src/share/vm/opto/type.hpp

Sat, 01 Sep 2012 13:25:18 -0400

author
coleenp
date
Sat, 01 Sep 2012 13:25:18 -0400
changeset 4037
da91efe96a93
parent 3882
8c92982cbbc4
child 4159
8e47bac5643a
permissions
-rw-r--r--

6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_TYPE_HPP
    26 #define SHARE_VM_OPTO_TYPE_HPP
    28 #include "libadt/port.hpp"
    29 #include "opto/adlcVMDeps.hpp"
    30 #include "runtime/handles.hpp"
    32 // Portions of code courtesy of Clifford Click
    34 // Optimization - Graph Style
    37 // This class defines a Type lattice.  The lattice is used in the constant
    38 // propagation algorithms, and for some type-checking of the iloc code.
    39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
    40 // float & double precision constants, sets of data-labels and code-labels.
    41 // The complete lattice is described below.  Subtypes have no relationship to
    42 // up or down in the lattice; that is entirely determined by the behavior of
    43 // the MEET/JOIN functions.
    45 class Dict;
    46 class Type;
    47 class   TypeD;
    48 class   TypeF;
    49 class   TypeInt;
    50 class   TypeLong;
    51 class   TypeNarrowOop;
    52 class   TypeAry;
    53 class   TypeTuple;
    54 class   TypeVect;
    55 class     TypeVectS;
    56 class     TypeVectD;
    57 class     TypeVectX;
    58 class     TypeVectY;
    59 class   TypePtr;
    60 class     TypeRawPtr;
    61 class     TypeOopPtr;
    62 class       TypeInstPtr;
    63 class       TypeAryPtr;
    64 class       TypeKlassPtr;
    65 class     TypeMetadataPtr;
    67 //------------------------------Type-------------------------------------------
    68 // Basic Type object, represents a set of primitive Values.
    69 // Types are hash-cons'd into a private class dictionary, so only one of each
    70 // different kind of Type exists.  Types are never modified after creation, so
    71 // all their interesting fields are constant.
    72 class Type {
    73   friend class VMStructs;
    75 public:
    76   enum TYPES {
    77     Bad=0,                      // Type check
    78     Control,                    // Control of code (not in lattice)
    79     Top,                        // Top of the lattice
    80     Int,                        // Integer range (lo-hi)
    81     Long,                       // Long integer range (lo-hi)
    82     Half,                       // Placeholder half of doubleword
    83     NarrowOop,                  // Compressed oop pointer
    85     Tuple,                      // Method signature or object layout
    86     Array,                      // Array types
    87     VectorS,                    //  32bit Vector types
    88     VectorD,                    //  64bit Vector types
    89     VectorX,                    // 128bit Vector types
    90     VectorY,                    // 256bit Vector types
    92     AnyPtr,                     // Any old raw, klass, inst, or array pointer
    93     RawPtr,                     // Raw (non-oop) pointers
    94     OopPtr,                     // Any and all Java heap entities
    95     InstPtr,                    // Instance pointers (non-array objects)
    96     AryPtr,                     // Array pointers
    97     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
    99     MetadataPtr,                // Generic metadata
   100     KlassPtr,                   // Klass pointers
   102     Function,                   // Function signature
   103     Abio,                       // Abstract I/O
   104     Return_Address,             // Subroutine return address
   105     Memory,                     // Abstract store
   106     FloatTop,                   // No float value
   107     FloatCon,                   // Floating point constant
   108     FloatBot,                   // Any float value
   109     DoubleTop,                  // No double value
   110     DoubleCon,                  // Double precision constant
   111     DoubleBot,                  // Any double value
   112     Bottom,                     // Bottom of lattice
   113     lastype                     // Bogus ending type (not in lattice)
   114   };
   116   // Signal values for offsets from a base pointer
   117   enum OFFSET_SIGNALS {
   118     OffsetTop = -2000000000,    // undefined offset
   119     OffsetBot = -2000000001     // any possible offset
   120   };
   122   // Min and max WIDEN values.
   123   enum WIDEN {
   124     WidenMin = 0,
   125     WidenMax = 3
   126   };
   128 private:
   129   typedef struct {
   130     const TYPES                dual_type;
   131     const BasicType            basic_type;
   132     const char*                msg;
   133     const bool                 isa_oop;
   134     const int                  ideal_reg;
   135     const relocInfo::relocType reloc;
   136   } TypeInfo;
   138   // Dictionary of types shared among compilations.
   139   static Dict* _shared_type_dict;
   140   static TypeInfo _type_info[];
   142   static int uhash( const Type *const t );
   143   // Structural equality check.  Assumes that cmp() has already compared
   144   // the _base types and thus knows it can cast 't' appropriately.
   145   virtual bool eq( const Type *t ) const;
   147   // Top-level hash-table of types
   148   static Dict *type_dict() {
   149     return Compile::current()->type_dict();
   150   }
   152   // DUAL operation: reflect around lattice centerline.  Used instead of
   153   // join to ensure my lattice is symmetric up and down.  Dual is computed
   154   // lazily, on demand, and cached in _dual.
   155   const Type *_dual;            // Cached dual value
   156   // Table for efficient dualing of base types
   157   static const TYPES dual_type[lastype];
   159 protected:
   160   // Each class of type is also identified by its base.
   161   const TYPES _base;            // Enum of Types type
   163   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
   164   // ~Type();                   // Use fast deallocation
   165   const Type *hashcons();       // Hash-cons the type
   167 public:
   169   inline void* operator new( size_t x ) {
   170     Compile* compile = Compile::current();
   171     compile->set_type_last_size(x);
   172     void *temp = compile->type_arena()->Amalloc_D(x);
   173     compile->set_type_hwm(temp);
   174     return temp;
   175   }
   176   inline void operator delete( void* ptr ) {
   177     Compile* compile = Compile::current();
   178     compile->type_arena()->Afree(ptr,compile->type_last_size());
   179   }
   181   // Initialize the type system for a particular compilation.
   182   static void Initialize(Compile* compile);
   184   // Initialize the types shared by all compilations.
   185   static void Initialize_shared(Compile* compile);
   187   TYPES base() const {
   188     assert(_base > Bad && _base < lastype, "sanity");
   189     return _base;
   190   }
   192   // Create a new hash-consd type
   193   static const Type *make(enum TYPES);
   194   // Test for equivalence of types
   195   static int cmp( const Type *const t1, const Type *const t2 );
   196   // Test for higher or equal in lattice
   197   int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
   199   // MEET operation; lower in lattice.
