24, F24_H, 
   411                    F25, F25_H, 
   412                    F26, F26_H, 
   413                    F27, F27_H, 
   414                    F28, F28_H, 
   415                    F29, F29_H, 
   416                    F31, F31_H);
   418 reg_class flt_arg0( F12 );
   419 reg_class dbl_arg0( F12, F12_H );
   420 reg_class dbl_arg1( F14, F14_H );
   422 %} 
   424 //----------DEFINITION BLOCK---------------------------------------------------
   425 // Define name --> value mappings to inform the ADLC of an integer valued name
   426 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   427 // Format:
   428 //        int_def  <name>         ( <int_value>, <expression>);
   429 // Generated Code in ad_<arch>.hpp
   430 //        #define  <name>   (<expression>)
   431 //        // value == <int_value>
   432 // Generated code in ad_<arch>.cpp adlc_verification()
   433 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   434 //
   435 definitions %{
   436 	int_def DEFAULT_COST      (    100,     100);
   437 	int_def HUGE_COST         (1000000, 1000000);
   439 	// Memory refs are twice as expensive as run-of-the-mill.
   440 	int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   442 	// Branches are even more expensive.
   443 	int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   444 	// we use jr instruction to construct call, so more expensive
   445 	// by yjl 2/28/2006
   446 	int_def CALL_COST         (    500, DEFAULT_COST * 5);
   447 /*
   448         int_def EQUAL             (   1, 1  );
   449         int_def NOT_EQUAL         (   2, 2  );
   450         int_def GREATER           (   3, 3  );
   451         int_def GREATER_EQUAL     (   4, 4  );
   452         int_def LESS              (   5, 5  );
   453         int_def LESS_EQUAL        (   6, 6  );
   454 */
   455 %}
   459 //----------SOURCE BLOCK-------------------------------------------------------
   460 // This is a block of C++ code which provides values, functions, and
   461 // definitions necessary in the rest of the architecture description
   463 source_hpp %{
   464 // Header information of the source block.
   465 // Method declarations/definitions which are used outside
   466 // the ad-scope can conveniently be defined here.
   467 //
   468 // To keep related declarations/definitions/uses close together,
   469 // we switch between source %{ }% and source_hpp %{ }% freely as needed.
   471 class CallStubImpl {
   473   //--------------------------------------------------------------
   474   //---<  Used for optimization in Compile::shorten_branches  >---
   475   //--------------------------------------------------------------
   477  public:
   478   // Size of call trampoline stub.
   479   static uint size_call_trampoline() {
   480     return 0; // no call trampolines on this platform
   481   }
   483   // number of relocations needed by a call trampoline stub
   484   static uint reloc_call_trampoline() { 
   485     return 0; // no call trampolines on this platform
   486   }
   487 };
   489 class HandlerImpl {
   491  public:
   493   static int emit_exception_handler(CodeBuffer &cbuf);
   494   static int emit_deopt_handler(CodeBuffer& cbuf);
   496   static uint size_exception_handler() {
   497     // NativeCall instruction size is the same as NativeJump.
   498     // exception handler starts out as jump and can be patched to
   499     // a call be deoptimization.  (4932387)
   500     // Note that this value is also credited (in output.cpp) to
   501     // the size of the code section.
   502 //    return NativeJump::instruction_size;
   503     int size = NativeCall::instruction_size;
   504     return round_to(size, 16);
   505   }
   507 #ifdef _LP64
   508   static uint size_deopt_handler() {
   509     int size = NativeCall::instruction_size;
   510     return round_to(size, 16);
   511   }
   512 #else
   513   static uint size_deopt_handler() {
   514     // NativeCall instruction size is the same as NativeJump.
   515     // exception handler starts out as jump and can be patched to
   516     // a call be deoptimization.  (4932387)
   517     // Note that this value is also credited (in output.cpp) to
   518     // the size of the code section.
   519     return 5 + NativeJump::instruction_size; // pushl(); jmp;
   520   }
   521 #endif
   522 };
   524 %} // end source_hpp
   526 source %{
   528 #define   NO_INDEX    0
   529 #define   RELOC_IMM64    Assembler::imm_operand
   530 #define   RELOC_DISP32   Assembler::disp32_operand
   533 #define __ _masm.
   536 // Emit exception handler code.
   537 // Stuff framesize into a register and call a VM stub routine.
   538 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
   539 /*
   540   // Note that the code buffer's insts_mark is always relative to insts.
   541   // That's why we must use the macroassembler to generate a handler.
   542   MacroAssembler _masm(&cbuf);
   543   address base = __ start_a_stub(size_exception_handler());
   544   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   545   int offset = __ offset();
   546   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
   547   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
   548   __ end_a_stub();
   549   return offset;
   550 */
   551   // Note that the code buffer's insts_mark is always relative to insts.
   552   // That's why we must use the macroassembler to generate a handler.
   553   MacroAssembler _masm(&cbuf);
   554   address base =
   555   __ start_a_stub(size_exception_handler());
   556   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   557   int offset = __ offset();
   559   __ block_comment("; emit_exception_handler");
   561   /* 2012/9/25 FIXME Jin: According to X86, we should use direct jumpt.
   562  *    *  However, this will trigger an assert after the 40th method:
   563  *       *
   564  *          *        39   b   java.lang.Throwable::<init> (25 bytes)
   565  *             *       ---   ns  java.lang.Throwable::fillInStackTrace
   566  *                *        40  !b   java.net.URLClassLoader::findClass (29 bytes)
   567  *                   *       /vm/opto/runtime.cpp, 900 , assert(caller.is_compiled_frame(),"must be")
   568  *                      *        40   made not entrant  (2)  java.net.URLClassLoader::findClass (29 bytes)
   569  *                         *
   570  *                            *  If we change from JR to JALR, the assert will disappear, but WebClient will
   571  *                               *  fail  after the 403th method with unknown reason.
   572  *                                  */
   573   cbuf.set_insts_mark();
   574   __ relocate(relocInfo::runtime_call_type);
   576   __ patchable_set48(T9, (long)OptoRuntime::exception_blob()->entry_point());
   577   __ jr(T9);
   578   __ delayed()->nop();
   579   __ align(16);
   580   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
   581   __ end_a_stub();
   582   return offset;
   583 }
   585 // Emit deopt handler code.
   586 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
   587   // Note that the code buffer's insts_mark is always relative to insts.
   588   // That's why we must use the macroassembler to generate a handler.
   589   MacroAssembler _masm(&cbuf);
   590   address base =
   591   __ start_a_stub(size_deopt_handler());
   593   // FIXME
   594   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   595   int offset = __ offset();
   597   __ block_comment("; emit_deopt_handler");
   599   cbuf.set_insts_mark();
   600   __ relocate(relocInfo::runtime_call_type);
   602   __ patchable_set48(T9, (long)SharedRuntime::deopt_blob()->unpack());
   603   __ jalr(T9);
   604   __ delayed()->nop();
   605   __ align(16);
   606   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
   607   __ end_a_stub();
   608   return offset;
   609 }
   612 const bool Matcher::match_rule_supported(int opcode) {
   613   if (!has_match_rule(opcode))
   614     return false;
   616   switch (opcode) {
   617     //Op_CountLeadingZerosI Op_CountLeadingZerosL can be deleted, all MIPS CPUs support clz & dclz.
   618     case Op_CountLeadingZerosI:
   619     case Op_CountLeadingZerosL:
   620       if (!UseCountLeadingZerosInstruction)
   621         return false;
   622       break;
   623     case Op_CountTrailingZerosI:
   624     case Op_CountTrailingZerosL:
   625       if (!UseCountTrailingZerosInstruction)
   626         return false;
   627       break;
   628   }
   630   return true;  // Per default match rules are supported.
   631 }
   633 //FIXME
   634 // emit call stub, compiled java to interpreter
   635 void emit_java_to_interp(CodeBuffer &cbuf ) {
   636   // Stub is fixed up when the corresponding call is converted from calling
   637   // compiled code to calling interpreted code.
   638   // mov rbx,0
   639   // jmp -1
   641   address mark = cbuf.insts_mark();  // get mark within main instrs section
   643   // Note that the code buffer's insts_mark is always relative to insts.
   644   // That's why we must use the macroassembler to generate a stub.
   645   MacroAssembler _masm(&cbuf);
   647   address base =
   648   __ start_a_stub(Compile::MAX_stubs_size);
   649   if (base == NULL)  return;  // CodeBuffer::expand failed
   650   // static stub relocation stores the instruction address of the call
   652   __ relocate(static_stub_Relocation::spec(mark), 0);
   654   /* 2012/10/29 Jin: Rmethod contains methodOop, it should be relocated for GC */
   655 /*
   656   int oop_index = __ oop_recorder()->allocate_index(NULL);
   657   RelocationHolder rspec = oop_Relocation::spec(oop_index);
   658   __ relocate(rspec);
   659 */
   661   // static stub relocation also tags the methodOop in the code-stream.
   662   __ patchable_set48(S3, (long)0);
   663   // This is recognized as unresolved by relocs/nativeInst/ic code
   665   __ relocate(relocInfo::runtime_call_type);
   667   cbuf.set_insts_mark();
   668   address call_pc = (address)-1;
   669   __ patchable_set48(AT, (long)call_pc);
   670   __ jr(AT);
   671   __ nop();
   672   __ align(16);
   673   __ end_a_stub();
   674   // Update current stubs pointer and restore code_end.
   675 }
   677 // size of call stub, compiled java to interpretor
   678 uint size_java_to_interp() {
   679   int size = 4 * 4 + NativeCall::instruction_size; // sizeof(li48) + NativeCall::instruction_size
   680   return round_to(size, 16);
   681 }
   683 // relocation entries for call stub, compiled java to interpreter
   684 uint reloc_java_to_interp() {
   685   return 16;  //  in emit_java_to_interp +  in Java_Static_Call
   686 }
   688 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
   689   if( Assembler::is_simm16(offset) ) return true;
   690   else {
   691      assert(false, "Not implemented yet !" );
   692      Unimplemented();
   693   }
   694 }
   697 // No additional cost for CMOVL.
   698 const int Matcher::long_cmove_cost() { return 0; }
   700 // No CMOVF/CMOVD with SSE2
   701 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
   703 // Does the CPU require late expand (see block.cpp for description of late expand)?
   704 const bool Matcher::require_postalloc_expand = false;
   706 // Should the Matcher clone shifts on addressing modes, expecting them
   707 // to be subsumed into complex addressing expressions or compute them
   708 // into registers?  True for Intel but false for most RISCs
   709 const bool Matcher::clone_shift_expressions = false;
   711 // Do we need to mask the count passed to shift instructions or does
   712 // the cpu only look at the lower 5/6 bits anyway?
   713 const bool Matcher::need_masked_shift_count = false;
   715 bool Matcher::narrow_oop_use_complex_address() {
   716   NOT_LP64(ShouldNotCallThis());
   717   assert(UseCompressedOops, "only for compressed oops code");
   718   return false;
   719 }
   721 bool Matcher::narrow_klass_use_complex_address() {
   722   NOT_LP64(ShouldNotCallThis());
   723   assert(UseCompressedClassPointers, "only for compressed klass code");
   724   return false;
   725 }
   727 // This is UltraSparc specific, true just means we have fast l2f conversion
   728 const bool Matcher::convL2FSupported(void) {
   729   return true;
   730 }
   732 // Max vector size in bytes. 0 if not supported.
   733 const int Matcher::vector_width_in_bytes(BasicType bt) {
   734   assert(MaxVectorSize == 8, "");
   735   return 8;
   736 }
   738 // Vector ideal reg
   739 const int Matcher::vector_ideal_reg(int size) {
   740   assert(MaxVectorSize == 8, "");
   741   switch(size) {
   742     case  8: return Op_VecD;
   743   }
   744   ShouldNotReachHere();
   745   return 0;
   746 }
   748 // Only lowest bits of xmm reg are used for vector shift count.
   749 const int Matcher::vector_shift_count_ideal_reg(int size) {
   750   fatal("vector shift is not supported");
   751   return Node::NotAMachineReg;
   752 }
   754 // Limits on vector size (number of elements) loaded into vector.
   755 const int Matcher::max_vector_size(const BasicType bt) {
   756   assert(is_java_primitive(bt), "only primitive type vectors");
   757   return vector_width_in_bytes(bt)/type2aelembytes(bt);
   758 }
   760 const int Matcher::min_vector_size(const BasicType bt) {
   761   return max_vector_size(bt); // Same as max.
   762 }
   764 // MIPS supports misaligned vectors store/load? FIXME
   765 const bool Matcher::misaligned_vectors_ok() {
   766   return false;
   767   //return !AlignVector; // can be changed by flag
   768 }
   770 // Register for DIVI projection of divmodI
   771 RegMask Matcher::divI_proj_mask() {
   772   ShouldNotReachHere();
   773   return RegMask();
   774 }
   776 // Register for MODI projection of divmodI
   777 RegMask Matcher::modI_proj_mask() {
   778   ShouldNotReachHere();
   779   return RegMask();
   780 }
   782 // Register for DIVL projection of divmodL
   783 RegMask Matcher::divL_proj_mask() {
   784   ShouldNotReachHere();
   785   return RegMask();
   786 }
   788 int Matcher::regnum_to_fpu_offset(int regnum) {
   789   return regnum - 32; // The FP registers are in the second chunk
   790 }
   793 const bool Matcher::isSimpleConstant64(jlong value) {
   794   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
   795   return true;
   796 }
   799 // Return whether or not this register is ever used as an argument.  This
   800 // function is used on startup to build the trampoline stubs in generateOptoStub.
   801 // Registers not mentioned will be killed by the VM call in the trampoline, and
   802 // arguments in those registers not be available to the callee.
   803 bool Matcher::can_be_java_arg( int reg ) {
   804   /* Refer to: [sharedRuntime_mips_64.cpp] SharedRuntime::java_calling_convention() */
   805   if (    reg == T0_num || reg == T0_H_num
   806 	   || reg == A0_num || reg == A0_H_num 
   807        || reg == A1_num || reg == A1_H_num 
   808        || reg == A2_num || reg == A2_H_num 
   809        || reg == A3_num || reg == A3_H_num 
   810        || reg == A4_num || reg == A4_H_num 
   811        || reg == A5_num || reg == A5_H_num 
   812        || reg == A6_num || reg == A6_H_num 
   813        || reg == A7_num || reg == A7_H_num )
   814     return true;
   816   if (    reg == F12_num || reg == F12_H_num
   817        || reg == F13_num || reg == F13_H_num 
   818        || reg == F14_num || reg == F14_H_num 
   819        || reg == F15_num || reg == F15_H_num 
   820        || reg == F16_num || reg == F16_H_num 
   821        || reg == F17_num || reg == F17_H_num 
   822        || reg == F18_num || reg == F18_H_num 
   823        || reg == F19_num || reg == F19_H_num )
   824     return true;
   826   return false;
   827 }
   829 bool Matcher::is_spillable_arg( int reg ) {
   830   return can_be_java_arg(reg);
   831 }
   833 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
   834   return false;
   835 }
   837 // Register for MODL projection of divmodL
   838 RegMask Matcher::modL_proj_mask() {
   839   ShouldNotReachHere();
   840   return RegMask();
   841 }
   843 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
   844   return FP_REG_mask();
   845 }
   847 // MIPS doesn't support AES intrinsics
   848 const bool Matcher::pass_original_key_for_aes() {
   849   return false;
   850 }
   852 // The address of the call instruction needs to be 16-byte aligned to
   853 // ensure that it does not span a cache line so that it can be patched.
   855 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   856   //lui
   857   //ori
   858   //dsll
   859   //ori
   861   //jalr
   862   //nop
   864   return round_to(current_offset, alignment_required()) - current_offset;
   865 }
   867 // The address of the call instruction needs to be 16-byte aligned to
   868 // ensure that it does not span a cache line so that it can be patched.
   869 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   870   //loadIC   <--- skip
   872   //lui
   873   //ori
   874   //nop
   875   //nop
   877   //jalr
   878   //nop
   880   current_offset += 4 * 4;
   881   return round_to(current_offset, alignment_required()) - current_offset;
   882 }
   884 int CallLeafNoFPDirectNode::compute_padding(int current_offset) const {
   885   //lui
   886   //ori
   887   //dsll
   888   //ori
   890   //jalr
   891   //nop
   893   return round_to(current_offset, alignment_required()) - current_offset;
   894 }
   896 int CallLeafDirectNode::compute_padding(int current_offset) const {
   897   //lui
   898   //ori
   899   //dsll
   900   //ori
   902   //jalr
   903   //nop
   905   return round_to(current_offset, alignment_required()) - current_offset;
   906 }
   908 int CallRuntimeDirectNode::compute_padding(int current_offset) const {
   909   //lui
   910   //ori
   911   //dsll
   912   //ori
   914   //jalr
   915   //nop
   917   return round_to(current_offset, alignment_required()) - current_offset;
   918 }
   920 // If CPU can load and store mis-aligned doubles directly then no fixup is
   921 // needed.  Else we split the double into 2 integer pieces and move it
   922 // piece-by-piece.  Only happens when passing doubles into C code as the
   923 // Java calling convention forces doubles to be aligned.
   924 const bool Matcher::misaligned_doubles_ok = false;
   925 // Do floats take an entire double register or just half?
   926 //const bool Matcher::float_in_double = true;
   927 bool Matcher::float_in_double() { return false; }
   928 // Threshold size for cleararray.
   929 const int Matcher::init_array_short_size = 8 * BytesPerLong;
   930 // Do ints take an entire long register or just half?
   931 const bool Matcher::int_in_long = true;
   932 // Is it better to copy float constants, or load them directly from memory?
   933 // Intel can load a float constant from a direct address, requiring no
   934 // extra registers.  Most RISCs will have to materialize an address into a
   935 // register first, so they would do better to copy the constant from stack.
   936 const bool Matcher::rematerialize_float_constants = false;
   937 // Advertise here if the CPU requires explicit rounding operations
   938 // to implement the UseStrictFP mode.
   939 const bool Matcher::strict_fp_requires_explicit_rounding = false;
   940 // The ecx parameter to rep stos for the ClearArray node is in dwords.
   941 const bool Matcher::init_array_count_is_in_bytes = false;
   944 // Indicate if the safepoint node needs the polling page as an input.
   945 // Since MIPS doesn't have absolute addressing, it needs.
   946 bool SafePointNode::needs_polling_address_input() {
   947   return false;
   948 }
   950 // !!!!! Special hack to get all type of calls to specify the byte offset
   951 //       from the start of the call to the point where the return address
   952 //       will point.
   953 int MachCallStaticJavaNode::ret_addr_offset() {
   954   //lui
   955   //ori
   956   //nop
   957   //nop
   958   //jalr
   959   //nop
   960   return 24; 
   961 }
   963 int MachCallDynamicJavaNode::ret_addr_offset() {
   964   //lui IC_Klass,
   965   //ori IC_Klass,
   966   //dsll IC_Klass
   967   //ori IC_Klass
   969   //lui T9
   970   //ori T9
   971   //nop
   972   //nop
   973   //jalr T9
   974   //nop
   975   return 4 * 4 + 4 * 6; 
   976 }
   978 //=============================================================================
   980 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
   981 enum RC { rc_bad, rc_int, rc_float, rc_stack };
   982 static enum RC rc_class( OptoReg::Name reg ) {
   983   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   984   if (OptoReg::is_stack(reg)) return rc_stack;
   985   VMReg r = OptoReg::as_VMReg(reg);
   986   if (r->is_Register()) return rc_int;
   987   assert(r->is_FloatRegister(), "must be");
   988   return rc_float;
   989 }
   991 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   992   // Get registers to move
   993   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   994   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   995   OptoReg::Name dst_second = ra_->get_reg_second(this );
   996   OptoReg::Name dst_first = ra_->get_reg_first(this );
   998   enum RC src_second_rc = rc_class(src_second);
   999   enum RC src_first_rc = rc_class(src_first);
  1000   enum RC dst_second_rc = rc_class(dst_second);
  1001   enum RC dst_first_rc = rc_class(dst_first);
  1003   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1005   // Generate spill code!
  1006   int size = 0;
  1008   if( src_first == dst_first && src_second == dst_second )
  1009     return 0;            // Self copy, no move
  1011   if (src_first_rc == rc_stack) {
  1012     // mem ->
  1013     if (dst_first_rc == rc_stack) {
  1014       // mem -> mem
  1015       assert(src_second != dst_first, "overlap");
  1016       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1017           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1018         // 64-bit
  1019         int src_offset = ra_->reg2offset(src_first);
  1020         int dst_offset = ra_->reg2offset(dst_first);
  1021         if (cbuf) {
  1022           MacroAssembler _masm(cbuf);
  1023           __ ld(AT, Address(SP, src_offset));
  1024           __ sd(AT, Address(SP, dst_offset));
  1025 #ifndef PRODUCT
  1026         } else {
  1027 			if(!do_size){
  1028 				if (size != 0) st->print("\n\t");
  1029 				st->print("ld    AT, [SP + #%d]\t# 64-bit mem-mem spill 1\n\t"
  1030 						  "sd    AT, [SP + #%d]",
  1031 						  src_offset, dst_offset);
  1033 #endif
  1035 		size += 8;
  1036       } else {
  1037         // 32-bit
  1038         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1039         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1040         // No pushl/popl, so:
  1041         int src_offset = ra_->reg2offset(src_first);
  1042         int dst_offset = ra_->reg2offset(dst_first);
  1043         if (cbuf) {
  1044           MacroAssembler _masm(cbuf);
  1045           __ lw(AT, Address(SP, src_offset));
  1046           __ sw(AT, Address(SP, dst_offset));
  1047 #ifndef PRODUCT
  1048         } else {
  1049 			if(!do_size){
  1050 				if (size != 0) st->print("\n\t");
  1051 				st->print("lw    AT, [SP + #%d] spill 2\n\t"
  1052 						  "sw    AT, [SP + #%d]\n\t",
  1053 						  src_offset, dst_offset);
  1055 #endif
  1057 		size += 8;
  1059       return size;
  1060     } else if (dst_first_rc == rc_int) {
  1061       // mem -> gpr
  1062       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1063           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1064         // 64-bit
  1065         int offset = ra_->reg2offset(src_first);
  1066         if (cbuf) {
  1067           MacroAssembler _masm(cbuf);
  1068           __ ld(as_Register(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1069 #ifndef PRODUCT
  1070         } else {
  1071 			if(!do_size){
  1072 				if (size != 0) st->print("\n\t");
  1073 				st->print("ld    %s, [SP + #%d]\t# spill 3",
  1074 						  Matcher::regName[dst_first],
  1075 						  offset);
  1077 #endif
  1079 		size += 4;
  1080       } else {
  1081         // 32-bit
  1082         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1083         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1084         int offset = ra_->reg2offset(src_first);
  1085         if (cbuf) {
  1086           MacroAssembler _masm(cbuf);
  1087           if (this->ideal_reg() == Op_RegI)
  1088             __ lw(as_Register(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1089           else
  1090             __ lwu(as_Register(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1091 #ifndef PRODUCT
  1092         } else {
  1093 			if(!do_size){
  1094 				if (size != 0) st->print("\n\t");
  1095           if (this->ideal_reg() == Op_RegI)
  1096 				st->print("lw    %s, [SP + #%d]\t# spill 4",
  1097 						   Matcher::regName[dst_first],
  1098 						   offset);
  1099 		  else
  1100 				st->print("lwu    %s, [SP + #%d]\t# spill 5",
  1101 						   Matcher::regName[dst_first],
  1102 						   offset);
  1104 #endif
  1106 		size += 4;
  1108       return size;
  1109     } else if (dst_first_rc == rc_float) {
  1110       // mem-> xmm
  1111       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1112           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1113         // 64-bit
  1114         int offset = ra_->reg2offset(src_first);
  1115         if (cbuf) {
  1116           MacroAssembler _masm(cbuf);
  1117           __ ldc1( as_FloatRegister(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1118 #ifndef PRODUCT
  1119         } else {
  1120 			if(!do_size){
  1121 				if (size != 0) st->print("\n\t");
  1122 				st->print("ldc1  %s, [SP + #%d]\t# spill 6",
  1123 						  Matcher::regName[dst_first],
  1124 						  offset);
  1126 #endif
  1128 		size += 4;
  1129       } else {
  1130         // 32-bit
  1131         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1132         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1133         int offset = ra_->reg2offset(src_first);
  1134         if (cbuf) {
  1135           MacroAssembler _masm(cbuf);
  1136           __ lwc1( as_FloatRegister(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1137 #ifndef PRODUCT
  1138         } else {
  1139 			if(!do_size){
  1140 				if (size != 0) st->print("\n\t");
  1141 				st->print("lwc1   %s, [SP + #%d]\t# spill 7",
  1142 						  Matcher::regName[dst_first],
  1143 						  offset);
  1145 #endif
  1147 		size += 4;
  1149       return size;
  1151   } else if (src_first_rc == rc_int) {
  1152     // gpr ->
  1153     if (dst_first_rc == rc_stack) {
  1154       // gpr -> mem
  1155       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1156           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1157         // 64-bit
  1158         int offset = ra_->reg2offset(dst_first);
  1159         if (cbuf) {
  1160           MacroAssembler _masm(cbuf);
  1161           __ sd(as_Register(Matcher::_regEncode[src_first]), Address(SP, offset));
  1162 #ifndef PRODUCT
  1163         } else {
  1164 			if(!do_size){
  1165 				if (size != 0) st->print("\n\t");
  1166 				st->print("sd    %s, [SP + #%d] # spill 8",
  1167 						  Matcher::regName[src_first],
  1168 						  offset);
  1170 #endif
  1172 		size += 4;
  1173       } else {
  1174         // 32-bit
  1175         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1176         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1177         int offset = ra_->reg2offset(dst_first);
  1178         if (cbuf) {
  1179           MacroAssembler _masm(cbuf);
  1180           __ sw(as_Register(Matcher::_regEncode[src_first]), Address(SP, offset));
  1181 #ifndef PRODUCT
  1182         } else {
  1183 			if(!do_size){
  1184 				if (size != 0) st->print("\n\t");
  1185 				st->print("sw    %s, [SP + #%d]\t# spill 9",
  1186 						Matcher::regName[src_first], offset);
  1188 #endif
  1190 		size += 4;
  1192       return size;
  1193     } else if (dst_first_rc == rc_int) {
  1194       // gpr -> gpr
  1195       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1196           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1197         // 64-bit
  1198         if (cbuf) {
  1199           MacroAssembler _masm(cbuf);
  1200           __ move(as_Register(Matcher::_regEncode[dst_first]),
  1201                   as_Register(Matcher::_regEncode[src_first]));
  1202 #ifndef PRODUCT
  1203         } else {
  1204 			if(!do_size){
  1205 				if (size != 0) st->print("\n\t");
  1206 				st->print("move(64bit)    %s <-- %s\t# spill 10",
  1207 						  Matcher::regName[dst_first],
  1208 						  Matcher::regName[src_first]);
  1210 #endif
  1212 		size += 4;
  1213         return size;
  1214       } else {
  1215         // 32-bit
  1216         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1217         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1218         if (cbuf) {
  1219           MacroAssembler _masm(cbuf);
  1220           if (this->ideal_reg() == Op_RegI)
  1221               __ move_u32(as_Register(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
  1222           else
  1223               __ daddu(as_Register(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]), R0);
  1225 #ifndef PRODUCT
  1226         } else {
  1227 			if(!do_size){
  1228 				if (size != 0) st->print("\n\t");
  1229 				st->print("move(32-bit)    %s <-- %s\t# spill 11",
  1230 						  Matcher::regName[dst_first],
  1231 						  Matcher::regName[src_first]);
  1233 #endif
  1235 		size += 4;	
  1236         return size;
  1238     } else if (dst_first_rc == rc_float) {
  1239       // gpr -> xmm
  1240       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1241           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1242         // 64-bit
  1243         if (cbuf) {
  1244           MacroAssembler _masm(cbuf);
  1245           __ dmtc1(as_Register(Matcher::_regEncode[src_first]), as_FloatRegister(Matcher::_regEncode[dst_first]));
  1246 #ifndef PRODUCT
  1247         } else {
  1248 			if(!do_size){
  1249 				if (size != 0) st->print("\n\t");
  1250 				st->print("dmtc1   %s, %s\t# spill 12",
  1251 						  Matcher::regName[dst_first],
  1252 						  Matcher::regName[src_first]);
  1254 #endif
  1256 		size += 4;
  1257       } else {
  1258         // 32-bit
  1259         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1260         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1261         if (cbuf) {
  1262           MacroAssembler _masm(cbuf);
  1263           __ mtc1( as_Register(Matcher::_regEncode[src_first]), as_FloatRegister(Matcher::_regEncode[dst_first]) );
  1264 #ifndef PRODUCT
  1265         } else {
  1266 			if(!do_size){
  1267 				if (size != 0) st->print("\n\t");
  1268 				st->print("mtc1   %s, %s\t# spill 13",
  1269 						  Matcher::regName[dst_first],
  1270 						  Matcher::regName[src_first]);
  1272 #endif
  1274 		size += 4;
  1276       return size;
  1278   } else if (src_first_rc == rc_float) {
  1279     // xmm ->
  1280     if (dst_first_rc == rc_stack) {
  1281       // xmm -> mem
  1282       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1283           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1284         // 64-bit
  1285         int offset = ra_->reg2offset(dst_first);
  1286         if (cbuf) {
  1287           MacroAssembler _masm(cbuf);
  1288           __ sdc1( as_FloatRegister(Matcher::_regEncode[src_first]), Address(SP, offset) );
  1289 #ifndef PRODUCT
  1290         } else {
  1291 			if(!do_size){
  1292 				if (size != 0) st->print("\n\t");
  1293 				st->print("sdc1   %s, [SP + #%d]\t# spill 14",
  1294 						  Matcher::regName[src_first],
  1295 						  offset);
  1297 #endif
  1299 		size += 4;
  1300       } else {
  1301         // 32-bit
  1302         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1303         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1304         int offset = ra_->reg2offset(dst_first);
  1305         if (cbuf) {
  1306           MacroAssembler _masm(cbuf);
  1307           __ swc1(as_FloatRegister(Matcher::_regEncode[src_first]), Address(SP, offset));
  1308 #ifndef PRODUCT
  1309         } else {
  1310 			if(!do_size){
  1311 				if (size != 0) st->print("\n\t");
  1312 				st->print("swc1   %s, [SP + #%d]\t# spill 15",
  1313 						Matcher::regName[src_first],
  1314 						offset);
  1316 #endif
  1318 		size += 4;
  1320       return size;
  1321     } else if (dst_first_rc == rc_int) {
  1322       // xmm -> gpr
  1323       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1324           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1325         // 64-bit
  1326         if (cbuf) {
  1327           MacroAssembler _masm(cbuf);
  1328           __ dmfc1( as_Register(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1329 #ifndef PRODUCT
  1330         } else {
  1331 			if(!do_size){
  1332 				if (size != 0) st->print("\n\t");
  1333 				st->print("dmfc1   %s, %s\t# spill 16",
  1334 						  Matcher::regName[dst_first],
  1335 						  Matcher::regName[src_first]);
  1337 #endif
  1339 		size += 4;
  1340       } else {
  1341         // 32-bit
  1342         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1343         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1344         if (cbuf) {
  1345           MacroAssembler _masm(cbuf);
  1346           __ mfc1( as_Register(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1347 #ifndef PRODUCT
  1348         } else {
  1349 			if(!do_size){
  1350 				if (size != 0) st->print("\n\t");
  1351 				st->print("mfc1   %s, %s\t# spill 17",
  1352 						  Matcher::regName[dst_first],
  1353 						  Matcher::regName[src_first]);
  1355 #endif
  1357 		size += 4;
  1359       return size;
  1360     } else if (dst_first_rc == rc_float) {
  1361       // xmm -> xmm
  1362       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1363           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1364         // 64-bit
  1365         if (cbuf) {
  1366           MacroAssembler _masm(cbuf);
  1367           __ mov_d( as_FloatRegister(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1368 #ifndef PRODUCT
  1369         } else {
  1370 			if(!do_size){
  1371 				if (size != 0) st->print("\n\t");
  1372 				st->print("mov_d  %s <-- %s\t# spill 18",
  1373 						  Matcher::regName[dst_first],
  1374 						  Matcher::regName[src_first]);
  1376 #endif
  1378 		size += 4;
  1379       } else {
  1380         // 32-bit
  1381         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1382         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1383         if (cbuf) {
  1384           MacroAssembler _masm(cbuf);
  1385           __ mov_s( as_FloatRegister(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1386 #ifndef PRODUCT
  1387         } else {
  1388 			if(!do_size){
  1389 				if (size != 0) st->print("\n\t");
  1390 				st->print("mov_s  %s <-- %s\t# spill 19",
  1391 						  Matcher::regName[dst_first],
  1392 						  Matcher::regName[src_first]);
  1394 #endif
  1396 		size += 4;
  1398       return size;
  1402   assert(0," foo ");
  1403   Unimplemented();
  1404   return size;
  1408 #ifndef PRODUCT
  1409 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1410   implementation( NULL, ra_, false, st );
  1412 #endif
  1414 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1415   implementation( &cbuf, ra_, false, NULL );
  1418 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1419   return implementation( NULL, ra_, true, NULL );
  1422 //=============================================================================
  1425 #ifndef PRODUCT
  1426 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1427   st->print("INT3");
  1429 #endif
  1431 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc* ra_) const {
  1432   MacroAssembler _masm(&cbuf);
  1433   __ int3();
  1436 uint MachBreakpointNode::size(PhaseRegAlloc* ra_) const {
  1437   return MachNode::size(ra_);
  1441 //=============================================================================
  1442 #ifndef PRODUCT
  1443 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1444   Compile *C = ra_->C;
  1445   int framesize = C->frame_size_in_bytes();
  1447   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1449   st->print("daddiu   SP, SP, %d # Rlease stack @ MachEpilogNode",framesize);
  1450   st->cr(); st->print("\t");
  1451   if (UseLoongsonISA) {
  1452      st->print("gslq  RA, FP, SP, %d # Restore FP & RA @ MachEpilogNode", -wordSize*2);
  1453   } else {
  1454      st->print("ld    RA, SP, %d # Restore RA @ MachEpilogNode", -wordSize);
  1455      st->cr(); st->print("\t");
  1456      st->print("ld    FP, SP, %d # Restore FP @ MachEpilogNode", -wordSize*2);
  1459   if( do_polling() && C->is_method_compilation() ) {
  1460     st->print("Poll Safepoint # MachEpilogNode");
  1463 #endif
  1465 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1466   Compile *C = ra_->C;
  1467   MacroAssembler _masm(&cbuf);
  1468   int framesize = C->frame_size_in_bytes();
  1470   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1472   __ daddiu(SP, SP, framesize);
  1474   if (UseLoongsonISA) {
  1475     __ gslq(RA, FP, SP, -wordSize*2);
  1476   } else {
  1477     __ ld(RA, SP, -wordSize );
  1478     __ ld(FP, SP, -wordSize*2 );
  1481   if( do_polling() && C->is_method_compilation() ) {
  1482     __ set64(AT, (long)os::get_polling_page());
  1483     __ relocate(relocInfo::poll_return_type);
  1484     __ lw(AT, AT, 0);
  1488 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1489   return MachNode::size(ra_); // too many variables; just compute it the hard way  fujie debug
  1492 int MachEpilogNode::reloc() const {
  1493   return 0; // a large enough number
  1496 const Pipeline * MachEpilogNode::pipeline() const {
  1497   return MachNode::pipeline_class();
  1500 int MachEpilogNode::safepoint_offset() const { return 0; }
  1502 //=============================================================================
  1504 #ifndef PRODUCT
  1505 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1506   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1507   int reg = ra_->get_reg_first(this);
  1508   st->print("ADDI %s, SP, %d   @BoxLockNode",Matcher::regName[reg],offset);
  1510 #endif
  1513 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1514   return 4;
  1517 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1518   MacroAssembler _masm(&cbuf);
  1519   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1520   int reg = ra_->get_encode(this);
  1522   __ addi(as_Register(reg), SP, offset);
  1523 /*
  1524   if( offset >= 128 ) {
  1525     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1526     emit_rm(cbuf, 0x2, reg, 0x04);
  1527     emit_rm(cbuf, 0x0, 0x04, SP_enc);
  1528     emit_d32(cbuf, offset);
  1530   else {
  1531     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1532     emit_rm(cbuf, 0x1, reg, 0x04);
  1533     emit_rm(cbuf, 0x0, 0x04, SP_enc);
  1534     emit_d8(cbuf, offset);
  1536 */
  1540 //static int sizeof_FFree_Float_Stack_All = -1;
  1542 int MachCallRuntimeNode::ret_addr_offset() {
  1543   //lui
  1544   //ori
  1545   //dsll
  1546   //ori
  1547   //jalr
  1548   //nop
  1549   assert(NativeCall::instruction_size == 24, "in MachCallRuntimeNode::ret_addr_offset()");
  1550   return NativeCall::instruction_size;
  1551 //  return 16;
  1558 //=============================================================================
  1559 #ifndef PRODUCT
  1560 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1561   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1563 #endif
  1565 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1566   MacroAssembler _masm(&cbuf);
  1567   int i = 0;
  1568   for(i = 0; i < _count; i++)
  1569      __ nop();
  1572 uint MachNopNode::size(PhaseRegAlloc *) const {
  1573   return 4 * _count; 
  1575 const Pipeline* MachNopNode::pipeline() const {
  1576   return MachNode::pipeline_class();
  1579 //=============================================================================
  1581 //=============================================================================
  1582 #ifndef PRODUCT
  1583 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1584   st->print_cr("load_klass(T9, T0)");
  1585   st->print_cr("\tbeq(T9, iCache, L)");
  1586   st->print_cr("\tnop");
  1587   st->print_cr("\tjmp(SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type)");
  1588   st->print_cr("\tnop");
  1589   st->print_cr("\tnop");
  1590   st->print_cr("    L:");
  1592 #endif
  1595 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1596   MacroAssembler _masm(&cbuf);
  1597 #ifdef ASSERT
  1598   //uint code_size = cbuf.code_size();
  1599 #endif
  1600   int  ic_reg = Matcher::inline_cache_reg_encode();
  1601   Label L;
  1602   Register receiver = T0;
  1603   Register   iCache = as_Register(ic_reg);
  1604   __ load_klass(T9, receiver);
  1605   __ beq(T9, iCache, L);
  1606   __ nop();
  1608   __ relocate(relocInfo::runtime_call_type);
  1609   __ patchable_set48(T9, (long)SharedRuntime::get_ic_miss_stub());
  1610   __ jr(T9);
  1611   __ nop();
  1613   /* WARNING these NOPs are critical so that verified entry point is properly
  1614    *      8 bytes aligned for patching by NativeJump::patch_verified_entry() */
  1615   __ align(CodeEntryAlignment);
  1616   __ bind(L);
  1619 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1620   return MachNode::size(ra_); 
  1625 //=============================================================================
  1627 const RegMask& MachConstantBaseNode::_out_RegMask = P_REG_mask();
  1629 int Compile::ConstantTable::calculate_table_base_offset() const {
  1630   return 0;  // absolute addressing, no offset
  1633 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
  1634 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  1635   ShouldNotReachHere();
  1638 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1639   Compile* C = ra_->C;
  1640   Compile::ConstantTable& constant_table = C->constant_table();
  1641   MacroAssembler _masm(&cbuf);
  1643   Register Rtoc = as_Register(ra_->get_encode(this));
  1644   CodeSection* consts_section = __ code()->consts();
  1645   int consts_size = consts_section->align_at_start(consts_section->size());
  1646   assert(constant_table.size() == consts_size, "must be equal");
  1648   if (consts_section->size()) {
  1649     // Materialize the constant table base.
  1650     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1651     // RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1652     __ relocate(relocInfo::internal_pc_type);
  1653     __ patchable_set48(Rtoc, (long)baseaddr);
  1657 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
  1658   // patchable_set48 (4 insts)
  1659   return 4 * 4;
  1662 #ifndef PRODUCT
  1663 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1664   Register r = as_Register(ra_->get_encode(this));
  1665   st->print("patchable_set48    %s, &constanttable (constant table base) @ MachConstantBaseNode", r->name());
  1667 #endif
  1670 //=============================================================================
  1671 #ifndef PRODUCT
  1672 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1673   Compile* C = ra_->C;
  1675   int framesize = C->frame_size_in_bytes();
  1676   int bangsize = C->bang_size_in_bytes();
  1677   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1679   // Calls to C2R adapters often do not accept exceptional returns.
  1680   // We require that their callers must bang for them.  But be careful, because
  1681   // some VM calls (such as call site linkage) can use several kilobytes of
  1682   // stack.  But the stack safety zone should account for that.
  1683   // See bugs 4446381, 4468289, 4497237.
  1684   if (C->need_stack_bang(bangsize)) {
  1685     st->print_cr("# stack bang"); st->print("\t");
  1687     if (UseLoongsonISA) {
  1688        st->print("gssq     RA, FP, %d(SP)  @ MachPrologNode\n\t", -wordSize*2);
  1689     } else {
  1690        st->print("sd       RA, %d(SP)  @ MachPrologNode\n\t", -wordSize);
  1691        st->print("sd       FP, %d(SP)  @ MachPrologNode\n\t", -wordSize*2);
  1693     st->print("daddiu   FP, SP, -%d \n\t", wordSize*2);
  1694     st->print("daddiu   SP, SP, -%d \t",framesize);
  1696 #endif
  1699 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1700   Compile* C = ra_->C;
  1701   MacroAssembler _masm(&cbuf);
  1703   int framesize = C->frame_size_in_bytes();
  1704   int bangsize = C->bang_size_in_bytes();
  1706 //  __ verified_entry(framesize, C->need_stack_bang(bangsize)?bangsize:0, false);
  1708   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1710   if (C->need_stack_bang(framesize)) {
  1711     __ generate_stack_overflow_check(framesize);
  1714   if (UseLoongsonISA) {
  1715      __ gssq(RA, FP, SP, -wordSize*2); 
  1716   } else {
  1717      __ sd(RA, SP, -wordSize);
  1718      __ sd(FP, SP, -wordSize*2);
  1720   __ daddiu(FP, SP, -wordSize*2);
  1721   __ daddiu(SP, SP, -framesize);
  1722   __ nop(); /* 2013.10.22 Jin: Make enough room for patch_verified_entry() */
  1723   __ nop();
  1725   C->set_frame_complete(cbuf.insts_size());
  1726   if (C->has_mach_constant_base_node()) {
  1727 	  // NOTE: We set the table base offset here because users might be
  1728 	  // emitted before MachConstantBaseNode.
  1729 	  Compile::ConstantTable& constant_table = C->constant_table();
  1730 	  constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1736 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1737 //fprintf(stderr, "\nPrologNode::size(ra_)= %d \n", MachNode::size(ra_));//fujie debug
  1738   return MachNode::size(ra_); // too many variables; just compute it the hard way
  1741 int MachPrologNode::reloc() const {
  1742   return 0; // a large enough number
  1745 %}
  1747 //----------ENCODING BLOCK-----------------------------------------------------
  1748 // This block specifies the encoding classes used by the compiler to output
  1749 // byte streams.  Encoding classes generate functions which are called by
  1750 // Machine Instruction Nodes in order to generate the bit encoding of the
  1751 // instruction.  Operands specify their base encoding interface with the
  1752 // interface keyword.  There are currently supported four interfaces,
  1753 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1754 // operand to generate a function which returns its register number when
  1755 // queried.   CONST_INTER causes an operand to generate a function which
  1756 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1757 // operand to generate four functions which return the Base Register, the
  1758 // Index Register, the Scale Value, and the Offset Value of the operand when
  1759 // queried.  COND_INTER causes an operand to generate six functions which
  1760 // return the encoding code (ie - encoding bits for the instruction)
  1761 // associated with each basic boolean condition for a conditional instruction.
  1762 // Instructions specify two basic values for encoding.  They use the
  1763 // ins_encode keyword to specify their encoding class (which must be one of
  1764 // the class names specified in the encoding block), and they use the
  1765 // opcode keyword to specify, in order, their primary, secondary, and
  1766 // tertiary opcode.  Only the opcode sections which a particular instruction
  1767 // needs for encoding need to be specified.
