src/share/vm/opto/memnode.cpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/opto/memnode.cpp	Wed Apr 27 01:25:04 2016 +0800
     1.3 @@ -0,0 +1,4576 @@
     1.4 +/*
     1.5 + * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.23 + * or visit www.oracle.com if you need additional information or have any
    1.24 + * questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +#include "precompiled.hpp"
    1.29 +#include "classfile/systemDictionary.hpp"
    1.30 +#include "compiler/compileLog.hpp"
    1.31 +#include "memory/allocation.inline.hpp"
    1.32 +#include "oops/objArrayKlass.hpp"
    1.33 +#include "opto/addnode.hpp"
    1.34 +#include "opto/cfgnode.hpp"
    1.35 +#include "opto/compile.hpp"
    1.36 +#include "opto/connode.hpp"
    1.37 +#include "opto/loopnode.hpp"
    1.38 +#include "opto/machnode.hpp"
    1.39 +#include "opto/matcher.hpp"
    1.40 +#include "opto/memnode.hpp"
    1.41 +#include "opto/mulnode.hpp"
    1.42 +#include "opto/phaseX.hpp"
    1.43 +#include "opto/regmask.hpp"
    1.44 +
    1.45 +// Portions of code courtesy of Clifford Click
    1.46 +
    1.47 +// Optimization - Graph Style
    1.48 +
    1.49 +static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
    1.50 +
    1.51 +//=============================================================================
    1.52 +uint MemNode::size_of() const { return sizeof(*this); }
    1.53 +
    1.54 +const TypePtr *MemNode::adr_type() const {
    1.55 +  Node* adr = in(Address);
    1.56 +  const TypePtr* cross_check = NULL;
    1.57 +  DEBUG_ONLY(cross_check = _adr_type);
    1.58 +  return calculate_adr_type(adr->bottom_type(), cross_check);
    1.59 +}
    1.60 +
    1.61 +#ifndef PRODUCT
    1.62 +void MemNode::dump_spec(outputStream *st) const {
    1.63 +  if (in(Address) == NULL)  return; // node is dead
    1.64 +#ifndef ASSERT
    1.65 +  // fake the missing field
    1.66 +  const TypePtr* _adr_type = NULL;
    1.67 +  if (in(Address) != NULL)
    1.68 +    _adr_type = in(Address)->bottom_type()->isa_ptr();
    1.69 +#endif
    1.70 +  dump_adr_type(this, _adr_type, st);
    1.71 +
    1.72 +  Compile* C = Compile::current();
    1.73 +  if( C->alias_type(_adr_type)->is_volatile() )
    1.74 +    st->print(" Volatile!");
    1.75 +}
    1.76 +
    1.77 +void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    1.78 +  st->print(" @");
    1.79 +  if (adr_type == NULL) {
    1.80 +    st->print("NULL");
    1.81 +  } else {
    1.82 +    adr_type->dump_on(st);
    1.83 +    Compile* C = Compile::current();
    1.84 +    Compile::AliasType* atp = NULL;
    1.85 +    if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    1.86 +    if (atp == NULL)
    1.87 +      st->print(", idx=?\?;");
    1.88 +    else if (atp->index() == Compile::AliasIdxBot)
    1.89 +      st->print(", idx=Bot;");
    1.90 +    else if (atp->index() == Compile::AliasIdxTop)
    1.91 +      st->print(", idx=Top;");
    1.92 +    else if (atp->index() == Compile::AliasIdxRaw)
    1.93 +      st->print(", idx=Raw;");
    1.94 +    else {
    1.95 +      ciField* field = atp->field();
    1.96 +      if (field) {
    1.97 +        st->print(", name=");
    1.98 +        field->print_name_on(st);
    1.99 +      }
   1.100 +      st->print(", idx=%d;", atp->index());
   1.101 +    }
   1.102 +  }
   1.103 +}
   1.104 +
   1.105 +extern void print_alias_types();
   1.106 +
   1.107 +#endif
   1.108 +
   1.109 +Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
   1.110 +  assert((t_oop != NULL), "sanity");
   1.111 +  bool is_instance = t_oop->is_known_instance_field();
   1.112 +  bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
   1.113 +                             (load != NULL) && load->is_Load() &&
   1.114 +                             (phase->is_IterGVN() != NULL);
   1.115 +  if (!(is_instance || is_boxed_value_load))
   1.116 +    return mchain;  // don't try to optimize non-instance types
   1.117 +  uint instance_id = t_oop->instance_id();
   1.118 +  Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
   1.119 +  Node *prev = NULL;
   1.120 +  Node *result = mchain;
   1.121 +  while (prev != result) {
   1.122 +    prev = result;
   1.123 +    if (result == start_mem)
   1.124 +      break;  // hit one of our sentinels
   1.125 +    // skip over a call which does not affect this memory slice
   1.126 +    if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   1.127 +      Node *proj_in = result->in(0);
   1.128 +      if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
   1.129 +        break;  // hit one of our sentinels
   1.130 +      } else if (proj_in->is_Call()) {
   1.131 +        CallNode *call = proj_in->as_Call();
   1.132 +        if (!call->may_modify(t_oop, phase)) { // returns false for instances
   1.133 +          result = call->in(TypeFunc::Memory);
   1.134 +        }
   1.135 +      } else if (proj_in->is_Initialize()) {
   1.136 +        AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   1.137 +        // Stop if this is the initialization for the object instance which
   1.138 +        // which contains this memory slice, otherwise skip over it.
   1.139 +        if ((alloc == NULL) || (alloc->_idx == instance_id)) {
   1.140 +          break;
   1.141 +        }
   1.142 +        if (is_instance) {
   1.143 +          result = proj_in->in(TypeFunc::Memory);
   1.144 +        } else if (is_boxed_value_load) {
   1.145 +          Node* klass = alloc->in(AllocateNode::KlassNode);
   1.146 +          const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
   1.147 +          if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
   1.148 +            result = proj_in->in(TypeFunc::Memory); // not related allocation
   1.149 +          }
   1.150 +        }
   1.151 +      } else if (proj_in->is_MemBar()) {
   1.152 +        result = proj_in->in(TypeFunc::Memory);
   1.153 +      } else {
   1.154 +        assert(false, "unexpected projection");
   1.155 +      }
   1.156 +    } else if (result->is_ClearArray()) {
   1.157 +      if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
   1.158 +        // Can not bypass initialization of the instance
   1.159 +        // we are looking for.
   1.160 +        break;
   1.161 +      }
   1.162 +      // Otherwise skip it (the call updated 'result' value).
   1.163 +    } else if (result->is_MergeMem()) {
   1.164 +      result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
   1.165 +    }
   1.166 +  }
   1.167 +  return result;
   1.168 +}
   1.169 +
   1.170 +Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
   1.171 +  const TypeOopPtr* t_oop = t_adr->isa_oopptr();
   1.172 +  if (t_oop == NULL)
   1.173 +    return mchain;  // don't try to optimize non-oop types
   1.174 +  Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
   1.175 +  bool is_instance = t_oop->is_known_instance_field();
   1.176 +  PhaseIterGVN *igvn = phase->is_IterGVN();
   1.177 +  if (is_instance && igvn != NULL  && result->is_Phi()) {
   1.178 +    PhiNode *mphi = result->as_Phi();
   1.179 +    assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   1.180 +    const TypePtr *t = mphi->adr_type();
   1.181 +    if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
   1.182 +        t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
   1.183 +        t->is_oopptr()->cast_to_exactness(true)
   1.184 +         ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
   1.185 +         ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
   1.186 +      // clone the Phi with our address type
   1.187 +      result = mphi->split_out_instance(t_adr, igvn);
   1.188 +    } else {
   1.189 +      assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
   1.190 +    }
   1.191 +  }
   1.192 +  return result;
   1.193 +}
   1.194 +
   1.195 +static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
   1.196 +  uint alias_idx = phase->C->get_alias_index(tp);
   1.197 +  Node *mem = mmem;
   1.198 +#ifdef ASSERT
   1.199 +  {
   1.200 +    // Check that current type is consistent with the alias index used during graph construction
   1.201 +    assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   1.202 +    bool consistent =  adr_check == NULL || adr_check->empty() ||
   1.203 +                       phase->C->must_alias(adr_check, alias_idx );
   1.204 +    // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   1.205 +    if( !consistent && adr_check != NULL && !adr_check->empty() &&
   1.206 +               tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
   1.207 +        adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
   1.208 +        ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
   1.209 +          adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
   1.210 +          adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   1.211 +      // don't assert if it is dead code.
   1.212 +      consistent = true;
   1.213 +    }
   1.214 +    if( !consistent ) {
   1.215 +      st->print("alias_idx==%d, adr_check==", alias_idx);
   1.216 +      if( adr_check == NULL ) {
   1.217 +        st->print("NULL");
   1.218 +      } else {
   1.219 +        adr_check->dump();
   1.220 +      }
   1.221 +      st->cr();
   1.222 +      print_alias_types();
   1.223 +      assert(consistent, "adr_check must match alias idx");
   1.224 +    }
   1.225 +  }
   1.226 +#endif
   1.227 +  // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
   1.228 +  // means an array I have not precisely typed yet.  Do not do any
   1.229 +  // alias stuff with it any time soon.
   1.230 +  const TypeOopPtr *toop = tp->isa_oopptr();
   1.231 +  if( tp->base() != Type::AnyPtr &&
   1.232 +      !(toop &&
   1.233 +        toop->klass() != NULL &&
   1.234 +        toop->klass()->is_java_lang_Object() &&
   1.235 +        toop->offset() == Type::OffsetBot) ) {
   1.236 +    // compress paths and change unreachable cycles to TOP
   1.237 +    // If not, we can update the input infinitely along a MergeMem cycle
   1.238 +    // Equivalent code in PhiNode::Ideal
   1.239 +    Node* m  = phase->transform(mmem);
   1.240 +    // If transformed to a MergeMem, get the desired slice
   1.241 +    // Otherwise the returned node represents memory for every slice
   1.242 +    mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   1.243 +    // Update input if it is progress over what we have now
   1.244 +  }
   1.245 +  return mem;
   1.246 +}
   1.247 +
   1.248 +//--------------------------Ideal_common---------------------------------------
   1.249 +// Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
   1.250 +// Unhook non-raw memories from complete (macro-expanded) initializations.
   1.251 +Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
   1.252 +  // If our control input is a dead region, kill all below the region
   1.253 +  Node *ctl = in(MemNode::Control);
   1.254 +  if (ctl && remove_dead_region(phase, can_reshape))
   1.255 +    return this;
   1.256 +  ctl = in(MemNode::Control);
   1.257 +  // Don't bother trying to transform a dead node
   1.258 +  if (ctl && ctl->is_top())  return NodeSentinel;
   1.259 +
   1.260 +  PhaseIterGVN *igvn = phase->is_IterGVN();
   1.261 +  // Wait if control on the worklist.
   1.262 +  if (ctl && can_reshape && igvn != NULL) {
   1.263 +    Node* bol = NULL;
   1.264 +    Node* cmp = NULL;
   1.265 +    if (ctl->in(0)->is_If()) {
   1.266 +      assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
   1.267 +      bol = ctl->in(0)->in(1);
   1.268 +      if (bol->is_Bool())
   1.269 +        cmp = ctl->in(0)->in(1)->in(1);
   1.270 +    }
   1.271 +    if (igvn->_worklist.member(ctl) ||
   1.272 +        (bol != NULL && igvn->_worklist.member(bol)) ||
   1.273 +        (cmp != NULL && igvn->_worklist.member(cmp)) ) {
   1.274 +      // This control path may be dead.
   1.275 +      // Delay this memory node transformation until the control is processed.
   1.276 +      phase->is_IterGVN()->_worklist.push(this);
   1.277 +      return NodeSentinel; // caller will return NULL
   1.278 +    }
   1.279 +  }
   1.280 +  // Ignore if memory is dead, or self-loop
   1.281 +  Node *mem = in(MemNode::Memory);
   1.282 +  if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
   1.283 +  assert(mem != this, "dead loop in MemNode::Ideal");
   1.284 +
   1.285 +  if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
   1.286 +    // This memory slice may be dead.
   1.287 +    // Delay this mem node transformation until the memory is processed.
   1.288 +    phase->is_IterGVN()->_worklist.push(this);
   1.289 +    return NodeSentinel; // caller will return NULL
   1.290 +  }
   1.291 +
   1.292 +  Node *address = in(MemNode::Address);
   1.293 +  const Type *t_adr = phase->type(address);
   1.294 +  if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
   1.295 +
   1.296 +  if (can_reshape && igvn != NULL &&
   1.297 +      (igvn->_worklist.member(address) ||
   1.298 +       igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
   1.299 +    // The address's base and type may change when the address is processed.
   1.300 +    // Delay this mem node transformation until the address is processed.
   1.301 +    phase->is_IterGVN()->_worklist.push(this);
   1.302 +    return NodeSentinel; // caller will return NULL
   1.303 +  }
   1.304 +
   1.305 +  // Do NOT remove or optimize the next lines: ensure a new alias index
   1.306 +  // is allocated for an oop pointer type before Escape Analysis.
   1.307 +  // Note: C++ will not remove it since the call has side effect.
   1.308 +  if (t_adr->isa_oopptr()) {
   1.309 +    int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
   1.310 +  }
   1.311 +
   1.312 +  Node* base = NULL;
   1.313 +  if (address->is_AddP()) {
   1.314 +    base = address->in(AddPNode::Base);
   1.315 +  }
   1.316 +  if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
   1.317 +      !t_adr->isa_rawptr()) {
   1.318 +    // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
   1.319 +    // Skip this node optimization if its address has TOP base.
   1.320 +    return NodeSentinel; // caller will return NULL
   1.321 +  }
   1.322 +
   1.323 +  // Avoid independent memory operations
   1.324 +  Node* old_mem = mem;
   1.325 +
   1.326 +  // The code which unhooks non-raw memories from complete (macro-expanded)
   1.327 +  // initializations was removed. After macro-expansion all stores catched
   1.328 +  // by Initialize node became raw stores and there is no information
   1.329 +  // which memory slices they modify. So it is unsafe to move any memory
   1.330 +  // operation above these stores. Also in most cases hooked non-raw memories
   1.331 +  // were already unhooked by using information from detect_ptr_independence()
   1.332 +  // and find_previous_store().
   1.333 +
   1.334 +  if (mem->is_MergeMem()) {
   1.335 +    MergeMemNode* mmem = mem->as_MergeMem();
   1.336 +    const TypePtr *tp = t_adr->is_ptr();
   1.337 +
   1.338 +    mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
   1.339 +  }
   1.340 +
   1.341 +  if (mem != old_mem) {
   1.342 +    set_req(MemNode::Memory, mem);
   1.343 +    if (can_reshape && old_mem->outcnt() == 0) {
   1.344 +        igvn->_worklist.push(old_mem);
   1.345 +    }
   1.346 +    if (phase->type( mem ) == Type::TOP) return NodeSentinel;
   1.347 +    return this;
   1.348 +  }
   1.349 +
   1.350 +  // let the subclass continue analyzing...
   1.351 +  return NULL;
   1.352 +}
   1.353 +
   1.354 +// Helper function for proving some simple control dominations.
   1.355 +// Attempt to prove that all control inputs of 'dom' dominate 'sub'.
   1.356 +// Already assumes that 'dom' is available at 'sub', and that 'sub'
   1.357 +// is not a constant (dominated by the method's StartNode).
   1.358 +// Used by MemNode::find_previous_store to prove that the
   1.359 +// control input of a memory operation predates (dominates)
   1.360 +// an allocation it wants to look past.
   1.361 +bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
   1.362 +  if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
   1.363 +    return false; // Conservative answer for dead code
   1.364 +
   1.365 +  // Check 'dom'. Skip Proj and CatchProj nodes.
   1.366 +  dom = dom->find_exact_control(dom);
   1.367 +  if (dom == NULL || dom->is_top())
   1.368 +    return false; // Conservative answer for dead code
   1.369 +
   1.370 +  if (dom == sub) {
   1.371 +    // For the case when, for example, 'sub' is Initialize and the original
   1.372 +    // 'dom' is Proj node of the 'sub'.
   1.373 +    return false;
   1.374 +  }
   1.375 +
   1.376 +  if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
   1.377 +    return true;
   1.378 +
   1.379 +  // 'dom' dominates 'sub' if its control edge and control edges
   1.380 +  // of all its inputs dominate or equal to sub's control edge.
   1.381 +
   1.382 +  // Currently 'sub' is either Allocate, Initialize or Start nodes.
   1.383 +  // Or Region for the check in LoadNode::Ideal();
   1.384 +  // 'sub' should have sub->in(0) != NULL.
   1.385 +  assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
   1.386 +         sub->is_Region() || sub->is_Call(), "expecting only these nodes");
   1.387 +
   1.388 +  // Get control edge of 'sub'.
   1.389 +  Node* orig_sub = sub;
   1.390 +  sub = sub->find_exact_control(sub->in(0));
   1.391 +  if (sub == NULL || sub->is_top())
   1.392 +    return false; // Conservative answer for dead code
   1.393 +
   1.394 +  assert(sub->is_CFG(), "expecting control");
   1.395 +
   1.396 +  if (sub == dom)
   1.397 +    return true;
   1.398 +
   1.399 +  if (sub->is_Start() || sub->is_Root())
   1.400 +    return false;
   1.401 +
   1.402 +  {
   1.403 +    // Check all control edges of 'dom'.
   1.404 +
   1.405 +    ResourceMark rm;
   1.406 +    Arena* arena = Thread::current()->resource_area();
   1.407 +    Node_List nlist(arena);
   1.408 +    Unique_Node_List dom_list(arena);
   1.409 +
   1.410 +    dom_list.push(dom);
   1.411 +    bool only_dominating_controls = false;
   1.412 +
   1.413 +    for (uint next = 0; next < dom_list.size(); next++) {
   1.414 +      Node* n = dom_list.at(next);
   1.415 +      if (n == orig_sub)
   1.416 +        return false; // One of dom's inputs dominated by sub.
   1.417 +      if (!n->is_CFG() && n->pinned()) {
   1.418 +        // Check only own control edge for pinned non-control nodes.
   1.419 +        n = n->find_exact_control(n->in(0));
   1.420 +        if (n == NULL || n->is_top())
   1.421 +          return false; // Conservative answer for dead code
   1.422 +        assert(n->is_CFG(), "expecting control");
   1.423 +        dom_list.push(n);
   1.424 +      } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
   1.425 +        only_dominating_controls = true;
   1.426 +      } else if (n->is_CFG()) {
   1.427 +        if (n->dominates(sub, nlist))
   1.428 +          only_dominating_controls = true;
   1.429 +        else
   1.430 +          return false;
   1.431 +      } else {
   1.432 +        // First, own control edge.
   1.433 +        Node* m = n->find_exact_control(n->in(0));
   1.434 +        if (m != NULL) {
   1.435 +          if (m->is_top())
   1.436 +            return false; // Conservative answer for dead code
   1.437 +          dom_list.push(m);
   1.438 +        }
   1.439 +        // Now, the rest of edges.
   1.440 +        uint cnt = n->req();
   1.441 +        for (uint i = 1; i < cnt; i++) {
   1.442 +          m = n->find_exact_control(n->in(i));
   1.443 +          if (m == NULL || m->is_top())
   1.444 +            continue;
   1.445 +          dom_list.push(m);
   1.446 +        }
   1.447 +      }
   1.448 +    }
   1.449 +    return only_dominating_controls;
   1.450 +  }
   1.451 +}
   1.452 +
   1.453 +//---------------------detect_ptr_independence---------------------------------
   1.454 +// Used by MemNode::find_previous_store to prove that two base
   1.455 +// pointers are never equal.
   1.456 +// The pointers are accompanied by their associated allocations,
   1.457 +// if any, which have been previously discovered by the caller.
   1.458 +bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   1.459 +                                      Node* p2, AllocateNode* a2,
   1.460 +                                      PhaseTransform* phase) {
   1.461 +  // Attempt to prove that these two pointers cannot be aliased.
   1.462 +  // They may both manifestly be allocations, and they should differ.
   1.463 +  // Or, if they are not both allocations, they can be distinct constants.
   1.464 +  // Otherwise, one is an allocation and the other a pre-existing value.
   1.465 +  if (a1 == NULL && a2 == NULL) {           // neither an allocation
   1.466 +    return (p1 != p2) && p1->is_Con() && p2->is_Con();
   1.467 +  } else if (a1 != NULL && a2 != NULL) {    // both allocations
   1.468 +    return (a1 != a2);
   1.469 +  } else if (a1 != NULL) {                  // one allocation a1
   1.470 +    // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   1.471 +    return all_controls_dominate(p2, a1);
   1.472 +  } else { //(a2 != NULL)                   // one allocation a2
   1.473 +    return all_controls_dominate(p1, a2);
   1.474 +  }
   1.475 +  return false;
   1.476 +}
   1.477 +
   1.478 +
   1.479 +// The logic for reordering loads and stores uses four steps:
   1.480 +// (a) Walk carefully past stores and initializations which we
   1.481 +//     can prove are independent of this load.
   1.482 +// (b) Observe that the next memory state makes an exact match
   1.483 +//     with self (load or store), and locate the relevant store.
   1.484 +// (c) Ensure that, if we were to wire self directly to the store,
   1.485 +//     the optimizer would fold it up somehow.
   1.486 +// (d) Do the rewiring, and return, depending on some other part of
   1.487 +//     the optimizer to fold up the load.
   1.488 +// This routine handles steps (a) and (b).  Steps (c) and (d) are
   1.489 +// specific to loads and stores, so they are handled by the callers.
   1.490 +// (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   1.491 +//
   1.492 +Node* MemNode::find_previous_store(PhaseTransform* phase) {
   1.493 +  Node*         ctrl   = in(MemNode::Control);
   1.494 +  Node*         adr    = in(MemNode::Address);
   1.495 +  intptr_t      offset = 0;
   1.496 +  Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   1.497 +  AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   1.498 +
   1.499 +  if (offset == Type::OffsetBot)
   1.500 +    return NULL;            // cannot unalias unless there are precise offsets
   1.501 +
   1.502 +  const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
   1.503 +
   1.504 +  intptr_t size_in_bytes = memory_size();
   1.505 +
   1.506 +  Node* mem = in(MemNode::Memory);   // start searching here...
   1.507 +
   1.508 +  int cnt = 50;             // Cycle limiter
   1.509 +  for (;;) {                // While we can dance past unrelated stores...
   1.510 +    if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   1.511 +
   1.512 +    if (mem->is_Store()) {
   1.513 +      Node* st_adr = mem->in(MemNode::Address);
   1.514 +      intptr_t st_offset = 0;
   1.515 +      Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   1.516 +      if (st_base == NULL)
   1.517 +        break;              // inscrutable pointer
   1.518 +      if (st_offset != offset && st_offset != Type::OffsetBot) {
   1.519 +        const int MAX_STORE = BytesPerLong;
   1.520 +        if (st_offset >= offset + size_in_bytes ||
   1.521 +            st_offset <= offset - MAX_STORE ||
   1.522 +            st_offset <= offset - mem->as_Store()->memory_size()) {
   1.523 +          // Success:  The offsets are provably independent.
   1.524 +          // (You may ask, why not just test st_offset != offset and be done?
   1.525 +          // The answer is that stores of different sizes can co-exist
   1.526 +          // in the same sequence of RawMem effects.  We sometimes initialize
   1.527 +          // a whole 'tile' of array elements with a single jint or jlong.)
   1.528 +          mem = mem->in(MemNode::Memory);
   1.529 +          continue;           // (a) advance through independent store memory
   1.530 +        }
   1.531 +      }
   1.532 +      if (st_base != base &&
   1.533 +          detect_ptr_independence(base, alloc,
   1.534 +                                  st_base,
   1.535 +                                  AllocateNode::Ideal_allocation(st_base, phase),
   1.536 +                                  phase)) {
   1.537 +        // Success:  The bases are provably independent.
   1.538 +        mem = mem->in(MemNode::Memory);
   1.539 +        continue;           // (a) advance through independent store memory
   1.540 +      }
   1.541 +
   1.542 +      // (b) At this point, if the bases or offsets do not agree, we lose,
   1.543 +      // since we have not managed to prove 'this' and 'mem' independent.
   1.544 +      if (st_base == base && st_offset == offset) {
   1.545 +        return mem;         // let caller handle steps (c), (d)
   1.546 +      }
   1.547 +
   1.548 +    } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   1.549 +      InitializeNode* st_init = mem->in(0)->as_Initialize();
   1.550 +      AllocateNode*  st_alloc = st_init->allocation();
   1.551 +      if (st_alloc == NULL)
   1.552 +        break;              // something degenerated
   1.553 +      bool known_identical = false;
   1.554 +      bool known_independent = false;
   1.555 +      if (alloc == st_alloc)
   1.556 +        known_identical = true;
   1.557 +      else if (alloc != NULL)
   1.558 +        known_independent = true;
   1.559 +      else if (all_controls_dominate(this, st_alloc))
   1.560 +        known_independent = true;
   1.561 +
   1.562 +      if (known_independent) {
   1.563 +        // The bases are provably independent: Either they are
   1.564 +        // manifestly distinct allocations, or else the control
   1.565 +        // of this load dominates the store's allocation.
   1.566 +        int alias_idx = phase->C->get_alias_index(adr_type());
   1.567 +        if (alias_idx == Compile::AliasIdxRaw) {
   1.568 +          mem = st_alloc->in(TypeFunc::Memory);
   1.569 +        } else {
   1.570 +          mem = st_init->memory(alias_idx);
   1.571 +        }
   1.572 +        continue;           // (a) advance through independent store memory
   1.573 +      }
   1.574 +
   1.575 +      // (b) at this point, if we are not looking at a store initializing
   1.576 +      // the same allocation we are loading from, we lose.
   1.577 +      if (known_identical) {
   1.578 +        // From caller, can_see_stored_value will consult find_captured_store.
   1.579 +        return mem;         // let caller handle steps (c), (d)
   1.580 +      }
   1.581 +
   1.582 +    } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
   1.583 +      // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
   1.584 +      if (mem->is_Proj() && mem->in(0)->is_Call()) {
   1.585 +        CallNode *call = mem->in(0)->as_Call();
   1.586 +        if (!call->may_modify(addr_t, phase)) {
   1.587 +          mem = call->in(TypeFunc::Memory);
   1.588 +          continue;         // (a) advance through independent call memory
   1.589 +        }
   1.590 +      } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
   1.591 +        mem = mem->in(0)->in(TypeFunc::Memory);
   1.592 +        continue;           // (a) advance through independent MemBar memory
   1.593 +      } else if (mem->is_ClearArray()) {
   1.594 +        if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
   1.595 +          // (the call updated 'mem' value)
   1.596 +          continue;         // (a) advance through independent allocation memory
   1.597 +        } else {
   1.598 +          // Can not bypass initialization of the instance
   1.599 +          // we are looking for.