   200   const Type *meet( const Type *t ) const;
   201   // WIDEN: 'widens' for Ints and other range types
   202   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
   203   // NARROW: complement for widen, used by pessimistic phases
   204   virtual const Type *narrow( const Type *old ) const { return this; }
   206   // DUAL operation: reflect around lattice centerline.  Used instead of
   207   // join to ensure my lattice is symmetric up and down.
   208   const Type *dual() const { return _dual; }
   210   // Compute meet dependent on base type
   211   virtual const Type *xmeet( const Type *t ) const;
   212   virtual const Type *xdual() const;    // Compute dual right now.
   214   // JOIN operation; higher in lattice.  Done by finding the dual of the
   215   // meet of the dual of the 2 inputs.
   216   const Type *join( const Type *t ) const {
   217     return dual()->meet(t->dual())->dual(); }
   219   // Modified version of JOIN adapted to the needs Node::Value.
   220   // Normalizes all empty values to TOP.  Does not kill _widen bits.
   221   // Currently, it also works around limitations involving interface types.
   222   virtual const Type *filter( const Type *kills ) const;
   224 #ifdef ASSERT
   225   // One type is interface, the other is oop
   226   virtual bool interface_vs_oop(const Type *t) const;
   227 #endif
   229   // Returns true if this pointer points at memory which contains a
   230   // compressed oop references.
   231   bool is_ptr_to_narrowoop() const;
   233   // Convenience access
   234   float getf() const;
   235   double getd() const;
   237   const TypeInt    *is_int() const;
   238   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
   239   const TypeLong   *is_long() const;
   240   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
   241   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
   242   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
   243   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
   244   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
   245   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
   246   const TypeAry    *is_ary() const;              // Array, NOT array pointer
   247   const TypeVect   *is_vect() const;             // Vector
   248   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
   249   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
   250   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
   251   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
   252   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
   253   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
   254   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
   255   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
   256   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
   257   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
   258   const TypeInstPtr  *is_instptr() const;        // Instance
   259   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
   260   const TypeAryPtr   *is_aryptr() const;         // Array oop
   262   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
   263   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
   264   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
   265   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
   267   virtual bool      is_finite() const;           // Has a finite value
   268   virtual bool      is_nan()    const;           // Is not a number (NaN)
   270   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
   271   const TypePtr* make_ptr() const;
   273   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
   274   // Asserts if the underlying type is not an oopptr or narrowoop.
   275   const TypeOopPtr* make_oopptr() const;
   277   // Returns this compressed pointer or the equivalent compressed version
   278   // of this pointer type.
   279   const TypeNarrowOop* make_narrowoop() const;
   281   // Special test for register pressure heuristic
   282   bool is_floatingpoint() const;        // True if Float or Double base type
   284   // Do you have memory, directly or through a tuple?
   285   bool has_memory( ) const;
   287   // TRUE if type is a singleton
   288   virtual bool singleton(void) const;
   290   // TRUE if type is above the lattice centerline, and is therefore vacuous
   291   virtual bool empty(void) const;
   293   // Return a hash for this type.  The hash function is public so ConNode
   294   // (constants) can hash on their constant, which is represented by a Type.
   295   virtual int hash() const;
   297   // Map ideal registers (machine types) to ideal types
   298   static const Type *mreg2type[];
   300   // Printing, statistics
   301 #ifndef PRODUCT
   302   void         dump_on(outputStream *st) const;
   303   void         dump() const {
   304     dump_on(tty);
   305   }
   306   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   307   static  void dump_stats();
   308 #endif
   309   void typerr(const Type *t) const; // Mixing types error
   311   // Create basic type
   312   static const Type* get_const_basic_type(BasicType type) {
   313     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
   314     return _const_basic_type[type];
   315   }
   317   // Mapping to the array element's basic type.
   318   BasicType array_element_basic_type() const;
   320   // Create standard type for a ciType:
   321   static const Type* get_const_type(ciType* type);
   323   // Create standard zero value:
   324   static const Type* get_zero_type(BasicType type) {
   325     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
   326     return _zero_type[type];
   327   }
   329   // Report if this is a zero value (not top).
   330   bool is_zero_type() const {
   331     BasicType type = basic_type();
   332     if (type == T_VOID || type >= T_CONFLICT)
   333       return false;
   334     else
   335       return (this == _zero_type[type]);
   336   }
   338   // Convenience common pre-built types.
   339   static const Type *ABIO;
   340   static const Type *BOTTOM;
   341   static const Type *CONTROL;
   342   static const Type *DOUBLE;
   343   static const Type *FLOAT;
   344   static const Type *HALF;
   345   static const Type *MEMORY;
   346   static const Type *MULTI;
   347   static const Type *RETURN_ADDRESS;
   348   static const Type *TOP;
   350   // Mapping from compiler type to VM BasicType
   351   BasicType basic_type() const       { return _type_info[_base].basic_type; }
   352   int ideal_reg() const              { return _type_info[_base].ideal_reg; }
   353   const char* msg() const            { return _type_info[_base].msg; }
   354   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
   355   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
   357   // Mapping from CI type system to compiler type:
   358   static const Type* get_typeflow_type(ciType* type);
   360 private:
   361   // support arrays
   362   static const BasicType _basic_type[];
   363   static const Type*        _zero_type[T_CONFLICT+1];
   364   static const Type* _const_basic_type[T_CONFLICT+1];
   365 };
   367 //------------------------------TypeF------------------------------------------
   368 // Class of Float-Constant Types.
   369 class TypeF : public Type {
   370   TypeF( float f ) : Type(FloatCon), _f(f) {};
   371 public:
   372   virtual bool eq( const Type *t ) const;
   373   virtual int  hash() const;             // Type specific hashing
   374   virtual bool singleton(void) const;    // TRUE if type is a singleton
   375   virtual bool empty(void) const;        // TRUE if type is vacuous
   376 public:
   377   const float _f;               // Float constant
   379   static const TypeF *make(float f);
   381   virtual bool        is_finite() const;  // Has a finite value
   382   virtual bool        is_nan()    const;  // Is not a number (NaN)
   384   virtual const Type *xmeet( const Type *t ) const;
   385   virtual const Type *xdual() const;    // Compute dual right now.
   386   // Convenience common pre-built types.