  1768 encode %{
  1769 /*
  1770 Alias:
  1771 1044   b   java.io.ObjectInputStream::readHandle (130 bytes)
  1772     118   B14: #    B19 B15 <- B13  Freq: 0.899955
  1773     118     add    S1, S2, V0 #@addP_reg_reg
  1774     11c     lb   S0, [S1 + #-8257524] #@loadB
  1775     120     BReq   S0, #3, B19 #@branchConI_reg_imm  P=0.100000 C=-1.000000
  1776 */
  1777   //Load byte signed
  1778   enc_class load_B_enc (mRegI dst, memory mem) %{
  1779      MacroAssembler _masm(&cbuf);
  1780      int  dst = $dst$$reg;
  1781      int  base = $mem$$base;
  1782      int  index = $mem$$index;
  1783      int  scale = $mem$$scale;
  1784      int  disp = $mem$$disp;
  1786      if( index != 0 ) {
  1787         if( Assembler::is_simm16(disp) ) { 
  1788            if( UseLoongsonISA ) {
  1789               if (scale == 0) {
  1790                  __ gslbx(as_Register(dst), as_Register(base), as_Register(index), disp);
  1791               } else {
  1792                  __ dsll(AT, as_Register(index), scale);
  1793                  __ gslbx(as_Register(dst), as_Register(base), AT, disp);
  1795            } else {
  1796               if (scale == 0) {
  1797                  __ addu(AT, as_Register(base), as_Register(index));
  1798               } else {
  1799                  __ dsll(AT, as_Register(index), scale);
  1800                  __ addu(AT, as_Register(base), AT);
  1802               __ lb(as_Register(dst), AT, disp);
  1804         } else {
  1805            if (scale == 0) {
  1806               __ addu(AT, as_Register(base), as_Register(index));
  1807            } else {
  1808               __ dsll(AT, as_Register(index), scale);
  1809               __ addu(AT, as_Register(base), AT);
  1811            __ move(T9, disp);
  1812            if( UseLoongsonISA ) {
  1813               __ gslbx(as_Register(dst), AT, T9, 0);
  1814            } else {
  1815               __ addu(AT, AT, T9); 
  1816               __ lb(as_Register(dst), AT, 0);
  1819      } else {
  1820         if( Assembler::is_simm16(disp) ) { 
  1821            __ lb(as_Register(dst), as_Register(base), disp);
  1822         } else {
  1823            __ move(T9, disp);   
  1824            if( UseLoongsonISA ) {
  1825               __ gslbx(as_Register(dst), as_Register(base), T9, 0);
  1826            } else {
  1827               __ addu(AT, as_Register(base), T9); 
  1828               __ lb(as_Register(dst), AT, 0);
  1832   %}
  1834   //Load byte unsigned
  1835   enc_class load_UB_enc (mRegI dst, memory mem) %{
  1836      MacroAssembler _masm(&cbuf);
  1837      int  dst = $dst$$reg;
  1838      int  base = $mem$$base;
  1839      int  index = $mem$$index;
  1840      int  scale = $mem$$scale;
  1841      int  disp = $mem$$disp;
  1843      if( index != 0 ) {
  1844         if (scale == 0) {
  1845            __ daddu(AT, as_Register(base), as_Register(index));
  1846         } else {
  1847            __ dsll(AT, as_Register(index), scale);
  1848            __ daddu(AT, as_Register(base), AT);
  1850         if( Assembler::is_simm16(disp) ) { 
  1851            __ lbu(as_Register(dst), AT, disp);
  1852         } else {
  1853            __ move(T9, disp);
  1854            __ daddu(AT, AT, T9); 
  1855            __ lbu(as_Register(dst), AT, 0);
  1857      } else {
  1858         if( Assembler::is_simm16(disp) ) { 
  1859            __ lbu(as_Register(dst), as_Register(base), disp);
  1860         } else {
  1861            __ move(T9, disp);   
  1862            __ daddu(AT, as_Register(base), T9); 
  1863            __ lbu(as_Register(dst), AT, 0);
  1866   %}
  1868   enc_class store_B_reg_enc (memory mem, mRegI src) %{
  1869      MacroAssembler _masm(&cbuf);
  1870      int  src = $src$$reg;
  1871      int  base = $mem$$base;
  1872      int  index = $mem$$index;
  1873      int  scale = $mem$$scale;
  1874      int  disp = $mem$$disp;
  1876      if( index != 0 ) {
  1877         if (scale == 0) {
  1878            if( Assembler::is_simm(disp, 8) ) { 
  1879               if (UseLoongsonISA) {
  1880                  __ gssbx(as_Register(src), as_Register(base), as_Register(index), disp);
  1881               } else {
  1882                  __ addu(AT, as_Register(base), as_Register(index));
  1883                  __ sb(as_Register(src), AT, disp);
  1885            } else if( Assembler::is_simm16(disp) ) { 
  1886               __ addu(AT, as_Register(base), as_Register(index));
  1887               __ sb(as_Register(src), AT, disp);
  1888            } else {
  1889               __ addu(AT, as_Register(base), as_Register(index));
  1890               __ move(T9, disp);
  1891               if (UseLoongsonISA) {
  1892                  __ gssbx(as_Register(src), AT, T9, 0);
  1893               } else {
  1894                  __ addu(AT, AT, T9); 
  1895                  __ sb(as_Register(src), AT, 0);
  1898         } else {
  1899            __ dsll(AT, as_Register(index), scale);
  1900            if( Assembler::is_simm(disp, 8) ) { 
  1901               if (UseLoongsonISA) {
  1902                  __ gssbx(as_Register(src), AT, as_Register(base), disp);
  1903               } else {
  1904                  __ addu(AT, as_Register(base), AT);
  1905                  __ sb(as_Register(src), AT, disp);
  1907            } else if( Assembler::is_simm16(disp) ) { 
  1908               __ addu(AT, as_Register(base), AT);
  1909               __ sb(as_Register(src), AT, disp);
  1910            } else {
  1911               __ addu(AT, as_Register(base), AT);
  1912               __ move(T9, disp);
  1913               if (UseLoongsonISA) {
  1914                  __ gssbx(as_Register(src), AT, T9, 0);
  1915               } else {
  1916                  __ addu(AT, AT, T9); 
  1917                  __ sb(as_Register(src), AT, 0);
  1921      } else {
  1922         if( Assembler::is_simm16(disp) ) { 
  1923            __ sb(as_Register(src), as_Register(base), disp);
  1924         } else {
  1925            __ move(T9, disp);   
  1926            if (UseLoongsonISA) {
  1927               __ gssbx(as_Register(src), as_Register(base), T9, 0);
  1928            } else {
  1929               __ addu(AT, as_Register(base), T9); 
  1930               __ sb(as_Register(src), AT, 0);
  1934   %}
  1936   enc_class store_B_immI_enc (memory mem, immI8 src) %{
  1937      MacroAssembler _masm(&cbuf);
  1938      int  base = $mem$$base;
  1939      int  index = $mem$$index;
  1940      int  scale = $mem$$scale;
  1941      int  disp = $mem$$disp;
  1942      int value = $src$$constant;
  1944      if( index != 0 ) {
  1945         if (!UseLoongsonISA) {
  1946            if (scale == 0) {
  1947               __ daddu(AT, as_Register(base), as_Register(index));
  1948            } else {
  1949               __ dsll(AT, as_Register(index), scale);
  1950               __ daddu(AT, as_Register(base), AT);
  1952            if( Assembler::is_simm16(disp) ) { 
  1953               if (value == 0) {
  1954                  __ sb(R0, AT, disp);
  1955               } else {
  1956                  __ move(T9, value);
  1957                  __ sb(T9, AT, disp);
  1959            } else {
  1960               if (value == 0) {
  1961                  __ move(T9, disp);
  1962                  __ daddu(AT, AT, T9); 
  1963                  __ sb(R0, AT, 0);
  1964               } else {
  1965                  __ move(T9, disp);
  1966                  __ daddu(AT, AT, T9); 
  1967                  __ move(T9, value);
  1968                  __ sb(T9, AT, 0);
  1971         } else {
  1973            if (scale == 0) {
  1974               if( Assembler::is_simm(disp, 8) ) { 
  1975                  if (value == 0) {
  1976                     __ gssbx(R0, as_Register(base), as_Register(index), disp);
  1977                  } else {
  1978                     __ move(T9, value);
  1979                     __ gssbx(T9, as_Register(base), as_Register(index), disp);
  1981               } else if( Assembler::is_simm16(disp) ) { 
  1982                  __ daddu(AT, as_Register(base), as_Register(index));
  1983                  if (value == 0) {
  1984                     __ sb(R0, AT, disp);
  1985                  } else {
  1986                     __ move(T9, value);
  1987                     __ sb(T9, AT, disp);
  1989               } else {
  1990                  if (value == 0) {
  1991                     __ daddu(AT, as_Register(base), as_Register(index));
  1992                     __ move(T9, disp);
  1993                     __ gssbx(R0, AT, T9, 0);
  1994                  } else {
  1995                     __ move(AT, disp);
  1996                     __ move(T9, value);
  1997                     __ daddu(AT, as_Register(base), AT);
  1998                     __ gssbx(T9, AT, as_Register(index), 0);
  2002            } else {
  2004               if( Assembler::is_simm(disp, 8) ) { 
  2005                  __ dsll(AT, as_Register(index), scale);
  2006                  if (value == 0) {
  2007                     __ gssbx(R0, as_Register(base), AT, disp);
  2008                  } else {
  2009                     __ move(T9, value);
  2010                     __ gssbx(T9, as_Register(base), AT, disp);
  2012               } else if( Assembler::is_simm16(disp) ) { 
  2013                  __ dsll(AT, as_Register(index), scale);
  2014                  __ daddu(AT, as_Register(base), AT);
  2015                  if (value == 0) {
  2016                     __ sb(R0, AT, disp);
  2017                  } else {
  2018                     __ move(T9, value);
  2019                     __ sb(T9, AT, disp);
  2021               } else {
  2022                  __ dsll(AT, as_Register(index), scale);
  2023                  if (value == 0) {
  2024                     __ daddu(AT, as_Register(base), AT);
  2025                     __ move(T9, disp);
  2026                     __ gssbx(R0, AT, T9, 0);
  2027                  } else {
  2028                     __ move(T9, disp);
  2029                     __ daddu(AT, AT, T9); 
  2030                     __ move(T9, value);
  2031                     __ gssbx(T9, as_Register(base), AT, 0);
  2036      } else {
  2037         if( Assembler::is_simm16(disp) ) { 
  2038            if (value == 0) {
  2039               __ sb(R0, as_Register(base), disp);
  2040            } else {
  2041               __ move(AT, value);
  2042               __ sb(AT, as_Register(base), disp);
  2044         } else {
  2045            if (value == 0) {
  2046               __ move(T9, disp);   
  2047               if (UseLoongsonISA) {
  2048                 __ gssbx(R0, as_Register(base), T9, 0);
  2049               } else {
  2050                 __ daddu(AT, as_Register(base), T9); 
  2051                 __ sb(R0, AT, 0);
  2053            } else {
  2054               __ move(T9, disp);   
  2055               if (UseLoongsonISA) {
  2056                 __ move(AT, value);
  2057                 __ gssbx(AT, as_Register(base), T9, 0);
  2058               } else {
  2059                 __ daddu(AT, as_Register(base), T9); 
  2060                 __ move(T9, value);
  2061                 __ sb(T9, AT, 0);
  2066   %}
  2069   enc_class store_B_immI_enc_sync (memory mem, immI8 src) %{
  2070      MacroAssembler _masm(&cbuf);
  2071      int  base = $mem$$base;
  2072      int  index = $mem$$index;
  2073      int  scale = $mem$$scale;
  2074      int  disp = $mem$$disp;
  2075      int value = $src$$constant;
  2077      if( index != 0 ) {
  2078 		 if ( UseLoongsonISA ) {
  2079 			if ( Assembler::is_simm(disp,8) ) {
  2080 				if ( scale == 0 ) {
  2081 					if ( value == 0 ) {
  2082 						__ gssbx(R0, as_Register(base), as_Register(index), disp);
  2083 					} else {
  2084 						__ move(AT, value);
  2085 						__ gssbx(AT, as_Register(base), as_Register(index), disp);
  2087 				} else {
  2088 					__ dsll(AT, as_Register(index), scale);
  2089 					if ( value == 0 ) {
  2090 						__ gssbx(R0, as_Register(base), AT, disp);
  2091 					} else {
  2092 						__ move(T9, value);
  2093 						__ gssbx(T9, as_Register(base), AT, disp);
  2096 			} else if ( Assembler::is_simm16(disp) ) {
  2097 				if ( scale == 0 ) {
  2098 					__ daddu(AT, as_Register(base), as_Register(index));
  2099 					if ( value == 0 ){
  2100 						__ sb(R0, AT, disp);
  2101 					} else {
  2102 						__ move(T9, value);
  2103 						__ sb(T9, AT, disp);
  2105 				} else {
  2106 					__ dsll(AT, as_Register(index), scale);
  2107 					__ daddu(AT, as_Register(base), AT);
  2108 					if ( value == 0 ) {
  2109 						__ sb(R0, AT, disp);
  2110 					} else {
  2111 						__ move(T9, value);
  2112 						__ sb(T9, AT, disp);
  2115 			} else {
  2116 				if ( scale == 0 ) {
  2117 					__ move(AT, disp);
  2118 					__ daddu(AT, as_Register(index), AT);
  2119 					if ( value == 0 ) {
  2120 						__ gssbx(R0, as_Register(base), AT, 0);
  2121 					} else {
  2122 						__ move(T9, value);
  2123 						__ gssbx(T9, as_Register(base), AT, 0);
  2125 				} else {
  2126 					__ dsll(AT, as_Register(index), scale);
  2127 					__ move(T9, disp);
  2128 					__ daddu(AT, AT, T9);
  2129 					if ( value == 0 ) {
  2130 						__ gssbx(R0, as_Register(base), AT, 0);
  2131 					} else {
  2132 						__ move(T9, value);
  2133 						__ gssbx(T9, as_Register(base), AT, 0);
  2137 		 } else { //not use loongson isa
  2138 		    if (scale == 0) {
  2139 			   __ daddu(AT, as_Register(base), as_Register(index));
  2140 		    } else {
  2141 			   __ dsll(AT, as_Register(index), scale);
  2142 			   __ daddu(AT, as_Register(base), AT);
  2144 		    if( Assembler::is_simm16(disp) ) { 
  2145 			   if (value == 0) {
  2146 			      __ sb(R0, AT, disp);
  2147 			   } else {
  2148 		          __ move(T9, value);
  2149 				  __ sb(T9, AT, disp);
  2151 			} else {
  2152 		       if (value == 0) {
  2153 	              __ move(T9, disp);
  2154 				  __ daddu(AT, AT, T9); 
  2155 			      __ sb(R0, AT, 0);
  2156 		       } else {
  2157 	              __ move(T9, disp);
  2158 				  __ daddu(AT, AT, T9); 
  2159 			      __ move(T9, value);
  2160 		          __ sb(T9, AT, 0);
  2164      } else {
  2165 		 if ( UseLoongsonISA ){
  2166 			if ( Assembler::is_simm16(disp) ){
  2167 				if ( value == 0 ) {
  2168 					__ sb(R0, as_Register(base), disp);
  2169 				} else {
  2170 					__ move(AT, value);
  2171 					__ sb(AT, as_Register(base), disp);
  2173 			} else {
  2174 				__ move(AT, disp);
  2175 				if ( value == 0 ) {
  2176 					__ gssbx(R0, as_Register(base), AT, 0);
  2177 				} else {
  2178 					__ move(T9, value);
  2179 					__ gssbx(T9, as_Register(base), AT, 0);
  2182 		 } else {
  2183 		    if( Assembler::is_simm16(disp) ) { 
  2184 	           if (value == 0) {
  2185 			      __ sb(R0, as_Register(base), disp);
  2186 		       } else {
  2187 	              __ move(AT, value);
  2188 				  __ sb(AT, as_Register(base), disp);
  2190 		    } else {
  2191 	           if (value == 0) {
  2192 				  __ move(T9, disp);   
  2193 			      __ daddu(AT, as_Register(base), T9); 
  2194 		          __ sb(R0, AT, 0);
  2195 	           } else {
  2196 				  __ move(T9, disp);   
  2197 			      __ daddu(AT, as_Register(base), T9); 
  2198 		          __ move(T9, value);
  2199 	              __ sb(T9, AT, 0);
  2205      __ sync();
  2206   %}
  2208   // Load Short (16bit signed)
  2209   enc_class load_S_enc (mRegI dst, memory mem) %{
  2210      MacroAssembler _masm(&cbuf);
  2211      int  dst = $dst$$reg;
  2212      int  base = $mem$$base;
  2213      int  index = $mem$$index;
  2214      int  scale = $mem$$scale;
  2215      int  disp = $mem$$disp;
  2217      if( index != 0 ) {
  2218 		 if ( UseLoongsonISA ) {
  2219 			if ( Assembler::is_simm(disp, 8) ) {
  2220 				if (scale == 0) {
  2221 					__ gslhx(as_Register(dst), as_Register(base), as_Register(index), disp);
  2222 				} else {
  2223 					__ dsll(AT, as_Register(index), scale);
  2224 					__ gslhx(as_Register(dst), as_Register(base), AT, disp);
  2226 			} else if ( Assembler::is_simm16(disp) ) {
  2227 				if (scale == 0) {
  2228 					__ daddu(AT, as_Register(base), as_Register(index));
  2229 					__ lh(as_Register(dst), AT, disp);
  2230 				} else {
  2231 					__ dsll(AT, as_Register(index), scale);
  2232 					__ daddu(AT, as_Register(base), AT);
  2233 					__ lh(as_Register(dst), AT, disp);
  2235 			} else {
  2236 				if (scale == 0) {
  2237 					__ move(AT, disp);
  2238 					__ daddu(AT, as_Register(index), AT);
  2239 					__ gslhx(as_Register(dst), as_Register(base), AT, 0);
  2240 				} else {
  2241 					__ dsll(AT, as_Register(index), scale);
  2242 					__ move(T9, disp);
  2243 					__ daddu(AT, AT, T9);
  2244 					__ gslhx(as_Register(dst), as_Register(base), AT, 0);
  2247 		 } else { // not use loongson isa
  2248 		    if (scale == 0) {
  2249 			   __ daddu(AT, as_Register(base), as_Register(index));
  2250 		    } else {
  2251 			   __ dsll(AT, as_Register(index), scale);
  2252 		       __ daddu(AT, as_Register(base), AT);
  2254 		    if( Assembler::is_simm16(disp) ) { 
  2255 		       __ lh(as_Register(dst), AT, disp);
  2256 	        } else {
  2257 	           __ move(T9, disp);
  2258 			   __ daddu(AT, AT, T9); 
  2259 		       __ lh(as_Register(dst), AT, 0);
  2262      } else { // index is 0
  2263 		 if ( UseLoongsonISA ) {
  2264 			if ( Assembler::is_simm16(disp) ) {
  2265 				__ lh(as_Register(dst), as_Register(base), disp);
  2266 			} else {
  2267 				__ move(T9, disp);
  2268 				__ gslhx(as_Register(dst), as_Register(base), T9, 0);
  2270 		 } else { //not use loongson isa
  2271 		    if( Assembler::is_simm16(disp) ) { 
  2272 			   __ lh(as_Register(dst), as_Register(base), disp);
  2273 		    } else {
  2274 	           __ move(T9, disp);   
  2275 			   __ daddu(AT, as_Register(base), T9); 
  2276 		       __ lh(as_Register(dst), AT, 0);
  2280   %}
  2282   // Load Char (16bit unsigned)
  2283   enc_class load_C_enc (mRegI dst, memory mem) %{
  2284      MacroAssembler _masm(&cbuf);
  2285      int  dst = $dst$$reg;
  2286      int  base = $mem$$base;
  2287      int  index = $mem$$index;
  2288      int  scale = $mem$$scale;
  2289      int  disp = $mem$$disp;
  2291      if( index != 0 ) {
  2292         if (scale == 0) {
  2293            __ daddu(AT, as_Register(base), as_Register(index));
  2294         } else {
  2295            __ dsll(AT, as_Register(index), scale);
  2296            __ daddu(AT, as_Register(base), AT);
  2298         if( Assembler::is_simm16(disp) ) { 
  2299            __ lhu(as_Register(dst), AT, disp);
  2300         } else {
  2301            __ move(T9, disp);
  2302            __ addu(AT, AT, T9); 
  2303            __ lhu(as_Register(dst), AT, 0);
  2305      } else {
  2306         if( Assembler::is_simm16(disp) ) { 
  2307            __ lhu(as_Register(dst), as_Register(base), disp);
  2308         } else {
  2309            __ move(T9, disp);   
  2310            __ daddu(AT, as_Register(base), T9); 
  2311            __ lhu(as_Register(dst), AT, 0);
  2314   %}
  2316   // Store Char (16bit unsigned)
  2317   enc_class store_C_reg_enc (memory mem, mRegI src) %{
  2318      MacroAssembler _masm(&cbuf);
  2319      int  src = $src$$reg;
  2320      int  base = $mem$$base;
  2321      int  index = $mem$$index;
  2322      int  scale = $mem$$scale;
  2323      int  disp = $mem$$disp;
  2325      if( index != 0 ) {
  2326         if( Assembler::is_simm16(disp) ) { 
  2327            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2328               if (scale == 0) {
  2329                  __ gsshx(as_Register(src), as_Register(base), as_Register(index), disp);
  2330               } else {
  2331                  __ dsll(AT, as_Register(index), scale);
  2332                  __ gsshx(as_Register(src), as_Register(base), AT, disp);
  2334            } else {
  2335               if (scale == 0) {
  2336                  __ addu(AT, as_Register(base), as_Register(index));
  2337               } else {
  2338                  __ dsll(AT, as_Register(index), scale);
  2339                  __ addu(AT, as_Register(base), AT);
  2341               __ sh(as_Register(src), AT, disp);
  2343         } else {
  2344            if (scale == 0) {
  2345               __ addu(AT, as_Register(base), as_Register(index));
  2346            } else {
  2347               __ dsll(AT, as_Register(index), scale);
  2348               __ addu(AT, as_Register(base), AT);
  2350            __ move(T9, disp);
  2351            if( UseLoongsonISA ) {
  2352               __ gsshx(as_Register(src), AT, T9, 0);
  2353            } else {
  2354               __ addu(AT, AT, T9); 
  2355               __ sh(as_Register(src), AT, 0);
  2358      } else {
  2359         if( Assembler::is_simm16(disp) ) { 
  2360            __ sh(as_Register(src), as_Register(base), disp);
  2361         } else {
  2362            __ move(T9, disp);   
  2363            if( UseLoongsonISA ) {
  2364               __ gsshx(as_Register(src), as_Register(base), T9, 0);
  2365            } else {
  2366               __ addu(AT, as_Register(base), T9); 
  2367               __ sh(as_Register(src), AT, 0);
  2371   %}
  2373   enc_class store_C0_enc (memory mem) %{
  2374      MacroAssembler _masm(&cbuf);
  2375      int  base = $mem$$base;
  2376      int  index = $mem$$index;
  2377      int  scale = $mem$$scale;
  2378      int  disp = $mem$$disp;
  2380      if( index != 0 ) {
  2381         if( Assembler::is_simm16(disp) ) { 
  2382            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2383               if (scale == 0) {
  2384                  __ gsshx(R0, as_Register(base), as_Register(index), disp);
  2385               } else {
  2386                  __ dsll(AT, as_Register(index), scale);
  2387                  __ gsshx(R0, as_Register(base), AT, disp);
  2389            } else {
  2390               if (scale == 0) {
  2391                  __ addu(AT, as_Register(base), as_Register(index));
  2392               } else {
  2393                  __ dsll(AT, as_Register(index), scale);
  2394                  __ addu(AT, as_Register(base), AT);
  2396               __ sh(R0, AT, disp);
  2398         } else {
  2399            if (scale == 0) {
  2400               __ addu(AT, as_Register(base), as_Register(index));
  2401            } else {
  2402               __ dsll(AT, as_Register(index), scale);
  2403               __ addu(AT, as_Register(base), AT);
  2405            __ move(T9, disp);
  2406            if( UseLoongsonISA ) {
  2407               __ gsshx(R0, AT, T9, 0);
  2408            } else {
  2409               __ addu(AT, AT, T9); 
  2410               __ sh(R0, AT, 0);
  2413      } else {
  2414         if( Assembler::is_simm16(disp) ) { 
  2415            __ sh(R0, as_Register(base), disp);
  2416         } else {
  2417            __ move(T9, disp);   
  2418            if( UseLoongsonISA ) {
  2419               __ gsshx(R0, as_Register(base), T9, 0);
  2420            } else {
  2421               __ addu(AT, as_Register(base), T9); 
  2422               __ sh(R0, AT, 0);
  2426   %}
  2428   enc_class load_I_enc (mRegI dst, memory mem) %{
  2429      MacroAssembler _masm(&cbuf);
  2430      int  dst = $dst$$reg;
  2431      int  base = $mem$$base;
  2432      int  index = $mem$$index;
  2433      int  scale = $mem$$scale;
  2434      int  disp = $mem$$disp;
  2436      if( index != 0 ) {
  2437         if( Assembler::is_simm16(disp) ) { 
  2438            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2439               if (scale == 0) {
  2440                  __ gslwx(as_Register(dst), as_Register(base), as_Register(index), disp);
  2441               } else {
  2442                  __ dsll(AT, as_Register(index), scale);
  2443                  __ gslwx(as_Register(dst), as_Register(base), AT, disp);
  2445            } else {
  2446               if (scale == 0) {
  2447                  __ addu(AT, as_Register(base), as_Register(index));
  2448               } else {
  2449                  __ dsll(AT, as_Register(index), scale);
  2450                  __ addu(AT, as_Register(base), AT);
  2452               __ lw(as_Register(dst), AT, disp);
  2454         } else {
  2455            if (scale == 0) {
  2456               __ addu(AT, as_Register(base), as_Register(index));
  2457            } else {
  2458               __ dsll(AT, as_Register(index), scale);
  2459               __ addu(AT, as_Register(base), AT);
  2461            __ move(T9, disp);
  2462            if( UseLoongsonISA ) {
  2463               __ gslwx(as_Register(dst), AT, T9, 0);
  2464            } else {
  2465               __ addu(AT, AT, T9); 
  2466               __ lw(as_Register(dst), AT, 0);
  2469      } else {
  2470         if( Assembler::is_simm16(disp) ) { 
  2471            __ lw(as_Register(dst), as_Register(base), disp);
  2472         } else {
  2473            __ move(T9, disp);   
  2474            if( UseLoongsonISA ) {
  2475               __ gslwx(as_Register(dst), as_Register(base), T9, 0);
  2476            } else {
  2477               __ addu(AT, as_Register(base), T9); 
  2478               __ lw(as_Register(dst), AT, 0);
  2482   %}
  2484   enc_class store_I_reg_enc (memory mem, mRegI src) %{
  2485      MacroAssembler _masm(&cbuf);
  2486      int  src = $src$$reg;
  2487      int  base = $mem$$base;
  2488      int  index = $mem$$index;
  2489      int  scale = $mem$$scale;
  2490      int  disp = $mem$$disp;
  2492      if( index != 0 ) {
  2493         if( Assembler::is_simm16(disp) ) { 
  2494            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2495               if (scale == 0) {
  2496                  __ gsswx(as_Register(src), as_Register(base), as_Register(index), disp);
  2497               } else {
  2498                  __ dsll(AT, as_Register(index), scale);
  2499                  __ gsswx(as_Register(src), as_Register(base), AT, disp);
  2501            } else {
  2502               if (scale == 0) {
  2503                  __ addu(AT, as_Register(base), as_Register(index));
  2504               } else {
  2505                  __ dsll(AT, as_Register(index), scale);
  2506                  __ addu(AT, as_Register(base), AT);
  2508               __ sw(as_Register(src), AT, disp);
  2510         } else {
  2511            if (scale == 0) {
  2512               __ addu(AT, as_Register(base), as_Register(index));
  2513            } else {
  2514               __ dsll(AT, as_Register(index), scale);
  2515               __ addu(AT, as_Register(base), AT);
  2517            __ move(T9, disp);
  2518            if( UseLoongsonISA ) {
  2519               __ gsswx(as_Register(src), AT, T9, 0);
  2520            } else {
  2521               __ addu(AT, AT, T9); 
  2522               __ sw(as_Register(src), AT, 0);
  2525      } else {
  2526         if( Assembler::is_simm16(disp) ) { 
  2527            __ sw(as_Register(src), as_Register(base), disp);
  2528         } else {
  2529            __ move(T9, disp);   
  2530            if( UseLoongsonISA ) {
  2531               __ gsswx(as_Register(src), as_Register(base), T9, 0);
  2532            } else {
  2533               __ addu(AT, as_Register(base), T9); 
  2534               __ sw(as_Register(src), AT, 0);
  2538   %}
  2540   enc_class store_I_immI_enc (memory mem, immI src) %{
  2541      MacroAssembler _masm(&cbuf);
  2542      int  base = $mem$$base;
  2543      int  index = $mem$$index;
  2544      int  scale = $mem$$scale;
  2545      int  disp = $mem$$disp;
  2546      int value = $src$$constant;
  2548      if( index != 0 ) {
  2549         if ( UseLoongsonISA ) {
  2550            if ( Assembler::is_simm(disp, 8) ) {
  2551               if ( scale == 0 ) {
  2552                  if ( value == 0 ) {
  2553                     __ gsswx(R0, as_Register(base), as_Register(index), disp);
  2554                  } else {
  2555                     __ move(T9, value);
  2556                     __ gsswx(T9, as_Register(base), as_Register(index), disp);
  2558               } else {
  2559                  __ dsll(AT, as_Register(index), scale);
  2560                  if ( value == 0 ) {
  2561                     __ gsswx(R0, as_Register(base), AT, disp);
  2562                  } else {
  2563                     __ move(T9, value);
  2564                     __ gsswx(T9, as_Register(base), AT, disp);
  2567            } else if ( Assembler::is_simm16(disp) ) {
  2568                 if ( scale == 0 ) {
  2569                    __ daddu(AT, as_Register(base), as_Register(index));
  2570                    if ( value == 0 ) {
  2571                       __ sw(R0, AT, disp);
  2572                    } else {
  2573                       __ move(T9, value);
  2574 					  __ sw(T9, AT, disp);
  2576                 } else {
  2577 				   __ dsll(AT, as_Register(index), scale);
  2578                    __ daddu(AT, as_Register(base), AT);
  2579                    if ( value == 0 ) {
  2580                       __ sw(R0, AT, disp);
  2581                    } else {
  2582                       __ move(T9, value);
  2583                       __ sw(T9, AT, disp);
  2586 			} else {
  2587                  if ( scale == 0 ) {
  2588                     __ move(T9, disp);
  2589                     __ daddu(AT, as_Register(index), T9);
  2590                     if ( value ==0 ) {
  2591                        __ gsswx(R0, as_Register(base), AT, 0);
  2592                     } else {
  2593                        __ move(T9, value);
  2594                        __ gsswx(T9, as_Register(base), AT, 0);
  2596                  } else {
  2597                       __ dsll(AT, as_Register(index), scale);
  2598 					  __ move(T9, disp);
  2599 					  __ daddu(AT, AT, T9);
  2600                       if ( value == 0 ) {
  2601                          __ gsswx(R0, as_Register(base), AT, 0);
  2602 					  } else {
  2603 						 __ move(T9, value);
  2604 						 __ gsswx(T9, as_Register(base), AT, 0);
  2608 		} else { //not use loongson isa
  2609              if (scale == 0) {
  2610                 __ daddu(AT, as_Register(base), as_Register(index));
  2611              } else {
  2612                 __ dsll(AT, as_Register(index), scale);
  2613 			    __ daddu(AT, as_Register(base), AT);
  2615 	         if( Assembler::is_simm16(disp) ) { 
  2616                 if (value == 0) {
  2617                    __ sw(R0, AT, disp);
  2618                 } else {
  2619 		           __ move(T9, value);
  2620 			       __ sw(T9, AT, disp);
  2622 		     } else {
  2623                 if (value == 0) {
  2624 				   __ move(T9, disp);
  2625 			       __ daddu(AT, AT, T9); 
  2626 			       __ sw(R0, AT, 0);
  2627 			    } else {
  2628 			       __ move(T9, disp);
  2629 			       __ daddu(AT, AT, T9); 
  2630 			       __ move(T9, value);
  2631 			       __ sw(T9, AT, 0);
  2635      } else {
  2636 		 if ( UseLoongsonISA ) {
  2637 			if ( Assembler::is_simm16(disp) ) {
  2638 				if ( value == 0 ) {
  2639 					__ sw(R0, as_Register(base), disp);
  2640 				} else {
  2641 					__ move(AT, value);
  2642 					__ sw(AT, as_Register(base), disp);
  2644 			} else {
  2645 				__ move(T9, disp);
  2646 				if ( value == 0 ) {
  2647 					__ gsswx(R0, as_Register(base), T9, 0);
  2648 				} else {
  2649 					__ move(AT, value);
  2650 					__ gsswx(AT, as_Register(base), T9, 0);
  2653 		 } else {
  2654 		    if( Assembler::is_simm16(disp) ) { 
  2655 			   if (value == 0) {
  2656 		          __ sw(R0, as_Register(base), disp);
  2657 	           } else {
  2658 	              __ move(AT, value);
  2659 				  __ sw(AT, as_Register(base), disp);
  2661 		    } else {
  2662 	           if (value == 0) {
  2663 	              __ move(T9, disp);   
  2664 				  __ daddu(AT, as_Register(base), T9); 
  2665 			      __ sw(R0, AT, 0);
  2666 		      } else {
  2667 			      __ move(T9, disp);   
  2668 		          __ daddu(AT, as_Register(base), T9); 
  2669 				  __ move(T9, value);
  2670 			      __ sw(T9, AT, 0);
  2675   %}
  2677   enc_class load_N_enc (mRegN dst, memory mem) %{
  2678      MacroAssembler _masm(&cbuf);
  2679      int  dst = $dst$$reg;
  2680      int  base = $mem$$base;
  2681      int  index = $mem$$index;
  2682      int  scale = $mem$$scale;
  2683      int  disp = $mem$$disp;
  2684 	 relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2685 	 assert(disp_reloc == relocInfo::none, "cannot have disp");
  2687      if( index != 0 ) {
  2688         if (scale == 0) {
  2689            __ daddu(AT, as_Register(base), as_Register(index));
  2690         } else {
  2691            __ dsll(AT, as_Register(index), scale);
  2692            __ daddu(AT, as_Register(base), AT);
  2694         if( Assembler::is_simm16(disp) ) { 
  2695            __ lwu(as_Register(dst), AT, disp);
  2696         } else {
  2697            __ set64(T9, disp);
  2698            __ daddu(AT, AT, T9);
  2699            __ lwu(as_Register(dst), AT, 0);
  2701      } else {
  2702         if( Assembler::is_simm16(disp) ) { 
  2703            __ lwu(as_Register(dst), as_Register(base), disp);
  2704         } else {
  2705            __ set64(T9, disp);   
  2706            __ daddu(AT, as_Register(base), T9);
  2707            __ lwu(as_Register(dst), AT, 0);
  2711   %}
  2714   enc_class load_P_enc (mRegP dst, memory mem) %{
  2715      MacroAssembler _masm(&cbuf);
  2716      int  dst = $dst$$reg;
  2717      int  base = $mem$$base;
  2718      int  index = $mem$$index;
  2719      int  scale = $mem$$scale;
  2720      int  disp = $mem$$disp;
  2721 	 relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2722 	 assert(disp_reloc == relocInfo::none, "cannot have disp");
  2724      if( index != 0 ) {
  2725         if ( UseLoongsonISA ) {
  2726            if ( Assembler::is_simm(disp, 8) ) {
  2727               if ( scale != 0 ) {
  2728                  __ dsll(AT, as_Register(index), scale);
  2729                  __ gsldx(as_Register(dst), as_Register(base), AT, disp);
  2730               } else {
  2731                  __ gsldx(as_Register(dst), as_Register(base), as_Register(index), disp);
  2733            } else if ( Assembler::is_simm16(disp) ){
  2734               if ( scale != 0 ) {
  2735                  __ dsll(AT, as_Register(index), scale);
  2736                  __ daddu(AT, AT, as_Register(base));
  2737               } else {
  2738                  __ daddu(AT, as_Register(index), as_Register(base));
  2740               __ ld(as_Register(dst), AT, disp);
  2741            } else {
  2742                 if ( scale != 0 ) {
  2743                    __ dsll(AT, as_Register(index), scale);
  2744                    __ move(T9, disp);
  2745                    __ daddu(AT, AT, T9);
  2746                 } else {
  2747                    __ move(T9, disp);
  2748                    __ daddu(AT, as_Register(index), T9);
  2750                 __ gsldx(as_Register(dst), as_Register(base), AT, 0);
  2752 	    } else { //not use loongson isa
  2753              if (scale == 0) {
  2754                 __ daddu(AT, as_Register(base), as_Register(index));
  2755              } else {
  2756                 __ dsll(AT, as_Register(index), scale);
  2757                 __ daddu(AT, as_Register(base), AT);
  2759              if( Assembler::is_simm16(disp) ) { 
  2760                 __ ld(as_Register(dst), AT, disp);
  2761              } else {
  2762                 __ set64(T9, disp);
  2763                 __ daddu(AT, AT, T9);
  2764                 __ ld(as_Register(dst), AT, 0);
  2767      } else {
  2768 	      if ( UseLoongsonISA ) {
  2769 	         if ( Assembler::is_simm16(disp) ){
  2770 	            __ ld(as_Register(dst), as_Register(base), disp);
  2771 	         } else {
  2772 	            __ set64(T9, disp);
  2773  	            __ gsldx(as_Register(dst), as_Register(base), T9, 0);
  2775 	      } else { //not use loongson isa
  2776 	         if( Assembler::is_simm16(disp) ) { 
  2777                 __ ld(as_Register(dst), as_Register(base), disp);
  2778              } else {
  2779                 __ set64(T9, disp);   
  2780                 __ daddu(AT, as_Register(base), T9);
  2781                 __ ld(as_Register(dst), AT, 0);
  2785 //     if( disp_reloc != relocInfo::none) __ ld(as_Register(dst), as_Register(dst), 0);
  2786   %}
  2788   enc_class store_P_reg_enc (memory mem, mRegP src) %{
  2789      MacroAssembler _masm(&cbuf);
  2790      int  src = $src$$reg;
  2791      int  base = $mem$$base;
  2792      int  index = $mem$$index;
  2793      int  scale = $mem$$scale;
  2794      int  disp = $mem$$disp;
  2796      if( index != 0 ) {
  2797 	    if ( UseLoongsonISA ){
  2798 	       if ( Assembler::is_simm(disp, 8) ) {
  2799 	          if ( scale == 0 ) {
  2800 		         __ gssdx(as_Register(src), as_Register(base), as_Register(index), disp);
  2801 	          } else {
  2802 		         __ dsll(AT, as_Register(index), scale);
  2803         	     __ gssdx(as_Register(src), as_Register(base), AT, disp);
  2805 	       } else if ( Assembler::is_simm16(disp) ) {
  2806 	          if ( scale == 0 ) {
  2807 		         __ daddu(AT, as_Register(base), as_Register(index));
  2808 	          } else {
  2809                  __ dsll(AT, as_Register(index), scale);
  2810                  __ daddu(AT, as_Register(base), AT);
  2812               __ sd(as_Register(src), AT, disp);
  2813 	       } else {
  2814 	          if ( scale == 0 ) { 
  2815                  __ move(T9, disp);
  2816                  __ daddu(AT, as_Register(index), T9);
  2817               } else {
  2818                  __ dsll(AT, as_Register(index), scale);
  2819                  __ move(T9, disp);
  2820                  __ daddu(AT, AT, T9);
  2822               __ gssdx(as_Register(src), as_Register(base), AT, 0); 
  2824 	    } else { //not use loongson isa
  2825            if (scale == 0) {
  2826               __ daddu(AT, as_Register(base), as_Register(index));
  2827            } else {
  2828               __ dsll(AT, as_Register(index), scale);
  2829               __ daddu(AT, as_Register(base), AT);
  2831            if( Assembler::is_simm16(disp) ) { 
  2832               __ sd(as_Register(src), AT, disp);
  2833            } else {
  2834               __ move(T9, disp);
  2835               __ daddu(AT, AT, T9); 
  2836               __ sd(as_Register(src), AT, 0);
  2839      } else {
  2840           if ( UseLoongsonISA ) {
  2841              if ( Assembler::is_simm16(disp) ) {
  2842 	            __ sd(as_Register(src), as_Register(base), disp);
  2843 	         } else {
  2844 	            __ move(T9, disp);
  2845                 __ gssdx(as_Register(src), as_Register(base), T9, 0);
  2847 	      } else {
  2848              if( Assembler::is_simm16(disp) ) { 
  2849                  __ sd(as_Register(src), as_Register(base), disp);
  2850              } else {
  2851                  __ move(T9, disp);   
  2852                  __ daddu(AT, as_Register(base), T9); 
  2853                  __ sd(as_Register(src), AT, 0);
  2857   %}
  2859   enc_class store_N_reg_enc (memory mem, mRegN src) %{
  2860      MacroAssembler _masm(&cbuf);
  2861      int  src = $src$$reg;
  2862      int  base = $mem$$base;
  2863      int  index = $mem$$index;
  2864      int  scale = $mem$$scale;
  2865      int  disp = $mem$$disp;
  2867      if( index != 0 ) {
  2868         if ( UseLoongsonISA ){
  2869 	       if ( Assembler::is_simm(disp, 8) ) {
  2870               if ( scale == 0 ) {
  2871 	             __ gsswx(as_Register(src), as_Register(base), as_Register(index), disp);
  2872 	          } else {
  2873                  __ dsll(AT, as_Register(index), scale);
  2874                  __ gsswx(as_Register(src), as_Register(base), AT, disp);
  2876 	       } else if ( Assembler::is_simm16(disp) ) {
  2877               if ( scale == 0 ) {
  2878                  __ daddu(AT, as_Register(base), as_Register(index));
  2879 	          } else {
  2880 		         __ dsll(AT, as_Register(index), scale);
  2881 		         __ daddu(AT, as_Register(base), AT);
  2883  	          __ sw(as_Register(src), AT, disp);
  2884 	       } else {
  2885 	          if ( scale == 0 ) {
  2886 	             __ move(T9, disp);
  2887                  __ daddu(AT, as_Register(index), T9);
  2888 	          } else {
  2889                  __ dsll(AT, as_Register(index), scale);
  2890 	 	         __ move(T9, disp);
  2891                  __ daddu(AT, AT, T9);
  2893 	          __ gsswx(as_Register(src), as_Register(base), AT, 0);
  2895 	    } else { //not use loongson isa
  2896 	       if (scale == 0) {
  2897               __ daddu(AT, as_Register(base), as_Register(index));
  2898            } else {
  2899               __ dsll(AT, as_Register(index), scale);
  2900               __ daddu(AT, as_Register(base), AT);
  2902            if( Assembler::is_simm16(disp) ) { 
  2903               __ sw(as_Register(src), AT, disp);
  2904            } else {
  2905               __ move(T9, disp);
  2906               __ daddu(AT, AT, T9);
  2907               __ sw(as_Register(src), AT, 0);
  2910      } else {
  2911         if ( UseLoongsonISA ) {
  2912            if ( Assembler::is_simm16(disp) ) {
  2913 	          __ sw(as_Register(src), as_Register(base), disp);
  2914 	       } else {
  2915 	          __ move(T9, disp);
  2916 	          __ gsswx(as_Register(src), as_Register(base), T9, 0);
  2918  	    } else {
  2919            if( Assembler::is_simm16(disp) ) { 
  2920               __ sw(as_Register(src), as_Register(base), disp);
  2921            } else {
  2922               __ move(T9, disp);   
  2923               __ daddu(AT, as_Register(base), T9); 
  2924               __ sw(as_Register(src), AT, 0);
  2928   %}
  2930   enc_class store_P_immP0_enc (memory mem) %{
  2931      MacroAssembler _masm(&cbuf);
  2932      int  base = $mem$$base;
  2933      int  index = $mem$$index;
  2934      int  scale = $mem$$scale;
  2935      int  disp = $mem$$disp;
  2937      if( index != 0 ) {
  2938         if (scale == 0) {
  2939            if( Assembler::is_simm16(disp) ) { 
  2940               if (UseLoongsonISA && Assembler::is_simm(disp, 8)) {
  2941                 __ gssdx(R0, as_Register(base), as_Register(index), disp);
  2942               } else {
  2943                 __ daddu(AT, as_Register(base), as_Register(index));
  2944                 __ sd(R0, AT, disp);
  2946            } else {
  2947               __ daddu(AT, as_Register(base), as_Register(index));
  2948               __ move(T9, disp);
  2949               if(UseLoongsonISA) {
  2950                 __ gssdx(R0, AT, T9, 0);
  2951               } else {
  2952                 __ daddu(AT, AT, T9); 
  2953                 __ sd(R0, AT, 0);
  2956         } else {
  2957            __ dsll(AT, as_Register(index), scale);
  2958            if( Assembler::is_simm16(disp) ) { 
  2959               if (UseLoongsonISA && Assembler::is_simm(disp, 8)) {
  2960                 __ gssdx(R0, as_Register(base), AT, disp);
  2961               } else {
  2962                 __ daddu(AT, as_Register(base), AT);
  2963                 __ sd(R0, AT, disp);
  2965            } else {
  2966               __ daddu(AT, as_Register(base), AT);
  2967               __ move(T9, disp);
  2968               if (UseLoongsonISA) {
  2969                 __ gssdx(R0, AT, T9, 0);
  2970               } else {
  2971                 __ daddu(AT, AT, T9); 
  2972                 __ sd(R0, AT, 0);
  2976      } else {
  2977         if( Assembler::is_simm16(disp) ) { 
  2978            __ sd(R0, as_Register(base), disp);
  2979         } else {
  2980            __ move(T9, disp);   
  2981            if (UseLoongsonISA) {
  2982              __ gssdx(R0, as_Register(base), T9, 0);
  2983            } else {
  2984              __ daddu(AT, as_Register(base), T9); 
  2985              __ sd(R0, AT, 0);
  2989   %}
  2992   enc_class storeImmN0_enc(memory mem, ImmN0 src) %{
  2993      MacroAssembler _masm(&cbuf);
  2994      int  base = $mem$$base;
  2995      int  index = $mem$$index;
  2996      int  scale = $mem$$scale;
  2997      int  disp = $mem$$disp;
  2999 	 if(index!=0){
  3000                  if (scale == 0) {
  3001                     __ daddu(AT, as_Register(base), as_Register(index));
  3002                  } else {
  3003                     __ dsll(AT, as_Register(index), scale);
  3004                     __ daddu(AT, as_Register(base), AT);
  3007 		 if( Assembler::is_simm16(disp) ) { 
  3008 			 __ sw(R0, AT, disp);
  3009 		 } else {
  3010 			 __ move(T9, disp);
  3011 			 __ daddu(AT, AT, T9); 
  3012 			 __ sw(R0, AT, 0);
  3015      else {
  3016 		 if( Assembler::is_simm16(disp) ) { 
  3017 			 __ sw(R0, as_Register(base), disp);
  3018 		 } else {
  3019 			 __ move(T9, disp);
  3020 			 __ daddu(AT, as_Register(base), T9); 
  3021 			 __ sw(R0, AT, 0);
  3024   %} 
  3026   enc_class load_L_enc (mRegL dst, memory mem) %{
  3027      MacroAssembler _masm(&cbuf);
  3028      int  base = $mem$$base;
  3029      int  index = $mem$$index;
  3030      int  scale = $mem$$scale;
  3031      int  disp = $mem$$disp;
  3032      Register  dst_reg = as_Register($dst$$reg);
  3034      /*********************2013/03/27**************************
  3035       * Jin: $base may contain a null object.
  3036       * Server JIT force the exception_offset to be the pos of 
  3037       * the first instruction.
  3038       * I insert such a 'null_check' at the beginning.
  3039       *******************************************************/
  3041      __ lw(AT, as_Register(base), 0);
  3043      /*********************2012/10/04**************************
  3044       * Error case found in SortTest
  3045       * 337   b   java.util.Arrays::sort1 (401 bytes)
  3046       * B73:
  3047       *       d34     lw    T4.lo, [T4 + #16]   #@loadL-lo
  3048       *               lw    T4.hi, [T4 + #16]+4 #@loadL-hi
  3050       * The original instructions generated here are :
  3051       *       __ lw(dst_lo, as_Register(base), disp);
  3052       *       __ lw(dst_hi, as_Register(base), disp + 4);
  3053       *******************************************************/
  3055      if( index != 0 ) {
  3056         if (scale == 0) {
  3057            __ daddu(AT, as_Register(base), as_Register(index));
  3058         } else {
  3059            __ dsll(AT, as_Register(index), scale);
  3060            __ daddu(AT, as_Register(base), AT);
  3062         if( Assembler::is_simm16(disp) ) { 
  3063            __ ld(dst_reg, AT, disp);
  3064         } else {
  3065            __ move(T9, disp);
  3066            __ daddu(AT, AT, T9); 
  3067            __ ld(dst_reg, AT, 0);
  3069      } else {
  3070         if( Assembler::is_simm16(disp) ) { 
  3071            __ move(AT, as_Register(base));
  3072            __ ld(dst_reg, AT, disp);
  3073         } else {
  3074            __ move(T9, disp);   
  3075            __ daddu(AT, as_Register(base), T9); 
  3076            __ ld(dst_reg, AT, 0);
  3079   %}
  3081   enc_class store_L_reg_enc (memory mem, mRegL src) %{
  3082      MacroAssembler _masm(&cbuf);
  3083      int  base = $mem$$base;
  3084      int  index = $mem$$index;
  3085      int  scale = $mem$$scale;
  3086      int  disp = $mem$$disp;
  3087      Register  src_reg = as_Register($src$$reg);
  3089      if( index != 0 ) {
  3090         if (scale == 0) {
  3091            __ daddu(AT, as_Register(base), as_Register(index));
  3092         } else {
  3093            __ dsll(AT, as_Register(index), scale);
  3094            __ daddu(AT, as_Register(base), AT);
  3096         if( Assembler::is_simm16(disp) ) { 
  3097            __ sd(src_reg, AT, disp);
  3098         } else {
  3099            __ move(T9, disp);
  3100            __ daddu(AT, AT, T9); 
  3101            __ sd(src_reg, AT, 0);
  3103      } else {
  3104         if( Assembler::is_simm16(disp) ) { 
  3105            __ move(AT, as_Register(base));
  3106            __ sd(src_reg, AT, disp);
  3107         } else {
  3108            __ move(T9, disp);   
  3109            __ daddu(AT, as_Register(base), T9); 
  3110            __ sd(src_reg, AT, 0);
  3113   %}
  3115   enc_class store_L_immL0_enc (memory mem, immL0 src) %{
  3116      MacroAssembler _masm(&cbuf);
  3117      int  base = $mem$$base;
  3118      int  index = $mem$$index;
  3119      int  scale = $mem$$scale;
  3120      int  disp = $mem$$disp;
  3122      if( index != 0 ) {
  3123         if (scale == 0) {
  3124            __ daddu(AT, as_Register(base), as_Register(index));
  3125         } else {
  3126            __ dsll(AT, as_Register(index), scale);
  3127            __ daddu(AT, as_Register(base), AT);
  3129         if( Assembler::is_simm16(disp) ) { 
  3130            __ sd(R0, AT, disp);
  3131         } else {
  3132            __ move(T9, disp);
  3133            __ addu(AT, AT, T9); 
  3134            __ sd(R0, AT, 0);
  3136      } else {
  3137         if( Assembler::is_simm16(disp) ) { 
  3138            __ move(AT, as_Register(base));
  3139            __ sd(R0, AT, disp);
  3140         } else {
  3141            __ move(T9, disp);   
  3142            __ addu(AT, as_Register(base), T9); 
  3143            __ sd(R0, AT, 0);
  3146   %}
  3148   enc_class load_F_enc (regF dst, memory mem) %{
  3149      MacroAssembler _masm(&cbuf);
  3150      int  base = $mem$$base;
  3151      int  index = $mem$$index;
  3152      int  scale = $mem$$scale;
  3153      int  disp = $mem$$disp;
  3154      FloatRegister dst = $dst$$FloatRegister;
  3156      if( index != 0 ) {
  3157         if( Assembler::is_simm16(disp) ) { 
  3158            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3159               if (scale == 0) {
  3160                  __ gslwxc1(dst, as_Register(base), as_Register(index), disp);
  3161               } else {
  3162                  __ dsll(AT, as_Register(index), scale);
  3163                  __ gslwxc1(dst, as_Register(base), AT, disp);
  3165            } else {
  3166               if (scale == 0) {
  3167                  __ daddu(AT, as_Register(base), as_Register(index));
  3168               } else {
  3169                  __ dsll(AT, as_Register(index), scale);
  3170                  __ daddu(AT, as_Register(base), AT);
  3172               __ lwc1(dst, AT, disp);
  3174         } else {
  3175            if (scale == 0) {
  3176               __ daddu(AT, as_Register(base), as_Register(index));
  3177            } else {
  3178               __ dsll(AT, as_Register(index), scale);
  3179               __ daddu(AT, as_Register(base), AT);
  3181            __ move(T9, disp);
  3182            if( UseLoongsonISA ) {
  3183               __ gslwxc1(dst, AT, T9, 0);
  3184            } else {
  3185               __ daddu(AT, AT, T9); 
  3186               __ lwc1(dst, AT, 0);
  3189      } else {
  3190         if( Assembler::is_simm16(disp) ) { 
  3191            __ lwc1(dst, as_Register(base), disp);
  3192         } else {
  3193            __ move(T9, disp);   
  3194            if( UseLoongsonISA ) {
  3195               __ gslwxc1(dst, as_Register(base), T9, 0);
  3196            } else {
  3197               __ daddu(AT, as_Register(base), T9); 
  3198               __ lwc1(dst, AT, 0);
  3202   %}
  3204   enc_class store_F_reg_enc (memory mem, regF src) %{
  3205      MacroAssembler _masm(&cbuf);
  3206      int  base = $mem$$base;
  3207      int  index = $mem$$index;
  3208      int  scale = $mem$$scale;
  3209      int  disp = $mem$$disp;
  3210      FloatRegister src = $src$$FloatRegister;
  3212      if( index != 0 ) {
  3213         if( Assembler::is_simm16(disp) ) { 
  3214            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3215               if (scale == 0) {
  3216                  __ gsswxc1(src, as_Register(base), as_Register(index), disp);
  3217               } else {
  3218                  __ dsll(AT, as_Register(index), scale);
  3219                  __ gsswxc1(src, as_Register(base), AT, disp);
  3221            } else {
  3222               if (scale == 0) {
  3223                  __ daddu(AT, as_Register(base), as_Register(index));
  3224               } else {
  3225                  __ dsll(AT, as_Register(index), scale);
  3226                  __ daddu(AT, as_Register(base), AT);
  3228               __ swc1(src, AT, disp);
  3230         } else {
  3231            if (scale == 0) {
  3232               __ daddu(AT, as_Register(base), as_Register(index));
  3233            } else {
  3234               __ dsll(AT, as_Register(index), scale);
  3235               __ daddu(AT, as_Register(base), AT);
  3237            __ move(T9, disp);
  3238            if( UseLoongsonISA ) {
  3239               __ gsswxc1(src, AT, T9, 0);
  3240            } else {
  3241               __ daddu(AT, AT, T9); 
  3242               __ swc1(src, AT, 0);
  3245      } else {
  3246         if( Assembler::is_simm16(disp) ) { 
  3247            __ swc1(src, as_Register(base), disp);
  3248         } else {
  3249            __ move(T9, disp);   
  3250            if( UseLoongsonISA ) {
  3251               __ gslwxc1(src, as_Register(base), T9, 0);
  3252            } else {
  3253               __ daddu(AT, as_Register(base), T9); 
  3254               __ swc1(src, AT, 0);
  3258   %}
  3260   enc_class load_D_enc (regD dst, memory mem) %{
  3261      MacroAssembler _masm(&cbuf);
  3262      int  base = $mem$$base;
  3263      int  index = $mem$$index;
  3264      int  scale = $mem$$scale;
  3265      int  disp = $mem$$disp;
  3266      FloatRegister dst_reg = as_FloatRegister($dst$$reg);
  3268      if( index != 0 ) {
  3269         if( Assembler::is_simm16(disp) ) { 
  3270            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3271               if (scale == 0) {
  3272                  __ gsldxc1(dst_reg, as_Register(base), as_Register(index), disp);
  3273               } else {
  3274                  __ dsll(AT, as_Register(index), scale);
  3275                  __ gsldxc1(dst_reg, as_Register(base), AT, disp);
  3277            } else {
  3278               if (scale == 0) {
  3279                  __ daddu(AT, as_Register(base), as_Register(index));
  3280               } else {
  3281                  __ dsll(AT, as_Register(index), scale);
  3282                  __ daddu(AT, as_Register(base), AT);
  3284               __ ldc1(dst_reg, AT, disp);
  3286         } else {
  3287            if (scale == 0) {
  3288               __ daddu(AT, as_Register(base), as_Register(index));
  3289            } else {
  3290               __ dsll(AT, as_Register(index), scale);
  3291               __ daddu(AT, as_Register(base), AT);
  3293            __ move(T9, disp);
  3294            if( UseLoongsonISA ) {
  3295               __ gsldxc1(dst_reg, AT, T9, 0);
  3296            } else {
  3297               __ addu(AT, AT, T9); 
  3298               __ ldc1(dst_reg, AT, 0);
  3301      } else {
  3302         if( Assembler::is_simm16(disp) ) { 
  3303            __ ldc1(dst_reg, as_Register(base), disp);
  3304         } else {
  3305            __ move(T9, disp);   
  3306            if( UseLoongsonISA ) {
  3307               __ gsldxc1(dst_reg, as_Register(base), T9, 0);
  3308            } else {
  3309               __ addu(AT, as_Register(base), T9); 
  3310               __ ldc1(dst_reg, AT, 0);
  3314   %}
  3316   enc_class store_D_reg_enc (memory mem, regD src) %{
  3317      MacroAssembler _masm(&cbuf);
  3318      int  base = $mem$$base;
  3319      int  index = $mem$$index;
  3320      int  scale = $mem$$scale;
  3321      int  disp = $mem$$disp;
  3322      FloatRegister src_reg = as_FloatRegister($src$$reg);
  3324      if( index != 0 ) {
  3325         if( Assembler::is_simm16(disp) ) { 
  3326            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3327               if (scale == 0) {
  3328                  __ gssdxc1(src_reg, as_Register(base), as_Register(index), disp);
  3329               } else {
  3330                  __ dsll(AT, as_Register(index), scale);
  3331                  __ gssdxc1(src_reg, as_Register(base), AT, disp);
  3333            } else {
  3334               if (scale == 0) {
  3335                  __ daddu(AT, as_Register(base), as_Register(index));
  3336               } else {
  3337                  __ dsll(AT, as_Register(index), scale);
  3338                  __ daddu(AT, as_Register(base), AT);
  3340               __ sdc1(src_reg, AT, disp);
  3342         } else {
  3343            if (scale == 0) {
  3344               __ daddu(AT, as_Register(base), as_Register(index));
  3345            } else {
  3346               __ dsll(AT, as_Register(index), scale);
  3347               __ daddu(AT, as_Register(base), AT);
  3349            __ move(T9, disp);
  3350            if( UseLoongsonISA ) {
  3351               __ gssdxc1(src_reg, AT, T9, 0);
  3352            } else {
  3353               __ addu(AT, AT, T9); 
  3354               __ sdc1(src_reg, AT, 0);
  3357      } else {
  3358         if( Assembler::is_simm16(disp) ) { 
  3359            __ sdc1(src_reg, as_Register(base), disp);
  3360         } else {
  3361            __ move(T9, disp);   
  3362            if( UseLoongsonISA ) {
  3363               __ gssdxc1(src_reg, as_Register(base), T9, 0);
  3364            } else {
  3365               __ addu(AT, as_Register(base), T9); 
  3366               __ sdc1(src_reg, AT, 0);
  3370   %}
  3372   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  3373       MacroAssembler _masm(&cbuf);
  3374     // This is the instruction starting address for relocation info.
  3375     __ block_comment("Java_To_Runtime");
  3376     cbuf.set_insts_mark();
  3377     __ relocate(relocInfo::runtime_call_type);
  3379     __ patchable_set48(T9, (long)$meth$$method);
  3380     __ jalr(T9);
  3381     __ nop();
  3382     %}
  3384   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  3385     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  3386     // who we intended to call.
  3387     MacroAssembler _masm(&cbuf);
  3388     cbuf.set_insts_mark();
  3390     if ( !_method ) {
  3391       __ relocate(relocInfo::runtime_call_type);
  3392     } else if(_optimized_virtual) {
  3393       __ relocate(relocInfo::opt_virtual_call_type);
  3394     } else {
  3395       __ relocate(relocInfo::static_call_type);
  3398     __ general_jal((address)($meth$$method));
  3399     if( _method ) {  // Emit stub for static call
  3400       emit_java_to_interp(cbuf);
  3402   %}
  3405 /*
  3406  * [Ref: LIR_Assembler::ic_call() ]
  3407  */
  3408 enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  3409     MacroAssembler _masm(&cbuf);
  3410 	__ block_comment("Java_Dynamic_Call");
  3411 	__ ic_call((address)$meth$$method);
  3412   %}
  3415   enc_class Set_Flags_After_Fast_Lock_Unlock(FlagsReg cr) %{
  3416     Register flags = $cr$$Register;
  3417     Label  L;
  3419     MacroAssembler _masm(&cbuf);
  3421     __ addu(flags, R0, R0);    
  3422     __ beq(AT, R0, L);
  3423     __ delayed()->nop();
  3424     __ move(flags, 0xFFFFFFFF);
  3425     __ bind(L);
  3426   %}
  3428   enc_class enc_PartialSubtypeCheck(mRegP result, mRegP sub, mRegP super, mRegI tmp) %{
  3429     Register result = $result$$Register;
  3430     Register sub    = $sub$$Register;
  3431     Register super  = $super$$Register;
  3432     Register length = $tmp$$Register;
  3433     Register tmp    = T9;
  3434     Label miss;
  3436     /* 2012/9/28 Jin: result may be the same as sub
  3437      *    47c   B40: #    B21 B41 <- B20  Freq: 0.155379
  3438      *    47c     partialSubtypeCheck result=S1, sub=S1, super=S3, length=S0
  3439      *    4bc     mov   S2, NULL #@loadConP
  3440      *    4c0     beq   S1, S2, B21 #@branchConP  P=0.999999 C=-1.000000
  3441     */
  3442     MacroAssembler _masm(&cbuf);
  3443     Label done;
  3444     __ check_klass_subtype_slow_path(sub, super, length, tmp,
  3445                                      NULL, &miss,
  3446                                      /*set_cond_codes:*/ true);
  3447     /* 2013/7/22 Jin: Refer to X86_64's RDI */
  3448     __ move(result, 0);
  3449     __ b(done);
  3450     __ nop();
  3452     __ bind(miss);
  3453     __ move(result, 1);
  3454     __ bind(done);
  3455   %}
  3457 %}
  3460 //---------MIPS FRAME--------------------------------------------------------------
  3461 // Definition of frame structure and management information.
  3462 //
  3463 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3464 //                             |   (to get allocators register number
  3465 //  G  Owned by    |        |  v    add SharedInfo::stack0)
  3466 //  r   CALLER     |        |
  3467 //  o     |        +--------+      pad to even-align allocators stack-slot 
  3468 //  w     V        |  pad0  |        numbers; owned by CALLER
  3469 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3470 //  h     ^        |   in   |  5   
  3471 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3472 //  |     |    old |        |  3
  3473 //  |     |     SP-+--------+----> Matcher::_old_SP, even aligned
  3474 //  v     |        |  ret   |  3   return address
  3475 //     Owned by    +--------+
  3476 //      Self       |  pad2  |  2   pad to align old SP
  3477 //        |        +--------+  1
  3478 //        |        | locks  |  0
  3479 //        |        +--------+----> SharedInfo::stack0, even aligned  
  3480 //        |        |  pad1  | 11   pad to align new SP
  3481 //        |        +--------+
  3482 //        |        |        | 10
  3483 //        |        | spills |  9   spills
  3484 //        V        |        |  8   (pad0 slot for callee)
  3485 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3486 //        ^        |  out   |  7   
  3487 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3488 //   Owned by  new |				|
  3489 //		Callee    SP-+--------+----> Matcher::_new_SP, even aligned
  3490 //           			 |        |
  3491 //
  3492 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is 
  3493 //         known from SELF's arguments and the Java calling convention.
  3494 //         Region 6-7 is determined per call site.
  3495 // Note 2: If the calling convention leaves holes in the incoming argument 
  3496 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3497 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3498 //         incoming area, as the Java calling convention is completely under
  3499 //         the control of the AD file.  Doubles can be sorted and packed to
  3500 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3501 //         varargs C calling conventions.
  3502 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is 
  3503 //         even aligned with pad0 as needed.
  3504 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3505 //         region 6-11 is even aligned; it may be padded out more so that
  3506 //         the region from SP to FP meets the minimum stack alignment.
  3507 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
  3508 //         alignment.  Region 11, pad1, may be dynamically extended so that
  3509 //         SP meets the minimum alignment.
  3512 frame %{
  3514   stack_direction(TOWARDS_LOW);
  3516   // These two registers define part of the calling convention 
  3517   // between compiled code and the interpreter.
  3518 	// SEE StartI2CNode::calling_convention & StartC2INode::calling_convention & StartOSRNode::calling_convention 
  3519 	// for more information. by yjl 3/16/2006
  3521   inline_cache_reg(T1);                // Inline Cache Register
  3522   interpreter_method_oop_reg(S3);      // Method Oop Register when calling interpreter
  3523  /*
  3524   inline_cache_reg(T1);          // Inline Cache Register or methodOop for I2C
  3525   interpreter_arg_ptr_reg(A0);         // Argument pointer for I2C adapters
  3526 */
  3528   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3529   cisc_spilling_operand_name(indOffset32);  
  3531   // Number of stack slots consumed by locking an object
  3532 	// generate Compile::sync_stack_slots
  3533 #ifdef _LP64
  3534   sync_stack_slots(2);
  3535 #else
  3536   sync_stack_slots(1);
  3537 #endif
  3539   frame_pointer(SP);
  3541   // Interpreter stores its frame pointer in a register which is 
  3542   // stored to the stack by I2CAdaptors.
  3543   // I2CAdaptors convert from interpreted java to compiled java.
  3545   interpreter_frame_pointer(FP);
  3547 	// generate Matcher::stack_alignment
  3548   stack_alignment(StackAlignmentInBytes);  //wordSize = sizeof(char*);            
  3550   // Number of stack slots between incoming argument block and the start of 
  3551   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3552   // EPILOG must remove this many slots.  Intel needs one slot for
  3553   // return address.
  3554 	// generate Matcher::in_preserve_stack_slots
  3555   //in_preserve_stack_slots(VerifyStackAtCalls + 2);  //Now VerifyStackAtCalls is defined as false ! Leave one stack slot for ra and fp
  3556   in_preserve_stack_slots(4);  //Now VerifyStackAtCalls is defined as false ! Leave two stack slots for ra and fp
  3558   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3559   // for calls to C.  Supports the var-args backing area for register parms.
  3560   varargs_C_out_slots_killed(0);
  3562   // The after-PROLOG location of the return address.  Location of
  3563   // return address specifies a type (REG or STACK) and a number
  3564   // representing the register number (i.e. - use a register name) or
  3565   // stack slot.
  3566   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  3567   // Otherwise, it is above the locks and verification slot and alignment word
  3568   //return_addr(STACK -1+ round_to(1+VerifyStackAtCalls+Compile::current()->sync()*Compile::current()->sync_stack_slots(),WordsPerLong));
  3569   return_addr(REG RA);
  3571   // Body of function which returns an integer array locating
  3572   // arguments either in registers or in stack slots.  Passed an array
  3573   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3574   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3575   // arguments for a CALLEE.  Incoming stack arguments are
  3576   // automatically biased by the preserve_stack_slots field above.
  3579 	// will generated to Matcher::calling_convention(OptoRegPair *sig, uint length, bool is_outgoing)
  3580 	// StartNode::calling_convention call this. by yjl 3/16/2006
  3581   calling_convention %{           
  3582     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3583   %}
  3588   // Body of function which returns an integer array locating
  3589   // arguments either in registers or in stack slots.  Passed an array
  3590   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3591   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3592   // arguments for a CALLEE.  Incoming stack arguments are
  3593   // automatically biased by the preserve_stack_slots field above.
  3596 	// SEE CallRuntimeNode::calling_convention for more information. by yjl 3/16/2006
  3597   c_calling_convention %{          
  3598    (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3599   %}
  3602   // Location of C & interpreter return values
  3603 	// register(s) contain(s) return value for Op_StartI2C and Op_StartOSR. 
  3604 	// SEE Matcher::match. by yjl 3/16/2006
  3605   c_return_value %{
  3606     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3607                                /* -- , -- , Op_RegN, Op_RegI, Op_RegP, Op_RegF, Op_RegD, Op_RegL */
  3608     static int lo[Op_RegL+1] = { 0, 0, V0_num,       V0_num,       V0_num,       F0_num,       F0_num,    V0_num };
  3609     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, V0_H_num,     OptoReg::Bad, F0_H_num,  V0_H_num };
  3610     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3611   %}
  3613   // Location of return values
  3614 	// register(s) contain(s) return value for Op_StartC2I and Op_Start. 
  3615 	// SEE Matcher::match. by yjl 3/16/2006
  3617   return_value %{
  3618     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3619                                /* -- , -- , Op_RegN, Op_RegI, Op_RegP, Op_RegF, Op_RegD, Op_RegL */
  3620     static int lo[Op_RegL+1] = { 0, 0, V0_num,       V0_num,       V0_num,       F0_num,       F0_num,     V0_num };
  3621     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, V0_H_num,     OptoReg::Bad, F0_H_num,   V0_H_num};
  3622     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3623   %}
  3625 %}
  3627 //----------ATTRIBUTES---------------------------------------------------------
  3628 //----------Operand Attributes-------------------------------------------------
  3629 op_attrib op_cost(0);        // Required cost attribute
  3631 //----------Instruction Attributes---------------------------------------------
  3632 ins_attrib ins_cost(100);       // Required cost attribute
  3633 ins_attrib ins_size(32);         // Required size attribute (in bits)
  3634 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
  3635 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3636                                 // non-matching short branch variant of some
  3637                                                             // long branch?
  3638 ins_attrib ins_alignment(4);    // Required alignment attribute (must be a power of 2)
  3639                                 // specifies the alignment that some part of the instruction (not
  3640                                 // necessarily the start) requires.  If > 1, a compute_padding()
  3641                                 // function must be provided for the instruction
  3643 //----------OPERANDS-----------------------------------------------------------
  3644 // Operand definitions must precede instruction definitions for correct parsing
  3645 // in the ADLC because operands constitute user defined types which are used in
  3646 // instruction definitions.
  3648 // Vectors
  3649 operand vecD() %{
  3650   constraint(ALLOC_IN_RC(dbl_reg));
  3651   match(VecD);
  3653   format %{ %}
  3654   interface(REG_INTER);
  3655 %}
  3657 // Flags register, used as output of compare instructions
  3658 operand FlagsReg() %{
  3659   constraint(ALLOC_IN_RC(mips_flags));
  3660   match(RegFlags);
  3662   format %{ "EFLAGS" %}
  3663   interface(REG_INTER);
  3664 %}
  3666 //----------Simple Operands----------------------------------------------------
  3667 //TODO: Should we need to define some more special immediate number ?