   1.600 +          return mem;
   1.601 +        }
   1.602 +      } else if (mem->is_MergeMem()) {
   1.603 +        int alias_idx = phase->C->get_alias_index(adr_type());
   1.604 +        mem = mem->as_MergeMem()->memory_at(alias_idx);
   1.605 +        continue;           // (a) advance through independent MergeMem memory
   1.606 +      }
   1.607 +    }
   1.608 +
   1.609 +    // Unless there is an explicit 'continue', we must bail out here,
   1.610 +    // because 'mem' is an inscrutable memory state (e.g., a call).
   1.611 +    break;
   1.612 +  }
   1.613 +
   1.614 +  return NULL;              // bail out
   1.615 +}
   1.616 +
   1.617 +//----------------------calculate_adr_type-------------------------------------
   1.618 +// Helper function.  Notices when the given type of address hits top or bottom.
   1.619 +// Also, asserts a cross-check of the type against the expected address type.
   1.620 +const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   1.621 +  if (t == Type::TOP)  return NULL; // does not touch memory any more?
   1.622 +  #ifdef PRODUCT
   1.623 +  cross_check = NULL;
   1.624 +  #else
   1.625 +  if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   1.626 +  #endif
   1.627 +  const TypePtr* tp = t->isa_ptr();
   1.628 +  if (tp == NULL) {
   1.629 +    assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   1.630 +    return TypePtr::BOTTOM;           // touches lots of memory
   1.631 +  } else {
   1.632 +    #ifdef ASSERT
   1.633 +    // %%%% [phh] We don't check the alias index if cross_check is
   1.634 +    //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   1.635 +    if (cross_check != NULL &&
   1.636 +        cross_check != TypePtr::BOTTOM &&
   1.637 +        cross_check != TypeRawPtr::BOTTOM) {
   1.638 +      // Recheck the alias index, to see if it has changed (due to a bug).
   1.639 +      Compile* C = Compile::current();
   1.640 +      assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   1.641 +             "must stay in the original alias category");
   1.642 +      // The type of the address must be contained in the adr_type,
   1.643 +      // disregarding "null"-ness.
   1.644 +      // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   1.645 +      const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   1.646 +      assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
   1.647 +             "real address must not escape from expected memory type");
   1.648 +    }
   1.649 +    #endif
   1.650 +    return tp;
   1.651 +  }
   1.652 +}
   1.653 +
   1.654 +//------------------------adr_phi_is_loop_invariant----------------------------
   1.655 +// A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   1.656 +// loop is loop invariant. Make a quick traversal of Phi and associated
   1.657 +// CastPP nodes, looking to see if they are a closed group within the loop.
   1.658 +bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   1.659 +  // The idea is that the phi-nest must boil down to only CastPP nodes
   1.660 +  // with the same data. This implies that any path into the loop already
   1.661 +  // includes such a CastPP, and so the original cast, whatever its input,
   1.662 +  // must be covered by an equivalent cast, with an earlier control input.
   1.663 +  ResourceMark rm;
   1.664 +
   1.665 +  // The loop entry input of the phi should be the unique dominating
   1.666 +  // node for every Phi/CastPP in the loop.
   1.667 +  Unique_Node_List closure;
   1.668 +  closure.push(adr_phi->in(LoopNode::EntryControl));
   1.669 +
   1.670 +  // Add the phi node and the cast to the worklist.
   1.671 +  Unique_Node_List worklist;
   1.672 +  worklist.push(adr_phi);
   1.673 +  if( cast != NULL ){
   1.674 +    if( !cast->is_ConstraintCast() ) return false;
   1.675 +    worklist.push(cast);
   1.676 +  }
   1.677 +
   1.678 +  // Begin recursive walk of phi nodes.
   1.679 +  while( worklist.size() ){
   1.680 +    // Take a node off the worklist
   1.681 +    Node *n = worklist.pop();
   1.682 +    if( !closure.member(n) ){
   1.683 +      // Add it to the closure.
   1.684 +      closure.push(n);
   1.685 +      // Make a sanity check to ensure we don't waste too much time here.
   1.686 +      if( closure.size() > 20) return false;
   1.687 +      // This node is OK if:
   1.688 +      //  - it is a cast of an identical value
   1.689 +      //  - or it is a phi node (then we add its inputs to the worklist)
   1.690 +      // Otherwise, the node is not OK, and we presume the cast is not invariant
   1.691 +      if( n->is_ConstraintCast() ){
   1.692 +        worklist.push(n->in(1));
   1.693 +      } else if( n->is_Phi() ) {
   1.694 +        for( uint i = 1; i < n->req(); i++ ) {
   1.695 +          worklist.push(n->in(i));
   1.696 +        }
   1.697 +      } else {
   1.698 +        return false;
   1.699 +      }
   1.700 +    }
   1.701 +  }
   1.702 +
   1.703 +  // Quit when the worklist is empty, and we've found no offending nodes.
   1.704 +  return true;
   1.705 +}
   1.706 +
   1.707 +//------------------------------Ideal_DU_postCCP-------------------------------
   1.708 +// Find any cast-away of null-ness and keep its control.  Null cast-aways are
   1.709 +// going away in this pass and we need to make this memory op depend on the
   1.710 +// gating null check.
   1.711 +Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   1.712 +  return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
   1.713 +}
   1.714 +
   1.715 +// I tried to leave the CastPP's in.  This makes the graph more accurate in
   1.716 +// some sense; we get to keep around the knowledge that an oop is not-null
   1.717 +// after some test.  Alas, the CastPP's interfere with GVN (some values are
   1.718 +// the regular oop, some are the CastPP of the oop, all merge at Phi's which
   1.719 +// cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   1.720 +// some of the more trivial cases in the optimizer.  Removing more useless
   1.721 +// Phi's started allowing Loads to illegally float above null checks.  I gave
   1.722 +// up on this approach.  CNC 10/20/2000
   1.723 +// This static method may be called not from MemNode (EncodePNode calls it).
   1.724 +// Only the control edge of the node 'n' might be updated.
   1.725 +Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
   1.726 +  Node *skipped_cast = NULL;
   1.727 +  // Need a null check?  Regular static accesses do not because they are
   1.728 +  // from constant addresses.  Array ops are gated by the range check (which
   1.729 +  // always includes a NULL check).  Just check field ops.
   1.730 +  if( n->in(MemNode::Control) == NULL ) {
   1.731 +    // Scan upwards for the highest location we can place this memory op.
   1.732 +    while( true ) {
   1.733 +      switch( adr->Opcode() ) {
   1.734 +
   1.735 +      case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   1.736 +        adr = adr->in(AddPNode::Base);
   1.737 +        continue;
   1.738 +
   1.739 +      case Op_DecodeN:         // No change to NULL-ness, so peek thru
   1.740 +      case Op_DecodeNKlass:
   1.741 +        adr = adr->in(1);
   1.742 +        continue;
   1.743 +
   1.744 +      case Op_EncodeP:
   1.745 +      case Op_EncodePKlass:
   1.746 +        // EncodeP node's control edge could be set by this method
   1.747 +        // when EncodeP node depends on CastPP node.
   1.748 +        //
   1.749 +        // Use its control edge for memory op because EncodeP may go away
   1.750 +        // later when it is folded with following or preceding DecodeN node.
   1.751 +        if (adr->in(0) == NULL) {
   1.752 +          // Keep looking for cast nodes.
   1.753 +          adr = adr->in(1);
   1.754 +          continue;
   1.755 +        }
   1.756 +        ccp->hash_delete(n);
   1.757 +        n->set_req(MemNode::Control, adr->in(0));
   1.758 +        ccp->hash_insert(n);
   1.759 +        return n;
   1.760 +
   1.761 +      case Op_CastPP:
   1.762 +        // If the CastPP is useless, just peek on through it.
   1.763 +        if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   1.764 +          // Remember the cast that we've peeked though. If we peek
   1.765 +          // through more than one, then we end up remembering the highest
   1.766 +          // one, that is, if in a loop, the one closest to the top.
   1.767 +          skipped_cast = adr;
   1.768 +          adr = adr->in(1);
   1.769 +          continue;
   1.770 +        }
   1.771 +        // CastPP is going away in this pass!  We need this memory op to be
   1.772 +        // control-dependent on the test that is guarding the CastPP.
   1.773 +        ccp->hash_delete(n);
   1.774 +        n->set_req(MemNode::Control, adr->in(0));
   1.775 +        ccp->hash_insert(n);
   1.776 +        return n;
   1.777 +
   1.778 +      case Op_Phi:
   1.779 +        // Attempt to float above a Phi to some dominating point.
   1.780 +        if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   1.781 +          // If we've already peeked through a Cast (which could have set the
   1.782 +          // control), we can't float above a Phi, because the skipped Cast
   1.783 +          // may not be loop invariant.
   1.784 +          if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   1.785 +            adr = adr->in(1);
   1.786 +            continue;
   1.787 +          }
   1.788 +        }
   1.789 +
   1.790 +        // Intentional fallthrough!
   1.791 +
   1.792 +        // No obvious dominating point.  The mem op is pinned below the Phi
   1.793 +        // by the Phi itself.  If the Phi goes away (no true value is merged)
   1.794 +        // then the mem op can float, but not indefinitely.  It must be pinned
   1.795 +        // behind the controls leading to the Phi.
   1.796 +      case Op_CheckCastPP:
   1.797 +        // These usually stick around to change address type, however a
   1.798 +        // useless one can be elided and we still need to pick up a control edge
   1.799 +        if (adr->in(0) == NULL) {
   1.800 +          // This CheckCastPP node has NO control and is likely useless. But we
   1.801 +          // need check further up the ancestor chain for a control input to keep
   1.802 +          // the node in place. 4959717.
   1.803 +          skipped_cast = adr;
   1.804 +          adr = adr->in(1);
   1.805 +          continue;
   1.806 +        }
   1.807 +        ccp->hash_delete(n);
   1.808 +        n->set_req(MemNode::Control, adr->in(0));
   1.809 +        ccp->hash_insert(n);
   1.810 +        return n;
   1.811 +
   1.812 +        // List of "safe" opcodes; those that implicitly block the memory
   1.813 +        // op below any null check.
   1.814 +      case Op_CastX2P:          // no null checks on native pointers
   1.815 +      case Op_Parm:             // 'this' pointer is not null
   1.816 +      case Op_LoadP:            // Loading from within a klass
   1.817 +      case Op_LoadN:            // Loading from within a klass
   1.818 +      case Op_LoadKlass:        // Loading from within a klass
   1.819 +      case Op_LoadNKlass:       // Loading from within a klass
   1.820 +      case Op_ConP:             // Loading from a klass
   1.821 +      case Op_ConN:             // Loading from a klass
   1.822 +      case Op_ConNKlass:        // Loading from a klass
   1.823 +      case Op_CreateEx:         // Sucking up the guts of an exception oop
   1.824 +      case Op_Con:              // Reading from TLS
   1.825 +      case Op_CMoveP:           // CMoveP is pinned
   1.826 +      case Op_CMoveN:           // CMoveN is pinned
   1.827 +        break;                  // No progress
   1.828 +
   1.829 +      case Op_Proj:             // Direct call to an allocation routine
   1.830 +      case Op_SCMemProj:        // Memory state from store conditional ops
   1.831 +#ifdef ASSERT
   1.832 +        {
   1.833 +          assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   1.834 +          const Node* call = adr->in(0);
   1.835 +          if (call->is_CallJava()) {
   1.836 +            const CallJavaNode* call_java = call->as_CallJava();
   1.837 +            const TypeTuple *r = call_java->tf()->range();
   1.838 +            assert(r->cnt() > TypeFunc::Parms, "must return value");
   1.839 +            const Type* ret_type = r->field_at(TypeFunc::Parms);
   1.840 +            assert(ret_type && ret_type->isa_ptr(), "must return pointer");
   1.841 +            // We further presume that this is one of
   1.842 +            // new_instance_Java, new_array_Java, or
   1.843 +            // the like, but do not assert for this.
   1.844 +          } else if (call->is_Allocate()) {
   1.845 +            // similar case to new_instance_Java, etc.
   1.846 +          } else if (!call->is_CallLeaf()) {
   1.847 +            // Projections from fetch_oop (OSR) are allowed as well.
   1.848 +            ShouldNotReachHere();
   1.849 +          }
   1.850 +        }
   1.851 +#endif
   1.852 +        break;
   1.853 +      default:
   1.854 +        ShouldNotReachHere();
   1.855 +      }
   1.856 +      break;
   1.857 +    }
   1.858 +  }
   1.859 +
   1.860 +  return  NULL;               // No progress
   1.861 +}
   1.862 +
   1.863 +
   1.864 +//=============================================================================
   1.865 +uint LoadNode::size_of() const { return sizeof(*this); }
   1.866 +uint LoadNode::cmp( const Node &n ) const
   1.867 +{ return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   1.868 +const Type *LoadNode::bottom_type() const { return _type; }
   1.869 +uint LoadNode::ideal_reg() const {
   1.870 +  return _type->ideal_reg();
   1.871 +}
   1.872 +
   1.873 +#ifndef PRODUCT
   1.874 +void LoadNode::dump_spec(outputStream *st) const {
   1.875 +  MemNode::dump_spec(st);
   1.876 +  if( !Verbose && !WizardMode ) {
   1.877 +    // standard dump does this in Verbose and WizardMode
   1.878 +    st->print(" #"); _type->dump_on(st);
   1.879 +  }
   1.880 +}
   1.881 +#endif
   1.882 +
   1.883 +#ifdef ASSERT
   1.884 +//----------------------------is_immutable_value-------------------------------
   1.885 +// Helper function to allow a raw load without control edge for some cases
   1.886 +bool LoadNode::is_immutable_value(Node* adr) {
   1.887 +  return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
   1.888 +          adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
   1.889 +          (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
   1.890 +           in_bytes(JavaThread::osthread_offset())));
   1.891 +}
   1.892 +#endif
   1.893 +
   1.894 +//----------------------------LoadNode::make-----------------------------------
   1.895 +// Polymorphic factory method:
   1.896 +Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo) {
   1.897 +  Compile* C = gvn.C;
   1.898 +
   1.899 +  // sanity check the alias category against the created node type
   1.900 +  assert(!(adr_type->isa_oopptr() &&
   1.901 +           adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   1.902 +         "use LoadKlassNode instead");
   1.903 +  assert(!(adr_type->isa_aryptr() &&
   1.904 +           adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   1.905 +         "use LoadRangeNode instead");
   1.906 +  // Check control edge of raw loads
   1.907 +  assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
   1.908 +          // oop will be recorded in oop map if load crosses safepoint
   1.909 +          rt->isa_oopptr() || is_immutable_value(adr),
   1.910 +          "raw memory operations should have control edge");
   1.911 +  switch (bt) {
   1.912 +  case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo);
   1.913 +  case T_BYTE:    return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
   1.914 +  case T_INT:     return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
   1.915 +  case T_CHAR:    return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo);
   1.916 +  case T_SHORT:   return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
   1.917 +  case T_LONG:    return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo);
   1.918 +  case T_FLOAT:   return new (C) LoadFNode (ctl, mem, adr, adr_type, rt,            mo);
   1.919 +  case T_DOUBLE:  return new (C) LoadDNode (ctl, mem, adr, adr_type, rt,            mo);
   1.920 +  case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo);
   1.921 +  case T_OBJECT:
   1.922 +#ifdef _LP64
   1.923 +    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
   1.924 +      Node* load  = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo));
   1.925 +      return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
   1.926 +    } else
   1.927 +#endif
   1.928 +    {
   1.929 +      assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
   1.930 +      return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr(), mo);
   1.931 +    }
   1.932 +  }
   1.933 +  ShouldNotReachHere();
   1.934 +  return (LoadNode*)NULL;
   1.935 +}
   1.936 +
   1.937 +LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo) {
   1.938 +  bool require_atomic = true;
   1.939 +  return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, require_atomic);
   1.940 +}
   1.941 +
   1.942 +
   1.943 +
   1.944 +
   1.945 +//------------------------------hash-------------------------------------------
   1.946 +uint LoadNode::hash() const {
   1.947 +  // unroll addition of interesting fields
   1.948 +  return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   1.949 +}
   1.950 +
   1.951 +static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
   1.952 +  if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
   1.953 +    bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
   1.954 +    bool is_stable_ary = FoldStableValues &&
   1.955 +                         (tp != NULL) && (tp->isa_aryptr() != NULL) &&
   1.956 +                         tp->isa_aryptr()->is_stable();
   1.957 +
   1.958 +    return (eliminate_boxing && non_volatile) || is_stable_ary;
   1.959 +  }
   1.960 +
   1.961 +  return false;
   1.962 +}
   1.963 +
   1.964 +//---------------------------can_see_stored_value------------------------------
   1.965 +// This routine exists to make sure this set of tests is done the same
   1.966 +// everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   1.967 +// will change the graph shape in a way which makes memory alive twice at the
   1.968 +// same time (uses the Oracle model of aliasing), then some
   1.969 +// LoadXNode::Identity will fold things back to the equivalence-class model
   1.970 +// of aliasing.
   1.971 +Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   1.972 +  Node* ld_adr = in(MemNode::Address);
   1.973 +  intptr_t ld_off = 0;
   1.974 +  AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   1.975 +  const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   1.976 +  Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
   1.977 +  // This is more general than load from boxing objects.
   1.978 +  if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
   1.979 +    uint alias_idx = atp->index();
   1.980 +    bool final = !atp->is_rewritable();
   1.981 +    Node* result = NULL;
   1.982 +    Node* current = st;
   1.983 +    // Skip through chains of MemBarNodes checking the MergeMems for
   1.984 +    // new states for the slice of this load.  Stop once any other
   1.985 +    // kind of node is encountered.  Loads from final memory can skip
   1.986 +    // through any kind of MemBar but normal loads shouldn't skip
   1.987 +    // through MemBarAcquire since the could allow them to move out of
   1.988 +    // a synchronized region.
   1.989 +    while (current->is_Proj()) {
   1.990 +      int opc = current->in(0)->Opcode();
   1.991 +      if ((final && (opc == Op_MemBarAcquire ||
   1.992 +                     opc == Op_MemBarAcquireLock ||
   1.993 +                     opc == Op_LoadFence)) ||
   1.994 +          opc == Op_MemBarRelease ||
   1.995 +          opc == Op_StoreFence ||
   1.996 +          opc == Op_MemBarReleaseLock ||
   1.997 +          opc == Op_MemBarCPUOrder) {
   1.998 +        Node* mem = current->in(0)->in(TypeFunc::Memory);
   1.999 +        if (mem->is_MergeMem()) {
  1.1000 +          MergeMemNode* merge = mem->as_MergeMem();
  1.1001 +          Node* new_st = merge->memory_at(alias_idx);
  1.1002 +          if (new_st == merge->base_memory()) {
  1.1003 +            // Keep searching
  1.1004 +            current = new_st;
  1.1005 +            continue;
  1.1006 +          }
  1.1007 +          // Save the new memory state for the slice and fall through
  1.1008 +          // to exit.
  1.1009 +          result = new_st;
  1.1010 +        }
  1.1011 +      }
  1.1012 +      break;
  1.1013 +    }
  1.1014 +    if (result != NULL) {
  1.1015 +      st = result;
  1.1016 +    }
  1.1017 +  }
  1.1018 +
  1.1019 +  // Loop around twice in the case Load -> Initialize -> Store.
  1.1020 +  // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
  1.1021 +  for (int trip = 0; trip <= 1; trip++) {
  1.1022 +
  1.1023 +    if (st->is_Store()) {
  1.1024 +      Node* st_adr = st->in(MemNode::Address);
  1.1025 +      if (!phase->eqv(st_adr, ld_adr)) {
  1.1026 +        // Try harder before giving up...  Match raw and non-raw pointers.
  1.1027 +        intptr_t st_off = 0;
  1.1028 +        AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
  1.1029 +        if (alloc == NULL)       return NULL;
  1.1030 +        if (alloc != ld_alloc)   return NULL;
  1.1031 +        if (ld_off != st_off)    return NULL;
  1.1032 +        // At this point we have proven something like this setup:
  1.1033 +        //  A = Allocate(...)
  1.1034 +        //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
  1.1035 +        //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
  1.1036 +        // (Actually, we haven't yet proven the Q's are the same.)
  1.1037 +        // In other words, we are loading from a casted version of
  1.1038 +        // the same pointer-and-offset that we stored to.
  1.1039 +        // Thus, we are able to replace L by V.
  1.1040 +      }
  1.1041 +      // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
  1.1042 +      if (store_Opcode() != st->Opcode())
  1.1043 +        return NULL;
  1.1044 +      return st->in(MemNode::ValueIn);
  1.1045 +    }
  1.1046 +
  1.1047 +    // A load from a freshly-created object always returns zero.
  1.1048 +    // (This can happen after LoadNode::Ideal resets the load's memory input
  1.1049 +    // to find_captured_store, which returned InitializeNode::zero_memory.)
  1.1050 +    if (st->is_Proj() && st->in(0)->is_Allocate() &&
  1.1051 +        (st->in(0) == ld_alloc) &&
  1.1052 +        (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
  1.1053 +      // return a zero value for the load's basic type
  1.1054 +      // (This is one of the few places where a generic PhaseTransform
  1.1055 +      // can create new nodes.  Think of it as lazily manifesting
  1.1056 +      // virtually pre-existing constants.)
  1.1057 +      return phase->zerocon(memory_type());
  1.1058 +    }
  1.1059 +
  1.1060 +    // A load from an initialization barrier can match a captured store.
  1.1061 +    if (st->is_Proj() && st->in(0)->is_Initialize()) {
  1.1062 +      InitializeNode* init = st->in(0)->as_Initialize();
  1.1063 +      AllocateNode* alloc = init->allocation();
  1.1064 +      if ((alloc != NULL) && (alloc == ld_alloc)) {
  1.1065 +        // examine a captured store value
  1.1066 +        st = init->find_captured_store(ld_off, memory_size(), phase);
  1.1067 +        if (st != NULL)
  1.1068 +          continue;             // take one more trip around
  1.1069 +      }
  1.1070 +    }
  1.1071 +
  1.1072 +    // Load boxed value from result of valueOf() call is input parameter.
  1.1073 +    if (this->is_Load() && ld_adr->is_AddP() &&
  1.1074 +        (tp != NULL) && tp->is_ptr_to_boxed_value()) {
  1.1075 +      intptr_t ignore = 0;
  1.1076 +      Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
  1.1077 +      if (base != NULL && base->is_Proj() &&
  1.1078 +          base->as_Proj()->_con == TypeFunc::Parms &&
  1.1079 +          base->in(0)->is_CallStaticJava() &&
  1.1080 +          base->in(0)->as_CallStaticJava()->is_boxing_method()) {
  1.1081 +        return base->in(0)->in(TypeFunc::Parms);
  1.1082 +      }
  1.1083 +    }
  1.1084 +
  1.1085 +    break;
  1.1086 +  }
  1.1087 +
  1.1088 +  return NULL;
  1.1089 +}
  1.1090 +
  1.1091 +//----------------------is_instance_field_load_with_local_phi------------------
  1.1092 +bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
  1.1093 +  if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
  1.1094 +      in(Address)->is_AddP() ) {
  1.1095 +    const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
  1.1096 +    // Only instances and boxed values.
  1.1097 +    if( t_oop != NULL &&
  1.1098 +        (t_oop->is_ptr_to_boxed_value() ||
  1.1099 +         t_oop->is_known_instance_field()) &&
  1.1100 +        t_oop->offset() != Type::OffsetBot &&
  1.1101 +        t_oop->offset() != Type::OffsetTop) {
  1.1102 +      return true;
  1.1103 +    }
  1.1104 +  }
  1.1105 +  return false;
  1.1106 +}
  1.1107 +
  1.1108 +//------------------------------Identity---------------------------------------
  1.1109 +// Loads are identity if previous store is to same address
  1.1110 +Node *LoadNode::Identity( PhaseTransform *phase ) {
  1.1111 +  // If the previous store-maker is the right kind of Store, and the store is
  1.1112 +  // to the same address, then we are equal to the value stored.
  1.1113 +  Node* mem = in(Memory);
  1.1114 +  Node* value = can_see_stored_value(mem, phase);
  1.1115 +  if( value ) {
  1.1116 +    // byte, short & char stores truncate naturally.
  1.1117 +    // A load has to load the truncated value which requires
  1.1118 +    // some sort of masking operation and that requires an
  1.1119 +    // Ideal call instead of an Identity call.
  1.1120 +    if (memory_size() < BytesPerInt) {
  1.1121 +      // If the input to the store does not fit with the load's result type,
  1.1122 +      // it must be truncated via an Ideal call.
  1.1123 +      if (!phase->type(value)->higher_equal(phase->type(this)))
  1.1124 +        return this;
  1.1125 +    }
  1.1126 +    // (This works even when value is a Con, but LoadNode::Value
  1.1127 +    // usually runs first, producing the singleton type of the Con.)
  1.1128 +    return value;
  1.1129 +  }
  1.1130 +
  1.1131 +  // Search for an existing data phi which was generated before for the same
  1.1132 +  // instance's field to avoid infinite generation of phis in a loop.
  1.1133 +  Node *region = mem->in(0);
  1.1134 +  if (is_instance_field_load_with_local_phi(region)) {
  1.1135 +    const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
  1.1136 +    int this_index  = phase->C->get_alias_index(addr_t);
  1.1137 +    int this_offset = addr_t->offset();
  1.1138 +    int this_iid    = addr_t->instance_id();
  1.1139 +    if (!addr_t->is_known_instance() &&
  1.1140 +         addr_t->is_ptr_to_boxed_value()) {
  1.1141 +      // Use _idx of address base (could be Phi node) for boxed values.
  1.1142 +      intptr_t   ignore = 0;
  1.1143 +      Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
  1.1144 +      this_iid = base->_idx;
  1.1145 +    }
  1.1146 +    const Type* this_type = bottom_type();
  1.1147 +    for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  1.1148 +      Node* phi = region->fast_out(i);
  1.1149 +      if (phi->is_Phi() && phi != mem &&
  1.1150 +          phi->as_Phi()->is_same_inst_field(this_type, this_iid, this_index, this_offset)) {
  1.1151 +        return phi;
  1.1152 +      }
  1.1153 +    }
  1.1154 +  }
  1.1155 +
  1.1156 +  return this;
  1.1157 +}
  1.1158 +
  1.1159 +// We're loading from an object which has autobox behaviour.
  1.1160 +// If this object is result of a valueOf call we'll have a phi
  1.1161 +// merging a newly allocated object and a load from the cache.
  1.1162 +// We want to replace this load with the original incoming
  1.1163 +// argument to the valueOf call.
  1.1164 +Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
  1.1165 +  assert(phase->C->eliminate_boxing(), "sanity");
  1.1166 +  intptr_t ignore = 0;
  1.1167 +  Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
  1.1168 +  if ((base == NULL) || base->is_Phi()) {
  1.1169 +    // Push the loads from the phi that comes from valueOf up
  1.1170 +    // through it to allow elimination of the loads and the recovery
  1.1171 +    // of the original value. It is done in split_through_phi().
