src/share/vm/opto/type.hpp

Mon, 20 Aug 2012 09:07:21 -0700

author
kvn
date
Mon, 20 Aug 2012 09:07:21 -0700
changeset 4001
006050192a5a
parent 3882
8c92982cbbc4
child 4037
da91efe96a93
permissions
-rw-r--r--

6340864: Implement vectorization optimizations in hotspot-server
Summary: Added asm encoding and mach nodes for vector arithmetic instructions on x86.
Reviewed-by: roland

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_TYPE_HPP
    26 #define SHARE_VM_OPTO_TYPE_HPP
    28 #include "libadt/port.hpp"
    29 #include "opto/adlcVMDeps.hpp"
    30 #include "runtime/handles.hpp"
    32 // Portions of code courtesy of Clifford Click
    34 // Optimization - Graph Style
    37 // This class defines a Type lattice.  The lattice is used in the constant
    38 // propagation algorithms, and for some type-checking of the iloc code.
    39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
    40 // float & double precision constants, sets of data-labels and code-labels.
    41 // The complete lattice is described below.  Subtypes have no relationship to
    42 // up or down in the lattice; that is entirely determined by the behavior of
    43 // the MEET/JOIN functions.
    45 class Dict;
    46 class Type;
    47 class   TypeD;
    48 class   TypeF;
    49 class   TypeInt;
    50 class   TypeLong;
    51 class   TypeNarrowOop;
    52 class   TypeAry;
    53 class   TypeTuple;
    54 class   TypeVect;
    55 class     TypeVectS;
    56 class     TypeVectD;
    57 class     TypeVectX;
    58 class     TypeVectY;
    59 class   TypePtr;
    60 class     TypeRawPtr;
    61 class     TypeOopPtr;
    62 class       TypeInstPtr;
    63 class       TypeAryPtr;
    64 class       TypeKlassPtr;
    66 //------------------------------Type-------------------------------------------
    67 // Basic Type object, represents a set of primitive Values.
    68 // Types are hash-cons'd into a private class dictionary, so only one of each
    69 // different kind of Type exists.  Types are never modified after creation, so
    70 // all their interesting fields are constant.
    71 class Type {
    72   friend class VMStructs;
    74 public:
    75   enum TYPES {
    76     Bad=0,                      // Type check
    77     Control,                    // Control of code (not in lattice)
    78     Top,                        // Top of the lattice
    79     Int,                        // Integer range (lo-hi)
    80     Long,                       // Long integer range (lo-hi)
    81     Half,                       // Placeholder half of doubleword
    82     NarrowOop,                  // Compressed oop pointer
    84     Tuple,                      // Method signature or object layout
    85     Array,                      // Array types
    86     VectorS,                    //  32bit Vector types
    87     VectorD,                    //  64bit Vector types
    88     VectorX,                    // 128bit Vector types
    89     VectorY,                    // 256bit Vector types
    91     AnyPtr,                     // Any old raw, klass, inst, or array pointer
    92     RawPtr,                     // Raw (non-oop) pointers
    93     OopPtr,                     // Any and all Java heap entities
    94     InstPtr,                    // Instance pointers (non-array objects)
    95     AryPtr,                     // Array pointers
    96     KlassPtr,                   // Klass pointers
    97     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
    99     Function,                   // Function signature
   100     Abio,                       // Abstract I/O
   101     Return_Address,             // Subroutine return address
   102     Memory,                     // Abstract store
   103     FloatTop,                   // No float value
   104     FloatCon,                   // Floating point constant
   105     FloatBot,                   // Any float value
   106     DoubleTop,                  // No double value
   107     DoubleCon,                  // Double precision constant
   108     DoubleBot,                  // Any double value
   109     Bottom,                     // Bottom of lattice
   110     lastype                     // Bogus ending type (not in lattice)
   111   };
   113   // Signal values for offsets from a base pointer
   114   enum OFFSET_SIGNALS {
   115     OffsetTop = -2000000000,    // undefined offset
   116     OffsetBot = -2000000001     // any possible offset
   117   };
   119   // Min and max WIDEN values.
   120   enum WIDEN {
   121     WidenMin = 0,
   122     WidenMax = 3
   123   };
   125 private:
   126   // Dictionary of types shared among compilations.
   127   static Dict* _shared_type_dict;
   129   static int uhash( const Type *const t );
   130   // Structural equality check.  Assumes that cmp() has already compared
   131   // the _base types and thus knows it can cast 't' appropriately.
   132   virtual bool eq( const Type *t ) const;
   134   // Top-level hash-table of types
   135   static Dict *type_dict() {
   136     return Compile::current()->type_dict();
   137   }
   139   // DUAL operation: reflect around lattice centerline.  Used instead of
   140   // join to ensure my lattice is symmetric up and down.  Dual is computed
   141   // lazily, on demand, and cached in _dual.
   142   const Type *_dual;            // Cached dual value
   143   // Table for efficient dualing of base types
   144   static const TYPES dual_type[lastype];
   146 protected:
   147   // Each class of type is also identified by its base.
   148   const TYPES _base;            // Enum of Types type
   150   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
   151   // ~Type();                   // Use fast deallocation
   152   const Type *hashcons();       // Hash-cons the type
   154 public:
   156   inline void* operator new( size_t x ) {
   157     Compile* compile = Compile::current();
   158     compile->set_type_last_size(x);
   159     void *temp = compile->type_arena()->Amalloc_D(x);
   160     compile->set_type_hwm(temp);
   161     return temp;
   162   }
   163   inline void operator delete( void* ptr ) {
   164     Compile* compile = Compile::current();
   165     compile->type_arena()->Afree(ptr,compile->type_last_size());
   166   }
   168   // Initialize the type system for a particular compilation.
   169   static void Initialize(Compile* compile);
   171   // Initialize the types shared by all compilations.
   172   static void Initialize_shared(Compile* compile);
   174   TYPES base() const {
   175     assert(_base > Bad && _base < lastype, "sanity");
   176     return _base;
   177   }
   179   // Create a new hash-consd type
   180   static const Type *make(enum TYPES);
   181   // Test for equivalence of types
   182   static int cmp( const Type *const t1, const Type *const t2 );
   183   // Test for higher or equal in lattice
   184   int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
   186   // MEET operation; lower in lattice.