  3668 // Immediate Operands
  3669 // Integer Immediate
  3670 operand immI() %{
  3671   match(ConI);
  3672   //TODO: should not match immI8 here LEE
  3673   match(immI8);
  3675   op_cost(20);
  3676   format %{ %}
  3677   interface(CONST_INTER);
  3678 %}
  3680 // Long Immediate 8-bit
  3681 operand immL8()
  3682 %{
  3683   predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
  3684   match(ConL);
  3686   op_cost(5);
  3687   format %{ %}
  3688   interface(CONST_INTER);
  3689 %}
  3691 // Constant for test vs zero
  3692 operand immI0() %{
  3693   predicate(n->get_int() == 0);
  3694   match(ConI);
  3696   op_cost(0);
  3697   format %{ %}
  3698   interface(CONST_INTER);
  3699 %}
  3701 // Constant for increment
  3702 operand immI1() %{
  3703   predicate(n->get_int() == 1);
  3704   match(ConI);
  3706   op_cost(0);
  3707   format %{ %}
  3708   interface(CONST_INTER);
  3709 %}
  3711 // Constant for decrement
  3712 operand immI_M1() %{
  3713   predicate(n->get_int() == -1);
  3714   match(ConI);
  3716   op_cost(0);
  3717   format %{ %}
  3718   interface(CONST_INTER);
  3719 %}
  3721 operand immI_MaxI() %{
  3722   predicate(n->get_int() == 2147483647);
  3723   match(ConI);
  3725   op_cost(0);
  3726   format %{ %}
  3727   interface(CONST_INTER);
  3728 %}
  3730 // Valid scale values for addressing modes
  3731 operand immI2() %{
  3732   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  3733   match(ConI);
  3735   format %{ %}
  3736   interface(CONST_INTER);
  3737 %}
  3739 operand immI8() %{
  3740   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  3741   match(ConI);
  3743   op_cost(5);
  3744   format %{ %}
  3745   interface(CONST_INTER);
  3746 %}
  3748 operand immI16() %{
  3749   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  3750   match(ConI);
  3752   op_cost(10);
  3753   format %{ %}
  3754   interface(CONST_INTER);
  3755 %}
  3757 // Constant for long shifts
  3758 operand immI_32() %{
  3759   predicate( n->get_int() == 32 );
  3760   match(ConI);
  3762   op_cost(0);
  3763   format %{ %}
  3764   interface(CONST_INTER);
  3765 %}
  3767 operand immI_63() %{
  3768   predicate( n->get_int() == 63 );
  3769   match(ConI);
  3771   op_cost(0);
  3772   format %{ %}
  3773   interface(CONST_INTER);
  3774 %}
  3776 operand immI_0_31() %{
  3777   predicate( n->get_int() >= 0 && n->get_int() <= 31 );
  3778   match(ConI);
  3780   op_cost(0);
  3781   format %{ %}
  3782   interface(CONST_INTER);
  3783 %}
  3785 // Operand for non-negtive integer mask
  3786 operand immI_nonneg_mask() %{
  3787   predicate( (n->get_int() >= 0) && (Assembler::is_int_mask(n->get_int()) != -1) );
  3788   match(ConI);
  3790   op_cost(0);
  3791   format %{ %}
  3792   interface(CONST_INTER);
  3793 %}
  3795 operand immI_32_63() %{
  3796   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  3797   match(ConI);
  3798   op_cost(0);
  3800   format %{ %}
  3801   interface(CONST_INTER);
  3802 %}
  3804 operand immI16_sub() %{
  3805   predicate((-32767 <= n->get_int()) && (n->get_int() <= 32768));
  3806   match(ConI);
  3808   op_cost(10);
  3809   format %{ %}
  3810   interface(CONST_INTER);
  3811 %}
  3813 operand immI_0_32767() %{
  3814   predicate( n->get_int() >= 0 && n->get_int() <= 32767 );
  3815   match(ConI);
  3816   op_cost(0);
  3818   format %{ %}
  3819   interface(CONST_INTER);
  3820 %}
  3822 operand immI_0_65535() %{
  3823   predicate( n->get_int() >= 0 && n->get_int() <= 65535 );
  3824   match(ConI);
  3825   op_cost(0);
  3827   format %{ %}
  3828   interface(CONST_INTER);
  3829 %}
  3831 operand immI_1() %{
  3832   predicate( n->get_int() == 1 );
  3833   match(ConI);
  3835   op_cost(0);
  3836   format %{ %}
  3837   interface(CONST_INTER);
  3838 %}
  3840 operand immI_2() %{
  3841   predicate( n->get_int() == 2 );
  3842   match(ConI);
  3844   op_cost(0);
  3845   format %{ %}
  3846   interface(CONST_INTER);
  3847 %}
  3849 operand immI_3() %{
  3850   predicate( n->get_int() == 3 );
  3851   match(ConI);
  3853   op_cost(0);
  3854   format %{ %}
  3855   interface(CONST_INTER);
  3856 %}
  3858 operand immI_7() %{
  3859   predicate( n->get_int() == 7 );
  3860   match(ConI);
  3862   format %{ %}
  3863   interface(CONST_INTER);
  3864 %}
  3866 // Immediates for special shifts (sign extend)
  3868 // Constants for increment
  3869 operand immI_16() %{
  3870   predicate( n->get_int() == 16 );
  3871   match(ConI);
  3873   format %{ %}
  3874   interface(CONST_INTER);
  3875 %}
  3877 operand immI_24() %{
  3878   predicate( n->get_int() == 24 );
  3879   match(ConI);
  3881   format %{ %}
  3882   interface(CONST_INTER);
  3883 %}
  3885 // Constant for byte-wide masking
  3886 operand immI_255() %{
  3887   predicate( n->get_int() == 255 );
  3888   match(ConI);
  3890   op_cost(0);
  3891   format %{ %}
  3892   interface(CONST_INTER);
  3893 %}
  3895 operand immI_65535() %{
  3896   predicate( n->get_int() == 65535 );
  3897   match(ConI);
  3899   op_cost(5);
  3900   format %{ %}
  3901   interface(CONST_INTER);
  3902 %}
  3904 operand immI_65536() %{
  3905   predicate( n->get_int() == 65536 );
  3906   match(ConI);
  3908   op_cost(5);
  3909   format %{ %}
  3910   interface(CONST_INTER);
  3911 %}
  3913 operand immI_M65536() %{
  3914   predicate( n->get_int() == -65536 );
  3915   match(ConI);
  3917   op_cost(5);
  3918   format %{ %}
  3919   interface(CONST_INTER);
  3920 %}
  3922 // Pointer Immediate
  3923 operand immP() %{
  3924   match(ConP);
  3926   op_cost(10);
  3927   format %{ %}
  3928   interface(CONST_INTER);
  3929 %}
  3931 // NULL Pointer Immediate
  3932 operand immP0() %{
  3933   predicate( n->get_ptr() == 0 );
  3934   match(ConP);
  3935   op_cost(0);
  3937   format %{ %}
  3938   interface(CONST_INTER);
  3939 %}
  3941 // Pointer Immediate: 64-bit
  3942 operand immP_set() %{
  3943   match(ConP);
  3945   op_cost(5);
  3946   // formats are generated automatically for constants and base registers
  3947   format %{ %}
  3948   interface(CONST_INTER);
  3949 %}
  3951 // Pointer Immediate: 64-bit
  3952 operand immP_load() %{
  3953   predicate(n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set64(n->get_ptr()) > 3));
  3954   match(ConP);
  3956   op_cost(5);
  3957   // formats are generated automatically for constants and base registers
  3958   format %{ %}
  3959   interface(CONST_INTER);
  3960 %}
  3962 // Pointer Immediate: 64-bit
  3963 operand immP_no_oop_cheap() %{
  3964   predicate(!n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set64(n->get_ptr()) <= 3));
  3965   match(ConP);
  3967   op_cost(5);
  3968   // formats are generated automatically for constants and base registers
  3969   format %{ %}
  3970   interface(CONST_INTER);
  3971 %}
  3973 // Pointer for polling page 
  3974 operand immP_poll() %{
  3975   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3976   match(ConP);
  3977   op_cost(5);
  3979   format %{ %}
  3980   interface(CONST_INTER);
  3981 %}
  3983 // Pointer Immediate
  3984 operand immN() %{
  3985   match(ConN);
  3987   op_cost(10);
  3988   format %{ %}
  3989   interface(CONST_INTER);
  3990 %}
  3992 operand immNKlass() %{
  3993   match(ConNKlass);
  3995   op_cost(10);
  3996   format %{ %}
  3997   interface(CONST_INTER);
  3998 %}
  4000 // NULL Pointer Immediate
  4001 operand immN0() %{
  4002   predicate(n->get_narrowcon() == 0);
  4003   match(ConN);
  4005   op_cost(5);
  4006   format %{ %}
  4007   interface(CONST_INTER);
  4008 %}
  4010 // Long Immediate
  4011 operand immL() %{
  4012   match(ConL);
  4014   op_cost(20);
  4015   format %{ %}
  4016   interface(CONST_INTER);
  4017 %}
  4019 // Long Immediate zero
  4020 operand immL0() %{
  4021   predicate( n->get_long() == 0L );
  4022   match(ConL);
  4023   op_cost(0);
  4025   format %{ %}
  4026   interface(CONST_INTER);
  4027 %}
  4029 operand immL7() %{
  4030   predicate( n->get_long() == 7L );
  4031   match(ConL);
  4032   op_cost(0);
  4034   format %{ %}
  4035   interface(CONST_INTER);
  4036 %}
  4038 operand immL_M1() %{
  4039   predicate( n->get_long() == -1L );
  4040   match(ConL);
  4041   op_cost(0);
  4043   format %{ %}
  4044   interface(CONST_INTER);
  4045 %}
  4047 // bit 0..2 zero
  4048 operand immL_M8() %{
  4049   predicate( n->get_long() == -8L );
  4050   match(ConL);
  4051   op_cost(0);
  4053   format %{ %}
  4054   interface(CONST_INTER);
  4055 %}
  4057 // bit 2 zero
  4058 operand immL_M5() %{
  4059   predicate( n->get_long() == -5L );
  4060   match(ConL);
  4061   op_cost(0);
  4063   format %{ %}
  4064   interface(CONST_INTER);
  4065 %}
  4067 // bit 1..2 zero
  4068 operand immL_M7() %{
  4069   predicate( n->get_long() == -7L );
  4070   match(ConL);
  4071   op_cost(0);
  4073   format %{ %}
  4074   interface(CONST_INTER);
  4075 %}
  4077 // bit 0..1 zero
  4078 operand immL_M4() %{
  4079   predicate( n->get_long() == -4L );
  4080   match(ConL);
  4081   op_cost(0);
  4083   format %{ %}
  4084   interface(CONST_INTER);
  4085 %}
  4087 // bit 3..6 zero
  4088 operand immL_M121() %{
  4089   predicate( n->get_long() == -121L );
  4090   match(ConL);
  4091   op_cost(0);
  4093   format %{ %}
  4094   interface(CONST_INTER);
  4095 %}
  4097 // Long immediate from 0 to 127.
  4098 // Used for a shorter form of long mul by 10.
  4099 operand immL_127() %{
  4100   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  4101   match(ConL);
  4102   op_cost(0);
  4104   format %{ %}
  4105   interface(CONST_INTER);
  4106 %}
  4108 // Operand for non-negtive long mask
  4109 operand immL_nonneg_mask() %{
  4110   predicate( (n->get_long() >= 0) && (Assembler::is_jlong_mask(n->get_long()) != -1) );
  4111   match(ConL);
  4113   op_cost(0);
  4114   format %{ %}
  4115   interface(CONST_INTER);
  4116 %}
  4118 operand immL_0_65535() %{
  4119   predicate( n->get_long() >= 0 && n->get_long() <= 65535 );
  4120   match(ConL);
  4121   op_cost(0);
  4123   format %{ %}
  4124   interface(CONST_INTER);
  4125 %}
  4127 // Long Immediate: cheap (materialize in <= 3 instructions)
  4128 operand immL_cheap() %{
  4129   predicate(MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  4130   match(ConL);
  4131   op_cost(0);
  4133   format %{ %}
  4134   interface(CONST_INTER);
  4135 %}
  4137 // Long Immediate: expensive (materialize in > 3 instructions)
  4138 operand immL_expensive() %{
  4139   predicate(MacroAssembler::insts_for_set64(n->get_long()) > 3);
  4140   match(ConL);
  4141   op_cost(0);
  4143   format %{ %}
  4144   interface(CONST_INTER);
  4145 %}
  4147 operand immL16() %{
  4148   predicate((-32768 <= n->get_long()) && (n->get_long() <= 32767));
  4149   match(ConL);
  4151   op_cost(10);
  4152   format %{ %}
  4153   interface(CONST_INTER);
  4154 %}
  4156 operand immL16_sub() %{
  4157   predicate((-32767 <= n->get_long()) && (n->get_long() <= 32768));
  4158   match(ConL);
  4160   op_cost(10);
  4161   format %{ %}
  4162   interface(CONST_INTER);
  4163 %}
  4165 // Long Immediate: low 32-bit mask
  4166 operand immL_32bits() %{
  4167   predicate(n->get_long() == 0xFFFFFFFFL);
  4168   match(ConL);
  4169   op_cost(20);
  4171   format %{ %}
  4172   interface(CONST_INTER);
  4173 %}
  4175 // Long Immediate 32-bit signed
  4176 operand immL32()
  4177 %{
  4178   predicate(n->get_long() == (int) (n->get_long()));
  4179   match(ConL);
  4181   op_cost(15);
  4182   format %{ %}
  4183   interface(CONST_INTER);
  4184 %}
  4187 //single-precision floating-point zero
  4188 operand immF0() %{
  4189   predicate(jint_cast(n->getf()) == 0);
  4190   match(ConF);
  4192   op_cost(5);
  4193   format %{ %}
  4194   interface(CONST_INTER);
  4195 %}
  4197 //single-precision floating-point immediate
  4198 operand immF() %{
  4199   match(ConF);
  4201   op_cost(20);
  4202   format %{ %}
  4203   interface(CONST_INTER);
  4204 %}
  4206 //double-precision floating-point zero 
  4207 operand immD0() %{
  4208   predicate(jlong_cast(n->getd()) == 0);
  4209   match(ConD);
  4211   op_cost(5);
  4212   format %{ %}
  4213   interface(CONST_INTER);
  4214 %}
  4216 //double-precision floating-point immediate
  4217 operand immD() %{
  4218   match(ConD);
  4220   op_cost(20);
  4221   format %{ %}
  4222   interface(CONST_INTER);
  4223 %}
  4225 // Register Operands
  4226 // Integer Register
  4227 operand mRegI() %{
  4228   constraint(ALLOC_IN_RC(int_reg));
  4229   match(RegI);
  4231   format %{ %}
  4232   interface(REG_INTER);
  4233 %}
  4235 operand no_Ax_mRegI() %{
  4236   constraint(ALLOC_IN_RC(no_Ax_int_reg));
  4237   match(RegI);
  4238   match(mRegI);
  4240   format %{  %}
  4241   interface(REG_INTER);
  4242 %} 
  4244 operand mS0RegI() %{
  4245   constraint(ALLOC_IN_RC(s0_reg));
  4246   match(RegI);
  4247   match(mRegI);
  4249   format %{ "S0" %}
  4250   interface(REG_INTER);
  4251 %}
  4253 operand mS1RegI() %{
  4254   constraint(ALLOC_IN_RC(s1_reg));
  4255   match(RegI);
  4256   match(mRegI);
  4258   format %{ "S1" %}
  4259   interface(REG_INTER);
  4260 %}
  4262 operand mS2RegI() %{
  4263   constraint(ALLOC_IN_RC(s2_reg));
  4264   match(RegI);
  4265   match(mRegI);
  4267   format %{ "S2" %}
  4268   interface(REG_INTER);
  4269 %}
  4271 operand mS3RegI() %{
  4272   constraint(ALLOC_IN_RC(s3_reg));
  4273   match(RegI);
  4274   match(mRegI);
  4276   format %{ "S3" %}
  4277   interface(REG_INTER);
  4278 %}
  4280 operand mS4RegI() %{
  4281   constraint(ALLOC_IN_RC(s4_reg));
  4282   match(RegI);
  4283   match(mRegI);
  4285   format %{ "S4" %}
  4286   interface(REG_INTER);
  4287 %}
  4289 operand mS5RegI() %{
  4290   constraint(ALLOC_IN_RC(s5_reg));
  4291   match(RegI);
  4292   match(mRegI);
  4294   format %{ "S5" %}
  4295   interface(REG_INTER);
  4296 %}
  4298 operand mS6RegI() %{
  4299   constraint(ALLOC_IN_RC(s6_reg));
  4300   match(RegI);
  4301   match(mRegI);
  4303   format %{ "S6" %}
  4304   interface(REG_INTER);
  4305 %}
  4307 operand mS7RegI() %{
  4308   constraint(ALLOC_IN_RC(s7_reg));
  4309   match(RegI);
  4310   match(mRegI);
  4312   format %{ "S7" %}
  4313   interface(REG_INTER);
  4314 %}
  4317 operand mT0RegI() %{
  4318   constraint(ALLOC_IN_RC(t0_reg));
  4319   match(RegI);
  4320   match(mRegI);
  4322   format %{ "T0" %}
  4323   interface(REG_INTER);
  4324 %}
  4326 operand mT1RegI() %{
  4327   constraint(ALLOC_IN_RC(t1_reg));
  4328   match(RegI);
  4329   match(mRegI);
  4331   format %{ "T1" %}
  4332   interface(REG_INTER);
  4333 %}
  4335 operand mT2RegI() %{
  4336   constraint(ALLOC_IN_RC(t2_reg));
  4337   match(RegI);
  4338   match(mRegI);
  4340   format %{ "T2" %}
  4341   interface(REG_INTER);
  4342 %}
  4344 operand mT3RegI() %{
  4345   constraint(ALLOC_IN_RC(t3_reg));
  4346   match(RegI);
  4347   match(mRegI);
  4349   format %{ "T3" %}
  4350   interface(REG_INTER);
  4351 %}
  4353 operand mT8RegI() %{
  4354   constraint(ALLOC_IN_RC(t8_reg));
  4355   match(RegI);
  4356   match(mRegI);
  4358   format %{ "T8" %}
  4359   interface(REG_INTER);
  4360 %}
  4362 operand mT9RegI() %{
  4363   constraint(ALLOC_IN_RC(t9_reg));
  4364   match(RegI);
  4365   match(mRegI);
  4367   format %{ "T9" %}
  4368   interface(REG_INTER);
  4369 %}
  4371 operand mA0RegI() %{
  4372   constraint(ALLOC_IN_RC(a0_reg));
  4373   match(RegI);
  4374   match(mRegI);
  4376   format %{ "A0" %}
  4377   interface(REG_INTER);
  4378 %}
  4380 operand mA1RegI() %{
  4381   constraint(ALLOC_IN_RC(a1_reg));
  4382   match(RegI);
  4383   match(mRegI);
  4385   format %{ "A1" %}
  4386   interface(REG_INTER);
  4387 %}
  4389 operand mA2RegI() %{
  4390   constraint(ALLOC_IN_RC(a2_reg));
  4391   match(RegI);
  4392   match(mRegI);
  4394   format %{ "A2" %}
  4395   interface(REG_INTER);
  4396 %}
  4398 operand mA3RegI() %{
  4399   constraint(ALLOC_IN_RC(a3_reg));
  4400   match(RegI);
  4401   match(mRegI);
  4403   format %{ "A3" %}
  4404   interface(REG_INTER);
  4405 %}
  4407 operand mA4RegI() %{
  4408   constraint(ALLOC_IN_RC(a4_reg));
  4409   match(RegI);
  4410   match(mRegI);
  4412   format %{ "A4" %}
  4413   interface(REG_INTER);
  4414 %}
  4416 operand mA5RegI() %{
  4417   constraint(ALLOC_IN_RC(a5_reg));
  4418   match(RegI);
  4419   match(mRegI);
  4421   format %{ "A5" %}
  4422   interface(REG_INTER);
  4423 %}
  4425 operand mA6RegI() %{
  4426   constraint(ALLOC_IN_RC(a6_reg));
  4427   match(RegI);
  4428   match(mRegI);
  4430   format %{ "A6" %}
  4431   interface(REG_INTER);
  4432 %}
  4434 operand mA7RegI() %{
  4435   constraint(ALLOC_IN_RC(a7_reg));
  4436   match(RegI);
  4437   match(mRegI);
  4439   format %{ "A7" %}
  4440   interface(REG_INTER);
  4441 %}
  4443 operand mV0RegI() %{
  4444   constraint(ALLOC_IN_RC(v0_reg));
  4445   match(RegI);
  4446   match(mRegI);
  4448   format %{ "V0" %}
  4449   interface(REG_INTER);
  4450 %}
  4452 operand mV1RegI() %{
  4453   constraint(ALLOC_IN_RC(v1_reg));
  4454   match(RegI);
  4455   match(mRegI);
  4457   format %{ "V1" %}
  4458   interface(REG_INTER);
  4459 %}
  4461 operand mRegN() %{
  4462   constraint(ALLOC_IN_RC(int_reg));
  4463   match(RegN);
  4465   format %{ %}
  4466   interface(REG_INTER);
  4467 %}
  4469 operand t0_RegN() %{
  4470   constraint(ALLOC_IN_RC(t0_reg));
  4471   match(RegN);
  4472   match(mRegN);
  4474   format %{ %}
  4475   interface(REG_INTER);
  4476 %}
  4478 operand t1_RegN() %{
  4479   constraint(ALLOC_IN_RC(t1_reg));
  4480   match(RegN);
  4481   match(mRegN);
  4483   format %{ %}
  4484   interface(REG_INTER);
  4485 %}
  4487 operand t2_RegN() %{
  4488   constraint(ALLOC_IN_RC(t2_reg));
  4489   match(RegN);
  4490   match(mRegN);
  4492   format %{ %}
  4493   interface(REG_INTER);
  4494 %}
  4496 operand t3_RegN() %{
  4497   constraint(ALLOC_IN_RC(t3_reg));
  4498   match(RegN);
  4499   match(mRegN);
  4501   format %{ %}
  4502   interface(REG_INTER);
  4503 %}
  4505 operand t8_RegN() %{
  4506   constraint(ALLOC_IN_RC(t8_reg));
  4507   match(RegN);
  4508   match(mRegN);
  4510   format %{ %}
  4511   interface(REG_INTER);
  4512 %}
  4514 operand t9_RegN() %{
  4515   constraint(ALLOC_IN_RC(t9_reg));
  4516   match(RegN);
  4517   match(mRegN);
  4519   format %{ %}
  4520   interface(REG_INTER);
  4521 %}
  4523 operand a0_RegN() %{
  4524   constraint(ALLOC_IN_RC(a0_reg));
  4525   match(RegN);
  4526   match(mRegN);
  4528   format %{ %}
  4529   interface(REG_INTER);
  4530 %}
  4532 operand a1_RegN() %{
  4533   constraint(ALLOC_IN_RC(a1_reg));
  4534   match(RegN);
  4535   match(mRegN);
  4537   format %{ %}
  4538   interface(REG_INTER);
  4539 %}
  4541 operand a2_RegN() %{
  4542   constraint(ALLOC_IN_RC(a2_reg));
  4543   match(RegN);
  4544   match(mRegN);
  4546   format %{ %}
  4547   interface(REG_INTER);
  4548 %}
  4550 operand a3_RegN() %{
  4551   constraint(ALLOC_IN_RC(a3_reg));
  4552   match(RegN);
  4553   match(mRegN);
  4555   format %{ %}
  4556   interface(REG_INTER);
  4557 %}
  4559 operand a4_RegN() %{
  4560   constraint(ALLOC_IN_RC(a4_reg));
  4561   match(RegN);
  4562   match(mRegN);
  4564   format %{ %}
  4565   interface(REG_INTER);
  4566 %}
  4568 operand a5_RegN() %{
  4569   constraint(ALLOC_IN_RC(a5_reg));
  4570   match(RegN);
  4571   match(mRegN);
  4573   format %{ %}
  4574   interface(REG_INTER);
  4575 %}
  4577 operand a6_RegN() %{
  4578   constraint(ALLOC_IN_RC(a6_reg));
  4579   match(RegN);
  4580   match(mRegN);
  4582   format %{ %}
  4583   interface(REG_INTER);
  4584 %}
  4586 operand a7_RegN() %{
  4587   constraint(ALLOC_IN_RC(a7_reg));
  4588   match(RegN);
  4589   match(mRegN);
  4591   format %{ %}
  4592   interface(REG_INTER);
  4593 %}
  4595 operand s0_RegN() %{
  4596   constraint(ALLOC_IN_RC(s0_reg));
  4597   match(RegN);
  4598   match(mRegN);
  4600   format %{ %}
  4601   interface(REG_INTER);
  4602 %}
  4604 operand s1_RegN() %{
  4605   constraint(ALLOC_IN_RC(s1_reg));
  4606   match(RegN);
  4607   match(mRegN);
  4609   format %{ %}
  4610   interface(REG_INTER);
  4611 %}
  4613 operand s2_RegN() %{
  4614   constraint(ALLOC_IN_RC(s2_reg));
  4615   match(RegN);
  4616   match(mRegN);
  4618   format %{ %}
  4619   interface(REG_INTER);
  4620 %}
  4622 operand s3_RegN() %{
  4623   constraint(ALLOC_IN_RC(s3_reg));
  4624   match(RegN);
  4625   match(mRegN);
  4627   format %{ %}
  4628   interface(REG_INTER);
  4629 %}
  4631 operand s4_RegN() %{
  4632   constraint(ALLOC_IN_RC(s4_reg));
  4633   match(RegN);
  4634   match(mRegN);
  4636   format %{ %}
  4637   interface(REG_INTER);
  4638 %}
  4640 operand s5_RegN() %{
  4641   constraint(ALLOC_IN_RC(s5_reg));
  4642   match(RegN);
  4643   match(mRegN);
  4645   format %{ %}
  4646   interface(REG_INTER);
  4647 %}
  4649 operand s6_RegN() %{
  4650   constraint(ALLOC_IN_RC(s6_reg));
  4651   match(RegN);
  4652   match(mRegN);
  4654   format %{ %}
  4655   interface(REG_INTER);
  4656 %}
  4658 operand s7_RegN() %{
  4659   constraint(ALLOC_IN_RC(s7_reg));
  4660   match(RegN);
  4661   match(mRegN);
  4663   format %{ %}
  4664   interface(REG_INTER);
  4665 %}
  4667 operand v0_RegN() %{
  4668   constraint(ALLOC_IN_RC(v0_reg));
  4669   match(RegN);
  4670   match(mRegN);
  4672   format %{ %}
  4673   interface(REG_INTER);
  4674 %}
  4676 operand v1_RegN() %{
  4677   constraint(ALLOC_IN_RC(v1_reg));
  4678   match(RegN);
  4679   match(mRegN);
  4681   format %{ %}
  4682   interface(REG_INTER);
  4683 %}
  4685 // Pointer Register
  4686 operand mRegP() %{
  4687   constraint(ALLOC_IN_RC(p_reg));
  4688   match(RegP);
  4690   format %{  %}
  4691   interface(REG_INTER);
  4692 %} 
  4694 operand no_T8_mRegP() %{
  4695   constraint(ALLOC_IN_RC(no_T8_p_reg));
  4696   match(RegP);
  4697   match(mRegP);
  4699   format %{  %}
  4700   interface(REG_INTER);
  4701 %} 
  4703 operand s0_RegP()
  4704 %{
  4705   constraint(ALLOC_IN_RC(s0_long_reg));
  4706   match(RegP);
  4707   match(mRegP);
  4708   match(no_T8_mRegP);
  4710   format %{ %}
  4711   interface(REG_INTER);
  4712 %}
  4714 operand s1_RegP()
  4715 %{
  4716   constraint(ALLOC_IN_RC(s1_long_reg));
  4717   match(RegP);
  4718   match(mRegP);
  4719   match(no_T8_mRegP);
  4721   format %{ %}
  4722   interface(REG_INTER);
  4723 %}
  4725 operand s2_RegP()
  4726 %{
  4727   constraint(ALLOC_IN_RC(s2_long_reg));
  4728   match(RegP);
  4729   match(mRegP);
  4730   match(no_T8_mRegP);
  4732   format %{ %}
  4733   interface(REG_INTER);
  4734 %}
  4736 operand s3_RegP()
  4737 %{
  4738   constraint(ALLOC_IN_RC(s3_long_reg));
  4739   match(RegP);
  4740   match(mRegP);
  4741   match(no_T8_mRegP);
  4743   format %{ %}
  4744   interface(REG_INTER);
  4745 %}
  4747 operand s4_RegP()
  4748 %{
  4749   constraint(ALLOC_IN_RC(s4_long_reg));
  4750   match(RegP);
  4751   match(mRegP);
  4752   match(no_T8_mRegP);
  4754   format %{ %}
  4755   interface(REG_INTER);
  4756 %}
  4758 operand s5_RegP()
  4759 %{
  4760   constraint(ALLOC_IN_RC(s5_long_reg));
  4761   match(RegP);
  4762   match(mRegP);
  4763   match(no_T8_mRegP);
  4765   format %{ %}
  4766   interface(REG_INTER);
  4767 %}
  4769 operand s6_RegP()
  4770 %{
  4771   constraint(ALLOC_IN_RC(s6_long_reg));
  4772   match(RegP);
  4773   match(mRegP);
  4774   match(no_T8_mRegP);
  4776   format %{ %}
  4777   interface(REG_INTER);
  4778 %}
  4780 operand s7_RegP()
  4781 %{
  4782   constraint(ALLOC_IN_RC(s7_long_reg));
  4783   match(RegP);
  4784   match(mRegP);
  4785   match(no_T8_mRegP);
  4787   format %{ %}
  4788   interface(REG_INTER);
  4789 %}
  4791 operand t0_RegP()
  4792 %{
  4793   constraint(ALLOC_IN_RC(t0_long_reg));
  4794   match(RegP);
  4795   match(mRegP);
  4796   match(no_T8_mRegP);
  4798   format %{ %}
  4799   interface(REG_INTER);
  4800 %}
  4802 operand t1_RegP()
  4803 %{
  4804   constraint(ALLOC_IN_RC(t1_long_reg));
  4805   match(RegP);
  4806   match(mRegP);
  4807   match(no_T8_mRegP);
  4809   format %{ %}
  4810   interface(REG_INTER);
  4811 %}
  4813 operand t2_RegP()
  4814 %{
  4815   constraint(ALLOC_IN_RC(t2_long_reg));
  4816   match(RegP);
  4817   match(mRegP);
  4818   match(no_T8_mRegP);
  4820   format %{ %}
  4821   interface(REG_INTER);
  4822 %}
  4824 operand t3_RegP()
  4825 %{
  4826   constraint(ALLOC_IN_RC(t3_long_reg));
  4827   match(RegP);
  4828   match(mRegP);
  4829   match(no_T8_mRegP);
  4831   format %{ %}
  4832   interface(REG_INTER);
  4833 %}
  4835 operand t8_RegP()
  4836 %{
  4837   constraint(ALLOC_IN_RC(t8_long_reg));
  4838   match(RegP);
  4839   match(mRegP);
  4841   format %{ %}
  4842   interface(REG_INTER);
  4843 %}
  4845 operand t9_RegP()
  4846 %{
  4847   constraint(ALLOC_IN_RC(t9_long_reg));
  4848   match(RegP);
  4849   match(mRegP);
  4850   match(no_T8_mRegP);
  4852   format %{ %}
  4853   interface(REG_INTER);
  4854 %}
  4856 operand a0_RegP()
  4857 %{
  4858   constraint(ALLOC_IN_RC(a0_long_reg));
  4859   match(RegP);
  4860   match(mRegP);
  4861   match(no_T8_mRegP);
  4863   format %{ %}
  4864   interface(REG_INTER);
  4865 %}
  4867 operand a1_RegP()
  4868 %{
  4869   constraint(ALLOC_IN_RC(a1_long_reg));
  4870   match(RegP);
  4871   match(mRegP);
  4872   match(no_T8_mRegP);
  4874   format %{ %}
  4875   interface(REG_INTER);
  4876 %}
  4878 operand a2_RegP()
  4879 %{
  4880   constraint(ALLOC_IN_RC(a2_long_reg));
  4881   match(RegP);
  4882   match(mRegP);
  4883   match(no_T8_mRegP);
  4885   format %{ %}
  4886   interface(REG_INTER);
  4887 %}
  4889 operand a3_RegP()
  4890 %{
  4891   constraint(ALLOC_IN_RC(a3_long_reg));
  4892   match(RegP);
  4893   match(mRegP);
  4894   match(no_T8_mRegP);
  4896   format %{ %}
  4897   interface(REG_INTER);
  4898 %}
  4900 operand a4_RegP()
  4901 %{
  4902   constraint(ALLOC_IN_RC(a4_long_reg));
  4903   match(RegP);
  4904   match(mRegP);
  4905   match(no_T8_mRegP);
  4907   format %{ %}
  4908   interface(REG_INTER);
  4909 %}
  4912 operand a5_RegP()
  4913 %{
  4914   constraint(ALLOC_IN_RC(a5_long_reg));
  4915   match(RegP);
  4916   match(mRegP);
  4917   match(no_T8_mRegP);
  4919   format %{ %}
  4920   interface(REG_INTER);
  4921 %}
  4923 operand a6_RegP()
  4924 %{
  4925   constraint(ALLOC_IN_RC(a6_long_reg));
  4926   match(RegP);
  4927   match(mRegP);
  4928   match(no_T8_mRegP);
  4930   format %{ %}
  4931   interface(REG_INTER);
  4932 %}
  4934 operand a7_RegP()
  4935 %{
  4936   constraint(ALLOC_IN_RC(a7_long_reg));
  4937   match(RegP);
  4938   match(mRegP);
  4939   match(no_T8_mRegP);
  4941   format %{ %}
  4942   interface(REG_INTER);
  4943 %}
  4945 operand v0_RegP()
  4946 %{
  4947   constraint(ALLOC_IN_RC(v0_long_reg));
  4948   match(RegP);
  4949   match(mRegP);
  4950   match(no_T8_mRegP);
  4952   format %{ %}
  4953   interface(REG_INTER);
  4954 %}
  4956 operand v1_RegP()
  4957 %{
  4958   constraint(ALLOC_IN_RC(v1_long_reg));
  4959   match(RegP);
  4960   match(mRegP);
  4961   match(no_T8_mRegP);
  4963   format %{ %}
  4964   interface(REG_INTER);
  4965 %}
  4967 /*
  4968 operand mSPRegP(mRegP reg) %{
  4969   constraint(ALLOC_IN_RC(sp_reg));
  4970   match(reg);
  4972   format %{ "SP"  %}
  4973   interface(REG_INTER);
  4974 %}
  4976 operand mFPRegP(mRegP reg) %{
  4977   constraint(ALLOC_IN_RC(fp_reg));
  4978   match(reg);
  4980   format %{ "FP"  %}
  4981   interface(REG_INTER);
  4982 %}
  4983 */
  4985 operand mRegL() %{
  4986   constraint(ALLOC_IN_RC(long_reg));
  4987   match(RegL);
  4989   format %{ %}
  4990   interface(REG_INTER);
  4991 %}
  4993 operand v0RegL() %{
  4994   constraint(ALLOC_IN_RC(v0_long_reg));
  4995   match(RegL);
  4996   match(mRegL);
  4998   format %{ %}
  4999   interface(REG_INTER);
  5000 %}
  5002 operand v1RegL() %{
  5003   constraint(ALLOC_IN_RC(v1_long_reg));
  5004   match(RegL);
  5005   match(mRegL);
  5007   format %{ %}
  5008   interface(REG_INTER);
  5009 %}
  5011 operand a0RegL() %{
  5012   constraint(ALLOC_IN_RC(a0_long_reg));
  5013   match(RegL);
  5014   match(mRegL);
  5016   format %{ "A0" %}
  5017   interface(REG_INTER);
  5018 %}
  5020 operand a1RegL() %{
  5021   constraint(ALLOC_IN_RC(a1_long_reg));
  5022   match(RegL);
  5023   match(mRegL);
  5025   format %{ %}
  5026   interface(REG_INTER);
  5027 %}
  5029 operand a2RegL() %{
  5030   constraint(ALLOC_IN_RC(a2_long_reg));
  5031   match(RegL);
  5032   match(mRegL);
  5034   format %{ %}
  5035   interface(REG_INTER);
  5036 %}
  5038 operand a3RegL() %{
  5039   constraint(ALLOC_IN_RC(a3_long_reg));
  5040   match(RegL);
  5041   match(mRegL);
  5043   format %{ %}
  5044   interface(REG_INTER);
  5045 %}
  5047 operand t0RegL() %{
  5048   constraint(ALLOC_IN_RC(t0_long_reg));
  5049   match(RegL);
  5050   match(mRegL);
  5052   format %{ %}
  5053   interface(REG_INTER);
  5054 %}
  5056 operand t1RegL() %{
  5057   constraint(ALLOC_IN_RC(t1_long_reg));
  5058   match(RegL);
  5059   match(mRegL);
  5061   format %{ %}
  5062   interface(REG_INTER);
  5063 %}
  5065 operand t2RegL() %{
  5066   constraint(ALLOC_IN_RC(t2_long_reg));
  5067   match(RegL);
  5068   match(mRegL);
  5070   format %{ %}
  5071   interface(REG_INTER);
  5072 %}
  5074 operand t3RegL() %{
  5075   constraint(ALLOC_IN_RC(t3_long_reg));
  5076   match(RegL);
  5077   match(mRegL);
  5079   format %{ %}
  5080   interface(REG_INTER);
  5081 %}
  5083 operand t8RegL() %{
  5084   constraint(ALLOC_IN_RC(t8_long_reg));
  5085   match(RegL);
  5086   match(mRegL);
  5088   format %{ %}
  5089   interface(REG_INTER);
  5090 %}
  5092 operand a4RegL() %{
  5093   constraint(ALLOC_IN_RC(a4_long_reg));
  5094   match(RegL);
  5095   match(mRegL);
  5097   format %{ %}
  5098   interface(REG_INTER);
  5099 %}
  5101 operand a5RegL() %{
  5102   constraint(ALLOC_IN_RC(a5_long_reg));
  5103   match(RegL);
  5104   match(mRegL);
  5106   format %{ %}
  5107   interface(REG_INTER);
  5108 %}
  5110 operand a6RegL() %{
  5111   constraint(ALLOC_IN_RC(a6_long_reg));
  5112   match(RegL);
  5113   match(mRegL);
  5115   format %{ %}
  5116   interface(REG_INTER);
  5117 %}
  5119 operand a7RegL() %{
  5120   constraint(ALLOC_IN_RC(a7_long_reg));
  5121   match(RegL);
  5122   match(mRegL);
  5124   format %{ %}
  5125   interface(REG_INTER);
  5126 %}
  5128 operand s0RegL() %{
  5129   constraint(ALLOC_IN_RC(s0_long_reg));
  5130   match(RegL);
  5131   match(mRegL);
  5133   format %{ %}
  5134   interface(REG_INTER);
  5135 %}
  5137 operand s1RegL() %{
  5138   constraint(ALLOC_IN_RC(s1_long_reg));
  5139   match(RegL);
  5140   match(mRegL);
  5142   format %{ %}
  5143   interface(REG_INTER);
  5144 %}
  5146 operand s2RegL() %{
  5147   constraint(ALLOC_IN_RC(s2_long_reg));
  5148   match(RegL);
  5149   match(mRegL);
  5151   format %{ %}
  5152   interface(REG_INTER);
  5153 %}
  5155 operand s3RegL() %{
  5156   constraint(ALLOC_IN_RC(s3_long_reg));
  5157   match(RegL);
  5158   match(mRegL);
  5160   format %{ %}
  5161   interface(REG_INTER);
  5162 %}
  5164 operand s4RegL() %{
  5165   constraint(ALLOC_IN_RC(s4_long_reg));
  5166   match(RegL);
  5167   match(mRegL);
  5169   format %{ %}
  5170   interface(REG_INTER);
  5171 %}
  5173 operand s7RegL() %{
  5174   constraint(ALLOC_IN_RC(s7_long_reg));
  5175   match(RegL);
  5176   match(mRegL);
  5178   format %{ %}
  5179   interface(REG_INTER);
  5180 %}
  5182 // Floating register operands
  5183 operand regF() %{
  5184   constraint(ALLOC_IN_RC(flt_reg));
  5185   match(RegF);
  5187   format %{ %}
  5188   interface(REG_INTER);
  5189 %}
  5191 //Double Precision Floating register operands
  5192 operand regD() %{
  5193   constraint(ALLOC_IN_RC(dbl_reg));
  5194   match(RegD);
  5196   format %{ %}
  5197   interface(REG_INTER);
  5198 %}
  5200 //----------Memory Operands----------------------------------------------------
  5201 // Indirect Memory Operand
  5202 operand indirect(mRegP reg) %{
  5203   constraint(ALLOC_IN_RC(p_reg));
  5204   match(reg);
  5206   format %{ "[$reg] @ indirect" %}
  5207   interface(MEMORY_INTER) %{
  5208     base($reg);
  5209     index(0x0);	/* NO_INDEX */
  5210     scale(0x0);
  5211     disp(0x0);
  5212   %}
  5213 %}
  5215 // Indirect Memory Plus Short Offset Operand
  5216 operand indOffset8(mRegP reg, immL8 off)
  5217 %{
  5218   constraint(ALLOC_IN_RC(p_reg));
  5219   match(AddP reg off);
  5221   op_cost(10);
  5222   format %{ "[$reg + $off (8-bit)] @ indOffset8" %}
  5223   interface(MEMORY_INTER) %{
  5224     base($reg);
  5225     index(0x0); /* NO_INDEX */
  5226     scale(0x0);
  5227     disp($off);
  5228   %}
  5229 %}
  5231 // Indirect Memory Times Scale Plus Index Register
  5232 operand indIndexScale(mRegP reg, mRegL lreg, immI2 scale)
  5233 %{
  5234   constraint(ALLOC_IN_RC(p_reg));
  5235   match(AddP reg (LShiftL lreg scale));
  5237   op_cost(10);
  5238   format %{"[$reg + $lreg << $scale] @ indIndexScale" %}
  5239   interface(MEMORY_INTER) %{
  5240     base($reg);
  5241     index($lreg);
  5242     scale($scale);
  5243     disp(0x0);
  5244   %}
  5245 %}
  5248 // [base + index + offset] 
  5249 operand baseIndexOffset8(mRegP base, mRegL index, immL8 off)
  5250 %{
  5251   constraint(ALLOC_IN_RC(p_reg));
  5252   op_cost(5);
  5253   match(AddP (AddP base index) off);
  5255   format %{ "[$base + $index + $off (8-bit)] @ baseIndexOffset8" %}
  5256   interface(MEMORY_INTER) %{
  5257     base($base);
  5258     index($index);
  5259     scale(0x0);
  5260     disp($off);
  5261   %}
  5262 %}
  5264 // [base + index + offset] 
  5265 operand baseIndexOffset8_convI2L(mRegP base, mRegI index, immL8 off)
  5266 %{
  5267   constraint(ALLOC_IN_RC(p_reg));
  5268   op_cost(5);
  5269   match(AddP (AddP base (ConvI2L index)) off);
  5271   format %{ "[$base + $index + $off (8-bit)] @ baseIndexOffset8_convI2L" %}
  5272   interface(MEMORY_INTER) %{
  5273     base($base);
  5274     index($index);
  5275     scale(0x0);
  5276     disp($off);
  5277   %}
  5278 %}
  5280 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5281 operand indIndexScaleOffset8(mRegP reg, immL8 off, mRegL lreg, immI2 scale)
  5282 %{
  5283   constraint(ALLOC_IN_RC(p_reg));
  5284   match(AddP (AddP reg (LShiftL lreg scale)) off);
  5286   op_cost(10);
  5287   format %{"[$reg + $off + $lreg << $scale] @ indIndexScaleOffset8" %}
  5288   interface(MEMORY_INTER) %{
  5289     base($reg);
  5290     index($lreg);
  5291     scale($scale);
  5292     disp($off);
  5293   %}
  5294 %}
  5296 operand indIndexScaleOffset8_convI2L(mRegP reg, immL8 off, mRegI ireg, immI2 scale)
  5297 %{
  5298   constraint(ALLOC_IN_RC(p_reg));
  5299   match(AddP (AddP reg (LShiftL (ConvI2L ireg) scale)) off);
  5301   op_cost(10);
  5302   format %{"[$reg + $off + $ireg << $scale] @ indIndexScaleOffset8_convI2L" %}
  5303   interface(MEMORY_INTER) %{
  5304     base($reg);
  5305     index($ireg);
  5306     scale($scale);
  5307     disp($off);
  5308   %}
  5309 %}
  5311 // [base + index<<scale + offset] 
  5312 operand basePosIndexScaleOffset8(mRegP base, mRegI index, immL8 off, immI_0_31 scale)
  5313 %{
  5314   constraint(ALLOC_IN_RC(p_reg));
  5315   //predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
  5316   op_cost(10);
  5317   match(AddP (AddP base (LShiftL (ConvI2L index) scale)) off);
  5319   format %{ "[$base + $index << $scale + $off (8-bit)] @ basePosIndexScaleOffset8" %}
  5320   interface(MEMORY_INTER) %{
  5321     base($base);
  5322     index($index);
  5323     scale($scale);
  5324     disp($off);
  5325   %}
  5326 %}
  5328 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5329 operand indIndexScaleOffsetNarrow(mRegN reg, immL8 off, mRegL lreg, immI2 scale)
  5330 %{
  5331   predicate(Universe::narrow_oop_shift() == 0);
  5332   constraint(ALLOC_IN_RC(p_reg));
  5333   match(AddP (AddP (DecodeN reg) (LShiftL lreg scale)) off);
  5335   op_cost(10);
  5336   format %{"[$reg + $off + $lreg << $scale] @ indIndexScaleOffsetNarrow" %}
  5337   interface(MEMORY_INTER) %{
  5338     base($reg);
  5339     index($lreg);
  5340     scale($scale);
  5341     disp($off);
  5342   %}
  5343 %}
  5345 // [base + index<<scale + offset] for compressd Oops
  5346 operand indPosIndexI2LScaleOffset8Narrow(mRegN base, mRegI index, immL8 off, immI_0_31 scale)
  5347 %{
  5348   constraint(ALLOC_IN_RC(p_reg));
  5349   //predicate(Universe::narrow_oop_shift() == 0 && n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
  5350   predicate(Universe::narrow_oop_shift() == 0);
  5351   op_cost(10);
  5352   match(AddP (AddP (DecodeN base) (LShiftL (ConvI2L index) scale)) off);
  5354   format %{ "[$base + $index << $scale + $off (8-bit)] @ indPosIndexI2LScaleOffset8Narrow" %}
  5355   interface(MEMORY_INTER) %{
  5356     base($base);
  5357     index($index);
  5358     scale($scale);
  5359     disp($off);
  5360   %}
  5361 %}
  5363 //FIXME: I think it's better to limit the immI to be 16-bit at most!
  5364 // Indirect Memory Plus Long Offset Operand
  5365 operand indOffset32(mRegP reg, immL32 off) %{
  5366   constraint(ALLOC_IN_RC(p_reg));
  5367   op_cost(20);
  5368   match(AddP reg off);
  5370   format %{ "[$reg + $off (32-bit)] @ indOffset32" %}
  5371   interface(MEMORY_INTER) %{
  5372     base($reg);
  5373     index(0x0); 	/* NO_INDEX */
  5374     scale(0x0);
  5375     disp($off);
  5376   %}
  5377 %}
  5379 // Indirect Memory Plus Index Register 
  5380 operand indIndex(mRegP addr, mRegL index) %{
  5381   constraint(ALLOC_IN_RC(p_reg));
  5382   match(AddP addr index);
  5384   op_cost(20);
  5385   format %{"[$addr + $index] @ indIndex" %}
  5386   interface(MEMORY_INTER) %{
  5387     base($addr);
  5388     index($index);
  5389     scale(0x0);
  5390     disp(0x0);
  5391   %}
  5392 %}
  5394 operand indirectNarrowKlass(mRegN reg)
  5395 %{
  5396   predicate(Universe::narrow_klass_shift() == 0);
  5397   constraint(ALLOC_IN_RC(p_reg));
  5398   op_cost(10);
  5399   match(DecodeNKlass reg);
  5401   format %{ "[$reg] @ indirectNarrowKlass" %}
  5402   interface(MEMORY_INTER) %{
  5403     base($reg);
  5404     index(0x0);
  5405     scale(0x0);
  5406     disp(0x0);
  5407   %}
  5408 %}
  5410 operand indOffset8NarrowKlass(mRegN reg, immL8 off)
  5411 %{
  5412   predicate(Universe::narrow_klass_shift() == 0);
  5413   constraint(ALLOC_IN_RC(p_reg));
  5414   op_cost(10);
  5415   match(AddP (DecodeNKlass reg) off);
  5417   format %{ "[$reg + $off (8-bit)] @ indOffset8NarrowKlass" %}
  5418   interface(MEMORY_INTER) %{
  5419     base($reg);
  5420     index(0x0);
  5421     scale(0x0);
  5422     disp($off);
  5423   %}
  5424 %}
  5426 operand indOffset32NarrowKlass(mRegN reg, immL32 off)
  5427 %{
  5428   predicate(Universe::narrow_klass_shift() == 0);
  5429   constraint(ALLOC_IN_RC(p_reg));
  5430   op_cost(10);
  5431   match(AddP (DecodeNKlass reg) off);
  5433   format %{ "[$reg + $off (32-bit)] @ indOffset32NarrowKlass" %}
  5434   interface(MEMORY_INTER) %{
  5435     base($reg);
  5436     index(0x0);
  5437     scale(0x0);
  5438     disp($off);
  5439   %}
  5440 %}
  5442 operand indIndexOffsetNarrowKlass(mRegN reg, mRegL lreg, immL32 off)
  5443 %{
  5444   predicate(Universe::narrow_klass_shift() == 0);
  5445   constraint(ALLOC_IN_RC(p_reg));
  5446   match(AddP (AddP (DecodeNKlass reg) lreg) off);
  5448   op_cost(10);
  5449   format %{"[$reg + $off + $lreg] @ indIndexOffsetNarrowKlass" %}
  5450   interface(MEMORY_INTER) %{
  5451     base($reg);
  5452     index($lreg);
  5453     scale(0x0);
  5454     disp($off);
  5455   %}
  5456 %}
  5458 operand indIndexNarrowKlass(mRegN reg, mRegL lreg)
  5459 %{
  5460   predicate(Universe::narrow_klass_shift() == 0);
  5461   constraint(ALLOC_IN_RC(p_reg));
  5462   match(AddP (DecodeNKlass reg) lreg);
  5464   op_cost(10);
  5465   format %{"[$reg + $lreg] @ indIndexNarrowKlass" %}
  5466   interface(MEMORY_INTER) %{
  5467     base($reg);
  5468     index($lreg);
  5469     scale(0x0);
  5470     disp(0x0);
  5471   %}
  5472 %}
  5474 // Indirect Memory Operand
  5475 operand indirectNarrow(mRegN reg)
  5476 %{
  5477   predicate(Universe::narrow_oop_shift() == 0);
  5478   constraint(ALLOC_IN_RC(p_reg));
  5479   op_cost(10);
  5480   match(DecodeN reg);
  5482   format %{ "[$reg] @ indirectNarrow" %}
  5483   interface(MEMORY_INTER) %{
  5484     base($reg);
  5485     index(0x0);
  5486     scale(0x0);
  5487     disp(0x0);
  5488   %}
  5489 %}
  5491 // Indirect Memory Plus Short Offset Operand
  5492 operand indOffset8Narrow(mRegN reg, immL8 off)
  5493 %{
  5494   predicate(Universe::narrow_oop_shift() == 0);
  5495   constraint(ALLOC_IN_RC(p_reg));
  5496   op_cost(10);
  5497   match(AddP (DecodeN reg) off);
  5499   format %{ "[$reg + $off (8-bit)] @ indOffset8Narrow" %}
  5500   interface(MEMORY_INTER) %{
  5501     base($reg);
  5502     index(0x0);
  5503     scale(0x0);
  5504     disp($off);
  5505   %}
  5506 %}
  5508 // Indirect Memory Plus Index Register Plus Offset Operand
  5509 operand indIndexOffset8Narrow(mRegN reg, mRegL lreg, immL8 off)
  5510 %{
  5511   predicate(Universe::narrow_oop_shift() == 0);
  5512   constraint(ALLOC_IN_RC(p_reg));
  5513   match(AddP (AddP (DecodeN reg) lreg) off);
  5515   op_cost(10);
  5516   format %{"[$reg + $off + $lreg] @ indIndexOffset8Narrow" %}
  5517   interface(MEMORY_INTER) %{
  5518     base($reg);
  5519     index($lreg);
  5520     scale(0x0);
  5521     disp($off);
  5522   %}
  5523 %}
  5525 //----------Load Long Memory Operands------------------------------------------
  5526 // The load-long idiom will use it's address expression again after loading
  5527 // the first word of the long.  If the load-long destination overlaps with
  5528 // registers used in the addressing expression, the 2nd half will be loaded
  5529 // from a clobbered address.  Fix this by requiring that load-long use
  5530 // address registers that do not overlap with the load-long target.
  5532 // load-long support
  5533 operand load_long_RegP() %{
  5534   constraint(ALLOC_IN_RC(p_reg));
  5535   match(RegP);
  5536   match(mRegP);
  5537   op_cost(100);
  5538   format %{  %}
  5539   interface(REG_INTER);
  5540 %}
  5542 // Indirect Memory Operand Long
  5543 operand load_long_indirect(load_long_RegP reg) %{
  5544   constraint(ALLOC_IN_RC(p_reg));
  5545   match(reg);
  5547   format %{ "[$reg]" %}
  5548   interface(MEMORY_INTER) %{
  5549     base($reg);
  5550     index(0x0);
  5551     scale(0x0);
  5552     disp(0x0);
  5553   %}
  5554 %}
  5556 // Indirect Memory Plus Long Offset Operand
  5557 operand load_long_indOffset32(load_long_RegP reg, immL32 off) %{
  5558   match(AddP reg off);
  5560   format %{ "[$reg + $off]" %}
  5561   interface(MEMORY_INTER) %{
  5562     base($reg);
  5563     index(0x0);
  5564     scale(0x0);
  5565     disp($off);
  5566   %}
  5567 %}
  5569 //----------Conditional Branch Operands----------------------------------------
  5570 // Comparison Op  - This is the operation of the comparison, and is limited to
  5571 //                  the following set of codes:
  5572 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5573 //
  5574 // Other attributes of the comparison, such as unsignedness, are specified
  5575 // by the comparison instruction that sets a condition code flags register.
  5576 // That result is represented by a flags operand whose subtype is appropriate
  5577 // to the unsignedness (etc.) of the comparison.
  5578 //
  5579 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5580 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5581 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5583 // Comparision Code
  5584 operand cmpOp() %{
  5585   match(Bool);
  5587   format %{ "" %}
  5588   interface(COND_INTER) %{
  5589     equal(0x01);
  5590     not_equal(0x02);
  5591     greater(0x03);
  5592     greater_equal(0x04);
  5593     less(0x05);
  5594     less_equal(0x06);
  5595     overflow(0x7);
  5596     no_overflow(0x8);
  5597   %}
  5598 %}
  5601 // Comparision Code
  5602 // Comparison Code, unsigned compare.  Used by FP also, with
  5603 // C2 (unordered) turned into GT or LT already.  The other bits
  5604 // C0 and C3 are turned into Carry & Zero flags.
  5605 operand cmpOpU() %{
  5606   match(Bool);
  5608   format %{ "" %}
  5609   interface(COND_INTER) %{
  5610     equal(0x01);
  5611     not_equal(0x02);
  5612     greater(0x03);
  5613     greater_equal(0x04);
  5614     less(0x05);
  5615     less_equal(0x06);
  5616     overflow(0x7);
  5617     no_overflow(0x8);
  5618   %}
  5619 %}
  5621 /*
  5622 // Comparison Code, unsigned compare.  Used by FP also, with
  5623 // C2 (unordered) turned into GT or LT already.  The other bits
  5624 // C0 and C3 are turned into Carry & Zero flags.
  5625 operand cmpOpU() %{
  5626   match(Bool);
  5628   format %{ "" %}
  5629   interface(COND_INTER) %{
  5630     equal(0x4);
  5631     not_equal(0x5);
  5632     less(0x2);
  5633     greater_equal(0x3);
  5634     less_equal(0x6);
  5635     greater(0x7);
  5636   %}
  5637 %}
  5638 */
  5639 /*
  5640 // Comparison Code for FP conditional move
  5641 operand cmpOp_fcmov() %{
  5642   match(Bool);
  5644   format %{ "" %}
  5645   interface(COND_INTER) %{
  5646     equal        (0x01);
  5647     not_equal    (0x02);
  5648     greater      (0x03);
  5649     greater_equal(0x04);
  5650     less         (0x05);
  5651     less_equal   (0x06);
  5652   %}
  5653 %}
  5655 // Comparision Code used in long compares
  5656 operand cmpOp_commute() %{
  5657   match(Bool);
  5659   format %{ "" %}
  5660   interface(COND_INTER) %{
  5661     equal(0x4);
  5662     not_equal(0x5);
  5663     less(0xF);
  5664     greater_equal(0xE);
  5665     less_equal(0xD);
  5666     greater(0xC);
  5667   %}
  5668 %}
  5669 */
  5671 //----------Special Memory Operands--------------------------------------------
  5672 // Stack Slot Operand - This operand is used for loading and storing temporary
  5673 //                      values on the stack where a match requires a value to
  5674 //                      flow through memory.
  5675 operand stackSlotP(sRegP reg) %{
  5676   constraint(ALLOC_IN_RC(stack_slots));
  5677   // No match rule because this operand is only generated in matching
  5678   op_cost(50);
  5679   format %{ "[$reg]" %}
  5680   interface(MEMORY_INTER) %{
  5681     base(0x1d);  // SP
  5682     index(0x0);  // No Index
  5683     scale(0x0);  // No Scale
  5684     disp($reg);  // Stack Offset
  5685   %}
  5686 %}
  5688 operand stackSlotI(sRegI reg) %{
  5689   constraint(ALLOC_IN_RC(stack_slots));
  5690   // No match rule because this operand is only generated in matching
  5691   op_cost(50);
  5692   format %{ "[$reg]" %}
  5693   interface(MEMORY_INTER) %{
  5694     base(0x1d);  // SP
  5695     index(0x0);  // No Index
  5696     scale(0x0);  // No Scale
  5697     disp($reg);  // Stack Offset
  5698   %}
  5699 %}
  5701 operand stackSlotF(sRegF reg) %{
  5702   constraint(ALLOC_IN_RC(stack_slots));
  5703   // No match rule because this operand is only generated in matching
  5704   op_cost(50);
  5705   format %{ "[$reg]" %}
  5706   interface(MEMORY_INTER) %{
  5707     base(0x1d);  // SP
  5708     index(0x0);  // No Index
  5709     scale(0x0);  // No Scale
  5710     disp($reg);  // Stack Offset
  5711   %}
  5712 %}
  5714 operand stackSlotD(sRegD reg) %{
  5715   constraint(ALLOC_IN_RC(stack_slots));
  5716   // No match rule because this operand is only generated in matching
  5717   op_cost(50);
  5718   format %{ "[$reg]" %}
  5719   interface(MEMORY_INTER) %{
  5720     base(0x1d);  // SP
  5721     index(0x0);  // No Index
  5722     scale(0x0);  // No Scale
  5723     disp($reg);  // Stack Offset
  5724   %}
  5725 %}
  5727 operand stackSlotL(sRegL reg) %{
  5728   constraint(ALLOC_IN_RC(stack_slots));
  5729   // No match rule because this operand is only generated in matching
  5730   op_cost(50);
  5731   format %{ "[$reg]" %}
  5732   interface(MEMORY_INTER) %{
  5733     base(0x1d);  // SP
  5734     index(0x0);  // No Index
  5735     scale(0x0);  // No Scale
  5736     disp($reg);  // Stack Offset
  5737   %}
  5738 %}
  5741 //------------------------OPERAND CLASSES--------------------------------------
  5742 //opclass memory( direct, indirect, indOffset16, indOffset32, indOffset32X, indIndexOffset );
  5743 opclass memory( indirect, indirectNarrow, indOffset8, indOffset32, indIndex, indIndexScale, load_long_indirect, load_long_indOffset32, baseIndexOffset8, baseIndexOffset8_convI2L, indIndexScaleOffset8, indIndexScaleOffset8_convI2L, basePosIndexScaleOffset8, indIndexScaleOffsetNarrow, indPosIndexI2LScaleOffset8Narrow, indOffset8Narrow, indIndexOffset8Narrow); 
  5746 //----------PIPELINE-----------------------------------------------------------
  5747 // Rules which define the behavior of the target architectures pipeline.
  5749 pipeline %{
  5751 //----------ATTRIBUTES---------------------------------------------------------
  5752 attributes %{
  5753  	fixed_size_instructions;        	// Fixed size instructions
  5754  	branch_has_delay_slot;			// branch have delay slot in gs2
  5755  	max_instructions_per_bundle = 1;   	// 1 instruction per bundle
  5756  	max_bundles_per_cycle = 4;       	// Up to 4 bundles per cycle
  5757         bundle_unit_size=4;
  5758  	instruction_unit_size = 4;         	// An instruction is 4 bytes long
  5759  	instruction_fetch_unit_size = 16;  	// The processor fetches one line
  5760  	instruction_fetch_units = 1;       	// of 16 bytes
  5762  	// List of nop instructions
  5763  	nops( MachNop );
  5764  %}
  5766  //----------RESOURCES----------------------------------------------------------
  5767  // Resources are the functional units available to the machine
  5769  resources(D1, D2, D3, D4, DECODE = D1 | D2 | D3| D4,  ALU1, ALU2,  ALU = ALU1 | ALU2,  FPU1, FPU2, FPU = FPU1 | FPU2,  MEM,  BR); 
  5771  //----------PIPELINE DESCRIPTION-----------------------------------------------
  5772  // Pipeline Description specifies the stages in the machine's pipeline
  5774  // IF: fetch
  5775  // ID: decode
  5776  // RD: read 
  5777  // CA: caculate 
  5778  // WB: write back 
  5779  // CM: commit 
  5781  pipe_desc(IF, ID, RD, CA, WB, CM);
  5784  //----------PIPELINE CLASSES---------------------------------------------------
  5785  // Pipeline Classes describe the stages in which input and output are
  5786  // referenced by the hardware pipeline.