  1.1172 +    return NULL;
  1.1173 +  } else if (base->is_Load() ||
  1.1174 +             base->is_DecodeN() && base->in(1)->is_Load()) {
  1.1175 +    // Eliminate the load of boxed value for integer types from the cache
  1.1176 +    // array by deriving the value from the index into the array.
  1.1177 +    // Capture the offset of the load and then reverse the computation.
  1.1178 +
  1.1179 +    // Get LoadN node which loads a boxing object from 'cache' array.
  1.1180 +    if (base->is_DecodeN()) {
  1.1181 +      base = base->in(1);
  1.1182 +    }
  1.1183 +    if (!base->in(Address)->is_AddP()) {
  1.1184 +      return NULL; // Complex address
  1.1185 +    }
  1.1186 +    AddPNode* address = base->in(Address)->as_AddP();
  1.1187 +    Node* cache_base = address->in(AddPNode::Base);
  1.1188 +    if ((cache_base != NULL) && cache_base->is_DecodeN()) {
  1.1189 +      // Get ConP node which is static 'cache' field.
  1.1190 +      cache_base = cache_base->in(1);
  1.1191 +    }
  1.1192 +    if ((cache_base != NULL) && cache_base->is_Con()) {
  1.1193 +      const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
  1.1194 +      if ((base_type != NULL) && base_type->is_autobox_cache()) {
  1.1195 +        Node* elements[4];
  1.1196 +        int shift = exact_log2(type2aelembytes(T_OBJECT));
  1.1197 +        int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
  1.1198 +        if ((count >  0) && elements[0]->is_Con() &&
  1.1199 +            ((count == 1) ||
  1.1200 +             (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
  1.1201 +                             elements[1]->in(2) == phase->intcon(shift))) {
  1.1202 +          ciObjArray* array = base_type->const_oop()->as_obj_array();
  1.1203 +          // Fetch the box object cache[0] at the base of the array and get its value
  1.1204 +          ciInstance* box = array->obj_at(0)->as_instance();
  1.1205 +          ciInstanceKlass* ik = box->klass()->as_instance_klass();
  1.1206 +          assert(ik->is_box_klass(), "sanity");
  1.1207 +          assert(ik->nof_nonstatic_fields() == 1, "change following code");
  1.1208 +          if (ik->nof_nonstatic_fields() == 1) {
  1.1209 +            // This should be true nonstatic_field_at requires calling
  1.1210 +            // nof_nonstatic_fields so check it anyway
  1.1211 +            ciConstant c = box->field_value(ik->nonstatic_field_at(0));
  1.1212 +            BasicType bt = c.basic_type();
  1.1213 +            // Only integer types have boxing cache.
  1.1214 +            assert(bt == T_BOOLEAN || bt == T_CHAR  ||
  1.1215 +                   bt == T_BYTE    || bt == T_SHORT ||
  1.1216 +                   bt == T_INT     || bt == T_LONG, err_msg_res("wrong type = %s", type2name(bt)));
  1.1217 +            jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
  1.1218 +            if (cache_low != (int)cache_low) {
  1.1219 +              return NULL; // should not happen since cache is array indexed by value
  1.1220 +            }
  1.1221 +            jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
  1.1222 +            if (offset != (int)offset) {
  1.1223 +              return NULL; // should not happen since cache is array indexed by value
  1.1224 +            }
  1.1225 +           // Add up all the offsets making of the address of the load
  1.1226 +            Node* result = elements[0];
  1.1227 +            for (int i = 1; i < count; i++) {
  1.1228 +              result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
  1.1229 +            }
  1.1230 +            // Remove the constant offset from the address and then
  1.1231 +            result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-(int)offset)));
  1.1232 +            // remove the scaling of the offset to recover the original index.
  1.1233 +            if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
  1.1234 +              // Peel the shift off directly but wrap it in a dummy node
  1.1235 +              // since Ideal can't return existing nodes
  1.1236 +              result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
  1.1237 +            } else if (result->is_Add() && result->in(2)->is_Con() &&
  1.1238 +                       result->in(1)->Opcode() == Op_LShiftX &&
  1.1239 +                       result->in(1)->in(2) == phase->intcon(shift)) {
  1.1240 +              // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
  1.1241 +              // but for boxing cache access we know that X<<Z will not overflow
  1.1242 +              // (there is range check) so we do this optimizatrion by hand here.
  1.1243 +              Node* add_con = new (phase->C) RShiftXNode(result->in(2), phase->intcon(shift));
  1.1244 +              result = new (phase->C) AddXNode(result->in(1)->in(1), phase->transform(add_con));
  1.1245 +            } else {
  1.1246 +              result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
  1.1247 +            }
  1.1248 +#ifdef _LP64
  1.1249 +            if (bt != T_LONG) {
  1.1250 +              result = new (phase->C) ConvL2INode(phase->transform(result));
  1.1251 +            }
  1.1252 +#else
  1.1253 +            if (bt == T_LONG) {
  1.1254 +              result = new (phase->C) ConvI2LNode(phase->transform(result));
  1.1255 +            }
  1.1256 +#endif
  1.1257 +            return result;
  1.1258 +          }
  1.1259 +        }
  1.1260 +      }
  1.1261 +    }
  1.1262 +  }
  1.1263 +  return NULL;
  1.1264 +}
  1.1265 +
  1.1266 +static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
  1.1267 +  Node* region = phi->in(0);
  1.1268 +  if (region == NULL) {
  1.1269 +    return false; // Wait stable graph
  1.1270 +  }
  1.1271 +  uint cnt = phi->req();
  1.1272 +  for (uint i = 1; i < cnt; i++) {
  1.1273 +    Node* rc = region->in(i);
  1.1274 +    if (rc == NULL || phase->type(rc) == Type::TOP)
  1.1275 +      return false; // Wait stable graph
  1.1276 +    Node* in = phi->in(i);
  1.1277 +    if (in == NULL || phase->type(in) == Type::TOP)
  1.1278 +      return false; // Wait stable graph
  1.1279 +  }
  1.1280 +  return true;
  1.1281 +}
  1.1282 +//------------------------------split_through_phi------------------------------
  1.1283 +// Split instance or boxed field load through Phi.
  1.1284 +Node *LoadNode::split_through_phi(PhaseGVN *phase) {
  1.1285 +  Node* mem     = in(Memory);
  1.1286 +  Node* address = in(Address);
  1.1287 +  const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
  1.1288 +
  1.1289 +  assert((t_oop != NULL) &&
  1.1290 +         (t_oop->is_known_instance_field() ||
  1.1291 +          t_oop->is_ptr_to_boxed_value()), "invalide conditions");
  1.1292 +
  1.1293 +  Compile* C = phase->C;
  1.1294 +  intptr_t ignore = 0;
  1.1295 +  Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1.1296 +  bool base_is_phi = (base != NULL) && base->is_Phi();
  1.1297 +  bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
  1.1298 +                           (base != NULL) && (base == address->in(AddPNode::Base)) &&
  1.1299 +                           phase->type(base)->higher_equal(TypePtr::NOTNULL);
  1.1300 +
  1.1301 +  if (!((mem->is_Phi() || base_is_phi) &&
  1.1302 +        (load_boxed_values || t_oop->is_known_instance_field()))) {
  1.1303 +    return NULL; // memory is not Phi
  1.1304 +  }
  1.1305 +
  1.1306 +  if (mem->is_Phi()) {
  1.1307 +    if (!stable_phi(mem->as_Phi(), phase)) {
  1.1308 +      return NULL; // Wait stable graph
  1.1309 +    }
  1.1310 +    uint cnt = mem->req();
  1.1311 +    // Check for loop invariant memory.
  1.1312 +    if (cnt == 3) {
  1.1313 +      for (uint i = 1; i < cnt; i++) {
  1.1314 +        Node* in = mem->in(i);
  1.1315 +        Node*  m = optimize_memory_chain(in, t_oop, this, phase);
  1.1316 +        if (m == mem) {
  1.1317 +          set_req(Memory, mem->in(cnt - i));
  1.1318 +          return this; // made change
  1.1319 +        }
  1.1320 +      }
  1.1321 +    }
  1.1322 +  }
  1.1323 +  if (base_is_phi) {
  1.1324 +    if (!stable_phi(base->as_Phi(), phase)) {
  1.1325 +      return NULL; // Wait stable graph
  1.1326 +    }
  1.1327 +    uint cnt = base->req();
  1.1328 +    // Check for loop invariant memory.
  1.1329 +    if (cnt == 3) {
  1.1330 +      for (uint i = 1; i < cnt; i++) {
  1.1331 +        if (base->in(i) == base) {
  1.1332 +          return NULL; // Wait stable graph
  1.1333 +        }
  1.1334 +      }
  1.1335 +    }
  1.1336 +  }
  1.1337 +
  1.1338 +  bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
  1.1339 +
  1.1340 +  // Split through Phi (see original code in loopopts.cpp).
  1.1341 +  assert(C->have_alias_type(t_oop), "instance should have alias type");
  1.1342 +
  1.1343 +  // Do nothing here if Identity will find a value
  1.1344 +  // (to avoid infinite chain of value phis generation).
  1.1345 +  if (!phase->eqv(this, this->Identity(phase)))
  1.1346 +    return NULL;
  1.1347 +
  1.1348 +  // Select Region to split through.
  1.1349 +  Node* region;
  1.1350 +  if (!base_is_phi) {
  1.1351 +    assert(mem->is_Phi(), "sanity");
  1.1352 +    region = mem->in(0);
  1.1353 +    // Skip if the region dominates some control edge of the address.
  1.1354 +    if (!MemNode::all_controls_dominate(address, region))
  1.1355 +      return NULL;
  1.1356 +  } else if (!mem->is_Phi()) {
  1.1357 +    assert(base_is_phi, "sanity");
  1.1358 +    region = base->in(0);
  1.1359 +    // Skip if the region dominates some control edge of the memory.
  1.1360 +    if (!MemNode::all_controls_dominate(mem, region))
  1.1361 +      return NULL;
  1.1362 +  } else if (base->in(0) != mem->in(0)) {
  1.1363 +    assert(base_is_phi && mem->is_Phi(), "sanity");
  1.1364 +    if (MemNode::all_controls_dominate(mem, base->in(0))) {
  1.1365 +      region = base->in(0);
  1.1366 +    } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
  1.1367 +      region = mem->in(0);
  1.1368 +    } else {
  1.1369 +      return NULL; // complex graph
  1.1370 +    }
  1.1371 +  } else {
  1.1372 +    assert(base->in(0) == mem->in(0), "sanity");
  1.1373 +    region = mem->in(0);
  1.1374 +  }
  1.1375 +
  1.1376 +  const Type* this_type = this->bottom_type();
  1.1377 +  int this_index  = C->get_alias_index(t_oop);
  1.1378 +  int this_offset = t_oop->offset();
  1.1379 +  int this_iid    = t_oop->instance_id();
  1.1380 +  if (!t_oop->is_known_instance() && load_boxed_values) {
  1.1381 +    // Use _idx of address base for boxed values.
  1.1382 +    this_iid = base->_idx;
  1.1383 +  }
  1.1384 +  PhaseIterGVN* igvn = phase->is_IterGVN();
  1.1385 +  Node* phi = new (C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
  1.1386 +  for (uint i = 1; i < region->req(); i++) {
  1.1387 +    Node* x;
  1.1388 +    Node* the_clone = NULL;
  1.1389 +    if (region->in(i) == C->top()) {
  1.1390 +      x = C->top();      // Dead path?  Use a dead data op
  1.1391 +    } else {
  1.1392 +      x = this->clone();        // Else clone up the data op
  1.1393 +      the_clone = x;            // Remember for possible deletion.
  1.1394 +      // Alter data node to use pre-phi inputs
  1.1395 +      if (this->in(0) == region) {
  1.1396 +        x->set_req(0, region->in(i));
  1.1397 +      } else {
  1.1398 +        x->set_req(0, NULL);
  1.1399 +      }
  1.1400 +      if (mem->is_Phi() && (mem->in(0) == region)) {
  1.1401 +        x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
  1.1402 +      }
  1.1403 +      if (address->is_Phi() && address->in(0) == region) {
  1.1404 +        x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
  1.1405 +      }
  1.1406 +      if (base_is_phi && (base->in(0) == region)) {
  1.1407 +        Node* base_x = base->in(i); // Clone address for loads from boxed objects.
  1.1408 +        Node* adr_x = phase->transform(new (C) AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
  1.1409 +        x->set_req(Address, adr_x);
  1.1410 +      }
  1.1411 +    }
  1.1412 +    // Check for a 'win' on some paths
  1.1413 +    const Type *t = x->Value(igvn);
  1.1414 +
  1.1415 +    bool singleton = t->singleton();
  1.1416 +
  1.1417 +    // See comments in PhaseIdealLoop::split_thru_phi().
  1.1418 +    if (singleton && t == Type::TOP) {
  1.1419 +      singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
  1.1420 +    }
  1.1421 +
  1.1422 +    if (singleton) {
  1.1423 +      x = igvn->makecon(t);
  1.1424 +    } else {
  1.1425 +      // We now call Identity to try to simplify the cloned node.
  1.1426 +      // Note that some Identity methods call phase->type(this).
  1.1427 +      // Make sure that the type array is big enough for
  1.1428 +      // our new node, even though we may throw the node away.
  1.1429 +      // (This tweaking with igvn only works because x is a new node.)
  1.1430 +      igvn->set_type(x, t);
  1.1431 +      // If x is a TypeNode, capture any more-precise type permanently into Node
  1.1432 +      // otherwise it will be not updated during igvn->transform since
  1.1433 +      // igvn->type(x) is set to x->Value() already.
  1.1434 +      x->raise_bottom_type(t);
  1.1435 +      Node *y = x->Identity(igvn);
  1.1436 +      if (y != x) {
  1.1437 +        x = y;
  1.1438 +      } else {
  1.1439 +        y = igvn->hash_find_insert(x);
  1.1440 +        if (y) {
  1.1441 +          x = y;
  1.1442 +        } else {
  1.1443 +          // Else x is a new node we are keeping
  1.1444 +          // We do not need register_new_node_with_optimizer
  1.1445 +          // because set_type has already been called.
  1.1446 +          igvn->_worklist.push(x);
  1.1447 +        }
  1.1448 +      }
  1.1449 +    }
  1.1450 +    if (x != the_clone && the_clone != NULL) {
  1.1451 +      igvn->remove_dead_node(the_clone);
  1.1452 +    }
  1.1453 +    phi->set_req(i, x);
  1.1454 +  }
  1.1455 +  // Record Phi
  1.1456 +  igvn->register_new_node_with_optimizer(phi);
  1.1457 +  return phi;
  1.1458 +}
  1.1459 +
  1.1460 +//------------------------------Ideal------------------------------------------
  1.1461 +// If the load is from Field memory and the pointer is non-null, we can
  1.1462 +// zero out the control input.
  1.1463 +// If the offset is constant and the base is an object allocation,
  1.1464 +// try to hook me up to the exact initializing store.
  1.1465 +Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1.1466 +  Node* p = MemNode::Ideal_common(phase, can_reshape);
  1.1467 +  if (p)  return (p == NodeSentinel) ? NULL : p;
  1.1468 +
  1.1469 +  Node* ctrl    = in(MemNode::Control);
  1.1470 +  Node* address = in(MemNode::Address);
  1.1471 +
  1.1472 +  // Skip up past a SafePoint control.  Cannot do this for Stores because
  1.1473 +  // pointer stores & cardmarks must stay on the same side of a SafePoint.
  1.1474 +  if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
  1.1475 +      phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
  1.1476 +    ctrl = ctrl->in(0);
  1.1477 +    set_req(MemNode::Control,ctrl);
  1.1478 +  }
  1.1479 +
  1.1480 +  intptr_t ignore = 0;
  1.1481 +  Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1.1482 +  if (base != NULL
  1.1483 +      && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
  1.1484 +    // Check for useless control edge in some common special cases
  1.1485 +    if (in(MemNode::Control) != NULL
  1.1486 +        && phase->type(base)->higher_equal(TypePtr::NOTNULL)
  1.1487 +        && all_controls_dominate(base, phase->C->start())) {
  1.1488 +      // A method-invariant, non-null address (constant or 'this' argument).
  1.1489 +      set_req(MemNode::Control, NULL);
  1.1490 +    }
  1.1491 +  }
  1.1492 +
  1.1493 +  Node* mem = in(MemNode::Memory);
  1.1494 +  const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1.1495 +
  1.1496 +  if (can_reshape && (addr_t != NULL)) {
  1.1497 +    // try to optimize our memory input
  1.1498 +    Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
  1.1499 +    if (opt_mem != mem) {
  1.1500 +      set_req(MemNode::Memory, opt_mem);
  1.1501 +      if (phase->type( opt_mem ) == Type::TOP) return NULL;
  1.1502 +      return this;
  1.1503 +    }
  1.1504 +    const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1.1505 +    if ((t_oop != NULL) &&
  1.1506 +        (t_oop->is_known_instance_field() ||
  1.1507 +         t_oop->is_ptr_to_boxed_value())) {
  1.1508 +      PhaseIterGVN *igvn = phase->is_IterGVN();
  1.1509 +      if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
  1.1510 +        // Delay this transformation until memory Phi is processed.
  1.1511 +        phase->is_IterGVN()->_worklist.push(this);
  1.1512 +        return NULL;
  1.1513 +      }
  1.1514 +      // Split instance field load through Phi.
  1.1515 +      Node* result = split_through_phi(phase);
  1.1516 +      if (result != NULL) return result;
  1.1517 +
  1.1518 +      if (t_oop->is_ptr_to_boxed_value()) {
  1.1519 +        Node* result = eliminate_autobox(phase);
  1.1520 +        if (result != NULL) return result;
  1.1521 +      }
  1.1522 +    }
  1.1523 +  }
  1.1524 +
  1.1525 +  // Check for prior store with a different base or offset; make Load
  1.1526 +  // independent.  Skip through any number of them.  Bail out if the stores
  1.1527 +  // are in an endless dead cycle and report no progress.  This is a key
  1.1528 +  // transform for Reflection.  However, if after skipping through the Stores
  1.1529 +  // we can't then fold up against a prior store do NOT do the transform as
  1.1530 +  // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
  1.1531 +  // array memory alive twice: once for the hoisted Load and again after the
  1.1532 +  // bypassed Store.  This situation only works if EVERYBODY who does
  1.1533 +  // anti-dependence work knows how to bypass.  I.e. we need all
  1.1534 +  // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
  1.1535 +  // the alias index stuff.  So instead, peek through Stores and IFF we can
  1.1536 +  // fold up, do so.
  1.1537 +  Node* prev_mem = find_previous_store(phase);
  1.1538 +  // Steps (a), (b):  Walk past independent stores to find an exact match.
  1.1539 +  if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
  1.1540 +    // (c) See if we can fold up on the spot, but don't fold up here.
  1.1541 +    // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
  1.1542 +    // just return a prior value, which is done by Identity calls.
  1.1543 +    if (can_see_stored_value(prev_mem, phase)) {
  1.1544 +      // Make ready for step (d):
  1.1545 +      set_req(MemNode::Memory, prev_mem);
  1.1546 +      return this;
  1.1547 +    }
  1.1548 +  }
  1.1549 +
  1.1550 +  return NULL;                  // No further progress
  1.1551 +}
  1.1552 +
  1.1553 +// Helper to recognize certain Klass fields which are invariant across
  1.1554 +// some group of array types (e.g., int[] or all T[] where T < Object).
  1.1555 +const Type*
  1.1556 +LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1.1557 +                                 ciKlass* klass) const {
  1.1558 +  if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
  1.1559 +    // The field is Klass::_modifier_flags.  Return its (constant) value.
  1.1560 +    // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1.1561 +    assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1.1562 +    return TypeInt::make(klass->modifier_flags());
  1.1563 +  }
  1.1564 +  if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
  1.1565 +    // The field is Klass::_access_flags.  Return its (constant) value.
  1.1566 +    // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1.1567 +    assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1.1568 +    return TypeInt::make(klass->access_flags());
  1.1569 +  }
  1.1570 +  if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
  1.1571 +    // The field is Klass::_layout_helper.  Return its constant value if known.
  1.1572 +    assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1.1573 +    return TypeInt::make(klass->layout_helper());
  1.1574 +  }
  1.1575 +
  1.1576 +  // No match.
  1.1577 +  return NULL;
  1.1578 +}
  1.1579 +
  1.1580 +// Try to constant-fold a stable array element.
  1.1581 +static const Type* fold_stable_ary_elem(const TypeAryPtr* ary, int off, BasicType loadbt) {
  1.1582 +  assert(ary->const_oop(), "array should be constant");
  1.1583 +  assert(ary->is_stable(), "array should be stable");
  1.1584 +
  1.1585 +  // Decode the results of GraphKit::array_element_address.
  1.1586 +  ciArray* aobj = ary->const_oop()->as_array();
  1.1587 +  ciConstant con = aobj->element_value_by_offset(off);
  1.1588 +
  1.1589 +  if (con.basic_type() != T_ILLEGAL && !con.is_null_or_zero()) {
  1.1590 +    const Type* con_type = Type::make_from_constant(con);
  1.1591 +    if (con_type != NULL) {
  1.1592 +      if (con_type->isa_aryptr()) {
  1.1593 +        // Join with the array element type, in case it is also stable.
  1.1594 +        int dim = ary->stable_dimension();
  1.1595 +        con_type = con_type->is_aryptr()->cast_to_stable(true, dim-1);
  1.1596 +      }
  1.1597 +      if (loadbt == T_NARROWOOP && con_type->isa_oopptr()) {
  1.1598 +        con_type = con_type->make_narrowoop();
  1.1599 +      }
  1.1600 +#ifndef PRODUCT
  1.1601 +      if (TraceIterativeGVN) {
  1.1602 +        tty->print("FoldStableValues: array element [off=%d]: con_type=", off);
  1.1603 +        con_type->dump(); tty->cr();
  1.1604 +      }
  1.1605 +#endif //PRODUCT
  1.1606 +      return con_type;
  1.1607 +    }
  1.1608 +  }
  1.1609 +  return NULL;
  1.1610 +}
  1.1611 +
  1.1612 +//------------------------------Value-----------------------------------------
  1.1613 +const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1.1614 +  // Either input is TOP ==> the result is TOP
  1.1615 +  Node* mem = in(MemNode::Memory);
  1.1616 +  const Type *t1 = phase->type(mem);
  1.1617 +  if (t1 == Type::TOP)  return Type::TOP;
  1.1618 +  Node* adr = in(MemNode::Address);
  1.1619 +  const TypePtr* tp = phase->type(adr)->isa_ptr();
  1.1620 +  if (tp == NULL || tp->empty())  return Type::TOP;
  1.1621 +  int off = tp->offset();
  1.1622 +  assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1.1623 +  Compile* C = phase->C;
  1.1624 +
  1.1625 +  // Try to guess loaded type from pointer type
  1.1626 +  if (tp->isa_aryptr()) {
  1.1627 +    const TypeAryPtr* ary = tp->is_aryptr();
  1.1628 +    const Type* t = ary->elem();
  1.1629 +
  1.1630 +    // Determine whether the reference is beyond the header or not, by comparing
  1.1631 +    // the offset against the offset of the start of the array's data.
  1.1632 +    // Different array types begin at slightly different offsets (12 vs. 16).
  1.1633 +    // We choose T_BYTE as an example base type that is least restrictive
  1.1634 +    // as to alignment, which will therefore produce the smallest
  1.1635 +    // possible base offset.
  1.1636 +    const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1.1637 +    const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
  1.1638 +
  1.1639 +    // Try to constant-fold a stable array element.
  1.1640 +    if (FoldStableValues && ary->is_stable() && ary->const_oop() != NULL) {
  1.1641 +      // Make sure the reference is not into the header and the offset is constant
  1.1642 +      if (off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
  1.1643 +        const Type* con_type = fold_stable_ary_elem(ary, off, memory_type());
  1.1644 +        if (con_type != NULL) {
  1.1645 +          return con_type;
  1.1646 +        }
  1.1647 +      }
  1.1648 +    }
  1.1649 +
  1.1650 +    // Don't do this for integer types. There is only potential profit if
  1.1651 +    // the element type t is lower than _type; that is, for int types, if _type is
  1.1652 +    // more restrictive than t.  This only happens here if one is short and the other
  1.1653 +    // char (both 16 bits), and in those cases we've made an intentional decision
  1.1654 +    // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1.1655 +    // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1.1656 +    //
  1.1657 +    // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1.1658 +    // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1.1659 +    // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1.1660 +    // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1.1661 +    // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1.1662 +    // In fact, that could have been the original type of p1, and p1 could have
  1.1663 +    // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1.1664 +    // expression (LShiftL quux 3) independently optimized to the constant 8.
  1.1665 +    if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1.1666 +        && (_type->isa_vect() == NULL)
  1.1667 +        && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
  1.1668 +      // t might actually be lower than _type, if _type is a unique
  1.1669 +      // concrete subclass of abstract class t.
  1.1670 +      if (off_beyond_header) {  // is the offset beyond the header?
  1.1671 +        const Type* jt = t->join_speculative(_type);
  1.1672 +        // In any case, do not allow the join, per se, to empty out the type.
  1.1673 +        if (jt->empty() && !t->empty()) {
  1.1674 +          // This can happen if a interface-typed array narrows to a class type.
  1.1675 +          jt = _type;
  1.1676 +        }
  1.1677 +#ifdef ASSERT
  1.1678 +        if (phase->C->eliminate_boxing() && adr->is_AddP()) {
  1.1679 +          // The pointers in the autobox arrays are always non-null
  1.1680 +          Node* base = adr->in(AddPNode::Base);
  1.1681 +          if ((base != NULL) && base->is_DecodeN()) {
  1.1682 +            // Get LoadN node which loads IntegerCache.cache field
  1.1683 +            base = base->in(1);
  1.1684 +          }
  1.1685 +          if ((base != NULL) && base->is_Con()) {
  1.1686 +            const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
  1.1687 +            if ((base_type != NULL) && base_type->is_autobox_cache()) {
  1.1688 +              // It could be narrow oop
  1.1689 +              assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
  1.1690 +            }
  1.1691 +          }
  1.1692 +        }
  1.1693 +#endif
  1.1694 +        return jt;
  1.1695 +      }
  1.1696 +    }
  1.1697 +  } else if (tp->base() == Type::InstPtr) {
  1.1698 +    ciEnv* env = C->env();
  1.1699 +    const TypeInstPtr* tinst = tp->is_instptr();
  1.1700 +    ciKlass* klass = tinst->klass();
  1.1701 +    assert( off != Type::OffsetBot ||
  1.1702 +            // arrays can be cast to Objects
  1.1703 +            tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1.1704 +            // unsafe field access may not have a constant offset
  1.1705 +            C->has_unsafe_access(),
  1.1706 +            "Field accesses must be precise" );
  1.1707 +    // For oop loads, we expect the _type to be precise
  1.1708 +    if (klass == env->String_klass() &&
  1.1709 +        adr->is_AddP() && off != Type::OffsetBot) {
  1.1710 +      // For constant Strings treat the final fields as compile time constants.