   387   static const TypeF *ZERO; // positive zero only
   388   static const TypeF *ONE;
   389 #ifndef PRODUCT
   390   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   391 #endif
   392 };
   394 //------------------------------TypeD------------------------------------------
   395 // Class of Double-Constant Types.
   396 class TypeD : public Type {
   397   TypeD( double d ) : Type(DoubleCon), _d(d) {};
   398 public:
   399   virtual bool eq( const Type *t ) const;
   400   virtual int  hash() const;             // Type specific hashing
   401   virtual bool singleton(void) const;    // TRUE if type is a singleton
   402   virtual bool empty(void) const;        // TRUE if type is vacuous
   403 public:
   404   const double _d;              // Double constant
   406   static const TypeD *make(double d);
   408   virtual bool        is_finite() const;  // Has a finite value
   409   virtual bool        is_nan()    const;  // Is not a number (NaN)
   411   virtual const Type *xmeet( const Type *t ) const;
   412   virtual const Type *xdual() const;    // Compute dual right now.
   413   // Convenience common pre-built types.
   414   static const TypeD *ZERO; // positive zero only
   415   static const TypeD *ONE;
   416 #ifndef PRODUCT
   417   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   418 #endif
   419 };
   421 //------------------------------TypeInt----------------------------------------
   422 // Class of integer ranges, the set of integers between a lower bound and an
   423 // upper bound, inclusive.
   424 class TypeInt : public Type {
   425   TypeInt( jint lo, jint hi, int w );
   426 public:
   427   virtual bool eq( const Type *t ) const;
   428   virtual int  hash() const;             // Type specific hashing
   429   virtual bool singleton(void) const;    // TRUE if type is a singleton
   430   virtual bool empty(void) const;        // TRUE if type is vacuous
   431 public:
   432   const jint _lo, _hi;          // Lower bound, upper bound
   433   const short _widen;           // Limit on times we widen this sucker
   435   static const TypeInt *make(jint lo);
   436   // must always specify w
   437   static const TypeInt *make(jint lo, jint hi, int w);
   439   // Check for single integer
   440   int is_con() const { return _lo==_hi; }
   441   bool is_con(int i) const { return is_con() && _lo == i; }
   442   jint get_con() const { assert( is_con(), "" );  return _lo; }
   444   virtual bool        is_finite() const;  // Has a finite value
   446   virtual const Type *xmeet( const Type *t ) const;
   447   virtual const Type *xdual() const;    // Compute dual right now.
   448   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
   449   virtual const Type *narrow( const Type *t ) const;
   450   // Do not kill _widen bits.
   451   virtual const Type *filter( const Type *kills ) const;
   452   // Convenience common pre-built types.
   453   static const TypeInt *MINUS_1;
   454   static const TypeInt *ZERO;
   455   static const TypeInt *ONE;
   456   static const TypeInt *BOOL;
   457   static const TypeInt *CC;
   458   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
   459   static const TypeInt *CC_GT;  // [1]   == ONE
   460   static const TypeInt *CC_EQ;  // [0]   == ZERO
   461   static const TypeInt *CC_LE;  // [-1,0]
   462   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
   463   static const TypeInt *BYTE;
   464   static const TypeInt *UBYTE;
   465   static const TypeInt *CHAR;
   466   static const TypeInt *SHORT;
   467   static const TypeInt *POS;
   468   static const TypeInt *POS1;
   469   static const TypeInt *INT;
   470   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
   471 #ifndef PRODUCT
   472   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   473 #endif
   474 };
   477 //------------------------------TypeLong---------------------------------------
   478 // Class of long integer ranges, the set of integers between a lower bound and
   479 // an upper bound, inclusive.
   480 class TypeLong : public Type {
   481   TypeLong( jlong lo, jlong hi, int w );
   482 public:
   483   virtual bool eq( const Type *t ) const;
   484   virtual int  hash() const;             // Type specific hashing
   485   virtual bool singleton(void) const;    // TRUE if type is a singleton
   486   virtual bool empty(void) const;        // TRUE if type is vacuous
   487 public:
   488   const jlong _lo, _hi;         // Lower bound, upper bound
   489   const short _widen;           // Limit on times we widen this sucker
   491   static const TypeLong *make(jlong lo);
   492   // must always specify w
   493   static const TypeLong *make(jlong lo, jlong hi, int w);
   495   // Check for single integer
   496   int is_con() const { return _lo==_hi; }
   497   bool is_con(int i) const { return is_con() && _lo == i; }
   498   jlong get_con() const { assert( is_con(), "" ); return _lo; }
   500   virtual bool        is_finite() const;  // Has a finite value
   502   virtual const Type *xmeet( const Type *t ) const;
   503   virtual const Type *xdual() const;    // Compute dual right now.
   504   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
   505   virtual const Type *narrow( const Type *t ) const;
   506   // Do not kill _widen bits.
   507   virtual const Type *filter( const Type *kills ) const;
   508   // Convenience common pre-built types.
   509   static const TypeLong *MINUS_1;
   510   static const TypeLong *ZERO;
   511   static const TypeLong *ONE;
   512   static const TypeLong *POS;
   513   static const TypeLong *LONG;
   514   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
   515   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
   516 #ifndef PRODUCT
   517   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
   518 #endif
   519 };
   521 //------------------------------TypeTuple--------------------------------------
   522 // Class of Tuple Types, essentially type collections for function signatures
   523 // and class layouts.  It happens to also be a fast cache for the HotSpot
   524 // signature types.
   525 class TypeTuple : public Type {
   526   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
   527 public:
   528   virtual bool eq( const Type *t ) const;
   529   virtual int  hash() const;             // Type specific hashing
   530   virtual bool singleton(void) const;    // TRUE if type is a singleton
   531   virtual bool empty(void) const;        // TRUE if type is vacuous
   533 public:
   534   const uint          _cnt;              // Count of fields
   535   const Type ** const _fields;           // Array of field types
   537   // Accessors:
   538   uint cnt() const { return _cnt; }
   539   const Type* field_at(uint i) const {
   540     assert(i < _cnt, "oob");
   541     return _fields[i];
   542   }
   543   void set_field_at(uint i, const Type* t) {
   544     assert(i < _cnt, "oob");
   545     _fields[i] = t;
   546   }
   548   static const TypeTuple *make( uint cnt, const Type **fields );
   549   static const TypeTuple *make_range(ciSignature *sig);
   550   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
   552   // Subroutine call type with space allocated for argument types
   553   static const Type **fields( uint arg_cnt );
   555   virtual const Type *xmeet( const Type *t ) const;
   556   virtual const Type *xdual() const;    // Compute dual right now.