  5788  //No.1 Integer ALU reg-reg operation : dst <-- reg1 op reg2  
  5789  pipe_class ialu_regI_regI(mRegI dst, mRegI src1, mRegI src2) %{
  5790         single_instruction;
  5791  	src1   : RD(read);
  5792  	src2   : RD(read);
  5793         dst    : WB(write)+1;
  5794         DECODE : ID;
  5795  	ALU    : CA;
  5796  %}
  5798  //No.19 Integer mult operation : dst <-- reg1 mult reg2  
  5799  pipe_class ialu_mult(mRegI dst, mRegI src1, mRegI src2) %{
  5800  	src1   : RD(read);
  5801  	src2   : RD(read);
  5802         dst    : WB(write)+5;
  5803         DECODE : ID;
  5804  	ALU2   : CA;
  5805  %}
  5807  pipe_class mulL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
  5808  	src1   : RD(read);
  5809  	src2   : RD(read);
  5810         dst    : WB(write)+10;
  5811         DECODE : ID;
  5812  	ALU2   : CA;
  5813  %}
  5815  //No.19 Integer div operation : dst <-- reg1 div reg2  
  5816  pipe_class ialu_div(mRegI dst, mRegI src1, mRegI src2) %{
  5817  	src1   : RD(read);
  5818  	src2   : RD(read);
  5819         dst    : WB(write)+10;
  5820         DECODE : ID;
  5821  	ALU2   : CA;
  5822  %}
  5824  //No.19 Integer mod operation : dst <-- reg1 mod reg2  
  5825  pipe_class ialu_mod(mRegI dst, mRegI src1, mRegI src2) %{
  5826         instruction_count(2);
  5827  	src1   : RD(read);
  5828  	src2   : RD(read);
  5829         dst    : WB(write)+10;
  5830         DECODE : ID;
  5831  	ALU2   : CA;
  5832  %}
  5834  //No.15 Long ALU reg-reg operation : dst <-- reg1 op reg2  
  5835  pipe_class ialu_regL_regL(mRegL dst, mRegL src1, mRegL src2) %{
  5836         instruction_count(2);
  5837  	src1   : RD(read);
  5838  	src2   : RD(read);
  5839         dst    : WB(write);
  5840         DECODE : ID;
  5841  	ALU    : CA;
  5842  %}
  5844  //No.18 Long ALU reg-imm16 operation : dst <-- reg1 op imm16 
  5845  pipe_class ialu_regL_imm16(mRegL dst, mRegL src) %{
  5846         instruction_count(2);
  5847  	src    : RD(read);
  5848         dst    : WB(write);
  5849         DECODE : ID;
  5850  	ALU    : CA;
  5851  %}
  5853  //no.16 load Long from memory :                     
  5854  pipe_class ialu_loadL(mRegL dst, memory mem) %{
  5855  	instruction_count(2);
  5856  	mem    : RD(read);
  5857  	dst    : WB(write)+5;
  5858         DECODE : ID;
  5859  	MEM    : RD;
  5860  %}
  5862  //No.17 Store Long to Memory :                     
  5863  pipe_class ialu_storeL(mRegL src, memory mem) %{
  5864  	instruction_count(2);
  5865  	mem    : RD(read);
  5866  	src    : RD(read);
  5867         DECODE : ID;
  5868  	MEM    : RD;
  5869  %}
  5871  //No.2 Integer ALU reg-imm16 operation : dst <-- reg1 op imm16  
  5872  pipe_class ialu_regI_imm16(mRegI dst, mRegI src) %{
  5873         single_instruction;
  5874  	src    : RD(read);
  5875         dst    : WB(write);
  5876         DECODE : ID;
  5877  	ALU    : CA;
  5878  %}
  5880  //No.3 Integer move operation : dst <-- reg  
  5881  pipe_class ialu_regI_mov(mRegI dst, mRegI src) %{
  5882  	src    : RD(read);
  5883         dst    : WB(write);
  5884         DECODE : ID;
  5885  	ALU    : CA;
  5886  %}
  5888  //No.4 No instructions : do nothing 
  5889  pipe_class empty( ) %{
  5890         instruction_count(0);
  5891  %}
  5893  //No.5 UnConditional branch :
  5894  pipe_class pipe_jump( label labl ) %{
  5895         multiple_bundles;
  5896         DECODE : ID;
  5897 	BR     : RD;
  5898  %}
  5900  //No.6 ALU Conditional branch :
  5901  pipe_class pipe_alu_branch(mRegI src1, mRegI src2, label labl ) %{
  5902         multiple_bundles;
  5903         src1   : RD(read);
  5904         src2   : RD(read);
  5905         DECODE : ID;
  5906 	BR     : RD;
  5907  %}
  5909  //no.7 load integer from memory :                     
  5910  pipe_class ialu_loadI(mRegI dst, memory mem) %{
  5911  	mem    : RD(read);
  5912  	dst    : WB(write)+3;
  5913         DECODE : ID;
  5914  	MEM    : RD;
  5915  %}
  5917  //No.8 Store Integer to Memory :                     
  5918  pipe_class ialu_storeI(mRegI src, memory mem) %{
  5919  	mem    : RD(read);
  5920  	src    : RD(read);
  5921         DECODE : ID;
  5922  	MEM    : RD;
  5923  %}
  5926  //No.10 Floating FPU reg-reg operation : dst <-- reg1 op reg2  
  5927  pipe_class fpu_regF_regF(regF dst, regF src1, regF src2) %{
  5928  	src1   : RD(read);
  5929  	src2   : RD(read);
  5930         dst    : WB(write);
  5931         DECODE : ID;
  5932  	FPU    : CA;
  5933  %}
  5935  //No.22 Floating div operation : dst <-- reg1 div reg2  
  5936  pipe_class fpu_div(regF dst, regF src1, regF src2) %{
  5937  	src1   : RD(read);
  5938  	src2   : RD(read);
  5939         dst    : WB(write);
  5940         DECODE : ID;
  5941  	FPU2   : CA;
  5942  %}
  5944  pipe_class fcvt_I2D(regD dst, mRegI src) %{
  5945  	src    : RD(read);
  5946         dst    : WB(write);
  5947         DECODE : ID;
  5948  	FPU1   : CA;
  5949  %}
  5951  pipe_class fcvt_D2I(mRegI dst, regD src) %{
  5952  	src    : RD(read);
  5953         dst    : WB(write);
  5954         DECODE : ID;
  5955  	FPU1   : CA;
  5956  %}
  5958  pipe_class pipe_mfc1(mRegI dst, regD src) %{
  5959  	src    : RD(read);
  5960         dst    : WB(write);
  5961         DECODE : ID;
  5962  	MEM    : RD;
  5963  %}
  5965  pipe_class pipe_mtc1(regD dst, mRegI src) %{
  5966  	src    : RD(read);
  5967         dst    : WB(write);
  5968         DECODE : ID;
  5969  	MEM    : RD(5);
  5970  %}
  5972  //No.23 Floating sqrt operation : dst <-- reg1 sqrt reg2  
  5973  pipe_class fpu_sqrt(regF dst, regF src1, regF src2) %{
  5974         multiple_bundles;
  5975  	src1   : RD(read);
  5976  	src2   : RD(read);
  5977         dst    : WB(write);
  5978         DECODE : ID;
  5979  	FPU2   : CA;
  5980  %}
  5982  //No.11 Load Floating from Memory :                     
  5983  pipe_class fpu_loadF(regF dst, memory mem) %{
  5984         instruction_count(1);
  5985  	mem    : RD(read);
  5986  	dst    : WB(write)+3;
  5987         DECODE : ID;
  5988  	MEM    : RD;
  5989  %}
  5991  //No.12 Store Floating to Memory :                     
  5992  pipe_class fpu_storeF(regF src, memory mem) %{
  5993         instruction_count(1);
  5994  	mem    : RD(read);
  5995  	src    : RD(read);
  5996         DECODE : ID;
  5997  	MEM    : RD;
  5998  %}
  6000  //No.13 FPU Conditional branch :
  6001  pipe_class pipe_fpu_branch(regF src1, regF src2, label labl ) %{
  6002         multiple_bundles;
  6003         src1   : RD(read);
  6004         src2   : RD(read);
  6005         DECODE : ID;
  6006 	BR     : RD;
  6007  %}
  6009 //No.14 Floating FPU reg operation : dst <-- op reg  
  6010  pipe_class fpu1_regF(regF dst, regF src) %{
  6011  	src    : RD(read);
  6012         dst    : WB(write);
  6013         DECODE : ID;
  6014  	FPU    : CA;
  6015  %}
  6017  pipe_class long_memory_op() %{
  6018 	instruction_count(10); multiple_bundles; force_serialization;
  6019 	fixed_latency(30);
  6020  %}
  6022  pipe_class simple_call() %{
  6023 	instruction_count(10); multiple_bundles; force_serialization;
  6024 	fixed_latency(200);
  6025 	BR     : RD;
  6026  %}
  6028  pipe_class call() %{
  6029 	instruction_count(10); multiple_bundles; force_serialization;
  6030 	fixed_latency(200);
  6031  %}
  6033  //FIXME:
  6034  //No.9 Piple slow : for multi-instructions 
  6035  pipe_class pipe_slow(  ) %{
  6036 	instruction_count(20);
  6037         force_serialization;
  6038         multiple_bundles;
  6039 	fixed_latency(50);
  6040  %}
  6042 %}
  6046 //----------INSTRUCTIONS-------------------------------------------------------
  6047 // 
  6048 // match      -- States which machine-independent subtree may be replaced 
  6049 //               by this instruction.
  6050 // ins_cost   -- The estimated cost of this instruction is used by instruction
  6051 //               selection to identify a minimum cost tree of machine 
  6052 //               instructions that matches a tree of machine-independent 
  6053 //               instructions.
  6054 // format     -- A string providing the disassembly for this instruction.
  6055 //               The value of an instruction's operand may be inserted 
  6056 //               by referring to it with a '$' prefix.
  6057 // opcode     -- Three instruction opcodes may be provided.  These are referred 
  6058 //               to within an encode class as $primary, $secondary, and $tertiary
  6059 //               respectively.  The primary opcode is commonly used to 
  6060 //               indicate the type of machine instruction, while secondary 
  6061 //               and tertiary are often used for prefix options or addressing 
  6062 //               modes.
  6063 // ins_encode -- A list of encode classes with parameters. The encode class
  6064 //               name must have been defined in an 'enc_class' specification
  6065 //               in the encode section of the architecture description.
  6068 // Load Integer
  6069 instruct loadI(mRegI dst, memory mem) %{
  6070   match(Set dst (LoadI mem));
  6072   ins_cost(125);
  6073   format %{ "lw    $dst, $mem 	#@loadI" %}
  6074   ins_encode (load_I_enc(dst, mem));
  6075   ins_pipe( ialu_loadI );
  6076 %}
  6078 instruct loadI_convI2L(mRegL dst, memory mem) %{
  6079   match(Set dst (ConvI2L (LoadI mem)));
  6081   ins_cost(125);
  6082   format %{ "lw    $dst, $mem 	#@loadI_convI2L" %}
  6083   ins_encode (load_I_enc(dst, mem));
  6084   ins_pipe( ialu_loadI );
  6085 %}
  6087 // Load Integer (32 bit signed) to Byte (8 bit signed)
  6088 instruct loadI2B(mRegI dst, memory mem, immI_24 twentyfour) %{
  6089   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  6091   ins_cost(125);
  6092   format %{ "lb  $dst, $mem\t# int -> byte #@loadI2B" %}
  6093   ins_encode(load_B_enc(dst, mem));
  6094   ins_pipe(ialu_loadI);
  6095 %}
  6097 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  6098 instruct loadI2UB(mRegI dst, memory mem, immI_255 mask) %{
  6099   match(Set dst (AndI (LoadI mem) mask));
  6101   ins_cost(125);
  6102   format %{ "lbu  $dst, $mem\t# int -> ubyte #@loadI2UB" %}
  6103   ins_encode(load_UB_enc(dst, mem));
  6104   ins_pipe(ialu_loadI);
  6105 %}
  6107 // Load Integer (32 bit signed) to Short (16 bit signed)
  6108 instruct loadI2S(mRegI dst, memory mem, immI_16 sixteen) %{
  6109   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6111   ins_cost(125);
  6112   format %{ "lh  $dst, $mem\t# int -> short #@loadI2S" %}
  6113   ins_encode(load_S_enc(dst, mem));
  6114   ins_pipe(ialu_loadI);
  6115 %}
  6117 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6118 instruct loadI2US(mRegI dst, memory mem, immI_65535 mask) %{
  6119   match(Set dst (AndI (LoadI mem) mask));
  6121   ins_cost(125);
  6122   format %{ "lhu  $dst, $mem\t# int -> ushort/char #@loadI2US" %}
  6123   ins_encode(load_C_enc(dst, mem));
  6124   ins_pipe(ialu_loadI);
  6125 %}
  6127 // Load Long.
  6128 instruct loadL(mRegL dst, memory mem) %{
  6129 //  predicate(!((LoadLNode*)n)->require_atomic_access());
  6130   match(Set dst (LoadL mem));
  6132   ins_cost(250);
  6133   format %{ "ld    $dst, $mem   #@loadL" %}
  6134   ins_encode(load_L_enc(dst, mem));
  6135   ins_pipe( ialu_loadL );
  6136 %}
  6138 // Load Long - UNaligned
  6139 instruct loadL_unaligned(mRegL dst, memory mem) %{
  6140   match(Set dst (LoadL_unaligned mem));
  6142   // FIXME: Jin: Need more effective ldl/ldr
  6143   ins_cost(450);
  6144   format %{ "ld    $dst, $mem   #@loadL_unaligned\n\t" %}
  6145   ins_encode(load_L_enc(dst, mem));
  6146   ins_pipe( ialu_loadL );
  6147 %}
  6149 // Store Long
  6150 instruct storeL_reg(memory mem, mRegL src) %{
  6151   match(Set mem (StoreL mem src));
  6153   ins_cost(200);
  6154   format %{ "sd    $mem,   $src #@storeL_reg\n" %}
  6155   ins_encode(store_L_reg_enc(mem, src));
  6156   ins_pipe( ialu_storeL );
  6157 %}
  6160 instruct storeL_immL0(memory mem, immL0 zero) %{
  6161   match(Set mem (StoreL mem zero));
  6163   ins_cost(180);
  6164   format %{ "sd    $mem,   zero #@storeL_immL0" %}
  6165   ins_encode(store_L_immL0_enc(mem, zero));
  6166   ins_pipe( ialu_storeL );
  6167 %}
  6169 // Load Compressed Pointer
  6170 instruct loadN(mRegN dst, memory mem)
  6171 %{
  6172    match(Set dst (LoadN mem));
  6174    ins_cost(125); // XXX
  6175    format %{ "lwu    $dst, $mem\t# compressed ptr @ loadN" %}
  6176    ins_encode (load_N_enc(dst, mem));
  6177    ins_pipe( ialu_loadI ); // XXX
  6178 %}
  6180 instruct loadN2P(mRegP dst, memory mem)
  6181 %{
  6182    match(Set dst (DecodeN (LoadN mem)));
  6183    predicate(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0);
  6185    ins_cost(125); // XXX
  6186    format %{ "lwu    $dst, $mem\t# @ loadN2P" %}
  6187    ins_encode (load_N_enc(dst, mem));
  6188    ins_pipe( ialu_loadI ); // XXX
  6189 %}
  6191 // Load Pointer
  6192 instruct loadP(mRegP dst, memory mem) %{
  6193   match(Set dst (LoadP mem));
  6195   ins_cost(125);
  6196   format %{ "ld    $dst, $mem #@loadP" %}
  6197   ins_encode (load_P_enc(dst, mem));
  6198   ins_pipe( ialu_loadI );
  6199 %}
  6201 // Load Klass Pointer
  6202 instruct loadKlass(mRegP dst, memory mem) %{
  6203   match(Set dst (LoadKlass mem));
  6205   ins_cost(125);
  6206   format %{ "MOV    $dst,$mem @ loadKlass" %}
  6207   ins_encode (load_P_enc(dst, mem));
  6208   ins_pipe( ialu_loadI );
  6209 %}
  6211 // Load narrow Klass Pointer
  6212 instruct loadNKlass(mRegN dst, memory mem)
  6213 %{
  6214   match(Set dst (LoadNKlass mem));
  6216   ins_cost(125); // XXX
  6217   format %{ "lwu    $dst, $mem\t# compressed klass ptr @ loadNKlass" %}
  6218   ins_encode (load_N_enc(dst, mem));
  6219   ins_pipe( ialu_loadI ); // XXX
  6220 %}
  6222 instruct loadN2PKlass(mRegP dst, memory mem)
  6223 %{
  6224   match(Set dst (DecodeNKlass (LoadNKlass mem)));
  6225   predicate(Universe::narrow_klass_base() == NULL && Universe::narrow_klass_shift() == 0);
  6227   ins_cost(125); // XXX
  6228   format %{ "lwu    $dst, $mem\t# compressed klass ptr @ loadN2PKlass" %}
  6229   ins_encode (load_N_enc(dst, mem));
  6230   ins_pipe( ialu_loadI ); // XXX
  6231 %}
  6233 // Load Constant
  6234 instruct loadConI(mRegI dst, immI src) %{
  6235   match(Set dst src);
  6237   ins_cost(150);
  6238   format %{ "mov    $dst, $src #@loadConI" %}
  6239   ins_encode %{
  6240     Register dst = $dst$$Register;
  6241     int    value = $src$$constant;
  6242     __ move(dst, value);
  6243   %}
  6244   ins_pipe( ialu_regI_regI );
  6245 %}
  6248 instruct loadConL_set64(mRegL dst, immL src) %{
  6249   match(Set dst src);
  6250   ins_cost(120);
  6251   format %{ "li   $dst, $src @ loadConL_set64" %}
  6252   ins_encode %{
  6253     __ set64($dst$$Register, $src$$constant);
  6254   %}
  6255   ins_pipe(ialu_regL_regL);
  6256 %}
  6258 /*
  6259 // Load long value from constant table (predicated by immL_expensive).
  6260 instruct loadConL_load(mRegL dst, immL_expensive src) %{
  6261   match(Set dst src);
  6262   ins_cost(150);
  6263   format %{ "ld  $dst, $constantoffset[$constanttablebase] # load long $src from table @ loadConL_ldx" %}
  6264   ins_encode %{
  6265     int con_offset = $constantoffset($src);
  6267     if (Assembler::is_simm16(con_offset)) {
  6268        __ ld($dst$$Register, $constanttablebase, con_offset);
  6269     } else {
  6270        __ set64(AT, con_offset);
  6271        if (UseLoongsonISA) {
  6272           __ gsldx($dst$$Register, $constanttablebase, AT, 0);
  6273        } else {
  6274           __ daddu(AT, $constanttablebase, AT);
  6275           __ ld($dst$$Register, AT, 0);
  6278   %}
  6279   ins_pipe(ialu_loadI);
  6280 %}
  6281 */
  6283 instruct loadConL16(mRegL dst, immL16 src) %{
  6284   match(Set dst src);
  6285   ins_cost(105);
  6286   format %{ "mov    $dst, $src #@loadConL16" %}
  6287   ins_encode %{
  6288     Register dst_reg = as_Register($dst$$reg);
  6289     int      value   = $src$$constant;
  6290     __ daddiu(dst_reg, R0, value);
  6291   %}
  6292   ins_pipe( ialu_regL_regL );
  6293 %}
  6296 instruct loadConL0(mRegL dst, immL0 src) %{
  6297   match(Set dst src);
  6298   ins_cost(100);
  6299   format %{ "mov    $dst, zero #@loadConL0" %}
  6300   ins_encode %{
  6301     Register dst_reg = as_Register($dst$$reg);
  6302     __ daddu(dst_reg, R0, R0);
  6303   %}
  6304   ins_pipe( ialu_regL_regL );
  6305 %}
  6307 // Load Range
  6308 instruct loadRange(mRegI dst, memory mem) %{
  6309   match(Set dst (LoadRange mem));
  6311   ins_cost(125);
  6312   format %{ "MOV    $dst,$mem @ loadRange" %}
  6313   ins_encode(load_I_enc(dst, mem));
  6314   ins_pipe( ialu_loadI );
  6315 %}
  6318 instruct storeP(memory mem, mRegP src ) %{
  6319   match(Set mem (StoreP mem src));
  6321   ins_cost(125);
  6322   format %{ "sd    $src, $mem #@storeP" %}
  6323   ins_encode(store_P_reg_enc(mem, src));
  6324   ins_pipe( ialu_storeI );
  6325 %}
  6327 // Store NULL Pointer, mark word, or other simple pointer constant.
  6328 instruct storeImmP0(memory mem, immP0 zero) %{
  6329   match(Set mem (StoreP mem zero));
  6331   ins_cost(125);
  6332   format %{ "mov    $mem, $zero #@storeImmP0" %}
  6333   ins_encode(store_P_immP0_enc(mem));
  6334   ins_pipe( ialu_storeI );
  6335 %}
  6337 // Store Byte Immediate
  6338 instruct storeImmB(memory mem, immI8 src) %{
  6339   match(Set mem (StoreB mem src));
  6341   ins_cost(150);
  6342   format %{ "movb   $mem, $src #@storeImmB" %}
  6343   ins_encode(store_B_immI_enc(mem, src));
  6344   ins_pipe( ialu_storeI );
  6345 %}
  6347 // Store Compressed Pointer
  6348 instruct storeN(memory mem, mRegN src)
  6349 %{
  6350   match(Set mem (StoreN mem src));
  6352   ins_cost(125); // XXX
  6353   format %{ "sw    $mem, $src\t# compressed ptr @ storeN" %}
  6354   ins_encode(store_N_reg_enc(mem, src)); 
  6355   ins_pipe( ialu_storeI );
  6356 %}
  6358 instruct storeP2N(memory mem, mRegP src)
  6359 %{
  6360   match(Set mem (StoreN mem (EncodeP src)));
  6361   predicate(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0);
  6363   ins_cost(125); // XXX
  6364   format %{ "sw    $mem, $src\t# @ storeP2N" %}
  6365   ins_encode(store_N_reg_enc(mem, src)); 
  6366   ins_pipe( ialu_storeI );
  6367 %}
  6369 instruct storeNKlass(memory mem, mRegN src)
  6370 %{
  6371   match(Set mem (StoreNKlass mem src));
  6373   ins_cost(125); // XXX
  6374   format %{ "sw    $mem, $src\t# compressed klass ptr @ storeNKlass" %}
  6375   ins_encode(store_N_reg_enc(mem, src));
  6376   ins_pipe( ialu_storeI );
  6377 %}
  6379 instruct storeP2NKlass(memory mem, mRegP src)
  6380 %{
  6381   match(Set mem (StoreNKlass mem (EncodePKlass src)));
  6382   predicate(Universe::narrow_klass_base() == NULL && Universe::narrow_klass_shift() == 0);
  6384   ins_cost(125); // XXX
  6385   format %{ "sw    $mem, $src\t# @ storeP2NKlass" %}
  6386   ins_encode(store_N_reg_enc(mem, src));
  6387   ins_pipe( ialu_storeI );
  6388 %}
  6390 instruct storeImmN0(memory mem, immN0 zero)
  6391 %{
  6392   match(Set mem (StoreN mem zero));
  6394   ins_cost(125); // XXX
  6395   format %{ "storeN0    $mem, R12\t# compressed ptr" %}
  6396   ins_encode(storeImmN0_enc(mem, zero));
  6397   ins_pipe( ialu_storeI );
  6398 %}
  6400 // Store Byte
  6401 instruct storeB(memory mem, mRegI src) %{
  6402   match(Set mem (StoreB mem src));
  6404   ins_cost(125);
  6405   format %{ "sb    $src, $mem #@storeB" %}
  6406   ins_encode(store_B_reg_enc(mem, src));
  6407   ins_pipe( ialu_storeI );
  6408 %}
  6410 instruct storeB_convL2I(memory mem, mRegL src) %{
  6411   match(Set mem (StoreB mem (ConvL2I src)));
  6413   ins_cost(125);
  6414   format %{ "sb    $src, $mem #@storeB_convL2I" %}
  6415   ins_encode(store_B_reg_enc(mem, src));
  6416   ins_pipe( ialu_storeI );
  6417 %}
  6419 // Load Byte (8bit signed)
  6420 instruct loadB(mRegI dst, memory mem) %{
  6421   match(Set dst (LoadB mem));
  6423   ins_cost(125);
  6424   format %{ "lb   $dst, $mem #@loadB" %}
  6425   ins_encode(load_B_enc(dst, mem));
  6426   ins_pipe( ialu_loadI );
  6427 %}
  6429 instruct loadB_convI2L(mRegL dst, memory mem) %{
  6430   match(Set dst (ConvI2L (LoadB mem)));
  6432   ins_cost(125);
  6433   format %{ "lb   $dst, $mem #@loadB_convI2L" %}
  6434   ins_encode(load_B_enc(dst, mem));
  6435   ins_pipe( ialu_loadI );
  6436 %}
  6438 // Load Byte (8bit UNsigned)
  6439 instruct loadUB(mRegI dst, memory mem) %{
  6440   match(Set dst (LoadUB mem));
  6442   ins_cost(125);
  6443   format %{ "lbu   $dst, $mem #@loadUB" %}
  6444   ins_encode(load_UB_enc(dst, mem));
  6445   ins_pipe( ialu_loadI );
  6446 %}
  6448 instruct loadUB_convI2L(mRegL dst, memory mem) %{
  6449   match(Set dst (ConvI2L (LoadUB mem)));
  6451   ins_cost(125);
  6452   format %{ "lbu   $dst, $mem #@loadUB_convI2L" %}
  6453   ins_encode(load_UB_enc(dst, mem));
  6454   ins_pipe( ialu_loadI );
  6455 %}
  6457 // Load Short (16bit signed)
  6458 instruct loadS(mRegI dst, memory mem) %{
  6459   match(Set dst (LoadS mem));
  6461   ins_cost(125);
  6462   format %{ "lh   $dst, $mem #@loadS" %}
  6463   ins_encode(load_S_enc(dst, mem));
  6464   ins_pipe( ialu_loadI );
  6465 %}
  6467 // Load Short (16 bit signed) to Byte (8 bit signed)
  6468 instruct loadS2B(mRegI dst, memory mem, immI_24 twentyfour) %{
  6469   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  6471   ins_cost(125);
  6472   format %{ "lb $dst, $mem\t# short -> byte #@loadS2B" %}
  6473   ins_encode(load_B_enc(dst, mem));
  6474   ins_pipe(ialu_loadI);
  6475 %}
  6477 instruct loadS_convI2L(mRegL dst, memory mem) %{
  6478   match(Set dst (ConvI2L (LoadS mem)));
  6480   ins_cost(125);
  6481   format %{ "lh   $dst, $mem #@loadS_convI2L" %}
  6482   ins_encode(load_S_enc(dst, mem));
  6483   ins_pipe( ialu_loadI );
  6484 %}
  6486 // Store Integer Immediate
  6487 instruct storeImmI(memory mem, immI src) %{
  6488   match(Set mem (StoreI mem src));
  6490   ins_cost(150);
  6491   format %{ "mov    $mem, $src #@storeImmI" %}
  6492   ins_encode(store_I_immI_enc(mem, src));
  6493   ins_pipe( ialu_storeI );
  6494 %}
  6496 // Store Integer
  6497 instruct storeI(memory mem, mRegI src) %{
  6498   match(Set mem (StoreI mem src));
  6500   ins_cost(125);
  6501   format %{ "sw    $mem, $src #@storeI" %}
  6502   ins_encode(store_I_reg_enc(mem, src));
  6503   ins_pipe( ialu_storeI );
  6504 %}
  6506 instruct storeI_convL2I(memory mem, mRegL src) %{
  6507   match(Set mem (StoreI mem (ConvL2I src)));
  6509   ins_cost(125);
  6510   format %{ "sw    $mem, $src #@storeI_convL2I" %}
  6511   ins_encode(store_I_reg_enc(mem, src));
  6512   ins_pipe( ialu_storeI );
  6513 %}
  6515 // Load Float
  6516 instruct loadF(regF dst, memory mem) %{
  6517   match(Set dst (LoadF mem));
  6519   ins_cost(150);
  6520   format %{ "loadF $dst, $mem #@loadF" %}
  6521   ins_encode(load_F_enc(dst, mem));
  6522   ins_pipe( ialu_loadI );
  6523 %}
  6525 instruct loadConP_general(mRegP dst, immP src) %{
  6526   match(Set dst src);
  6528   ins_cost(120);
  6529   format %{ "li   $dst, $src #@loadConP_general" %}
  6531   ins_encode %{
  6532     Register dst = $dst$$Register;
  6533     long* value = (long*)$src$$constant;
  6535     if($src->constant_reloc() == relocInfo::metadata_type){
  6536     	int klass_index = __ oop_recorder()->find_index((Klass*)value);
  6537     	RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6539     	__ relocate(rspec);
  6540     	__ patchable_set48(dst, (long)value);
  6541     }else if($src->constant_reloc() == relocInfo::oop_type){
  6542     	int oop_index = __ oop_recorder()->find_index((jobject)value);
  6543     	RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6545     	__ relocate(rspec);
  6546     	__ patchable_set48(dst, (long)value);
  6547     } else if ($src->constant_reloc() == relocInfo::none) {
  6548         __ set64(dst, (long)value);
  6550   %}
  6552   ins_pipe( ialu_regI_regI );
  6553 %}
  6555 /*
  6556 instruct loadConP_load(mRegP dst, immP_load src) %{
  6557   match(Set dst src);
  6559   ins_cost(100);
  6560   format %{ "ld     $dst, [$constanttablebase + $constantoffset] load from constant table: ptr=$src @ loadConP_load" %}
  6562   ins_encode %{
  6564     int con_offset = $constantoffset($src);
  6566     if (Assembler::is_simm16(con_offset)) {
  6567        __ ld($dst$$Register, $constanttablebase, con_offset);
  6568     } else {
  6569        __ set64(AT, con_offset);
  6570        if (UseLoongsonISA) {
  6571           __ gsldx($dst$$Register, $constanttablebase, AT, 0);
  6572        } else {
  6573           __ daddu(AT, $constanttablebase, AT);
  6574           __ ld($dst$$Register, AT, 0);
  6577   %}
  6579   ins_pipe(ialu_loadI);
  6580 %}
  6581 */
  6583 instruct loadConP_no_oop_cheap(mRegP dst, immP_no_oop_cheap src) %{
  6584   match(Set dst src);
  6586   ins_cost(80);
  6587   format %{ "li    $dst, $src @ loadConP_no_oop_cheap" %}
  6589   ins_encode %{
  6590     __ set64($dst$$Register, $src$$constant);
  6591   %}
  6593   ins_pipe(ialu_regI_regI);
  6594 %}
  6597 instruct loadConP_poll(mRegP dst, immP_poll src) %{
  6598   match(Set dst src);
  6600   ins_cost(50);
  6601   format %{ "li   $dst, $src #@loadConP_poll" %}
  6603   ins_encode %{
  6604     Register dst = $dst$$Register;
  6605     intptr_t value = (intptr_t)$src$$constant;
  6607     __ set64(dst, (jlong)value);
  6608   %}
  6610   ins_pipe( ialu_regI_regI );
  6611 %}
  6613 instruct loadConP0(mRegP dst, immP0 src)
  6614 %{
  6615   match(Set dst src); 
  6617   ins_cost(50);
  6618   format %{ "mov    $dst, R0\t# ptr" %}
  6619   ins_encode %{
  6620      Register dst_reg = $dst$$Register;
  6621      __ daddu(dst_reg, R0, R0);
  6622   %}
  6623   ins_pipe( ialu_regI_regI );
  6624 %}
  6626 instruct loadConN0(mRegN dst, immN0 src) %{
  6627   match(Set dst src);
  6628   format %{ "move    $dst, R0\t# compressed NULL ptr" %}
  6629   ins_encode %{
  6630     __ move($dst$$Register, R0);
  6631   %}
  6632   ins_pipe( ialu_regI_regI );
  6633 %}
  6635 instruct loadConN(mRegN dst, immN src) %{
  6636   match(Set dst src);
  6638   ins_cost(125);
  6639   format %{ "li    $dst, $src\t# compressed ptr @ loadConN" %}
  6640   ins_encode %{
  6641     Register dst = $dst$$Register;
  6642     __ set_narrow_oop(dst, (jobject)$src$$constant);
  6643   %}
  6644   ins_pipe( ialu_regI_regI ); // XXX
  6645 %}
  6647 instruct loadConNKlass(mRegN dst, immNKlass src) %{
  6648   match(Set dst src);
  6650   ins_cost(125);
  6651   format %{ "li    $dst, $src\t# compressed klass ptr @ loadConNKlass" %}
  6652   ins_encode %{
  6653     Register dst = $dst$$Register;
  6654     __ set_narrow_klass(dst, (Klass*)$src$$constant);
  6655   %}
  6656   ins_pipe( ialu_regI_regI ); // XXX
  6657 %}
  6659 //FIXME
  6660 // Tail Call; Jump from runtime stub to Java code.
  6661 // Also known as an 'interprocedural jump'.
  6662 // Target of jump will eventually return to caller.
  6663 // TailJump below removes the return address.
  6664 instruct TailCalljmpInd(mRegP jump_target, mRegP method_oop) %{
  6665   match(TailCall jump_target method_oop );
  6666   ins_cost(300);
  6667   format %{ "JMP    $jump_target \t# @TailCalljmpInd" %}
  6669   ins_encode %{
  6670     Register target = $jump_target$$Register;
  6671     Register    oop = $method_oop$$Register;
  6673     /* 2012/10/12 Jin: RA will be used in generate_forward_exception() */
  6674     __ push(RA);
  6676     __ move(S3, oop);
  6677     __ jr(target);
  6678     __ nop();
  6679   %}
  6681   ins_pipe( pipe_jump );
  6682 %}
  6684 // Create exception oop: created by stack-crawling runtime code.
  6685 // Created exception is now available to this handler, and is setup
  6686 // just prior to jumping to this handler.  No code emitted.
  6687 instruct CreateException( a0_RegP ex_oop )
  6688 %{
  6689   match(Set ex_oop (CreateEx));
  6691   // use the following format syntax
  6692   format %{ "# exception oop is in A0; no code emitted @CreateException" %}
  6693   ins_encode %{
  6694     /* Jin: X86 leaves this function empty */
  6695     __ block_comment("CreateException is empty in X86/MIPS");
  6696   %}
  6697   ins_pipe( empty );
  6698 //  ins_pipe( pipe_jump );
  6699 %}
  6702 /* 2012/9/14 Jin: The mechanism of exception handling is clear now.
  6704 - Common try/catch:
  6705  2012/9/14 Jin: [stubGenerator_mips.cpp] generate_forward_exception()
  6706                     |- V0, V1 are created
  6707                     |- T9 <= SharedRuntime::exception_handler_for_return_address
  6708                     `- jr T9
  6709                          `- the caller's exception_handler
  6710                                `- jr OptoRuntime::exception_blob
  6711                                       `- here
  6712 - Rethrow(e.g. 'unwind'):
  6713   * The callee:
  6714      |- an exception is triggered during execution
  6715      `- exits the callee method through RethrowException node
  6716           |- The callee pushes exception_oop(T0) and exception_pc(RA)
  6717           `- The callee jumps to OptoRuntime::rethrow_stub()
  6718   * In OptoRuntime::rethrow_stub:
  6719      |- The VM calls _rethrow_Java to determine the return address in the caller method
  6720      `- exits the stub with tailjmpInd
  6721           |- pops exception_oop(V0) and exception_pc(V1)
  6722           `- jumps to the return address(usually an exception_handler)
  6723   * The caller:
  6724      `- continues processing the exception_blob with V0/V1
  6725 */
  6727 /*
  6728 Disassembling OptoRuntime::rethrow_stub()
  6730 ; locals
  6731    0x2d3bf320: addiu sp, sp, 0xfffffff8
  6732    0x2d3bf324: sw ra, 0x4(sp)
  6733    0x2d3bf328: sw fp, 0x0(sp)
  6734    0x2d3bf32c: addu fp, sp, zero
  6735    0x2d3bf330: addiu sp, sp, 0xfffffff0
  6736    0x2d3bf334: sw ra, 0x8(sp)
  6737    0x2d3bf338: sw t0, 0x4(sp)
  6738    0x2d3bf33c: sw sp, 0x0(sp)
  6740 ; get_thread(S2)
  6741    0x2d3bf340: addu s2, sp, zero
  6742    0x2d3bf344: srl s2, s2, 12
  6743    0x2d3bf348: sll s2, s2, 2
  6744    0x2d3bf34c: lui at, 0x2c85
  6745    0x2d3bf350: addu at, at, s2
  6746    0x2d3bf354: lw s2, 0xffffcc80(at)
  6748    0x2d3bf358: lw s0, 0x0(sp)
  6749    0x2d3bf35c: sw s0, 0x118(s2)		// last_sp -> threa
  6750    0x2d3bf360: sw s2, 0xc(sp)
  6752 ; OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc)
  6753    0x2d3bf364: lw a0, 0x4(sp)
  6754    0x2d3bf368: lw a1, 0xc(sp)
  6755    0x2d3bf36c: lw a2, 0x8(sp)
  6756   ;; Java_To_Runtime
  6757    0x2d3bf370: lui t9, 0x2c34
  6758    0x2d3bf374: addiu t9, t9, 0xffff8a48
  6759    0x2d3bf378: jalr t9
  6760    0x2d3bf37c: nop
  6762    0x2d3bf380: addu s3, v0, zero		 ; S3: SharedRuntime::raw_exception_handler_for_return_address()
  6764    0x2d3bf384: lw s0, 0xc(sp)
  6765    0x2d3bf388: sw zero, 0x118(s0)
  6766    0x2d3bf38c: sw zero, 0x11c(s0)
  6767    0x2d3bf390: lw s1, 0x144(s0)			; ex_oop: S1
  6768    0x2d3bf394: addu s2, s0, zero
  6769    0x2d3bf398: sw zero, 0x144(s2)
  6770    0x2d3bf39c: lw s0, 0x4(s2)
  6771    0x2d3bf3a0: addiu s4, zero, 0x0
  6772    0x2d3bf3a4: bne s0, s4, 0x2d3bf3d4
  6773    0x2d3bf3a8: nop
  6774    0x2d3bf3ac: addiu sp, sp, 0x10
  6775    0x2d3bf3b0: addiu sp, sp, 0x8
  6776    0x2d3bf3b4: lw ra, 0xfffffffc(sp)
  6777    0x2d3bf3b8: lw fp, 0xfffffff8(sp)
  6778    0x2d3bf3bc: lui at, 0x2b48
  6779    0x2d3bf3c0: lw at, 0x100(at)
  6781 ; tailjmpInd: Restores exception_oop & exception_pc
  6782    0x2d3bf3c4: addu v1, ra, zero
  6783    0x2d3bf3c8: addu v0, s1, zero
  6784    0x2d3bf3cc: jr s3
  6785    0x2d3bf3d0: nop
  6786 ; Exception:
  6787    0x2d3bf3d4: lui s1, 0x2cc8		; generate_forward_exception()
  6788    0x2d3bf3d8: addiu s1, s1, 0x40
  6789    0x2d3bf3dc: addiu s2, zero, 0x0
  6790    0x2d3bf3e0: addiu sp, sp, 0x10
  6791    0x2d3bf3e4: addiu sp, sp, 0x8
  6792    0x2d3bf3e8: lw ra, 0xfffffffc(sp)
  6793    0x2d3bf3ec: lw fp, 0xfffffff8(sp)
  6794    0x2d3bf3f0: lui at, 0x2b48
  6795    0x2d3bf3f4: lw at, 0x100(at)
  6796 ; TailCalljmpInd 
  6797               __ push(RA);		; to be used in generate_forward_exception()
  6798    0x2d3bf3f8: addu t7, s2, zero
  6799    0x2d3bf3fc: jr s1
  6800    0x2d3bf400: nop
  6801 */
  6802 // Rethrow exception:
  6803 // The exception oop will come in the first argument position.
  6804 // Then JUMP (not call) to the rethrow stub code.
  6805 instruct RethrowException()
  6806 %{
  6807   match(Rethrow);
  6809   // use the following format syntax
  6810   format %{ "JMP    rethrow_stub #@RethrowException" %}
  6811   ins_encode %{
  6812     __ block_comment("@ RethrowException");
  6814     cbuf.set_insts_mark();
  6815     cbuf.relocate(cbuf.insts_mark(), runtime_call_Relocation::spec());
  6817     // call OptoRuntime::rethrow_stub to get the exception handler in parent method
  6818     __ patchable_set48(T9, (jlong)OptoRuntime::rethrow_stub());
  6819     __ jr(T9);
  6820     __ nop();
  6821   %}
  6822   ins_pipe( pipe_jump );
  6823 %}
  6825 instruct branchConP_zero(cmpOpU cmp, mRegP op1, immP0 zero, label labl) %{
  6826   match(If cmp (CmpP op1 zero));
  6827   effect(USE labl);
  6829   ins_cost(180);
  6830   format %{ "b$cmp   $op1, R0, $labl #@branchConP_zero" %}
  6832   ins_encode %{
  6833     Register op1 = $op1$$Register;
  6834     Register op2 = R0;
  6835     Label    &L  = *($labl$$label);
  6836     int     flag = $cmp$$cmpcode;
  6838     switch(flag)
  6840       case 0x01: //equal
  6841 	if (&L)
  6842         	__ beq(op1, op2, L); 
  6843 	else 
  6844         	__ beq(op1, op2, (int)0); 
  6845         break;
  6846       case 0x02: //not_equal
  6847 	if (&L)
  6848         	__ bne(op1, op2, L); 
  6849 	else
  6850         	__ bne(op1, op2, (int)0); 
  6851         break;
  6852 /*
  6853       case 0x03: //above
  6854         __ sltu(AT, op2, op1);
  6855         if(&L)
  6856         	__ bne(R0, AT, L); 
  6857         else
  6858                 __ bne(R0, AT, (int)0);
  6859         break;
  6860       case 0x04: //above_equal
  6861         __ sltu(AT, op1, op2);
  6862         if(&L)
  6863        	        __ beq(AT, R0, L);
  6864         else
  6865        	        __ beq(AT, R0, (int)0);
  6866         break;
  6867       case 0x05: //below
  6868         __ sltu(AT, op1, op2);
  6869         if(&L)
  6870       		 __ bne(R0, AT, L); 
  6871         else
  6872         	 __ bne(R0, AT, (int)0);
  6873         break;
  6874       case 0x06: //below_equal
  6875         __ sltu(AT, op2, op1);
  6876         if(&L)
  6877         	__ beq(AT, R0, L);
  6878         else
  6879         	__ beq(AT, R0, (int)0);
  6880        break;
  6881 */
  6882       default:
  6883           Unimplemented();
  6885     __ nop();
  6886   %}
  6888   ins_pc_relative(1);
  6889   ins_pipe( pipe_alu_branch );
  6890 %}
  6892 instruct branchConN2P_zero(cmpOpU cmp, mRegN op1, immP0 zero, label labl) %{
  6893   match(If cmp (CmpP (DecodeN op1) zero));
  6894   predicate(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0);
  6895   effect(USE labl);
  6897   ins_cost(180);
  6898   format %{ "b$cmp   $op1, R0, $labl #@branchConN2P_zero" %}
  6900   ins_encode %{
  6901     Register op1 = $op1$$Register;
  6902     Register op2 = R0;
  6903     Label    &L  = *($labl$$label);
  6904     int     flag = $cmp$$cmpcode;
  6906     switch(flag)
  6908       case 0x01: //equal
  6909 	if (&L)
  6910         	__ beq(op1, op2, L); 
  6911 	else 
  6912         	__ beq(op1, op2, (int)0); 
  6913         break;
  6914       case 0x02: //not_equal
  6915 	if (&L)
  6916         	__ bne(op1, op2, L); 
  6917 	else
  6918         	__ bne(op1, op2, (int)0); 
  6919         break;
  6920       default:
  6921           Unimplemented();
  6923     __ nop();
  6924   %}
  6926   ins_pc_relative(1);
  6927   ins_pipe( pipe_alu_branch );
  6928 %}
  6931 instruct branchConP(cmpOpU cmp, mRegP op1, mRegP op2, label labl) %{
  6932   match(If cmp (CmpP op1 op2));
  6933 //  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  6934   effect(USE labl);
  6936   ins_cost(200);
  6937   format %{ "b$cmp   $op1, $op2, $labl #@branchConP" %}
  6939   ins_encode %{
  6940     Register op1 = $op1$$Register;
  6941     Register op2 = $op2$$Register;
  6942     Label    &L  = *($labl$$label);
  6943     int     flag = $cmp$$cmpcode;
  6945     switch(flag)
  6947       case 0x01: //equal
  6948 	if (&L)
  6949         	__ beq(op1, op2, L); 
  6950 	else 
  6951         	__ beq(op1, op2, (int)0); 
  6952         break;
  6953       case 0x02: //not_equal
  6954 	if (&L)
  6955         	__ bne(op1, op2, L); 
  6956 	else
  6957         	__ bne(op1, op2, (int)0); 
  6958         break;
  6959       case 0x03: //above
  6960         __ sltu(AT, op2, op1);
  6961         if(&L)
  6962         	__ bne(R0, AT, L); 
  6963         else
  6964                 __ bne(R0, AT, (int)0);
  6965         break;
  6966       case 0x04: //above_equal
  6967         __ sltu(AT, op1, op2);
  6968         if(&L)
  6969        	        __ beq(AT, R0, L);
  6970         else
  6971        	        __ beq(AT, R0, (int)0);
  6972         break;
  6973       case 0x05: //below
  6974         __ sltu(AT, op1, op2);
  6975         if(&L)
  6976       		 __ bne(R0, AT, L); 
  6977         else
  6978         	 __ bne(R0, AT, (int)0);
  6979         break;
  6980       case 0x06: //below_equal
  6981         __ sltu(AT, op2, op1);
  6982         if(&L)
  6983         	__ beq(AT, R0, L);
  6984         else
  6985         	__ beq(AT, R0, (int)0);
  6986        break;
  6987       default:
  6988           Unimplemented();
  6990     __ nop();
  6991   %}
  6993   ins_pc_relative(1);
  6994   ins_pipe( pipe_alu_branch );
  6995 %}
  6997 instruct cmpN_null_branch(cmpOp cmp, mRegN op1, immN0 null, label labl) %{
  6998   match(If cmp (CmpN op1 null));
  6999   effect(USE labl);
  7001   ins_cost(180);
  7002   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  7003             "BP$cmp   $labl @ cmpN_null_branch" %}
  7004   ins_encode %{
  7005     Register op1 = $op1$$Register;
  7006     Register op2 = R0;
  7007     Label    &L  = *($labl$$label);
  7008     int     flag = $cmp$$cmpcode;
  7010     switch(flag)
  7012 		case 0x01: //equal
  7013 			if (&L)
  7014 				__ beq(op1, op2, L); 
  7015 			else 
  7016 				__ beq(op1, op2, (int)0); 
  7017 			break;
  7018 		case 0x02: //not_equal
  7019 			if (&L)
  7020 				__ bne(op1, op2, L); 
  7021 			else
  7022 				__ bne(op1, op2, (int)0); 
  7023 			break;
  7024 		default:
  7025           Unimplemented();
  7027     __ nop();
  7028   %}
  7029 //TODO: pipe_branchP or create pipe_branchN LEE
  7030   ins_pc_relative(1);
  7031   ins_pipe( pipe_alu_branch );
  7032 %}
  7034 instruct cmpN_reg_branch(cmpOp cmp, mRegN op1, mRegN op2, label labl) %{
  7035   match(If cmp (CmpN op1 op2));
  7036   effect(USE labl);
  7038   ins_cost(180);
  7039   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  7040             "BP$cmp   $labl" %}
  7041   ins_encode %{
  7042     Register op1_reg = $op1$$Register;
  7043     Register op2_reg = $op2$$Register;
  7044     Label    &L  = *($labl$$label);
  7045     int     flag = $cmp$$cmpcode;
  7047     switch(flag)
  7049 		case 0x01: //equal
  7050 			if (&L)
  7051 				__ beq(op1_reg, op2_reg, L); 
  7052 			else 
  7053 				__ beq(op1_reg, op2_reg, (int)0); 
  7054 			break;
  7055 		case 0x02: //not_equal
  7056 			if (&L)
  7057 				__ bne(op1_reg, op2_reg, L); 
  7058 			else
  7059 				__ bne(op1_reg, op2_reg, (int)0); 
  7060 			break;
  7061 		case 0x03: //above
  7062 			__ sltu(AT, op2_reg, op1_reg);
  7063 			if(&L)
  7064 				__ bne(R0, AT, L); 
  7065 			else
  7066 				__ bne(R0, AT, (int)0);
  7067 			break;
  7068 		case 0x04: //above_equal
  7069 			__ sltu(AT, op1_reg, op2_reg);
  7070 			if(&L)
  7071 				__ beq(AT, R0, L);
  7072 			else
  7073 				__ beq(AT, R0, (int)0);
  7074 			break;
  7075 		case 0x05: //below
  7076 			__ sltu(AT, op1_reg, op2_reg);
  7077 			if(&L)
  7078 				__ bne(R0, AT, L); 
  7079 			else
  7080 				__ bne(R0, AT, (int)0);
  7081 			break;
  7082 		case 0x06: //below_equal
  7083 			__ sltu(AT, op2_reg, op1_reg);
  7084 			if(&L)
  7085 				__ beq(AT, R0, L);
  7086 			else
  7087 				__ beq(AT, R0, (int)0);
  7088 			break;
  7089 		default:
  7090           Unimplemented();
  7092     __ nop();
  7093   %}
  7094   ins_pc_relative(1);
  7095   ins_pipe( pipe_alu_branch );
  7096 %}
  7098 instruct branchConIU_reg_reg(cmpOpU cmp, mRegI src1, mRegI src2, label labl) %{
  7099   match( If cmp (CmpU src1 src2) );
  7100   effect(USE labl);
  7101   format %{ "BR$cmp   $src1, $src2, $labl #@branchConIU_reg_reg" %}
  7103   ins_encode %{
  7104     Register op1 = $src1$$Register;
  7105     Register op2 = $src2$$Register;
  7106     Label     &L = *($labl$$label);
  7107     int     flag = $cmp$$cmpcode;
  7109     switch(flag)
  7111       case 0x01: //equal
  7112 	if (&L)
  7113         	__ beq(op1, op2, L); 
  7114 	else 
  7115         	__ beq(op1, op2, (int)0); 
  7116         break;
  7117       case 0x02: //not_equal
  7118 	if (&L)
  7119         	__ bne(op1, op2, L); 
  7120 	else
  7121         	__ bne(op1, op2, (int)0); 
  7122         break;
  7123       case 0x03: //above
  7124         __ sltu(AT, op2, op1);
  7125         if(&L)
  7126         	__ bne(AT, R0, L); 
  7127         else
  7128                 __ bne(AT, R0, (int)0);
  7129         break;
  7130       case 0x04: //above_equal
  7131         __ sltu(AT, op1, op2);
  7132         if(&L)
  7133         	__ beq(AT, R0, L);
  7134         else
  7135                 __ beq(AT, R0, (int)0);
  7136         break;
  7137       case 0x05: //below
  7138         __ sltu(AT, op1, op2);
  7139         if(&L)
  7140       		 __ bne(AT, R0, L); 
  7141         else
  7142         	 __ bne(AT, R0, (int)0);
  7143         break;
  7144       case 0x06: //below_equal
  7145         __ sltu(AT, op2, op1);
  7146         if(&L)
  7147         	__ beq(AT, R0, L);
  7148         else
  7149         	__ beq(AT, R0, (int)0);
  7150         break;
  7151       default:
  7152           Unimplemented();
  7154     __ nop();
  7155   %}
  7157   ins_pc_relative(1);
  7158   ins_pipe( pipe_alu_branch );
  7159 %}
  7162 instruct branchConIU_reg_imm(cmpOpU cmp, mRegI src1, immI src2, label labl) %{
  7163   match( If cmp (CmpU src1 src2) );
  7164   effect(USE labl);
  7165   format %{ "BR$cmp   $src1, $src2, $labl #@branchConIU_reg_imm" %}
  7167   ins_encode %{
  7168     Register op1 = $src1$$Register;
  7169     int      val = $src2$$constant;
  7170     Label     &L = *($labl$$label);
  7171     int     flag = $cmp$$cmpcode;
  7173     __ move(AT, val);
  7174     switch(flag)
  7176       case 0x01: //equal
  7177 	if (&L)
  7178         	__ beq(op1, AT, L); 
  7179 	else 
  7180         	__ beq(op1, AT, (int)0); 
  7181         break;
  7182       case 0x02: //not_equal
  7183 	if (&L)
  7184         	__ bne(op1, AT, L); 
  7185 	else
  7186         	__ bne(op1, AT, (int)0); 
  7187         break;
  7188       case 0x03: //above
  7189         __ sltu(AT, AT, op1);
  7190         if(&L)
  7191         	__ bne(R0, AT, L); 
  7192         else
  7193                 __ bne(R0, AT, (int)0);
  7194         break;
  7195       case 0x04: //above_equal
  7196         __ sltu(AT, op1, AT);
  7197         if(&L)
  7198         	__ beq(AT, R0, L);
  7199         else
  7200                 __ beq(AT, R0, (int)0);
  7201         break;
  7202       case 0x05: //below
  7203         __ sltu(AT, op1, AT);
  7204         if(&L)
  7205       		 __ bne(R0, AT, L); 
  7206         else
  7207         	 __ bne(R0, AT, (int)0);
  7208         break;
  7209       case 0x06: //below_equal
  7210         __ sltu(AT, AT, op1);
  7211         if(&L)
  7212         	__ beq(AT, R0, L);
  7213         else
  7214         	__ beq(AT, R0, (int)0);
  7215        break;
  7216       default:
  7217           Unimplemented();
  7219     __ nop();
  7220   %}
  7222   ins_pc_relative(1);
  7223   ins_pipe( pipe_alu_branch );
  7224 %}
  7226 instruct branchConI_reg_reg(cmpOp cmp, mRegI src1, mRegI src2, label labl) %{
  7227   match( If cmp (CmpI src1 src2) );
  7228   effect(USE labl);
  7229   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_reg" %}
  7231   ins_encode %{
  7232     Register op1 = $src1$$Register;
  7233     Register op2 = $src2$$Register;
  7234     Label     &L = *($labl$$label);
  7235     int     flag = $cmp$$cmpcode;
  7237     switch(flag)
  7239       case 0x01: //equal
  7240 	if (&L)
  7241         	__ beq(op1, op2, L); 
  7242 	else 
  7243         	__ beq(op1, op2, (int)0); 
  7244         break;
  7245       case 0x02: //not_equal
  7246 	if (&L)
  7247         	__ bne(op1, op2, L); 
  7248 	else
  7249         	__ bne(op1, op2, (int)0); 
  7250         break;
  7251       case 0x03: //above
  7252         __ slt(AT, op2, op1);
  7253         if(&L)
  7254         	__ bne(R0, AT, L); 
  7255         else
  7256                 __ bne(R0, AT, (int)0);
  7257         break;
  7258       case 0x04: //above_equal
  7259         __ slt(AT, op1, op2);
  7260         if(&L)
  7261         	__ beq(AT, R0, L);
  7262         else
  7263                 __ beq(AT, R0, (int)0);
  7264         break;
  7265       case 0x05: //below
  7266         __ slt(AT, op1, op2);
  7267         if(&L)
  7268       		 __ bne(R0, AT, L); 
  7269         else
  7270         	 __ bne(R0, AT, (int)0);
  7271         break;
  7272       case 0x06: //below_equal
  7273         __ slt(AT, op2, op1);
  7274         if(&L)
  7275         	__ beq(AT, R0, L);
  7276         else
  7277         	__ beq(AT, R0, (int)0);
  7278        break;
  7279       default:
  7280           Unimplemented();
  7282     __ nop();
  7283   %}
  7285   ins_pc_relative(1);
  7286   ins_pipe( pipe_alu_branch );
  7287 %}
  7289 instruct branchConI_reg_imm0(cmpOp cmp, mRegI src1, immI0 src2, label labl) %{
  7290   match( If cmp (CmpI src1 src2) );
  7291   effect(USE labl);
  7292   ins_cost(170);
  7293   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_imm0" %}
  7295   ins_encode %{
  7296     Register op1 = $src1$$Register;
  7297 //    int      val = $src2$$constant;
  7298     Label     &L =  *($labl$$label);
  7299     int     flag = $cmp$$cmpcode;
  7301     //__ move(AT, val);
  7302     switch(flag)
  7304       case 0x01: //equal
  7305 	if (&L)
  7306         	__ beq(op1, R0, L); 
  7307 	else 
  7308         	__ beq(op1, R0, (int)0); 
  7309         break;
  7310       case 0x02: //not_equal
  7311 	if (&L)
  7312         	__ bne(op1, R0, L); 
  7313 	else
  7314         	__ bne(op1, R0, (int)0); 
  7315         break;
  7316       case 0x03: //greater
  7317         if(&L)
  7318                __ bgtz(op1, L);
  7319         else
  7320                __ bgtz(op1, (int)0);
  7321         break;
  7322       case 0x04: //greater_equal
  7323         if(&L)
  7324                __ bgez(op1, L);
  7325         else
  7326                __ bgez(op1, (int)0);
  7327         break;
  7328       case 0x05: //less
  7329         if(&L)
  7330                 __ bltz(op1, L);
  7331         else
  7332                 __ bltz(op1, (int)0);
  7333         break;
  7334       case 0x06: //less_equal
  7335         if(&L)
  7336                __ blez(op1, L);
  7337         else
  7338                __ blez(op1, (int)0);
  7339        break;
  7340       default:
  7341           Unimplemented();
  7343     __ nop();
  7344   %}
  7346   ins_pc_relative(1);
  7347   ins_pipe( pipe_alu_branch );
  7348 %}
  7351 instruct branchConI_reg_imm(cmpOp cmp, mRegI src1, immI src2, label labl) %{
  7352   match( If cmp (CmpI src1 src2) );
  7353   effect(USE labl);
  7354   ins_cost(200);
  7355   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_imm" %}
  7357   ins_encode %{
  7358     Register op1 = $src1$$Register;
  7359     int      val = $src2$$constant;
  7360     Label     &L =  *($labl$$label);
  7361     int     flag = $cmp$$cmpcode;
  7363     __ move(AT, val);
  7364     switch(flag)
  7366       case 0x01: //equal
  7367 	if (&L)
  7368         	__ beq(op1, AT, L); 
  7369 	else 
  7370         	__ beq(op1, AT, (int)0); 
  7371         break;
  7372       case 0x02: //not_equal
  7373 	if (&L)
  7374         	__ bne(op1, AT, L); 
  7375 	else
  7376         	__ bne(op1, AT, (int)0); 
  7377         break;
  7378       case 0x03: //greater
  7379         __ slt(AT, AT, op1);
  7380         if(&L)
  7381         	__ bne(R0, AT, L); 
  7382         else
  7383                 __ bne(R0, AT, (int)0);
  7384         break;
  7385       case 0x04: //greater_equal
  7386         __ slt(AT, op1, AT);
  7387         if(&L)
  7388         	__ beq(AT, R0, L);
  7389         else
  7390                 __ beq(AT, R0, (int)0);
  7391         break;
  7392       case 0x05: //less
  7393         __ slt(AT, op1, AT);
  7394         if(&L)
  7395       		 __ bne(R0, AT, L); 
  7396         else
  7397         	 __ bne(R0, AT, (int)0);
  7398         break;
  7399       case 0x06: //less_equal
  7400         __ slt(AT, AT, op1);
  7401         if(&L)
  7402         	__ beq(AT, R0, L);
  7403         else
  7404         	__ beq(AT, R0, (int)0);
  7405        break;
  7406       default:
  7407           Unimplemented();
  7409     __ nop();
  7410   %}
  7412   ins_pc_relative(1);
  7413   ins_pipe( pipe_alu_branch );
  7414 %}
  7416 instruct branchConIU_reg_imm0(cmpOpU cmp, mRegI src1, immI0 zero, label labl) %{
  7417   match( If cmp (CmpU src1 zero) );
  7418   effect(USE labl);
  7419   format %{ "BR$cmp   $src1, zero, $labl #@branchConIU_reg_imm0" %}
  7421   ins_encode %{
  7422     Register op1 = $src1$$Register;
  7423     Label     &L = *($labl$$label);
  7424     int     flag = $cmp$$cmpcode;
  7426     switch(flag)
  7428       case 0x01: //equal
  7429        if (&L)
  7430                __ beq(op1, R0, L); 
  7431        else 
  7432                __ beq(op1, R0, (int)0); 
  7433         break;
  7434       case 0x02: //not_equal
  7435        if (&L)
  7436                __ bne(op1, R0, L); 
  7437        else
  7438                __ bne(op1, R0, (int)0); 
  7439         break;
  7440       case 0x03: //above
  7441         if(&L)
  7442                __ bne(R0, op1, L); 
  7443         else
  7444                 __ bne(R0, op1, (int)0);
  7445         break;
  7446       case 0x04: //above_equal
  7447         if(&L)
  7448                __ beq(R0, R0, L);
  7449         else
  7450                 __ beq(R0, R0, (int)0);
  7451         break;
  7452       case 0x05: //below
  7453         return;
  7454         break;
  7455       case 0x06: //below_equal
  7456         if(&L)
  7457                __ beq(op1, R0, L);
  7458         else
  7459                __ beq(op1, R0, (int)0);
  7460        break;
  7461       default:
  7462           Unimplemented();
  7464     __ nop();
  7465   %}
  7467   ins_pc_relative(1);
  7468   ins_pipe( pipe_alu_branch );
  7469 %}
  7472 instruct branchConIU_reg_immI16(cmpOpU cmp, mRegI src1, immI16 src2, label labl) %{
  7473   match( If cmp (CmpU src1 src2) );
  7474   effect(USE labl);
  7475   ins_cost(180);
  7476   format %{ "BR$cmp   $src1, $src2, $labl #@branchConIU_reg_immI16" %}
  7478   ins_encode %{
  7479     Register op1 = $src1$$Register;
  7480     int      val = $src2$$constant;
  7481     Label     &L = *($labl$$label);
  7482     int     flag = $cmp$$cmpcode;
  7484     switch(flag)
  7486       case 0x01: //equal
  7487         __ move(AT, val);
  7488        if (&L)
  7489                __ beq(op1, AT, L); 
  7490        else 
  7491                __ beq(op1, AT, (int)0); 
  7492         break;
  7493       case 0x02: //not_equal
  7494         __ move(AT, val);
  7495        if (&L)
  7496                __ bne(op1, AT, L); 
  7497        else
  7498                __ bne(op1, AT, (int)0); 
  7499         break;
  7500       case 0x03: //above
  7501         __ move(AT, val);
  7502         __ sltu(AT, AT, op1);
  7503         if(&L)
  7504                __ bne(R0, AT, L); 
  7505         else
  7506                 __ bne(R0, AT, (int)0);
  7507         break;
  7508       case 0x04: //above_equal
  7509         __ sltiu(AT, op1, val);
  7510         if(&L)
  7511                __ beq(AT, R0, L);
  7512         else
  7513                 __ beq(AT, R0, (int)0);
  7514         break;
  7515       case 0x05: //below
  7516         __ sltiu(AT, op1, val);
  7517         if(&L)
  7518                 __ bne(R0, AT, L); 
  7519         else
  7520                 __ bne(R0, AT, (int)0);
  7521         break;
  7522       case 0x06: //below_equal
  7523         __ move(AT, val);
  7524         __ sltu(AT, AT, op1);
  7525         if(&L)
  7526                __ beq(AT, R0, L);
  7527         else
  7528                __ beq(AT, R0, (int)0);
  7529        break;
  7530       default:
  7531           Unimplemented();
  7533     __ nop();
  7534   %}
  7536   ins_pc_relative(1);
  7537   ins_pipe( pipe_alu_branch );
  7538 %}
  7541 instruct branchConL_regL_regL(cmpOp cmp, mRegL src1, mRegL src2, label labl) %{
  7542   match( If cmp (CmpL src1 src2) );
  7543   effect(USE labl);
  7544   format %{ "BR$cmp   $src1, $src2, $labl #@branchConL_regL_regL" %}
  7545   ins_cost(250);
  7547   ins_encode %{
  7548     Register opr1_reg = as_Register($src1$$reg);
  7549     Register opr2_reg = as_Register($src2$$reg);
  7551     Label   &target = *($labl$$label);
  7552     int     flag = $cmp$$cmpcode;
  7554     switch(flag)
  7556       case 0x01: //equal
  7557         if (&target) 
  7558 			__ beq(opr1_reg, opr2_reg, target);
  7559         else
  7560 			__ beq(opr1_reg, opr2_reg, (int)0);
  7561         __ delayed()->nop();
  7562         break;
  7564       case 0x02: //not_equal
  7565         if(&target)
  7566            __ bne(opr1_reg, opr2_reg, target);
  7567         else
  7568            __ bne(opr1_reg, opr2_reg, (int)0);
  7569         __ delayed()->nop();
  7570         break;
  7572       case 0x03: //greater
  7573         __ slt(AT, opr2_reg, opr1_reg);
  7574         if(&target)
  7575            __ bne(AT, R0, target);
  7576         else
  7577            __ bne(AT, R0, (int)0);
  7578         __ delayed()->nop();
  7579         break;
  7581       case 0x04: //greater_equal
  7582         __ slt(AT, opr1_reg, opr2_reg);
  7583         if(&target)
  7584            __ beq(AT, R0, target);
  7585         else
  7586            __ beq(AT, R0, (int)0);
  7587         __ delayed()->nop();
  7589         break;
  7591       case 0x05: //less
  7592         __ slt(AT, opr1_reg, opr2_reg);
  7593         if(&target)
  7594            __ bne(AT, R0, target);
  7595         else
  7596            __ bne(AT, R0, (int)0);
  7597         __ delayed()->nop();
  7599         break;
  7601       case 0x06: //less_equal
  7602        __ slt(AT, opr2_reg, opr1_reg);
  7604        if(&target)
  7605           __ beq(AT, R0, target);
  7606        else
  7607           __ beq(AT, R0, (int)0);
  7608        __ delayed()->nop();
  7610        break;
  7612       default:
  7613           Unimplemented();
  7615   %}
  7618   ins_pc_relative(1);
  7619   ins_pipe( pipe_alu_branch );
  7620 %}
  7622 instruct branchConL_reg_immL16_sub(cmpOp cmp, mRegL src1, immL16_sub src2, label labl) %{
  7623   match( If cmp (CmpL src1 src2) );
  7624   effect(USE labl);
  7625   ins_cost(180);
  7626   format %{ "BR$cmp   $src1, $src2, $labl #@branchConL_reg_immL16_sub" %}
  7628   ins_encode %{
  7629     Register op1 = $src1$$Register;
  7630     int      val = $src2$$constant;
  7631     Label     &L =  *($labl$$label);
  7632     int     flag = $cmp$$cmpcode;
  7634     __ daddiu(AT, op1, -1 * val);
  7635     switch(flag)
  7637       case 0x01: //equal
  7638        if (&L)
  7639                __ beq(R0, AT, L); 
  7640        else 
  7641                __ beq(R0, AT, (int)0); 
  7642         break;
  7643       case 0x02: //not_equal
  7644        if (&L)
  7645                __ bne(R0, AT, L); 
  7646        else
  7647                __ bne(R0, AT, (int)0); 
  7648         break;
  7649       case 0x03: //greater
  7650         if(&L)
  7651                __ bgtz(AT, L); 
  7652         else
  7653                 __ bgtz(AT, (int)0);
  7654         break;
  7655       case 0x04: //greater_equal
  7656         if(&L)
  7657                __ bgez(AT, L);
  7658         else
  7659                 __ bgez(AT, (int)0);
  7660         break;
  7661       case 0x05: //less
  7662         if(&L)
  7663                 __ bltz(AT, L); 
  7664         else
  7665                 __ bltz(AT, (int)0);
  7666         break;
  7667       case 0x06: //less_equal
  7668         if(&L)
  7669                __ blez(AT, L);
  7670         else
  7671                __ blez(AT, (int)0);
  7672        break;
  7673       default:
  7674           Unimplemented();
  7676     __ nop();
  7677   %}
  7679   ins_pc_relative(1);
  7680   ins_pipe( pipe_alu_branch );
  7681 %}
  7684 instruct branchConI_reg_imm16_sub(cmpOp cmp, mRegI src1, immI16_sub src2, label labl) %{
  7685   match( If cmp (CmpI src1 src2) );
  7686   effect(USE labl);
  7687   ins_cost(180);
  7688   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_imm16_sub" %}
  7690   ins_encode %{
  7691     Register op1 = $src1$$Register;
  7692     int      val = $src2$$constant;
  7693     Label     &L =  *($labl$$label);
  7694     int     flag = $cmp$$cmpcode;
  7696     __ addiu32(AT, op1, -1 * val);
  7697     switch(flag)
  7699       case 0x01: //equal
  7700        if (&L)
  7701                __ beq(R0, AT, L); 
  7702        else 
  7703                __ beq(R0, AT, (int)0); 
  7704         break;
  7705       case 0x02: //not_equal
  7706        if (&L)
  7707                __ bne(R0, AT, L); 
  7708        else
  7709                __ bne(R0, AT, (int)0); 
  7710         break;
  7711       case 0x03: //greater
  7712         if(&L)
  7713                __ bgtz(AT, L); 
  7714         else
  7715                 __ bgtz(AT, (int)0);
  7716         break;
  7717       case 0x04: //greater_equal
  7718         if(&L)
  7719                __ bgez(AT, L);
  7720         else
  7721                 __ bgez(AT, (int)0);
  7722         break;
  7723       case 0x05: //less
  7724         if(&L)
  7725                 __ bltz(AT, L); 
  7726         else
  7727                 __ bltz(AT, (int)0);
  7728         break;
  7729       case 0x06: //less_equal
  7730         if(&L)
  7731                __ blez(AT, L);
  7732         else
  7733                __ blez(AT, (int)0);
  7734        break;
  7735       default:
  7736           Unimplemented();
  7738     __ nop();
  7739   %}
  7741   ins_pc_relative(1);
  7742   ins_pipe( pipe_alu_branch );
  7743 %}
  7745 instruct branchConL_regL_immL0(cmpOp cmp, mRegL src1, immL0 zero, label labl) %{
  7746   match( If cmp (CmpL src1 zero) );
  7747   effect(USE labl);
  7748   format %{ "BR$cmp   $src1, zero, $labl #@branchConL_regL_immL0" %}
  7749   ins_cost(150);
  7751   ins_encode %{
  7752     Register opr1_reg = as_Register($src1$$reg);
  7753     Label   &target = *($labl$$label);
  7754     int     flag = $cmp$$cmpcode;
  7756     switch(flag)
  7758       case 0x01: //equal
  7759         if (&target) 
  7760            __ beq(opr1_reg, R0, target);
  7761         else
  7762            __ beq(opr1_reg, R0, int(0));
  7763         break;
  7765       case 0x02: //not_equal
  7766         if(&target)
  7767            __ bne(opr1_reg, R0, target);
  7768         else
  7769            __ bne(opr1_reg, R0, (int)0);
  7770         break;
  7772       case 0x03: //greater
  7773         if(&target)
  7774            __ bgtz(opr1_reg, target);
  7775         else
  7776            __ bgtz(opr1_reg, (int)0);
  7777        break;
  7779       case 0x04: //greater_equal
  7780         if(&target)
  7781            __ bgez(opr1_reg, target);
  7782         else
  7783            __ bgez(opr1_reg, (int)0);
  7784         break;
  7786       case 0x05: //less
  7787         __ slt(AT, opr1_reg, R0);
  7788         if(&target)
  7789            __ bne(AT, R0, target);
  7790         else
  7791            __ bne(AT, R0, (int)0);
  7792         break;
  7794       case 0x06: //less_equal
  7795         if (&target) 
  7796            __ blez(opr1_reg, target);
  7797         else
  7798            __ blez(opr1_reg, int(0));
  7799         break;
  7801       default:
  7802           Unimplemented();
  7804 	__ delayed()->nop();
  7805   %}
  7808   ins_pc_relative(1);
  7809   ins_pipe( pipe_alu_branch );
  7810 %}
  7813 //FIXME
  7814 instruct branchConF_reg_reg(cmpOp cmp, regF src1, regF src2, label labl) %{
  7815   match( If cmp (CmpF src1 src2) );
  7816   effect(USE labl);
  7817   format %{ "BR$cmp   $src1, $src2, $labl #@branchConF_reg_reg" %}
  7819   ins_encode %{
  7820     FloatRegister reg_op1 = $src1$$FloatRegister;
  7821     FloatRegister reg_op2 = $src2$$FloatRegister;
  7822     Label     &L =  *($labl$$label);
  7823     int     flag = $cmp$$cmpcode;
  7825     switch(flag)
  7827       case 0x01: //equal
  7828         __ c_eq_s(reg_op1, reg_op2);
  7829 	if (&L)
  7830                 __ bc1t(L);
  7831 	else 
  7832                 __ bc1t((int)0);
  7833         break;
  7834       case 0x02: //not_equal
  7835         __ c_eq_s(reg_op1, reg_op2);
  7836 	if (&L)
  7837                 __ bc1f(L);
  7838 	else
  7839                 __ bc1f((int)0);
  7840         break;
  7841       case 0x03: //greater
  7842         __ c_ule_s(reg_op1, reg_op2);
  7843         if(&L)
  7844                 __ bc1f(L);
  7845         else
  7846                 __ bc1f((int)0);
  7847         break;
  7848       case 0x04: //greater_equal
  7849         __ c_ult_s(reg_op1, reg_op2);
  7850         if(&L)
  7851                 __ bc1f(L);
  7852         else
  7853                 __ bc1f((int)0);
  7854         break;
  7855       case 0x05: //less
  7856         __ c_ult_s(reg_op1, reg_op2);
  7857         if(&L)
  7858                 __ bc1t(L);
  7859         else
  7860                 __ bc1t((int)0);
  7861         break;
  7862       case 0x06: //less_equal
  7863         __ c_ule_s(reg_op1, reg_op2);
  7864         if(&L)
  7865                 __ bc1t(L);
  7866         else
  7867                 __ bc1t((int)0);
  7868        break;
  7869       default:
  7870           Unimplemented();
  7872     __ nop();
  7873   %}
  7875   ins_pc_relative(1);
  7876   ins_pipe(pipe_slow);
  7877 %}
  7879 instruct branchConD_reg_reg(cmpOp cmp, regD src1, regD src2, label labl) %{
  7880   match( If cmp (CmpD src1 src2) );
  7881   effect(USE labl);
  7882   format %{ "BR$cmp   $src1, $src2, $labl #@branchConD_reg_reg" %}
  7884   ins_encode %{
  7885     FloatRegister reg_op1 = $src1$$FloatRegister;
  7886     FloatRegister reg_op2 = $src2$$FloatRegister;
  7887     Label     &L =  *($labl$$label);
  7888     int     flag = $cmp$$cmpcode;
  7890     switch(flag)
  7892       case 0x01: //equal
  7893         __ c_eq_d(reg_op1, reg_op2);
  7894 	if (&L)
  7895                 __ bc1t(L);
  7896 	else 
  7897                 __ bc1t((int)0);
  7898         break;
  7899       case 0x02: //not_equal
  7900 //2016/4/19 aoqi: c_ueq_d cannot distinguish NaN from equal. Double.isNaN(Double) is implemented by 'f != f', so the use of c_ueq_d causes bugs.