  1.1711 +      Node* base = adr->in(AddPNode::Base);
  1.1712 +      const TypeOopPtr* t = phase->type(base)->isa_oopptr();
  1.1713 +      if (t != NULL && t->singleton()) {
  1.1714 +        ciField* field = env->String_klass()->get_field_by_offset(off, false);
  1.1715 +        if (field != NULL && field->is_final()) {
  1.1716 +          ciObject* string = t->const_oop();
  1.1717 +          ciConstant constant = string->as_instance()->field_value(field);
  1.1718 +          if (constant.basic_type() == T_INT) {
  1.1719 +            return TypeInt::make(constant.as_int());
  1.1720 +          } else if (constant.basic_type() == T_ARRAY) {
  1.1721 +            if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1.1722 +              return TypeNarrowOop::make_from_constant(constant.as_object(), true);
  1.1723 +            } else {
  1.1724 +              return TypeOopPtr::make_from_constant(constant.as_object(), true);
  1.1725 +            }
  1.1726 +          }
  1.1727 +        }
  1.1728 +      }
  1.1729 +    }
  1.1730 +    // Optimizations for constant objects
  1.1731 +    ciObject* const_oop = tinst->const_oop();
  1.1732 +    if (const_oop != NULL) {
  1.1733 +      // For constant Boxed value treat the target field as a compile time constant.
  1.1734 +      if (tinst->is_ptr_to_boxed_value()) {
  1.1735 +        return tinst->get_const_boxed_value();
  1.1736 +      } else
  1.1737 +      // For constant CallSites treat the target field as a compile time constant.
  1.1738 +      if (const_oop->is_call_site()) {
  1.1739 +        ciCallSite* call_site = const_oop->as_call_site();
  1.1740 +        ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
  1.1741 +        if (field != NULL && field->is_call_site_target()) {
  1.1742 +          ciMethodHandle* target = call_site->get_target();
  1.1743 +          if (target != NULL) {  // just in case
  1.1744 +            ciConstant constant(T_OBJECT, target);
  1.1745 +            const Type* t;
  1.1746 +            if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1.1747 +              t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
  1.1748 +            } else {
  1.1749 +              t = TypeOopPtr::make_from_constant(constant.as_object(), true);
  1.1750 +            }
  1.1751 +            // Add a dependence for invalidation of the optimization.
  1.1752 +            if (!call_site->is_constant_call_site()) {
  1.1753 +              C->dependencies()->assert_call_site_target_value(call_site, target);
  1.1754 +            }
  1.1755 +            return t;
  1.1756 +          }
  1.1757 +        }
  1.1758 +      }
  1.1759 +    }
  1.1760 +  } else if (tp->base() == Type::KlassPtr) {
  1.1761 +    assert( off != Type::OffsetBot ||
  1.1762 +            // arrays can be cast to Objects
  1.1763 +            tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1.1764 +            // also allow array-loading from the primary supertype
  1.1765 +            // array during subtype checks
  1.1766 +            Opcode() == Op_LoadKlass,
  1.1767 +            "Field accesses must be precise" );
  1.1768 +    // For klass/static loads, we expect the _type to be precise
  1.1769 +  }
  1.1770 +
  1.1771 +  const TypeKlassPtr *tkls = tp->isa_klassptr();
  1.1772 +  if (tkls != NULL && !StressReflectiveCode) {
  1.1773 +    ciKlass* klass = tkls->klass();
  1.1774 +    if (klass->is_loaded() && tkls->klass_is_exact()) {
  1.1775 +      // We are loading a field from a Klass metaobject whose identity
  1.1776 +      // is known at compile time (the type is "exact" or "precise").
  1.1777 +      // Check for fields we know are maintained as constants by the VM.
  1.1778 +      if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
  1.1779 +        // The field is Klass::_super_check_offset.  Return its (constant) value.
  1.1780 +        // (Folds up type checking code.)
  1.1781 +        assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1.1782 +        return TypeInt::make(klass->super_check_offset());
  1.1783 +      }
  1.1784 +      // Compute index into primary_supers array
  1.1785 +      juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
  1.1786 +      // Check for overflowing; use unsigned compare to handle the negative case.
  1.1787 +      if( depth < ciKlass::primary_super_limit() ) {
  1.1788 +        // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1.1789 +        // (Folds up type checking code.)
  1.1790 +        assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1.1791 +        ciKlass *ss = klass->super_of_depth(depth);
  1.1792 +        return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1.1793 +      }
  1.1794 +      const Type* aift = load_array_final_field(tkls, klass);
  1.1795 +      if (aift != NULL)  return aift;
  1.1796 +      if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
  1.1797 +          && klass->is_array_klass()) {
  1.1798 +        // The field is ArrayKlass::_component_mirror.  Return its (constant) value.
  1.1799 +        // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1.1800 +        assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1.1801 +        return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1.1802 +      }
  1.1803 +      if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
  1.1804 +        // The field is Klass::_java_mirror.  Return its (constant) value.
  1.1805 +        // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1.1806 +        assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1.1807 +        return TypeInstPtr::make(klass->java_mirror());
  1.1808 +      }
  1.1809 +    }
  1.1810 +
  1.1811 +    // We can still check if we are loading from the primary_supers array at a
  1.1812 +    // shallow enough depth.  Even though the klass is not exact, entries less
  1.1813 +    // than or equal to its super depth are correct.
  1.1814 +    if (klass->is_loaded() ) {
  1.1815 +      ciType *inner = klass;
  1.1816 +      while( inner->is_obj_array_klass() )
  1.1817 +        inner = inner->as_obj_array_klass()->base_element_type();
  1.1818 +      if( inner->is_instance_klass() &&
  1.1819 +          !inner->as_instance_klass()->flags().is_interface() ) {
  1.1820 +        // Compute index into primary_supers array
  1.1821 +        juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
  1.1822 +        // Check for overflowing; use unsigned compare to handle the negative case.
  1.1823 +        if( depth < ciKlass::primary_super_limit() &&
  1.1824 +            depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1.1825 +          // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1.1826 +          // (Folds up type checking code.)
  1.1827 +          assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1.1828 +          ciKlass *ss = klass->super_of_depth(depth);
  1.1829 +          return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1.1830 +        }
  1.1831 +      }
  1.1832 +    }
  1.1833 +
  1.1834 +    // If the type is enough to determine that the thing is not an array,
  1.1835 +    // we can give the layout_helper a positive interval type.
  1.1836 +    // This will help short-circuit some reflective code.
  1.1837 +    if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
  1.1838 +        && !klass->is_array_klass() // not directly typed as an array
  1.1839 +        && !klass->is_interface()  // specifically not Serializable & Cloneable
  1.1840 +        && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1.1841 +        ) {
  1.1842 +      // Note:  When interfaces are reliable, we can narrow the interface
  1.1843 +      // test to (klass != Serializable && klass != Cloneable).
  1.1844 +      assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1.1845 +      jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1.1846 +      // The key property of this type is that it folds up tests
  1.1847 +      // for array-ness, since it proves that the layout_helper is positive.
  1.1848 +      // Thus, a generic value like the basic object layout helper works fine.
  1.1849 +      return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1.1850 +    }
  1.1851 +  }
  1.1852 +
  1.1853 +  // If we are loading from a freshly-allocated object, produce a zero,
  1.1854 +  // if the load is provably beyond the header of the object.
  1.1855 +  // (Also allow a variable load from a fresh array to produce zero.)
  1.1856 +  const TypeOopPtr *tinst = tp->isa_oopptr();
  1.1857 +  bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
  1.1858 +  bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
  1.1859 +  if (ReduceFieldZeroing || is_instance || is_boxed_value) {
  1.1860 +    Node* value = can_see_stored_value(mem,phase);
  1.1861 +    if (value != NULL && value->is_Con()) {
  1.1862 +      assert(value->bottom_type()->higher_equal(_type),"sanity");
  1.1863 +      return value->bottom_type();
  1.1864 +    }
  1.1865 +  }
  1.1866 +
  1.1867 +  if (is_instance) {
  1.1868 +    // If we have an instance type and our memory input is the
  1.1869 +    // programs's initial memory state, there is no matching store,
  1.1870 +    // so just return a zero of the appropriate type
  1.1871 +    Node *mem = in(MemNode::Memory);
  1.1872 +    if (mem->is_Parm() && mem->in(0)->is_Start()) {
  1.1873 +      assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
  1.1874 +      return Type::get_zero_type(_type->basic_type());
  1.1875 +    }
  1.1876 +  }
  1.1877 +  return _type;
  1.1878 +}
  1.1879 +
  1.1880 +//------------------------------match_edge-------------------------------------
  1.1881 +// Do we Match on this edge index or not?  Match only the address.
  1.1882 +uint LoadNode::match_edge(uint idx) const {
  1.1883 +  return idx == MemNode::Address;
  1.1884 +}
  1.1885 +
  1.1886 +//--------------------------LoadBNode::Ideal--------------------------------------
  1.1887 +//
  1.1888 +//  If the previous store is to the same address as this load,
  1.1889 +//  and the value stored was larger than a byte, replace this load
  1.1890 +//  with the value stored truncated to a byte.  If no truncation is
  1.1891 +//  needed, the replacement is done in LoadNode::Identity().
  1.1892 +//
  1.1893 +Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1.1894 +  Node* mem = in(MemNode::Memory);
  1.1895 +  Node* value = can_see_stored_value(mem,phase);
  1.1896 +  if( value && !phase->type(value)->higher_equal( _type ) ) {
  1.1897 +    Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
  1.1898 +    return new (phase->C) RShiftINode(result, phase->intcon(24));
  1.1899 +  }
  1.1900 +  // Identity call will handle the case where truncation is not needed.
  1.1901 +  return LoadNode::Ideal(phase, can_reshape);
  1.1902 +}
  1.1903 +
  1.1904 +const Type* LoadBNode::Value(PhaseTransform *phase) const {
  1.1905 +  Node* mem = in(MemNode::Memory);
  1.1906 +  Node* value = can_see_stored_value(mem,phase);
  1.1907 +  if (value != NULL && value->is_Con() &&
  1.1908 +      !value->bottom_type()->higher_equal(_type)) {
  1.1909 +    // If the input to the store does not fit with the load's result type,
  1.1910 +    // it must be truncated. We can't delay until Ideal call since
  1.1911 +    // a singleton Value is needed for split_thru_phi optimization.
  1.1912 +    int con = value->get_int();
  1.1913 +    return TypeInt::make((con << 24) >> 24);
  1.1914 +  }
  1.1915 +  return LoadNode::Value(phase);
  1.1916 +}
  1.1917 +
  1.1918 +//--------------------------LoadUBNode::Ideal-------------------------------------
  1.1919 +//
  1.1920 +//  If the previous store is to the same address as this load,
  1.1921 +//  and the value stored was larger than a byte, replace this load
  1.1922 +//  with the value stored truncated to a byte.  If no truncation is
  1.1923 +//  needed, the replacement is done in LoadNode::Identity().
  1.1924 +//
  1.1925 +Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
  1.1926 +  Node* mem = in(MemNode::Memory);
  1.1927 +  Node* value = can_see_stored_value(mem, phase);
  1.1928 +  if (value && !phase->type(value)->higher_equal(_type))
  1.1929 +    return new (phase->C) AndINode(value, phase->intcon(0xFF));
  1.1930 +  // Identity call will handle the case where truncation is not needed.
  1.1931 +  return LoadNode::Ideal(phase, can_reshape);
  1.1932 +}
  1.1933 +
  1.1934 +const Type* LoadUBNode::Value(PhaseTransform *phase) const {
  1.1935 +  Node* mem = in(MemNode::Memory);
  1.1936 +  Node* value = can_see_stored_value(mem,phase);
  1.1937 +  if (value != NULL && value->is_Con() &&
  1.1938 +      !value->bottom_type()->higher_equal(_type)) {
  1.1939 +    // If the input to the store does not fit with the load's result type,
  1.1940 +    // it must be truncated. We can't delay until Ideal call since
  1.1941 +    // a singleton Value is needed for split_thru_phi optimization.
  1.1942 +    int con = value->get_int();
  1.1943 +    return TypeInt::make(con & 0xFF);
  1.1944 +  }
  1.1945 +  return LoadNode::Value(phase);
  1.1946 +}
  1.1947 +
  1.1948 +//--------------------------LoadUSNode::Ideal-------------------------------------
  1.1949 +//
  1.1950 +//  If the previous store is to the same address as this load,
  1.1951 +//  and the value stored was larger than a char, replace this load
  1.1952 +//  with the value stored truncated to a char.  If no truncation is
  1.1953 +//  needed, the replacement is done in LoadNode::Identity().
  1.1954 +//
  1.1955 +Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1.1956 +  Node* mem = in(MemNode::Memory);
  1.1957 +  Node* value = can_see_stored_value(mem,phase);
  1.1958 +  if( value && !phase->type(value)->higher_equal( _type ) )
  1.1959 +    return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
  1.1960 +  // Identity call will handle the case where truncation is not needed.
  1.1961 +  return LoadNode::Ideal(phase, can_reshape);
  1.1962 +}
  1.1963 +
  1.1964 +const Type* LoadUSNode::Value(PhaseTransform *phase) const {
  1.1965 +  Node* mem = in(MemNode::Memory);
  1.1966 +  Node* value = can_see_stored_value(mem,phase);
  1.1967 +  if (value != NULL && value->is_Con() &&
  1.1968 +      !value->bottom_type()->higher_equal(_type)) {
  1.1969 +    // If the input to the store does not fit with the load's result type,
  1.1970 +    // it must be truncated. We can't delay until Ideal call since
  1.1971 +    // a singleton Value is needed for split_thru_phi optimization.
  1.1972 +    int con = value->get_int();
  1.1973 +    return TypeInt::make(con & 0xFFFF);
  1.1974 +  }
  1.1975 +  return LoadNode::Value(phase);
  1.1976 +}
  1.1977 +
  1.1978 +//--------------------------LoadSNode::Ideal--------------------------------------
  1.1979 +//
  1.1980 +//  If the previous store is to the same address as this load,
  1.1981 +//  and the value stored was larger than a short, replace this load
  1.1982 +//  with the value stored truncated to a short.  If no truncation is
  1.1983 +//  needed, the replacement is done in LoadNode::Identity().
  1.1984 +//
  1.1985 +Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1.1986 +  Node* mem = in(MemNode::Memory);
  1.1987 +  Node* value = can_see_stored_value(mem,phase);
  1.1988 +  if( value && !phase->type(value)->higher_equal( _type ) ) {
  1.1989 +    Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
  1.1990 +    return new (phase->C) RShiftINode(result, phase->intcon(16));
  1.1991 +  }
  1.1992 +  // Identity call will handle the case where truncation is not needed.
  1.1993 +  return LoadNode::Ideal(phase, can_reshape);
  1.1994 +}
  1.1995 +
  1.1996 +const Type* LoadSNode::Value(PhaseTransform *phase) const {
  1.1997 +  Node* mem = in(MemNode::Memory);
  1.1998 +  Node* value = can_see_stored_value(mem,phase);
  1.1999 +  if (value != NULL && value->is_Con() &&
  1.2000 +      !value->bottom_type()->higher_equal(_type)) {
  1.2001 +    // If the input to the store does not fit with the load's result type,
  1.2002 +    // it must be truncated. We can't delay until Ideal call since
  1.2003 +    // a singleton Value is needed for split_thru_phi optimization.
  1.2004 +    int con = value->get_int();
  1.2005 +    return TypeInt::make((con << 16) >> 16);
  1.2006 +  }
  1.2007 +  return LoadNode::Value(phase);
  1.2008 +}
  1.2009 +
  1.2010 +//=============================================================================
  1.2011 +//----------------------------LoadKlassNode::make------------------------------
  1.2012 +// Polymorphic factory method:
  1.2013 +Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
  1.2014 +  Compile* C = gvn.C;
  1.2015 +  Node *ctl = NULL;
  1.2016 +  // sanity check the alias category against the created node type
  1.2017 +  const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
  1.2018 +  assert(adr_type != NULL, "expecting TypeKlassPtr");
  1.2019 +#ifdef _LP64
  1.2020 +  if (adr_type->is_ptr_to_narrowklass()) {
  1.2021 +    assert(UseCompressedClassPointers, "no compressed klasses");
  1.2022 +    Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
  1.2023 +    return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
  1.2024 +  }
  1.2025 +#endif
  1.2026 +  assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
  1.2027 +  return new (C) LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
  1.2028 +}
  1.2029 +
  1.2030 +//------------------------------Value------------------------------------------
  1.2031 +const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1.2032 +  return klass_value_common(phase);
  1.2033 +}
  1.2034 +
  1.2035 +const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
  1.2036 +  // Either input is TOP ==> the result is TOP
  1.2037 +  const Type *t1 = phase->type( in(MemNode::Memory) );
  1.2038 +  if (t1 == Type::TOP)  return Type::TOP;
  1.2039 +  Node *adr = in(MemNode::Address);
  1.2040 +  const Type *t2 = phase->type( adr );
  1.2041 +  if (t2 == Type::TOP)  return Type::TOP;
  1.2042 +  const TypePtr *tp = t2->is_ptr();
  1.2043 +  if (TypePtr::above_centerline(tp->ptr()) ||
  1.2044 +      tp->ptr() == TypePtr::Null)  return Type::TOP;
  1.2045 +
  1.2046 +  // Return a more precise klass, if possible
  1.2047 +  const TypeInstPtr *tinst = tp->isa_instptr();
  1.2048 +  if (tinst != NULL) {
  1.2049 +    ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1.2050 +    int offset = tinst->offset();
  1.2051 +    if (ik == phase->C->env()->Class_klass()
  1.2052 +        && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1.2053 +            offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1.2054 +      // We are loading a special hidden field from a Class mirror object,
  1.2055 +      // the field which points to the VM's Klass metaobject.
  1.2056 +      ciType* t = tinst->java_mirror_type();
  1.2057 +      // java_mirror_type returns non-null for compile-time Class constants.
  1.2058 +      if (t != NULL) {
  1.2059 +        // constant oop => constant klass
  1.2060 +        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1.2061 +          if (t->is_void()) {
  1.2062 +            // We cannot create a void array.  Since void is a primitive type return null
  1.2063 +            // klass.  Users of this result need to do a null check on the returned klass.
  1.2064 +            return TypePtr::NULL_PTR;
  1.2065 +          }
  1.2066 +          return TypeKlassPtr::make(ciArrayKlass::make(t));
  1.2067 +        }
  1.2068 +        if (!t->is_klass()) {
  1.2069 +          // a primitive Class (e.g., int.class) has NULL for a klass field
  1.2070 +          return TypePtr::NULL_PTR;
  1.2071 +        }
  1.2072 +        // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1.2073 +        return TypeKlassPtr::make(t->as_klass());
  1.2074 +      }
  1.2075 +      // non-constant mirror, so we can't tell what's going on
  1.2076 +    }
  1.2077 +    if( !ik->is_loaded() )
  1.2078 +      return _type;             // Bail out if not loaded
  1.2079 +    if (offset == oopDesc::klass_offset_in_bytes()) {
  1.2080 +      if (tinst->klass_is_exact()) {
  1.2081 +        return TypeKlassPtr::make(ik);
  1.2082 +      }
  1.2083 +      // See if we can become precise: no subklasses and no interface
  1.2084 +      // (Note:  We need to support verified interfaces.)
  1.2085 +      if (!ik->is_interface() && !ik->has_subklass()) {
  1.2086 +        //assert(!UseExactTypes, "this code should be useless with exact types");
  1.2087 +        // Add a dependence; if any subclass added we need to recompile
  1.2088 +        if (!ik->is_final()) {
  1.2089 +          // %%% should use stronger assert_unique_concrete_subtype instead
  1.2090 +          phase->C->dependencies()->assert_leaf_type(ik);
  1.2091 +        }
  1.2092 +        // Return precise klass
  1.2093 +        return TypeKlassPtr::make(ik);
  1.2094 +      }
  1.2095 +
  1.2096 +      // Return root of possible klass
  1.2097 +      return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1.2098 +    }
  1.2099 +  }
  1.2100 +
  1.2101 +  // Check for loading klass from an array
  1.2102 +  const TypeAryPtr *tary = tp->isa_aryptr();
  1.2103 +  if( tary != NULL ) {
  1.2104 +    ciKlass *tary_klass = tary->klass();
  1.2105 +    if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  1.2106 +        && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  1.2107 +      if (tary->klass_is_exact()) {
  1.2108 +        return TypeKlassPtr::make(tary_klass);
  1.2109 +      }
  1.2110 +      ciArrayKlass *ak = tary->klass()->as_array_klass();
  1.2111 +      // If the klass is an object array, we defer the question to the
  1.2112 +      // array component klass.
  1.2113 +      if( ak->is_obj_array_klass() ) {
  1.2114 +        assert( ak->is_loaded(), "" );
  1.2115 +        ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  1.2116 +        if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  1.2117 +          ciInstanceKlass* ik = base_k->as_instance_klass();
  1.2118 +          // See if we can become precise: no subklasses and no interface
  1.2119 +          if (!ik->is_interface() && !ik->has_subklass()) {
  1.2120 +            //assert(!UseExactTypes, "this code should be useless with exact types");
  1.2121 +            // Add a dependence; if any subclass added we need to recompile
  1.2122 +            if (!ik->is_final()) {
  1.2123 +              phase->C->dependencies()->assert_leaf_type(ik);
  1.2124 +            }
  1.2125 +            // Return precise array klass
  1.2126 +            return TypeKlassPtr::make(ak);
  1.2127 +          }
  1.2128 +        }
  1.2129 +        return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  1.2130 +      } else {                  // Found a type-array?
  1.2131 +        //assert(!UseExactTypes, "this code should be useless with exact types");
  1.2132 +        assert( ak->is_type_array_klass(), "" );
  1.2133 +        return TypeKlassPtr::make(ak); // These are always precise
  1.2134 +      }
  1.2135 +    }
  1.2136 +  }
  1.2137 +
  1.2138 +  // Check for loading klass from an array klass
  1.2139 +  const TypeKlassPtr *tkls = tp->isa_klassptr();
  1.2140 +  if (tkls != NULL && !StressReflectiveCode) {
  1.2141 +    ciKlass* klass = tkls->klass();
  1.2142 +    if( !klass->is_loaded() )
  1.2143 +      return _type;             // Bail out if not loaded
  1.2144 +    if( klass->is_obj_array_klass() &&
  1.2145 +        tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
  1.2146 +      ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  1.2147 +      // // Always returning precise element type is incorrect,
  1.2148 +      // // e.g., element type could be object and array may contain strings
  1.2149 +      // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  1.2150 +
  1.2151 +      // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  1.2152 +      // according to the element type's subclassing.
  1.2153 +      return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  1.2154 +    }
  1.2155 +    if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  1.2156 +        tkls->offset() == in_bytes(Klass::super_offset())) {
  1.2157 +      ciKlass* sup = klass->as_instance_klass()->super();
  1.2158 +      // The field is Klass::_super.  Return its (constant) value.
  1.2159 +      // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  1.2160 +      return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  1.2161 +    }
  1.2162 +  }
  1.2163 +
  1.2164 +  // Bailout case
  1.2165 +  return LoadNode::Value(phase);
  1.2166 +}
  1.2167 +
  1.2168 +//------------------------------Identity---------------------------------------
  1.2169 +// To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  1.2170 +// Also feed through the klass in Allocate(...klass...)._klass.
  1.2171 +Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  1.2172 +  return klass_identity_common(phase);
  1.2173 +}
  1.2174 +
  1.2175 +Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
  1.2176 +  Node* x = LoadNode::Identity(phase);
  1.2177 +  if (x != this)  return x;
  1.2178 +
  1.2179 +  // Take apart the address into an oop and and offset.
  1.2180 +  // Return 'this' if we cannot.
  1.2181 +  Node*    adr    = in(MemNode::Address);
  1.2182 +  intptr_t offset = 0;
  1.2183 +  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1.2184 +  if (base == NULL)     return this;
  1.2185 +  const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  1.2186 +  if (toop == NULL)     return this;
  1.2187 +
  1.2188 +  // We can fetch the klass directly through an AllocateNode.
  1.2189 +  // This works even if the klass is not constant (clone or newArray).
  1.2190 +  if (offset == oopDesc::klass_offset_in_bytes()) {
  1.2191 +    Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  1.2192 +    if (allocated_klass != NULL) {
  1.2193 +      return allocated_klass;
  1.2194 +    }
  1.2195 +  }
  1.2196 +
  1.2197 +  // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
  1.2198 +  // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
  1.2199 +  // See inline_native_Class_query for occurrences of these patterns.
  1.2200 +  // Java Example:  x.getClass().isAssignableFrom(y)
  1.2201 +  // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  1.2202 +  //
  1.2203 +  // This improves reflective code, often making the Class
  1.2204 +  // mirror go completely dead.  (Current exception:  Class
  1.2205 +  // mirrors may appear in debug info, but we could clean them out by
  1.2206 +  // introducing a new debug info operator for Klass*.java_mirror).
  1.2207 +  if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  1.2208 +      && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1.2209 +          offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1.2210 +    // We are loading a special hidden field from a Class mirror,
  1.2211 +    // the field which points to its Klass or ArrayKlass metaobject.
  1.2212 +    if (base->is_Load()) {
  1.2213 +      Node* adr2 = base->in(MemNode::Address);
  1.2214 +      const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  1.2215 +      if (tkls != NULL && !tkls->empty()
  1.2216 +          && (tkls->klass()->is_instance_klass() ||
  1.2217 +              tkls->klass()->is_array_klass())
  1.2218 +          && adr2->is_AddP()
  1.2219 +          ) {
  1.2220 +        int mirror_field = in_bytes(Klass::java_mirror_offset());
  1.2221 +        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1.2222 +          mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
  1.2223 +        }
  1.2224 +        if (tkls->offset() == mirror_field) {
  1.2225 +          return adr2->in(AddPNode::Base);
  1.2226 +        }
  1.2227 +      }
  1.2228 +    }
  1.2229 +  }
  1.2230 +
  1.2231 +  return this;
  1.2232 +}
  1.2233 +
  1.2234 +
  1.2235 +//------------------------------Value------------------------------------------
  1.2236 +const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
  1.2237 +  const Type *t = klass_value_common(phase);
  1.2238 +  if (t == Type::TOP)
  1.2239 +    return t;
  1.2240 +
  1.2241 +  return t->make_narrowklass();
  1.2242 +}
  1.2243 +
  1.2244 +//------------------------------Identity---------------------------------------
  1.2245 +// To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
  1.2246 +// Also feed through the klass in Allocate(...klass...)._klass.