   187   const Type *meet( const Type *t ) const;
   188   // WIDEN: 'widens' for Ints and other range types
   189   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
   190   // NARROW: complement for widen, used by pessimistic phases
   191   virtual const Type *narrow( const Type *old ) const { return this; }
   193   // DUAL operation: reflect around lattice centerline.  Used instead of
   194   // join to ensure my lattice is symmetric up and down.
   195   const Type *dual() const { return _dual; }
   197   // Compute meet dependent on base type
   198   virtual const Type *xmeet( const Type *t ) const;
   199   virtual const Type *xdual() const;    // Compute dual right now.
   201   // JOIN operation; higher in lattice.  Done by finding the dual of the
   202   // meet of the dual of the 2 inputs.
   203   const Type *join( const Type *t ) const {
   204     return dual()->meet(t->dual())->dual(); }
   206   // Modified version of JOIN adapted to the needs Node::Value.
   207   // Normalizes all empty values to TOP.  Does not kill _widen bits.
   208   // Currently, it also works around limitations involving interface types.
   209   virtual const Type *filter( const Type *kills ) const;
   211 #ifdef ASSERT
   212   // One type is interface, the other is oop
   213   virtual bool interface_vs_oop(const Type *t) const;
   214 #endif
   216   // Returns true if this pointer points at memory which contains a
   217   // compressed oop references.
   218   bool is_ptr_to_narrowoop() const;
   220   // Convenience access
   221   float getf() const;
   222   double getd() const;
   224   const TypeInt    *is_int() const;
   225   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
   226   const TypeLong   *is_long() const;
   227   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
   228   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
   229   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
   230   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
   231   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
   232   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
   233   const TypeAry    *is_ary() const;              // Array, NOT array pointer
   234   const TypeVect   *is_vect() const;             // Vector
   235   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
   236   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
   237   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
   238   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
   239   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
   240   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
   241   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
   242   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
   243   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
   244   const TypeKlassPtr *isa_klassptr() const;      // Returns NULL if not KlassPtr
   245   const TypeKlassPtr *is_klassptr() const;       // assert if not KlassPtr
   246   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
   247   const TypeInstPtr  *is_instptr() const;        // Instance
   248   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
   249   const TypeAryPtr   *is_aryptr() const;         // Array oop
   250   virtual bool      is_finite() const;           // Has a finite value
   251   virtual bool      is_nan()    const;           // Is not a number (NaN)
   253   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
   254   const TypePtr* make_ptr() const;
   256   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
   257   // Asserts if the underlying type is not an oopptr or narrowoop.
   258   const TypeOopPtr* make_oopptr() const;
   260   // Returns this compressed pointer or the equivalent compressed version
   261   // of this pointer type.
   262   const TypeNarrowOop* make_narrowoop() const;
   264   // Special test for register pressure heuristic
   265   bool is_floatingpoint() const;        // True if Float or Double base type
   267   // Do you have memory, directly or through a tuple?
   268   bool has_memory( ) const;
   270   // Are you a pointer type or not?
   271   bool isa_oop_ptr() const;
   273   // TRUE if type is a singleton
   274   virtual bool singleton(void) const;
   276   // TRUE if type is above the lattice centerline, and is therefore vacuous
   277   virtual bool empty(void) const;
   279   // Return a hash for this type.  The hash function is public so ConNode
   280   // (constants) can hash on their constant, which is represented by a Type.
   281   virtual int hash() const;
   283   // Map ideal registers (machine types) to ideal types
   284   static const Type *mreg2type[];
   286   // Printing, statistics
   287   static const char * const msg[lastype]; // Printable strings
   288 #ifndef PRODUCT
   289   void         dump_on(outputStream *st) const;
   290   void         dump() const {
   291     dump_on(tty);
   292   }
   293   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   294   static  void dump_stats();
   295   static  void verify_lastype();          // Check that arrays match type enum
   296 #endif
   297   void typerr(const Type *t) const; // Mixing types error
   299   // Create basic type
   300   static const Type* get_const_basic_type(BasicType type) {
   301     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
   302     return _const_basic_type[type];
   303   }
   305   // Mapping to the array element's basic type.
   306   BasicType array_element_basic_type() const;
   308   // Create standard type for a ciType:
   309   static const Type* get_const_type(ciType* type);
   311   // Create standard zero value:
   312   static const Type* get_zero_type(BasicType type) {
   313     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
   314     return _zero_type[type];
   315   }
   317   // Report if this is a zero value (not top).
   318   bool is_zero_type() const {
   319     BasicType type = basic_type();
   320     if (type == T_VOID || type >= T_CONFLICT)
   321       return false;
   322     else
   323       return (this == _zero_type[type]);
   324   }
   326   // Convenience common pre-built types.
   327   static const Type *ABIO;
   328   static const Type *BOTTOM;
   329   static const Type *CONTROL;
   330   static const Type *DOUBLE;
   331   static const Type *FLOAT;
   332   static const Type *HALF;
   333   static const Type *MEMORY;
   334   static const Type *MULTI;
   335   static const Type *RETURN_ADDRESS;
   336   static const Type *TOP;
   338   // Mapping from compiler type to VM BasicType
   339   BasicType basic_type() const { return _basic_type[_base]; }
   341   // Mapping from CI type system to compiler type:
   342   static const Type* get_typeflow_type(ciType* type);
   344 private:
   345   // support arrays
   346   static const BasicType _basic_type[];
   347   static const Type*        _zero_type[T_CONFLICT+1];
   348   static const Type* _const_basic_type[T_CONFLICT+1];
   349 };
   351 //------------------------------TypeF------------------------------------------
   352 // Class of Float-Constant Types.