  7901         __ c_eq_d(reg_op1, reg_op2);
  7902 	if (&L)
  7903                 __ bc1f(L);
  7904 	else
  7905                 __ bc1f((int)0);
  7906         break;
  7907       case 0x03: //greater
  7908         __ c_ule_d(reg_op1, reg_op2);
  7909         if(&L)
  7910                 __ bc1f(L);
  7911         else
  7912                 __ bc1f((int)0);
  7913         break;
  7914       case 0x04: //greater_equal
  7915         __ c_ult_d(reg_op1, reg_op2);
  7916         if(&L)
  7917                 __ bc1f(L);
  7918         else
  7919                 __ bc1f((int)0);
  7920         break;
  7921       case 0x05: //less
  7922         __ c_ult_d(reg_op1, reg_op2);
  7923         if(&L)
  7924                 __ bc1t(L);
  7925         else
  7926                 __ bc1t((int)0);
  7927         break;
  7928       case 0x06: //less_equal
  7929         __ c_ule_d(reg_op1, reg_op2);
  7930         if(&L)
  7931                 __ bc1t(L);
  7932         else
  7933                 __ bc1t((int)0);
  7934        break;
  7935       default:
  7936           Unimplemented();
  7938     __ nop();
  7939   %}
  7941   ins_pc_relative(1);
  7942   ins_pipe(pipe_slow);
  7943 %}
  7946 // Call Runtime Instruction
  7947 instruct CallRuntimeDirect(method meth) %{
  7948   match(CallRuntime );
  7949   effect(USE meth);
  7951   ins_cost(300);
  7952   format %{ "CALL,runtime #@CallRuntimeDirect" %}
  7953   ins_encode( Java_To_Runtime( meth ) );
  7954   ins_pipe( pipe_slow );
  7955   ins_alignment(16);
  7956 %}
  7960 //------------------------MemBar Instructions-------------------------------
  7961 //Memory barrier flavors
  7963 instruct membar_acquire() %{
  7964   match(MemBarAcquire);
  7965   ins_cost(0);
  7967   size(0);
  7968   format %{ "MEMBAR-acquire (empty) @ membar_acquire" %}
  7969   ins_encode();
  7970   ins_pipe(empty);
  7971 %}
  7973 instruct load_fence() %{
  7974   match(LoadFence);
  7975   ins_cost(400);
  7977   format %{ "MEMBAR @ load_fence" %}
  7978   ins_encode %{
  7979     __ sync(); 
  7980   %}
  7981   ins_pipe(pipe_slow);
  7982 %}
  7984 instruct membar_acquire_lock()
  7985 %{
  7986   match(MemBarAcquireLock);
  7987   ins_cost(0);
  7989   size(0);
  7990   format %{ "MEMBAR-acquire (acquire as part of CAS in prior FastLock so empty encoding) @ membar_acquire_lock" %}
  7991   ins_encode();
  7992   ins_pipe(empty);
  7993 %}
  7995 instruct membar_release() %{
  7996   match(MemBarRelease);
  7997   ins_cost(0);
  7999   size(0);
  8000   format %{ "MEMBAR-release (empty) @ membar_release" %}
  8001   ins_encode();
  8002   ins_pipe(empty);
  8003 %}
  8005 instruct store_fence() %{
  8006   match(StoreFence);
  8007   ins_cost(400);
  8009   format %{ "MEMBAR @ store_fence" %}
  8011   ins_encode %{
  8012     __ sync(); 
  8013   %}
  8015   ins_pipe(pipe_slow);
  8016 %}
  8018 instruct membar_release_lock()
  8019 %{
  8020   match(MemBarReleaseLock);
  8021   ins_cost(0);
  8023   size(0);
  8024   format %{ "MEMBAR-release-lock (release in FastUnlock so empty) @ membar_release_lock" %}
  8025   ins_encode();
  8026   ins_pipe(empty);
  8027 %}
  8030 instruct membar_volatile() %{
  8031   match(MemBarVolatile);
  8032   ins_cost(400);
  8034   format %{ "MEMBAR-volatile" %}
  8035   ins_encode %{
  8036     if( !os::is_MP() ) return;     // Not needed on single CPU
  8037     __ sync();
  8039   %}
  8040   ins_pipe(pipe_slow);
  8041 %}
  8043 instruct unnecessary_membar_volatile() %{
  8044   match(MemBarVolatile);
  8045   predicate(Matcher::post_store_load_barrier(n));
  8046   ins_cost(0);
  8048   size(0);
  8049   format %{ "MEMBAR-volatile (unnecessary so empty encoding) @ unnecessary_membar_volatile" %}
  8050   ins_encode( );
  8051   ins_pipe(empty);
  8052 %}
  8054 instruct membar_storestore() %{
  8055   match(MemBarStoreStore);
  8057   ins_cost(0);
  8058   size(0);
  8059   format %{ "MEMBAR-storestore (empty encoding) @ membar_storestore" %}
  8060   ins_encode( );
  8061   ins_pipe(empty);
  8062 %}
  8064 //----------Move Instructions--------------------------------------------------
  8065 instruct castX2P(mRegP dst, mRegL src) %{
  8066   match(Set dst (CastX2P src));
  8067   format %{ "castX2P  $dst, $src @ castX2P" %}
  8068   ins_encode %{
  8069     Register src = $src$$Register;
  8070     Register dst = $dst$$Register;
  8072 	if(src != dst)
  8073 		__ move(dst, src);
  8074   %}
  8075   ins_cost(10);
  8076   ins_pipe( ialu_regI_mov );
  8077 %}
  8079 instruct castP2X(mRegL dst, mRegP src ) %{
  8080   match(Set dst (CastP2X src));
  8082   format %{ "mov    $dst, $src\t  #@castP2X" %}
  8083   ins_encode %{
  8084     Register src = $src$$Register;
  8085     Register dst = $dst$$Register;
  8087 	if(src != dst)
  8088 		__ move(dst, src);    
  8089   %}
  8090   ins_pipe( ialu_regI_mov );
  8091 %}
  8093 instruct MoveF2I_reg_reg(mRegI dst, regF src) %{
  8094   match(Set dst (MoveF2I src));
  8095   effect(DEF dst, USE src);
  8096   ins_cost(85);
  8097   format %{ "MoveF2I   $dst, $src @ MoveF2I_reg_reg" %}
  8098   ins_encode %{
  8099     Register dst = as_Register($dst$$reg);
  8100     FloatRegister src = as_FloatRegister($src$$reg);
  8102     __ mfc1(dst, src);
  8103   %}
  8104   ins_pipe( pipe_slow );
  8105 %}
  8107 instruct MoveI2F_reg_reg(regF dst, mRegI src) %{
  8108   match(Set dst (MoveI2F src));
  8109   effect(DEF dst, USE src);
  8110   ins_cost(85);
  8111   format %{ "MoveI2F   $dst, $src @ MoveI2F_reg_reg" %}
  8112   ins_encode %{
  8113     Register src = as_Register($src$$reg);
  8114     FloatRegister dst = as_FloatRegister($dst$$reg);
  8116     __ mtc1(src, dst);
  8117   %}
  8118   ins_pipe( pipe_slow );
  8119 %}
  8121 instruct MoveD2L_reg_reg(mRegL dst, regD src) %{
  8122   match(Set dst (MoveD2L src));
  8123   effect(DEF dst, USE src);
  8124   ins_cost(85);
  8125   format %{ "MoveD2L   $dst, $src @ MoveD2L_reg_reg" %}
  8126   ins_encode %{
  8127     Register dst = as_Register($dst$$reg);
  8128     FloatRegister src = as_FloatRegister($src$$reg);
  8130     __ dmfc1(dst, src);
  8131   %}
  8132   ins_pipe( pipe_slow );
  8133 %}
  8135 instruct MoveL2D_reg_reg(regD dst, mRegL src) %{
  8136   match(Set dst (MoveL2D src));
  8137   effect(DEF dst, USE src);
  8138   ins_cost(85);
  8139   format %{ "MoveL2D   $dst, $src @ MoveL2D_reg_reg" %}
  8140   ins_encode %{
  8141     FloatRegister dst = as_FloatRegister($dst$$reg);
  8142     Register src = as_Register($src$$reg);
  8144     __ dmtc1(src, dst);
  8145   %}
  8146   ins_pipe( pipe_slow );
  8147 %}
  8149 //----------Conditional Move---------------------------------------------------
  8150 // Conditional move
  8151 instruct cmovI_cmpI_reg_reg(mRegI dst, mRegI src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8152   match(Set dst (CMoveI (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8153   ins_cost(80);
  8154   format %{
  8155              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpI_reg_reg\n"
  8156              "\tCMOV  $dst,$src \t @cmovI_cmpI_reg_reg"
  8157          %}
  8159   ins_encode %{
  8160     Register op1 = $tmp1$$Register;
  8161     Register op2 = $tmp2$$Register;
  8162     Register dst = $dst$$Register;
  8163     Register src = $src$$Register;
  8164     int     flag = $cop$$cmpcode;
  8166     switch(flag)
  8168       case 0x01: //equal
  8169         __ subu32(AT, op1, op2);
  8170         __ movz(dst, src, AT);
  8171         break;
  8173       case 0x02: //not_equal
  8174         __ subu32(AT, op1, op2);
  8175         __ movn(dst, src, AT);
  8176         break;
  8178       case 0x03: //great
  8179         __ slt(AT, op2, op1);
  8180         __ movn(dst, src, AT);
  8181         break;
  8183       case 0x04: //great_equal
  8184         __ slt(AT, op1, op2);
  8185         __ movz(dst, src, AT);
  8186         break;
  8188       case 0x05: //less
  8189         __ slt(AT, op1, op2);
  8190         __ movn(dst, src, AT);
  8191         break;
  8193       case 0x06: //less_equal
  8194         __ slt(AT, op2, op1);
  8195         __ movz(dst, src, AT);
  8196        break;
  8198       default:
  8199           Unimplemented();
  8201   %}
  8203   ins_pipe( pipe_slow );
  8204 %}
  8206 instruct cmovI_cmpP_reg_reg(mRegI dst, mRegI src, mRegP tmp1, mRegP tmp2, cmpOpU cop ) %{
  8207   match(Set dst (CMoveI (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  8208   ins_cost(80);
  8209   format %{
  8210              "CMPU$cop $tmp1,$tmp2\t @cmovI_cmpP_reg_reg\n\t"
  8211              "CMOV $dst,$src\t @cmovI_cmpP_reg_reg"
  8212          %}
  8213   ins_encode %{
  8214     Register op1 = $tmp1$$Register;
  8215     Register op2 = $tmp2$$Register;
  8216     Register dst = $dst$$Register;
  8217     Register src = $src$$Register;
  8218     int     flag = $cop$$cmpcode;
  8220     switch(flag)
  8222       case 0x01: //equal
  8223         __ subu(AT, op1, op2);
  8224         __ movz(dst, src, AT);
  8225         break;
  8227       case 0x02: //not_equal
  8228         __ subu(AT, op1, op2);
  8229         __ movn(dst, src, AT);
  8230         break;
  8232       case 0x03: //above
  8233         __ sltu(AT, op2, op1);
  8234         __ movn(dst, src, AT);
  8235         break;
  8237       case 0x04: //above_equal
  8238         __ sltu(AT, op1, op2);
  8239         __ movz(dst, src, AT);
  8240         break;
  8242       case 0x05: //below
  8243         __ sltu(AT, op1, op2);
  8244         __ movn(dst, src, AT);
  8245         break;
  8247       case 0x06: //below_equal
  8248         __ sltu(AT, op2, op1);
  8249         __ movz(dst, src, AT);
  8250        break;
  8252       default:
  8253           Unimplemented();
  8255   %}
  8257   ins_pipe( pipe_slow );
  8258 %}
  8260 instruct cmovI_cmpN_reg_reg(mRegI dst, mRegI src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8261   match(Set dst (CMoveI (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8262   ins_cost(80);
  8263   format %{
  8264              "CMPU$cop $tmp1,$tmp2\t @cmovI_cmpN_reg_reg\n\t"
  8265              "CMOV $dst,$src\t @cmovI_cmpN_reg_reg"
  8266          %}
  8267   ins_encode %{
  8268     Register op1 = $tmp1$$Register;
  8269     Register op2 = $tmp2$$Register;
  8270     Register dst = $dst$$Register;
  8271     Register src = $src$$Register;
  8272     int     flag = $cop$$cmpcode;
  8274     switch(flag)
  8276       case 0x01: //equal
  8277         __ subu32(AT, op1, op2);
  8278         __ movz(dst, src, AT);
  8279         break;
  8281       case 0x02: //not_equal
  8282         __ subu32(AT, op1, op2);
  8283         __ movn(dst, src, AT);
  8284         break;
  8286       case 0x03: //above
  8287         __ sltu(AT, op2, op1);
  8288         __ movn(dst, src, AT);
  8289         break;
  8291       case 0x04: //above_equal
  8292         __ sltu(AT, op1, op2);
  8293         __ movz(dst, src, AT);
  8294         break;
  8296       case 0x05: //below
  8297         __ sltu(AT, op1, op2);
  8298         __ movn(dst, src, AT);
  8299         break;
  8301       case 0x06: //below_equal
  8302         __ sltu(AT, op2, op1);
  8303         __ movz(dst, src, AT);
  8304        break;
  8306       default:
  8307           Unimplemented();
  8309   %}
  8311   ins_pipe( pipe_slow );
  8312 %}
  8314 instruct cmovP_cmpN_reg_reg(mRegP dst, mRegP src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8315   match(Set dst (CMoveP (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8316   ins_cost(80);
  8317   format %{
  8318              "CMPU$cop $tmp1,$tmp2\t @cmovP_cmpN_reg_reg\n\t"
  8319              "CMOV $dst,$src\t @cmovP_cmpN_reg_reg"
  8320          %}
  8321   ins_encode %{
  8322     Register op1 = $tmp1$$Register;
  8323     Register op2 = $tmp2$$Register;
  8324     Register dst = $dst$$Register;
  8325     Register src = $src$$Register;
  8326     int     flag = $cop$$cmpcode;
  8328     switch(flag)
  8330       case 0x01: //equal
  8331         __ subu32(AT, op1, op2);
  8332         __ movz(dst, src, AT);
  8333         break;
  8335       case 0x02: //not_equal
  8336         __ subu32(AT, op1, op2);
  8337         __ movn(dst, src, AT);
  8338         break;
  8340       case 0x03: //above
  8341         __ sltu(AT, op2, op1);
  8342         __ movn(dst, src, AT);
  8343         break;
  8345       case 0x04: //above_equal
  8346         __ sltu(AT, op1, op2);
  8347         __ movz(dst, src, AT);
  8348         break;
  8350       case 0x05: //below
  8351         __ sltu(AT, op1, op2);
  8352         __ movn(dst, src, AT);
  8353         break;
  8355       case 0x06: //below_equal
  8356         __ sltu(AT, op2, op1);
  8357         __ movz(dst, src, AT);
  8358        break;
  8360       default:
  8361           Unimplemented();
  8363   %}
  8365   ins_pipe( pipe_slow );
  8366 %}
  8368 instruct cmovN_cmpP_reg_reg(mRegN dst, mRegN src, mRegP tmp1, mRegP tmp2, cmpOpU cop ) %{
  8369   match(Set dst (CMoveN (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  8370   ins_cost(80);
  8371   format %{
  8372              "CMPU$cop $tmp1,$tmp2\t @cmovN_cmpP_reg_reg\n\t"
  8373              "CMOV $dst,$src\t @cmovN_cmpP_reg_reg"
  8374          %}
  8375   ins_encode %{
  8376     Register op1 = $tmp1$$Register;
  8377     Register op2 = $tmp2$$Register;
  8378     Register dst = $dst$$Register;
  8379     Register src = $src$$Register;
  8380     int     flag = $cop$$cmpcode;
  8382     switch(flag)
  8384       case 0x01: //equal
  8385         __ subu(AT, op1, op2);
  8386         __ movz(dst, src, AT);
  8387         break;
  8389       case 0x02: //not_equal
  8390         __ subu(AT, op1, op2);
  8391         __ movn(dst, src, AT);
  8392         break;
  8394       case 0x03: //above
  8395         __ sltu(AT, op2, op1);
  8396         __ movn(dst, src, AT);
  8397         break;
  8399       case 0x04: //above_equal
  8400         __ sltu(AT, op1, op2);
  8401         __ movz(dst, src, AT);
  8402         break;
  8404       case 0x05: //below
  8405         __ sltu(AT, op1, op2);
  8406         __ movn(dst, src, AT);
  8407         break;
  8409       case 0x06: //below_equal
  8410         __ sltu(AT, op2, op1);
  8411         __ movz(dst, src, AT);
  8412        break;
  8414       default:
  8415           Unimplemented();
  8417   %}
  8419   ins_pipe( pipe_slow );
  8420 %}
  8422 instruct cmovP_cmpD_reg_reg(mRegP dst, mRegP src, regD tmp1, regD tmp2, cmpOp cop ) %{
  8423   match(Set dst (CMoveP (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  8424   ins_cost(80);
  8425   format %{
  8426              "CMP$cop  $tmp1, $tmp2\t  @cmovP_cmpD_reg_reg\n"
  8427              "\tCMOV  $dst,$src \t @cmovP_cmpD_reg_reg"
  8428          %}
  8429   ins_encode %{
  8430     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  8431     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  8432     Register dst = as_Register($dst$$reg);
  8433     Register src = as_Register($src$$reg);
  8435     int     flag = $cop$$cmpcode;
  8437     switch(flag)
  8439       case 0x01: //equal
  8440         __ c_eq_d(reg_op1, reg_op2);
  8441         __ movt(dst, src);
  8442         break;
  8443       case 0x02: //not_equal
  8444         __ c_eq_d(reg_op1, reg_op2);
  8445         __ movf(dst, src);
  8446         break;
  8447       case 0x03: //greater
  8448         __ c_ole_d(reg_op1, reg_op2);
  8449         __ movf(dst, src);
  8450         break;
  8451       case 0x04: //greater_equal
  8452         __ c_olt_d(reg_op1, reg_op2);
  8453         __ movf(dst, src);
  8454         break;
  8455       case 0x05: //less
  8456         __ c_ult_d(reg_op1, reg_op2);
  8457         __ movt(dst, src);
  8458         break;
  8459       case 0x06: //less_equal
  8460         __ c_ule_d(reg_op1, reg_op2);
  8461         __ movt(dst, src);
  8462         break;
  8463       default:
  8464           Unimplemented();
  8466   %}
  8468   ins_pipe( pipe_slow );
  8469 %}
  8472 instruct cmovN_cmpN_reg_reg(mRegN dst, mRegN src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8473   match(Set dst (CMoveN (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8474   ins_cost(80);
  8475   format %{
  8476              "CMPU$cop $tmp1,$tmp2\t @cmovN_cmpN_reg_reg\n\t"
  8477              "CMOV $dst,$src\t @cmovN_cmpN_reg_reg"
  8478          %}
  8479   ins_encode %{
  8480     Register op1 = $tmp1$$Register;
  8481     Register op2 = $tmp2$$Register;
  8482     Register dst = $dst$$Register;
  8483     Register src = $src$$Register;
  8484     int     flag = $cop$$cmpcode;
  8486     switch(flag)
  8488       case 0x01: //equal
  8489         __ subu32(AT, op1, op2);
  8490         __ movz(dst, src, AT);
  8491         break;
  8493       case 0x02: //not_equal
  8494         __ subu32(AT, op1, op2);
  8495         __ movn(dst, src, AT);
  8496         break;
  8498       case 0x03: //above
  8499         __ sltu(AT, op2, op1);
  8500         __ movn(dst, src, AT);
  8501         break;
  8503       case 0x04: //above_equal
  8504         __ sltu(AT, op1, op2);
  8505         __ movz(dst, src, AT);
  8506         break;
  8508       case 0x05: //below
  8509         __ sltu(AT, op1, op2);
  8510         __ movn(dst, src, AT);
  8511         break;
  8513       case 0x06: //below_equal
  8514         __ sltu(AT, op2, op1);
  8515         __ movz(dst, src, AT);
  8516        break;
  8518       default:
  8519           Unimplemented();
  8521   %}
  8523   ins_pipe( pipe_slow );
  8524 %}
  8527 instruct cmovI_cmpU_reg_reg(mRegI dst, mRegI src, mRegI tmp1, mRegI tmp2, cmpOpU cop ) %{
  8528   match(Set dst (CMoveI (Binary cop (CmpU tmp1 tmp2)) (Binary dst src)));
  8529   ins_cost(80);
  8530   format %{
  8531              "CMPU$cop $tmp1,$tmp2\t @cmovI_cmpU_reg_reg\n\t"
  8532              "CMOV $dst,$src\t @cmovI_cmpU_reg_reg"
  8533          %}
  8534   ins_encode %{
  8535     Register op1 = $tmp1$$Register;
  8536     Register op2 = $tmp2$$Register;
  8537     Register dst = $dst$$Register;
  8538     Register src = $src$$Register;
  8539     int     flag = $cop$$cmpcode;
  8541     switch(flag)
  8543       case 0x01: //equal
  8544         __ subu(AT, op1, op2);
  8545         __ movz(dst, src, AT);
  8546         break;
  8548       case 0x02: //not_equal
  8549         __ subu(AT, op1, op2);
  8550         __ movn(dst, src, AT);
  8551         break;
  8553       case 0x03: //above
  8554         __ sltu(AT, op2, op1);
  8555         __ movn(dst, src, AT);
  8556         break;
  8558       case 0x04: //above_equal
  8559         __ sltu(AT, op1, op2);
  8560         __ movz(dst, src, AT);
  8561         break;
  8563       case 0x05: //below
  8564         __ sltu(AT, op1, op2);
  8565         __ movn(dst, src, AT);
  8566         break;
  8568       case 0x06: //below_equal
  8569         __ sltu(AT, op2, op1);
  8570         __ movz(dst, src, AT);
  8571        break;
  8573       default:
  8574           Unimplemented();
  8576   %}
  8578   ins_pipe( pipe_slow );
  8579 %}
  8581 instruct cmovI_cmpL_reg_reg(mRegI dst, mRegI src, mRegL tmp1, mRegL tmp2, cmpOp cop ) %{
  8582   match(Set dst (CMoveI (Binary cop (CmpL tmp1 tmp2)) (Binary dst src)));
  8583   ins_cost(80);
  8584   format %{
  8585              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpL_reg_reg\n"
  8586              "\tCMOV  $dst,$src \t @cmovI_cmpL_reg_reg"
  8587          %}
  8588   ins_encode %{
  8589     Register opr1 = as_Register($tmp1$$reg);
  8590     Register opr2 = as_Register($tmp2$$reg);
  8591     Register dst     = $dst$$Register;
  8592     Register src     = $src$$Register;
  8593     int     flag = $cop$$cmpcode;
  8595     switch(flag)
  8597       case 0x01: //equal
  8598         __ subu(AT, opr1, opr2);
  8599         __ movz(dst, src, AT);
  8600         break;
  8602       case 0x02: //not_equal
  8603         __ subu(AT, opr1, opr2);
  8604         __ movn(dst, src, AT);
  8605         break;
  8607       case 0x03: //greater
  8608 	__ slt(AT, opr2, opr1);
  8609         __ movn(dst, src, AT);
  8610         break;
  8612       case 0x04: //greater_equal
  8613         __ slt(AT, opr1, opr2);
  8614         __ movz(dst, src, AT);
  8615         break;
  8617       case 0x05: //less
  8618         __ slt(AT, opr1, opr2);
  8619         __ movn(dst, src, AT);
  8620         break;
  8622       case 0x06: //less_equal
  8623         __ slt(AT, opr2, opr1);
  8624         __ movz(dst, src, AT);
  8625         break;
  8627       default:
  8628           Unimplemented();
  8630   %}
  8632   ins_pipe( pipe_slow );
  8633 %}
  8635 instruct cmovP_cmpL_reg_reg(mRegP dst, mRegP src, mRegL tmp1, mRegL tmp2, cmpOp cop ) %{
  8636   match(Set dst (CMoveP (Binary cop (CmpL tmp1 tmp2)) (Binary dst src)));
  8637   ins_cost(80);
  8638   format %{
  8639              "CMP$cop  $tmp1, $tmp2\t  @cmovP_cmpL_reg_reg\n"
  8640              "\tCMOV  $dst,$src \t @cmovP_cmpL_reg_reg"
  8641          %}
  8642   ins_encode %{
  8643     Register opr1 = as_Register($tmp1$$reg);
  8644     Register opr2 = as_Register($tmp2$$reg);
  8645     Register dst     = $dst$$Register;
  8646     Register src     = $src$$Register;
  8647     int     flag = $cop$$cmpcode;
  8649     switch(flag)
  8651       case 0x01: //equal
  8652         __ subu(AT, opr1, opr2);
  8653         __ movz(dst, src, AT);
  8654         break;
  8656       case 0x02: //not_equal
  8657         __ subu(AT, opr1, opr2);
  8658         __ movn(dst, src, AT);
  8659         break;
  8661       case 0x03: //greater
  8662         __ slt(AT, opr2, opr1);
  8663         __ movn(dst, src, AT);
  8664         break;
  8666       case 0x04: //greater_equal
  8667         __ slt(AT, opr1, opr2);
  8668         __ movz(dst, src, AT);
  8669         break;
  8671       case 0x05: //less
  8672         __ slt(AT, opr1, opr2);
  8673         __ movn(dst, src, AT);
  8674         break;
  8676       case 0x06: //less_equal
  8677         __ slt(AT, opr2, opr1);
  8678         __ movz(dst, src, AT);
  8679         break;
  8681       default:
  8682           Unimplemented();
  8684   %}
  8686   ins_pipe( pipe_slow );
  8687 %}
  8689 instruct cmovI_cmpD_reg_reg(mRegI dst, mRegI src, regD tmp1, regD tmp2, cmpOp cop ) %{
  8690   match(Set dst (CMoveI (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  8691   ins_cost(80);
  8692   format %{
  8693              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpD_reg_reg\n"
  8694              "\tCMOV  $dst,$src \t @cmovI_cmpD_reg_reg"
  8695          %}
  8696   ins_encode %{
  8697     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  8698     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  8699     Register dst = as_Register($dst$$reg);
  8700     Register src = as_Register($src$$reg);
  8702     int     flag = $cop$$cmpcode;
  8704     switch(flag)
  8706       case 0x01: //equal
  8707         __ c_eq_d(reg_op1, reg_op2);
  8708         __ movt(dst, src);
  8709         break;
  8710       case 0x02: //not_equal
  8711 //2016/4/19 aoqi: See instruct branchConD_reg_reg. The change in branchConD_reg_reg fixed a bug. It seems similar here, so I made thesame change.
  8712         __ c_eq_d(reg_op1, reg_op2);
  8713         __ movf(dst, src);
  8714         break;
  8715       case 0x03: //greater
  8716         __ c_ole_d(reg_op1, reg_op2);
  8717         __ movf(dst, src);
  8718         break;
  8719       case 0x04: //greater_equal
  8720         __ c_olt_d(reg_op1, reg_op2);
  8721         __ movf(dst, src);
  8722         break;
  8723       case 0x05: //less
  8724         __ c_ult_d(reg_op1, reg_op2);
  8725         __ movt(dst, src);
  8726         break;
  8727       case 0x06: //less_equal
  8728         __ c_ule_d(reg_op1, reg_op2);
  8729         __ movt(dst, src);
  8730         break;
  8731       default:
  8732           Unimplemented();
  8734   %}
  8736   ins_pipe( pipe_slow );
  8737 %}
  8740 instruct cmovP_cmpP_reg_reg(mRegP dst, mRegP src, mRegP tmp1, mRegP tmp2, cmpOpU cop ) %{
  8741   match(Set dst (CMoveP (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  8742   ins_cost(80);
  8743   format %{
  8744              "CMPU$cop $tmp1,$tmp2\t @cmovP_cmpP_reg_reg\n\t"
  8745              "CMOV $dst,$src\t @cmovP_cmpP_reg_reg"
  8746          %}
  8747   ins_encode %{
  8748     Register op1 = $tmp1$$Register;
  8749     Register op2 = $tmp2$$Register;
  8750     Register dst = $dst$$Register;
  8751     Register src = $src$$Register;
  8752     int     flag = $cop$$cmpcode;
  8754     switch(flag)
  8756       case 0x01: //equal
  8757         __ subu(AT, op1, op2);
  8758         __ movz(dst, src, AT);
  8759         break;
  8761       case 0x02: //not_equal
  8762         __ subu(AT, op1, op2);
  8763         __ movn(dst, src, AT);
  8764         break;
  8766       case 0x03: //above
  8767         __ sltu(AT, op2, op1);
  8768         __ movn(dst, src, AT);
  8769         break;
  8771       case 0x04: //above_equal
  8772         __ sltu(AT, op1, op2);
  8773         __ movz(dst, src, AT);
  8774         break;
  8776       case 0x05: //below
  8777         __ sltu(AT, op1, op2);
  8778         __ movn(dst, src, AT);
  8779         break;
  8781       case 0x06: //below_equal
  8782         __ sltu(AT, op2, op1);
  8783         __ movz(dst, src, AT);
  8784        break;
  8786       default:
  8787           Unimplemented();
  8789   %}
  8791   ins_pipe( pipe_slow );
  8792 %}
  8794 instruct cmovP_cmpI_reg_reg(mRegP dst, mRegP src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8795   match(Set dst (CMoveP (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8796   ins_cost(80);
  8797   format %{
  8798              "CMP$cop $tmp1,$tmp2\t @cmovP_cmpI_reg_reg\n\t"
  8799              "CMOV $dst,$src\t @cmovP_cmpI_reg_reg"
  8800          %}
  8801   ins_encode %{
  8802     Register op1 = $tmp1$$Register;
  8803     Register op2 = $tmp2$$Register;
  8804     Register dst = $dst$$Register;
  8805     Register src = $src$$Register;
  8806     int     flag = $cop$$cmpcode;
  8808     switch(flag)
  8810       case 0x01: //equal
  8811         __ subu32(AT, op1, op2);
  8812         __ movz(dst, src, AT);
  8813         break;
  8815       case 0x02: //not_equal
  8816         __ subu32(AT, op1, op2);
  8817         __ movn(dst, src, AT);
  8818         break;
  8820       case 0x03: //above
  8821         __ slt(AT, op2, op1);
  8822         __ movn(dst, src, AT);
  8823         break;
  8825       case 0x04: //above_equal
  8826         __ slt(AT, op1, op2);
  8827         __ movz(dst, src, AT);
  8828         break;
  8830       case 0x05: //below
  8831         __ slt(AT, op1, op2);
  8832         __ movn(dst, src, AT);
  8833         break;
  8835       case 0x06: //below_equal
  8836         __ slt(AT, op2, op1);
  8837         __ movz(dst, src, AT);
  8838        break;
  8840       default:
  8841           Unimplemented();
  8843   %}
  8845   ins_pipe( pipe_slow );
  8846 %}
  8848 instruct cmovN_cmpI_reg_reg(mRegN dst, mRegN src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8849   match(Set dst (CMoveN (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8850   ins_cost(80);
  8851   format %{
  8852              "CMP$cop $tmp1,$tmp2\t @cmovN_cmpI_reg_reg\n\t"
  8853              "CMOV $dst,$src\t @cmovN_cmpI_reg_reg"
  8854          %}
  8855   ins_encode %{
  8856     Register op1 = $tmp1$$Register;
  8857     Register op2 = $tmp2$$Register;
  8858     Register dst = $dst$$Register;
  8859     Register src = $src$$Register;
  8860     int     flag = $cop$$cmpcode;
  8862     switch(flag)
  8864       case 0x01: //equal
  8865         __ subu32(AT, op1, op2);
  8866         __ movz(dst, src, AT);
  8867         break;
  8869       case 0x02: //not_equal
  8870         __ subu32(AT, op1, op2);
  8871         __ movn(dst, src, AT);
  8872         break;
  8874       case 0x03: //above
  8875         __ slt(AT, op2, op1);
  8876         __ movn(dst, src, AT);
  8877         break;
  8879       case 0x04: //above_equal
  8880         __ slt(AT, op1, op2);
  8881         __ movz(dst, src, AT);
  8882         break;
  8884       case 0x05: //below
  8885         __ slt(AT, op1, op2);
  8886         __ movn(dst, src, AT);
  8887         break;
  8889       case 0x06: //below_equal
  8890         __ slt(AT, op2, op1);
  8891         __ movz(dst, src, AT);
  8892        break;
  8894       default:
  8895           Unimplemented();
  8897   %}
  8899   ins_pipe( pipe_slow );
  8900 %}
  8903 instruct cmovL_cmpI_reg_reg(mRegL dst, mRegL src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8904   match(Set dst (CMoveL (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8905   ins_cost(80);
  8906   format %{
  8907              "CMP$cop  $tmp1, $tmp2\t  @cmovL_cmpI_reg_reg\n"
  8908              "\tCMOV  $dst,$src \t @cmovL_cmpI_reg_reg"
  8909          %}
  8911   ins_encode %{
  8912     Register op1 = $tmp1$$Register;
  8913     Register op2 = $tmp2$$Register;
  8914     Register dst = as_Register($dst$$reg);
  8915     Register src = as_Register($src$$reg);
  8916     int     flag = $cop$$cmpcode;
  8918     switch(flag)
  8920       case 0x01: //equal
  8921         __ subu32(AT, op1, op2);
  8922         __ movz(dst, src, AT);
  8923         break;
  8925       case 0x02: //not_equal
  8926         __ subu32(AT, op1, op2);
  8927         __ movn(dst, src, AT);
  8928         break;
  8930       case 0x03: //great
  8931         __ slt(AT, op2, op1);
  8932         __ movn(dst, src, AT);
  8933         break;
  8935       case 0x04: //great_equal
  8936         __ slt(AT, op1, op2);
  8937         __ movz(dst, src, AT);
  8938         break;
  8940       case 0x05: //less
  8941         __ slt(AT, op1, op2);
  8942         __ movn(dst, src, AT);
  8943         break;
  8945       case 0x06: //less_equal
  8946         __ slt(AT, op2, op1);
  8947         __ movz(dst, src, AT);
  8948        break;
  8950       default:
  8951           Unimplemented();
  8953   %}
  8955   ins_pipe( pipe_slow );
  8956 %}
  8958 instruct cmovL_cmpL_reg_reg(mRegL dst, mRegL src, mRegL tmp1, mRegL tmp2, cmpOp cop ) %{
  8959   match(Set dst (CMoveL (Binary cop (CmpL tmp1 tmp2)) (Binary dst src)));
  8960   ins_cost(80);
  8961   format %{
  8962              "CMP$cop  $tmp1, $tmp2\t  @cmovL_cmpL_reg_reg\n"
  8963              "\tCMOV  $dst,$src \t @cmovL_cmpL_reg_reg"
  8964          %}
  8965   ins_encode %{
  8966     Register opr1 = as_Register($tmp1$$reg);
  8967     Register opr2 = as_Register($tmp2$$reg);
  8968     Register dst  = as_Register($dst$$reg);
  8969     Register src  = as_Register($src$$reg);
  8970     int     flag = $cop$$cmpcode;
  8972     switch(flag)
  8974       case 0x01: //equal
  8975         __ subu(AT, opr1, opr2);
  8976         __ movz(dst, src, AT);
  8977         break;
  8979       case 0x02: //not_equal
  8980         __ subu(AT, opr1, opr2);
  8981         __ movn(dst, src, AT);
  8982         break;
  8984       case 0x03: //greater
  8985         __ slt(AT, opr2, opr1);
  8986         __ movn(dst, src, AT);
  8987         break;
  8989       case 0x04: //greater_equal
  8990         __ slt(AT, opr1, opr2);
  8991         __ movz(dst, src, AT);
  8992         break;
  8994       case 0x05: //less
  8995         __ slt(AT, opr1, opr2);
  8996         __ movn(dst, src, AT);
  8997         break;
  8999       case 0x06: //less_equal
  9000        __ slt(AT, opr2, opr1);
  9001        __ movz(dst, src, AT);
  9002        break;
  9004       default:
  9005           Unimplemented();
  9007   %}
  9009   ins_pipe( pipe_slow );
  9010 %}
  9012 instruct cmovL_cmpN_reg_reg(mRegL dst, mRegL src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  9013   match(Set dst (CMoveL (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  9014   ins_cost(80);
  9015   format %{
  9016              "CMPU$cop $tmp1,$tmp2\t @cmovL_cmpN_reg_reg\n\t"
  9017              "CMOV $dst,$src\t @cmovL_cmpN_reg_reg"
  9018          %}
  9019   ins_encode %{
  9020     Register op1 = $tmp1$$Register;
  9021     Register op2 = $tmp2$$Register;
  9022     Register dst = $dst$$Register;
  9023     Register src = $src$$Register;
  9024     int     flag = $cop$$cmpcode;
  9026     switch(flag)
  9028       case 0x01: //equal
  9029         __ subu32(AT, op1, op2);
  9030         __ movz(dst, src, AT);
  9031         break;
  9033       case 0x02: //not_equal
  9034         __ subu32(AT, op1, op2);
  9035         __ movn(dst, src, AT);
  9036         break;
  9038       case 0x03: //above
  9039         __ sltu(AT, op2, op1);
  9040         __ movn(dst, src, AT);
  9041         break;
  9043       case 0x04: //above_equal
  9044         __ sltu(AT, op1, op2);
  9045         __ movz(dst, src, AT);
  9046         break;
  9048       case 0x05: //below
  9049         __ sltu(AT, op1, op2);
  9050         __ movn(dst, src, AT);
  9051         break;
  9053       case 0x06: //below_equal
  9054         __ sltu(AT, op2, op1);
  9055         __ movz(dst, src, AT);
  9056         break;
  9058       default:
  9059           Unimplemented();
  9061   %}
  9063   ins_pipe( pipe_slow );
  9064 %}
  9067 instruct cmovL_cmpD_reg_reg(mRegL dst, mRegL src, regD tmp1, regD tmp2, cmpOp cop ) %{
  9068   match(Set dst (CMoveL (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  9069   ins_cost(80);
  9070   format %{
  9071              "CMP$cop  $tmp1, $tmp2\t  @cmovL_cmpD_reg_reg\n"
  9072              "\tCMOV  $dst,$src \t @cmovL_cmpD_reg_reg"
  9073          %}
  9074   ins_encode %{
  9075     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  9076     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  9077     Register dst = as_Register($dst$$reg);
  9078     Register src = as_Register($src$$reg);
  9080     int     flag = $cop$$cmpcode;
  9082     switch(flag)
  9084       case 0x01: //equal
  9085         __ c_eq_d(reg_op1, reg_op2);
  9086         __ movt(dst, src);
  9087         break;
  9088       case 0x02: //not_equal
  9089         __ c_eq_d(reg_op1, reg_op2);
  9090         __ movf(dst, src);
  9091         break;
  9092       case 0x03: //greater
  9093         __ c_ole_d(reg_op1, reg_op2);
  9094         __ movf(dst, src);
  9095         break;
  9096       case 0x04: //greater_equal
  9097         __ c_olt_d(reg_op1, reg_op2);
  9098         __ movf(dst, src);
  9099         break;
  9100       case 0x05: //less
  9101         __ c_ult_d(reg_op1, reg_op2);
  9102         __ movt(dst, src);
  9103         break;
  9104       case 0x06: //less_equal
  9105         __ c_ule_d(reg_op1, reg_op2);
  9106         __ movt(dst, src);
  9107         break;
  9108       default:
  9109           Unimplemented();
  9111   %}
  9113   ins_pipe( pipe_slow );
  9114 %}
  9116 instruct cmovD_cmpD_reg_reg(regD dst, regD src, regD tmp1, regD tmp2, cmpOp cop ) %{
  9117   match(Set dst (CMoveD (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  9118   ins_cost(200);
  9119   format %{
  9120              "CMP$cop  $tmp1, $tmp2\t  @cmovD_cmpD_reg_reg\n"
  9121              "\tCMOV  $dst,$src \t @cmovD_cmpD_reg_reg"
  9122          %}
  9123   ins_encode %{
  9124     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  9125     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  9126     FloatRegister dst = as_FloatRegister($dst$$reg);
  9127     FloatRegister src = as_FloatRegister($src$$reg);
  9129     int     flag = $cop$$cmpcode;
  9131     Label L;
  9133     switch(flag)
  9135       case 0x01: //equal
  9136         __ c_eq_d(reg_op1, reg_op2);
  9137         __ bc1f(L);
  9138         __ nop();
  9139         __ mov_d(dst, src);
  9140         __ bind(L); 
  9141         break;
  9142       case 0x02: //not_equal
  9143 //2016/4/19 aoqi: See instruct branchConD_reg_reg. The change in branchConD_reg_reg fixed a bug. It seems similar here, so I made thesame change.