  1.2247 +Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
  1.2248 +  Node *x = klass_identity_common(phase);
  1.2249 +
  1.2250 +  const Type *t = phase->type( x );
  1.2251 +  if( t == Type::TOP ) return x;
  1.2252 +  if( t->isa_narrowklass()) return x;
  1.2253 +  assert (!t->isa_narrowoop(), "no narrow oop here");
  1.2254 +
  1.2255 +  return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
  1.2256 +}
  1.2257 +
  1.2258 +//------------------------------Value-----------------------------------------
  1.2259 +const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  1.2260 +  // Either input is TOP ==> the result is TOP
  1.2261 +  const Type *t1 = phase->type( in(MemNode::Memory) );
  1.2262 +  if( t1 == Type::TOP ) return Type::TOP;
  1.2263 +  Node *adr = in(MemNode::Address);
  1.2264 +  const Type *t2 = phase->type( adr );
  1.2265 +  if( t2 == Type::TOP ) return Type::TOP;
  1.2266 +  const TypePtr *tp = t2->is_ptr();
  1.2267 +  if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  1.2268 +  const TypeAryPtr *tap = tp->isa_aryptr();
  1.2269 +  if( !tap ) return _type;
  1.2270 +  return tap->size();
  1.2271 +}
  1.2272 +
  1.2273 +//-------------------------------Ideal---------------------------------------
  1.2274 +// Feed through the length in AllocateArray(...length...)._length.
  1.2275 +Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1.2276 +  Node* p = MemNode::Ideal_common(phase, can_reshape);
  1.2277 +  if (p)  return (p == NodeSentinel) ? NULL : p;
  1.2278 +
  1.2279 +  // Take apart the address into an oop and and offset.
  1.2280 +  // Return 'this' if we cannot.
  1.2281 +  Node*    adr    = in(MemNode::Address);
  1.2282 +  intptr_t offset = 0;
  1.2283 +  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
  1.2284 +  if (base == NULL)     return NULL;
  1.2285 +  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  1.2286 +  if (tary == NULL)     return NULL;
  1.2287 +
  1.2288 +  // We can fetch the length directly through an AllocateArrayNode.
  1.2289 +  // This works even if the length is not constant (clone or newArray).
  1.2290 +  if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1.2291 +    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  1.2292 +    if (alloc != NULL) {
  1.2293 +      Node* allocated_length = alloc->Ideal_length();
  1.2294 +      Node* len = alloc->make_ideal_length(tary, phase);
  1.2295 +      if (allocated_length != len) {
  1.2296 +        // New CastII improves on this.
  1.2297 +        return len;
  1.2298 +      }
  1.2299 +    }
  1.2300 +  }
  1.2301 +
  1.2302 +  return NULL;
  1.2303 +}
  1.2304 +
  1.2305 +//------------------------------Identity---------------------------------------
  1.2306 +// Feed through the length in AllocateArray(...length...)._length.
  1.2307 +Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  1.2308 +  Node* x = LoadINode::Identity(phase);
  1.2309 +  if (x != this)  return x;
  1.2310 +
  1.2311 +  // Take apart the address into an oop and and offset.
  1.2312 +  // Return 'this' if we cannot.
  1.2313 +  Node*    adr    = in(MemNode::Address);
  1.2314 +  intptr_t offset = 0;
  1.2315 +  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1.2316 +  if (base == NULL)     return this;
  1.2317 +  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  1.2318 +  if (tary == NULL)     return this;
  1.2319 +
  1.2320 +  // We can fetch the length directly through an AllocateArrayNode.
  1.2321 +  // This works even if the length is not constant (clone or newArray).
  1.2322 +  if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1.2323 +    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  1.2324 +    if (alloc != NULL) {
  1.2325 +      Node* allocated_length = alloc->Ideal_length();
  1.2326 +      // Do not allow make_ideal_length to allocate a CastII node.
  1.2327 +      Node* len = alloc->make_ideal_length(tary, phase, false);
  1.2328 +      if (allocated_length == len) {
  1.2329 +        // Return allocated_length only if it would not be improved by a CastII.
  1.2330 +        return allocated_length;
  1.2331 +      }
  1.2332 +    }
  1.2333 +  }
  1.2334 +
  1.2335 +  return this;
  1.2336 +
  1.2337 +}
  1.2338 +
  1.2339 +//=============================================================================
  1.2340 +//---------------------------StoreNode::make-----------------------------------
  1.2341 +// Polymorphic factory method:
  1.2342 +StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
  1.2343 +  assert((mo == unordered || mo == release), "unexpected");
  1.2344 +  Compile* C = gvn.C;
  1.2345 +  assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
  1.2346 +         ctl != NULL, "raw memory operations should have control edge");
  1.2347 +
  1.2348 +  switch (bt) {
  1.2349 +  case T_BOOLEAN:
  1.2350 +  case T_BYTE:    return new (C) StoreBNode(ctl, mem, adr, adr_type, val, mo);
  1.2351 +  case T_INT:     return new (C) StoreINode(ctl, mem, adr, adr_type, val, mo);
  1.2352 +  case T_CHAR:
  1.2353 +  case T_SHORT:   return new (C) StoreCNode(ctl, mem, adr, adr_type, val, mo);
  1.2354 +  case T_LONG:    return new (C) StoreLNode(ctl, mem, adr, adr_type, val, mo);
  1.2355 +  case T_FLOAT:   return new (C) StoreFNode(ctl, mem, adr, adr_type, val, mo);
  1.2356 +  case T_DOUBLE:  return new (C) StoreDNode(ctl, mem, adr, adr_type, val, mo);
  1.2357 +  case T_METADATA:
  1.2358 +  case T_ADDRESS:
  1.2359 +  case T_OBJECT:
  1.2360 +#ifdef _LP64
  1.2361 +    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1.2362 +      val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
  1.2363 +      return new (C) StoreNNode(ctl, mem, adr, adr_type, val, mo);
  1.2364 +    } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
  1.2365 +               (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
  1.2366 +                adr->bottom_type()->isa_rawptr())) {
  1.2367 +      val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
  1.2368 +      return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
  1.2369 +    }
  1.2370 +#endif
  1.2371 +    {
  1.2372 +      return new (C) StorePNode(ctl, mem, adr, adr_type, val, mo);
  1.2373 +    }
  1.2374 +  }
  1.2375 +  ShouldNotReachHere();
  1.2376 +  return (StoreNode*)NULL;
  1.2377 +}
  1.2378 +
  1.2379 +StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
  1.2380 +  bool require_atomic = true;
  1.2381 +  return new (C) StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
  1.2382 +}
  1.2383 +
  1.2384 +
  1.2385 +//--------------------------bottom_type----------------------------------------
  1.2386 +const Type *StoreNode::bottom_type() const {
  1.2387 +  return Type::MEMORY;
  1.2388 +}
  1.2389 +
  1.2390 +//------------------------------hash-------------------------------------------
  1.2391 +uint StoreNode::hash() const {
  1.2392 +  // unroll addition of interesting fields
  1.2393 +  //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  1.2394 +
  1.2395 +  // Since they are not commoned, do not hash them:
  1.2396 +  return NO_HASH;
  1.2397 +}
  1.2398 +
  1.2399 +//------------------------------Ideal------------------------------------------
  1.2400 +// Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  1.2401 +// When a store immediately follows a relevant allocation/initialization,
  1.2402 +// try to capture it into the initialization, or hoist it above.
  1.2403 +Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1.2404 +  Node* p = MemNode::Ideal_common(phase, can_reshape);
  1.2405 +  if (p)  return (p == NodeSentinel) ? NULL : p;
  1.2406 +
  1.2407 +  Node* mem     = in(MemNode::Memory);
  1.2408 +  Node* address = in(MemNode::Address);
  1.2409 +
  1.2410 +  // Back-to-back stores to same address?  Fold em up.  Generally
  1.2411 +  // unsafe if I have intervening uses...  Also disallowed for StoreCM
  1.2412 +  // since they must follow each StoreP operation.  Redundant StoreCMs
  1.2413 +  // are eliminated just before matching in final_graph_reshape.
  1.2414 +  if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
  1.2415 +      mem->Opcode() != Op_StoreCM) {
  1.2416 +    // Looking at a dead closed cycle of memory?
  1.2417 +    assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  1.2418 +
  1.2419 +    assert(Opcode() == mem->Opcode() ||
  1.2420 +           phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  1.2421 +           "no mismatched stores, except on raw memory");
  1.2422 +
  1.2423 +    if (mem->outcnt() == 1 &&           // check for intervening uses
  1.2424 +        mem->as_Store()->memory_size() <= this->memory_size()) {
  1.2425 +      // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  1.2426 +      // For example, 'mem' might be the final state at a conditional return.
  1.2427 +      // Or, 'mem' might be used by some node which is live at the same time
  1.2428 +      // 'this' is live, which might be unschedulable.  So, require exactly
  1.2429 +      // ONE user, the 'this' store, until such time as we clone 'mem' for
  1.2430 +      // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  1.2431 +      if (can_reshape) {  // (%%% is this an anachronism?)
  1.2432 +        set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  1.2433 +                  phase->is_IterGVN());
  1.2434 +      } else {
  1.2435 +        // It's OK to do this in the parser, since DU info is always accurate,
  1.2436 +        // and the parser always refers to nodes via SafePointNode maps.
  1.2437 +        set_req(MemNode::Memory, mem->in(MemNode::Memory));
  1.2438 +      }
  1.2439 +      return this;
  1.2440 +    }
  1.2441 +  }
  1.2442 +
  1.2443 +  // Capture an unaliased, unconditional, simple store into an initializer.
  1.2444 +  // Or, if it is independent of the allocation, hoist it above the allocation.
  1.2445 +  if (ReduceFieldZeroing && /*can_reshape &&*/
  1.2446 +      mem->is_Proj() && mem->in(0)->is_Initialize()) {
  1.2447 +    InitializeNode* init = mem->in(0)->as_Initialize();
  1.2448 +    intptr_t offset = init->can_capture_store(this, phase, can_reshape);
  1.2449 +    if (offset > 0) {
  1.2450 +      Node* moved = init->capture_store(this, offset, phase, can_reshape);
  1.2451 +      // If the InitializeNode captured me, it made a raw copy of me,
  1.2452 +      // and I need to disappear.
  1.2453 +      if (moved != NULL) {
  1.2454 +        // %%% hack to ensure that Ideal returns a new node:
  1.2455 +        mem = MergeMemNode::make(phase->C, mem);
  1.2456 +        return mem;             // fold me away
  1.2457 +      }
  1.2458 +    }
  1.2459 +  }
  1.2460 +
  1.2461 +  return NULL;                  // No further progress
  1.2462 +}
  1.2463 +
  1.2464 +//------------------------------Value-----------------------------------------
  1.2465 +const Type *StoreNode::Value( PhaseTransform *phase ) const {
  1.2466 +  // Either input is TOP ==> the result is TOP
  1.2467 +  const Type *t1 = phase->type( in(MemNode::Memory) );
  1.2468 +  if( t1 == Type::TOP ) return Type::TOP;
  1.2469 +  const Type *t2 = phase->type( in(MemNode::Address) );
  1.2470 +  if( t2 == Type::TOP ) return Type::TOP;
  1.2471 +  const Type *t3 = phase->type( in(MemNode::ValueIn) );
  1.2472 +  if( t3 == Type::TOP ) return Type::TOP;
  1.2473 +  return Type::MEMORY;
  1.2474 +}
  1.2475 +
  1.2476 +//------------------------------Identity---------------------------------------
  1.2477 +// Remove redundant stores:
  1.2478 +//   Store(m, p, Load(m, p)) changes to m.
  1.2479 +//   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  1.2480 +Node *StoreNode::Identity( PhaseTransform *phase ) {
  1.2481 +  Node* mem = in(MemNode::Memory);
  1.2482 +  Node* adr = in(MemNode::Address);
  1.2483 +  Node* val = in(MemNode::ValueIn);
  1.2484 +
  1.2485 +  // Load then Store?  Then the Store is useless
  1.2486 +  if (val->is_Load() &&
  1.2487 +      val->in(MemNode::Address)->eqv_uncast(adr) &&
  1.2488 +      val->in(MemNode::Memory )->eqv_uncast(mem) &&
  1.2489 +      val->as_Load()->store_Opcode() == Opcode()) {
  1.2490 +    return mem;
  1.2491 +  }
  1.2492 +
  1.2493 +  // Two stores in a row of the same value?
  1.2494 +  if (mem->is_Store() &&
  1.2495 +      mem->in(MemNode::Address)->eqv_uncast(adr) &&
  1.2496 +      mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
  1.2497 +      mem->Opcode() == Opcode()) {
  1.2498 +    return mem;
  1.2499 +  }
  1.2500 +
  1.2501 +  // Store of zero anywhere into a freshly-allocated object?
  1.2502 +  // Then the store is useless.
  1.2503 +  // (It must already have been captured by the InitializeNode.)
  1.2504 +  if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  1.2505 +    // a newly allocated object is already all-zeroes everywhere
  1.2506 +    if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  1.2507 +      return mem;
  1.2508 +    }
  1.2509 +
  1.2510 +    // the store may also apply to zero-bits in an earlier object
  1.2511 +    Node* prev_mem = find_previous_store(phase);
  1.2512 +    // Steps (a), (b):  Walk past independent stores to find an exact match.
  1.2513 +    if (prev_mem != NULL) {
  1.2514 +      Node* prev_val = can_see_stored_value(prev_mem, phase);
  1.2515 +      if (prev_val != NULL && phase->eqv(prev_val, val)) {
  1.2516 +        // prev_val and val might differ by a cast; it would be good
  1.2517 +        // to keep the more informative of the two.
  1.2518 +        return mem;
  1.2519 +      }
  1.2520 +    }
  1.2521 +  }
  1.2522 +
  1.2523 +  return this;
  1.2524 +}
  1.2525 +
  1.2526 +//------------------------------match_edge-------------------------------------
  1.2527 +// Do we Match on this edge index or not?  Match only memory & value
  1.2528 +uint StoreNode::match_edge(uint idx) const {
  1.2529 +  return idx == MemNode::Address || idx == MemNode::ValueIn;
  1.2530 +}
  1.2531 +
  1.2532 +//------------------------------cmp--------------------------------------------
  1.2533 +// Do not common stores up together.  They generally have to be split
  1.2534 +// back up anyways, so do not bother.
  1.2535 +uint StoreNode::cmp( const Node &n ) const {
  1.2536 +  return (&n == this);          // Always fail except on self
  1.2537 +}
  1.2538 +
  1.2539 +//------------------------------Ideal_masked_input-----------------------------
  1.2540 +// Check for a useless mask before a partial-word store
  1.2541 +// (StoreB ... (AndI valIn conIa) )
  1.2542 +// If (conIa & mask == mask) this simplifies to
  1.2543 +// (StoreB ... (valIn) )
  1.2544 +Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  1.2545 +  Node *val = in(MemNode::ValueIn);
  1.2546 +  if( val->Opcode() == Op_AndI ) {
  1.2547 +    const TypeInt *t = phase->type( val->in(2) )->isa_int();
  1.2548 +    if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  1.2549 +      set_req(MemNode::ValueIn, val->in(1));
  1.2550 +      return this;
  1.2551 +    }
  1.2552 +  }
  1.2553 +  return NULL;
  1.2554 +}
  1.2555 +
  1.2556 +
  1.2557 +//------------------------------Ideal_sign_extended_input----------------------
  1.2558 +// Check for useless sign-extension before a partial-word store
  1.2559 +// (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  1.2560 +// If (conIL == conIR && conIR <= num_bits)  this simplifies to
  1.2561 +// (StoreB ... (valIn) )
  1.2562 +Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  1.2563 +  Node *val = in(MemNode::ValueIn);
  1.2564 +  if( val->Opcode() == Op_RShiftI ) {
  1.2565 +    const TypeInt *t = phase->type( val->in(2) )->isa_int();
  1.2566 +    if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  1.2567 +      Node *shl = val->in(1);
  1.2568 +      if( shl->Opcode() == Op_LShiftI ) {
  1.2569 +        const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  1.2570 +        if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  1.2571 +          set_req(MemNode::ValueIn, shl->in(1));
  1.2572 +          return this;
  1.2573 +        }
  1.2574 +      }
  1.2575 +    }
  1.2576 +  }
  1.2577 +  return NULL;
  1.2578 +}
  1.2579 +
  1.2580 +//------------------------------value_never_loaded-----------------------------------
  1.2581 +// Determine whether there are any possible loads of the value stored.
  1.2582 +// For simplicity, we actually check if there are any loads from the
  1.2583 +// address stored to, not just for loads of the value stored by this node.
  1.2584 +//
  1.2585 +bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  1.2586 +  Node *adr = in(Address);
  1.2587 +  const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  1.2588 +  if (adr_oop == NULL)
  1.2589 +    return false;
  1.2590 +  if (!adr_oop->is_known_instance_field())
  1.2591 +    return false; // if not a distinct instance, there may be aliases of the address
  1.2592 +  for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  1.2593 +    Node *use = adr->fast_out(i);
  1.2594 +    int opc = use->Opcode();
  1.2595 +    if (use->is_Load() || use->is_LoadStore()) {
  1.2596 +      return false;
  1.2597 +    }
  1.2598 +  }
  1.2599 +  return true;
  1.2600 +}
  1.2601 +
  1.2602 +//=============================================================================
  1.2603 +//------------------------------Ideal------------------------------------------
  1.2604 +// If the store is from an AND mask that leaves the low bits untouched, then
  1.2605 +// we can skip the AND operation.  If the store is from a sign-extension
  1.2606 +// (a left shift, then right shift) we can skip both.
  1.2607 +Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1.2608 +  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  1.2609 +  if( progress != NULL ) return progress;
  1.2610 +
  1.2611 +  progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  1.2612 +  if( progress != NULL ) return progress;
  1.2613 +
  1.2614 +  // Finally check the default case
  1.2615 +  return StoreNode::Ideal(phase, can_reshape);
  1.2616 +}
  1.2617 +
  1.2618 +//=============================================================================
  1.2619 +//------------------------------Ideal------------------------------------------
  1.2620 +// If the store is from an AND mask that leaves the low bits untouched, then
  1.2621 +// we can skip the AND operation
  1.2622 +Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1.2623 +  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  1.2624 +  if( progress != NULL ) return progress;
  1.2625 +
  1.2626 +  progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  1.2627 +  if( progress != NULL ) return progress;
  1.2628 +
  1.2629 +  // Finally check the default case
  1.2630 +  return StoreNode::Ideal(phase, can_reshape);
  1.2631 +}
  1.2632 +
  1.2633 +//=============================================================================
  1.2634 +//------------------------------Identity---------------------------------------
  1.2635 +Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  1.2636 +  // No need to card mark when storing a null ptr
  1.2637 +  Node* my_store = in(MemNode::OopStore);
  1.2638 +  if (my_store->is_Store()) {
  1.2639 +    const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  1.2640 +    if( t1 == TypePtr::NULL_PTR ) {
  1.2641 +      return in(MemNode::Memory);
  1.2642 +    }
  1.2643 +  }
  1.2644 +  return this;
  1.2645 +}
  1.2646 +
  1.2647 +//=============================================================================
  1.2648 +//------------------------------Ideal---------------------------------------
  1.2649 +Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1.2650 +  Node* progress = StoreNode::Ideal(phase, can_reshape);
  1.2651 +  if (progress != NULL) return progress;
  1.2652 +
  1.2653 +  Node* my_store = in(MemNode::OopStore);
  1.2654 +  if (my_store->is_MergeMem()) {
  1.2655 +    Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
  1.2656 +    set_req(MemNode::OopStore, mem);
  1.2657 +    return this;
  1.2658 +  }
  1.2659 +
  1.2660 +  return NULL;
  1.2661 +}
  1.2662 +
  1.2663 +//------------------------------Value-----------------------------------------
  1.2664 +const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  1.2665 +  // Either input is TOP ==> the result is TOP
  1.2666 +  const Type *t = phase->type( in(MemNode::Memory) );
  1.2667 +  if( t == Type::TOP ) return Type::TOP;
  1.2668 +  t = phase->type( in(MemNode::Address) );
  1.2669 +  if( t == Type::TOP ) return Type::TOP;
  1.2670 +  t = phase->type( in(MemNode::ValueIn) );
  1.2671 +  if( t == Type::TOP ) return Type::TOP;
  1.2672 +  // If extra input is TOP ==> the result is TOP
  1.2673 +  t = phase->type( in(MemNode::OopStore) );
  1.2674 +  if( t == Type::TOP ) return Type::TOP;
  1.2675 +
  1.2676 +  return StoreNode::Value( phase );
  1.2677 +}
  1.2678 +
  1.2679 +
  1.2680 +//=============================================================================
  1.2681 +//----------------------------------SCMemProjNode------------------------------
  1.2682 +const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  1.2683 +{
  1.2684 +  return bottom_type();
  1.2685 +}
  1.2686 +
  1.2687 +//=============================================================================
  1.2688 +//----------------------------------LoadStoreNode------------------------------
  1.2689 +LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
  1.2690 +  : Node(required),
  1.2691 +    _type(rt),
  1.2692 +    _adr_type(at)
  1.2693 +{
  1.2694 +  init_req(MemNode::Control, c  );
  1.2695 +  init_req(MemNode::Memory , mem);
  1.2696 +  init_req(MemNode::Address, adr);
  1.2697 +  init_req(MemNode::ValueIn, val);
  1.2698 +  init_class_id(Class_LoadStore);
  1.2699 +}
  1.2700 +
  1.2701 +uint LoadStoreNode::ideal_reg() const {
  1.2702 +  return _type->ideal_reg();
  1.2703 +}
  1.2704 +
  1.2705 +bool LoadStoreNode::result_not_used() const {
  1.2706 +  for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
  1.2707 +    Node *x = fast_out(i);
  1.2708 +    if (x->Opcode() == Op_SCMemProj) continue;
  1.2709 +    return false;
  1.2710 +  }
  1.2711 +  return true;
  1.2712 +}
  1.2713 +
  1.2714 +uint LoadStoreNode::size_of() const { return sizeof(*this); }
  1.2715 +
  1.2716 +//=============================================================================
  1.2717 +//----------------------------------LoadStoreConditionalNode--------------------
  1.2718 +LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
  1.2719 +  init_req(ExpectedIn, ex );
  1.2720 +}
  1.2721 +
  1.2722 +//=============================================================================
  1.2723 +//-------------------------------adr_type--------------------------------------
  1.2724 +// Do we Match on this edge index or not?  Do not match memory
  1.2725 +const TypePtr* ClearArrayNode::adr_type() const {
  1.2726 +  Node *adr = in(3);
  1.2727 +  return MemNode::calculate_adr_type(adr->bottom_type());
  1.2728 +}
  1.2729 +
  1.2730 +//------------------------------match_edge-------------------------------------
  1.2731 +// Do we Match on this edge index or not?  Do not match memory
  1.2732 +uint ClearArrayNode::match_edge(uint idx) const {
  1.2733 +  return idx > 1;
  1.2734 +}
  1.2735 +
  1.2736 +//------------------------------Identity---------------------------------------
  1.2737 +// Clearing a zero length array does nothing
  1.2738 +Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  1.2739 +  return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
  1.2740 +}
  1.2741 +
  1.2742 +//------------------------------Idealize---------------------------------------
  1.2743 +// Clearing a short array is faster with stores
  1.2744 +Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1.2745 +  const int unit = BytesPerLong;
  1.2746 +  const TypeX* t = phase->type(in(2))->isa_intptr_t();
  1.2747 +  if (!t)  return NULL;
  1.2748 +  if (!t->is_con())  return NULL;
  1.2749 +  intptr_t raw_count = t->get_con();
  1.2750 +  intptr_t size = raw_count;
  1.2751 +  if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  1.2752 +  // Clearing nothing uses the Identity call.
  1.2753 +  // Negative clears are possible on dead ClearArrays
  1.2754 +  // (see jck test stmt114.stmt11402.val).
  1.2755 +  if (size <= 0 || size % unit != 0)  return NULL;
  1.2756 +  intptr_t count = size / unit;
  1.2757 +  // Length too long; use fast hardware clear
  1.2758 +  if (size > Matcher::init_array_short_size)  return NULL;
  1.2759 +  Node *mem = in(1);
  1.2760 +  if( phase->type(mem)==Type::TOP ) return NULL;
  1.2761 +  Node *adr = in(3);
  1.2762 +  const Type* at = phase->type(adr);
  1.2763 +  if( at==Type::TOP ) return NULL;
  1.2764 +  const TypePtr* atp = at->isa_ptr();
  1.2765 +  // adjust atp to be the correct array element address type
  1.2766 +  if (atp == NULL)  atp = TypePtr::BOTTOM;
  1.2767 +  else              atp = atp->add_offset(Type::OffsetBot);
  1.2768 +  // Get base for derived pointer purposes
  1.2769 +  if( adr->Opcode() != Op_AddP ) Unimplemented();
  1.2770 +  Node *base = adr->in(1);
  1.2771 +
  1.2772 +  Node *zero = phase->makecon(TypeLong::ZERO);
  1.2773 +  Node *off  = phase->MakeConX(BytesPerLong);
  1.2774 +  mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
  1.2775 +  count--;
  1.2776 +  while( count-- ) {
  1.2777 +    mem = phase->transform(mem);
  1.2778 +    adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
  1.2779 +    mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
  1.2780 +  }
  1.2781 +  return mem;
  1.2782 +}
  1.2783 +
  1.2784 +//----------------------------step_through----------------------------------
  1.2785 +// Return allocation input memory edge if it is different instance
  1.2786 +// or itself if it is the one we are looking for.
  1.2787 +bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
  1.2788 +  Node* n = *np;
  1.2789 +  assert(n->is_ClearArray(), "sanity");
  1.2790 +  intptr_t offset;
  1.2791 +  AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
  1.2792 +  // This method is called only before Allocate nodes are expanded during
  1.2793 +  // macro nodes expansion. Before that ClearArray nodes are only generated
  1.2794 +  // in LibraryCallKit::generate_arraycopy() which follows allocations.
  1.2795 +  assert(alloc != NULL, "should have allocation");
  1.2796 +  if (alloc->_idx == instance_id) {
  1.2797 +    // Can not bypass initialization of the instance we are looking for.
  1.2798 +    return false;
  1.2799 +  }
  1.2800 +  // Otherwise skip it.
  1.2801 +  InitializeNode* init = alloc->initialization();
  1.2802 +  if (init != NULL)
  1.2803 +    *np = init->in(TypeFunc::Memory);
  1.2804 +  else
  1.2805 +    *np = alloc->in(TypeFunc::Memory);
  1.2806 +  return true;
  1.2807 +}
  1.2808 +
  1.2809 +//----------------------------clear_memory-------------------------------------
  1.2810 +// Generate code to initialize object storage to zero.
  1.2811 +Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  1.2812 +                                   intptr_t start_offset,
  1.2813 +                                   Node* end_offset,
  1.2814 +                                   PhaseGVN* phase) {
  1.2815 +  Compile* C = phase->C;
  1.2816 +  intptr_t offset = start_offset;
  1.2817 +
  1.2818 +  int unit = BytesPerLong;
  1.2819 +  if ((offset % unit) != 0) {
  1.2820 +    Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
  1.2821 +    adr = phase->transform(adr);
  1.2822 +    const TypePtr* atp = TypeRawPtr::BOTTOM;
  1.2823 +    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
  1.2824 +    mem = phase->transform(mem);
  1.2825 +    offset += BytesPerInt;
  1.2826 +  }
  1.2827 +  assert((offset % unit) == 0, "");
  1.2828 +
  1.2829 +  // Initialize the remaining stuff, if any, with a ClearArray.