   557   // Convenience common pre-built types.
   558   static const TypeTuple *IFBOTH;
   559   static const TypeTuple *IFFALSE;
   560   static const TypeTuple *IFTRUE;
   561   static const TypeTuple *IFNEITHER;
   562   static const TypeTuple *LOOPBODY;
   563   static const TypeTuple *MEMBAR;
   564   static const TypeTuple *STORECONDITIONAL;
   565   static const TypeTuple *START_I2C;
   566   static const TypeTuple *INT_PAIR;
   567   static const TypeTuple *LONG_PAIR;
   568 #ifndef PRODUCT
   569   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   570 #endif
   571 };
   573 //------------------------------TypeAry----------------------------------------
   574 // Class of Array Types
   575 class TypeAry : public Type {
   576   TypeAry( const Type *elem, const TypeInt *size) : Type(Array),
   577     _elem(elem), _size(size) {}
   578 public:
   579   virtual bool eq( const Type *t ) const;
   580   virtual int  hash() const;             // Type specific hashing
   581   virtual bool singleton(void) const;    // TRUE if type is a singleton
   582   virtual bool empty(void) const;        // TRUE if type is vacuous
   584 private:
   585   const Type *_elem;            // Element type of array
   586   const TypeInt *_size;         // Elements in array
   587   friend class TypeAryPtr;
   589 public:
   590   static const TypeAry *make(  const Type *elem, const TypeInt *size);
   592   virtual const Type *xmeet( const Type *t ) const;
   593   virtual const Type *xdual() const;    // Compute dual right now.
   594   bool ary_must_be_exact() const;  // true if arrays of such are never generic
   595 #ifdef ASSERT
   596   // One type is interface, the other is oop
   597   virtual bool interface_vs_oop(const Type *t) const;
   598 #endif
   599 #ifndef PRODUCT
   600   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   601 #endif
   602 };
   604 //------------------------------TypeVect---------------------------------------
   605 // Class of Vector Types
   606 class TypeVect : public Type {
   607   const Type*   _elem;  // Vector's element type
   608   const uint  _length;  // Elements in vector (power of 2)
   610 protected:
   611   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
   612     _elem(elem), _length(length) {}
   614 public:
   615   const Type* element_type() const { return _elem; }
   616   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
   617   uint length() const { return _length; }
   618   uint length_in_bytes() const {
   619    return _length * type2aelembytes(element_basic_type());
   620   }
   622   virtual bool eq(const Type *t) const;
   623   virtual int  hash() const;             // Type specific hashing
   624   virtual bool singleton(void) const;    // TRUE if type is a singleton
   625   virtual bool empty(void) const;        // TRUE if type is vacuous
   627   static const TypeVect *make(const BasicType elem_bt, uint length) {
   628     // Use bottom primitive type.
   629     return make(get_const_basic_type(elem_bt), length);
   630   }
   631   // Used directly by Replicate nodes to construct singleton vector.
   632   static const TypeVect *make(const Type* elem, uint length);
   634   virtual const Type *xmeet( const Type *t) const;
   635   virtual const Type *xdual() const;     // Compute dual right now.
   637   static const TypeVect *VECTS;
   638   static const TypeVect *VECTD;
   639   static const TypeVect *VECTX;
   640   static const TypeVect *VECTY;
   642 #ifndef PRODUCT
   643   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
   644 #endif
   645 };
   647 class TypeVectS : public TypeVect {
   648   friend class TypeVect;
   649   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
   650 };
   652 class TypeVectD : public TypeVect {
   653   friend class TypeVect;
   654   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
   655 };
   657 class TypeVectX : public TypeVect {
   658   friend class TypeVect;
   659   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
   660 };
   662 class TypeVectY : public TypeVect {
   663   friend class TypeVect;
   664   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
   665 };
   667 //------------------------------TypePtr----------------------------------------
   668 // Class of machine Pointer Types: raw data, instances or arrays.
   669 // If the _base enum is AnyPtr, then this refers to all of the above.
   670 // Otherwise the _base will indicate which subset of pointers is affected,
   671 // and the class will be inherited from.
   672 class TypePtr : public Type {
   673   friend class TypeNarrowOop;
   674 public:
   675   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
   676 protected:
   677   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
   678   virtual bool eq( const Type *t ) const;
   679   virtual int  hash() const;             // Type specific hashing
   680   static const PTR ptr_meet[lastPTR][lastPTR];
   681   static const PTR ptr_dual[lastPTR];
   682   static const char * const ptr_msg[lastPTR];
   684 public:
   685   const int _offset;            // Offset into oop, with TOP & BOT
   686   const PTR _ptr;               // Pointer equivalence class
   688   const int offset() const { return _offset; }
   689   const PTR ptr()    const { return _ptr; }
   691   static const TypePtr *make( TYPES t, PTR ptr, int offset );
   693   // Return a 'ptr' version of this type
   694   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   696   virtual intptr_t get_con() const;
   698   int xadd_offset( intptr_t offset ) const;
   699   virtual const TypePtr *add_offset( intptr_t offset ) const;
   701   virtual bool singleton(void) const;    // TRUE if type is a singleton
   702   virtual bool empty(void) const;        // TRUE if type is vacuous
   703   virtual const Type *xmeet( const Type *t ) const;
   704   int meet_offset( int offset ) const;
   705   int dual_offset( ) const;
   706   virtual const Type *xdual() const;    // Compute dual right now.
   708   // meet, dual and join over pointer equivalence sets
   709   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
   710   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
   712   // This is textually confusing unless one recalls that
   713   // join(t) == dual()->meet(t->dual())->dual().
   714   PTR join_ptr( const PTR in_ptr ) const {
   715     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
   716   }
   718   // Tests for relation to centerline of type lattice:
   719   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
   720   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
   721   // Convenience common pre-built types.
   722   static const TypePtr *NULL_PTR;
   723   static const TypePtr *NOTNULL;
   724   static const TypePtr *BOTTOM;
   725 #ifndef PRODUCT
   726   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   727 #endif
   728 };
   730 //------------------------------TypeRawPtr-------------------------------------
   731 // Class of raw pointers, pointers to things other than Oops.  Examples
   732 // include the stack pointer, top of heap, card-marking area, handles, etc.