  9144         __ c_eq_d(reg_op1, reg_op2);
  9145         __ bc1t(L);
  9146         __ nop();
  9147         __ mov_d(dst, src);
  9148         __ bind(L); 
  9149         break;
  9150       case 0x03: //greater
  9151         __ c_ole_d(reg_op1, reg_op2);
  9152         __ bc1t(L);
  9153         __ nop();
  9154         __ mov_d(dst, src);
  9155         __ bind(L); 
  9156         break;
  9157       case 0x04: //greater_equal
  9158         __ c_olt_d(reg_op1, reg_op2);
  9159         __ bc1t(L);
  9160         __ nop();
  9161         __ mov_d(dst, src);
  9162         __ bind(L); 
  9163         break;
  9164       case 0x05: //less
  9165         __ c_ult_d(reg_op1, reg_op2);
  9166         __ bc1f(L);
  9167         __ nop();
  9168         __ mov_d(dst, src);
  9169         __ bind(L); 
  9170         break;
  9171       case 0x06: //less_equal
  9172         __ c_ule_d(reg_op1, reg_op2);
  9173         __ bc1f(L);
  9174         __ nop();
  9175         __ mov_d(dst, src);
  9176         __ bind(L); 
  9177         break;
  9178       default:
  9179           Unimplemented();
  9181   %}
  9183   ins_pipe( pipe_slow );
  9184 %}
  9186 instruct cmovF_cmpI_reg_reg(regF dst, regF src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  9187   match(Set dst (CMoveF (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  9188   ins_cost(200);
  9189   format %{
  9190              "CMP$cop  $tmp1, $tmp2\t  @cmovF_cmpI_reg_reg\n"
  9191              "\tCMOV  $dst, $src \t @cmovF_cmpI_reg_reg"
  9192          %}
  9194   ins_encode %{
  9195     Register op1 = $tmp1$$Register;
  9196     Register op2 = $tmp2$$Register;
  9197     FloatRegister dst = as_FloatRegister($dst$$reg);
  9198     FloatRegister src = as_FloatRegister($src$$reg);
  9199     int     flag = $cop$$cmpcode;
  9200     Label      L; 
  9202     switch(flag)
  9204       case 0x01: //equal
  9205        	__ bne(op1, op2, L); 
  9206         __ nop();
  9207         __ mov_s(dst, src);
  9208         __ bind(L);
  9209         break;
  9210       case 0x02: //not_equal
  9211        	__ beq(op1, op2, L); 
  9212         __ nop();
  9213         __ mov_s(dst, src);
  9214         __ bind(L);
  9215         break;
  9216       case 0x03: //great
  9217         __ slt(AT, op2, op1);
  9218        	__ beq(AT, R0, L);
  9219         __ nop();
  9220         __ mov_s(dst, src);
  9221         __ bind(L);
  9222         break;
  9223       case 0x04: //great_equal
  9224         __ slt(AT, op1, op2);
  9225         __ bne(AT, R0, L); 
  9226         __ nop();
  9227         __ mov_s(dst, src);
  9228         __ bind(L);
  9229         break;
  9230       case 0x05: //less
  9231         __ slt(AT, op1, op2);
  9232        	__ beq(AT, R0, L);
  9233         __ nop();
  9234         __ mov_s(dst, src);
  9235         __ bind(L);
  9236         break;
  9237       case 0x06: //less_equal
  9238         __ slt(AT, op2, op1);
  9239        	__ bne(AT, R0, L); 
  9240         __ nop();
  9241         __ mov_s(dst, src);
  9242         __ bind(L);
  9243        break;
  9244       default:
  9245           Unimplemented();
  9247   %}
  9249   ins_pipe( pipe_slow );
  9250 %}
  9252 instruct cmovD_cmpI_reg_reg(regD dst, regD src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  9253   match(Set dst (CMoveD (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  9254   ins_cost(200);
  9255   format %{
  9256              "CMP$cop  $tmp1, $tmp2\t  @cmovD_cmpI_reg_reg\n"
  9257              "\tCMOV  $dst, $src \t @cmovD_cmpI_reg_reg"
  9258          %}
  9260   ins_encode %{
  9261     Register op1 = $tmp1$$Register;
  9262     Register op2 = $tmp2$$Register;
  9263     FloatRegister dst = as_FloatRegister($dst$$reg);
  9264     FloatRegister src = as_FloatRegister($src$$reg);
  9265     int     flag = $cop$$cmpcode;
  9266     Label      L; 
  9268     switch(flag)
  9270       case 0x01: //equal
  9271        	__ bne(op1, op2, L); 
  9272         __ nop();
  9273         __ mov_d(dst, src);
  9274         __ bind(L);
  9275         break;
  9276       case 0x02: //not_equal
  9277        	__ beq(op1, op2, L); 
  9278         __ nop();
  9279         __ mov_d(dst, src);
  9280         __ bind(L);
  9281         break;
  9282       case 0x03: //great
  9283         __ slt(AT, op2, op1);
  9284        	__ beq(AT, R0, L);
  9285         __ nop();
  9286         __ mov_d(dst, src);
  9287         __ bind(L);
  9288         break;
  9289       case 0x04: //great_equal
  9290         __ slt(AT, op1, op2);
  9291         __ bne(AT, R0, L); 
  9292         __ nop();
  9293         __ mov_d(dst, src);
  9294         __ bind(L);
  9295         break;
  9296       case 0x05: //less
  9297         __ slt(AT, op1, op2);
  9298        	__ beq(AT, R0, L);
  9299         __ nop();
  9300         __ mov_d(dst, src);
  9301         __ bind(L);
  9302         break;
  9303       case 0x06: //less_equal
  9304         __ slt(AT, op2, op1);
  9305        	__ bne(AT, R0, L); 
  9306         __ nop();
  9307         __ mov_d(dst, src);
  9308         __ bind(L);
  9309        break;
  9310       default:
  9311           Unimplemented();
  9313   %}
  9315   ins_pipe( pipe_slow );
  9316 %}
  9318 instruct cmovD_cmpP_reg_reg(regD dst, regD src, mRegP tmp1, mRegP tmp2, cmpOp cop ) %{
  9319   match(Set dst (CMoveD (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  9320   ins_cost(200);
  9321   format %{
  9322              "CMP$cop  $tmp1, $tmp2\t  @cmovD_cmpP_reg_reg\n"
  9323              "\tCMOV  $dst, $src \t @cmovD_cmpP_reg_reg"
  9324          %}
  9326   ins_encode %{
  9327     Register op1 = $tmp1$$Register;
  9328     Register op2 = $tmp2$$Register;
  9329     FloatRegister dst = as_FloatRegister($dst$$reg);
  9330     FloatRegister src = as_FloatRegister($src$$reg);
  9331     int     flag = $cop$$cmpcode;
  9332     Label      L; 
  9334     switch(flag)
  9336       case 0x01: //equal
  9337        	__ bne(op1, op2, L); 
  9338         __ nop();
  9339         __ mov_d(dst, src);
  9340         __ bind(L);
  9341         break;
  9342       case 0x02: //not_equal
  9343        	__ beq(op1, op2, L); 
  9344         __ nop();
  9345         __ mov_d(dst, src);
  9346         __ bind(L);
  9347         break;
  9348       case 0x03: //great
  9349         __ slt(AT, op2, op1);
  9350        	__ beq(AT, R0, L);
  9351         __ nop();
  9352         __ mov_d(dst, src);
  9353         __ bind(L);
  9354         break;
  9355       case 0x04: //great_equal
  9356         __ slt(AT, op1, op2);
  9357         __ bne(AT, R0, L); 
  9358         __ nop();
  9359         __ mov_d(dst, src);
  9360         __ bind(L);
  9361         break;
  9362       case 0x05: //less
  9363         __ slt(AT, op1, op2);
  9364        	__ beq(AT, R0, L);
  9365         __ nop();
  9366         __ mov_d(dst, src);
  9367         __ bind(L);
  9368         break;
  9369       case 0x06: //less_equal
  9370         __ slt(AT, op2, op1);
  9371        	__ bne(AT, R0, L); 
  9372         __ nop();
  9373         __ mov_d(dst, src);
  9374         __ bind(L);
  9375        break;
  9376       default:
  9377           Unimplemented();
  9379   %}
  9381   ins_pipe( pipe_slow );
  9382 %}
  9384 //FIXME
  9385 instruct cmovI_cmpF_reg_reg(mRegI dst, mRegI src, regF tmp1, regF tmp2, cmpOp cop ) %{
  9386   match(Set dst (CMoveI (Binary cop (CmpF tmp1 tmp2)) (Binary dst src)));
  9387   ins_cost(80);
  9388   format %{
  9389              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpF_reg_reg\n"
  9390              "\tCMOV  $dst,$src \t @cmovI_cmpF_reg_reg"
  9391          %}
  9393   ins_encode %{
  9394     FloatRegister reg_op1 = $tmp1$$FloatRegister;
  9395     FloatRegister reg_op2 = $tmp2$$FloatRegister;
  9396     Register dst = $dst$$Register;
  9397     Register src = $src$$Register;
  9398     int     flag = $cop$$cmpcode;
  9400     switch(flag)
  9402       case 0x01: //equal
  9403         __ c_eq_s(reg_op1, reg_op2);
  9404         __ movt(dst, src);
  9405         break;
  9406       case 0x02: //not_equal
  9407         __ c_eq_s(reg_op1, reg_op2);
  9408         __ movf(dst, src);
  9409         break;
  9410       case 0x03: //greater
  9411         __ c_ole_s(reg_op1, reg_op2);
  9412         __ movf(dst, src);
  9413         break;
  9414       case 0x04: //greater_equal
  9415         __ c_olt_s(reg_op1, reg_op2);
  9416         __ movf(dst, src);
  9417         break;
  9418       case 0x05: //less
  9419         __ c_ult_s(reg_op1, reg_op2);
  9420         __ movt(dst, src);
  9421         break;
  9422       case 0x06: //less_equal
  9423         __ c_ule_s(reg_op1, reg_op2);
  9424         __ movt(dst, src);
  9425        break;
  9426       default:
  9427           Unimplemented();
  9429   %}
  9430   ins_pipe( pipe_slow );
  9431 %}
  9433 instruct cmovF_cmpF_reg_reg(regF dst, regF src, regF tmp1, regF tmp2, cmpOp cop ) %{
  9434   match(Set dst (CMoveF (Binary cop (CmpF tmp1 tmp2)) (Binary dst src)));
  9435   ins_cost(200);
  9436   format %{
  9437              "CMP$cop  $tmp1, $tmp2\t  @cmovF_cmpF_reg_reg\n"
  9438              "\tCMOV  $dst,$src \t @cmovF_cmpF_reg_reg"
  9439          %}
  9441   ins_encode %{
  9442     FloatRegister reg_op1 = $tmp1$$FloatRegister;
  9443     FloatRegister reg_op2 = $tmp2$$FloatRegister;
  9444     FloatRegister dst = $dst$$FloatRegister;
  9445     FloatRegister src = $src$$FloatRegister;
  9446     Label  L;
  9447     int    flag = $cop$$cmpcode;
  9449     switch(flag)
  9451       case 0x01: //equal
  9452         __ c_eq_s(reg_op1, reg_op2);
  9453         __ bc1f(L);
  9454         __ nop();
  9455         __ mov_s(dst, src);
  9456         __ bind(L);
  9457         break;
  9458       case 0x02: //not_equal
  9459         __ c_eq_s(reg_op1, reg_op2);
  9460         __ bc1t(L);
  9461         __ nop();
  9462         __ mov_s(dst, src);
  9463         __ bind(L);
  9464         break;
  9465       case 0x03: //greater
  9466         __ c_ole_s(reg_op1, reg_op2);
  9467         __ bc1t(L);
  9468         __ nop();
  9469         __ mov_s(dst, src);
  9470         __ bind(L);
  9471         break;
  9472       case 0x04: //greater_equal
  9473         __ c_olt_s(reg_op1, reg_op2);
  9474         __ bc1t(L);
  9475         __ nop();
  9476         __ mov_s(dst, src);
  9477         __ bind(L);
  9478         break;
  9479       case 0x05: //less
  9480         __ c_ult_s(reg_op1, reg_op2);
  9481         __ bc1f(L);
  9482         __ nop();
  9483         __ mov_s(dst, src);
  9484         __ bind(L);
  9485         break;
  9486       case 0x06: //less_equal
  9487         __ c_ule_s(reg_op1, reg_op2);
  9488         __ bc1f(L);
  9489         __ nop();
  9490         __ mov_s(dst, src);
  9491         __ bind(L);
  9492        break;
  9493       default:
  9494           Unimplemented();
  9496   %}
  9497   ins_pipe( pipe_slow );
  9498 %}
  9500 // Manifest a CmpL result in an integer register.  Very painful.
  9501 // This is the test to avoid.
  9502 instruct cmpL3_reg_reg(mRegI dst, mRegL src1, mRegL src2) %{
  9503   match(Set dst (CmpL3 src1 src2));
  9504   ins_cost(1000);
  9505   format %{ "cmpL3  $dst, $src1, $src2 @ cmpL3_reg_reg" %}
  9506   ins_encode %{
  9507     Register opr1 = as_Register($src1$$reg);
  9508     Register opr2 = as_Register($src2$$reg);
  9509     Register dst  = as_Register($dst$$reg);
  9511     Label Done;
  9513     __ subu(AT, opr1, opr2);
  9514     __ bltz(AT, Done);
  9515     __ delayed()->daddiu(dst, R0, -1);
  9517     __ move(dst, 1);
  9518     __ movz(dst, R0, AT);
  9520     __ bind(Done);
  9521   %}
  9522   ins_pipe( pipe_slow );
  9523 %}
  9525 //
  9526 // less_rsult     = -1 
  9527 // greater_result =  1
  9528 // equal_result   =  0 
  9529 // nan_result     = -1
  9530 //
  9531 instruct cmpF3_reg_reg(mRegI dst, regF src1, regF src2) %{
  9532   match(Set dst (CmpF3 src1 src2));
  9533   ins_cost(1000);
  9534   format %{ "cmpF3  $dst, $src1, $src2 @ cmpF3_reg_reg" %}
  9535   ins_encode %{
  9536     FloatRegister src1 = as_FloatRegister($src1$$reg);
  9537     FloatRegister src2 = as_FloatRegister($src2$$reg);
  9538     Register dst = as_Register($dst$$reg);
  9540     Label Done;
  9542     __ c_ult_s(src1, src2);
  9543     __ bc1t(Done);
  9544     __ delayed()->daddiu(dst, R0, -1);
  9546     __ c_eq_s(src1, src2);
  9547     __ move(dst, 1);
  9548     __ movt(dst, R0);
  9550     __ bind(Done);
  9551   %}
  9552   ins_pipe( pipe_slow );
  9553 %}
  9555 instruct cmpD3_reg_reg(mRegI dst, regD src1, regD src2) %{
  9556   match(Set dst (CmpD3 src1 src2));
  9557   ins_cost(1000);
  9558   format %{ "cmpD3  $dst, $src1, $src2 @ cmpD3_reg_reg" %}
  9559   ins_encode %{
  9560     FloatRegister src1 = as_FloatRegister($src1$$reg);
  9561     FloatRegister src2 = as_FloatRegister($src2$$reg);
  9562     Register dst = as_Register($dst$$reg);
  9564     Label Done;
  9566     __ c_ult_d(src1, src2);
  9567     __ bc1t(Done);
  9568     __ delayed()->daddiu(dst, R0, -1);
  9570     __ c_eq_d(src1, src2);
  9571     __ move(dst, 1);
  9572     __ movt(dst, R0);
  9574     __ bind(Done);
  9575   %}
  9576   ins_pipe( pipe_slow );
  9577 %}
  9579 instruct clear_array(mRegL cnt, mRegP base, Universe dummy) %{
  9580   match(Set dummy (ClearArray cnt base));
  9581   format %{ "CLEAR_ARRAY base = $base, cnt = $cnt # Clear doublewords" %}
  9582   ins_encode %{
  9583     //Assume cnt is the number of bytes in an array to be cleared,
  9584     //and base points to the starting address of the array.
  9585     Register base = $base$$Register;
  9586     Register num  = $cnt$$Register;
  9587     Label Loop, done;
  9589     /* 2012/9/21 Jin: according to X86, $cnt is caculated by doublewords(8 bytes) */
  9590     __ move(T9, num);	/* T9 = words */
  9591     __ beq(T9, R0, done);
  9592     __ nop();
  9593     __ move(AT, base);
  9595     __ bind(Loop);
  9596     __ sd(R0, Address(AT, 0));
  9597     __ daddi(AT, AT, wordSize);
  9598     __ daddi(T9, T9, -1);
  9599     __ bne(T9, R0, Loop);
  9600     __ delayed()->nop();
  9601     __ bind(done);
  9602   %}
  9603   ins_pipe( pipe_slow );
  9604 %}
  9606 instruct string_compare(a4_RegP str1, mA5RegI cnt1, a6_RegP str2,  mA7RegI cnt2, no_Ax_mRegI result) %{
  9607   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
  9608   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2);
  9610   format %{ "String Compare $str1[len: $cnt1], $str2[len: $cnt2] -> $result @ string_compare" %}
  9611   ins_encode %{
  9612     // Get the first character position in both strings
  9613     //         [8] char array, [12] offset, [16] count 
  9614     Register str1   = $str1$$Register;
  9615     Register str2   = $str2$$Register;
  9616     Register cnt1   = $cnt1$$Register;
  9617     Register cnt2   = $cnt2$$Register;
  9618     Register result = $result$$Register;
  9620     Label L, Loop, haveResult, done;
  9622    // compute the and difference of lengths (in result)
  9623    __ subu(result, cnt1, cnt2); // result holds the difference of two lengths
  9625    // compute the shorter length (in cnt1)
  9626    __ slt(AT, cnt2, cnt1);
  9627    __ movn(cnt1, cnt2, AT);
  9629    // Now the shorter length is in cnt1 and cnt2 can be used as a tmp register 
  9630    __ bind(Loop);                        // Loop begin
  9631    __ beq(cnt1, R0, done);
  9632    __ delayed()->lhu(AT, str1, 0);;
  9634    // compare current character
  9635    __ lhu(cnt2, str2, 0);
  9636    __ bne(AT, cnt2, haveResult);
  9637    __ delayed()->addi(str1, str1, 2);
  9638    __ addi(str2, str2, 2);
  9639    __ b(Loop);
  9640    __ delayed()->addi(cnt1, cnt1, -1);   // Loop end
  9642    __ bind(haveResult);
  9643    __ subu(result, AT, cnt2);
  9645    __ bind(done);
  9646   %}
  9648   ins_pipe( pipe_slow );
  9649 %}
  9651 // intrinsic optimization
  9652 instruct string_equals(a4_RegP str1, a5_RegP str2, mA6RegI cnt, mA7RegI temp, no_Ax_mRegI result) %{
  9653   match(Set result (StrEquals (Binary str1 str2) cnt));
  9654   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL temp);
  9656   format %{ "String Equal $str1, $str2, len:$cnt  tmp:$temp -> $result @ string_equals" %}
  9657   ins_encode %{
  9658     // Get the first character position in both strings
  9659     //         [8] char array, [12] offset, [16] count 
  9660     Register str1   = $str1$$Register;
  9661     Register str2   = $str2$$Register;
  9662     Register cnt    = $cnt$$Register;
  9663     Register tmp    = $temp$$Register;
  9664     Register result = $result$$Register;
  9666     Label    Loop, done;
  9669    __ beq(str1, str2, done);  // same char[] ?
  9670    __ daddiu(result, R0, 1);
  9672    __ bind(Loop);             // Loop begin
  9673    __ beq(cnt, R0, done);
  9674    __ daddiu(result, R0, 1); // count == 0
  9676    // compare current character
  9677    __ lhu(AT, str1, 0);;
  9678    __ lhu(tmp, str2, 0);
  9679    __ bne(AT, tmp, done);
  9680    __ delayed()->daddi(result, R0, 0);
  9681    __ addi(str1, str1, 2);
  9682    __ addi(str2, str2, 2);
  9683    __ b(Loop);
  9684    __ delayed()->addi(cnt, cnt, -1);  // Loop end
  9686    __ bind(done);
  9687   %}
  9689   ins_pipe( pipe_slow );
  9690 %}
  9692 //----------Arithmetic Instructions-------------------------------------------
  9693 //----------Addition Instructions---------------------------------------------
  9694 instruct addI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9695   match(Set dst (AddI src1 src2));
  9697   format %{ "add   $dst, $src1, $src2 #@addI_Reg_Reg" %}
  9698   ins_encode %{
  9699     Register  dst = $dst$$Register;
  9700     Register src1 = $src1$$Register;
  9701     Register src2 = $src2$$Register;
  9702     __ addu32(dst, src1, src2);
  9703   %}
  9704   ins_pipe( ialu_regI_regI );
  9705 %}
  9707 instruct addI_Reg_imm(mRegI dst, mRegI src1,  immI src2) %{
  9708   match(Set dst (AddI src1 src2));
  9710   format %{ "add    $dst, $src1, $src2 #@addI_Reg_imm" %}
  9711   ins_encode %{
  9712     Register  dst = $dst$$Register;
  9713     Register src1 = $src1$$Register;
  9714     int       imm = $src2$$constant;
  9716     if(Assembler::is_simm16(imm)) {
  9717        __ addiu32(dst, src1, imm);
  9718     } else {
  9719        __ move(AT, imm);
  9720        __ addu32(dst, src1, AT);
  9722   %}
  9723   ins_pipe( ialu_regI_regI );
  9724 %}
  9726 instruct addP_reg_reg(mRegP dst, mRegP src1, mRegL src2) %{
  9727   match(Set dst (AddP src1 src2));
  9729   format %{ "dadd    $dst, $src1, $src2 #@addP_reg_reg" %}
  9731   ins_encode %{
  9732     Register  dst = $dst$$Register;
  9733     Register src1 = $src1$$Register;
  9734     Register src2 = $src2$$Register;
  9735     __ daddu(dst, src1, src2);  
  9736   %}
  9738   ins_pipe( ialu_regI_regI );
  9739 %}
  9741 instruct addP_reg_reg_convI2L(mRegP dst, mRegP src1, mRegI src2) %{
  9742   match(Set dst (AddP src1 (ConvI2L src2)));
  9744   format %{ "dadd    $dst, $src1, $src2 #@addP_reg_reg_convI2L" %}
  9746   ins_encode %{
  9747     Register  dst = $dst$$Register;
  9748     Register src1 = $src1$$Register;
  9749     Register src2 = $src2$$Register;
  9750     __ daddu(dst, src1, src2);  
  9751   %}
  9753   ins_pipe( ialu_regI_regI );
  9754 %}
  9756 instruct addP_reg_imm(mRegP dst, mRegP src1,  immL src2) %{
  9757   match(Set dst (AddP src1 src2));
  9759   format %{ "daddi   $dst, $src1, $src2 #@addP_reg_imm" %}
  9760   ins_encode %{
  9761     Register src1 = $src1$$Register;
  9762     long      src2 = $src2$$constant;
  9763     Register  dst = $dst$$Register;
  9765     if(Assembler::is_simm16(src2)) {
  9766        __ daddiu(dst, src1, src2);
  9767     } else {
  9768        __ set64(AT, src2);
  9769        __ daddu(dst, src1, AT);
  9771   %}
  9772   ins_pipe( ialu_regI_imm16 );
  9773 %}
  9775 // Add Long Register with Register
  9776 instruct addL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
  9777   match(Set dst (AddL src1 src2));
  9778   ins_cost(200);
  9779   format %{ "ADD    $dst, $src1, $src2 #@addL_Reg_Reg\t" %}
  9781   ins_encode %{
  9782     Register dst_reg = as_Register($dst$$reg);
  9783     Register src1_reg = as_Register($src1$$reg);
  9784     Register src2_reg = as_Register($src2$$reg);
  9786     __ daddu(dst_reg, src1_reg, src2_reg);
  9787   %}
  9789   ins_pipe( ialu_regL_regL );
  9790 %}
  9792 instruct addL_Reg_imm(mRegL dst, mRegL src1, immL16 src2)
  9793 %{
  9794   match(Set dst (AddL src1 src2));
  9796   format %{ "ADD    $dst, $src1, $src2 #@addL_Reg_imm " %}
  9797   ins_encode %{
  9798     Register dst_reg  = as_Register($dst$$reg);
  9799     Register src1_reg = as_Register($src1$$reg);
  9800     int      src2_imm = $src2$$constant;
  9802     __ daddiu(dst_reg, src1_reg, src2_imm);
  9803   %}
  9805   ins_pipe( ialu_regL_regL );
  9806 %}
  9808 instruct addL_RegI2L_imm(mRegL dst, mRegI src1, immL16 src2)
  9809 %{
  9810   match(Set dst (AddL (ConvI2L src1) src2));
  9812   format %{ "ADD    $dst, $src1, $src2 #@addL_RegI2L_imm " %}
  9813   ins_encode %{
  9814     Register dst_reg  = as_Register($dst$$reg);
  9815     Register src1_reg = as_Register($src1$$reg);
  9816     int      src2_imm = $src2$$constant;
  9818     __ daddiu(dst_reg, src1_reg, src2_imm);
  9819   %}
  9821   ins_pipe( ialu_regL_regL );
  9822 %}
  9824 instruct addL_RegI2L_Reg(mRegL dst, mRegI src1, mRegL src2) %{
  9825   match(Set dst (AddL (ConvI2L src1) src2));
  9826   ins_cost(200);
  9827   format %{ "ADD    $dst, $src1, $src2 #@addL_RegI2L_Reg\t" %}
  9829   ins_encode %{
  9830     Register dst_reg = as_Register($dst$$reg);
  9831     Register src1_reg = as_Register($src1$$reg);
  9832     Register src2_reg = as_Register($src2$$reg);
  9834     __ daddu(dst_reg, src1_reg, src2_reg);
  9835   %}
  9837   ins_pipe( ialu_regL_regL );
  9838 %}
  9840 instruct addL_RegI2L_RegI2L(mRegL dst, mRegI src1, mRegI src2) %{
  9841   match(Set dst (AddL (ConvI2L src1) (ConvI2L src2)));
  9842   ins_cost(200);
  9843   format %{ "ADD    $dst, $src1, $src2 #@addL_RegI2L_RegI2L\t" %}
  9845   ins_encode %{
  9846     Register dst_reg = as_Register($dst$$reg);
  9847     Register src1_reg = as_Register($src1$$reg);
  9848     Register src2_reg = as_Register($src2$$reg);
  9850     __ daddu(dst_reg, src1_reg, src2_reg);
  9851   %}
  9853   ins_pipe( ialu_regL_regL );
  9854 %}
  9856 instruct addL_Reg_RegI2L(mRegL dst, mRegL src1, mRegI src2) %{
  9857   match(Set dst (AddL src1 (ConvI2L src2)));
  9858   ins_cost(200);
  9859   format %{ "ADD    $dst, $src1, $src2 #@addL_Reg_RegI2L\t" %}
  9861   ins_encode %{
  9862     Register dst_reg = as_Register($dst$$reg);
  9863     Register src1_reg = as_Register($src1$$reg);
  9864     Register src2_reg = as_Register($src2$$reg);
  9866     __ daddu(dst_reg, src1_reg, src2_reg);
  9867   %}
  9869   ins_pipe( ialu_regL_regL );
  9870 %}
  9872 //----------Subtraction Instructions-------------------------------------------
  9873 // Integer Subtraction Instructions
  9874 instruct subI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9875   match(Set dst (SubI src1 src2));
  9876   ins_cost(100);
  9878   format %{ "sub    $dst, $src1, $src2 #@subI_Reg_Reg" %}
  9879   ins_encode %{
  9880     Register  dst = $dst$$Register;
  9881     Register src1 = $src1$$Register;
  9882     Register src2 = $src2$$Register;
  9883     __ subu32(dst, src1, src2);
  9884   %}
  9885   ins_pipe( ialu_regI_regI );
  9886 %}
  9888 instruct subI_Reg_immI16_sub(mRegI dst, mRegI src1,  immI16_sub src2) %{
  9889   match(Set dst (SubI src1 src2));
  9890   ins_cost(80);
  9892   format %{ "sub    $dst, $src1, $src2 #@subI_Reg_immI16_sub" %}
  9893   ins_encode %{
  9894     Register  dst = $dst$$Register;
  9895     Register src1 = $src1$$Register;
  9896     __ addiu32(dst, src1, -1 * $src2$$constant);
  9897   %}
  9898   ins_pipe( ialu_regI_regI );
  9899 %}
  9901 instruct negI_Reg(mRegI dst, immI0 zero,  mRegI src) %{
  9902   match(Set dst (SubI zero src));
  9903   ins_cost(80);
  9905   format %{ "neg    $dst, $src #@negI_Reg" %}
  9906   ins_encode %{
  9907     Register  dst = $dst$$Register;
  9908     Register  src = $src$$Register;
  9909     __ subu32(dst, R0, src);
  9910   %}
  9911   ins_pipe( ialu_regI_regI );
  9912 %}
  9914 instruct negL_Reg(mRegL dst, immL0 zero,  mRegL src) %{
  9915   match(Set dst (SubL zero src));
  9916   ins_cost(80);
  9918   format %{ "neg    $dst, $src #@negL_Reg" %}
  9919   ins_encode %{
  9920     Register  dst = $dst$$Register;
  9921     Register  src = $src$$Register;
  9922     __ subu(dst, R0, src);
  9923   %}
  9924   ins_pipe( ialu_regI_regI );
  9925 %}
  9927 instruct subL_Reg_immL16_sub(mRegL dst, mRegL src1,  immL16_sub src2) %{
  9928   match(Set dst (SubL src1 src2));
  9929   ins_cost(80);
  9931   format %{ "sub    $dst, $src1, $src2 #@subL_Reg_immL16_sub" %}
  9932   ins_encode %{
  9933     Register  dst = $dst$$Register;
  9934     Register src1 = $src1$$Register;
  9935     __ daddiu(dst, src1, -1 * $src2$$constant);
  9936   %}
  9937   ins_pipe( ialu_regI_regI );
  9938 %}
  9940 // Subtract Long Register with Register.
  9941 instruct subL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
  9942   match(Set dst (SubL src1 src2));
  9943   ins_cost(100);
  9944   format %{ "SubL    $dst, $src1, $src2 @ subL_Reg_Reg" %}
  9945   ins_encode %{
  9946     Register dst  = as_Register($dst$$reg);
  9947     Register src1 = as_Register($src1$$reg);
  9948     Register src2 = as_Register($src2$$reg);
  9950     __ subu(dst, src1, src2);
  9951   %}
  9952   ins_pipe( ialu_regL_regL );
  9953 %}
  9955 instruct subL_Reg_RegI2L(mRegL dst, mRegL src1, mRegI src2) %{
  9956   match(Set dst (SubL src1 (ConvI2L src2)));
  9957   ins_cost(100);
  9958   format %{ "SubL    $dst, $src1, $src2 @ subL_Reg_RegI2L" %}
  9959   ins_encode %{
  9960     Register dst  = as_Register($dst$$reg);
  9961     Register src1 = as_Register($src1$$reg);
  9962     Register src2 = as_Register($src2$$reg);
  9964     __ subu(dst, src1, src2);
  9965   %}
  9966   ins_pipe( ialu_regL_regL );
  9967 %}
  9969 instruct subL_RegI2L_Reg(mRegL dst, mRegI src1, mRegL src2) %{
  9970   match(Set dst (SubL (ConvI2L src1) src2));
  9971   ins_cost(200);
  9972   format %{ "SubL    $dst, $src1, $src2 @ subL_RegI2L_Reg" %}
  9973   ins_encode %{
  9974     Register dst  = as_Register($dst$$reg);
  9975     Register src1 = as_Register($src1$$reg);
  9976     Register src2 = as_Register($src2$$reg);
  9978     __ subu(dst, src1, src2);
  9979   %}
  9980   ins_pipe( ialu_regL_regL );
  9981 %}
  9983 instruct subL_RegI2L_RegI2L(mRegL dst, mRegI src1, mRegI src2) %{
  9984   match(Set dst (SubL (ConvI2L src1) (ConvI2L src2)));
  9985   ins_cost(200);
  9986   format %{ "SubL    $dst, $src1, $src2 @ subL_RegI2L_RegI2L" %}
  9987   ins_encode %{
  9988     Register dst  = as_Register($dst$$reg);
  9989     Register src1 = as_Register($src1$$reg);
  9990     Register src2 = as_Register($src2$$reg);
  9992     __ subu(dst, src1, src2);
  9993   %}
  9994   ins_pipe( ialu_regL_regL );
  9995 %}
  9997 // Integer MOD with Register
  9998 instruct modI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9999   match(Set dst (ModI src1 src2));
 10000   ins_cost(300);
 10001   format %{ "modi   $dst, $src1, $src2 @ modI_Reg_Reg" %}
 10002   ins_encode %{
 10003     Register  dst = $dst$$Register;
 10004     Register src1 = $src1$$Register;
 10005     Register src2 = $src2$$Register;
 10007     //if (UseLoongsonISA) {
 10008     if (0) {
 10009       // 2016.08.10 
 10010       // Experiments show that gsmod is slower that div+mfhi.
 10011       // So I just disable it here.
 10012       __ gsmod(dst, src1, src2);
 10013     } else {
 10014       __ div(src1, src2); 
 10015       __ mfhi(dst);  
 10017   %}
 10019   //ins_pipe( ialu_mod );
 10020   ins_pipe( ialu_regI_regI );
 10021 %}
 10023 instruct modL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
 10024   match(Set dst (ModL src1 src2));
 10025   format %{ "modL  $dst, $src1, $src2 @modL_reg_reg" %}
 10027   ins_encode %{
 10028     Register dst = as_Register($dst$$reg);
 10029     Register op1 = as_Register($src1$$reg);
 10030     Register op2 = as_Register($src2$$reg);
 10032     if (UseLoongsonISA) {
 10033       __ gsdmod(dst, op1, op2);
 10034     } else {
 10035       __ ddiv(op1, op2);
 10036       __ mfhi(dst);
 10038   %}
 10039   ins_pipe( pipe_slow );
 10040 %}
 10042 instruct mulI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
 10043   match(Set dst (MulI src1 src2));
 10045   ins_cost(300);
 10046   format %{ "mul   $dst, $src1, $src2 @ mulI_Reg_Reg" %}
 10047   ins_encode %{
 10048      Register src1 = $src1$$Register;
 10049      Register src2 = $src2$$Register;
 10050      Register dst  = $dst$$Register;
 10052      __ mul(dst, src1, src2);
 10053   %}
 10054   ins_pipe( ialu_mult );
 10055 %}
 10057 instruct maddI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2, mRegI src3) %{
 10058   match(Set dst (AddI (MulI src1 src2) src3));
 10060   ins_cost(999);
 10061   format %{ "madd   $dst, $src1 * $src2 + $src3 #@maddI_Reg_Reg" %}
 10062   ins_encode %{
 10063      Register src1 = $src1$$Register;
 10064      Register src2 = $src2$$Register;
 10065      Register src3 = $src3$$Register;
 10066      Register dst  = $dst$$Register;
 10068      __ mtlo(src3);
 10069      __ madd(src1, src2);
 10070      __ mflo(dst);
 10071   %}
 10072   ins_pipe( ialu_mult );
 10073 %}
 10075 instruct divI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
 10076   match(Set dst (DivI src1 src2));
 10078   ins_cost(300);
 10079   format %{ "div   $dst, $src1, $src2 @ divI_Reg_Reg" %}
 10080   ins_encode %{
 10081      Register src1 = $src1$$Register;
 10082      Register src2 = $src2$$Register;
 10083      Register dst  = $dst$$Register;
 10085     /* 2012/4/21 Jin: In MIPS, div does not cause exception.
 10086        We must trap an exception manually. */   
 10087     __ teq(R0, src2, 0x7);
 10089     if (UseLoongsonISA) {
 10090       __ gsdiv(dst, src1, src2);
 10091     } else {
 10092       __ div(src1, src2);
 10094       __ nop();
 10095       __ nop();
 10096       __ mflo(dst);
 10098   %}
 10099   ins_pipe( ialu_mod );
 10100 %}
 10102 instruct divF_Reg_Reg(regF dst, regF src1, regF src2) %{
 10103   match(Set dst (DivF src1 src2));
 10105   ins_cost(300);
 10106   format %{ "divF   $dst, $src1, $src2 @ divF_Reg_Reg" %}
 10107   ins_encode %{
 10108      FloatRegister src1 = $src1$$FloatRegister;
 10109      FloatRegister src2 = $src2$$FloatRegister;
 10110      FloatRegister dst  = $dst$$FloatRegister;
 10112     /* Here do we need to trap an exception manually ? */   
 10113     __ div_s(dst, src1, src2);
 10114   %}
 10115   ins_pipe( pipe_slow );
 10116 %}
 10118 instruct divD_Reg_Reg(regD dst, regD src1, regD src2) %{
 10119   match(Set dst (DivD src1 src2));
 10121   ins_cost(300);
 10122   format %{ "divD   $dst, $src1, $src2 @ divD_Reg_Reg" %}
 10123   ins_encode %{
 10124      FloatRegister src1 = $src1$$FloatRegister;
 10125      FloatRegister src2 = $src2$$FloatRegister;
 10126      FloatRegister dst  = $dst$$FloatRegister;
 10128     /* Here do we need to trap an exception manually ? */   
 10129     __ div_d(dst, src1, src2);
 10130   %}
 10131   ins_pipe( pipe_slow );
 10132 %}
 10134 instruct mulL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
 10135   match(Set dst (MulL src1 src2));
 10136   format %{ "mulL  $dst, $src1, $src2 @mulL_reg_reg" %}
 10137   ins_encode %{
 10138     Register dst = as_Register($dst$$reg);
 10139     Register op1 = as_Register($src1$$reg);
 10140     Register op2 = as_Register($src2$$reg);
 10142     if (UseLoongsonISA) {
 10143       __ gsdmult(dst, op1, op2);
 10144     } else {
 10145       __ dmult(op1, op2);
 10146       __ mflo(dst);
 10148   %}
 10149   ins_pipe( pipe_slow );
 10150 %}
 10152 instruct mulL_reg_regI2L(mRegL dst, mRegL src1, mRegI src2) %{
 10153   match(Set dst (MulL src1 (ConvI2L src2)));
 10154   format %{ "mulL  $dst, $src1, $src2 @mulL_reg_regI2L" %}
 10155   ins_encode %{
 10156     Register dst = as_Register($dst$$reg);
 10157     Register op1 = as_Register($src1$$reg);
 10158     Register op2 = as_Register($src2$$reg);
 10160     if (UseLoongsonISA) {
 10161       __ gsdmult(dst, op1, op2);
 10162     } else {
 10163       __ dmult(op1, op2);
 10164       __ mflo(dst);
 10166   %}
 10167   ins_pipe( pipe_slow );
 10168 %}
 10170 instruct divL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
 10171   match(Set dst (DivL src1 src2));
 10172   format %{ "divL  $dst, $src1, $src2 @divL_reg_reg" %}
 10174   ins_encode %{
 10175     Register dst = as_Register($dst$$reg);
 10176     Register op1 = as_Register($src1$$reg);
 10177     Register op2 = as_Register($src2$$reg);
 10179     if (UseLoongsonISA) {
 10180       __ gsddiv(dst, op1, op2);
 10181     } else {
 10182       __ ddiv(op1, op2);
 10183       __ mflo(dst);
 10185   %}
 10186   ins_pipe( pipe_slow );
 10187 %}
 10189 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
 10190   match(Set dst (AddF src1 src2));
 10191   format %{ "AddF  $dst, $src1, $src2 @addF_reg_reg" %}
 10192   ins_encode %{
 10193     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10194     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10195     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10197     __ add_s(dst, src1, src2);  
 10198   %}
 10199   ins_pipe( fpu_regF_regF );
 10200 %}
 10202 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
 10203   match(Set dst (SubF src1 src2));
 10204   format %{ "SubF  $dst, $src1, $src2 @subF_reg_reg" %}
 10205   ins_encode %{
 10206     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10207     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10208     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10210     __ sub_s(dst, src1, src2);  
 10211   %}
 10212   ins_pipe( fpu_regF_regF );
 10213 %}
 10214 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
 10215   match(Set dst (AddD src1 src2));
 10216   format %{ "AddD  $dst, $src1, $src2 @addD_reg_reg" %}
 10217   ins_encode %{
 10218     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10219     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10220     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10222     __ add_d(dst, src1, src2);  
 10223   %}
 10224   ins_pipe( fpu_regF_regF );
 10225 %}
 10227 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
 10228   match(Set dst (SubD src1 src2));
 10229   format %{ "SubD  $dst, $src1, $src2 @subD_reg_reg" %}
 10230   ins_encode %{
 10231     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10232     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10233     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10235     __ sub_d(dst, src1, src2);  
 10236   %}
 10237   ins_pipe( fpu_regF_regF );
 10238 %}
 10240 instruct negF_reg(regF dst, regF src) %{
 10241   match(Set dst (NegF src));
 10242   format %{ "negF  $dst, $src @negF_reg" %}
 10243   ins_encode %{
 10244     FloatRegister src = as_FloatRegister($src$$reg);
 10245     FloatRegister dst = as_FloatRegister($dst$$reg);
 10247     __ neg_s(dst, src);
 10248   %}
 10249   ins_pipe( fpu_regF_regF );
 10250 %}
 10252 instruct negD_reg(regD dst, regD src) %{
 10253   match(Set dst (NegD src));
 10254   format %{ "negD  $dst, $src @negD_reg" %}
 10255   ins_encode %{
 10256     FloatRegister src = as_FloatRegister($src$$reg);
 10257     FloatRegister dst = as_FloatRegister($dst$$reg);
 10259     __ neg_d(dst, src);  
 10260   %}
 10261   ins_pipe( fpu_regF_regF );
 10262 %}
 10265 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
 10266   match(Set dst (MulF src1 src2));
 10267   format %{ "MULF  $dst, $src1, $src2 @mulF_reg_reg" %}
 10268   ins_encode %{
 10269     FloatRegister src1 = $src1$$FloatRegister;
 10270     FloatRegister src2 = $src2$$FloatRegister;
 10271     FloatRegister dst  = $dst$$FloatRegister;
 10273     __ mul_s(dst, src1, src2);  
 10274   %}
 10275   ins_pipe( fpu_regF_regF );
 10276 %}
 10278 instruct maddF_reg_reg(regF dst, regF src1, regF src2, regF src3) %{
 10279   match(Set dst (AddF (MulF src1 src2) src3));
 10280   // For compatibility reason (e.g. on the Loongson platform), disable this guy.
 10281   ins_cost(44444);
 10282   format %{ "maddF  $dst, $src1, $src2, $src3 @maddF_reg_reg" %}
 10283   ins_encode %{
 10284     FloatRegister src1 = $src1$$FloatRegister;
 10285     FloatRegister src2 = $src2$$FloatRegister;
 10286     FloatRegister src3 = $src3$$FloatRegister;
 10287     FloatRegister dst  = $dst$$FloatRegister;
 10289     __ madd_s(dst, src1, src2, src3);  
 10290   %}
 10291   ins_pipe( fpu_regF_regF );
 10292 %}
 10294 // Mul two double precision floating piont number
 10295 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
 10296   match(Set dst (MulD src1 src2));
 10297   format %{ "MULD  $dst, $src1, $src2 @mulD_reg_reg" %}
 10298   ins_encode %{
 10299     FloatRegister src1 = $src1$$FloatRegister;
 10300     FloatRegister src2 = $src2$$FloatRegister;
 10301     FloatRegister dst  = $dst$$FloatRegister;
 10303     __ mul_d(dst, src1, src2);  
 10304   %}
 10305   ins_pipe( fpu_regF_regF );
 10306 %}
 10308 instruct maddD_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
 10309   match(Set dst (AddD (MulD src1 src2) src3));
 10310   // For compatibility reason (e.g. on the Loongson platform), disable this guy.
 10311   ins_cost(44444);
 10312   format %{ "maddD  $dst, $src1, $src2, $src3 @maddD_reg_reg" %}
 10313   ins_encode %{
 10314     FloatRegister src1 = $src1$$FloatRegister;
 10315     FloatRegister src2 = $src2$$FloatRegister;
 10316     FloatRegister src3 = $src3$$FloatRegister;
 10317     FloatRegister dst  = $dst$$FloatRegister;
 10319     __ madd_d(dst, src1, src2, src3);  
 10320   %}
 10321   ins_pipe( fpu_regF_regF );
 10322 %}
 10324 instruct absF_reg(regF dst, regF src) %{
 10325   match(Set dst (AbsF src));
 10326   ins_cost(100);
 10327   format %{ "absF  $dst, $src @absF_reg" %}
 10328   ins_encode %{
 10329     FloatRegister src = as_FloatRegister($src$$reg);
 10330     FloatRegister dst = as_FloatRegister($dst$$reg);
 10332     __ abs_s(dst, src);  
 10333   %}
 10334   ins_pipe( fpu_regF_regF );
 10335 %}
 10338 // intrinsics for math_native.
 10339 // AbsD  SqrtD  CosD  SinD  TanD  LogD  Log10D
 10341 instruct absD_reg(regD dst, regD src) %{
 10342   match(Set dst (AbsD src));
 10343   ins_cost(100);
 10344   format %{ "absD  $dst, $src @absD_reg" %}
 10345   ins_encode %{
 10346     FloatRegister src = as_FloatRegister($src$$reg);
 10347     FloatRegister dst = as_FloatRegister($dst$$reg);
 10349     __ abs_d(dst, src);  
 10350   %}
 10351   ins_pipe( fpu_regF_regF );
 10352 %}
 10354 instruct sqrtD_reg(regD dst, regD src) %{
 10355   match(Set dst (SqrtD src));
 10356   ins_cost(100);
 10357   format %{ "SqrtD  $dst, $src @sqrtD_reg" %}
 10358   ins_encode %{
 10359     FloatRegister src = as_FloatRegister($src$$reg);
 10360     FloatRegister dst = as_FloatRegister($dst$$reg);
 10362     __ sqrt_d(dst, src);  
 10363   %}
 10364   ins_pipe( fpu_regF_regF );
 10365 %}
 10367 instruct sqrtF_reg(regF dst, regF src) %{
 10368   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 10369   ins_cost(100);
 10370   format %{ "SqrtF  $dst, $src @sqrtF_reg" %}
 10371   ins_encode %{
 10372     FloatRegister src = as_FloatRegister($src$$reg);
 10373     FloatRegister dst = as_FloatRegister($dst$$reg);
 10375     __ sqrt_s(dst, src);
 10376   %}
 10377   ins_pipe( fpu_regF_regF );
 10378 %}
 10379 //----------------------------------Logical Instructions----------------------
 10380 //__________________________________Integer Logical Instructions-------------
 10382 //And Instuctions
 10383 // And Register with Immediate
 10384 instruct andI_Reg_immI(mRegI dst, mRegI src1,  immI src2) %{
 10385   match(Set dst (AndI src1 src2));
 10387   format %{ "and  $dst, $src1, $src2 #@andI_Reg_immI" %}
 10388   ins_encode %{
 10389     Register dst = $dst$$Register;
 10390     Register src = $src1$$Register;
 10391     int      val = $src2$$constant;
 10393        __ move(AT, val);
 10394        __ andr(dst, src, AT);
 10395   %}
 10396   ins_pipe( ialu_regI_regI );
 10397 %}
 10399 instruct andI_Reg_imm_0_65535(mRegI dst, mRegI src1,  immI_0_65535 src2) %{
 10400   match(Set dst (AndI src1 src2));
 10401   ins_cost(60);
 10403   format %{ "and  $dst, $src1, $src2 #@andI_Reg_imm_0_65535" %}
 10404   ins_encode %{
 10405     Register dst = $dst$$Register;
 10406     Register src = $src1$$Register;
 10407     int      val = $src2$$constant;
 10409        __ andi(dst, src, val);
 10410   %}
 10411   ins_pipe( ialu_regI_regI );
 10412 %}
 10414 instruct andI_Reg_immI_nonneg_mask(mRegI dst, mRegI src1,  immI_nonneg_mask mask) %{
 10415   match(Set dst (AndI src1 mask));
 10416   ins_cost(60);
 10418   format %{ "and  $dst, $src1, $mask #@andI_Reg_immI_nonneg_mask" %}
 10419   ins_encode %{
 10420     Register dst = $dst$$Register;
 10421     Register src = $src1$$Register;
 10422     int     size = Assembler::is_int_mask($mask$$constant);
 10424     __ ext(dst, src, 0, size);
 10425   %}
 10426   ins_pipe( ialu_regI_regI );
 10427 %}
 10429 instruct andL_Reg_immL_nonneg_mask(mRegL dst, mRegL src1,  immL_nonneg_mask mask) %{
 10430   match(Set dst (AndL src1 mask));
 10431   ins_cost(60);
 10433   format %{ "and  $dst, $src1, $mask #@andL_Reg_immL_nonneg_mask" %}
 10434   ins_encode %{
 10435     Register dst = $dst$$Register;
 10436     Register src = $src1$$Register;
 10437     int     size = Assembler::is_jlong_mask($mask$$constant);
 10439     __ dext(dst, src, 0, size);
 10440   %}
 10441   ins_pipe( ialu_regI_regI );
 10442 %}
 10444 instruct xorI_Reg_imm_0_65535(mRegI dst, mRegI src1,  immI_0_65535 src2) %{
 10445   match(Set dst (XorI src1 src2));
 10446   ins_cost(60);
 10448   format %{ "xori  $dst, $src1, $src2 #@xorI_Reg_imm_0_65535" %}
 10449   ins_encode %{
 10450     Register dst = $dst$$Register;
 10451     Register src = $src1$$Register;
 10452     int      val = $src2$$constant;
 10454        __ xori(dst, src, val);
 10455   %}
 10456   ins_pipe( ialu_regI_regI );
 10457 %}
 10459 instruct xorI_Reg_immI_M1(mRegI dst, mRegI src1,  immI_M1 M1) %{
 10460   match(Set dst (XorI src1 M1));
 10461   predicate(UseLoongsonISA && Use3A2000);
 10462   ins_cost(60);
 10464   format %{ "xor  $dst, $src1, $M1 #@xorI_Reg_immI_M1" %}
 10465   ins_encode %{
 10466     Register dst = $dst$$Register;
 10467     Register src = $src1$$Register;
 10469        __ gsorn(dst, R0, src);
 10470   %}
 10471   ins_pipe( ialu_regI_regI );
 10472 %}
 10474 instruct xorL2I_Reg_immI_M1(mRegI dst, mRegL src1,  immI_M1 M1) %{
 10475   match(Set dst (XorI (ConvL2I src1) M1));
 10476   predicate(UseLoongsonISA && Use3A2000);
 10477   ins_cost(60);
 10479   format %{ "xor  $dst, $src1, $M1 #@xorL2I_Reg_immI_M1" %}
 10480   ins_encode %{
 10481     Register dst = $dst$$Register;
 10482     Register src = $src1$$Register;
 10484        __ gsorn(dst, R0, src);
 10485   %}
 10486   ins_pipe( ialu_regI_regI );
 10487 %}
 10489 instruct xorL_Reg_imm_0_65535(mRegL dst, mRegL src1,  immL_0_65535 src2) %{
 10490   match(Set dst (XorL src1 src2));
 10491   ins_cost(60);
 10493   format %{ "xori  $dst, $src1, $src2 #@xorL_Reg_imm_0_65535" %}
 10494   ins_encode %{
 10495     Register dst = $dst$$Register;
 10496     Register src = $src1$$Register;
 10497     int      val = $src2$$constant;
 10499        __ xori(dst, src, val);
 10500   %}
 10501   ins_pipe( ialu_regI_regI );
 10502 %}
 10504 /*
 10505 instruct xorL_Reg_immL_M1(mRegL dst, mRegL src1,  immL_M1 M1) %{
 10506   match(Set dst (XorL src1 M1));
 10507   predicate(UseLoongsonISA);
 10508   ins_cost(60);
 10510   format %{ "xor  $dst, $src1, $M1 #@xorL_Reg_immL_M1" %}
 10511   ins_encode %{
 10512     Register dst = $dst$$Register;
 10513     Register src = $src1$$Register;
 10515        __ gsorn(dst, R0, src);
 10516   %}
 10517   ins_pipe( ialu_regI_regI );
 10518 %}
 10519 */
 10521 instruct lbu_and_lmask(mRegI dst, memory mem,  immI_255 mask) %{
 10522   match(Set dst (AndI mask (LoadB mem)));
 10523   ins_cost(60);
 10525   format %{ "lhu  $dst, $mem #@lbu_and_lmask" %}
 10526   ins_encode(load_UB_enc(dst, mem));
 10527   ins_pipe( ialu_loadI );
 10528 %}
 10530 instruct lbu_and_rmask(mRegI dst, memory mem,  immI_255 mask) %{
 10531   match(Set dst (AndI (LoadB mem) mask));
 10532   ins_cost(60);
 10534   format %{ "lhu  $dst, $mem #@lbu_and_rmask" %}
 10535   ins_encode(load_UB_enc(dst, mem));
 10536   ins_pipe( ialu_loadI );
 10537 %}
 10539 instruct andI_Reg_Reg(mRegI dst, mRegI src1,  mRegI src2) %{
 10540   match(Set dst (AndI src1 src2));
 10542   format %{ "and    $dst, $src1, $src2 #@andI_Reg_Reg" %}
 10543   ins_encode %{
 10544     Register dst = $dst$$Register;
 10545     Register src1 = $src1$$Register;
 10546     Register src2 = $src2$$Register;
 10547     __ andr(dst, src1, src2);
 10548   %}
 10549   ins_pipe( ialu_regI_regI );
 10550 %}
 10552 instruct andnI_Reg_nReg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10553   match(Set dst (AndI src1 (XorI src2 M1)));
 10554   predicate(UseLoongsonISA && Use3A2000);
 10556   format %{ "andn   $dst, $src1, $src2 #@andnI_Reg_nReg" %}
 10557   ins_encode %{
 10558     Register dst = $dst$$Register;
 10559     Register src1 = $src1$$Register;
 10560     Register src2 = $src2$$Register;
 10562     __ gsandn(dst, src1, src2);
 10563   %}
 10564   ins_pipe( ialu_regI_regI );
 10565 %}
 10567 instruct ornI_Reg_nReg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10568   match(Set dst (OrI src1 (XorI src2 M1)));
 10569   predicate(UseLoongsonISA && Use3A2000);
 10571   format %{ "orn    $dst, $src1, $src2 #@ornI_Reg_nReg" %}
 10572   ins_encode %{
 10573     Register dst = $dst$$Register;
 10574     Register src1 = $src1$$Register;
 10575     Register src2 = $src2$$Register;
 10577     __ gsorn(dst, src1, src2);
 10578   %}
 10579   ins_pipe( ialu_regI_regI );
 10580 %}
 10582 instruct andnI_nReg_Reg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10583   match(Set dst (AndI (XorI src1 M1) src2));
 10584   predicate(UseLoongsonISA && Use3A2000);
 10586   format %{ "andn   $dst, $src2, $src1 #@andnI_nReg_Reg" %}
 10587   ins_encode %{
 10588     Register dst = $dst$$Register;
 10589     Register src1 = $src1$$Register;
 10590     Register src2 = $src2$$Register;
 10592     __ gsandn(dst, src2, src1);
 10593   %}
 10594   ins_pipe( ialu_regI_regI );
 10595 %}
 10597 instruct ornI_nReg_Reg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10598   match(Set dst (OrI (XorI src1 M1) src2));
 10599   predicate(UseLoongsonISA && Use3A2000);
 10601   format %{ "orn    $dst, $src2, $src1 #@ornI_nReg_Reg" %}
 10602   ins_encode %{
 10603     Register dst = $dst$$Register;
 10604     Register src1 = $src1$$Register;
 10605     Register src2 = $src2$$Register;
 10607     __ gsorn(dst, src2, src1);
 10608   %}
 10609   ins_pipe( ialu_regI_regI );
 10610 %}
 10612 // And Long Register with Register
 10613 instruct andL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
 10614   match(Set dst (AndL src1 src2));
 10615   format %{ "AND    $dst, $src1, $src2 @ andL_Reg_Reg\n\t" %}
 10616   ins_encode %{
 10617     Register dst_reg = as_Register($dst$$reg);
 10618     Register src1_reg = as_Register($src1$$reg);
 10619     Register src2_reg = as_Register($src2$$reg);
 10621     __ andr(dst_reg, src1_reg, src2_reg);
 10622   %}
 10623   ins_pipe( ialu_regL_regL );
 10624 %}
 10626 instruct andL_Reg_Reg_convI2L(mRegL dst, mRegL src1, mRegI src2) %{
 10627   match(Set dst (AndL src1 (ConvI2L src2)));
 10628   format %{ "AND    $dst, $src1, $src2 @ andL_Reg_Reg_convI2L\n\t" %}
 10629   ins_encode %{
 10630     Register dst_reg = as_Register($dst$$reg);
 10631     Register src1_reg = as_Register($src1$$reg);
 10632     Register src2_reg = as_Register($src2$$reg);
 10634     __ andr(dst_reg, src1_reg, src2_reg);
 10635   %}
 10636   ins_pipe( ialu_regL_regL );
 10637 %}
 10639 instruct andL_Reg_imm_0_65535(mRegL dst, mRegL src1,  immL_0_65535 src2) %{
 10640   match(Set dst (AndL src1 src2));
 10641   ins_cost(60);
 10643   format %{ "and  $dst, $src1, $src2 #@andL_Reg_imm_0_65535" %}
 10644   ins_encode %{
 10645     Register dst = $dst$$Register;
 10646     Register src = $src1$$Register;
 10647     long     val = $src2$$constant;
 10649        __ andi(dst, src, val);
 10650   %}
 10651   ins_pipe( ialu_regI_regI );
 10652 %}
 10654 instruct andL2I_Reg_imm_0_65535(mRegI dst, mRegL src1,  immL_0_65535 src2) %{
 10655   match(Set dst (ConvL2I (AndL src1 src2)));
 10656   ins_cost(60);
 10658   format %{ "and  $dst, $src1, $src2 #@andL2I_Reg_imm_0_65535" %}
 10659   ins_encode %{
 10660     Register dst = $dst$$Register;
 10661     Register src = $src1$$Register;
 10662     long     val = $src2$$constant;
 10664        __ andi(dst, src, val);
 10665   %}
 10666   ins_pipe( ialu_regI_regI );
 10667 %}
 10669 /*
 10670 instruct andnL_Reg_nReg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10671   match(Set dst (AndL src1 (XorL src2 M1)));
 10672   predicate(UseLoongsonISA);
 10674   format %{ "andn   $dst, $src1, $src2 #@andnL_Reg_nReg" %}
 10675   ins_encode %{
 10676     Register dst = $dst$$Register;
 10677     Register src1 = $src1$$Register;
 10678     Register src2 = $src2$$Register;
 10680     __ gsandn(dst, src1, src2);
 10681   %}
 10682   ins_pipe( ialu_regI_regI );
 10683 %}
 10684 */
 10686 /*
 10687 instruct ornL_Reg_nReg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10688   match(Set dst (OrL src1 (XorL src2 M1)));
 10689   predicate(UseLoongsonISA);
 10691   format %{ "orn    $dst, $src1, $src2 #@ornL_Reg_nReg" %}
 10692   ins_encode %{
 10693     Register dst = $dst$$Register;
 10694     Register src1 = $src1$$Register;
 10695     Register src2 = $src2$$Register;
 10697     __ gsorn(dst, src1, src2);
 10698   %}
 10699   ins_pipe( ialu_regI_regI );
 10700 %}
 10701 */
 10703 /*
 10704 instruct andnL_nReg_Reg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10705   match(Set dst (AndL (XorL src1 M1) src2));
 10706   predicate(UseLoongsonISA);
 10708   format %{ "andn   $dst, $src2, $src1 #@andnL_nReg_Reg" %}
 10709   ins_encode %{
 10710     Register dst = $dst$$Register;
 10711     Register src1 = $src1$$Register;
 10712     Register src2 = $src2$$Register;
 10714     __ gsandn(dst, src2, src1);
 10715   %}
 10716   ins_pipe( ialu_regI_regI );
 10717 %}
 10718 */
 10720 /*
 10721 instruct ornL_nReg_Reg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10722   match(Set dst (OrL (XorL src1 M1) src2));
 10723   predicate(UseLoongsonISA);
 10725   format %{ "orn    $dst, $src2, $src1 #@ornL_nReg_Reg" %}
 10726   ins_encode %{
 10727     Register dst = $dst$$Register;
 10728     Register src1 = $src1$$Register;
 10729     Register src2 = $src2$$Register;
 10731     __ gsorn(dst, src2, src1);
 10732   %}
 10733   ins_pipe( ialu_regI_regI );
 10734 %}
 10735 */
 10737 instruct andL_Reg_immL_M8(mRegL dst,  immL_M8 M8) %{
 10738   match(Set dst (AndL dst M8));
 10739   ins_cost(60);
 10741   format %{ "and  $dst, $dst, $M8 #@andL_Reg_immL_M8" %}
 10742   ins_encode %{
 10743     Register dst = $dst$$Register;
 10745     __ dins(dst, R0, 0, 3);
 10746   %}
 10747   ins_pipe( ialu_regI_regI );
 10748 %}
 10750 instruct andL_Reg_immL_M5(mRegL dst,  immL_M5 M5) %{
 10751   match(Set dst (AndL dst M5));
 10752   ins_cost(60);
 10754   format %{ "and  $dst, $dst, $M5 #@andL_Reg_immL_M5" %}
 10755   ins_encode %{
 10756     Register dst = $dst$$Register;
 10758     __ dins(dst, R0, 2, 1);
 10759   %}
 10760   ins_pipe( ialu_regI_regI );
 10761 %}
 10763 instruct andL_Reg_immL_M7(mRegL dst,  immL_M7 M7) %{
 10764   match(Set dst (AndL dst M7));
 10765   ins_cost(60);
 10767   format %{ "and  $dst, $dst, $M7 #@andL_Reg_immL_M7" %}
 10768   ins_encode %{
 10769     Register dst = $dst$$Register;
 10771     __ dins(dst, R0, 1, 2);
 10772   %}
 10773   ins_pipe( ialu_regI_regI );
 10774 %}
 10776 instruct andL_Reg_immL_M4(mRegL dst,  immL_M4 M4) %{
 10777   match(Set dst (AndL dst M4));
 10778   ins_cost(60);
 10780   format %{ "and  $dst, $dst, $M4 #@andL_Reg_immL_M4" %}
 10781   ins_encode %{
 10782     Register dst = $dst$$Register;
 10784     __ dins(dst, R0, 0, 2);
 10785   %}
 10786   ins_pipe( ialu_regI_regI );
 10787 %}
 10789 instruct andL_Reg_immL_M121(mRegL dst,  immL_M121 M121) %{
 10790   match(Set dst (AndL dst M121));
 10791   ins_cost(60);
 10793   format %{ "and  $dst, $dst, $M121 #@andL_Reg_immL_M121" %}
 10794   ins_encode %{
 10795     Register dst = $dst$$Register;
 10797     __ dins(dst, R0, 3, 4);
 10798   %}
 10799   ins_pipe( ialu_regI_regI );
 10800 %}
 10802 // Or Long Register with Register
 10803 instruct orL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
 10804   match(Set dst (OrL src1 src2));
 10805   format %{ "OR    $dst, $src1, $src2 @ orL_Reg_Reg\t" %}
 10806   ins_encode %{
 10807     Register dst_reg  = $dst$$Register;
 10808     Register src1_reg = $src1$$Register;
 10809     Register src2_reg = $src2$$Register;
 10811     __ orr(dst_reg, src1_reg, src2_reg);
 10812   %}
 10813   ins_pipe( ialu_regL_regL );
 10814 %}
 10816 instruct orL_Reg_P2XReg(mRegL dst, mRegP src1, mRegL src2) %{
 10817   match(Set dst (OrL (CastP2X src1) src2));
 10818   format %{ "OR    $dst, $src1, $src2 @ orL_Reg_P2XReg\t" %}
 10819   ins_encode %{
 10820     Register dst_reg  = $dst$$Register;
 10821     Register src1_reg = $src1$$Register;
 10822     Register src2_reg = $src2$$Register;
 10824     __ orr(dst_reg, src1_reg, src2_reg);
 10825   %}
 10826   ins_pipe( ialu_regL_regL );
 10827 %}
 10829 // Xor Long Register with Register
 10830 instruct xorL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
 10831   match(Set dst (XorL src1 src2));
 10832   format %{ "XOR    $dst, $src1, $src2 @ xorL_Reg_Reg\t" %}
 10833   ins_encode %{
 10834     Register dst_reg = as_Register($dst$$reg);
 10835     Register src1_reg = as_Register($src1$$reg);
 10836     Register src2_reg = as_Register($src2$$reg);
 10838     __ xorr(dst_reg, src1_reg, src2_reg);
 10839   %}
 10840   ins_pipe( ialu_regL_regL );
 10841 %}
 10843 // Shift Left by 8-bit immediate
 10844 instruct salI_Reg_imm(mRegI dst, mRegI src, immI8 shift) %{
 10845   match(Set dst (LShiftI src shift));
 10847   format %{ "SHL    $dst, $src, $shift #@salI_Reg_imm" %}
 10848   ins_encode %{
 10849     Register src = $src$$Register;
 10850     Register dst = $dst$$Register;
 10851     int    shamt = $shift$$constant;
 10853     __ sll(dst, src, shamt);
 10854   %}
 10855   ins_pipe( ialu_regI_regI );
 10856 %}
 10858 instruct salL2I_Reg_imm(mRegI dst, mRegL src, immI8 shift) %{
 10859   match(Set dst (LShiftI (ConvL2I src) shift));
 10861   format %{ "SHL    $dst, $src, $shift #@salL2I_Reg_imm" %}
 10862   ins_encode %{
 10863     Register src = $src$$Register;
 10864     Register dst = $dst$$Register;
 10865     int    shamt = $shift$$constant;
 10867     __ sll(dst, src, shamt);
 10868   %}
 10869   ins_pipe( ialu_regI_regI );
 10870 %}
 10872 instruct salI_Reg_imm_and_M65536(mRegI dst, mRegI src, immI_16 shift, immI_M65536 mask) %{
 10873   match(Set dst (AndI (LShiftI src shift) mask));
 10875   format %{ "SHL    $dst, $src, $shift #@salI_Reg_imm_and_M65536" %}
 10876   ins_encode %{
 10877     Register src = $src$$Register;
 10878     Register dst = $dst$$Register;
 10880     __ sll(dst, src, 16);
 10881   %}
 10882   ins_pipe( ialu_regI_regI );
 10883 %}
 10885 instruct land7_2_s(mRegI dst, mRegL src, immL7 seven, immI_16 sixteen)
 10886 %{
 10887   match(Set dst (RShiftI (LShiftI (ConvL2I (AndL src seven)) sixteen) sixteen));
 10889   format %{ "andi  $dst, $src, 7\t# @land7_2_s" %}
 10890   ins_encode %{
 10891     Register src = $src$$Register;
 10892     Register dst = $dst$$Register;
 10894     __ andi(dst, src, 7);
 10895   %}
 10896   ins_pipe(ialu_regI_regI);
 10897 %}
 10899 instruct ori2s(mRegI dst, mRegI src1, immI_0_32767 src2, immI_16 sixteen)
 10900 %{
 10901   match(Set dst (RShiftI (LShiftI (OrI src1 src2) sixteen) sixteen));
 10903   format %{ "ori  $dst, $src1, $src2\t# @ori2s" %}
 10904   ins_encode %{
 10905     Register src = $src1$$Register;
 10906     int      val = $src2$$constant;
 10907     Register dst = $dst$$Register;
 10909     __ ori(dst, src, val);
 10910   %}
 10911   ins_pipe(ialu_regI_regI);
 10912 %}
 10914 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
 10915 // This idiom is used by the compiler the i2s bytecode.