   353 class TypeF : public Type {
   354   TypeF( float f ) : Type(FloatCon), _f(f) {};
   355 public:
   356   virtual bool eq( const Type *t ) const;
   357   virtual int  hash() const;             // Type specific hashing
   358   virtual bool singleton(void) const;    // TRUE if type is a singleton
   359   virtual bool empty(void) const;        // TRUE if type is vacuous
   360 public:
   361   const float _f;               // Float constant
   363   static const TypeF *make(float f);
   365   virtual bool        is_finite() const;  // Has a finite value
   366   virtual bool        is_nan()    const;  // Is not a number (NaN)
   368   virtual const Type *xmeet( const Type *t ) const;
   369   virtual const Type *xdual() const;    // Compute dual right now.
   370   // Convenience common pre-built types.
   371   static const TypeF *ZERO; // positive zero only
   372   static const TypeF *ONE;
   373 #ifndef PRODUCT
   374   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   375 #endif
   376 };
   378 //------------------------------TypeD------------------------------------------
   379 // Class of Double-Constant Types.
   380 class TypeD : public Type {
   381   TypeD( double d ) : Type(DoubleCon), _d(d) {};
   382 public:
   383   virtual bool eq( const Type *t ) const;
   384   virtual int  hash() const;             // Type specific hashing
   385   virtual bool singleton(void) const;    // TRUE if type is a singleton
   386   virtual bool empty(void) const;        // TRUE if type is vacuous
   387 public:
   388   const double _d;              // Double constant
   390   static const TypeD *make(double d);
   392   virtual bool        is_finite() const;  // Has a finite value
   393   virtual bool        is_nan()    const;  // Is not a number (NaN)
   395   virtual const Type *xmeet( const Type *t ) const;
   396   virtual const Type *xdual() const;    // Compute dual right now.
   397   // Convenience common pre-built types.
   398   static const TypeD *ZERO; // positive zero only
   399   static const TypeD *ONE;
   400 #ifndef PRODUCT
   401   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   402 #endif
   403 };
   405 //------------------------------TypeInt----------------------------------------
   406 // Class of integer ranges, the set of integers between a lower bound and an
   407 // upper bound, inclusive.
   408 class TypeInt : public Type {
   409   TypeInt( jint lo, jint hi, int w );
   410 public:
   411   virtual bool eq( const Type *t ) const;
   412   virtual int  hash() const;             // Type specific hashing
   413   virtual bool singleton(void) const;    // TRUE if type is a singleton
   414   virtual bool empty(void) const;        // TRUE if type is vacuous
   415 public:
   416   const jint _lo, _hi;          // Lower bound, upper bound
   417   const short _widen;           // Limit on times we widen this sucker
   419   static const TypeInt *make(jint lo);
   420   // must always specify w
   421   static const TypeInt *make(jint lo, jint hi, int w);
   423   // Check for single integer
   424   int is_con() const { return _lo==_hi; }
   425   bool is_con(int i) const { return is_con() && _lo == i; }
   426   jint get_con() const { assert( is_con(), "" );  return _lo; }
   428   virtual bool        is_finite() const;  // Has a finite value
   430   virtual const Type *xmeet( const Type *t ) const;
   431   virtual const Type *xdual() const;    // Compute dual right now.
   432   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
   433   virtual const Type *narrow( const Type *t ) const;
   434   // Do not kill _widen bits.
   435   virtual const Type *filter( const Type *kills ) const;
   436   // Convenience common pre-built types.
   437   static const TypeInt *MINUS_1;
   438   static const TypeInt *ZERO;
   439   static const TypeInt *ONE;
   440   static const TypeInt *BOOL;
   441   static const TypeInt *CC;
   442   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
   443   static const TypeInt *CC_GT;  // [1]   == ONE
   444   static const TypeInt *CC_EQ;  // [0]   == ZERO
   445   static const TypeInt *CC_LE;  // [-1,0]
   446   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
   447   static const TypeInt *BYTE;
   448   static const TypeInt *UBYTE;
   449   static const TypeInt *CHAR;
   450   static const TypeInt *SHORT;
   451   static const TypeInt *POS;
   452   static const TypeInt *POS1;
   453   static const TypeInt *INT;
   454   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
   455 #ifndef PRODUCT
   456   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   457 #endif
   458 };
   461 //------------------------------TypeLong---------------------------------------
   462 // Class of long integer ranges, the set of integers between a lower bound and
   463 // an upper bound, inclusive.
   464 class TypeLong : public Type {
   465   TypeLong( jlong lo, jlong hi, int w );
   466 public:
   467   virtual bool eq( const Type *t ) const;
   468   virtual int  hash() const;             // Type specific hashing
   469   virtual bool singleton(void) const;    // TRUE if type is a singleton
   470   virtual bool empty(void) const;        // TRUE if type is vacuous
   471 public:
   472   const jlong _lo, _hi;         // Lower bound, upper bound
   473   const short _widen;           // Limit on times we widen this sucker
   475   static const TypeLong *make(jlong lo);
   476   // must always specify w
   477   static const TypeLong *make(jlong lo, jlong hi, int w);
   479   // Check for single integer
   480   int is_con() const { return _lo==_hi; }
   481   bool is_con(int i) const { return is_con() && _lo == i; }
   482   jlong get_con() const { assert( is_con(), "" ); return _lo; }
   484   virtual bool        is_finite() const;  // Has a finite value
   486   virtual const Type *xmeet( const Type *t ) const;
   487   virtual const Type *xdual() const;    // Compute dual right now.
   488   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
   489   virtual const Type *narrow( const Type *t ) const;
   490   // Do not kill _widen bits.
   491   virtual const Type *filter( const Type *kills ) const;
   492   // Convenience common pre-built types.
   493   static const TypeLong *MINUS_1;
   494   static const TypeLong *ZERO;
   495   static const TypeLong *ONE;
   496   static const TypeLong *POS;
   497   static const TypeLong *LONG;
   498   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
   499   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
   500 #ifndef PRODUCT
   501   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
   502 #endif
   503 };
   505 //------------------------------TypeTuple--------------------------------------
   506 // Class of Tuple Types, essentially type collections for function signatures
   507 // and class layouts.  It happens to also be a fast cache for the HotSpot
   508 // signature types.