   733 class TypeRawPtr : public TypePtr {
   734 protected:
   735   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
   736 public:
   737   virtual bool eq( const Type *t ) const;
   738   virtual int  hash() const;     // Type specific hashing
   740   const address _bits;          // Constant value, if applicable
   742   static const TypeRawPtr *make( PTR ptr );
   743   static const TypeRawPtr *make( address bits );
   745   // Return a 'ptr' version of this type
   746   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   748   virtual intptr_t get_con() const;
   750   virtual const TypePtr *add_offset( intptr_t offset ) const;
   752   virtual const Type *xmeet( const Type *t ) const;
   753   virtual const Type *xdual() const;    // Compute dual right now.
   754   // Convenience common pre-built types.
   755   static const TypeRawPtr *BOTTOM;
   756   static const TypeRawPtr *NOTNULL;
   757 #ifndef PRODUCT
   758   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   759 #endif
   760 };
   762 //------------------------------TypeOopPtr-------------------------------------
   763 // Some kind of oop (Java pointer), either klass or instance or array.
   764 class TypeOopPtr : public TypePtr {
   765 protected:
   766   TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   767 public:
   768   virtual bool eq( const Type *t ) const;
   769   virtual int  hash() const;             // Type specific hashing
   770   virtual bool singleton(void) const;    // TRUE if type is a singleton
   771   enum {
   772    InstanceTop = -1,   // undefined instance
   773    InstanceBot = 0     // any possible instance
   774   };
   775 protected:
   777   // Oop is NULL, unless this is a constant oop.
   778   ciObject*     _const_oop;   // Constant oop
   779   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
   780   ciKlass*      _klass;       // Klass object
   781   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
   782   bool          _klass_is_exact;
   783   bool          _is_ptr_to_narrowoop;
   785   // If not InstanceTop or InstanceBot, indicates that this is
   786   // a particular instance of this type which is distinct.
   787   // This is the the node index of the allocation node creating this instance.
   788   int           _instance_id;
   790   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
   792   int dual_instance_id() const;
   793   int meet_instance_id(int uid) const;
   795 public:
   796   // Creates a type given a klass. Correctly handles multi-dimensional arrays
   797   // Respects UseUniqueSubclasses.
   798   // If the klass is final, the resulting type will be exact.
   799   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
   800     return make_from_klass_common(klass, true, false);
   801   }
   802   // Same as before, but will produce an exact type, even if
   803   // the klass is not final, as long as it has exactly one implementation.
   804   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
   805     return make_from_klass_common(klass, true, true);
   806   }
   807   // Same as before, but does not respects UseUniqueSubclasses.
   808   // Use this only for creating array element types.
   809   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
   810     return make_from_klass_common(klass, false, false);
   811   }
   812   // Creates a singleton type given an object.
   813   // If the object cannot be rendered as a constant,
   814   // may return a non-singleton type.
   815   // If require_constant, produce a NULL if a singleton is not possible.
   816   static const TypeOopPtr* make_from_constant(ciObject* o, bool require_constant = false);
   818   // Make a generic (unclassed) pointer to an oop.
   819   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id);
   821   ciObject* const_oop()    const { return _const_oop; }
   822   virtual ciKlass* klass() const { return _klass;     }
   823   bool klass_is_exact()    const { return _klass_is_exact; }
   825   // Returns true if this pointer points at memory which contains a
   826   // compressed oop references.
   827   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
   829   bool is_known_instance()       const { return _instance_id > 0; }
   830   int  instance_id()             const { return _instance_id; }
   831   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
   833   virtual intptr_t get_con() const;
   835   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   837   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   839   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   841   // corresponding pointer to klass, for a given instance
   842   const TypeKlassPtr* as_klass_type() const;
   844   virtual const TypePtr *add_offset( intptr_t offset ) const;
   846   virtual const Type *xmeet( const Type *t ) const;
   847   virtual const Type *xdual() const;    // Compute dual right now.
   849   // Do not allow interface-vs.-noninterface joins to collapse to top.
   850   virtual const Type *filter( const Type *kills ) const;
   852   // Convenience common pre-built type.
   853   static const TypeOopPtr *BOTTOM;
   854 #ifndef PRODUCT
   855   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   856 #endif
   857 };
   859 //------------------------------TypeInstPtr------------------------------------
   860 // Class of Java object pointers, pointing either to non-array Java instances
   861 // or to a Klass* (including array klasses).
   862 class TypeInstPtr : public TypeOopPtr {
   863   TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   864   virtual bool eq( const Type *t ) const;
   865   virtual int  hash() const;             // Type specific hashing
   867   ciSymbol*  _name;        // class name
   869  public:
   870   ciSymbol* name()         const { return _name; }
   872   bool  is_loaded() const { return _klass->is_loaded(); }
   874   // Make a pointer to a constant oop.
   875   static const TypeInstPtr *make(ciObject* o) {
   876     return make(TypePtr::Constant, o->klass(), true, o, 0);
   877   }
   878   // Make a pointer to a constant oop with offset.
   879   static const TypeInstPtr *make(ciObject* o, int offset) {
   880     return make(TypePtr::Constant, o->klass(), true, o, offset);
   881   }
   883   // Make a pointer to some value of type klass.
   884   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
   885     return make(ptr, klass, false, NULL, 0);
   886   }
   888   // Make a pointer to some non-polymorphic value of exactly type klass.
   889   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
   890     return make(ptr, klass, true, NULL, 0);
   891   }
   893   // Make a pointer to some value of type klass with offset.
   894   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
   895     return make(ptr, klass, false, NULL, offset);
   896   }
   898   // Make a pointer to an oop.
   899   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot );
   901   // If this is a java.lang.Class constant, return the type for it or NULL.
   902   // Pass to Type::get_const_type to turn it to a type, which will usually
   903   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
   904   ciType* java_mirror_type() const;
   906   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   908   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   910   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   912   virtual const TypePtr *add_offset( intptr_t offset ) const;
   914   virtual const Type *xmeet( const Type *t ) const;
   915   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
   916   virtual const Type *xdual() const;    // Compute dual right now.
   918   // Convenience common pre-built types.