 10916 instruct i2s(mRegI dst, mRegI src, immI_16 sixteen)
 10917 %{
 10918   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
 10920   format %{ "i2s  $dst, $src\t# @i2s" %}
 10921   ins_encode %{
 10922     Register src = $src$$Register;
 10923     Register dst = $dst$$Register;
 10925     __ seh(dst, src);
 10926   %}
 10927   ins_pipe(ialu_regI_regI);
 10928 %}
 10930 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
 10931 // This idiom is used by the compiler for the i2b bytecode.
 10932 instruct i2b(mRegI dst, mRegI src, immI_24 twentyfour)
 10933 %{
 10934   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
 10936   format %{ "i2b  $dst, $src\t# @i2b" %}
 10937   ins_encode %{
 10938     Register src = $src$$Register;
 10939     Register dst = $dst$$Register;
 10941     __ seb(dst, src);
 10942   %}
 10943   ins_pipe(ialu_regI_regI);
 10944 %}
 10947 instruct salI_RegL2I_imm(mRegI dst, mRegL src, immI8 shift) %{
 10948   match(Set dst (LShiftI (ConvL2I src) shift));
 10950   format %{ "SHL    $dst, $src, $shift #@salI_RegL2I_imm" %}
 10951   ins_encode %{
 10952     Register src = $src$$Register;
 10953     Register dst = $dst$$Register;
 10954     int    shamt = $shift$$constant;
 10956     __ sll(dst, src, shamt);
 10957   %}
 10958   ins_pipe( ialu_regI_regI );
 10959 %}
 10961 // Shift Left by 8-bit immediate
 10962 instruct salI_Reg_Reg(mRegI dst, mRegI src, mRegI shift) %{
 10963   match(Set dst (LShiftI src shift));
 10965   format %{ "SHL    $dst, $src, $shift #@salI_Reg_Reg" %}
 10966   ins_encode %{
 10967     Register src = $src$$Register;
 10968     Register dst = $dst$$Register;
 10969     Register shamt = $shift$$Register;
 10970     __ sllv(dst, src, shamt);
 10971   %}
 10972   ins_pipe( ialu_regI_regI );
 10973 %}
 10976 // Shift Left Long 
 10977 instruct salL_Reg_imm(mRegL dst, mRegL src, immI8 shift) %{
 10978   //predicate(UseNewLongLShift);
 10979   match(Set dst (LShiftL src shift));
 10980   ins_cost(100);
 10981   format %{ "salL    $dst, $src, $shift @ salL_Reg_imm" %}
 10982   ins_encode %{
 10983     Register src_reg = as_Register($src$$reg);
 10984     Register dst_reg = as_Register($dst$$reg);
 10985     int      shamt = $shift$$constant;
 10987     if (__ is_simm(shamt, 5))
 10988         __ dsll(dst_reg, src_reg, shamt);
 10989     else
 10991        int sa = Assembler::low(shamt, 6);
 10992        if (sa < 32) { 
 10993           __ dsll(dst_reg, src_reg, sa);
 10994        } else {
 10995           __ dsll32(dst_reg, src_reg, sa - 32);
 10998   %}
 10999   ins_pipe( ialu_regL_regL );
 11000 %}
 11002 instruct salL_RegI2L_imm(mRegL dst, mRegI src, immI8 shift) %{
 11003   //predicate(UseNewLongLShift);
 11004   match(Set dst (LShiftL (ConvI2L src) shift));
 11005   ins_cost(100);
 11006   format %{ "salL    $dst, $src, $shift @ salL_RegI2L_imm" %}
 11007   ins_encode %{
 11008     Register src_reg = as_Register($src$$reg);
 11009     Register dst_reg = as_Register($dst$$reg);
 11010     int      shamt = $shift$$constant;
 11012     if (__ is_simm(shamt, 5))
 11013         __ dsll(dst_reg, src_reg, shamt);
 11014     else
 11016        int sa = Assembler::low(shamt, 6);
 11017        if (sa < 32) { 
 11018           __ dsll(dst_reg, src_reg, sa);
 11019        } else {
 11020           __ dsll32(dst_reg, src_reg, sa - 32);
 11023   %}
 11024   ins_pipe( ialu_regL_regL );
 11025 %}
 11027 // Shift Left Long 
 11028 instruct salL_Reg_Reg(mRegL dst, mRegL src, mRegI shift) %{
 11029   //predicate(UseNewLongLShift);
 11030   match(Set dst (LShiftL src shift));
 11031   ins_cost(100);
 11032   format %{ "salL    $dst, $src, $shift @ salL_Reg_Reg" %}
 11033   ins_encode %{
 11034     Register src_reg = as_Register($src$$reg);
 11035     Register dst_reg = as_Register($dst$$reg);
 11037     __ dsllv(dst_reg, src_reg, $shift$$Register);
 11038   %}
 11039   ins_pipe( ialu_regL_regL );
 11040 %}
 11042 instruct salL_convI2L_Reg_imm(mRegL dst, mRegI src, immI8 shift) %{
 11043   match(Set dst (LShiftL (ConvI2L src) shift));
 11044   ins_cost(100);
 11045   format %{ "salL    $dst, $src, $shift @ salL_convI2L_Reg_imm" %}
 11046   ins_encode %{
 11047     Register src_reg = as_Register($src$$reg);
 11048     Register dst_reg = as_Register($dst$$reg);
 11049     int      shamt = $shift$$constant;
 11051     if (__ is_simm(shamt, 5)) {
 11052         __ dsll(dst_reg, src_reg, shamt);
 11053     } else {
 11054        int sa = Assembler::low(shamt, 6);
 11055        if (sa < 32) { 
 11056           __ dsll(dst_reg, src_reg, sa);
 11057        } else {
 11058           __ dsll32(dst_reg, src_reg, sa - 32);
 11061   %}
 11062   ins_pipe( ialu_regL_regL );
 11063 %}
 11065 // Shift Right Long 
 11066 instruct sarL_Reg_imm(mRegL dst, mRegL src, immI8 shift) %{
 11067   match(Set dst (RShiftL src shift));
 11068   ins_cost(100);
 11069   format %{ "sarL    $dst, $src, $shift @ sarL_Reg_imm" %}
 11070   ins_encode %{
 11071     Register src_reg = as_Register($src$$reg);
 11072     Register dst_reg = as_Register($dst$$reg);
 11073     int      shamt = ($shift$$constant & 0x3f);
 11074     if (__  is_simm(shamt, 5))
 11075 	__ dsra(dst_reg, src_reg, shamt);
 11076     else {
 11077         int sa = Assembler::low(shamt, 6);
 11078         if (sa < 32) {
 11079 	   __ dsra(dst_reg, src_reg, sa);
 11080         } else {
 11081 	   __ dsra32(dst_reg, src_reg, sa - 32);
 11084   %}
 11085   ins_pipe( ialu_regL_regL );
 11086 %}
 11088 instruct sarL2I_Reg_immI_32_63(mRegI dst, mRegL src, immI_32_63 shift) %{
 11089   match(Set dst (ConvL2I (RShiftL src shift)));
 11090   ins_cost(100);
 11091   format %{ "sarL    $dst, $src, $shift @ sarL2I_Reg_immI_32_63" %}
 11092   ins_encode %{
 11093     Register src_reg = as_Register($src$$reg);
 11094     Register dst_reg = as_Register($dst$$reg);
 11095     int      shamt   = $shift$$constant;
 11097     __ dsra32(dst_reg, src_reg, shamt - 32);
 11098   %}
 11099   ins_pipe( ialu_regL_regL );
 11100 %}
 11102 // Shift Right Long arithmetically
 11103 instruct sarL_Reg_Reg(mRegL dst, mRegL src, mRegI shift) %{
 11104   //predicate(UseNewLongLShift);
 11105   match(Set dst (RShiftL src shift));
 11106   ins_cost(100);
 11107   format %{ "sarL    $dst, $src, $shift @ sarL_Reg_Reg" %}
 11108   ins_encode %{
 11109     Register src_reg = as_Register($src$$reg);
 11110     Register dst_reg = as_Register($dst$$reg);
 11112     __ dsrav(dst_reg, src_reg, $shift$$Register);
 11113   %}
 11114   ins_pipe( ialu_regL_regL );
 11115 %}
 11117 // Shift Right Long logically
 11118 instruct slrL_Reg_Reg(mRegL dst, mRegL src, mRegI shift) %{
 11119   match(Set dst (URShiftL src shift));
 11120   ins_cost(100);
 11121   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_Reg" %}
 11122   ins_encode %{
 11123     Register src_reg = as_Register($src$$reg);
 11124     Register dst_reg = as_Register($dst$$reg);
 11126     __ dsrlv(dst_reg, src_reg, $shift$$Register);
 11127   %}
 11128   ins_pipe( ialu_regL_regL );
 11129 %}
 11131 instruct slrL_Reg_immI_0_31(mRegL dst, mRegL src, immI_0_31 shift) %{
 11132   match(Set dst (URShiftL src shift));
 11133   ins_cost(80);
 11134   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_immI_0_31" %}
 11135   ins_encode %{
 11136     Register src_reg = as_Register($src$$reg);
 11137     Register dst_reg = as_Register($dst$$reg);
 11138     int        shamt = $shift$$constant;
 11140     __ dsrl(dst_reg, src_reg, shamt);
 11141   %}
 11142   ins_pipe( ialu_regL_regL );
 11143 %}
 11145 instruct slrL_Reg_immI_0_31_and_max_int(mRegI dst, mRegL src, immI_0_31 shift, immI_MaxI max_int) %{
 11146   match(Set dst (AndI (ConvL2I (URShiftL src shift)) max_int));
 11147   ins_cost(80);
 11148   format %{ "dext    $dst, $src, $shift, 31 @ slrL_Reg_immI_0_31_and_max_int" %}
 11149   ins_encode %{
 11150     Register src_reg = as_Register($src$$reg);
 11151     Register dst_reg = as_Register($dst$$reg);
 11152     int        shamt = $shift$$constant;
 11154     __ dext(dst_reg, src_reg, shamt, 31);
 11155   %}
 11156   ins_pipe( ialu_regL_regL );
 11157 %}
 11159 instruct slrL_P2XReg_immI_0_31(mRegL dst, mRegP src, immI_0_31 shift) %{
 11160   match(Set dst (URShiftL (CastP2X src) shift));
 11161   ins_cost(80);
 11162   format %{ "slrL    $dst, $src, $shift @ slrL_P2XReg_immI_0_31" %}
 11163   ins_encode %{
 11164     Register src_reg = as_Register($src$$reg);
 11165     Register dst_reg = as_Register($dst$$reg);
 11166     int        shamt = $shift$$constant;
 11168     __ dsrl(dst_reg, src_reg, shamt);
 11169   %}
 11170   ins_pipe( ialu_regL_regL );
 11171 %}
 11173 instruct slrL_Reg_immI_32_63(mRegL dst, mRegL src, immI_32_63 shift) %{
 11174   match(Set dst (URShiftL src shift));
 11175   ins_cost(80);
 11176   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_immI_32_63" %}
 11177   ins_encode %{
 11178     Register src_reg = as_Register($src$$reg);
 11179     Register dst_reg = as_Register($dst$$reg);
 11180     int        shamt = $shift$$constant;
 11182     __ dsrl32(dst_reg, src_reg, shamt - 32);
 11183   %}
 11184   ins_pipe( ialu_regL_regL );
 11185 %}
 11187 instruct slrL_Reg_immI_convL2I(mRegI dst, mRegL src, immI_32_63 shift) %{
 11188   match(Set dst (ConvL2I (URShiftL src shift)));
 11189   predicate(n->in(1)->in(2)->get_int() > 32);
 11190   ins_cost(80);
 11191   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_immI_convL2I" %}
 11192   ins_encode %{
 11193     Register src_reg = as_Register($src$$reg);
 11194     Register dst_reg = as_Register($dst$$reg);
 11195     int        shamt = $shift$$constant;
 11197     __ dsrl32(dst_reg, src_reg, shamt - 32);
 11198   %}
 11199   ins_pipe( ialu_regL_regL );
 11200 %}
 11202 instruct slrL_P2XReg_immI_32_63(mRegL dst, mRegP src, immI_32_63 shift) %{
 11203   match(Set dst (URShiftL (CastP2X src) shift));
 11204   ins_cost(80);
 11205   format %{ "slrL    $dst, $src, $shift @ slrL_P2XReg_immI_32_63" %}
 11206   ins_encode %{
 11207     Register src_reg = as_Register($src$$reg);
 11208     Register dst_reg = as_Register($dst$$reg);
 11209     int        shamt = $shift$$constant;
 11211     __ dsrl32(dst_reg, src_reg, shamt - 32);
 11212   %}
 11213   ins_pipe( ialu_regL_regL );
 11214 %}
 11216 // Xor Instructions
 11217 // Xor Register with Register
 11218 instruct xorI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
 11219   match(Set dst (XorI src1 src2));
 11221   format %{ "XOR    $dst, $src1, $src2 #@xorI_Reg_Reg" %}
 11223   ins_encode %{
 11224     Register  dst = $dst$$Register;
 11225     Register src1 = $src1$$Register;
 11226     Register src2 = $src2$$Register;
 11227     __ xorr(dst, src1, src2);
 11228     __ sll(dst, dst, 0); /* long -> int */
 11229   %}
 11231   ins_pipe( ialu_regI_regI );
 11232 %}
 11234 // Or Instructions
 11235 // Or Register with Register
 11236 instruct orI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
 11237   match(Set dst (OrI src1 src2));
 11239   format %{ "OR     $dst, $src1, $src2 #@orI_Reg_Reg" %}
 11240   ins_encode %{
 11241     Register  dst = $dst$$Register;
 11242     Register src1 = $src1$$Register;
 11243     Register src2 = $src2$$Register;
 11244     __ orr(dst, src1, src2);
 11245   %}
 11247   ins_pipe( ialu_regI_regI );
 11248 %}
 11250 instruct rotI_shr_logical_Reg(mRegI dst, mRegI src, immI_0_31 rshift, immI_0_31 lshift, immI_1 one) %{
 11251   match(Set dst (OrI (URShiftI src rshift) (LShiftI (AndI src one) lshift)));
 11252   predicate(32 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int())));
 11254   format %{ "rotr     $dst, $src, 1 ...\n\t" 
 11255             "srl      $dst, $dst, ($rshift-1) @ rotI_shr_logical_Reg" %}
 11256   ins_encode %{
 11257     Register   dst = $dst$$Register;
 11258     Register   src = $src$$Register;
 11259     int     rshift = $rshift$$constant;
 11261     __ rotr(dst, src, 1);
 11262     if (rshift - 1) {
 11263        __ srl(dst, dst, rshift - 1);
 11265   %}
 11267   ins_pipe( ialu_regI_regI );
 11268 %}
 11270 instruct orI_Reg_castP2X(mRegL dst, mRegL src1, mRegP src2) %{
 11271   match(Set dst (OrI src1 (CastP2X src2)));
 11273   format %{ "OR     $dst, $src1, $src2 #@orI_Reg_castP2X" %}
 11274   ins_encode %{
 11275     Register  dst = $dst$$Register;
 11276     Register src1 = $src1$$Register;
 11277     Register src2 = $src2$$Register;
 11278     __ orr(dst, src1, src2);
 11279   %}
 11281   ins_pipe( ialu_regI_regI );
 11282 %}
 11284 // Logical Shift Right by 8-bit immediate
 11285 instruct shr_logical_Reg_imm(mRegI dst, mRegI src, immI8 shift) %{
 11286   match(Set dst (URShiftI src shift));
 11287  // effect(KILL cr);
 11289   format %{ "SRL    $dst, $src, $shift #@shr_logical_Reg_imm" %}
 11290   ins_encode %{
 11291     Register src = $src$$Register;
 11292     Register dst = $dst$$Register;
 11293     int    shift = $shift$$constant;
 11295     __ srl(dst, src, shift);
 11296   %}
 11297   ins_pipe( ialu_regI_regI );
 11298 %}
 11300 instruct shr_logical_Reg_imm_nonneg_mask(mRegI dst, mRegI src, immI_0_31 shift, immI_nonneg_mask mask) %{
 11301   match(Set dst (AndI (URShiftI src shift) mask));
 11303   format %{ "ext    $dst, $src, $shift, one-bits($mask) #@shr_logical_Reg_imm_nonneg_mask" %}
 11304   ins_encode %{
 11305     Register src = $src$$Register;
 11306     Register dst = $dst$$Register;
 11307     int      pos = $shift$$constant;
 11308     int     size = Assembler::is_int_mask($mask$$constant);
 11310     __ ext(dst, src, pos, size);
 11311   %}
 11312   ins_pipe( ialu_regI_regI );
 11313 %}
 11315 instruct rolI_Reg_immI_0_31(mRegI dst, immI_0_31 lshift, immI_0_31 rshift)
 11316 %{
 11317   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
 11318   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
 11320   ins_cost(100);
 11321   format %{ "rotr    $dst, $dst, $rshift #@rolI_Reg_immI_0_31" %}
 11322   ins_encode %{
 11323     Register dst = $dst$$Register;
 11324     int      sa  = $rshift$$constant;
 11326     __ rotr(dst, dst, sa);
 11327   %}
 11328   ins_pipe( ialu_regI_regI );
 11329 %}
 11331 instruct rolL_Reg_immI_0_31(mRegL dst, immI_32_63 lshift, immI_0_31 rshift)
 11332 %{
 11333   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
 11334   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
 11336   ins_cost(100);
 11337   format %{ "rotr    $dst, $dst, $rshift #@rolL_Reg_immI_0_31" %}
 11338   ins_encode %{
 11339     Register dst = $dst$$Register;
 11340     int      sa  = $rshift$$constant;
 11342     __ drotr(dst, dst, sa);
 11343   %}
 11344   ins_pipe( ialu_regI_regI );
 11345 %}
 11347 instruct rolL_Reg_immI_32_63(mRegL dst, immI_0_31 lshift, immI_32_63 rshift)
 11348 %{
 11349   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
 11350   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
 11352   ins_cost(100);
 11353   format %{ "rotr    $dst, $dst, $rshift #@rolL_Reg_immI_32_63" %}
 11354   ins_encode %{
 11355     Register dst = $dst$$Register;
 11356     int      sa  = $rshift$$constant;
 11358     __ drotr32(dst, dst, sa - 32);
 11359   %}
 11360   ins_pipe( ialu_regI_regI );
 11361 %}
 11363 instruct rorI_Reg_immI_0_31(mRegI dst, immI_0_31 rshift, immI_0_31 lshift)
 11364 %{
 11365   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
 11366   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
 11368   ins_cost(100);
 11369   format %{ "rotr    $dst, $dst, $rshift #@rorI_Reg_immI_0_31" %}
 11370   ins_encode %{
 11371     Register dst = $dst$$Register;
 11372     int      sa  = $rshift$$constant;
 11374     __ rotr(dst, dst, sa);
 11375   %}
 11376   ins_pipe( ialu_regI_regI );
 11377 %}
 11379 instruct rorL_Reg_immI_0_31(mRegL dst, immI_0_31 rshift, immI_32_63 lshift)
 11380 %{
 11381   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
 11382   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
 11384   ins_cost(100);
 11385   format %{ "rotr    $dst, $dst, $rshift #@rorL_Reg_immI_0_31" %}
 11386   ins_encode %{
 11387     Register dst = $dst$$Register;
 11388     int      sa  = $rshift$$constant;
 11390     __ drotr(dst, dst, sa);
 11391   %}
 11392   ins_pipe( ialu_regI_regI );
 11393 %}
 11395 instruct rorL_Reg_immI_32_63(mRegL dst, immI_32_63 rshift, immI_0_31 lshift)
 11396 %{
 11397   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
 11398   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
 11400   ins_cost(100);
 11401   format %{ "rotr    $dst, $dst, $rshift #@rorL_Reg_immI_32_63" %}
 11402   ins_encode %{
 11403     Register dst = $dst$$Register;
 11404     int      sa  = $rshift$$constant;
 11406     __ drotr32(dst, dst, sa - 32);
 11407   %}
 11408   ins_pipe( ialu_regI_regI );
 11409 %}
 11411 // Logical Shift Right 
 11412 instruct shr_logical_Reg_Reg(mRegI dst, mRegI src, mRegI shift) %{
 11413   match(Set dst (URShiftI src shift));
 11415   format %{ "SRL    $dst, $src, $shift #@shr_logical_Reg_Reg" %}
 11416   ins_encode %{
 11417     Register src = $src$$Register;
 11418     Register dst = $dst$$Register;
 11419     Register shift = $shift$$Register;
 11420     __ srlv(dst, src, shift);
 11421   %}
 11422   ins_pipe( ialu_regI_regI );
 11423 %}
 11426 instruct shr_arith_Reg_imm(mRegI dst, mRegI src, immI8 shift) %{
 11427   match(Set dst (RShiftI src shift));
 11428  // effect(KILL cr);
 11430   format %{ "SRA    $dst, $src, $shift #@shr_arith_Reg_imm" %}
 11431   ins_encode %{
 11432     Register src = $src$$Register;
 11433     Register dst = $dst$$Register;
 11434     int    shift = $shift$$constant;
 11435     __ sra(dst, src, shift);
 11436   %}
 11437   ins_pipe( ialu_regI_regI );
 11438 %}
 11440 instruct shr_arith_Reg_Reg(mRegI dst, mRegI src, mRegI shift) %{
 11441   match(Set dst (RShiftI src shift));
 11442  // effect(KILL cr);
 11444   format %{ "SRA    $dst, $src, $shift #@shr_arith_Reg_Reg" %}
 11445   ins_encode %{
 11446     Register src = $src$$Register;
 11447     Register dst = $dst$$Register;
 11448     Register shift = $shift$$Register;
 11449     __ srav(dst, src, shift);
 11450   %}
 11451   ins_pipe( ialu_regI_regI );
 11452 %}
 11454 //----------Convert Int to Boolean---------------------------------------------
 11456 instruct convI2B(mRegI dst, mRegI src) %{
 11457   match(Set dst (Conv2B src));
 11459   ins_cost(100);
 11460   format %{ "convI2B    $dst, $src @ convI2B"  %}
 11461   ins_encode %{
 11462     Register dst = as_Register($dst$$reg);
 11463     Register src = as_Register($src$$reg);
 11465     if (dst != src) {
 11466       __ daddiu(dst, R0, 1);
 11467       __ movz(dst, R0, src);
 11468     } else {
 11469       __ move(AT, src);
 11470       __ daddiu(dst, R0, 1);
 11471       __ movz(dst, R0, AT);
 11473   %}
 11475   ins_pipe( ialu_regL_regL );
 11476 %}
 11478 instruct convI2L_reg( mRegL dst, mRegI src) %{
 11479   match(Set dst (ConvI2L src));
 11481   ins_cost(100);
 11482   format %{ "SLL    $dst, $src @ convI2L_reg\t"  %}
 11483   ins_encode %{
 11484     Register dst = as_Register($dst$$reg);
 11485     Register src = as_Register($src$$reg);
 11487     if(dst != src) __ sll(dst, src, 0);
 11488   %}
 11489   ins_pipe( ialu_regL_regL );
 11490 %}
 11493 instruct convL2I_reg( mRegI dst, mRegL src ) %{
 11494   match(Set dst (ConvL2I src));
 11496   format %{ "MOV    $dst, $src @ convL2I_reg" %}
 11497   ins_encode %{
 11498     Register dst = as_Register($dst$$reg);
 11499     Register src = as_Register($src$$reg);
 11501     __ sll(dst, src, 0);
 11502   %}
 11504   ins_pipe( ialu_regI_regI );
 11505 %}
 11507 instruct convL2I2L_reg( mRegL dst, mRegL src ) %{
 11508   match(Set dst (ConvI2L (ConvL2I src)));
 11510   format %{ "sll    $dst, $src, 0 @ convL2I2L_reg" %}
 11511   ins_encode %{
 11512     Register dst = as_Register($dst$$reg);
 11513     Register src = as_Register($src$$reg);
 11515     __ sll(dst, src, 0);
 11516   %}
 11518   ins_pipe( ialu_regI_regI );
 11519 %}
 11521 instruct convL2D_reg( regD dst, mRegL src ) %{
 11522   match(Set dst (ConvL2D src));
 11523   format %{ "convL2D    $dst, $src @ convL2D_reg" %}
 11524   ins_encode %{
 11525     Register src = as_Register($src$$reg);
 11526     FloatRegister dst = as_FloatRegister($dst$$reg);
 11528     __ dmtc1(src, dst);
 11529     __ cvt_d_l(dst, dst);
 11530   %}
 11532   ins_pipe( pipe_slow );
 11533 %}
 11535 instruct convD2L_reg_fast( mRegL dst, regD src ) %{
 11536   match(Set dst (ConvD2L src));
 11537   ins_cost(150);
 11538   format %{ "convD2L    $dst, $src @ convD2L_reg_fast" %}
 11539   ins_encode %{
 11540     Register dst = as_Register($dst$$reg);
 11541     FloatRegister src = as_FloatRegister($src$$reg);
 11543     Label Done;
 11545     __ trunc_l_d(F30, src);
 11546     // max_long:    0x7fffffffffffffff 
 11547     // __ set64(AT, 0x7fffffffffffffff);
 11548     __ daddiu(AT, R0, -1);
 11549     __ dsrl(AT, AT, 1);
 11550     __ dmfc1(dst, F30);
 11552     __ bne(dst, AT, Done);
 11553     __ delayed()->mtc1(R0, F30);
 11555     __ cvt_d_w(F30, F30);
 11556     __ c_ult_d(src, F30);
 11557     __ bc1f(Done);
 11558     __ delayed()->daddiu(T9, R0, -1);
 11560     __ c_un_d(src, src);    //NaN?
 11561     __ subu(dst, T9, AT);
 11562     __ movt(dst, R0);
 11564     __ bind(Done);
 11565   %}
 11567   ins_pipe( pipe_slow );
 11568 %}
 11570 instruct convD2L_reg_slow( mRegL dst, regD src ) %{
 11571   match(Set dst (ConvD2L src));
 11572   ins_cost(250);
 11573   format %{ "convD2L    $dst, $src @ convD2L_reg_slow" %}
 11574   ins_encode %{
 11575     Register dst = as_Register($dst$$reg);
 11576     FloatRegister src = as_FloatRegister($src$$reg);
 11578     Label L;
 11580     __ c_un_d(src, src);    //NaN?
 11581     __ bc1t(L);
 11582     __ delayed();
 11583     __ move(dst, R0);
 11585     __ trunc_l_d(F30, src);
 11586     __ cfc1(AT, 31);
 11587     __ li(T9, 0x10000);
 11588     __ andr(AT, AT, T9);
 11589     __ beq(AT, R0, L);
 11590     __ delayed()->dmfc1(dst, F30);
 11592     __ mov_d(F12, src);
 11593     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
 11594     __ move(dst, V0);
 11595     __ bind(L);
 11596   %}
 11598   ins_pipe( pipe_slow );
 11599 %}
 11601 instruct convF2I_reg_fast( mRegI dst, regF src ) %{
 11602   match(Set dst (ConvF2I src));
 11603   ins_cost(150);
 11604   format %{ "convf2i    $dst, $src @ convF2I_reg_fast" %}
 11605   ins_encode %{
 11606     Register      dreg = $dst$$Register;
 11607     FloatRegister fval = $src$$FloatRegister;
 11609     __ trunc_w_s(F30, fval);
 11610     __ mfc1(dreg, F30);
 11611     __ c_un_s(fval, fval);    //NaN?
 11612     __ movt(dreg, R0);
 11613   %}
 11615   ins_pipe( pipe_slow );
 11616 %}
 11618 instruct convF2I_reg_slow( mRegI dst, regF src ) %{
 11619   match(Set dst (ConvF2I src));
 11620   ins_cost(250);
 11621   format %{ "convf2i    $dst, $src @ convF2I_reg_slow" %}
 11622   ins_encode %{
 11623     Register      dreg = $dst$$Register;
 11624     FloatRegister fval = $src$$FloatRegister;
 11625     Label L;
 11627     __ c_un_s(fval, fval);    //NaN?
 11628     __ bc1t(L);
 11629     __ delayed();
 11630     __ move(dreg, R0);
 11632     __ trunc_w_s(F30, fval);
 11634     /* Call SharedRuntime:f2i() to do valid convention */
 11635     __ cfc1(AT, 31);
 11636     __ li(T9, 0x10000);
 11637     __ andr(AT, AT, T9);
 11638     __ beq(AT, R0, L);
 11639     __ delayed()->mfc1(dreg, F30);
 11641     __ mov_s(F12, fval);
 11643     /* 2014/01/08 Fu : This bug was found when running ezDS's control-panel.
 11644      *    J 982 C2 javax.swing.text.BoxView.layoutMajorAxis(II[I[I)V (283 bytes) @ 0x000000555c46aa74
 11646      * An interger array index has been assigned to V0, and then changed from 1 to Integer.MAX_VALUE. 
 11647      * V0 is corrupted during call_VM_leaf(), and should be preserved.
 11648      */
 11649     if(dreg != V0) {
 11650       __ push(V0); 
 11652     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
 11653     if(dreg != V0) {
 11654       __ move(dreg, V0);
 11655       __ pop(V0);
 11657     __ bind(L);
 11658   %}
 11660   ins_pipe( pipe_slow );
 11661 %}
 11663 instruct convF2L_reg_fast( mRegL dst, regF src ) %{
 11664   match(Set dst (ConvF2L src));
 11665   ins_cost(150);
 11666   format %{ "convf2l    $dst, $src @ convF2L_reg_fast" %}
 11667   ins_encode %{
 11668     Register      dreg = $dst$$Register;
 11669     FloatRegister fval = $src$$FloatRegister;
 11671     __ trunc_l_s(F30, fval);
 11672     __ dmfc1(dreg, F30);
 11673     __ c_un_s(fval, fval);    //NaN?
 11674     __ movt(dreg, R0);
 11675   %}
 11677   ins_pipe( pipe_slow );
 11678 %}
 11680 instruct convF2L_reg_slow( mRegL dst, regF src ) %{
 11681   match(Set dst (ConvF2L src));
 11682   ins_cost(250);
 11683   format %{ "convf2l    $dst, $src @ convF2L_reg_slow" %}
 11684   ins_encode %{
 11685     Register dst = as_Register($dst$$reg);
 11686     FloatRegister fval = $src$$FloatRegister;
 11687     Label L;
 11689     __ c_un_s(fval, fval);    //NaN?
 11690     __ bc1t(L);
 11691     __ delayed();
 11692     __ move(dst, R0);
 11694     __ trunc_l_s(F30, fval);
 11695     __ cfc1(AT, 31);
 11696     __ li(T9, 0x10000);
 11697     __ andr(AT, AT, T9);
 11698     __ beq(AT, R0, L);
 11699     __ delayed()->dmfc1(dst, F30);
 11701     __ mov_s(F12, fval);
 11702     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
 11703     __ move(dst, V0);
 11704     __ bind(L);
 11705   %}
 11707   ins_pipe( pipe_slow );
 11708 %}
 11710 instruct convL2F_reg( regF dst, mRegL src ) %{
 11711   match(Set dst (ConvL2F src));
 11712   format %{ "convl2f    $dst, $src @ convL2F_reg" %}
 11713   ins_encode %{
 11714     FloatRegister dst = $dst$$FloatRegister;
 11715     Register src = as_Register($src$$reg);
 11716     Label L;
 11718     __ dmtc1(src, dst);
 11719     __ cvt_s_l(dst, dst);
 11720   %}
 11722   ins_pipe( pipe_slow );
 11723 %}
 11725 instruct convI2F_reg( regF dst, mRegI src ) %{
 11726   match(Set dst (ConvI2F src));
 11727   format %{ "convi2f    $dst, $src @ convI2F_reg" %}
 11728   ins_encode %{
 11729     Register      src = $src$$Register;
 11730     FloatRegister dst = $dst$$FloatRegister;
 11732     __ mtc1(src, dst);
 11733     __ cvt_s_w(dst, dst);
 11734   %}
 11736   ins_pipe( fpu_regF_regF );
 11737 %}
 11739 instruct cmpLTMask_immI0( mRegI dst, mRegI p, immI0 zero ) %{
 11740   match(Set dst (CmpLTMask p zero));
 11741   ins_cost(100);
 11743   format %{ "sra    $dst, $p, 31 @ cmpLTMask_immI0" %}
 11744     ins_encode %{
 11745        Register src = $p$$Register;
 11746        Register dst = $dst$$Register;
 11748        __ sra(dst, src, 31);
 11749     %}
 11750     ins_pipe( pipe_slow );
 11751 %}
 11754 instruct cmpLTMask( mRegI dst, mRegI p, mRegI q ) %{
 11755   match(Set dst (CmpLTMask p q));
 11756   ins_cost(400);
 11758   format %{ "cmpLTMask    $dst, $p, $q @ cmpLTMask" %}
 11759     ins_encode %{
 11760        Register p   = $p$$Register;
 11761        Register q   = $q$$Register;
 11762        Register dst = $dst$$Register;
 11764        __ slt(dst, p, q);
 11765        __ subu(dst, R0, dst);
 11766     %}
 11767     ins_pipe( pipe_slow );
 11768 %}
 11770 instruct convP2B(mRegI dst, mRegP src) %{
 11771   match(Set dst (Conv2B src));
 11773   ins_cost(100);
 11774   format %{ "convP2B    $dst, $src @ convP2B"  %}
 11775   ins_encode %{
 11776     Register dst = as_Register($dst$$reg);
 11777     Register src = as_Register($src$$reg);
 11779     if (dst != src) {
 11780       __ daddiu(dst, R0, 1);
 11781       __ movz(dst, R0, src);
 11782     } else {
 11783       __ move(AT, src);
 11784       __ daddiu(dst, R0, 1);
 11785       __ movz(dst, R0, AT);
 11787   %}
 11789   ins_pipe( ialu_regL_regL );
 11790 %}
 11793 instruct convI2D_reg_reg(regD dst, mRegI src) %{
 11794   match(Set dst (ConvI2D src));
 11795   format %{ "conI2D $dst, $src @convI2D_reg" %}
 11796   ins_encode %{
 11797      Register      src = $src$$Register;
 11798      FloatRegister dst = $dst$$FloatRegister;
 11799      __ mtc1(src, dst);
 11800      __ cvt_d_w(dst, dst);
 11801   %}
 11802   ins_pipe( fpu_regF_regF );
 11803 %}
 11805 instruct convF2D_reg_reg(regD dst, regF src) %{
 11806   match(Set dst (ConvF2D src));
 11807   format %{ "convF2D  $dst, $src\t# @convF2D_reg_reg" %}
 11808   ins_encode %{
 11809     FloatRegister dst = $dst$$FloatRegister;
 11810     FloatRegister src = $src$$FloatRegister;
 11812     __ cvt_d_s(dst, src);
 11813   %}
 11814   ins_pipe( fpu_regF_regF );
 11815 %}
 11817 instruct convD2F_reg_reg(regF dst, regD src) %{
 11818   match(Set dst (ConvD2F src));
 11819   format %{ "convD2F  $dst, $src\t# @convD2F_reg_reg" %}
 11820   ins_encode %{
 11821     FloatRegister dst = $dst$$FloatRegister;
 11822     FloatRegister src = $src$$FloatRegister;
 11824     __ cvt_s_d(dst, src);
 11825   %}
 11826   ins_pipe( fpu_regF_regF );
 11827 %}
 11829 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11830 instruct convD2I_reg_reg_fast( mRegI dst, regD src ) %{
 11831   match(Set dst (ConvD2I src));
 11833   ins_cost(150);
 11834   format %{ "convD2I $dst, $src\t# @ convD2I_reg_reg_fast" %}
 11836   ins_encode %{
 11837       FloatRegister src = $src$$FloatRegister;
 11838       Register      dst = $dst$$Register;
 11840       Label Done;
 11842       __ trunc_w_d(F30, src);
 11843       // max_int: 2147483647
 11844       __ move(AT, 0x7fffffff);
 11845       __ mfc1(dst, F30);
 11847       __ bne(dst, AT, Done);
 11848       __ delayed()->mtc1(R0, F30);
 11850       __ cvt_d_w(F30, F30); 
 11851       __ c_ult_d(src, F30);
 11852       __ bc1f(Done);
 11853       __ delayed()->addiu(T9, R0, -1);
 11855       __ c_un_d(src, src);    //NaN?
 11856       __ subu32(dst, T9, AT);
 11857       __ movt(dst, R0);
 11859       __ bind(Done);
 11860   %}
 11861   ins_pipe( pipe_slow );
 11862 %}
 11864 instruct convD2I_reg_reg_slow( mRegI dst, regD src ) %{
 11865   match(Set dst (ConvD2I src));
 11867   ins_cost(250);
 11868   format %{ "convD2I $dst, $src\t# @ convD2I_reg_reg_slow" %}
 11870   ins_encode %{
 11871       FloatRegister src = $src$$FloatRegister;
 11872       Register      dst = $dst$$Register;
 11873       Label L;
 11875       __ trunc_w_d(F30, src);
 11876       __ cfc1(AT, 31);
 11877       __ li(T9, 0x10000);
 11878       __ andr(AT, AT, T9);
 11879       __ beq(AT, R0, L);
 11880       __ delayed()->mfc1(dst, F30);
 11882       __ mov_d(F12, src);
 11883       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
 11884       __ move(dst, V0);
 11885       __ bind(L);
 11887   %}
 11888   ins_pipe( pipe_slow );
 11889 %}
 11891 // Convert oop pointer into compressed form
 11892 instruct encodeHeapOop(mRegN dst, mRegP src) %{
 11893   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
 11894   match(Set dst (EncodeP src));
 11895   format %{ "encode_heap_oop $dst,$src" %}
 11896   ins_encode %{
 11897     Register src = $src$$Register;
 11898     Register dst = $dst$$Register;
 11899     if (src != dst) {
 11900       __ move(dst, src);
 11902     __ encode_heap_oop(dst);
 11903   %}
 11904   ins_pipe( ialu_regL_regL );
 11905 %}
 11907 instruct encodeHeapOop_not_null(mRegN dst, mRegP src) %{
 11908   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
 11909   match(Set dst (EncodeP src));
 11910   format %{ "encode_heap_oop_not_null $dst,$src @ encodeHeapOop_not_null" %}
 11911   ins_encode %{
 11912     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
 11913   %}
 11914   ins_pipe( ialu_regL_regL );
 11915 %}
 11917 instruct decodeHeapOop(mRegP dst, mRegN src) %{
 11918   predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
 11919             n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
 11920   match(Set dst (DecodeN src));
 11921   format %{ "decode_heap_oop $dst,$src @ decodeHeapOop" %}
 11922   ins_encode %{
 11923     Register s = $src$$Register;
 11924     Register d = $dst$$Register;
 11925     if (s != d) {
 11926       __ move(d, s);
 11928     __ decode_heap_oop(d);
 11929   %}
 11930   ins_pipe( ialu_regL_regL );
 11931 %}
 11933 instruct decodeHeapOop_not_null(mRegP dst, mRegN src) %{
 11934   predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
 11935             n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
 11936   match(Set dst (DecodeN src));
 11937   format %{ "decode_heap_oop_not_null $dst,$src @ decodeHeapOop_not_null" %}
 11938   ins_encode %{
 11939     Register s = $src$$Register;
 11940     Register d = $dst$$Register;
 11941     if (s != d) {
 11942       __ decode_heap_oop_not_null(d, s);
 11943     } else {
 11944       __ decode_heap_oop_not_null(d);
 11946   %}
 11947   ins_pipe( ialu_regL_regL );
 11948 %}
 11950 instruct encodeKlass_not_null(mRegN dst, mRegP src) %{
 11951   match(Set dst (EncodePKlass src));
 11952   format %{ "encode_heap_oop_not_null $dst,$src @ encodeKlass_not_null" %}
 11953   ins_encode %{
 11954     __ encode_klass_not_null($dst$$Register, $src$$Register);
 11955   %}
 11956   ins_pipe( ialu_regL_regL );
 11957 %}
 11959 instruct decodeKlass_not_null(mRegP dst, mRegN src) %{
 11960   match(Set dst (DecodeNKlass src));
 11961   format %{ "decode_heap_klass_not_null $dst,$src" %}
 11962   ins_encode %{
 11963     Register s = $src$$Register;
 11964     Register d = $dst$$Register;
 11965     if (s != d) {
 11966       __ decode_klass_not_null(d, s);
 11967     } else {
 11968       __ decode_klass_not_null(d);
 11970   %}
 11971   ins_pipe( ialu_regL_regL );
 11972 %}
 11974 //FIXME
 11975 instruct tlsLoadP(mRegP dst) %{
 11976   match(Set dst (ThreadLocal));
 11978   ins_cost(0);
 11979   format %{ " get_thread in $dst #@tlsLoadP" %}
 11980   ins_encode %{
 11981     Register dst = $dst$$Register;
 11982 #ifdef OPT_THREAD
 11983     __ move(dst, TREG);
 11984 #else
 11985     __ get_thread(dst);
 11986 #endif
 11987   %}
 11989   ins_pipe( ialu_loadI );
 11990 %}
 11993 instruct checkCastPP( mRegP dst ) %{
 11994   match(Set dst (CheckCastPP dst));
 11996   format %{ "#checkcastPP of $dst (empty encoding) #@chekCastPP" %}
 11997   ins_encode( /*empty encoding*/ );
 11998   ins_pipe( empty );
 11999 %}
 12001 instruct castPP(mRegP dst)
 12002 %{
 12003   match(Set dst (CastPP dst));
 12005   size(0);
 12006   format %{ "# castPP of $dst" %}
 12007   ins_encode(/* empty encoding */);
 12008   ins_pipe(empty);
 12009 %}
 12011 instruct castII( mRegI dst ) %{
 12012   match(Set dst (CastII dst));
 12013   format %{ "#castII of $dst  empty encoding" %}
 12014   ins_encode( /*empty encoding*/ );
 12015   ins_cost(0);
 12016   ins_pipe( empty );
 12017 %}
 12019 // Return Instruction
 12020 // Remove the return address & jump to it.
 12021 instruct Ret() %{
 12022   match(Return);
 12023   format %{ "RET #@Ret" %}
 12025   ins_encode %{
 12026    __ jr(RA); 
 12027    __ nop();
 12028   %}
 12030   ins_pipe( pipe_jump );
 12031 %}
 12033 /*
 12034 // For Loongson CPUs, jr seems too slow, so this rule shouldn't be imported.
 12035 instruct jumpXtnd(mRegL switch_val) %{
 12036   match(Jump switch_val);
 12038   ins_cost(350);
 12040   format %{  "load   T9 <-- [$constanttablebase, $switch_val, $constantoffset] @ jumpXtnd\n\t"
 12041              "jr     T9\n\t"
 12042              "nop" %}
 12043   ins_encode %{
 12044     Register table_base = $constanttablebase;
 12045     int      con_offset = $constantoffset;
 12046     Register switch_reg = $switch_val$$Register;
 12048     if (UseLoongsonISA) {
 12049        if (Assembler::is_simm(con_offset, 8)) {
 12050          __ gsldx(T9, table_base, switch_reg, con_offset);
 12051        } else if (Assembler::is_simm16(con_offset)) {
 12052          __ daddu(T9, table_base, switch_reg);
 12053          __ ld(T9, T9, con_offset);
 12054        } else {
 12055          __ move(T9, con_offset);
 12056          __ daddu(AT, table_base, switch_reg);
 12057          __ gsldx(T9, AT, T9, 0);
 12059     } else {
 12060        if (Assembler::is_simm16(con_offset)) {
 12061          __ daddu(T9, table_base, switch_reg);
 12062          __ ld(T9, T9, con_offset);
 12063        } else {
 12064          __ move(T9, con_offset);
 12065          __ daddu(AT, table_base, switch_reg);
 12066          __ daddu(AT, T9, AT);
 12067          __ ld(T9, AT, 0);
 12071     __ jr(T9);
 12072     __ nop();
 12074   %}
 12075   ins_pipe(pipe_jump);
 12076 %}
 12077 */
 12079 // Jump Direct - Label defines a relative address from JMP
 12080 instruct jmpDir(label labl) %{
 12081   match(Goto);
 12082   effect(USE labl);
 12084   ins_cost(300);
 12085   format %{ "JMP    $labl #@jmpDir" %}
 12087   ins_encode %{
 12088     Label &L = *($labl$$label);
 12089     if(&L)
 12090     	 __ b(L);
 12091     else
 12092          __ b(int(0));
 12093     __ nop();
 12094   %}
 12096     ins_pipe( pipe_jump );
 12097     ins_pc_relative(1);
 12098 %}
 12102 // Tail Jump; remove the return address; jump to target.
 12103 // TailCall above leaves the return address around.
 12104 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 12105 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 12106 // "restore" before this instruction (in Epilogue), we need to materialize it
 12107 // in %i0.
 12108 //FIXME
 12109 instruct tailjmpInd(mRegP jump_target,mRegP ex_oop) %{
 12110   match( TailJump jump_target ex_oop );
 12111   ins_cost(200);
 12112   format %{ "Jmp     $jump_target  ; ex_oop = $ex_oop #@tailjmpInd" %}
 12113   ins_encode %{
 12114     Register target = $jump_target$$Register;
 12116     /* 2012/9/14 Jin: V0, V1 are indicated in:
 12117      *      [stubGenerator_mips.cpp] generate_forward_exception()
 12118      *      [runtime_mips.cpp] OptoRuntime::generate_exception_blob()
 12119      */
 12120     Register oop  = $ex_oop$$Register;
 12121     Register exception_oop = V0;
 12122     Register exception_pc = V1;
 12124     __ move(exception_pc, RA);
 12125     __ move(exception_oop, oop);
 12127     __ jr(target);  
 12128     __ nop();
 12129   %}
 12130   ins_pipe( pipe_jump ); 
 12131 %}
 12133 // ============================================================================
 12134 // Procedure Call/Return Instructions
 12135 // Call Java Static Instruction
 12136 // Note: If this code changes, the corresponding ret_addr_offset() and
 12137 //       compute_padding() functions will have to be adjusted.
 12138 instruct CallStaticJavaDirect(method meth) %{
 12139   match(CallStaticJava);
 12140   effect(USE meth);
 12142   ins_cost(300);
 12143   format %{ "CALL,static #@CallStaticJavaDirect " %}
 12144   ins_encode( Java_Static_Call( meth ) );
 12145   ins_pipe( pipe_slow );
 12146   ins_pc_relative(1);
 12147   ins_alignment(16);
 12148 %}
 12150 // Call Java Dynamic Instruction
 12151 // Note: If this code changes, the corresponding ret_addr_offset() and
 12152 //       compute_padding() functions will have to be adjusted.
 12153 instruct CallDynamicJavaDirect(method meth) %{
 12154   match(CallDynamicJava);
 12155   effect(USE meth);
 12157   ins_cost(300);
 12158   format %{"MOV IC_Klass, (oop)-1\n\t"
 12159            "CallDynamic @ CallDynamicJavaDirect" %}
 12160   ins_encode( Java_Dynamic_Call( meth ) );
 12161   ins_pipe( pipe_slow );
 12162   ins_pc_relative(1);
 12163   ins_alignment(16);
 12164 %}
 12166 instruct CallLeafNoFPDirect(method meth) %{
 12167   match(CallLeafNoFP);
 12168   effect(USE meth);
 12170   ins_cost(300);
 12171   format %{ "CALL_LEAF_NOFP,runtime " %}
 12172   ins_encode(Java_To_Runtime(meth));
 12173   ins_pipe( pipe_slow );
 12174   ins_pc_relative(1);
 12175   ins_alignment(16);
 12176 %}
 12178 // Prefetch instructions.
 12180 instruct prefetchrNTA( memory mem ) %{
 12181   match(PrefetchRead mem);
 12182   ins_cost(125);
 12184   format %{ "pref $mem\t# Prefetch into non-temporal cache for read @ prefetchrNTA" %}
 12185   ins_encode %{
 12186     int  base = $mem$$base;
 12187     int  index = $mem$$index;
 12188     int  scale = $mem$$scale;
 12189     int  disp = $mem$$disp;
 12191     if( index != 0 ) {
 12192       if (scale == 0) {
 12193         __ daddu(AT, as_Register(base), as_Register(index));
 12194       } else {
 12195         __ dsll(AT, as_Register(index), scale);
 12196         __ daddu(AT, as_Register(base), AT);
 12198     } else {
 12199       __ move(AT, as_Register(base));
 12201     if( Assembler::is_simm16(disp) ) {
 12202       __ daddiu(AT, as_Register(base), disp);
 12203       __ daddiu(AT, AT, disp);
 12204     } else {
 12205       __ move(T9, disp);
 12206       __ daddu(AT, as_Register(base), T9);
 12208     __ pref(0, AT, 0); //hint: 0:load
 12209   %}
 12210   ins_pipe(pipe_slow);
 12211 %}
 12213 instruct prefetchwNTA( memory mem ) %{
 12214   match(PrefetchWrite mem);
 12215   ins_cost(125);
 12216   format %{ "pref $mem\t# Prefetch to non-temporal cache for write @ prefetchwNTA" %}
 12217   ins_encode %{
 12218     int  base = $mem$$base;
 12219     int  index = $mem$$index;
 12220     int  scale = $mem$$scale;
 12221     int  disp = $mem$$disp;
 12223     if( index != 0 ) {
 12224       if (scale == 0) {
 12225         __ daddu(AT, as_Register(base), as_Register(index));
 12226       } else {
 12227         __ dsll(AT, as_Register(index), scale);
 12228         __ daddu(AT, as_Register(base), AT);
 12230     } else {
 12231       __ move(AT, as_Register(base));
 12233     if( Assembler::is_simm16(disp) ) {
 12234       __ daddiu(AT, as_Register(base), disp);
 12235       __ daddiu(AT, AT, disp);
 12236     } else {
 12237       __ move(T9, disp);
 12238       __ daddu(AT, as_Register(base), T9);
 12240      __ pref(1, AT, 0); //hint: 1:store
 12241   %}
 12242   ins_pipe(pipe_slow);
 12243 %}
 12245 // Prefetch instructions for allocation.