   509 class TypeTuple : public Type {
   510   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
   511 public:
   512   virtual bool eq( const Type *t ) const;
   513   virtual int  hash() const;             // Type specific hashing
   514   virtual bool singleton(void) const;    // TRUE if type is a singleton
   515   virtual bool empty(void) const;        // TRUE if type is vacuous
   517 public:
   518   const uint          _cnt;              // Count of fields
   519   const Type ** const _fields;           // Array of field types
   521   // Accessors:
   522   uint cnt() const { return _cnt; }
   523   const Type* field_at(uint i) const {
   524     assert(i < _cnt, "oob");
   525     return _fields[i];
   526   }
   527   void set_field_at(uint i, const Type* t) {
   528     assert(i < _cnt, "oob");
   529     _fields[i] = t;
   530   }
   532   static const TypeTuple *make( uint cnt, const Type **fields );
   533   static const TypeTuple *make_range(ciSignature *sig);
   534   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
   536   // Subroutine call type with space allocated for argument types
   537   static const Type **fields( uint arg_cnt );
   539   virtual const Type *xmeet( const Type *t ) const;
   540   virtual const Type *xdual() const;    // Compute dual right now.
   541   // Convenience common pre-built types.
   542   static const TypeTuple *IFBOTH;
   543   static const TypeTuple *IFFALSE;
   544   static const TypeTuple *IFTRUE;
   545   static const TypeTuple *IFNEITHER;
   546   static const TypeTuple *LOOPBODY;
   547   static const TypeTuple *MEMBAR;
   548   static const TypeTuple *STORECONDITIONAL;
   549   static const TypeTuple *START_I2C;
   550   static const TypeTuple *INT_PAIR;
   551   static const TypeTuple *LONG_PAIR;
   552 #ifndef PRODUCT
   553   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   554 #endif
   555 };
   557 //------------------------------TypeAry----------------------------------------
   558 // Class of Array Types
   559 class TypeAry : public Type {
   560   TypeAry( const Type *elem, const TypeInt *size) : Type(Array),
   561     _elem(elem), _size(size) {}
   562 public:
   563   virtual bool eq( const Type *t ) const;
   564   virtual int  hash() const;             // Type specific hashing
   565   virtual bool singleton(void) const;    // TRUE if type is a singleton
   566   virtual bool empty(void) const;        // TRUE if type is vacuous
   568 private:
   569   const Type *_elem;            // Element type of array
   570   const TypeInt *_size;         // Elements in array
   571   friend class TypeAryPtr;
   573 public:
   574   static const TypeAry *make(  const Type *elem, const TypeInt *size);
   576   virtual const Type *xmeet( const Type *t ) const;
   577   virtual const Type *xdual() const;    // Compute dual right now.
   578   bool ary_must_be_exact() const;  // true if arrays of such are never generic
   579 #ifdef ASSERT
   580   // One type is interface, the other is oop
   581   virtual bool interface_vs_oop(const Type *t) const;
   582 #endif
   583 #ifndef PRODUCT
   584   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   585 #endif
   586 };
   588 //------------------------------TypeVect---------------------------------------
   589 // Class of Vector Types
   590 class TypeVect : public Type {
   591   const Type*   _elem;  // Vector's element type
   592   const uint  _length;  // Elements in vector (power of 2)
   594 protected:
   595   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
   596     _elem(elem), _length(length) {}
   598 public:
   599   const Type* element_type() const { return _elem; }
   600   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
   601   uint length() const { return _length; }
   602   uint length_in_bytes() const {
   603    return _length * type2aelembytes(element_basic_type());
   604   }
   606   virtual bool eq(const Type *t) const;
   607   virtual int  hash() const;             // Type specific hashing
   608   virtual bool singleton(void) const;    // TRUE if type is a singleton
   609   virtual bool empty(void) const;        // TRUE if type is vacuous
   611   static const TypeVect *make(const BasicType elem_bt, uint length) {
   612     // Use bottom primitive type.
   613     return make(get_const_basic_type(elem_bt), length);
   614   }
   615   // Used directly by Replicate nodes to construct singleton vector.
   616   static const TypeVect *make(const Type* elem, uint length);
   618   virtual const Type *xmeet( const Type *t) const;
   619   virtual const Type *xdual() const;     // Compute dual right now.
   621   static const TypeVect *VECTS;
   622   static const TypeVect *VECTD;
   623   static const TypeVect *VECTX;
   624   static const TypeVect *VECTY;
   626 #ifndef PRODUCT
   627   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
   628 #endif
   629 };
   631 class TypeVectS : public TypeVect {
   632   friend class TypeVect;
   633   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
   634 };
   636 class TypeVectD : public TypeVect {
   637   friend class TypeVect;
   638   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
   639 };
   641 class TypeVectX : public TypeVect {
   642   friend class TypeVect;
   643   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
   644 };
   646 class TypeVectY : public TypeVect {
   647   friend class TypeVect;
   648   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
   649 };
   651 //------------------------------TypePtr----------------------------------------
   652 // Class of machine Pointer Types: raw data, instances or arrays.
   653 // If the _base enum is AnyPtr, then this refers to all of the above.
   654 // Otherwise the _base will indicate which subset of pointers is affected,
   655 // and the class will be inherited from.
   656 class TypePtr : public Type {
   657   friend class TypeNarrowOop;
   658 public:
   659   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
   660 protected:
   661   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
   662   virtual bool eq( const Type *t ) const;
   663   virtual int  hash() const;             // Type specific hashing
   664   static const PTR ptr_meet[lastPTR][lastPTR];
   665   static const PTR ptr_dual[lastPTR];
   666   static const char * const ptr_msg[lastPTR];
   668 public:
   669   const int _offset;            // Offset into oop, with TOP & BOT
   670   const PTR _ptr;               // Pointer equivalence class
   672   const int offset() const { return _offset; }
   673   const PTR ptr()    const { return _ptr; }
   675   static const TypePtr *make( TYPES t, PTR ptr, int offset );
   677   // Return a 'ptr' version of this type
   678   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   680   virtual intptr_t get_con() const;
   682   int xadd_offset( intptr_t offset ) const;
   683   virtual const TypePtr *add_offset( intptr_t offset ) const;
   685   virtual bool singleton(void) const;    // TRUE if type is a singleton
   686   virtual bool empty(void) const;        // TRUE if type is vacuous
   687   virtual const Type *xmeet( const Type *t ) const;
   688   int meet_offset( int offset ) const;
   689   int dual_offset( ) const;
   690   virtual const Type *xdual() const;    // Compute dual right now.