   919   static const TypeInstPtr *NOTNULL;
   920   static const TypeInstPtr *BOTTOM;
   921   static const TypeInstPtr *MIRROR;
   922   static const TypeInstPtr *MARK;
   923   static const TypeInstPtr *KLASS;
   924 #ifndef PRODUCT
   925   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   926 #endif
   927 };
   929 //------------------------------TypeAryPtr-------------------------------------
   930 // Class of Java array pointers
   931 class TypeAryPtr : public TypeOopPtr {
   932   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id), _ary(ary) {
   933 #ifdef ASSERT
   934     if (k != NULL) {
   935       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
   936       ciKlass* ck = compute_klass(true);
   937       if (k != ck) {
   938         this->dump(); tty->cr();
   939         tty->print(" k: ");
   940         k->print(); tty->cr();
   941         tty->print("ck: ");
   942         if (ck != NULL) ck->print();
   943         else tty->print("<NULL>");
   944         tty->cr();
   945         assert(false, "unexpected TypeAryPtr::_klass");
   946       }
   947     }
   948 #endif
   949   }
   950   virtual bool eq( const Type *t ) const;
   951   virtual int hash() const;     // Type specific hashing
   952   const TypeAry *_ary;          // Array we point into
   954   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
   956 public:
   957   // Accessors
   958   ciKlass* klass() const;
   959   const TypeAry* ary() const  { return _ary; }
   960   const Type*    elem() const { return _ary->_elem; }
   961   const TypeInt* size() const { return _ary->_size; }
   963   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
   964   // Constant pointer to array
   965   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
   967   // Return a 'ptr' version of this type
   968   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   970   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   972   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   974   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
   975   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
   977   virtual bool empty(void) const;        // TRUE if type is vacuous
   978   virtual const TypePtr *add_offset( intptr_t offset ) const;
   980   virtual const Type *xmeet( const Type *t ) const;
   981   virtual const Type *xdual() const;    // Compute dual right now.
   983   // Convenience common pre-built types.
   984   static const TypeAryPtr *RANGE;
   985   static const TypeAryPtr *OOPS;
   986   static const TypeAryPtr *NARROWOOPS;
   987   static const TypeAryPtr *BYTES;
   988   static const TypeAryPtr *SHORTS;
   989   static const TypeAryPtr *CHARS;
   990   static const TypeAryPtr *INTS;
   991   static const TypeAryPtr *LONGS;
   992   static const TypeAryPtr *FLOATS;
   993   static const TypeAryPtr *DOUBLES;
   994   // selects one of the above:
   995   static const TypeAryPtr *get_array_body_type(BasicType elem) {
   996     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
   997     return _array_body_type[elem];
   998   }
   999   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
  1000   // sharpen the type of an int which is used as an array size
  1001 #ifdef ASSERT
  1002   // One type is interface, the other is oop
  1003   virtual bool interface_vs_oop(const Type *t) const;
  1004 #endif
  1005 #ifndef PRODUCT
  1006   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1007 #endif
  1008 };
  1010 //------------------------------TypeMetadataPtr-------------------------------------
  1011 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
  1012 class TypeMetadataPtr : public TypePtr {
  1013 protected:
  1014   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
  1015 public:
  1016   virtual bool eq( const Type *t ) const;
  1017   virtual int  hash() const;             // Type specific hashing
  1018   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1020 private:
  1021   ciMetadata*   _metadata;
  1023 public:
  1024   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
  1026   static const TypeMetadataPtr* make(ciMethod* m);
  1027   static const TypeMetadataPtr* make(ciMethodData* m);
  1029   ciMetadata* metadata() const { return _metadata; }
  1031   virtual const Type *cast_to_ptr_type(PTR ptr) const;
  1033   virtual const TypePtr *add_offset( intptr_t offset ) const;
  1035   virtual const Type *xmeet( const Type *t ) const;
  1036   virtual const Type *xdual() const;    // Compute dual right now.
  1038   virtual intptr_t get_con() const;
  1040   // Do not allow interface-vs.-noninterface joins to collapse to top.
  1041   virtual const Type *filter( const Type *kills ) const;
  1043   // Convenience common pre-built types.
  1044   static const TypeMetadataPtr *BOTTOM;
  1046 #ifndef PRODUCT
  1047   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1048 #endif
  1049 };
  1051 //------------------------------TypeKlassPtr-----------------------------------
  1052 // Class of Java Klass pointers
  1053 class TypeKlassPtr : public TypePtr {
  1054   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
  1056  public:
  1057   virtual bool eq( const Type *t ) const;
  1058   virtual int hash() const;             // Type specific hashing
  1059   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1060  private:
  1062   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
  1064   ciKlass* _klass;
  1066   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
  1067   bool          _klass_is_exact;
  1069 public:
  1070   ciSymbol* name()  const { return klass()->name(); }
  1072   ciKlass* klass() const { return  _klass; }
  1073   bool klass_is_exact()    const { return _klass_is_exact; }
  1075   bool  is_loaded() const { return klass()->is_loaded(); }
  1077   // Creates a type given a klass. Correctly handles multi-dimensional arrays
  1078   // Respects UseUniqueSubclasses.
  1079   // If the klass is final, the resulting type will be exact.
  1080   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
  1081     return make_from_klass_common(klass, true, false);
  1083   // Same as before, but will produce an exact type, even if
  1084   // the klass is not final, as long as it has exactly one implementation.
  1085   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
  1086     return make_from_klass_common(klass, true, true);
  1088   // Same as before, but does not respects UseUniqueSubclasses.
  1089   // Use this only for creating array element types.
  1090   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
  1091     return make_from_klass_common(klass, false, false);
  1094   // Make a generic (unclassed) pointer to metadata.
  1095   static const TypeKlassPtr* make(PTR ptr, int offset);
  1097   // ptr to klass 'k'
  1098   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
  1099   // ptr to klass 'k' with offset
  1100   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
  1101   // ptr to klass 'k' or sub-klass
  1102   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
  1104   virtual const Type *cast_to_ptr_type(PTR ptr) const;
  1106   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
  1108   // corresponding pointer to instance, for a given class
  1109   const TypeOopPtr* as_instance_type() const;
  1111   virtual const TypePtr *add_offset( intptr_t offset ) const;
  1112   virtual const Type    *xmeet( const Type *t ) const;
  1113   virtual const Type    *xdual() const;      // Compute dual right now.
  1115   virtual intptr_t get_con() const;
  1117   // Convenience common pre-built types.