  1.2830 +  return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  1.2831 +}
  1.2832 +
  1.2833 +Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  1.2834 +                                   Node* start_offset,
  1.2835 +                                   Node* end_offset,
  1.2836 +                                   PhaseGVN* phase) {
  1.2837 +  if (start_offset == end_offset) {
  1.2838 +    // nothing to do
  1.2839 +    return mem;
  1.2840 +  }
  1.2841 +
  1.2842 +  Compile* C = phase->C;
  1.2843 +  int unit = BytesPerLong;
  1.2844 +  Node* zbase = start_offset;
  1.2845 +  Node* zend  = end_offset;
  1.2846 +
  1.2847 +  // Scale to the unit required by the CPU:
  1.2848 +  if (!Matcher::init_array_count_is_in_bytes) {
  1.2849 +    Node* shift = phase->intcon(exact_log2(unit));
  1.2850 +    zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
  1.2851 +    zend  = phase->transform( new(C) URShiftXNode(zend,  shift) );
  1.2852 +  }
  1.2853 +
  1.2854 +  // Bulk clear double-words
  1.2855 +  Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
  1.2856 +  Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
  1.2857 +  mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
  1.2858 +  return phase->transform(mem);
  1.2859 +}
  1.2860 +
  1.2861 +Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  1.2862 +                                   intptr_t start_offset,
  1.2863 +                                   intptr_t end_offset,
  1.2864 +                                   PhaseGVN* phase) {
  1.2865 +  if (start_offset == end_offset) {
  1.2866 +    // nothing to do
  1.2867 +    return mem;
  1.2868 +  }
  1.2869 +
  1.2870 +  Compile* C = phase->C;
  1.2871 +  assert((end_offset % BytesPerInt) == 0, "odd end offset");
  1.2872 +  intptr_t done_offset = end_offset;
  1.2873 +  if ((done_offset % BytesPerLong) != 0) {
  1.2874 +    done_offset -= BytesPerInt;
  1.2875 +  }
  1.2876 +  if (done_offset > start_offset) {
  1.2877 +    mem = clear_memory(ctl, mem, dest,
  1.2878 +                       start_offset, phase->MakeConX(done_offset), phase);
  1.2879 +  }
  1.2880 +  if (done_offset < end_offset) { // emit the final 32-bit store
  1.2881 +    Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
  1.2882 +    adr = phase->transform(adr);
  1.2883 +    const TypePtr* atp = TypeRawPtr::BOTTOM;
  1.2884 +    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
  1.2885 +    mem = phase->transform(mem);
  1.2886 +    done_offset += BytesPerInt;
  1.2887 +  }
  1.2888 +  assert(done_offset == end_offset, "");
  1.2889 +  return mem;
  1.2890 +}
  1.2891 +
  1.2892 +//=============================================================================
  1.2893 +// Do not match memory edge.
  1.2894 +uint StrIntrinsicNode::match_edge(uint idx) const {
  1.2895 +  return idx == 2 || idx == 3;
  1.2896 +}
  1.2897 +
  1.2898 +//------------------------------Ideal------------------------------------------
  1.2899 +// Return a node which is more "ideal" than the current node.  Strip out
  1.2900 +// control copies
  1.2901 +Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1.2902 +  if (remove_dead_region(phase, can_reshape)) return this;
  1.2903 +  // Don't bother trying to transform a dead node
  1.2904 +  if (in(0) && in(0)->is_top())  return NULL;
  1.2905 +
  1.2906 +  if (can_reshape) {
  1.2907 +    Node* mem = phase->transform(in(MemNode::Memory));
  1.2908 +    // If transformed to a MergeMem, get the desired slice
  1.2909 +    uint alias_idx = phase->C->get_alias_index(adr_type());
  1.2910 +    mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
  1.2911 +    if (mem != in(MemNode::Memory)) {
  1.2912 +      set_req(MemNode::Memory, mem);
  1.2913 +      return this;
  1.2914 +    }
  1.2915 +  }
  1.2916 +  return NULL;
  1.2917 +}
  1.2918 +
  1.2919 +//------------------------------Value------------------------------------------
  1.2920 +const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
  1.2921 +  if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
  1.2922 +  return bottom_type();
  1.2923 +}
  1.2924 +
  1.2925 +//=============================================================================
  1.2926 +//------------------------------match_edge-------------------------------------
  1.2927 +// Do not match memory edge
  1.2928 +uint EncodeISOArrayNode::match_edge(uint idx) const {
  1.2929 +  return idx == 2 || idx == 3; // EncodeISOArray src (Binary dst len)
  1.2930 +}
  1.2931 +
  1.2932 +//------------------------------Ideal------------------------------------------
  1.2933 +// Return a node which is more "ideal" than the current node.  Strip out
  1.2934 +// control copies
  1.2935 +Node *EncodeISOArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1.2936 +  return remove_dead_region(phase, can_reshape) ? this : NULL;
  1.2937 +}
  1.2938 +
  1.2939 +//------------------------------Value------------------------------------------
  1.2940 +const Type *EncodeISOArrayNode::Value(PhaseTransform *phase) const {
  1.2941 +  if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
  1.2942 +  return bottom_type();
  1.2943 +}
  1.2944 +
  1.2945 +//=============================================================================
  1.2946 +MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  1.2947 +  : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  1.2948 +    _adr_type(C->get_adr_type(alias_idx))
  1.2949 +{
  1.2950 +  init_class_id(Class_MemBar);
  1.2951 +  Node* top = C->top();
  1.2952 +  init_req(TypeFunc::I_O,top);
  1.2953 +  init_req(TypeFunc::FramePtr,top);
  1.2954 +  init_req(TypeFunc::ReturnAdr,top);
  1.2955 +  if (precedent != NULL)
  1.2956 +    init_req(TypeFunc::Parms, precedent);
  1.2957 +}
  1.2958 +
  1.2959 +//------------------------------cmp--------------------------------------------
  1.2960 +uint MemBarNode::hash() const { return NO_HASH; }
  1.2961 +uint MemBarNode::cmp( const Node &n ) const {
  1.2962 +  return (&n == this);          // Always fail except on self
  1.2963 +}
  1.2964 +
  1.2965 +//------------------------------make-------------------------------------------
  1.2966 +MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  1.2967 +  switch (opcode) {
  1.2968 +  case Op_MemBarAcquire:     return new(C) MemBarAcquireNode(C, atp, pn);
  1.2969 +  case Op_LoadFence:         return new(C) LoadFenceNode(C, atp, pn);
  1.2970 +  case Op_MemBarRelease:     return new(C) MemBarReleaseNode(C, atp, pn);
  1.2971 +  case Op_StoreFence:        return new(C) StoreFenceNode(C, atp, pn);
  1.2972 +  case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C, atp, pn);
  1.2973 +  case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C, atp, pn);
  1.2974 +  case Op_MemBarVolatile:    return new(C) MemBarVolatileNode(C, atp, pn);
  1.2975 +  case Op_MemBarCPUOrder:    return new(C) MemBarCPUOrderNode(C, atp, pn);
  1.2976 +  case Op_Initialize:        return new(C) InitializeNode(C, atp, pn);
  1.2977 +  case Op_MemBarStoreStore:  return new(C) MemBarStoreStoreNode(C, atp, pn);
  1.2978 +  default: ShouldNotReachHere(); return NULL;
  1.2979 +  }
  1.2980 +}
  1.2981 +
  1.2982 +//------------------------------Ideal------------------------------------------
  1.2983 +// Return a node which is more "ideal" than the current node.  Strip out
  1.2984 +// control copies
  1.2985 +Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1.2986 +  if (remove_dead_region(phase, can_reshape)) return this;
  1.2987 +  // Don't bother trying to transform a dead node
  1.2988 +  if (in(0) && in(0)->is_top()) {
  1.2989 +    return NULL;
  1.2990 +  }
  1.2991 +
  1.2992 +  // Eliminate volatile MemBars for scalar replaced objects.
  1.2993 +  if (can_reshape && req() == (Precedent+1)) {
  1.2994 +    bool eliminate = false;
  1.2995 +    int opc = Opcode();
  1.2996 +    if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
  1.2997 +      // Volatile field loads and stores.
  1.2998 +      Node* my_mem = in(MemBarNode::Precedent);
  1.2999 +      // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
  1.3000 +      if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
  1.3001 +        // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
  1.3002 +        // replace this Precedent (decodeN) with the Load instead.
  1.3003 +        if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
  1.3004 +          Node* load_node = my_mem->in(1);
  1.3005 +          set_req(MemBarNode::Precedent, load_node);
  1.3006 +          phase->is_IterGVN()->_worklist.push(my_mem);
  1.3007 +          my_mem = load_node;
  1.3008 +        } else {
  1.3009 +          assert(my_mem->unique_out() == this, "sanity");
  1.3010 +          del_req(Precedent);
  1.3011 +          phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
  1.3012 +          my_mem = NULL;
  1.3013 +        }
  1.3014 +      }
  1.3015 +      if (my_mem != NULL && my_mem->is_Mem()) {
  1.3016 +        const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
  1.3017 +        // Check for scalar replaced object reference.
  1.3018 +        if( t_oop != NULL && t_oop->is_known_instance_field() &&
  1.3019 +            t_oop->offset() != Type::OffsetBot &&
  1.3020 +            t_oop->offset() != Type::OffsetTop) {
  1.3021 +          eliminate = true;
  1.3022 +        }
  1.3023 +      }
  1.3024 +    } else if (opc == Op_MemBarRelease) {
  1.3025 +      // Final field stores.
  1.3026 +      Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
  1.3027 +      if ((alloc != NULL) && alloc->is_Allocate() &&
  1.3028 +          alloc->as_Allocate()->_is_non_escaping) {
  1.3029 +        // The allocated object does not escape.
  1.3030 +        eliminate = true;
  1.3031 +      }
  1.3032 +    }
  1.3033 +    if (eliminate) {
  1.3034 +      // Replace MemBar projections by its inputs.
  1.3035 +      PhaseIterGVN* igvn = phase->is_IterGVN();
  1.3036 +      igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
  1.3037 +      igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
  1.3038 +      // Must return either the original node (now dead) or a new node
  1.3039 +      // (Do not return a top here, since that would break the uniqueness of top.)
  1.3040 +      return new (phase->C) ConINode(TypeInt::ZERO);
  1.3041 +    }
  1.3042 +  }
  1.3043 +  return NULL;
  1.3044 +}
  1.3045 +
  1.3046 +//------------------------------Value------------------------------------------
  1.3047 +const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  1.3048 +  if( !in(0) ) return Type::TOP;
  1.3049 +  if( phase->type(in(0)) == Type::TOP )
  1.3050 +    return Type::TOP;
  1.3051 +  return TypeTuple::MEMBAR;
  1.3052 +}
  1.3053 +
  1.3054 +//------------------------------match------------------------------------------
  1.3055 +// Construct projections for memory.
  1.3056 +Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  1.3057 +  switch (proj->_con) {
  1.3058 +  case TypeFunc::Control:
  1.3059 +  case TypeFunc::Memory:
  1.3060 +    return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  1.3061 +  }
  1.3062 +  ShouldNotReachHere();
  1.3063 +  return NULL;
  1.3064 +}
  1.3065 +
  1.3066 +//===========================InitializeNode====================================
  1.3067 +// SUMMARY:
  1.3068 +// This node acts as a memory barrier on raw memory, after some raw stores.
  1.3069 +// The 'cooked' oop value feeds from the Initialize, not the Allocation.
  1.3070 +// The Initialize can 'capture' suitably constrained stores as raw inits.
  1.3071 +// It can coalesce related raw stores into larger units (called 'tiles').
  1.3072 +// It can avoid zeroing new storage for memory units which have raw inits.
  1.3073 +// At macro-expansion, it is marked 'complete', and does not optimize further.
  1.3074 +//
  1.3075 +// EXAMPLE:
  1.3076 +// The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  1.3077 +//   ctl = incoming control; mem* = incoming memory
  1.3078 +// (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  1.3079 +// First allocate uninitialized memory and fill in the header:
  1.3080 +//   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  1.3081 +//   ctl := alloc.Control; mem* := alloc.Memory*
  1.3082 +//   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  1.3083 +// Then initialize to zero the non-header parts of the raw memory block:
  1.3084 +//   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  1.3085 +//   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  1.3086 +// After the initialize node executes, the object is ready for service:
  1.3087 +//   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  1.3088 +// Suppose its body is immediately initialized as {1,2}:
  1.3089 +//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  1.3090 +//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  1.3091 +//   mem.SLICE(#short[*]) := store2
  1.3092 +//
  1.3093 +// DETAILS:
  1.3094 +// An InitializeNode collects and isolates object initialization after
  1.3095 +// an AllocateNode and before the next possible safepoint.  As a
  1.3096 +// memory barrier (MemBarNode), it keeps critical stores from drifting
  1.3097 +// down past any safepoint or any publication of the allocation.
  1.3098 +// Before this barrier, a newly-allocated object may have uninitialized bits.
  1.3099 +// After this barrier, it may be treated as a real oop, and GC is allowed.
  1.3100 +//
  1.3101 +// The semantics of the InitializeNode include an implicit zeroing of
  1.3102 +// the new object from object header to the end of the object.
  1.3103 +// (The object header and end are determined by the AllocateNode.)
  1.3104 +//
  1.3105 +// Certain stores may be added as direct inputs to the InitializeNode.
  1.3106 +// These stores must update raw memory, and they must be to addresses
  1.3107 +// derived from the raw address produced by AllocateNode, and with
  1.3108 +// a constant offset.  They must be ordered by increasing offset.
  1.3109 +// The first one is at in(RawStores), the last at in(req()-1).
  1.3110 +// Unlike most memory operations, they are not linked in a chain,
  1.3111 +// but are displayed in parallel as users of the rawmem output of
  1.3112 +// the allocation.
  1.3113 +//
  1.3114 +// (See comments in InitializeNode::capture_store, which continue
  1.3115 +// the example given above.)
  1.3116 +//
  1.3117 +// When the associated Allocate is macro-expanded, the InitializeNode
  1.3118 +// may be rewritten to optimize collected stores.  A ClearArrayNode
  1.3119 +// may also be created at that point to represent any required zeroing.
  1.3120 +// The InitializeNode is then marked 'complete', prohibiting further
  1.3121 +// capturing of nearby memory operations.
  1.3122 +//
  1.3123 +// During macro-expansion, all captured initializations which store
  1.3124 +// constant values of 32 bits or smaller are coalesced (if advantageous)
  1.3125 +// into larger 'tiles' 32 or 64 bits.  This allows an object to be
  1.3126 +// initialized in fewer memory operations.  Memory words which are
  1.3127 +// covered by neither tiles nor non-constant stores are pre-zeroed
  1.3128 +// by explicit stores of zero.  (The code shape happens to do all
  1.3129 +// zeroing first, then all other stores, with both sequences occurring
  1.3130 +// in order of ascending offsets.)
  1.3131 +//
  1.3132 +// Alternatively, code may be inserted between an AllocateNode and its
  1.3133 +// InitializeNode, to perform arbitrary initialization of the new object.
  1.3134 +// E.g., the object copying intrinsics insert complex data transfers here.
  1.3135 +// The initialization must then be marked as 'complete' disable the
  1.3136 +// built-in zeroing semantics and the collection of initializing stores.
  1.3137 +//
  1.3138 +// While an InitializeNode is incomplete, reads from the memory state
  1.3139 +// produced by it are optimizable if they match the control edge and
  1.3140 +// new oop address associated with the allocation/initialization.
  1.3141 +// They return a stored value (if the offset matches) or else zero.
  1.3142 +// A write to the memory state, if it matches control and address,
  1.3143 +// and if it is to a constant offset, may be 'captured' by the
  1.3144 +// InitializeNode.  It is cloned as a raw memory operation and rewired
  1.3145 +// inside the initialization, to the raw oop produced by the allocation.
  1.3146 +// Operations on addresses which are provably distinct (e.g., to
  1.3147 +// other AllocateNodes) are allowed to bypass the initialization.
  1.3148 +//
  1.3149 +// The effect of all this is to consolidate object initialization
  1.3150 +// (both arrays and non-arrays, both piecewise and bulk) into a
  1.3151 +// single location, where it can be optimized as a unit.
  1.3152 +//
  1.3153 +// Only stores with an offset less than TrackedInitializationLimit words
  1.3154 +// will be considered for capture by an InitializeNode.  This puts a
  1.3155 +// reasonable limit on the complexity of optimized initializations.
  1.3156 +
  1.3157 +//---------------------------InitializeNode------------------------------------
  1.3158 +InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  1.3159 +  : _is_complete(Incomplete), _does_not_escape(false),
  1.3160 +    MemBarNode(C, adr_type, rawoop)
  1.3161 +{
  1.3162 +  init_class_id(Class_Initialize);
  1.3163 +
  1.3164 +  assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  1.3165 +  assert(in(RawAddress) == rawoop, "proper init");
  1.3166 +  // Note:  allocation() can be NULL, for secondary initialization barriers
  1.3167 +}
  1.3168 +
  1.3169 +// Since this node is not matched, it will be processed by the
  1.3170 +// register allocator.  Declare that there are no constraints
  1.3171 +// on the allocation of the RawAddress edge.
  1.3172 +const RegMask &InitializeNode::in_RegMask(uint idx) const {
  1.3173 +  // This edge should be set to top, by the set_complete.  But be conservative.
  1.3174 +  if (idx == InitializeNode::RawAddress)
  1.3175 +    return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  1.3176 +  return RegMask::Empty;
  1.3177 +}
  1.3178 +
  1.3179 +Node* InitializeNode::memory(uint alias_idx) {
  1.3180 +  Node* mem = in(Memory);
  1.3181 +  if (mem->is_MergeMem()) {
  1.3182 +    return mem->as_MergeMem()->memory_at(alias_idx);
  1.3183 +  } else {
  1.3184 +    // incoming raw memory is not split
  1.3185 +    return mem;
  1.3186 +  }
  1.3187 +}
  1.3188 +
  1.3189 +bool InitializeNode::is_non_zero() {
  1.3190 +  if (is_complete())  return false;
  1.3191 +  remove_extra_zeroes();
  1.3192 +  return (req() > RawStores);
  1.3193 +}
  1.3194 +
  1.3195 +void InitializeNode::set_complete(PhaseGVN* phase) {
  1.3196 +  assert(!is_complete(), "caller responsibility");
  1.3197 +  _is_complete = Complete;
  1.3198 +
  1.3199 +  // After this node is complete, it contains a bunch of
  1.3200 +  // raw-memory initializations.  There is no need for
  1.3201 +  // it to have anything to do with non-raw memory effects.
  1.3202 +  // Therefore, tell all non-raw users to re-optimize themselves,
  1.3203 +  // after skipping the memory effects of this initialization.
  1.3204 +  PhaseIterGVN* igvn = phase->is_IterGVN();
  1.3205 +  if (igvn)  igvn->add_users_to_worklist(this);
  1.3206 +}
  1.3207 +
  1.3208 +// convenience function
  1.3209 +// return false if the init contains any stores already
  1.3210 +bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  1.3211 +  InitializeNode* init = initialization();
  1.3212 +  if (init == NULL || init->is_complete())  return false;
  1.3213 +  init->remove_extra_zeroes();
  1.3214 +  // for now, if this allocation has already collected any inits, bail:
  1.3215 +  if (init->is_non_zero())  return false;
  1.3216 +  init->set_complete(phase);
  1.3217 +  return true;
  1.3218 +}
  1.3219 +
  1.3220 +void InitializeNode::remove_extra_zeroes() {
  1.3221 +  if (req() == RawStores)  return;
  1.3222 +  Node* zmem = zero_memory();
  1.3223 +  uint fill = RawStores;
  1.3224 +  for (uint i = fill; i < req(); i++) {
  1.3225 +    Node* n = in(i);
  1.3226 +    if (n->is_top() || n == zmem)  continue;  // skip
  1.3227 +    if (fill < i)  set_req(fill, n);          // compact
  1.3228 +    ++fill;
  1.3229 +  }
  1.3230 +  // delete any empty spaces created:
  1.3231 +  while (fill < req()) {
  1.3232 +    del_req(fill);
  1.3233 +  }
  1.3234 +}
  1.3235 +
  1.3236 +// Helper for remembering which stores go with which offsets.
  1.3237 +intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  1.3238 +  if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  1.3239 +  intptr_t offset = -1;
  1.3240 +  Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  1.3241 +                                               phase, offset);
  1.3242 +  if (base == NULL)     return -1;  // something is dead,
  1.3243 +  if (offset < 0)       return -1;  //        dead, dead
  1.3244 +  return offset;
  1.3245 +}
  1.3246 +
  1.3247 +// Helper for proving that an initialization expression is
  1.3248 +// "simple enough" to be folded into an object initialization.
  1.3249 +// Attempts to prove that a store's initial value 'n' can be captured
  1.3250 +// within the initialization without creating a vicious cycle, such as:
  1.3251 +//     { Foo p = new Foo(); p.next = p; }
  1.3252 +// True for constants and parameters and small combinations thereof.
  1.3253 +bool InitializeNode::detect_init_independence(Node* n, int& count) {
  1.3254 +  if (n == NULL)      return true;   // (can this really happen?)
  1.3255 +  if (n->is_Proj())   n = n->in(0);
  1.3256 +  if (n == this)      return false;  // found a cycle
  1.3257 +  if (n->is_Con())    return true;
  1.3258 +  if (n->is_Start())  return true;   // params, etc., are OK
  1.3259 +  if (n->is_Root())   return true;   // even better
  1.3260 +
  1.3261 +  Node* ctl = n->in(0);
  1.3262 +  if (ctl != NULL && !ctl->is_top()) {
  1.3263 +    if (ctl->is_Proj())  ctl = ctl->in(0);
  1.3264 +    if (ctl == this)  return false;
  1.3265 +
  1.3266 +    // If we already know that the enclosing memory op is pinned right after
  1.3267 +    // the init, then any control flow that the store has picked up
  1.3268 +    // must have preceded the init, or else be equal to the init.
  1.3269 +    // Even after loop optimizations (which might change control edges)
  1.3270 +    // a store is never pinned *before* the availability of its inputs.
  1.3271 +    if (!MemNode::all_controls_dominate(n, this))
  1.3272 +      return false;                  // failed to prove a good control
  1.3273 +  }
  1.3274 +
  1.3275 +  // Check data edges for possible dependencies on 'this'.
  1.3276 +  if ((count += 1) > 20)  return false;  // complexity limit
  1.3277 +  for (uint i = 1; i < n->req(); i++) {
  1.3278 +    Node* m = n->in(i);
  1.3279 +    if (m == NULL || m == n || m->is_top())  continue;
  1.3280 +    uint first_i = n->find_edge(m);
  1.3281 +    if (i != first_i)  continue;  // process duplicate edge just once
  1.3282 +    if (!detect_init_independence(m, count)) {
  1.3283 +      return false;
  1.3284 +    }
  1.3285 +  }
  1.3286 +
  1.3287 +  return true;
  1.3288 +}
  1.3289 +
  1.3290 +// Here are all the checks a Store must pass before it can be moved into
  1.3291 +// an initialization.  Returns zero if a check fails.
  1.3292 +// On success, returns the (constant) offset to which the store applies,
  1.3293 +// within the initialized memory.
  1.3294 +intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
  1.3295 +  const int FAIL = 0;
  1.3296 +  if (st->req() != MemNode::ValueIn + 1)
  1.3297 +    return FAIL;                // an inscrutable StoreNode (card mark?)
  1.3298 +  Node* ctl = st->in(MemNode::Control);
  1.3299 +  if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  1.3300 +    return FAIL;                // must be unconditional after the initialization
  1.3301 +  Node* mem = st->in(MemNode::Memory);
  1.3302 +  if (!(mem->is_Proj() && mem->in(0) == this))
  1.3303 +    return FAIL;                // must not be preceded by other stores
  1.3304 +  Node* adr = st->in(MemNode::Address);
  1.3305 +  intptr_t offset;
  1.3306 +  AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  1.3307 +  if (alloc == NULL)
  1.3308 +    return FAIL;                // inscrutable address
  1.3309 +  if (alloc != allocation())
  1.3310 +    return FAIL;                // wrong allocation!  (store needs to float up)
  1.3311 +  Node* val = st->in(MemNode::ValueIn);
  1.3312 +  int complexity_count = 0;
  1.3313 +  if (!detect_init_independence(val, complexity_count))
  1.3314 +    return FAIL;                // stored value must be 'simple enough'
  1.3315 +
  1.3316 +  // The Store can be captured only if nothing after the allocation
  1.3317 +  // and before the Store is using the memory location that the store
  1.3318 +  // overwrites.
  1.3319 +  bool failed = false;
  1.3320 +  // If is_complete_with_arraycopy() is true the shape of the graph is
  1.3321 +  // well defined and is safe so no need for extra checks.
  1.3322 +  if (!is_complete_with_arraycopy()) {
  1.3323 +    // We are going to look at each use of the memory state following
  1.3324 +    // the allocation to make sure nothing reads the memory that the
  1.3325 +    // Store writes.
  1.3326 +    const TypePtr* t_adr = phase->type(adr)->isa_ptr();
  1.3327 +    int alias_idx = phase->C->get_alias_index(t_adr);
  1.3328 +    ResourceMark rm;
  1.3329 +    Unique_Node_List mems;
  1.3330 +    mems.push(mem);
  1.3331 +    Node* unique_merge = NULL;
  1.3332 +    for (uint next = 0; next < mems.size(); ++next) {
  1.3333 +      Node *m  = mems.at(next);
  1.3334 +      for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  1.3335 +        Node *n = m->fast_out(j);
  1.3336 +        if (n->outcnt() == 0) {
  1.3337 +          continue;
  1.3338 +        }
  1.3339 +        if (n == st) {
  1.3340 +          continue;
  1.3341 +        } else if (n->in(0) != NULL && n->in(0) != ctl) {
  1.3342 +          // If the control of this use is different from the control
  1.3343 +          // of the Store which is right after the InitializeNode then
  1.3344 +          // this node cannot be between the InitializeNode and the
  1.3345 +          // Store.
  1.3346 +          continue;
  1.3347 +        } else if (n->is_MergeMem()) {
  1.3348 +          if (n->as_MergeMem()->memory_at(alias_idx) == m) {
  1.3349 +            // We can hit a MergeMemNode (that will likely go away
  1.3350 +            // later) that is a direct use of the memory state
  1.3351 +            // following the InitializeNode on the same slice as the
  1.3352 +            // store node that we'd like to capture. We need to check
  1.3353 +            // the uses of the MergeMemNode.