   692   // meet, dual and join over pointer equivalence sets
   693   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
   694   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
   696   // This is textually confusing unless one recalls that
   697   // join(t) == dual()->meet(t->dual())->dual().
   698   PTR join_ptr( const PTR in_ptr ) const {
   699     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
   700   }
   702   // Tests for relation to centerline of type lattice:
   703   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
   704   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
   705   // Convenience common pre-built types.
   706   static const TypePtr *NULL_PTR;
   707   static const TypePtr *NOTNULL;
   708   static const TypePtr *BOTTOM;
   709 #ifndef PRODUCT
   710   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   711 #endif
   712 };
   714 //------------------------------TypeRawPtr-------------------------------------
   715 // Class of raw pointers, pointers to things other than Oops.  Examples
   716 // include the stack pointer, top of heap, card-marking area, handles, etc.
   717 class TypeRawPtr : public TypePtr {
   718 protected:
   719   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
   720 public:
   721   virtual bool eq( const Type *t ) const;
   722   virtual int  hash() const;     // Type specific hashing
   724   const address _bits;          // Constant value, if applicable
   726   static const TypeRawPtr *make( PTR ptr );
   727   static const TypeRawPtr *make( address bits );
   729   // Return a 'ptr' version of this type
   730   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   732   virtual intptr_t get_con() const;
   734   virtual const TypePtr *add_offset( intptr_t offset ) const;
   736   virtual const Type *xmeet( const Type *t ) const;
   737   virtual const Type *xdual() const;    // Compute dual right now.
   738   // Convenience common pre-built types.
   739   static const TypeRawPtr *BOTTOM;
   740   static const TypeRawPtr *NOTNULL;
   741 #ifndef PRODUCT
   742   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   743 #endif
   744 };
   746 //------------------------------TypeOopPtr-------------------------------------
   747 // Some kind of oop (Java pointer), either klass or instance or array.
   748 class TypeOopPtr : public TypePtr {
   749 protected:
   750   TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   751 public:
   752   virtual bool eq( const Type *t ) const;
   753   virtual int  hash() const;             // Type specific hashing
   754   virtual bool singleton(void) const;    // TRUE if type is a singleton
   755   enum {
   756    InstanceTop = -1,   // undefined instance
   757    InstanceBot = 0     // any possible instance
   758   };
   759 protected:
   761   // Oop is NULL, unless this is a constant oop.
   762   ciObject*     _const_oop;   // Constant oop
   763   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
   764   ciKlass*      _klass;       // Klass object
   765   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
   766   bool          _klass_is_exact;
   767   bool          _is_ptr_to_narrowoop;
   769   // If not InstanceTop or InstanceBot, indicates that this is
   770   // a particular instance of this type which is distinct.
   771   // This is the the node index of the allocation node creating this instance.
   772   int           _instance_id;
   774   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
   776   int dual_instance_id() const;
   777   int meet_instance_id(int uid) const;
   779 public:
   780   // Creates a type given a klass. Correctly handles multi-dimensional arrays
   781   // Respects UseUniqueSubclasses.
   782   // If the klass is final, the resulting type will be exact.
   783   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
   784     return make_from_klass_common(klass, true, false);
   785   }
   786   // Same as before, but will produce an exact type, even if
   787   // the klass is not final, as long as it has exactly one implementation.
   788   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
   789     return make_from_klass_common(klass, true, true);
   790   }
   791   // Same as before, but does not respects UseUniqueSubclasses.
   792   // Use this only for creating array element types.
   793   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
   794     return make_from_klass_common(klass, false, false);
   795   }
   796   // Creates a singleton type given an object.
   797   // If the object cannot be rendered as a constant,
   798   // may return a non-singleton type.
   799   // If require_constant, produce a NULL if a singleton is not possible.
   800   static const TypeOopPtr* make_from_constant(ciObject* o, bool require_constant = false);
   802   // Make a generic (unclassed) pointer to an oop.
   803   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id);
   805   ciObject* const_oop()    const { return _const_oop; }
   806   virtual ciKlass* klass() const { return _klass;     }
   807   bool klass_is_exact()    const { return _klass_is_exact; }
   809   // Returns true if this pointer points at memory which contains a
   810   // compressed oop references.
   811   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
   813   bool is_known_instance()       const { return _instance_id > 0; }
   814   int  instance_id()             const { return _instance_id; }
   815   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
   817   virtual intptr_t get_con() const;
   819   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   821   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   823   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   825   // corresponding pointer to klass, for a given instance
   826   const TypeKlassPtr* as_klass_type() const;
   828   virtual const TypePtr *add_offset( intptr_t offset ) const;
   830   virtual const Type *xmeet( const Type *t ) const;
   831   virtual const Type *xdual() const;    // Compute dual right now.
   833   // Do not allow interface-vs.-noninterface joins to collapse to top.
   834   virtual const Type *filter( const Type *kills ) const;
   836   // Convenience common pre-built type.
   837   static const TypeOopPtr *BOTTOM;
   838 #ifndef PRODUCT
   839   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   840 #endif
   841 };
   843 //------------------------------TypeInstPtr------------------------------------
   844 // Class of Java object pointers, pointing either to non-array Java instances
   845 // or to a klassOop (including array klasses).
   846 class TypeInstPtr : public TypeOopPtr {
   847   TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   848   virtual bool eq( const Type *t ) const;
   849   virtual int  hash() const;             // Type specific hashing
   851   ciSymbol*  _name;        // class name
   853  public:
   854   ciSymbol* name()         const { return _name; }
   856   bool  is_loaded() const { return _klass->is_loaded(); }
   858   // Make a pointer to a constant oop.