  1118   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
  1119   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
  1120 #ifndef PRODUCT
  1121   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1122 #endif
  1123 };
  1125 //------------------------------TypeNarrowOop----------------------------------
  1126 // A compressed reference to some kind of Oop.  This type wraps around
  1127 // a preexisting TypeOopPtr and forwards most of it's operations to
  1128 // the underlying type.  It's only real purpose is to track the
  1129 // oopness of the compressed oop value when we expose the conversion
  1130 // between the normal and the compressed form.
  1131 class TypeNarrowOop : public Type {
  1132 protected:
  1133   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
  1135   TypeNarrowOop( const TypePtr* ptrtype): Type(NarrowOop),
  1136     _ptrtype(ptrtype) {
  1137     assert(ptrtype->offset() == 0 ||
  1138            ptrtype->offset() == OffsetBot ||
  1139            ptrtype->offset() == OffsetTop, "no real offsets");
  1141 public:
  1142   virtual bool eq( const Type *t ) const;
  1143   virtual int  hash() const;             // Type specific hashing
  1144   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1146   virtual const Type *xmeet( const Type *t ) const;
  1147   virtual const Type *xdual() const;    // Compute dual right now.
  1149   virtual intptr_t get_con() const;
  1151   // Do not allow interface-vs.-noninterface joins to collapse to top.
  1152   virtual const Type *filter( const Type *kills ) const;
  1154   virtual bool empty(void) const;        // TRUE if type is vacuous
  1156   static const TypeNarrowOop *make( const TypePtr* type);
  1158   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
  1159     return make(TypeOopPtr::make_from_constant(con, require_constant));
  1162   // returns the equivalent ptr type for this compressed pointer
  1163   const TypePtr *get_ptrtype() const {
  1164     return _ptrtype;
  1167   static const TypeNarrowOop *BOTTOM;
  1168   static const TypeNarrowOop *NULL_PTR;
  1170 #ifndef PRODUCT
  1171   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
  1172 #endif
  1173 };
  1175 //------------------------------TypeFunc---------------------------------------
  1176 // Class of Array Types
  1177 class TypeFunc : public Type {
  1178   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
  1179   virtual bool eq( const Type *t ) const;
  1180   virtual int  hash() const;             // Type specific hashing
  1181   virtual bool singleton(void) const;    // TRUE if type is a singleton
  1182   virtual bool empty(void) const;        // TRUE if type is vacuous
  1183 public:
  1184   // Constants are shared among ADLC and VM
  1185   enum { Control    = AdlcVMDeps::Control,
  1186          I_O        = AdlcVMDeps::I_O,
  1187          Memory     = AdlcVMDeps::Memory,
  1188          FramePtr   = AdlcVMDeps::FramePtr,
  1189          ReturnAdr  = AdlcVMDeps::ReturnAdr,
  1190          Parms      = AdlcVMDeps::Parms
  1191   };
  1193   const TypeTuple* const _domain;     // Domain of inputs
  1194   const TypeTuple* const _range;      // Range of results
  1196   // Accessors:
  1197   const TypeTuple* domain() const { return _domain; }
  1198   const TypeTuple* range()  const { return _range; }
  1200   static const TypeFunc *make(ciMethod* method);
  1201   static const TypeFunc *make(ciSignature signature, const Type* extra);
  1202   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
  1204   virtual const Type *xmeet( const Type *t ) const;
  1205   virtual const Type *xdual() const;    // Compute dual right now.
  1207   BasicType return_type() const;
  1209 #ifndef PRODUCT
  1210   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1211 #endif
  1212   // Convenience common pre-built types.
  1213 };
  1215 //------------------------------accessors--------------------------------------
  1216 inline bool Type::is_ptr_to_narrowoop() const {
  1217 #ifdef _LP64
  1218   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
  1219 #else
  1220   return false;
  1221 #endif
  1224 inline float Type::getf() const {
  1225   assert( _base == FloatCon, "Not a FloatCon" );
  1226   return ((TypeF*)this)->_f;
  1229 inline double Type::getd() const {
  1230   assert( _base == DoubleCon, "Not a DoubleCon" );
  1231   return ((TypeD*)this)->_d;
  1234 inline const TypeF *Type::is_float_constant() const {
  1235   assert( _base == FloatCon, "Not a Float" );
  1236   return (TypeF*)this;
  1239 inline const TypeF *Type::isa_float_constant() const {
  1240   return ( _base == FloatCon ? (TypeF*)this : NULL);
  1243 inline const TypeD *Type::is_double_constant() const {
  1244   assert( _base == DoubleCon, "Not a Double" );
  1245   return (TypeD*)this;
  1248 inline const TypeD *Type::isa_double_constant() const {
  1249   return ( _base == DoubleCon ? (TypeD*)this : NULL);
  1252 inline const TypeInt *Type::is_int() const {
  1253   assert( _base == Int, "Not an Int" );
  1254   return (TypeInt*)this;
  1257 inline const TypeInt *Type::isa_int() const {
  1258   return ( _base == Int ? (TypeInt*)this : NULL);
  1261 inline const TypeLong *Type::is_long() const {
  1262   assert( _base == Long, "Not a Long" );
  1263   return (TypeLong*)this;
  1266 inline const TypeLong *Type::isa_long() const {
  1267   return ( _base == Long ? (TypeLong*)this : NULL);
  1270 inline const TypeTuple *Type::is_tuple() const {
  1271   assert( _base == Tuple, "Not a Tuple" );
  1272   return (TypeTuple*)this;
  1275 inline const TypeAry *Type::is_ary() const {
  1276   assert( _base == Array , "Not an Array" );
  1277   return (TypeAry*)this;
  1280 inline const TypeVect *Type::is_vect() const {
  1281   assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
  1282   return (TypeVect*)this;
  1285 inline const TypeVect *Type::isa_vect() const {
  1286   return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
  1289 inline const TypePtr *Type::is_ptr() const {
  1290   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1291   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
  1292   return (TypePtr*)this;
  1295 inline const TypePtr *Type::isa_ptr() const {
  1296   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1297   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