 12247 instruct prefetchAllocNTA( memory mem ) %{
 12248   match(PrefetchAllocation mem);
 12249   ins_cost(125);
 12250   format %{ "pref $mem\t# Prefetch allocation @ prefetchAllocNTA" %}
 12251   ins_encode %{
 12252      int  base = $mem$$base;
 12253      int  index = $mem$$index;
 12254      int  scale = $mem$$scale;
 12255      int  disp = $mem$$disp;
 12257      Register dst = R0;
 12259      if( index != 0 ) {
 12260         if( Assembler::is_simm16(disp) ) { 
 12261            if( UseLoongsonISA ) {
 12262               if (scale == 0) {
 12263                  __ gslbx(dst, as_Register(base), as_Register(index), disp);
 12264               } else {
 12265                  __ dsll(AT, as_Register(index), scale);
 12266                  __ gslbx(dst, as_Register(base), AT, disp);
 12268            } else {
 12269               if (scale == 0) {
 12270                  __ addu(AT, as_Register(base), as_Register(index));
 12271               } else {
 12272                  __ dsll(AT, as_Register(index), scale);
 12273                  __ addu(AT, as_Register(base), AT);
 12275               __ lb(dst, AT, disp);
 12277         } else {
 12278            if (scale == 0) {
 12279               __ addu(AT, as_Register(base), as_Register(index));
 12280            } else {
 12281               __ dsll(AT, as_Register(index), scale);
 12282               __ addu(AT, as_Register(base), AT);
 12284            __ move(T9, disp);
 12285            if( UseLoongsonISA ) {
 12286               __ gslbx(dst, AT, T9, 0);
 12287            } else {
 12288               __ addu(AT, AT, T9); 
 12289               __ lb(dst, AT, 0);
 12292      } else {
 12293         if( Assembler::is_simm16(disp) ) { 
 12294            __ lb(dst, as_Register(base), disp);
 12295         } else {
 12296            __ move(T9, disp);   
 12297            if( UseLoongsonISA ) {
 12298               __ gslbx(dst, as_Register(base), T9, 0);
 12299            } else {
 12300               __ addu(AT, as_Register(base), T9); 
 12301               __ lb(dst, AT, 0);
 12305   %}
 12306   ins_pipe(pipe_slow);
 12307 %}
 12310 // Call runtime without safepoint
 12311 instruct CallLeafDirect(method meth) %{
 12312   match(CallLeaf);
 12313   effect(USE meth);
 12315   ins_cost(300);
 12316   format %{ "CALL_LEAF,runtime #@CallLeafDirect " %}
 12317   ins_encode(Java_To_Runtime(meth));
 12318   ins_pipe( pipe_slow );
 12319   ins_pc_relative(1);
 12320   ins_alignment(16);
 12321 %}
 12323 // Load Char (16bit unsigned)
 12324 instruct loadUS(mRegI dst, memory mem) %{
 12325   match(Set dst (LoadUS mem));
 12327   ins_cost(125);
 12328   format %{ "loadUS  $dst,$mem @ loadC" %}
 12329   ins_encode(load_C_enc(dst, mem));
 12330   ins_pipe( ialu_loadI );
 12331 %}
 12333 instruct loadUS_convI2L(mRegL dst, memory mem) %{
 12334   match(Set dst (ConvI2L (LoadUS mem)));
 12336   ins_cost(125);
 12337   format %{ "loadUS  $dst,$mem @ loadUS_convI2L" %}
 12338   ins_encode(load_C_enc(dst, mem));
 12339   ins_pipe( ialu_loadI );
 12340 %}
 12342 // Store Char (16bit unsigned)
 12343 instruct storeC(memory mem, mRegI src) %{
 12344   match(Set mem (StoreC mem src));
 12346   ins_cost(125);
 12347   format %{ "storeC  $src, $mem @ storeC" %}
 12348   ins_encode(store_C_reg_enc(mem, src));
 12349   ins_pipe( ialu_loadI );
 12350 %}
 12352 instruct storeC0(memory mem, immI0 zero) %{
 12353   match(Set mem (StoreC mem zero));
 12355   ins_cost(125);
 12356   format %{ "storeC  $zero, $mem @ storeC0" %}
 12357   ins_encode(store_C0_enc(mem));
 12358   ins_pipe( ialu_loadI );
 12359 %}
 12362 instruct loadConF0(regF dst, immF0 zero) %{
 12363   match(Set dst zero);
 12364   ins_cost(100);
 12366   format %{ "mov  $dst, zero @ loadConF0\n"%}
 12367   ins_encode %{
 12368     FloatRegister dst = $dst$$FloatRegister;
 12370     __ mtc1(R0, dst);
 12371   %}
 12372   ins_pipe( fpu_loadF );
 12373 %}
 12376 instruct loadConF(regF dst, immF src) %{
 12377   match(Set dst src);
 12378   ins_cost(125);
 12380   format %{ "lwc1  $dst, $constantoffset[$constanttablebase] # load FLOAT $src from table @ loadConF" %}
 12381   ins_encode %{
 12382     int con_offset = $constantoffset($src);
 12384     if (Assembler::is_simm16(con_offset)) {
 12385        __ lwc1($dst$$FloatRegister, $constanttablebase, con_offset);
 12386     } else {
 12387        __ set64(AT, con_offset);
 12388        if (UseLoongsonISA) {
 12389           __ gslwxc1($dst$$FloatRegister, $constanttablebase, AT, 0);
 12390        } else {
 12391           __ daddu(AT, $constanttablebase, AT);
 12392           __ lwc1($dst$$FloatRegister, AT, 0);
 12395   %}
 12396   ins_pipe( fpu_loadF );
 12397 %}
 12400 instruct loadConD0(regD dst, immD0 zero) %{
 12401   match(Set dst zero);
 12402   ins_cost(100);
 12404   format %{ "mov  $dst, zero @ loadConD0"%}
 12405   ins_encode %{
 12406     FloatRegister dst = as_FloatRegister($dst$$reg);
 12408       __ dmtc1(R0, dst);
 12409   %}
 12410   ins_pipe( fpu_loadF );
 12411 %}
 12413 instruct loadConD(regD dst, immD src) %{
 12414   match(Set dst src);
 12415   ins_cost(125);
 12417   format %{ "ldc1  $dst, $constantoffset[$constanttablebase] # load DOUBLE $src from table @ loadConD" %}
 12418   ins_encode %{
 12419     int con_offset = $constantoffset($src);
 12421     if (Assembler::is_simm16(con_offset)) {
 12422        __ ldc1($dst$$FloatRegister, $constanttablebase, con_offset);
 12423     } else {
 12424        __ set64(AT, con_offset);
 12425        if (UseLoongsonISA) {
 12426           __ gsldxc1($dst$$FloatRegister, $constanttablebase, AT, 0);
 12427        } else {
 12428           __ daddu(AT, $constanttablebase, AT);
 12429           __ ldc1($dst$$FloatRegister, AT, 0);
 12432   %}
 12433   ins_pipe( fpu_loadF );
 12434 %}
 12436 // Store register Float value (it is faster than store from FPU register)
 12437 instruct storeF_reg( memory mem, regF src) %{
 12438   match(Set mem (StoreF mem src));
 12440   ins_cost(50);
 12441   format %{ "store   $mem, $src\t# store float @ storeF_reg" %}
 12442   ins_encode(store_F_reg_enc(mem, src));
 12443   ins_pipe( fpu_storeF );
 12444 %}
 12446 instruct storeF_imm0( memory mem, immF0 zero) %{
 12447   match(Set mem (StoreF mem zero));
 12449   ins_cost(40);
 12450   format %{ "store   $mem, zero\t# store float @ storeF_imm0" %}
 12451   ins_encode %{
 12452     int      base = $mem$$base;
 12453     int     index = $mem$$index;
 12454     int     scale = $mem$$scale;
 12455     int      disp = $mem$$disp;
 12457     if( index != 0 ) {
 12458 		if ( UseLoongsonISA ) {
 12459 			if ( Assembler::is_simm(disp, 8) ) {
 12460 				if ( scale == 0 ) {
 12461 					__ gsswx(R0, as_Register(base), as_Register(index), disp);
 12462 				} else {
 12463 					__ dsll(T9, as_Register(index), scale);
 12464 					__ gsswx(R0, as_Register(base), T9, disp);
 12466 			} else if ( Assembler::is_simm16(disp) ) {
 12467 				if ( scale == 0 ) {
 12468 					__ daddu(AT, as_Register(base), as_Register(index));
 12469 				} else {
 12470 					__ dsll(T9, as_Register(index), scale);
 12471 					__ daddu(AT, as_Register(base), T9);
 12473 				__ sw(R0, AT, disp);
 12474 			} else {
 12475 				if ( scale == 0 ) {
 12476 					__ move(T9, disp);
 12477 					__ daddu(AT, as_Register(index), T9);
 12478 					__ gsswx(R0, as_Register(base), AT, 0);
 12479 				} else {
 12480 					__ dsll(T9, as_Register(index), scale);
 12481 					__ move(AT, disp);
 12482 					__ daddu(AT, AT, T9);
 12483 					__ gsswx(R0, as_Register(base), AT, 0);
 12486 		} else { //not use loongson isa
 12487 		    if(scale != 0) {
 12488 		       __ dsll(T9, as_Register(index), scale);
 12489 		       __ daddu(AT, as_Register(base), T9);
 12490 		    } else {
 12491 		       __ daddu(AT, as_Register(base), as_Register(index));
 12493 		   if( Assembler::is_simm16(disp) ) { 
 12494 		      __ sw(R0, AT, disp);
 12495 		   } else {
 12496 		      __ move(T9, disp);
 12497 		      __ daddu(AT, AT, T9);
 12498 			  __ sw(R0, AT, 0);
 12501     } else { //index is 0
 12502 		if ( UseLoongsonISA ) {
 12503 			if ( Assembler::is_simm16(disp) ) {
 12504 				__ sw(R0, as_Register(base), disp);
 12505 			} else {
 12506 				__ move(T9, disp);
 12507 				__ gsswx(R0, as_Register(base), T9, 0);
 12509 		} else {
 12510 		   if( Assembler::is_simm16(disp) ) { 
 12511 		      __ sw(R0, as_Register(base), disp);
 12512 		   } else {
 12513 		      __ move(T9, disp);
 12514 		      __ daddu(AT, as_Register(base), T9);
 12515 			  __ sw(R0, AT, 0);
 12519   %}
 12520   ins_pipe( ialu_storeI );
 12521 %}
 12523 // Load Double
 12524 instruct loadD(regD dst, memory mem) %{
 12525   match(Set dst (LoadD mem));
 12527   ins_cost(150);
 12528   format %{ "loadD   $dst, $mem #@loadD" %}
 12529   ins_encode(load_D_enc(dst, mem));
 12530   ins_pipe( ialu_loadI );
 12531 %}
 12533 // Load Double - UNaligned
 12534 instruct loadD_unaligned(regD dst, memory mem ) %{
 12535   match(Set dst (LoadD_unaligned mem));
 12536   ins_cost(250);
 12537   // FIXME: Jin: Need more effective ldl/ldr
 12538   format %{ "loadD_unaligned   $dst, $mem #@loadD_unaligned" %}
 12539   ins_encode(load_D_enc(dst, mem));
 12540   ins_pipe( ialu_loadI );
 12541 %}
 12543 instruct storeD_reg( memory mem, regD src) %{
 12544   match(Set mem (StoreD mem src));
 12546   ins_cost(50);
 12547   format %{ "store   $mem, $src\t# store float @ storeD_reg" %}
 12548   ins_encode(store_D_reg_enc(mem, src));
 12549   ins_pipe( fpu_storeF );
 12550 %}
 12552 instruct storeD_imm0( memory mem, immD0 zero) %{
 12553   match(Set mem (StoreD mem zero));
 12555   ins_cost(40);
 12556   format %{ "store   $mem, zero\t# store float @ storeD_imm0" %}
 12557   ins_encode %{
 12558     int      base = $mem$$base;
 12559     int     index = $mem$$index;
 12560     int     scale = $mem$$scale;
 12561     int      disp = $mem$$disp;
 12563     __ mtc1(R0, F30);
 12564     __ cvt_d_w(F30, F30);
 12566     if( index != 0 ) {
 12567 		if ( UseLoongsonISA ) {
 12568 			if ( Assembler::is_simm(disp, 8) ) {
 12569 				if (scale == 0) {
 12570 					__ gssdxc1(F30, as_Register(base), as_Register(index), disp);
 12571 				} else {
 12572 					__ dsll(T9, as_Register(index), scale);
 12573 					__ gssdxc1(F30, as_Register(base), T9, disp);
 12575 			} else if ( Assembler::is_simm16(disp) ) {
 12576 				if (scale == 0) {
 12577 					__ daddu(AT, as_Register(base), as_Register(index));
 12578 					__ sdc1(F30, AT, disp);
 12579 				} else {
 12580 					__ dsll(T9, as_Register(index), scale);
 12581 					__ daddu(AT, as_Register(base), T9);
 12582 					__ sdc1(F30, AT, disp);
 12584 			} else {
 12585 				if (scale == 0) {
 12586 					__ move(T9, disp);
 12587 					__ daddu(AT, as_Register(index), T9);
 12588 					__ gssdxc1(F30, as_Register(base), AT, 0);
 12589 				} else {
 12590 					__ move(T9, disp);
 12591 					__ dsll(AT, as_Register(index), scale);
 12592 					__ daddu(AT, AT, T9);
 12593 					__ gssdxc1(F30, as_Register(base), AT, 0);
 12596 		} else { // not use loongson isa
 12597 		    if(scale != 0) {
 12598 		       __ dsll(T9, as_Register(index), scale);
 12599 		       __ daddu(AT, as_Register(base), T9);
 12600 		    } else {
 12601 		       __ daddu(AT, as_Register(base), as_Register(index));
 12603 		   if( Assembler::is_simm16(disp) ) { 
 12604 		      __ sdc1(F30, AT, disp);
 12605 		   } else {
 12606 		      __ move(T9, disp);
 12607 		      __ daddu(AT, AT, T9);
 12608 		      __ sdc1(F30, AT, 0);
 12611     } else {// index is 0
 12612 		if ( UseLoongsonISA ) {
 12613 			if ( Assembler::is_simm16(disp) ) {
 12614 				__ sdc1(F30, as_Register(base), disp);
 12615 			} else {
 12616 				__ move(T9, disp);
 12617 				__ gssdxc1(F30, as_Register(base), T9, 0);
 12619 		} else {
 12620 		   if( Assembler::is_simm16(disp) ) { 
 12621 		      __ sdc1(F30, as_Register(base), disp);
 12622 		   } else {
 12623 		      __ move(T9, disp);
 12624 		      __ daddu(AT, as_Register(base), T9);
 12625 		      __ sdc1(F30, AT, 0);
 12629   %}
 12630   ins_pipe( ialu_storeI );
 12631 %}
 12633 instruct loadSSI(mRegI dst, stackSlotI src)
 12634 %{
 12635   match(Set dst src);
 12637   ins_cost(125);
 12638   format %{ "lw    $dst, $src\t# int stk @ loadSSI" %}
 12639   ins_encode %{
 12640     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSI) !");
 12641     __ lw($dst$$Register, SP, $src$$disp);
 12642   %}
 12643   ins_pipe(ialu_loadI);
 12644 %}
 12646 instruct storeSSI(stackSlotI dst, mRegI src)
 12647 %{
 12648   match(Set dst src);
 12650   ins_cost(100);
 12651   format %{ "sw    $dst, $src\t# int stk @ storeSSI" %}
 12652   ins_encode %{
 12653     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSI) !");
 12654     __ sw($src$$Register, SP, $dst$$disp);
 12655   %}
 12656   ins_pipe(ialu_storeI);
 12657 %}
 12659 instruct loadSSL(mRegL dst, stackSlotL src)
 12660 %{
 12661   match(Set dst src);
 12663   ins_cost(125);
 12664   format %{ "ld    $dst, $src\t# long stk @ loadSSL" %}
 12665   ins_encode %{
 12666     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSL) !");
 12667     __ ld($dst$$Register, SP, $src$$disp);
 12668   %}
 12669   ins_pipe(ialu_loadI);
 12670 %}
 12672 instruct storeSSL(stackSlotL dst, mRegL src)
 12673 %{
 12674   match(Set dst src);
 12676   ins_cost(100);
 12677   format %{ "sd    $dst, $src\t# long stk @ storeSSL" %}
 12678   ins_encode %{
 12679     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSL) !");
 12680     __ sd($src$$Register, SP, $dst$$disp);
 12681   %}
 12682   ins_pipe(ialu_storeI);
 12683 %}
 12685 instruct loadSSP(mRegP dst, stackSlotP src)
 12686 %{
 12687   match(Set dst src);
 12689   ins_cost(125);
 12690   format %{ "ld    $dst, $src\t# ptr stk @ loadSSP" %}
 12691   ins_encode %{
 12692     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSP) !");
 12693     __ ld($dst$$Register, SP, $src$$disp);
 12694   %}
 12695   ins_pipe(ialu_loadI);
 12696 %}
 12698 instruct storeSSP(stackSlotP dst, mRegP src)
 12699 %{
 12700   match(Set dst src);
 12702   ins_cost(100);
 12703   format %{ "sd    $dst, $src\t# ptr stk @ storeSSP" %}
 12704   ins_encode %{
 12705     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSP) !");
 12706     __ sd($src$$Register, SP, $dst$$disp);
 12707   %}
 12708   ins_pipe(ialu_storeI);
 12709 %}
 12711 instruct loadSSF(regF dst, stackSlotF src)
 12712 %{
 12713   match(Set dst src);
 12715   ins_cost(125);
 12716   format %{ "lwc1   $dst, $src\t# float stk @ loadSSF" %}
 12717   ins_encode %{
 12718     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSF) !");
 12719     __ lwc1($dst$$FloatRegister, SP, $src$$disp);
 12720   %}
 12721   ins_pipe(ialu_loadI);
 12722 %}
 12724 instruct storeSSF(stackSlotF dst, regF src)
 12725 %{
 12726   match(Set dst src);
 12728   ins_cost(100);
 12729   format %{ "swc1    $dst, $src\t# float stk @ storeSSF" %}
 12730   ins_encode %{
 12731     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSF) !");
 12732     __ swc1($src$$FloatRegister, SP, $dst$$disp);
 12733   %}
 12734   ins_pipe(fpu_storeF);
 12735 %}
 12737 // Use the same format since predicate() can not be used here.
 12738 instruct loadSSD(regD dst, stackSlotD src)
 12739 %{
 12740   match(Set dst src);
 12742   ins_cost(125);
 12743   format %{ "ldc1   $dst, $src\t# double stk @ loadSSD" %}
 12744   ins_encode %{
 12745     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSD) !");
 12746     __ ldc1($dst$$FloatRegister, SP, $src$$disp);
 12747   %}
 12748   ins_pipe(ialu_loadI);
 12749 %}
 12751 instruct storeSSD(stackSlotD dst, regD src)
 12752 %{
 12753   match(Set dst src);
 12755   ins_cost(100);
 12756   format %{ "sdc1    $dst, $src\t# double stk @ storeSSD" %}
 12757   ins_encode %{
 12758     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSD) !");
 12759     __ sdc1($src$$FloatRegister, SP, $dst$$disp);
 12760   %}
 12761   ins_pipe(fpu_storeF);
 12762 %}
 12764 instruct cmpFastLock( FlagsReg cr, mRegP object, s0_RegP box, mRegI tmp, mRegP scr) %{
 12765   match( Set cr (FastLock object box) );
 12766   effect( TEMP tmp, TEMP scr, USE_KILL box );
 12767   ins_cost(300);
 12768   format %{ "FASTLOCK $cr $object, $box, $tmp #@ cmpFastLock" %}
 12769   ins_encode %{
 12770     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register, $scr$$Register);
 12771   %}
 12773   ins_pipe( pipe_slow );
 12774   ins_pc_relative(1);
 12775 %}
 12777 instruct cmpFastUnlock( FlagsReg cr, mRegP object, s0_RegP box, mRegP tmp ) %{
 12778   match( Set cr (FastUnlock object box) );
 12779   effect( TEMP tmp, USE_KILL box );
 12780   ins_cost(300);
 12781   format %{ "FASTUNLOCK $object, $box, $tmp #@cmpFastUnlock" %}
 12782   ins_encode %{
 12783     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register);
 12784   %}
 12786   ins_pipe( pipe_slow );
 12787   ins_pc_relative(1);
 12788 %}
 12790 // Store CMS card-mark Immediate
 12791 instruct storeImmCM(memory mem, immI8 src) %{
 12792   match(Set mem (StoreCM mem src));
 12794   ins_cost(150);
 12795   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
 12796 //  opcode(0xC6);
 12797   ins_encode(store_B_immI_enc_sync(mem, src));
 12798   ins_pipe( ialu_storeI );
 12799 %}
 12801 // Die now
 12802 instruct ShouldNotReachHere( )
 12803 %{
 12804   match(Halt);
 12805   ins_cost(300);
 12807   // Use the following format syntax
 12808   format %{ "ILLTRAP   ;#@ShouldNotReachHere" %}
 12809   ins_encode %{
 12810     // Here we should emit illtrap !
 12812     __ stop("in ShoudNotReachHere");
 12814   %}
 12815   ins_pipe( pipe_jump );
 12816 %}
 12818 instruct leaP8Narrow(mRegP dst, indOffset8Narrow mem)
 12819 %{
 12820   predicate(Universe::narrow_oop_shift() == 0);
 12821   match(Set dst mem);
 12823   ins_cost(110); 
 12824   format %{ "leaq    $dst, $mem\t# ptr off8narrow @ leaP8Narrow" %}
 12825   ins_encode %{
 12826     Register  dst  = $dst$$Register;
 12827     Register  base = as_Register($mem$$base);
 12828     int       disp = $mem$$disp;
 12830     __ daddiu(dst, base, disp);
 12831   %}
 12832   ins_pipe( ialu_regI_imm16 );
 12833 %}
 12835 instruct leaPPosIdxScaleOff8(mRegP dst, basePosIndexScaleOffset8 mem)
 12836 %{
 12837   match(Set dst mem);
 12839   ins_cost(110);
 12840   format %{ "leaq    $dst, $mem\t# @ PosIdxScaleOff8" %}
 12841   ins_encode %{
 12842     Register  dst   = $dst$$Register;
 12843     Register  base  = as_Register($mem$$base);
 12844     Register  index = as_Register($mem$$index);
 12845     int       scale = $mem$$scale;
 12846     int       disp  = $mem$$disp;
 12848     if (scale == 0) {
 12849        __ daddu(AT, base, index);
 12850        __ daddiu(dst, AT, disp);
 12851     } else {
 12852        __ dsll(AT, index, scale);
 12853        __ daddu(AT, base, AT);
 12854        __ daddiu(dst, AT, disp);
 12856  %}
 12858   ins_pipe( ialu_regI_imm16 );
 12859 %}
 12861 instruct leaPIdxScale(mRegP dst, indIndexScale mem)
 12862 %{
 12863   match(Set dst mem);
 12865   ins_cost(110);
 12866   format %{ "leaq    $dst, $mem\t# @ leaPIdxScale" %}
 12867   ins_encode %{
 12868     Register  dst   = $dst$$Register;
 12869     Register  base  = as_Register($mem$$base);
 12870     Register  index = as_Register($mem$$index);
 12871     int       scale = $mem$$scale;
 12873     if (scale == 0) {
 12874        __ daddu(dst, base, index);
 12875     } else {
 12876        __ dsll(AT, index, scale);
 12877        __ daddu(dst, base, AT);
 12879  %}
 12881   ins_pipe( ialu_regI_imm16 );
 12882 %}
 12884 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12885 instruct  jmpLoopEnd(cmpOp cop, mRegI src1, mRegI src2, label labl) %{
 12886   match(CountedLoopEnd cop (CmpI src1 src2));
 12887   effect(USE labl);
 12889   ins_cost(300);
 12890   format %{ "J$cop  $src1, $src2,  $labl\t# Loop end @ jmpLoopEnd" %}
 12891   ins_encode %{
 12892     Register op1 = $src1$$Register;
 12893     Register op2 = $src2$$Register;
 12894     Label     &L = *($labl$$label);
 12895     int     flag = $cop$$cmpcode;
 12897     switch(flag)
 12899       case 0x01: //equal
 12900 	if (&L)
 12901         	__ beq(op1, op2, L); 
 12902 	else 
 12903         	__ beq(op1, op2, (int)0); 
 12904         break;
 12905       case 0x02: //not_equal
 12906 	if (&L)
 12907         	__ bne(op1, op2, L); 
 12908 	else
 12909         	__ bne(op1, op2, (int)0); 
 12910         break;
 12911       case 0x03: //above
 12912         __ slt(AT, op2, op1);
 12913         if(&L)
 12914         	__ bne(AT, R0, L); 
 12915         else
 12916                 __ bne(AT, R0, (int)0);
 12917         break;
 12918       case 0x04: //above_equal
 12919         __ slt(AT, op1, op2);
 12920         if(&L)
 12921         	__ beq(AT, R0, L);
 12922         else
 12923                 __ beq(AT, R0, (int)0);
 12924         break;
 12925       case 0x05: //below
 12926         __ slt(AT, op1, op2);
 12927         if(&L)
 12928       		 __ bne(AT, R0, L); 
 12929         else
 12930         	 __ bne(AT, R0, (int)0);
 12931         break;
 12932       case 0x06: //below_equal
 12933         __ slt(AT, op2, op1);
 12934         if(&L)
 12935         	__ beq(AT, R0, L);
 12936         else
 12937         	__ beq(AT, R0, (int)0);
 12938        break;
 12939       default:
 12940           Unimplemented();
 12942     __ nop();
 12943   %}
 12944   ins_pipe( pipe_jump );
 12945   ins_pc_relative(1);
 12946 %}
 12949  instruct  jmpLoopEnd_reg_imm16_sub(cmpOp cop, mRegI src1, immI16_sub src2, label labl) %{
 12950   match(CountedLoopEnd cop (CmpI src1 src2));
 12951   effect(USE labl);
 12953   ins_cost(250);
 12954   format %{ "J$cop  $src1, $src2,  $labl\t# Loop end @ jmpLoopEnd_reg_imm16_sub" %}
 12955   ins_encode %{
 12956     Register op1 = $src1$$Register;
 12957     int      op2 = $src2$$constant;
 12958     Label     &L = *($labl$$label);
 12959     int     flag = $cop$$cmpcode;
 12961     __ addiu32(AT, op1, -1 * op2);
 12963     switch(flag)
 12965       case 0x01: //equal
 12966        if (&L)
 12967                __ beq(AT, R0, L); 
 12968        else 
 12969                __ beq(AT, R0, (int)0); 
 12970         break;
 12971       case 0x02: //not_equal
 12972        if (&L)
 12973                __ bne(AT, R0, L); 
 12974        else
 12975                __ bne(AT, R0, (int)0); 
 12976         break;
 12977       case 0x03: //above
 12978         if(&L)
 12979                __ bgtz(AT, L); 
 12980         else
 12981                 __ bgtz(AT, (int)0);
 12982         break;
 12983       case 0x04: //above_equal
 12984         if(&L)
 12985                __ bgez(AT, L);
 12986         else
 12987                 __ bgez(AT,(int)0);
 12988         break;
 12989       case 0x05: //below
 12990         if(&L)
 12991                 __ bltz(AT, L); 
 12992         else
 12993                 __ bltz(AT, (int)0);
 12994         break;
 12995       case 0x06: //below_equal
 12996         if(&L)
 12997                __ blez(AT, L);
 12998         else
 12999                __ blez(AT, (int)0);
 13000        break;
 13001       default:
 13002           Unimplemented();
 13004     __ nop();
 13005   %}
 13006   ins_pipe( pipe_jump );
 13007   ins_pc_relative(1);
 13008 %}
 13011 /*  
 13012 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13013 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13014   match(CountedLoopEnd cop cmp);
 13015   effect(USE labl);
 13017   ins_cost(300);
 13018   format %{ "J$cop,u  $labl\t# Loop end" %}
 13019   size(6);
 13020   opcode(0x0F, 0x80);
 13021   ins_encode( Jcc( cop, labl) );
 13022   ins_pipe( pipe_jump );
 13023   ins_pc_relative(1);
 13024 %}
 13026 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13027   match(CountedLoopEnd cop cmp);
 13028   effect(USE labl);
 13030   ins_cost(200);
 13031   format %{ "J$cop,u  $labl\t# Loop end" %}
 13032   opcode(0x0F, 0x80);
 13033   ins_encode( Jcc( cop, labl) );
 13034   ins_pipe( pipe_jump );
 13035   ins_pc_relative(1);
 13036 %}
 13037 */
 13039 // This match pattern is created for StoreIConditional since I cannot match IfNode without a RegFlags! fujie 2012/07/17
 13040 instruct jmpCon_flags(cmpOp cop, FlagsReg cr, label labl) %{
 13041   match(If cop cr);
 13042   effect(USE labl);
 13044   ins_cost(300);
 13045   format %{ "J$cop    $labl  #mips uses AT as eflag @jmpCon_flags" %}
 13047   ins_encode %{
 13048     Label    &L =  *($labl$$label);
 13049     switch($cop$$cmpcode)
 13051       case 0x01: //equal
 13052 	if (&L)
 13053         	__ bne(AT, R0, L); 
 13054 	else 
 13055         	__ bne(AT, R0, (int)0); 
 13056         break;
 13057       case 0x02: //not equal
 13058 	if (&L)
 13059         	__ beq(AT, R0, L); 
 13060 	else 
 13061         	__ beq(AT, R0, (int)0); 
 13062         break;
 13063       default:
 13064          Unimplemented(); 
 13066     __ nop();
 13067   %}
 13069   ins_pipe( pipe_jump );
 13070   ins_pc_relative(1);
 13071 %}
 13074 // ============================================================================
 13075 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 13076 // array for an instance of the superklass.  Set a hidden internal cache on a
 13077 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 13078 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 13079 instruct partialSubtypeCheck( mRegP result, no_T8_mRegP sub, no_T8_mRegP super, mT8RegI tmp ) %{
 13080   match(Set result (PartialSubtypeCheck sub super));
 13081   effect(KILL tmp);
 13082   ins_cost(1100);  // slightly larger than the next version
 13083   format %{ "partialSubtypeCheck result=$result, sub=$sub, super=$super, tmp=$tmp " %}
 13085   ins_encode( enc_PartialSubtypeCheck(result, sub, super, tmp) );
 13086   ins_pipe( pipe_slow );
 13087 %}
 13090 // Conditional-store of an int value.
 13091 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
 13092 instruct storeIConditional( memory mem, mRegI oldval, mRegI newval, FlagsReg cr ) %{
 13093   match(Set cr (StoreIConditional mem (Binary oldval newval)));
 13094 //  effect(KILL oldval);
 13095   format %{ "CMPXCHG  $newval, $mem, $oldval \t# @storeIConditional" %}
 13097   ins_encode %{
 13098     Register oldval = $oldval$$Register;
 13099     Register newval = $newval$$Register;
 13100     Address  addr(as_Register($mem$$base), $mem$$disp);
 13101     Label    again, failure;
 13103 //    int      base = $mem$$base;
 13104     int     index = $mem$$index;
 13105     int     scale = $mem$$scale;
 13106     int      disp = $mem$$disp;
 13108     guarantee(Assembler::is_simm16(disp), ""); 
 13110     if( index != 0 ) {
 13111        __ stop("in storeIConditional: index != 0");
 13112     } else {
 13113        __ bind(again);
 13114        if(UseSyncLevel <= 1000) __ sync();
 13115        __ ll(AT, addr);
 13116        __ bne(AT, oldval, failure);
 13117        __ delayed()->addu(AT, R0, R0);
 13119        __ addu(AT, newval, R0);
 13120        __ sc(AT, addr);
 13121        __ beq(AT, R0, again);
 13122        __ delayed()->addiu(AT, R0, 0xFF);
 13123        __ bind(failure);
 13124        __ sync();
 13126 %}
 13128   ins_pipe( long_memory_op );
 13129 %}
 13131 // Conditional-store of a long value.
 13132 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
 13133 instruct storeLConditional(memory mem, t2RegL oldval, mRegL newval, FlagsReg cr )
 13134 %{
 13135   match(Set cr (StoreLConditional mem (Binary oldval newval)));
 13136   effect(KILL oldval);
 13138   format %{ "cmpxchg $mem, $newval\t# If $oldval == $mem then store $newval into $mem" %}
 13139   ins_encode%{
 13140 		Register oldval = $oldval$$Register;
 13141 		Register newval = $newval$$Register;
 13142 		Address addr((Register)$mem$$base, $mem$$disp);  
 13144 		int     index = $mem$$index;
 13145 		int     scale = $mem$$scale;
 13146 		int      disp = $mem$$disp;
 13148 		guarantee(Assembler::is_simm16(disp), ""); 
 13150 		if( index != 0 ) {
 13151 			__ stop("in storeIConditional: index != 0");
 13152 		} else {
 13153 			__ cmpxchg(newval, addr, oldval);
 13155   %}
 13156   ins_pipe( long_memory_op );
 13157 %}
 13160 instruct compareAndSwapI( mRegI res, mRegP mem_ptr, mS2RegI oldval, mRegI newval) %{
 13161   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
 13162   effect(KILL oldval);
 13163 //  match(CompareAndSwapI mem_ptr (Binary oldval newval));
 13164   format %{ "CMPXCHG $newval, [$mem_ptr], $oldval @ compareAndSwapI\n\t"
 13165             "MOV    $res, 1 @ compareAndSwapI\n\t"
 13166             "BNE    AT, R0 @ compareAndSwapI\n\t"
 13167             "MOV    $res, 0 @ compareAndSwapI\n"
 13168           "L:" %}
 13169   ins_encode %{
 13170     Register newval = $newval$$Register;
 13171     Register oldval = $oldval$$Register;
 13172     Register res    = $res$$Register;
 13173     Address  addr($mem_ptr$$Register, 0);    
 13174     Label L;
 13176     __ cmpxchg32(newval, addr, oldval);
 13177     __ move(res, AT);
 13178   %}
 13179   ins_pipe( long_memory_op );
 13180 %}
 13182 //FIXME:
 13183 instruct compareAndSwapP( mRegI res, mRegP mem_ptr, s2_RegP oldval, mRegP newval) %{
 13184   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
 13185   effect(KILL oldval);
 13186   format %{ "CMPXCHG $newval, [$mem_ptr], $oldval @ compareAndSwapP\n\t"
 13187             "MOV    $res, AT @ compareAndSwapP\n\t"
 13188           "L:" %}
 13189   ins_encode %{
 13190     Register newval = $newval$$Register;
 13191     Register oldval = $oldval$$Register;
 13192     Register res    = $res$$Register;
 13193     Address  addr($mem_ptr$$Register, 0);    
 13194     Label L;
 13196     __ cmpxchg(newval, addr, oldval);
 13197     __ move(res, AT);
 13198   %}
 13199   ins_pipe( long_memory_op );
 13200 %}
 13202 instruct compareAndSwapN( mRegI res, mRegP mem_ptr, t2_RegN oldval, mRegN newval) %{
 13203   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
 13204   effect(KILL oldval);
 13205   format %{ "CMPXCHG $newval, [$mem_ptr], $oldval @ compareAndSwapN\n\t"
 13206             "MOV    $res, AT @ compareAndSwapN\n\t"
 13207           "L:" %}
 13208   ins_encode %{
 13209     Register newval = $newval$$Register;
 13210     Register oldval = $oldval$$Register;
 13211     Register res    = $res$$Register;
 13212     Address  addr($mem_ptr$$Register, 0);    
 13213     Label L;
 13215     /* 2013/7/19 Jin: cmpxchg32 is implemented with ll/sc, which will do sign extension.
 13216      *      Thus, we should extend oldval's sign for correct comparision.
 13217      */
 13218     __ sll(oldval, oldval, 0);
 13220     __ cmpxchg32(newval, addr, oldval);
 13221     __ move(res, AT);
 13222   %}
 13223   ins_pipe( long_memory_op );
 13224 %}
 13226 //----------Max and Min--------------------------------------------------------
 13227 // Min Instructions
 13228 ////
 13229 //   *** Min and Max using the conditional move are slower than the
 13230 //   *** branch version on a Pentium III.
 13231 // // Conditional move for min
 13232 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 13233 //  effect( USE_DEF op2, USE op1, USE cr );
 13234 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 13235 //  opcode(0x4C,0x0F);
 13236 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 13237 //  ins_pipe( pipe_cmov_reg );
 13238 //%}
 13239 //
 13240 //// Min Register with Register (P6 version)
 13241 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 13242 //  predicate(VM_Version::supports_cmov() );
 13243 //  match(Set op2 (MinI op1 op2));
 13244 //  ins_cost(200);
 13245 //  expand %{
 13246 //    eFlagsReg cr;
 13247 //    compI_eReg(cr,op1,op2);
 13248 //    cmovI_reg_lt(op2,op1,cr);
 13249 //  %}
 13250 //%}
 13252 // Min Register with Register (generic version)
 13253 instruct minI_Reg_Reg(mRegI dst, mRegI src) %{
 13254   match(Set dst (MinI dst src));
 13255   //effect(KILL flags);
 13256   ins_cost(80);
 13258   format %{ "MIN    $dst, $src @minI_Reg_Reg" %}
 13259   ins_encode %{
 13260     Register dst   = $dst$$Register;
 13261     Register src   = $src$$Register;
 13263     __ slt(AT, src, dst);
 13264     __ movn(dst, src, AT);
 13266   %}
 13268   ins_pipe( pipe_slow );
 13269 %}
 13271 // Max Register with Register
 13272 //   *** Min and Max using the conditional move are slower than the
 13273 //   *** branch version on a Pentium III.
 13274 // // Conditional move for max
 13275 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 13276 //  effect( USE_DEF op2, USE op1, USE cr );
 13277 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 13278 //  opcode(0x4F,0x0F);
 13279 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 13280 //  ins_pipe( pipe_cmov_reg );
 13281 //%}
 13282 //
 13283 // // Max Register with Register (P6 version)
 13284 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 13285 //  predicate(VM_Version::supports_cmov() );
 13286 //  match(Set op2 (MaxI op1 op2));
 13287 //  ins_cost(200);
 13288 //  expand %{
 13289 //    eFlagsReg cr;
 13290 //    compI_eReg(cr,op1,op2);
 13291 //    cmovI_reg_gt(op2,op1,cr);
 13292 //  %}
 13293 //%}
 13295 // Max Register with Register (generic version)
 13296 instruct maxI_Reg_Reg(mRegI dst, mRegI src) %{
 13297   match(Set dst (MaxI dst src));
 13298   ins_cost(80);
 13300   format %{ "MAX    $dst, $src @maxI_Reg_Reg" %}
 13302   ins_encode %{
 13303     Register dst   = $dst$$Register;
 13304     Register src   = $src$$Register;
 13306     __ slt(AT, dst, src);
 13307     __ movn(dst, src, AT);
 13309   %}
 13311   ins_pipe( pipe_slow );
 13312 %}
 13314 instruct maxI_Reg_zero(mRegI dst, immI0 zero) %{
 13315   match(Set dst (MaxI dst zero));
 13316   ins_cost(50);
 13318   format %{ "MAX    $dst, 0 @maxI_Reg_zero" %}
 13320   ins_encode %{
 13321     Register dst   = $dst$$Register;
 13323     __ slt(AT, dst, R0);
 13324     __ movn(dst, R0, AT);
 13326   %}
 13328   ins_pipe( pipe_slow );
 13329 %}
 13331 instruct zerox_long_reg_reg(mRegL dst, mRegL src, immL_32bits mask)
 13332 %{
 13333   match(Set dst (AndL src mask));
 13335   format %{ "movl    $dst, $src\t# zero-extend long @ zerox_long_reg_reg" %}
 13336   ins_encode %{
 13337     Register dst = $dst$$Register;
 13338     Register src = $src$$Register;
 13340     __ dext(dst, src, 0, 32);
 13341   %}
 13342   ins_pipe(ialu_regI_regI);
 13343 %}
 13345 instruct combine_i2l(mRegL dst, mRegI src1, immL_32bits mask, mRegI src2, immI_32 shift32)
 13346 %{
 13347   match(Set dst (OrL (AndL (ConvI2L src1) mask) (LShiftL (ConvI2L src2) shift32)));
 13349   format %{ "combine_i2l    $dst, $src2(H), $src1(L) @ combine_i2l" %}
 13350   ins_encode %{
 13351     Register dst  = $dst$$Register;
 13352     Register src1 = $src1$$Register;
 13353     Register src2 = $src2$$Register;
 13355     if (src1 == dst) {
 13356        __ dinsu(dst, src2, 32, 32);
 13357     } else if (src2 == dst) {
 13358        __ dsll32(dst, dst, 0); 
 13359        __ dins(dst, src1, 0, 32);
 13360     } else {
 13361        __ dext(dst, src1, 0, 32);
 13362        __ dinsu(dst, src2, 32, 32);
 13364   %}
 13365   ins_pipe(ialu_regI_regI);
 13366 %}
 13368 // Zero-extend convert int to long
 13369 instruct convI2L_reg_reg_zex(mRegL dst, mRegI src, immL_32bits mask)
 13370 %{
 13371   match(Set dst (AndL (ConvI2L src) mask));
 13373   format %{ "movl    $dst, $src\t# i2l zero-extend @ convI2L_reg_reg_zex" %}
 13374   ins_encode %{
 13375     Register dst = $dst$$Register;
 13376     Register src = $src$$Register;
 13378     __ dext(dst, src, 0, 32);
 13379   %}
 13380   ins_pipe(ialu_regI_regI);
 13381 %}
 13383 instruct convL2I2L_reg_reg_zex(mRegL dst, mRegL src, immL_32bits mask)
 13384 %{
 13385   match(Set dst (AndL (ConvI2L (ConvL2I src)) mask));
 13387   format %{ "movl    $dst, $src\t# i2l zero-extend @ convL2I2L_reg_reg_zex" %}
 13388   ins_encode %{
 13389     Register dst = $dst$$Register;
 13390     Register src = $src$$Register;
 13392     __ dext(dst, src, 0, 32);
 13393   %}
 13394   ins_pipe(ialu_regI_regI);
 13395 %}
 13397 // Match loading integer and casting it to unsigned int in long register.
 13398 // LoadI + ConvI2L + AndL 0xffffffff.
 13399 instruct loadUI2L_rmask(mRegL dst, memory mem, immL_32bits mask) %{
 13400   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
 13402   format %{ "lwu     $dst, $mem \t// zero-extend to long @ loadUI2L_rmask" %}
 13403   ins_encode (load_N_enc(dst, mem));
 13404   ins_pipe(ialu_loadI);
 13405 %}
 13407 instruct loadUI2L_lmask(mRegL dst, memory mem, immL_32bits mask) %{
 13408   match(Set dst (AndL mask (ConvI2L (LoadI mem))));
 13410   format %{ "lwu     $dst, $mem \t// zero-extend to long @ loadUI2L_lmask" %}
 13411   ins_encode (load_N_enc(dst, mem));
 13412   ins_pipe(ialu_loadI);
 13413 %}
 13416 // ============================================================================
 13417 // Safepoint Instruction
 13418 instruct safePoint_poll_reg(mRegP poll) %{
 13419   match(SafePoint poll);
 13420   predicate(false);
 13421   effect(USE poll);
 13423   ins_cost(125);
 13424   format %{ "Safepoint @ [$poll] : poll for GC @ safePoint_poll_reg" %}
 13426   ins_encode %{
 13427     Register poll_reg = $poll$$Register;
 13429     __ block_comment("Safepoint:");
 13430     __ relocate(relocInfo::poll_type);
 13431     __ lw(AT, poll_reg, 0);
 13432   %}
 13434   ins_pipe( ialu_storeI );
 13435 %}
 13437 instruct safePoint_poll() %{
 13438   match(SafePoint);
 13440   ins_cost(105);
 13441   format %{ "poll for GC @ safePoint_poll" %}
 13443   ins_encode %{
 13444     __ block_comment("Safepoint:");
 13445     __ set64(T9, (long)os::get_polling_page());
 13446     __ relocate(relocInfo::poll_type);
 13447     __ lw(AT, T9, 0);
 13448   %}
 13450   ins_pipe( ialu_storeI );
 13451 %}
 13453 //----------Arithmetic Conversion Instructions---------------------------------
 13455 instruct roundFloat_nop(regF dst)
 13456 %{
 13457   match(Set dst (RoundFloat dst));
 13459   ins_cost(0);
 13460   ins_encode();
 13461   ins_pipe(empty);
 13462 %}
 13464 instruct roundDouble_nop(regD dst)
 13465 %{
 13466   match(Set dst (RoundDouble dst));
 13468   ins_cost(0);
 13469   ins_encode();
 13470   ins_pipe(empty);
 13471 %}
 13473 //---------- Zeros Count Instructions ------------------------------------------
 13474 // CountLeadingZerosINode CountTrailingZerosINode 
 13475 instruct countLeadingZerosI(mRegI dst, mRegI src) %{
 13476   predicate(UseCountLeadingZerosInstruction);
 13477   match(Set dst (CountLeadingZerosI src));
 13479   format %{ "clz  $dst, $src\t# count leading zeros (int)" %}
 13480   ins_encode %{
 13481     __ clz($dst$$Register, $src$$Register);
 13482   %}
 13483   ins_pipe( ialu_regL_regL );
 13484 %}
 13486 instruct countLeadingZerosL(mRegI dst, mRegL src) %{
 13487   predicate(UseCountLeadingZerosInstruction);
 13488   match(Set dst (CountLeadingZerosL src));
 13490   format %{ "dclz  $dst, $src\t# count leading zeros (long)" %}
 13491   ins_encode %{
 13492     __ dclz($dst$$Register, $src$$Register);
 13493   %}
 13494   ins_pipe( ialu_regL_regL );
 13495 %}
 13497 instruct countTrailingZerosI(mRegI dst, mRegI src) %{
 13498   predicate(UseCountTrailingZerosInstruction);
 13499   match(Set dst (CountTrailingZerosI src));
 13501   format %{ "ctz    $dst, $src\t# count trailing zeros (int)" %}
 13502   ins_encode %{
 13503     // ctz and dctz is gs instructions.
 13504     __ ctz($dst$$Register, $src$$Register);
 13505   %}
 13506   ins_pipe( ialu_regL_regL );
 13507 %}
 13509 instruct countTrailingZerosL(mRegI dst, mRegL src) %{
 13510   predicate(UseCountTrailingZerosInstruction);
 13511   match(Set dst (CountTrailingZerosL src));
 13513   format %{ "dcto    $dst, $src\t# count trailing zeros (long)" %}
 13514   ins_encode %{
 13515     __ dctz($dst$$Register, $src$$Register);
 13516   %}
 13517   ins_pipe( ialu_regL_regL );
 13518 %}
 13520 // ====================VECTOR INSTRUCTIONS=====================================
 13522 // Load vectors (8 bytes long)
 13523 instruct loadV8(vecD dst, memory mem) %{
 13524   predicate(n->as_LoadVector()->memory_size() == 8);
 13525   match(Set dst (LoadVector mem));
 13526   ins_cost(125);
 13527   format %{ "load    $dst, $mem\t! load vector (8 bytes)" %}
 13528   ins_encode(load_D_enc(dst, mem));
 13529   ins_pipe( fpu_loadF );
 13530 %}
 13532 // Store vectors (8 bytes long)
 13533 instruct storeV8(memory mem, vecD src) %{
 13534   predicate(n->as_StoreVector()->memory_size() == 8);
 13535   match(Set mem (StoreVector mem src));
 13536   ins_cost(145);
 13537   format %{ "store    $mem, $src\t! store vector (8 bytes)" %}
 13538   ins_encode(store_D_reg_enc(mem, src));
 13539   ins_pipe( fpu_storeF );
 13540 %}
 13542 instruct Repl8B_DSP(vecD dst, mRegI src) %{
 13543   predicate(n->as_Vector()->length() == 8 && Use3A2000);
 13544   match(Set dst (ReplicateB src));
 13545   ins_cost(100);
 13546   format %{ "replv_ob    AT, $src\n\t"
 13547             "dmtc1 AT, $dst\t! replicate8B" %}
 13548   ins_encode %{
 13549     __ replv_ob(AT, $src$$Register);
 13550     __ dmtc1(AT, $dst$$FloatRegister);
 13551   %}
 13552   ins_pipe( pipe_mtc1 );
 13553 %}
 13555 instruct Repl8B(vecD dst, mRegI src) %{
 13556   predicate(n->as_Vector()->length() == 8);
 13557   match(Set dst (ReplicateB src));
 13558   ins_cost(140);
 13559   format %{ "move       AT,  $src\n\t"
 13560             "dins  AT, AT,  8,  8\n\t"
 13561             "dins  AT, AT, 16, 16\n\t"
 13562             "dinsu AT, AT, 32, 32\n\t"
 13563             "dmtc1 AT, $dst\t! replicate8B" %}
 13564   ins_encode %{
 13565     __ move(AT, $src$$Register);
 13566     __ dins(AT, AT, 8, 8);
 13567     __ dins(AT, AT, 16, 16);
 13568     __ dinsu(AT, AT, 32, 32);
 13569     __ dmtc1(AT, $dst$$FloatRegister);
 13570   %}
 13571   ins_pipe( pipe_mtc1 );
 13572 %}
 13574 instruct Repl8B_imm_DSP(vecD dst, immI con) %{
 13575   predicate(n->as_Vector()->length() == 8 && Use3A2000);
 13576   match(Set dst (ReplicateB con));
 13577   ins_cost(110);
 13578   format %{ "repl_ob    AT, [$con]\n\t"
 13579             "dmtc1 AT, $dst,0x00\t! replicate8B($con)" %}
 13580   ins_encode %{
 13581     int      val = $con$$constant;
 13582     __ repl_ob(AT, val);
 13583     __ dmtc1(AT, $dst$$FloatRegister);
 13584   %}
 13585   ins_pipe( pipe_mtc1 );
 13586 %}
 13588 instruct Repl8B_imm(vecD dst, immI con) %{
 13589   predicate(n->as_Vector()->length() == 8);
 13590   match(Set dst (ReplicateB con));
 13591   ins_cost(150);
 13592   format %{ "move      AT, [$con]\n\t"
 13593             "dins  AT, AT,  8,  8\n\t"
 13594             "dins  AT, AT, 16, 16\n\t"
 13595             "dinsu AT, AT, 32, 32\n\t"
 13596             "dmtc1 AT, $dst,0x00\t! replicate8B($con)" %}
 13597   ins_encode %{
 13598     __ move(AT, $con$$constant);
 13599     __ dins(AT, AT, 8, 8);
 13600     __ dins(AT, AT, 16, 16);
 13601     __ dinsu(AT, AT, 32, 32);
 13602     __ dmtc1(AT, $dst$$FloatRegister);
 13603   %}
 13604   ins_pipe( pipe_mtc1 );
 13605 %}
 13607 instruct Repl8B_zero(vecD dst, immI0 zero) %{
 13608   predicate(n->as_Vector()->length() == 8);
 13609   match(Set dst (ReplicateB zero));
 13610   ins_cost(90);
 13611   format %{ "dmtc1    R0, $dst\t! replicate8B zero" %}
 13612   ins_encode %{
 13613     __ dmtc1(R0, $dst$$FloatRegister);
 13614   %}
 13615   ins_pipe( pipe_mtc1 );
 13616 %}
 13618 instruct Repl8B_M1(vecD dst, immI_M1 M1) %{
 13619   predicate(n->as_Vector()->length() == 8);
 13620   match(Set dst (ReplicateB M1));
 13621   ins_cost(80);
 13622   format %{ "dmtc1    -1, $dst\t! replicate8B -1" %}
 13623   ins_encode %{
 13624     __ nor(AT, R0, R0);
 13625     __ dmtc1(AT, $dst$$FloatRegister);
 13626   %}
 13627   ins_pipe( pipe_mtc1 );
 13628 %}
 13630 instruct Repl4S_DSP(vecD dst, mRegI src) %{
 13631   predicate(n->as_Vector()->length() == 4 && Use3A2000);
 13632   match(Set dst (ReplicateS src));
 13633   ins_cost(100);
 13634   format %{ "replv_qh    AT, $src\n\t"
 13635             "dmtc1 AT, $dst\t! replicate4S" %}
 13636   ins_encode %{
 13637     __ replv_qh(AT, $src$$Register);
 13638     __ dmtc1(AT, $dst$$FloatRegister);
 13639   %}
 13640   ins_pipe( pipe_mtc1 );
 13641 %}
 13643 instruct Repl4S(vecD dst, mRegI src) %{
 13644   predicate(n->as_Vector()->length() == 4);
 13645   match(Set dst (ReplicateS src));
 13646   ins_cost(120);
 13647   format %{ "move    AT,     $src  \n\t"
 13648             "dins    AT, AT, 16, 16\n\t"
 13649             "dinsu   AT, AT, 32, 32\n\t"
 13650             "dmtc1 AT, $dst\t! replicate4S" %}
 13651   ins_encode %{
 13652     __ move(AT, $src$$Register);
 13653     __ dins(AT, AT, 16, 16);
 13654     __ dinsu(AT, AT, 32, 32);
 13655     __ dmtc1(AT, $dst$$FloatRegister);
 13656   %}
 13657   ins_pipe( pipe_mtc1 );
 13658 %}
 13660 instruct Repl4S_imm_DSP(vecD dst, immI con) %{
 13661   predicate(n->as_Vector()->length() == 4 && Use3A2000);
 13662   match(Set dst (ReplicateS con));
 13663   ins_cost(100);
 13664   format %{ "replv_qh    AT, [$con]\n\t"
 13665             "dmtc1 AT, $dst\t! replicate4S($con)" %}
 13666   ins_encode %{
 13667     int      val = $con$$constant;
 13668     if ( Assembler::is_simm(val, 10)) {
 13669       //repl_qh supports 10 bits immediate
 13670       __ repl_qh(AT, val);
 13671     } else {
 13672       __ li32(AT, val);
 13673       __ replv_qh(AT, AT);
 13675     __ dmtc1(AT, $dst$$FloatRegister);
 13676   %}
 13677   ins_pipe( pipe_mtc1 );
 13678 %}
 13680 instruct Repl4S_imm(vecD dst, immI con) %{
 13681   predicate(n->as_Vector()->length() == 4);
 13682   match(Set dst (ReplicateS con));
 13683   ins_cost(110);
 13684   format %{ "move    AT,   [$con]\n\t"
 13685             "dins  AT, AT, 16, 16\n\t"
 13686             "dinsu AT, AT, 32, 32\n\t"
 13687             "dmtc1 AT, $dst\t! replicate4S($con)" %}
 13688   ins_encode %{
 13689     __ move(AT, $con$$constant);
 13690     __ dins(AT, AT, 16, 16);
 13691     __ dinsu(AT, AT, 32, 32);
 13692     __ dmtc1(AT, $dst$$FloatRegister);
 13693   %}
 13694   ins_pipe( pipe_mtc1 );
 13695 %}
 13697 instruct Repl4S_zero(vecD dst, immI0 zero) %{
 13698   predicate(n->as_Vector()->length() == 4);
 13699   match(Set dst (ReplicateS zero));
 13700   format %{ "dmtc1    R0, $dst\t! replicate4S zero" %}
 13701   ins_encode %{
 13702     __ dmtc1(R0, $dst$$FloatRegister);
 13703   %}
 13704   ins_pipe( pipe_mtc1 );
 13705 %}
 13707 instruct Repl4S_M1(vecD dst, immI_M1 M1) %{
 13708   predicate(n->as_Vector()->length() == 4);
 13709   match(Set dst (ReplicateS M1));
 13710   format %{ "dmtc1    -1, $dst\t! replicate4S -1" %}
 13711   ins_encode %{
 13712     __ nor(AT, R0, R0);
 13713     __ dmtc1(AT, $dst$$FloatRegister);
 13714   %}
 13715   ins_pipe( pipe_mtc1 );
 13716 %}
 13718 // Replicate integer (4 byte) scalar to be vector
 13719 instruct Repl2I(vecD dst, mRegI src) %{
 13720   predicate(n->as_Vector()->length() == 2);
 13721   match(Set dst (ReplicateI src));
 13722   format %{ "dins    AT, $src, 0, 32\n\t"
 13723             "dinsu   AT, $src, 32, 32\n\t"
 13724             "dmtc1   AT, $dst\t! replicate2I" %}
 13725   ins_encode %{
 13726     __ dins(AT, $src$$Register, 0, 32);
 13727     __ dinsu(AT, $src$$Register, 32, 32);
 13728     __ dmtc1(AT, $dst$$FloatRegister);
 13729   %}
 13730   ins_pipe( pipe_mtc1 );
 13731 %}
 13733 // Replicate integer (4 byte) scalar immediate to be vector by loading from const table.
 13734 instruct Repl2I_imm(vecD dst, immI con, mA7RegI tmp) %{
 13735   predicate(n->as_Vector()->length() == 2);
 13736   match(Set dst (ReplicateI con));
 13737   effect(KILL tmp);
 13738   format %{ "li32    AT, [$con], 32\n\t"
 13739             "dinsu   AT,         AT\n\t"
 13740             "dmtc1   AT, $dst\t! replicate2I($con)" %}
 13741   ins_encode %{
 13742     int      val = $con$$constant;
 13743     __ li32(AT, val);
 13744     __ dinsu(AT, AT, 32, 32);
 13745     __ dmtc1(AT, $dst$$FloatRegister);
 13746   %}
 13747   ins_pipe( pipe_mtc1 );
 13748 %}
 13750 // Replicate integer (4 byte) scalar zero to be vector
 13751 instruct Repl2I_zero(vecD dst, immI0 zero) %{
 13752   predicate(n->as_Vector()->length() == 2);
 13753   match(Set dst (ReplicateI zero));
 13754   format %{ "dmtc1    R0, $dst\t! replicate2I zero" %}
 13755   ins_encode %{
 13756     __ dmtc1(R0, $dst$$FloatRegister);
 13757   %}
 13758   ins_pipe( pipe_mtc1 );
 13759 %}
 13761 // Replicate integer (4 byte) scalar -1 to be vector
 13762 instruct Repl2I_M1(vecD dst, immI_M1 M1) %{
 13763   predicate(n->as_Vector()->length() == 2);
 13764   match(Set dst (ReplicateI M1));
 13765   format %{ "dmtc1    -1, $dst\t! replicate2I -1, use AT" %}
 13766   ins_encode %{
 13767     __ nor(AT, R0, R0);
 13768     __ dmtc1(AT, $dst$$FloatRegister);
 13769   %}
 13770   ins_pipe( pipe_mtc1 );
 13771 %}
 13773 // Replicate float (4 byte) scalar to be vector
 13774 instruct Repl2F(vecD dst, regF src) %{
 13775   predicate(n->as_Vector()->length() == 2);
 13776   match(Set dst (ReplicateF src));
 13777   format %{ "cvt.ps  $dst, $src, $src\t! replicate2F" %}
 13778   ins_encode %{
 13779     __ cvt_ps_s($dst$$FloatRegister, $src$$FloatRegister, $src$$FloatRegister);
 13780   %}
 13781   ins_pipe( pipe_slow );
 13782 %}
 13784 // Replicate float (4 byte) scalar zero to be vector
 13785 instruct Repl2F_zero(vecD dst, immF0 zero) %{
 13786   predicate(n->as_Vector()->length() == 2);
 13787   match(Set dst (ReplicateF zero));
 13788   format %{ "dmtc1   R0, $dst\t! replicate2F zero" %}
 13789   ins_encode %{
 13790     __ dmtc1(R0, $dst$$FloatRegister);
 13791   %}
 13792   ins_pipe( pipe_mtc1 );
 13793 %}
 13796 // ====================VECTOR ARITHMETIC=======================================
 13798 // --------------------------------- ADD --------------------------------------
 13800 // Floats vector add
 13801 instruct vadd2F(vecD dst, vecD src) %{
 13802   predicate(n->as_Vector()->length() == 2);
 13803   match(Set dst (AddVF dst src));
 13804   format %{ "add.ps   $dst,$src\t! add packed2F" %}
 13805   ins_encode %{
 13806     __ add_ps($dst$$FloatRegister, $dst$$FloatRegister, $src$$FloatRegister);
 13807   %}
 13808   ins_pipe( pipe_slow );
 13809 %}
 13811 instruct vadd2F3(vecD dst, vecD src1, vecD src2) %{
 13812   predicate(n->as_Vector()->length() == 2);
 13813   match(Set dst (AddVF src1 src2));
 13814   format %{ "add.ps   $dst,$src1,$src2\t! add packed2F" %}
 13815   ins_encode %{
 13816     __ add_ps($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 13817   %}
 13818   ins_pipe( fpu_regF_regF );
 13819 %}
 13821 // --------------------------------- SUB --------------------------------------
 13823 // Floats vector sub
 13824 instruct vsub2F(vecD dst, vecD src) %{
 13825   predicate(n->as_Vector()->length() == 2);
 13826   match(Set dst (SubVF dst src));
 13827   format %{ "sub.ps   $dst,$src\t! sub packed2F" %}
 13828   ins_encode %{
 13829     __ sub_ps($dst$$FloatRegister, $dst$$FloatRegister, $src$$FloatRegister);
 13830   %}
 13831   ins_pipe( fpu_regF_regF );
 13832 %}
 13834 // --------------------------------- MUL --------------------------------------
 13836 // Floats vector mul
 13837 instruct vmul2F(vecD dst, vecD src) %{
 13838   predicate(n->as_Vector()->length() == 2);
 13839   match(Set dst (MulVF dst src));
 13840   format %{ "mul.ps   $dst, $src\t! mul packed2F" %}
 13841   ins_encode %{
 13842     __ mul_ps($dst$$FloatRegister, $dst$$FloatRegister, $src$$FloatRegister);
 13843   %}
 13844   ins_pipe( fpu_regF_regF );
 13845 %}
 13847 instruct vmul2F3(vecD dst, vecD src1, vecD src2) %{
 13848   predicate(n->as_Vector()->length() == 2);
 13849   match(Set dst (MulVF src1 src2));
 13850   format %{ "mul.ps   $dst, $src1, $src2\t! mul packed2F" %}
 13851   ins_encode %{
 13852     __ mul_ps($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 13853   %}
 13854   ins_pipe( fpu_regF_regF );
 13855 %}
 13857 // --------------------------------- DIV --------------------------------------
 13858 // MIPS do not have div.ps
 13861 //----------PEEPHOLE RULES-----------------------------------------------------
 13862 // These must follow all instruction definitions as they use the names
 13863 // defined in the instructions definitions.
 13864 // 
 13865 // peepmatch ( root_instr_name [preceeding_instruction]* );
 13866 //
 13867 // peepconstraint %{
 13868 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13869 //  [, ...] );
 13870 // // instruction numbers are zero-based using left to right order in peepmatch
 13871 //
 13872 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13873 // // provide an instruction_number.operand_name for each operand that appears
 13874 // // in the replacement instruction's match rule
 13875 //
 13876 // ---------VM FLAGS---------------------------------------------------------
 13877 // 
 13878 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13879 // 
 13880 // Each peephole rule is given an identifying number starting with zero and
 13881 // increasing by one in the order seen by the parser.  An individual peephole
 13882 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13883 // on the command-line.
 13884 // 
 13885 // ---------CURRENT LIMITATIONS----------------------------------------------
 13886 // 
 13887 // Only match adjacent instructions in same basic block
 13888 // Only equality constraints
 13889 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13890 // Only one replacement instruction
 13891 //
 13892 // ---------EXAMPLE----------------------------------------------------------
 13893 //
 13894 // // pertinent parts of existing instructions in architecture description
 13895 // instruct movI(eRegI dst, eRegI src) %{
 13896 //   match(Set dst (CopyI src));
 13897 // %}
 13898 // 
 13899 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 13900 //   match(Set dst (AddI dst src));
 13901 //   effect(KILL cr);
 13902 // %}
 13903 // 
 13904 // // Change (inc mov) to lea
 13905 // peephole %{
 13906 //   // increment preceeded by register-register move
 13907 //   peepmatch ( incI_eReg movI );
 13908 //   // require that the destination register of the increment 
 13909 //   // match the destination register of the move
 13910 //   peepconstraint ( 0.dst == 1.dst );
 13911 //   // construct a replacement instruction that sets
 13912 //   // the destination to ( move's source register + one )
 13913 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13914 // %}
 13915 // 
 13916 // Implementation no longer uses movX instructions since 
 13917 // machine-independent system no longer uses CopyX nodes.
 13918 // 
 13919 // peephole %{
 13920 //   peepmatch ( incI_eReg movI );
 13921 //   peepconstraint ( 0.dst == 1.dst );
 13922 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13923 // %}
 13924 // 
 13925 // peephole %{
 13926 //   peepmatch ( decI_eReg movI );
 13927 //   peepconstraint ( 0.dst == 1.dst );
 13928 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13929 // %}
 13930 // 
 13931 // peephole %{
 13932 //   peepmatch ( addI_eReg_imm movI );
 13933 //   peepconstraint ( 0.dst == 1.dst );
 13934 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13935 // %}
 13936 // 
 13937 // peephole %{
 13938 //   peepmatch ( addP_eReg_imm movP );
 13939 //   peepconstraint ( 0.dst == 1.dst );
 13940 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13941 // %}
 13943 // // Change load of spilled value to only a spill
 13944 // instruct storeI(memory mem, eRegI src) %{
 13945 //   match(Set mem (StoreI mem src));
 13946 // %}
 13947 // 
 13948 // instruct loadI(eRegI dst, memory mem) %{
 13949 //   match(Set dst (LoadI mem));
 13950 // %}
 13951 // 
 13952 //peephole %{
 13953 //  peepmatch ( loadI storeI );
 13954 //  peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13955 //  peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13956 //%}
 13958 //----------SMARTSPILL RULES---------------------------------------------------
 13959 // These must follow all instruction definitions as they use the names
 13960 // defined in the instructions definitions.

mercurial