   859   static const TypeInstPtr *make(ciObject* o) {
   860     return make(TypePtr::Constant, o->klass(), true, o, 0);
   861   }
   863   // Make a pointer to a constant oop with offset.
   864   static const TypeInstPtr *make(ciObject* o, int offset) {
   865     return make(TypePtr::Constant, o->klass(), true, o, offset);
   866   }
   868   // Make a pointer to some value of type klass.
   869   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
   870     return make(ptr, klass, false, NULL, 0);
   871   }
   873   // Make a pointer to some non-polymorphic value of exactly type klass.
   874   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
   875     return make(ptr, klass, true, NULL, 0);
   876   }
   878   // Make a pointer to some value of type klass with offset.
   879   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
   880     return make(ptr, klass, false, NULL, offset);
   881   }
   883   // Make a pointer to an oop.
   884   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot );
   886   // If this is a java.lang.Class constant, return the type for it or NULL.
   887   // Pass to Type::get_const_type to turn it to a type, which will usually
   888   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
   889   ciType* java_mirror_type() const;
   891   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   893   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   895   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   897   virtual const TypePtr *add_offset( intptr_t offset ) const;
   899   virtual const Type *xmeet( const Type *t ) const;
   900   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
   901   virtual const Type *xdual() const;    // Compute dual right now.
   903   // Convenience common pre-built types.
   904   static const TypeInstPtr *NOTNULL;
   905   static const TypeInstPtr *BOTTOM;
   906   static const TypeInstPtr *MIRROR;
   907   static const TypeInstPtr *MARK;
   908   static const TypeInstPtr *KLASS;
   909 #ifndef PRODUCT
   910   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   911 #endif
   912 };
   914 //------------------------------TypeAryPtr-------------------------------------
   915 // Class of Java array pointers
   916 class TypeAryPtr : public TypeOopPtr {
   917   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id), _ary(ary) {
   918 #ifdef ASSERT
   919     if (k != NULL) {
   920       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
   921       ciKlass* ck = compute_klass(true);
   922       if (k != ck) {
   923         this->dump(); tty->cr();
   924         tty->print(" k: ");
   925         k->print(); tty->cr();
   926         tty->print("ck: ");
   927         if (ck != NULL) ck->print();
   928         else tty->print("<NULL>");
   929         tty->cr();
   930         assert(false, "unexpected TypeAryPtr::_klass");
   931       }
   932     }
   933 #endif
   934   }
   935   virtual bool eq( const Type *t ) const;
   936   virtual int hash() const;     // Type specific hashing
   937   const TypeAry *_ary;          // Array we point into
   939   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
   941 public:
   942   // Accessors
   943   ciKlass* klass() const;
   944   const TypeAry* ary() const  { return _ary; }
   945   const Type*    elem() const { return _ary->_elem; }
   946   const TypeInt* size() const { return _ary->_size; }
   948   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
   949   // Constant pointer to array
   950   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
   952   // Return a 'ptr' version of this type
   953   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   955   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   957   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   959   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
   960   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
   962   virtual bool empty(void) const;        // TRUE if type is vacuous
   963   virtual const TypePtr *add_offset( intptr_t offset ) const;
   965   virtual const Type *xmeet( const Type *t ) const;
   966   virtual const Type *xdual() const;    // Compute dual right now.
   968   // Convenience common pre-built types.
   969   static const TypeAryPtr *RANGE;
   970   static const TypeAryPtr *OOPS;
   971   static const TypeAryPtr *NARROWOOPS;
   972   static const TypeAryPtr *BYTES;
   973   static const TypeAryPtr *SHORTS;
   974   static const TypeAryPtr *CHARS;
   975   static const TypeAryPtr *INTS;
   976   static const TypeAryPtr *LONGS;
   977   static const TypeAryPtr *FLOATS;
   978   static const TypeAryPtr *DOUBLES;
   979   // selects one of the above:
   980   static const TypeAryPtr *get_array_body_type(BasicType elem) {
   981     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
   982     return _array_body_type[elem];
   983   }
   984   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
   985   // sharpen the type of an int which is used as an array size
   986 #ifdef ASSERT
   987   // One type is interface, the other is oop
   988   virtual bool interface_vs_oop(const Type *t) const;
   989 #endif
   990 #ifndef PRODUCT
   991   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   992 #endif
   993 };
   995 //------------------------------TypeKlassPtr-----------------------------------
   996 // Class of Java Klass pointers
   997 class TypeKlassPtr : public TypeOopPtr {
   998   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
  1000   virtual bool eq( const Type *t ) const;
  1001   virtual int hash() const;             // Type specific hashing
  1003 public:
  1004   ciSymbol* name()  const { return _klass->name(); }
  1006   bool  is_loaded() const { return _klass->is_loaded(); }
  1008   // ptr to klass 'k'
  1009   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
  1010   // ptr to klass 'k' with offset
  1011   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
  1012   // ptr to klass 'k' or sub-klass
  1013   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
  1015   virtual const Type *cast_to_ptr_type(PTR ptr) const;
  1017   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
  1019   // corresponding pointer to instance, for a given class
  1020   const TypeOopPtr* as_instance_type() const;
  1022   virtual const TypePtr *add_offset( intptr_t offset ) const;
  1023   virtual const Type    *xmeet( const Type *t ) const;
  1024   virtual const Type    *xdual() const;      // Compute dual right now.
  1026   // Convenience common pre-built types.
  1027   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
  1028   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
  1029 #ifndef PRODUCT
  1030   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1031 #endif
  1032 };
  1034 //------------------------------TypeNarrowOop----------------------------------
  1035 // A compressed reference to some kind of Oop.  This type wraps around
  1036 // a preexisting TypeOopPtr and forwards most of it's operations to
  1037 // the underlying type.  It's only real purpose is to track the
  1038 // oopness of the compressed oop value when we expose the conversion
  1039 // between the normal and the compressed form.