  1.3354 +            mems.push(n);
  1.3355 +          }
  1.3356 +        } else if (n->is_Mem()) {
  1.3357 +          Node* other_adr = n->in(MemNode::Address);
  1.3358 +          if (other_adr == adr) {
  1.3359 +            failed = true;
  1.3360 +            break;
  1.3361 +          } else {
  1.3362 +            const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
  1.3363 +            if (other_t_adr != NULL) {
  1.3364 +              int other_alias_idx = phase->C->get_alias_index(other_t_adr);
  1.3365 +              if (other_alias_idx == alias_idx) {
  1.3366 +                // A load from the same memory slice as the store right
  1.3367 +                // after the InitializeNode. We check the control of the
  1.3368 +                // object/array that is loaded from. If it's the same as
  1.3369 +                // the store control then we cannot capture the store.
  1.3370 +                assert(!n->is_Store(), "2 stores to same slice on same control?");
  1.3371 +                Node* base = other_adr;
  1.3372 +                assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
  1.3373 +                base = base->in(AddPNode::Base);
  1.3374 +                if (base != NULL) {
  1.3375 +                  base = base->uncast();
  1.3376 +                  if (base->is_Proj() && base->in(0) == alloc) {
  1.3377 +                    failed = true;
  1.3378 +                    break;
  1.3379 +                  }
  1.3380 +                }
  1.3381 +              }
  1.3382 +            }
  1.3383 +          }
  1.3384 +        } else {
  1.3385 +          failed = true;
  1.3386 +          break;
  1.3387 +        }
  1.3388 +      }
  1.3389 +    }
  1.3390 +  }
  1.3391 +  if (failed) {
  1.3392 +    if (!can_reshape) {
  1.3393 +      // We decided we couldn't capture the store during parsing. We
  1.3394 +      // should try again during the next IGVN once the graph is
  1.3395 +      // cleaner.
  1.3396 +      phase->C->record_for_igvn(st);
  1.3397 +    }
  1.3398 +    return FAIL;
  1.3399 +  }
  1.3400 +
  1.3401 +  return offset;                // success
  1.3402 +}
  1.3403 +
  1.3404 +// Find the captured store in(i) which corresponds to the range
  1.3405 +// [start..start+size) in the initialized object.
  1.3406 +// If there is one, return its index i.  If there isn't, return the
  1.3407 +// negative of the index where it should be inserted.
  1.3408 +// Return 0 if the queried range overlaps an initialization boundary
  1.3409 +// or if dead code is encountered.
  1.3410 +// If size_in_bytes is zero, do not bother with overlap checks.
  1.3411 +int InitializeNode::captured_store_insertion_point(intptr_t start,
  1.3412 +                                                   int size_in_bytes,
  1.3413 +                                                   PhaseTransform* phase) {
  1.3414 +  const int FAIL = 0, MAX_STORE = BytesPerLong;
  1.3415 +
  1.3416 +  if (is_complete())
  1.3417 +    return FAIL;                // arraycopy got here first; punt
  1.3418 +
  1.3419 +  assert(allocation() != NULL, "must be present");
  1.3420 +
  1.3421 +  // no negatives, no header fields:
  1.3422 +  if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  1.3423 +
  1.3424 +  // after a certain size, we bail out on tracking all the stores:
  1.3425 +  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  1.3426 +  if (start >= ti_limit)  return FAIL;
  1.3427 +
  1.3428 +  for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  1.3429 +    if (i >= limit)  return -(int)i; // not found; here is where to put it
  1.3430 +
  1.3431 +    Node*    st     = in(i);
  1.3432 +    intptr_t st_off = get_store_offset(st, phase);
  1.3433 +    if (st_off < 0) {
  1.3434 +      if (st != zero_memory()) {
  1.3435 +        return FAIL;            // bail out if there is dead garbage
  1.3436 +      }
  1.3437 +    } else if (st_off > start) {
  1.3438 +      // ...we are done, since stores are ordered
  1.3439 +      if (st_off < start + size_in_bytes) {
  1.3440 +        return FAIL;            // the next store overlaps
  1.3441 +      }
  1.3442 +      return -(int)i;           // not found; here is where to put it
  1.3443 +    } else if (st_off < start) {
  1.3444 +      if (size_in_bytes != 0 &&
  1.3445 +          start < st_off + MAX_STORE &&
  1.3446 +          start < st_off + st->as_Store()->memory_size()) {
  1.3447 +        return FAIL;            // the previous store overlaps
  1.3448 +      }
  1.3449 +    } else {
  1.3450 +      if (size_in_bytes != 0 &&
  1.3451 +          st->as_Store()->memory_size() != size_in_bytes) {
  1.3452 +        return FAIL;            // mismatched store size
  1.3453 +      }
  1.3454 +      return i;
  1.3455 +    }
  1.3456 +
  1.3457 +    ++i;
  1.3458 +  }
  1.3459 +}
  1.3460 +
  1.3461 +// Look for a captured store which initializes at the offset 'start'
  1.3462 +// with the given size.  If there is no such store, and no other
  1.3463 +// initialization interferes, then return zero_memory (the memory
  1.3464 +// projection of the AllocateNode).
  1.3465 +Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  1.3466 +                                          PhaseTransform* phase) {
  1.3467 +  assert(stores_are_sane(phase), "");
  1.3468 +  int i = captured_store_insertion_point(start, size_in_bytes, phase);
  1.3469 +  if (i == 0) {
  1.3470 +    return NULL;                // something is dead
  1.3471 +  } else if (i < 0) {
  1.3472 +    return zero_memory();       // just primordial zero bits here
  1.3473 +  } else {
  1.3474 +    Node* st = in(i);           // here is the store at this position
  1.3475 +    assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  1.3476 +    return st;
  1.3477 +  }
  1.3478 +}
  1.3479 +
  1.3480 +// Create, as a raw pointer, an address within my new object at 'offset'.
  1.3481 +Node* InitializeNode::make_raw_address(intptr_t offset,
  1.3482 +                                       PhaseTransform* phase) {
  1.3483 +  Node* addr = in(RawAddress);
  1.3484 +  if (offset != 0) {
  1.3485 +    Compile* C = phase->C;
  1.3486 +    addr = phase->transform( new (C) AddPNode(C->top(), addr,
  1.3487 +                                                 phase->MakeConX(offset)) );
  1.3488 +  }
  1.3489 +  return addr;
  1.3490 +}
  1.3491 +
  1.3492 +// Clone the given store, converting it into a raw store
  1.3493 +// initializing a field or element of my new object.
  1.3494 +// Caller is responsible for retiring the original store,
  1.3495 +// with subsume_node or the like.
  1.3496 +//
  1.3497 +// From the example above InitializeNode::InitializeNode,
  1.3498 +// here are the old stores to be captured:
  1.3499 +//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  1.3500 +//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  1.3501 +//
  1.3502 +// Here is the changed code; note the extra edges on init:
  1.3503 +//   alloc = (Allocate ...)
  1.3504 +//   rawoop = alloc.RawAddress
  1.3505 +//   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  1.3506 +//   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  1.3507 +//   init = (Initialize alloc.Control alloc.Memory rawoop
  1.3508 +//                      rawstore1 rawstore2)
  1.3509 +//
  1.3510 +Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  1.3511 +                                    PhaseTransform* phase, bool can_reshape) {
  1.3512 +  assert(stores_are_sane(phase), "");
  1.3513 +
  1.3514 +  if (start < 0)  return NULL;
  1.3515 +  assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
  1.3516 +
  1.3517 +  Compile* C = phase->C;
  1.3518 +  int size_in_bytes = st->memory_size();
  1.3519 +  int i = captured_store_insertion_point(start, size_in_bytes, phase);
  1.3520 +  if (i == 0)  return NULL;     // bail out
  1.3521 +  Node* prev_mem = NULL;        // raw memory for the captured store
  1.3522 +  if (i > 0) {
  1.3523 +    prev_mem = in(i);           // there is a pre-existing store under this one
  1.3524 +    set_req(i, C->top());       // temporarily disconnect it
  1.3525 +    // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  1.3526 +  } else {
  1.3527 +    i = -i;                     // no pre-existing store
  1.3528 +    prev_mem = zero_memory();   // a slice of the newly allocated object
  1.3529 +    if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  1.3530 +      set_req(--i, C->top());   // reuse this edge; it has been folded away
  1.3531 +    else
  1.3532 +      ins_req(i, C->top());     // build a new edge
  1.3533 +  }
  1.3534 +  Node* new_st = st->clone();
  1.3535 +  new_st->set_req(MemNode::Control, in(Control));
  1.3536 +  new_st->set_req(MemNode::Memory,  prev_mem);
  1.3537 +  new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  1.3538 +  new_st = phase->transform(new_st);
  1.3539 +
  1.3540 +  // At this point, new_st might have swallowed a pre-existing store
  1.3541 +  // at the same offset, or perhaps new_st might have disappeared,
  1.3542 +  // if it redundantly stored the same value (or zero to fresh memory).
  1.3543 +
  1.3544 +  // In any case, wire it in:
  1.3545 +  set_req(i, new_st);
  1.3546 +
  1.3547 +  // The caller may now kill the old guy.
  1.3548 +  DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  1.3549 +  assert(check_st == new_st || check_st == NULL, "must be findable");
  1.3550 +  assert(!is_complete(), "");
  1.3551 +  return new_st;
  1.3552 +}
  1.3553 +
  1.3554 +static bool store_constant(jlong* tiles, int num_tiles,
  1.3555 +                           intptr_t st_off, int st_size,
  1.3556 +                           jlong con) {
  1.3557 +  if ((st_off & (st_size-1)) != 0)
  1.3558 +    return false;               // strange store offset (assume size==2**N)
  1.3559 +  address addr = (address)tiles + st_off;
  1.3560 +  assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  1.3561 +  switch (st_size) {
  1.3562 +  case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  1.3563 +  case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  1.3564 +  case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  1.3565 +  case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  1.3566 +  default: return false;        // strange store size (detect size!=2**N here)
  1.3567 +  }
  1.3568 +  return true;                  // return success to caller
  1.3569 +}
  1.3570 +
  1.3571 +// Coalesce subword constants into int constants and possibly
  1.3572 +// into long constants.  The goal, if the CPU permits,
  1.3573 +// is to initialize the object with a small number of 64-bit tiles.
  1.3574 +// Also, convert floating-point constants to bit patterns.
  1.3575 +// Non-constants are not relevant to this pass.
  1.3576 +//
  1.3577 +// In terms of the running example on InitializeNode::InitializeNode
  1.3578 +// and InitializeNode::capture_store, here is the transformation
  1.3579 +// of rawstore1 and rawstore2 into rawstore12:
  1.3580 +//   alloc = (Allocate ...)
  1.3581 +//   rawoop = alloc.RawAddress
  1.3582 +//   tile12 = 0x00010002
  1.3583 +//   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  1.3584 +//   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  1.3585 +//
  1.3586 +void
  1.3587 +InitializeNode::coalesce_subword_stores(intptr_t header_size,
  1.3588 +                                        Node* size_in_bytes,
  1.3589 +                                        PhaseGVN* phase) {
  1.3590 +  Compile* C = phase->C;
  1.3591 +
  1.3592 +  assert(stores_are_sane(phase), "");
  1.3593 +  // Note:  After this pass, they are not completely sane,
  1.3594 +  // since there may be some overlaps.
  1.3595 +
  1.3596 +  int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  1.3597 +
  1.3598 +  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  1.3599 +  intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  1.3600 +  size_limit = MIN2(size_limit, ti_limit);
  1.3601 +  size_limit = align_size_up(size_limit, BytesPerLong);
  1.3602 +  int num_tiles = size_limit / BytesPerLong;
  1.3603 +
  1.3604 +  // allocate space for the tile map:
  1.3605 +  const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  1.3606 +  jlong  tiles_buf[small_len];
  1.3607 +  Node*  nodes_buf[small_len];
  1.3608 +  jlong  inits_buf[small_len];
  1.3609 +  jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  1.3610 +                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  1.3611 +  Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  1.3612 +                  : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  1.3613 +  jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  1.3614 +                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  1.3615 +  // tiles: exact bitwise model of all primitive constants
  1.3616 +  // nodes: last constant-storing node subsumed into the tiles model
  1.3617 +  // inits: which bytes (in each tile) are touched by any initializations
  1.3618 +
  1.3619 +  //// Pass A: Fill in the tile model with any relevant stores.
  1.3620 +
  1.3621 +  Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  1.3622 +  Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  1.3623 +  Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  1.3624 +  Node* zmem = zero_memory(); // initially zero memory state
  1.3625 +  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  1.3626 +    Node* st = in(i);
  1.3627 +    intptr_t st_off = get_store_offset(st, phase);
  1.3628 +
  1.3629 +    // Figure out the store's offset and constant value:
  1.3630 +    if (st_off < header_size)             continue; //skip (ignore header)
  1.3631 +    if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  1.3632 +    int st_size = st->as_Store()->memory_size();
  1.3633 +    if (st_off + st_size > size_limit)    break;
  1.3634 +
  1.3635 +    // Record which bytes are touched, whether by constant or not.
  1.3636 +    if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  1.3637 +      continue;                 // skip (strange store size)
  1.3638 +
  1.3639 +    const Type* val = phase->type(st->in(MemNode::ValueIn));
  1.3640 +    if (!val->singleton())                continue; //skip (non-con store)
  1.3641 +    BasicType type = val->basic_type();
  1.3642 +
  1.3643 +    jlong con = 0;
  1.3644 +    switch (type) {
  1.3645 +    case T_INT:    con = val->is_int()->get_con();  break;
  1.3646 +    case T_LONG:   con = val->is_long()->get_con(); break;
  1.3647 +    case T_FLOAT:  con = jint_cast(val->getf());    break;
  1.3648 +    case T_DOUBLE: con = jlong_cast(val->getd());   break;
  1.3649 +    default:                              continue; //skip (odd store type)
  1.3650 +    }
  1.3651 +
  1.3652 +    if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  1.3653 +        st->Opcode() == Op_StoreL) {
  1.3654 +      continue;                 // This StoreL is already optimal.
  1.3655 +    }
  1.3656 +
  1.3657 +    // Store down the constant.
  1.3658 +    store_constant(tiles, num_tiles, st_off, st_size, con);
  1.3659 +
  1.3660 +    intptr_t j = st_off >> LogBytesPerLong;
  1.3661 +
  1.3662 +    if (type == T_INT && st_size == BytesPerInt
  1.3663 +        && (st_off & BytesPerInt) == BytesPerInt) {
  1.3664 +      jlong lcon = tiles[j];
  1.3665 +      if (!Matcher::isSimpleConstant64(lcon) &&
  1.3666 +          st->Opcode() == Op_StoreI) {
  1.3667 +        // This StoreI is already optimal by itself.
  1.3668 +        jint* intcon = (jint*) &tiles[j];
  1.3669 +        intcon[1] = 0;  // undo the store_constant()
  1.3670 +
  1.3671 +        // If the previous store is also optimal by itself, back up and
  1.3672 +        // undo the action of the previous loop iteration... if we can.
  1.3673 +        // But if we can't, just let the previous half take care of itself.
  1.3674 +        st = nodes[j];
  1.3675 +        st_off -= BytesPerInt;
  1.3676 +        con = intcon[0];
  1.3677 +        if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  1.3678 +          assert(st_off >= header_size, "still ignoring header");
  1.3679 +          assert(get_store_offset(st, phase) == st_off, "must be");
  1.3680 +          assert(in(i-1) == zmem, "must be");
  1.3681 +          DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  1.3682 +          assert(con == tcon->is_int()->get_con(), "must be");
  1.3683 +          // Undo the effects of the previous loop trip, which swallowed st:
  1.3684 +          intcon[0] = 0;        // undo store_constant()
  1.3685 +          set_req(i-1, st);     // undo set_req(i, zmem)
  1.3686 +          nodes[j] = NULL;      // undo nodes[j] = st
  1.3687 +          --old_subword;        // undo ++old_subword
  1.3688 +        }
  1.3689 +        continue;               // This StoreI is already optimal.
  1.3690 +      }
  1.3691 +    }
  1.3692 +
  1.3693 +    // This store is not needed.
  1.3694 +    set_req(i, zmem);
  1.3695 +    nodes[j] = st;              // record for the moment
  1.3696 +    if (st_size < BytesPerLong) // something has changed
  1.3697 +          ++old_subword;        // includes int/float, but who's counting...
  1.3698 +    else  ++old_long;
  1.3699 +  }
  1.3700 +
  1.3701 +  if ((old_subword + old_long) == 0)
  1.3702 +    return;                     // nothing more to do
  1.3703 +
  1.3704 +  //// Pass B: Convert any non-zero tiles into optimal constant stores.
  1.3705 +  // Be sure to insert them before overlapping non-constant stores.
  1.3706 +  // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  1.3707 +  for (int j = 0; j < num_tiles; j++) {
  1.3708 +    jlong con  = tiles[j];
  1.3709 +    jlong init = inits[j];
  1.3710 +    if (con == 0)  continue;
  1.3711 +    jint con0,  con1;           // split the constant, address-wise
  1.3712 +    jint init0, init1;          // split the init map, address-wise
  1.3713 +    { union { jlong con; jint intcon[2]; } u;
  1.3714 +      u.con = con;
  1.3715 +      con0  = u.intcon[0];
  1.3716 +      con1  = u.intcon[1];
  1.3717 +      u.con = init;
  1.3718 +      init0 = u.intcon[0];
  1.3719 +      init1 = u.intcon[1];
  1.3720 +    }
  1.3721 +
  1.3722 +    Node* old = nodes[j];
  1.3723 +    assert(old != NULL, "need the prior store");
  1.3724 +    intptr_t offset = (j * BytesPerLong);
  1.3725 +
  1.3726 +    bool split = !Matcher::isSimpleConstant64(con);
  1.3727 +
  1.3728 +    if (offset < header_size) {
  1.3729 +      assert(offset + BytesPerInt >= header_size, "second int counts");
  1.3730 +      assert(*(jint*)&tiles[j] == 0, "junk in header");
  1.3731 +      split = true;             // only the second word counts
  1.3732 +      // Example:  int a[] = { 42 ... }
  1.3733 +    } else if (con0 == 0 && init0 == -1) {
  1.3734 +      split = true;             // first word is covered by full inits
  1.3735 +      // Example:  int a[] = { ... foo(), 42 ... }
  1.3736 +    } else if (con1 == 0 && init1 == -1) {
  1.3737 +      split = true;             // second word is covered by full inits
  1.3738 +      // Example:  int a[] = { ... 42, foo() ... }
  1.3739 +    }
  1.3740 +
  1.3741 +    // Here's a case where init0 is neither 0 nor -1:
  1.3742 +    //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  1.3743 +    // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  1.3744 +    // In this case the tile is not split; it is (jlong)42.
  1.3745 +    // The big tile is stored down, and then the foo() value is inserted.
  1.3746 +    // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  1.3747 +
  1.3748 +    Node* ctl = old->in(MemNode::Control);
  1.3749 +    Node* adr = make_raw_address(offset, phase);
  1.3750 +    const TypePtr* atp = TypeRawPtr::BOTTOM;
  1.3751 +
  1.3752 +    // One or two coalesced stores to plop down.
  1.3753 +    Node*    st[2];
  1.3754 +    intptr_t off[2];
  1.3755 +    int  nst = 0;
  1.3756 +    if (!split) {
  1.3757 +      ++new_long;
  1.3758 +      off[nst] = offset;
  1.3759 +      st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  1.3760 +                                  phase->longcon(con), T_LONG, MemNode::unordered);
  1.3761 +    } else {
  1.3762 +      // Omit either if it is a zero.
  1.3763 +      if (con0 != 0) {
  1.3764 +        ++new_int;
  1.3765 +        off[nst]  = offset;
  1.3766 +        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  1.3767 +                                    phase->intcon(con0), T_INT, MemNode::unordered);
  1.3768 +      }
  1.3769 +      if (con1 != 0) {
  1.3770 +        ++new_int;
  1.3771 +        offset += BytesPerInt;
  1.3772 +        adr = make_raw_address(offset, phase);
  1.3773 +        off[nst]  = offset;
  1.3774 +        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  1.3775 +                                    phase->intcon(con1), T_INT, MemNode::unordered);
  1.3776 +      }
  1.3777 +    }
  1.3778 +
  1.3779 +    // Insert second store first, then the first before the second.
  1.3780 +    // Insert each one just before any overlapping non-constant stores.
  1.3781 +    while (nst > 0) {
  1.3782 +      Node* st1 = st[--nst];
  1.3783 +      C->copy_node_notes_to(st1, old);
  1.3784 +      st1 = phase->transform(st1);
  1.3785 +      offset = off[nst];
  1.3786 +      assert(offset >= header_size, "do not smash header");
  1.3787 +      int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  1.3788 +      guarantee(ins_idx != 0, "must re-insert constant store");
  1.3789 +      if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  1.3790 +      if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  1.3791 +        set_req(--ins_idx, st1);
  1.3792 +      else
  1.3793 +        ins_req(ins_idx, st1);
  1.3794 +    }
  1.3795 +  }
  1.3796 +
  1.3797 +  if (PrintCompilation && WizardMode)
  1.3798 +    tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  1.3799 +                  old_subword, old_long, new_int, new_long);
  1.3800 +  if (C->log() != NULL)
  1.3801 +    C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  1.3802 +                   old_subword, old_long, new_int, new_long);
  1.3803 +
  1.3804 +  // Clean up any remaining occurrences of zmem:
  1.3805 +  remove_extra_zeroes();
  1.3806 +}
  1.3807 +
  1.3808 +// Explore forward from in(start) to find the first fully initialized
  1.3809 +// word, and return its offset.  Skip groups of subword stores which
  1.3810 +// together initialize full words.  If in(start) is itself part of a
  1.3811 +// fully initialized word, return the offset of in(start).  If there
  1.3812 +// are no following full-word stores, or if something is fishy, return
  1.3813 +// a negative value.
  1.3814 +intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  1.3815 +  int       int_map = 0;
  1.3816 +  intptr_t  int_map_off = 0;
  1.3817 +  const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  1.3818 +
  1.3819 +  for (uint i = start, limit = req(); i < limit; i++) {
  1.3820 +    Node* st = in(i);
  1.3821 +
  1.3822 +    intptr_t st_off = get_store_offset(st, phase);
  1.3823 +    if (st_off < 0)  break;  // return conservative answer
  1.3824 +
  1.3825 +    int st_size = st->as_Store()->memory_size();
  1.3826 +    if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  1.3827 +      return st_off;            // we found a complete word init
  1.3828 +    }
  1.3829 +
  1.3830 +    // update the map:
  1.3831 +
  1.3832 +    intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  1.3833 +    if (this_int_off != int_map_off) {
  1.3834 +      // reset the map:
  1.3835 +      int_map = 0;
  1.3836 +      int_map_off = this_int_off;
  1.3837 +    }
  1.3838 +
  1.3839 +    int subword_off = st_off - this_int_off;
  1.3840 +    int_map |= right_n_bits(st_size) << subword_off;
  1.3841 +    if ((int_map & FULL_MAP) == FULL_MAP) {
  1.3842 +      return this_int_off;      // we found a complete word init
  1.3843 +    }
  1.3844 +
  1.3845 +    // Did this store hit or cross the word boundary?
  1.3846 +    intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  1.3847 +    if (next_int_off == this_int_off + BytesPerInt) {
  1.3848 +      // We passed the current int, without fully initializing it.
  1.3849 +      int_map_off = next_int_off;
  1.3850 +      int_map >>= BytesPerInt;
  1.3851 +    } else if (next_int_off > this_int_off + BytesPerInt) {
  1.3852 +      // We passed the current and next int.
  1.3853 +      return this_int_off + BytesPerInt;
  1.3854 +    }
  1.3855 +  }
  1.3856 +
  1.3857 +  return -1;
  1.3858 +}
  1.3859 +
  1.3860 +
  1.3861 +// Called when the associated AllocateNode is expanded into CFG.
  1.3862 +// At this point, we may perform additional optimizations.
  1.3863 +// Linearize the stores by ascending offset, to make memory
  1.3864 +// activity as coherent as possible.
  1.3865 +Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  1.3866 +                                      intptr_t header_size,
  1.3867 +                                      Node* size_in_bytes,
  1.3868 +                                      PhaseGVN* phase) {
  1.3869 +  assert(!is_complete(), "not already complete");
  1.3870 +  assert(stores_are_sane(phase), "");
  1.3871 +  assert(allocation() != NULL, "must be present");
  1.3872 +
  1.3873 +  remove_extra_zeroes();
  1.3874 +
  1.3875 +  if (ReduceFieldZeroing || ReduceBulkZeroing)
  1.3876 +    // reduce instruction count for common initialization patterns
  1.3877 +    coalesce_subword_stores(header_size, size_in_bytes, phase);
  1.3878 +
  1.3879 +  Node* zmem = zero_memory();   // initially zero memory state
  1.3880 +  Node* inits = zmem;           // accumulating a linearized chain of inits
  1.3881 +  #ifdef ASSERT
  1.3882 +  intptr_t first_offset = allocation()->minimum_header_size();
  1.3883 +  intptr_t last_init_off = first_offset;  // previous init offset
  1.3884 +  intptr_t last_init_end = first_offset;  // previous init offset+size
  1.3885 +  intptr_t last_tile_end = first_offset;  // previous tile offset+size
  1.3886 +  #endif
  1.3887 +  intptr_t zeroes_done = header_size;
  1.3888 +
  1.3889 +  bool do_zeroing = true;       // we might give up if inits are very sparse
  1.3890 +  int  big_init_gaps = 0;       // how many large gaps have we seen?
  1.3891 +
  1.3892 +  if (ZeroTLAB)  do_zeroing = false;
  1.3893 +  if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  1.3894 +
  1.3895 +  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  1.3896 +    Node* st = in(i);
  1.3897 +    intptr_t st_off = get_store_offset(st, phase);
  1.3898 +    if (st_off < 0)
  1.3899 +      break;                    // unknown junk in the inits
  1.3900 +    if (st->in(MemNode::Memory) != zmem)
  1.3901 +      break;                    // complicated store chains somehow in list
  1.3902 +
  1.3903 +    int st_size = st->as_Store()->memory_size();
  1.3904 +    intptr_t next_init_off = st_off + st_size;
  1.3905 +
  1.3906 +    if (do_zeroing && zeroes_done < next_init_off) {
  1.3907 +      // See if this store needs a zero before it or under it.
  1.3908 +      intptr_t zeroes_needed = st_off;
  1.3909 +
  1.3910 +      if (st_size < BytesPerInt) {
  1.3911 +        // Look for subword stores which only partially initialize words.
  1.3912 +        // If we find some, we must lay down some word-level zeroes first,
  1.3913 +        // underneath the subword stores.
  1.3914 +        //
  1.3915 +        // Examples:
  1.3916 +        //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  1.3917 +        //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  1.3918 +        //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  1.3919 +        //
  1.3920 +        // Note:  coalesce_subword_stores may have already done this,
  1.3921 +        // if it was prompted by constant non-zero subword initializers.