  1300 inline const TypeOopPtr *Type::is_oopptr() const {
  1301   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1302   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
  1303   return (TypeOopPtr*)this;
  1306 inline const TypeOopPtr *Type::isa_oopptr() const {
  1307   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1308   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
  1311 inline const TypeRawPtr *Type::isa_rawptr() const {
  1312   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
  1315 inline const TypeRawPtr *Type::is_rawptr() const {
  1316   assert( _base == RawPtr, "Not a raw pointer" );
  1317   return (TypeRawPtr*)this;
  1320 inline const TypeInstPtr *Type::isa_instptr() const {
  1321   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
  1324 inline const TypeInstPtr *Type::is_instptr() const {
  1325   assert( _base == InstPtr, "Not an object pointer" );
  1326   return (TypeInstPtr*)this;
  1329 inline const TypeAryPtr *Type::isa_aryptr() const {
  1330   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
  1333 inline const TypeAryPtr *Type::is_aryptr() const {
  1334   assert( _base == AryPtr, "Not an array pointer" );
  1335   return (TypeAryPtr*)this;
  1338 inline const TypeNarrowOop *Type::is_narrowoop() const {
  1339   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1340   assert(_base == NarrowOop, "Not a narrow oop" ) ;
  1341   return (TypeNarrowOop*)this;
  1344 inline const TypeNarrowOop *Type::isa_narrowoop() const {
  1345   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1346   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
  1349 inline const TypeMetadataPtr *Type::is_metadataptr() const {
  1350   // MetadataPtr is the first and CPCachePtr the last
  1351   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
  1352   return (TypeMetadataPtr*)this;
  1355 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
  1356   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
  1359 inline const TypeKlassPtr *Type::isa_klassptr() const {
  1360   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
  1363 inline const TypeKlassPtr *Type::is_klassptr() const {
  1364   assert( _base == KlassPtr, "Not a klass pointer" );
  1365   return (TypeKlassPtr*)this;
  1368 inline const TypePtr* Type::make_ptr() const {
  1369   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
  1370                                 (isa_ptr() ? is_ptr() : NULL);
  1373 inline const TypeOopPtr* Type::make_oopptr() const {
  1374   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
  1377 inline const TypeNarrowOop* Type::make_narrowoop() const {
  1378   return (_base == NarrowOop) ? is_narrowoop() :
  1379                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
  1382 inline bool Type::is_floatingpoint() const {
  1383   if( (_base == FloatCon)  || (_base == FloatBot) ||
  1384       (_base == DoubleCon) || (_base == DoubleBot) )
  1385     return true;
  1386   return false;
  1390 // ===============================================================
  1391 // Things that need to be 64-bits in the 64-bit build but
  1392 // 32-bits in the 32-bit build.  Done this way to get full
  1393 // optimization AND strong typing.
  1394 #ifdef _LP64
  1396 // For type queries and asserts
  1397 #define is_intptr_t  is_long
  1398 #define isa_intptr_t isa_long
  1399 #define find_intptr_t_type find_long_type
  1400 #define find_intptr_t_con  find_long_con
  1401 #define TypeX        TypeLong
  1402 #define Type_X       Type::Long
  1403 #define TypeX_X      TypeLong::LONG
  1404 #define TypeX_ZERO   TypeLong::ZERO
  1405 // For 'ideal_reg' machine registers
  1406 #define Op_RegX      Op_RegL
  1407 // For phase->intcon variants
  1408 #define MakeConX     longcon
  1409 #define ConXNode     ConLNode
  1410 // For array index arithmetic
  1411 #define MulXNode     MulLNode
  1412 #define AndXNode     AndLNode
  1413 #define OrXNode      OrLNode
  1414 #define CmpXNode     CmpLNode
  1415 #define SubXNode     SubLNode
  1416 #define LShiftXNode  LShiftLNode
  1417 // For object size computation:
  1418 #define AddXNode     AddLNode
  1419 #define RShiftXNode  RShiftLNode
  1420 // For card marks and hashcodes
  1421 #define URShiftXNode URShiftLNode
  1422 // UseOptoBiasInlining
  1423 #define XorXNode     XorLNode
  1424 #define StoreXConditionalNode StoreLConditionalNode
  1425 // Opcodes
  1426 #define Op_LShiftX   Op_LShiftL
  1427 #define Op_AndX      Op_AndL
  1428 #define Op_AddX      Op_AddL
  1429 #define Op_SubX      Op_SubL
  1430 #define Op_XorX      Op_XorL
  1431 #define Op_URShiftX  Op_URShiftL
  1432 // conversions
  1433 #define ConvI2X(x)   ConvI2L(x)
  1434 #define ConvL2X(x)   (x)
  1435 #define ConvX2I(x)   ConvL2I(x)
  1436 #define ConvX2L(x)   (x)
  1438 #else
  1440 // For type queries and asserts
  1441 #define is_intptr_t  is_int
  1442 #define isa_intptr_t isa_int
  1443 #define find_intptr_t_type find_int_type
  1444 #define find_intptr_t_con  find_int_con
  1445 #define TypeX        TypeInt
  1446 #define Type_X       Type::Int
  1447 #define TypeX_X      TypeInt::INT
  1448 #define TypeX_ZERO   TypeInt::ZERO
  1449 // For 'ideal_reg' machine registers
  1450 #define Op_RegX      Op_RegI
  1451 // For phase->intcon variants
  1452 #define MakeConX     intcon
  1453 #define ConXNode     ConINode
  1454 // For array index arithmetic
  1455 #define MulXNode     MulINode
  1456 #define AndXNode     AndINode
  1457 #define OrXNode      OrINode
  1458 #define CmpXNode     CmpINode
  1459 #define SubXNode     SubINode
  1460 #define LShiftXNode  LShiftINode
  1461 // For object size computation:
  1462 #define AddXNode     AddINode
  1463 #define RShiftXNode  RShiftINode
  1464 // For card marks and hashcodes
  1465 #define URShiftXNode URShiftINode
  1466 // UseOptoBiasInlining
  1467 #define XorXNode     XorINode
  1468 #define StoreXConditionalNode StoreIConditionalNode
  1469 // Opcodes
  1470 #define Op_LShiftX   Op_LShiftI
  1471 #define Op_AndX      Op_AndI
  1472 #define Op_AddX      Op_AddI
  1473 #define Op_SubX      Op_SubI
  1474 #define Op_XorX      Op_XorI
  1475 #define Op_URShiftX  Op_URShiftI
  1476 // conversions
  1477 #define ConvI2X(x)   (x)
  1478 #define ConvL2X(x)   ConvL2I(x)
  1479 #define ConvX2I(x)   (x)
  1480 #define ConvX2L(x)   ConvI2L(x)
  1482 #endif
  1484 #endif // SHARE_VM_OPTO_TYPE_HPP

mercurial