  1040 class TypeNarrowOop : public Type {
  1041 protected:
  1042   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
  1044   TypeNarrowOop( const TypePtr* ptrtype): Type(NarrowOop),
  1045     _ptrtype(ptrtype) {
  1046     assert(ptrtype->offset() == 0 ||
  1047            ptrtype->offset() == OffsetBot ||
  1048            ptrtype->offset() == OffsetTop, "no real offsets");
  1050 public:
  1051   virtual bool eq( const Type *t ) const;
  1052   virtual int  hash() const;             // Type specific hashing
  1053   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1055   virtual const Type *xmeet( const Type *t ) const;
  1056   virtual const Type *xdual() const;    // Compute dual right now.
  1058   virtual intptr_t get_con() const;
  1060   // Do not allow interface-vs.-noninterface joins to collapse to top.
  1061   virtual const Type *filter( const Type *kills ) const;
  1063   virtual bool empty(void) const;        // TRUE if type is vacuous
  1065   static const TypeNarrowOop *make( const TypePtr* type);
  1067   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
  1068     return make(TypeOopPtr::make_from_constant(con, require_constant));
  1071   // returns the equivalent ptr type for this compressed pointer
  1072   const TypePtr *get_ptrtype() const {
  1073     return _ptrtype;
  1076   static const TypeNarrowOop *BOTTOM;
  1077   static const TypeNarrowOop *NULL_PTR;
  1079 #ifndef PRODUCT
  1080   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1081 #endif
  1082 };
  1084 //------------------------------TypeFunc---------------------------------------
  1085 // Class of Array Types
  1086 class TypeFunc : public Type {
  1087   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
  1088   virtual bool eq( const Type *t ) const;
  1089   virtual int  hash() const;             // Type specific hashing
  1090   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1091   virtual bool empty(void) const;        // TRUE if type is vacuous
  1092 public:
  1093   // Constants are shared among ADLC and VM
  1094   enum { Control    = AdlcVMDeps::Control,
  1095          I_O        = AdlcVMDeps::I_O,
  1096          Memory     = AdlcVMDeps::Memory,
  1097          FramePtr   = AdlcVMDeps::FramePtr,
  1098          ReturnAdr  = AdlcVMDeps::ReturnAdr,
  1099          Parms      = AdlcVMDeps::Parms
  1100   };
  1102   const TypeTuple* const _domain;     // Domain of inputs
  1103   const TypeTuple* const _range;      // Range of results
  1105   // Accessors:
  1106   const TypeTuple* domain() const { return _domain; }
  1107   const TypeTuple* range()  const { return _range; }
  1109   static const TypeFunc *make(ciMethod* method);
  1110   static const TypeFunc *make(ciSignature signature, const Type* extra);
  1111   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
  1113   virtual const Type *xmeet( const Type *t ) const;
  1114   virtual const Type *xdual() const;    // Compute dual right now.
  1116   BasicType return_type() const;
  1118 #ifndef PRODUCT
  1119   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1120   void print_flattened() const; // Print a 'flattened' signature
  1121 #endif
  1122   // Convenience common pre-built types.
  1123 };
  1125 //------------------------------accessors--------------------------------------
  1126 inline bool Type::is_ptr_to_narrowoop() const {
  1127 #ifdef _LP64
  1128   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
  1129 #else
  1130   return false;
  1131 #endif
  1134 inline float Type::getf() const {
  1135   assert( _base == FloatCon, "Not a FloatCon" );
  1136   return ((TypeF*)this)->_f;
  1139 inline double Type::getd() const {
  1140   assert( _base == DoubleCon, "Not a DoubleCon" );
  1141   return ((TypeD*)this)->_d;
  1144 inline const TypeF *Type::is_float_constant() const {
  1145   assert( _base == FloatCon, "Not a Float" );
  1146   return (TypeF*)this;
  1149 inline const TypeF *Type::isa_float_constant() const {
  1150   return ( _base == FloatCon ? (TypeF*)this : NULL);
  1153 inline const TypeD *Type::is_double_constant() const {
  1154   assert( _base == DoubleCon, "Not a Double" );
  1155   return (TypeD*)this;
  1158 inline const TypeD *Type::isa_double_constant() const {
  1159   return ( _base == DoubleCon ? (TypeD*)this : NULL);
  1162 inline const TypeInt *Type::is_int() const {
  1163   assert( _base == Int, "Not an Int" );
  1164   return (TypeInt*)this;
  1167 inline const TypeInt *Type::isa_int() const {
  1168   return ( _base == Int ? (TypeInt*)this : NULL);
  1171 inline const TypeLong *Type::is_long() const {
  1172   assert( _base == Long, "Not a Long" );
  1173   return (TypeLong*)this;
  1176 inline const TypeLong *Type::isa_long() const {
  1177   return ( _base == Long ? (TypeLong*)this : NULL);
  1180 inline const TypeTuple *Type::is_tuple() const {
  1181   assert( _base == Tuple, "Not a Tuple" );
  1182   return (TypeTuple*)this;
  1185 inline const TypeAry *Type::is_ary() const {
  1186   assert( _base == Array , "Not an Array" );
  1187   return (TypeAry*)this;
  1190 inline const TypeVect *Type::is_vect() const {
  1191   assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
  1192   return (TypeVect*)this;
  1195 inline const TypeVect *Type::isa_vect() const {
  1196   return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
  1199 inline const TypePtr *Type::is_ptr() const {
  1200   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1201   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
  1202   return (TypePtr*)this;
  1205 inline const TypePtr *Type::isa_ptr() const {
  1206   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1207   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
  1210 inline const TypeOopPtr *Type::is_oopptr() const {
  1211   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1212   assert(_base >= OopPtr && _base <= KlassPtr, "Not a Java pointer" ) ;
  1213   return (TypeOopPtr*)this;
  1216 inline const TypeOopPtr *Type::isa_oopptr() const {
  1217   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1218   return (_base >= OopPtr && _base <= KlassPtr) ? (TypeOopPtr*)this : NULL;
  1221 inline const TypeRawPtr *Type::isa_rawptr() const {
  1222   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
  1225 inline const TypeRawPtr *Type::is_rawptr() const {
  1226   assert( _base == RawPtr, "Not a raw pointer" );
  1227   return (TypeRawPtr*)this;
  1230 inline const TypeInstPtr *Type::isa_instptr() const {
  1231   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
  1234 inline const TypeInstPtr *Type::is_instptr() const {
  1235   assert( _base == InstPtr, "Not an object pointer" );
  1236   return (TypeInstPtr*)this;
  1239 inline const TypeAryPtr *Type::isa_aryptr() const {
  1240   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
  1243 inline const TypeAryPtr *Type::is_aryptr() const {
  1244   assert( _base == AryPtr, "Not an array pointer" );
  1245   return (TypeAryPtr*)this;
  1248 inline const TypeNarrowOop *Type::is_narrowoop() const {
  1249   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1250   assert(_base == NarrowOop, "Not a narrow oop" ) ;
  1251   return (TypeNarrowOop*)this;
  1254 inline const TypeNarrowOop *Type::isa_narrowoop() const {
  1255   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1256   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
  1259 inline const TypeKlassPtr *Type::isa_klassptr() const {
  1260   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
  1263 inline const TypeKlassPtr *Type::is_klassptr() const {
  1264   assert( _base == KlassPtr, "Not a klass pointer" );
  1265   return (TypeKlassPtr*)this;
  1268 inline const TypePtr* Type::make_ptr() const {
  1269   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
  1270                                 (isa_ptr() ? is_ptr() : NULL);
  1273 inline const TypeOopPtr* Type::make_oopptr() const {
  1274   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
  1277 inline const TypeNarrowOop* Type::make_narrowoop() const {
  1278   return (_base == NarrowOop) ? is_narrowoop() :
  1279                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
  1282 inline bool Type::is_floatingpoint() const {
  1283   if( (_base == FloatCon)  || (_base == FloatBot) ||
  1284       (_base == DoubleCon) || (_base == DoubleBot) )
  1285     return true;
  1286   return false;
  1290 // ===============================================================
  1291 // Things that need to be 64-bits in the 64-bit build but
  1292 // 32-bits in the 32-bit build.  Done this way to get full
  1293 // optimization AND strong typing.
  1294 #ifdef _LP64
  1296 // For type queries and asserts
  1297 #define is_intptr_t  is_long
  1298 #define isa_intptr_t isa_long
  1299 #define find_intptr_t_type find_long_type
  1300 #define find_intptr_t_con  find_long_con
  1301 #define TypeX        TypeLong
  1302 #define Type_X       Type::Long
  1303 #define TypeX_X      TypeLong::LONG
  1304 #define TypeX_ZERO   TypeLong::ZERO
  1305 // For 'ideal_reg' machine registers
  1306 #define Op_RegX      Op_RegL
  1307 // For phase->intcon variants
  1308 #define MakeConX     longcon
  1309 #define ConXNode     ConLNode
  1310 // For array index arithmetic
  1311 #define MulXNode     MulLNode
  1312 #define AndXNode     AndLNode
  1313 #define OrXNode      OrLNode
  1314 #define CmpXNode     CmpLNode
  1315 #define SubXNode     SubLNode
  1316 #define LShiftXNode  LShiftLNode
  1317 // For object size computation:
  1318 #define AddXNode     AddLNode
  1319 #define RShiftXNode  RShiftLNode
  1320 // For card marks and hashcodes
  1321 #define URShiftXNode URShiftLNode
  1322 // UseOptoBiasInlining
  1323 #define XorXNode     XorLNode
  1324 #define StoreXConditionalNode StoreLConditionalNode
  1325 // Opcodes
  1326 #define Op_LShiftX   Op_LShiftL
  1327 #define Op_AndX      Op_AndL
  1328 #define Op_AddX      Op_AddL
  1329 #define Op_SubX      Op_SubL
  1330 #define Op_XorX      Op_XorL
  1331 #define Op_URShiftX  Op_URShiftL
  1332 // conversions
  1333 #define ConvI2X(x)   ConvI2L(x)
  1334 #define ConvL2X(x)   (x)
  1335 #define ConvX2I(x)   ConvL2I(x)
  1336 #define ConvX2L(x)   (x)
  1338 #else
  1340 // For type queries and asserts
  1341 #define is_intptr_t  is_int
  1342 #define isa_intptr_t isa_int
  1343 #define find_intptr_t_type find_int_type
  1344 #define find_intptr_t_con  find_int_con
  1345 #define TypeX        TypeInt
  1346 #define Type_X       Type::Int
  1347 #define TypeX_X      TypeInt::INT
  1348 #define TypeX_ZERO   TypeInt::ZERO
  1349 // For 'ideal_reg' machine registers
  1350 #define Op_RegX      Op_RegI
  1351 // For phase->intcon variants
  1352 #define MakeConX     intcon
  1353 #define ConXNode     ConINode
  1354 // For array index arithmetic
  1355 #define MulXNode     MulINode
  1356 #define AndXNode     AndINode
  1357 #define OrXNode      OrINode
  1358 #define CmpXNode     CmpINode
  1359 #define SubXNode     SubINode
  1360 #define LShiftXNode  LShiftINode
  1361 // For object size computation:
  1362 #define AddXNode     AddINode
  1363 #define RShiftXNode  RShiftINode
  1364 // For card marks and hashcodes
  1365 #define URShiftXNode URShiftINode
  1366 // UseOptoBiasInlining
  1367 #define XorXNode     XorINode
  1368 #define StoreXConditionalNode StoreIConditionalNode
  1369 // Opcodes
  1370 #define Op_LShiftX   Op_LShiftI
  1371 #define Op_AndX      Op_AndI
  1372 #define Op_AddX      Op_AddI
  1373 #define Op_SubX      Op_SubI
  1374 #define Op_XorX      Op_XorI
  1375 #define Op_URShiftX  Op_URShiftI
  1376 // conversions
  1377 #define ConvI2X(x)   (x)
  1378 #define ConvL2X(x)   ConvL2I(x)
  1379 #define ConvX2I(x)   (x)
  1380 #define ConvX2L(x)   ConvI2L(x)
  1382 #endif
  1384 #endif // SHARE_VM_OPTO_TYPE_HPP

mercurial