  1.3922 +        // But this case can still arise with non-constant stores.
  1.3923 +
  1.3924 +        intptr_t next_full_store = find_next_fullword_store(i, phase);
  1.3925 +
  1.3926 +        // In the examples above:
  1.3927 +        //   in(i)          p   q   r   s     x   y     z
  1.3928 +        //   st_off        12  13  14  15    12  13    14
  1.3929 +        //   st_size        1   1   1   1     1   1     1
  1.3930 +        //   next_full_s.  12  16  16  16    16  16    16
  1.3931 +        //   z's_done      12  16  16  16    12  16    12
  1.3932 +        //   z's_needed    12  16  16  16    16  16    16
  1.3933 +        //   zsize          0   0   0   0     4   0     4
  1.3934 +        if (next_full_store < 0) {
  1.3935 +          // Conservative tack:  Zero to end of current word.
  1.3936 +          zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  1.3937 +        } else {
  1.3938 +          // Zero to beginning of next fully initialized word.
  1.3939 +          // Or, don't zero at all, if we are already in that word.
  1.3940 +          assert(next_full_store >= zeroes_needed, "must go forward");
  1.3941 +          assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  1.3942 +          zeroes_needed = next_full_store;
  1.3943 +        }
  1.3944 +      }
  1.3945 +
  1.3946 +      if (zeroes_needed > zeroes_done) {
  1.3947 +        intptr_t zsize = zeroes_needed - zeroes_done;
  1.3948 +        // Do some incremental zeroing on rawmem, in parallel with inits.
  1.3949 +        zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  1.3950 +        rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  1.3951 +                                              zeroes_done, zeroes_needed,
  1.3952 +                                              phase);
  1.3953 +        zeroes_done = zeroes_needed;
  1.3954 +        if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  1.3955 +          do_zeroing = false;   // leave the hole, next time
  1.3956 +      }
  1.3957 +    }
  1.3958 +
  1.3959 +    // Collect the store and move on:
  1.3960 +    st->set_req(MemNode::Memory, inits);
  1.3961 +    inits = st;                 // put it on the linearized chain
  1.3962 +    set_req(i, zmem);           // unhook from previous position
  1.3963 +
  1.3964 +    if (zeroes_done == st_off)
  1.3965 +      zeroes_done = next_init_off;
  1.3966 +
  1.3967 +    assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  1.3968 +
  1.3969 +    #ifdef ASSERT
  1.3970 +    // Various order invariants.  Weaker than stores_are_sane because
  1.3971 +    // a large constant tile can be filled in by smaller non-constant stores.
  1.3972 +    assert(st_off >= last_init_off, "inits do not reverse");
  1.3973 +    last_init_off = st_off;
  1.3974 +    const Type* val = NULL;
  1.3975 +    if (st_size >= BytesPerInt &&
  1.3976 +        (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  1.3977 +        (int)val->basic_type() < (int)T_OBJECT) {
  1.3978 +      assert(st_off >= last_tile_end, "tiles do not overlap");
  1.3979 +      assert(st_off >= last_init_end, "tiles do not overwrite inits");
  1.3980 +      last_tile_end = MAX2(last_tile_end, next_init_off);
  1.3981 +    } else {
  1.3982 +      intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  1.3983 +      assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  1.3984 +      assert(st_off      >= last_init_end, "inits do not overlap");
  1.3985 +      last_init_end = next_init_off;  // it's a non-tile
  1.3986 +    }
  1.3987 +    #endif //ASSERT
  1.3988 +  }
  1.3989 +
  1.3990 +  remove_extra_zeroes();        // clear out all the zmems left over
  1.3991 +  add_req(inits);
  1.3992 +
  1.3993 +  if (!ZeroTLAB) {
  1.3994 +    // If anything remains to be zeroed, zero it all now.
  1.3995 +    zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  1.3996 +    // if it is the last unused 4 bytes of an instance, forget about it
  1.3997 +    intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  1.3998 +    if (zeroes_done + BytesPerLong >= size_limit) {
  1.3999 +      assert(allocation() != NULL, "");
  1.4000 +      if (allocation()->Opcode() == Op_Allocate) {
  1.4001 +        Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  1.4002 +        ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  1.4003 +        if (zeroes_done == k->layout_helper())
  1.4004 +          zeroes_done = size_limit;
  1.4005 +      }
  1.4006 +    }
  1.4007 +    if (zeroes_done < size_limit) {
  1.4008 +      rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  1.4009 +                                            zeroes_done, size_in_bytes, phase);
  1.4010 +    }
  1.4011 +  }
  1.4012 +
  1.4013 +  set_complete(phase);
  1.4014 +  return rawmem;
  1.4015 +}
  1.4016 +
  1.4017 +
  1.4018 +#ifdef ASSERT
  1.4019 +bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  1.4020 +  if (is_complete())
  1.4021 +    return true;                // stores could be anything at this point
  1.4022 +  assert(allocation() != NULL, "must be present");
  1.4023 +  intptr_t last_off = allocation()->minimum_header_size();
  1.4024 +  for (uint i = InitializeNode::RawStores; i < req(); i++) {
  1.4025 +    Node* st = in(i);
  1.4026 +    intptr_t st_off = get_store_offset(st, phase);
  1.4027 +    if (st_off < 0)  continue;  // ignore dead garbage
  1.4028 +    if (last_off > st_off) {
  1.4029 +      tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
  1.4030 +      this->dump(2);
  1.4031 +      assert(false, "ascending store offsets");
  1.4032 +      return false;
  1.4033 +    }
  1.4034 +    last_off = st_off + st->as_Store()->memory_size();
  1.4035 +  }
  1.4036 +  return true;
  1.4037 +}
  1.4038 +#endif //ASSERT
  1.4039 +
  1.4040 +
  1.4041 +
  1.4042 +
  1.4043 +//============================MergeMemNode=====================================
  1.4044 +//
  1.4045 +// SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  1.4046 +// contributing store or call operations.  Each contributor provides the memory
  1.4047 +// state for a particular "alias type" (see Compile::alias_type).  For example,
  1.4048 +// if a MergeMem has an input X for alias category #6, then any memory reference
  1.4049 +// to alias category #6 may use X as its memory state input, as an exact equivalent
  1.4050 +// to using the MergeMem as a whole.
  1.4051 +//   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  1.4052 +//
  1.4053 +// (Here, the <N> notation gives the index of the relevant adr_type.)
  1.4054 +//
  1.4055 +// In one special case (and more cases in the future), alias categories overlap.
  1.4056 +// The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  1.4057 +// states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  1.4058 +// it is exactly equivalent to that state W:
  1.4059 +//   MergeMem(<Bot>: W) <==> W
  1.4060 +//
  1.4061 +// Usually, the merge has more than one input.  In that case, where inputs
  1.4062 +// overlap (i.e., one is Bot), the narrower alias type determines the memory
  1.4063 +// state for that type, and the wider alias type (Bot) fills in everywhere else:
  1.4064 +//   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  1.4065 +//   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  1.4066 +//
  1.4067 +// A merge can take a "wide" memory state as one of its narrow inputs.
  1.4068 +// This simply means that the merge observes out only the relevant parts of
  1.4069 +// the wide input.  That is, wide memory states arriving at narrow merge inputs
  1.4070 +// are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  1.4071 +//
  1.4072 +// These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  1.4073 +// and that memory slices "leak through":
  1.4074 +//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  1.4075 +//
  1.4076 +// But, in such a cascade, repeated memory slices can "block the leak":
  1.4077 +//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  1.4078 +//
  1.4079 +// In the last example, Y is not part of the combined memory state of the
  1.4080 +// outermost MergeMem.  The system must, of course, prevent unschedulable
  1.4081 +// memory states from arising, so you can be sure that the state Y is somehow
  1.4082 +// a precursor to state Y'.
  1.4083 +//
  1.4084 +//
  1.4085 +// REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  1.4086 +// of each MergeMemNode array are exactly the numerical alias indexes, including
  1.4087 +// but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  1.4088 +// Compile::alias_type (and kin) produce and manage these indexes.
  1.4089 +//
  1.4090 +// By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  1.4091 +// (Note that this provides quick access to the top node inside MergeMem methods,
  1.4092 +// without the need to reach out via TLS to Compile::current.)
  1.4093 +//
  1.4094 +// As a consequence of what was just described, a MergeMem that represents a full
  1.4095 +// memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  1.4096 +// containing all alias categories.
  1.4097 +//
  1.4098 +// MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  1.4099 +//
  1.4100 +// All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  1.4101 +// a memory state for the alias type <N>, or else the top node, meaning that
  1.4102 +// there is no particular input for that alias type.  Note that the length of
  1.4103 +// a MergeMem is variable, and may be extended at any time to accommodate new
  1.4104 +// memory states at larger alias indexes.  When merges grow, they are of course
  1.4105 +// filled with "top" in the unused in() positions.
  1.4106 +//
  1.4107 +// This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  1.4108 +// (Top was chosen because it works smoothly with passes like GCM.)
  1.4109 +//
  1.4110 +// For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  1.4111 +// the type of random VM bits like TLS references.)  Since it is always the
  1.4112 +// first non-Bot memory slice, some low-level loops use it to initialize an
  1.4113 +// index variable:  for (i = AliasIdxRaw; i < req(); i++).
  1.4114 +//
  1.4115 +//
  1.4116 +// ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  1.4117 +// the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  1.4118 +// the memory state for alias type <N>, or (if there is no particular slice at <N>,
  1.4119 +// it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  1.4120 +// or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  1.4121 +// MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  1.4122 +//
  1.4123 +// %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  1.4124 +// really that different from the other memory inputs.  An abbreviation called
  1.4125 +// "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  1.4126 +//
  1.4127 +//
  1.4128 +// PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  1.4129 +// partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  1.4130 +// that "emerges though" the base memory will be marked as excluding the alias types
  1.4131 +// of the other (narrow-memory) copies which "emerged through" the narrow edges:
  1.4132 +//
  1.4133 +//   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  1.4134 +//     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  1.4135 +//
  1.4136 +// This strange "subtraction" effect is necessary to ensure IGVN convergence.
  1.4137 +// (It is currently unimplemented.)  As you can see, the resulting merge is
  1.4138 +// actually a disjoint union of memory states, rather than an overlay.
  1.4139 +//
  1.4140 +
  1.4141 +//------------------------------MergeMemNode-----------------------------------
  1.4142 +Node* MergeMemNode::make_empty_memory() {
  1.4143 +  Node* empty_memory = (Node*) Compile::current()->top();
  1.4144 +  assert(empty_memory->is_top(), "correct sentinel identity");
  1.4145 +  return empty_memory;
  1.4146 +}
  1.4147 +
  1.4148 +MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  1.4149 +  init_class_id(Class_MergeMem);
  1.4150 +  // all inputs are nullified in Node::Node(int)
  1.4151 +  // set_input(0, NULL);  // no control input
  1.4152 +
  1.4153 +  // Initialize the edges uniformly to top, for starters.
  1.4154 +  Node* empty_mem = make_empty_memory();
  1.4155 +  for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  1.4156 +    init_req(i,empty_mem);
  1.4157 +  }
  1.4158 +  assert(empty_memory() == empty_mem, "");
  1.4159 +
  1.4160 +  if( new_base != NULL && new_base->is_MergeMem() ) {
  1.4161 +    MergeMemNode* mdef = new_base->as_MergeMem();
  1.4162 +    assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  1.4163 +    for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  1.4164 +      mms.set_memory(mms.memory2());
  1.4165 +    }
  1.4166 +    assert(base_memory() == mdef->base_memory(), "");
  1.4167 +  } else {
  1.4168 +    set_base_memory(new_base);
  1.4169 +  }
  1.4170 +}
  1.4171 +
  1.4172 +// Make a new, untransformed MergeMem with the same base as 'mem'.
  1.4173 +// If mem is itself a MergeMem, populate the result with the same edges.
  1.4174 +MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  1.4175 +  return new(C) MergeMemNode(mem);
  1.4176 +}
  1.4177 +
  1.4178 +//------------------------------cmp--------------------------------------------
  1.4179 +uint MergeMemNode::hash() const { return NO_HASH; }
  1.4180 +uint MergeMemNode::cmp( const Node &n ) const {
  1.4181 +  return (&n == this);          // Always fail except on self
  1.4182 +}
  1.4183 +
  1.4184 +//------------------------------Identity---------------------------------------
  1.4185 +Node* MergeMemNode::Identity(PhaseTransform *phase) {
  1.4186 +  // Identity if this merge point does not record any interesting memory
  1.4187 +  // disambiguations.
  1.4188 +  Node* base_mem = base_memory();
  1.4189 +  Node* empty_mem = empty_memory();
  1.4190 +  if (base_mem != empty_mem) {  // Memory path is not dead?
  1.4191 +    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  1.4192 +      Node* mem = in(i);
  1.4193 +      if (mem != empty_mem && mem != base_mem) {
  1.4194 +        return this;            // Many memory splits; no change
  1.4195 +      }
  1.4196 +    }
  1.4197 +  }
  1.4198 +  return base_mem;              // No memory splits; ID on the one true input
  1.4199 +}
  1.4200 +
  1.4201 +//------------------------------Ideal------------------------------------------
  1.4202 +// This method is invoked recursively on chains of MergeMem nodes
  1.4203 +Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1.4204 +  // Remove chain'd MergeMems
  1.4205 +  //
  1.4206 +  // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  1.4207 +  // relative to the "in(Bot)".  Since we are patching both at the same time,
  1.4208 +  // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  1.4209 +  // but rewrite each "in(i)" relative to the new "in(Bot)".
  1.4210 +  Node *progress = NULL;
  1.4211 +
  1.4212 +
  1.4213 +  Node* old_base = base_memory();
  1.4214 +  Node* empty_mem = empty_memory();
  1.4215 +  if (old_base == empty_mem)
  1.4216 +    return NULL; // Dead memory path.
  1.4217 +
  1.4218 +  MergeMemNode* old_mbase;
  1.4219 +  if (old_base != NULL && old_base->is_MergeMem())
  1.4220 +    old_mbase = old_base->as_MergeMem();
  1.4221 +  else
  1.4222 +    old_mbase = NULL;
  1.4223 +  Node* new_base = old_base;
  1.4224 +
  1.4225 +  // simplify stacked MergeMems in base memory
  1.4226 +  if (old_mbase)  new_base = old_mbase->base_memory();
  1.4227 +
  1.4228 +  // the base memory might contribute new slices beyond my req()
  1.4229 +  if (old_mbase)  grow_to_match(old_mbase);
  1.4230 +
  1.4231 +  // Look carefully at the base node if it is a phi.
  1.4232 +  PhiNode* phi_base;
  1.4233 +  if (new_base != NULL && new_base->is_Phi())
  1.4234 +    phi_base = new_base->as_Phi();
  1.4235 +  else
  1.4236 +    phi_base = NULL;
  1.4237 +
  1.4238 +  Node*    phi_reg = NULL;
  1.4239 +  uint     phi_len = (uint)-1;
  1.4240 +  if (phi_base != NULL && !phi_base->is_copy()) {
  1.4241 +    // do not examine phi if degraded to a copy
  1.4242 +    phi_reg = phi_base->region();
  1.4243 +    phi_len = phi_base->req();
  1.4244 +    // see if the phi is unfinished
  1.4245 +    for (uint i = 1; i < phi_len; i++) {
  1.4246 +      if (phi_base->in(i) == NULL) {
  1.4247 +        // incomplete phi; do not look at it yet!
  1.4248 +        phi_reg = NULL;
  1.4249 +        phi_len = (uint)-1;
  1.4250 +        break;
  1.4251 +      }
  1.4252 +    }
  1.4253 +  }
  1.4254 +
  1.4255 +  // Note:  We do not call verify_sparse on entry, because inputs
  1.4256 +  // can normalize to the base_memory via subsume_node or similar
  1.4257 +  // mechanisms.  This method repairs that damage.
  1.4258 +
  1.4259 +  assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  1.4260 +
  1.4261 +  // Look at each slice.
  1.4262 +  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  1.4263 +    Node* old_in = in(i);
  1.4264 +    // calculate the old memory value
  1.4265 +    Node* old_mem = old_in;
  1.4266 +    if (old_mem == empty_mem)  old_mem = old_base;
  1.4267 +    assert(old_mem == memory_at(i), "");
  1.4268 +
  1.4269 +    // maybe update (reslice) the old memory value
  1.4270 +
  1.4271 +    // simplify stacked MergeMems
  1.4272 +    Node* new_mem = old_mem;
  1.4273 +    MergeMemNode* old_mmem;
  1.4274 +    if (old_mem != NULL && old_mem->is_MergeMem())
  1.4275 +      old_mmem = old_mem->as_MergeMem();
  1.4276 +    else
  1.4277 +      old_mmem = NULL;
  1.4278 +    if (old_mmem == this) {
  1.4279 +      // This can happen if loops break up and safepoints disappear.
  1.4280 +      // A merge of BotPtr (default) with a RawPtr memory derived from a
  1.4281 +      // safepoint can be rewritten to a merge of the same BotPtr with
  1.4282 +      // the BotPtr phi coming into the loop.  If that phi disappears
  1.4283 +      // also, we can end up with a self-loop of the mergemem.
  1.4284 +      // In general, if loops degenerate and memory effects disappear,
  1.4285 +      // a mergemem can be left looking at itself.  This simply means
  1.4286 +      // that the mergemem's default should be used, since there is
  1.4287 +      // no longer any apparent effect on this slice.
  1.4288 +      // Note: If a memory slice is a MergeMem cycle, it is unreachable
  1.4289 +      //       from start.  Update the input to TOP.
  1.4290 +      new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  1.4291 +    }
  1.4292 +    else if (old_mmem != NULL) {
  1.4293 +      new_mem = old_mmem->memory_at(i);
  1.4294 +    }
  1.4295 +    // else preceding memory was not a MergeMem
  1.4296 +
  1.4297 +    // replace equivalent phis (unfortunately, they do not GVN together)
  1.4298 +    if (new_mem != NULL && new_mem != new_base &&
  1.4299 +        new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  1.4300 +      if (new_mem->is_Phi()) {
  1.4301 +        PhiNode* phi_mem = new_mem->as_Phi();
  1.4302 +        for (uint i = 1; i < phi_len; i++) {
  1.4303 +          if (phi_base->in(i) != phi_mem->in(i)) {
  1.4304 +            phi_mem = NULL;
  1.4305 +            break;
  1.4306 +          }
  1.4307 +        }
  1.4308 +        if (phi_mem != NULL) {
  1.4309 +          // equivalent phi nodes; revert to the def
  1.4310 +          new_mem = new_base;
  1.4311 +        }
  1.4312 +      }
  1.4313 +    }
  1.4314 +
  1.4315 +    // maybe store down a new value
  1.4316 +    Node* new_in = new_mem;
  1.4317 +    if (new_in == new_base)  new_in = empty_mem;
  1.4318 +
  1.4319 +    if (new_in != old_in) {
  1.4320 +      // Warning:  Do not combine this "if" with the previous "if"
  1.4321 +      // A memory slice might have be be rewritten even if it is semantically
  1.4322 +      // unchanged, if the base_memory value has changed.
  1.4323 +      set_req(i, new_in);
  1.4324 +      progress = this;          // Report progress
  1.4325 +    }
  1.4326 +  }
  1.4327 +
  1.4328 +  if (new_base != old_base) {
  1.4329 +    set_req(Compile::AliasIdxBot, new_base);
  1.4330 +    // Don't use set_base_memory(new_base), because we need to update du.
  1.4331 +    assert(base_memory() == new_base, "");
  1.4332 +    progress = this;
  1.4333 +  }
  1.4334 +
  1.4335 +  if( base_memory() == this ) {
  1.4336 +    // a self cycle indicates this memory path is dead
  1.4337 +    set_req(Compile::AliasIdxBot, empty_mem);
  1.4338 +  }
  1.4339 +
  1.4340 +  // Resolve external cycles by calling Ideal on a MergeMem base_memory
  1.4341 +  // Recursion must occur after the self cycle check above
  1.4342 +  if( base_memory()->is_MergeMem() ) {
  1.4343 +    MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  1.4344 +    Node *m = phase->transform(new_mbase);  // Rollup any cycles
  1.4345 +    if( m != NULL && (m->is_top() ||
  1.4346 +        m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  1.4347 +      // propagate rollup of dead cycle to self
  1.4348 +      set_req(Compile::AliasIdxBot, empty_mem);
  1.4349 +    }
  1.4350 +  }
  1.4351 +
  1.4352 +  if( base_memory() == empty_mem ) {
  1.4353 +    progress = this;
  1.4354 +    // Cut inputs during Parse phase only.
  1.4355 +    // During Optimize phase a dead MergeMem node will be subsumed by Top.
  1.4356 +    if( !can_reshape ) {
  1.4357 +      for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  1.4358 +        if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  1.4359 +      }
  1.4360 +    }
  1.4361 +  }
  1.4362 +
  1.4363 +  if( !progress && base_memory()->is_Phi() && can_reshape ) {
  1.4364 +    // Check if PhiNode::Ideal's "Split phis through memory merges"
  1.4365 +    // transform should be attempted. Look for this->phi->this cycle.
  1.4366 +    uint merge_width = req();
  1.4367 +    if (merge_width > Compile::AliasIdxRaw) {
  1.4368 +      PhiNode* phi = base_memory()->as_Phi();
  1.4369 +      for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  1.4370 +        if (phi->in(i) == this) {
  1.4371 +          phase->is_IterGVN()->_worklist.push(phi);
  1.4372 +          break;
  1.4373 +        }
  1.4374 +      }
  1.4375 +    }
  1.4376 +  }
  1.4377 +
  1.4378 +  assert(progress || verify_sparse(), "please, no dups of base");
  1.4379 +  return progress;
  1.4380 +}
  1.4381 +
  1.4382 +//-------------------------set_base_memory-------------------------------------
  1.4383 +void MergeMemNode::set_base_memory(Node *new_base) {
  1.4384 +  Node* empty_mem = empty_memory();
  1.4385 +  set_req(Compile::AliasIdxBot, new_base);
  1.4386 +  assert(memory_at(req()) == new_base, "must set default memory");
  1.4387 +  // Clear out other occurrences of new_base:
  1.4388 +  if (new_base != empty_mem) {
  1.4389 +    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  1.4390 +      if (in(i) == new_base)  set_req(i, empty_mem);
  1.4391 +    }
  1.4392 +  }
  1.4393 +}
  1.4394 +
  1.4395 +//------------------------------out_RegMask------------------------------------
  1.4396 +const RegMask &MergeMemNode::out_RegMask() const {
  1.4397 +  return RegMask::Empty;
  1.4398 +}
  1.4399 +
  1.4400 +//------------------------------dump_spec--------------------------------------
  1.4401 +#ifndef PRODUCT
  1.4402 +void MergeMemNode::dump_spec(outputStream *st) const {
  1.4403 +  st->print(" {");
  1.4404 +  Node* base_mem = base_memory();
  1.4405 +  for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  1.4406 +    Node* mem = memory_at(i);
  1.4407 +    if (mem == base_mem) { st->print(" -"); continue; }
  1.4408 +    st->print( " N%d:", mem->_idx );
  1.4409 +    Compile::current()->get_adr_type(i)->dump_on(st);
  1.4410 +  }
  1.4411 +  st->print(" }");
  1.4412 +}
  1.4413 +#endif // !PRODUCT
  1.4414 +
  1.4415 +
  1.4416 +#ifdef ASSERT
  1.4417 +static bool might_be_same(Node* a, Node* b) {
  1.4418 +  if (a == b)  return true;
  1.4419 +  if (!(a->is_Phi() || b->is_Phi()))  return false;
  1.4420 +  // phis shift around during optimization
  1.4421 +  return true;  // pretty stupid...
  1.4422 +}
  1.4423 +
  1.4424 +// verify a narrow slice (either incoming or outgoing)
  1.4425 +static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  1.4426 +  if (!VerifyAliases)       return;  // don't bother to verify unless requested
  1.4427 +  if (is_error_reported())  return;  // muzzle asserts when debugging an error
  1.4428 +  if (Node::in_dump())      return;  // muzzle asserts when printing
  1.4429 +  assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  1.4430 +  assert(n != NULL, "");
  1.4431 +  // Elide intervening MergeMem's
  1.4432 +  while (n->is_MergeMem()) {
  1.4433 +    n = n->as_MergeMem()->memory_at(alias_idx);
  1.4434 +  }
  1.4435 +  Compile* C = Compile::current();
  1.4436 +  const TypePtr* n_adr_type = n->adr_type();
  1.4437 +  if (n == m->empty_memory()) {
  1.4438 +    // Implicit copy of base_memory()
  1.4439 +  } else if (n_adr_type != TypePtr::BOTTOM) {
  1.4440 +    assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  1.4441 +    assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  1.4442 +  } else {
  1.4443 +    // A few places like make_runtime_call "know" that VM calls are narrow,
  1.4444 +    // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  1.4445 +    bool expected_wide_mem = false;
  1.4446 +    if (n == m->base_memory()) {
  1.4447 +      expected_wide_mem = true;
  1.4448 +    } else if (alias_idx == Compile::AliasIdxRaw ||
  1.4449 +               n == m->memory_at(Compile::AliasIdxRaw)) {
  1.4450 +      expected_wide_mem = true;
  1.4451 +    } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  1.4452 +      // memory can "leak through" calls on channels that
  1.4453 +      // are write-once.  Allow this also.
  1.4454 +      expected_wide_mem = true;
  1.4455 +    }
  1.4456 +    assert(expected_wide_mem, "expected narrow slice replacement");
  1.4457 +  }
  1.4458 +}
  1.4459 +#else // !ASSERT
  1.4460 +#define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
  1.4461 +#endif
  1.4462 +
  1.4463 +
  1.4464 +//-----------------------------memory_at---------------------------------------
  1.4465 +Node* MergeMemNode::memory_at(uint alias_idx) const {
  1.4466 +  assert(alias_idx >= Compile::AliasIdxRaw ||
  1.4467 +         alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  1.4468 +         "must avoid base_memory and AliasIdxTop");
  1.4469 +
  1.4470 +  // Otherwise, it is a narrow slice.
  1.4471 +  Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  1.4472 +  Compile *C = Compile::current();
  1.4473 +  if (is_empty_memory(n)) {
  1.4474 +    // the array is sparse; empty slots are the "top" node
  1.4475 +    n = base_memory();
  1.4476 +    assert(Node::in_dump()
  1.4477 +           || n == NULL || n->bottom_type() == Type::TOP
  1.4478 +           || n->adr_type() == NULL // address is TOP
  1.4479 +           || n->adr_type() == TypePtr::BOTTOM
  1.4480 +           || n->adr_type() == TypeRawPtr::BOTTOM
  1.4481 +           || Compile::current()->AliasLevel() == 0,
  1.4482 +           "must be a wide memory");
  1.4483 +    // AliasLevel == 0 if we are organizing the memory states manually.
  1.4484 +    // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  1.4485 +  } else {
  1.4486 +    // make sure the stored slice is sane
  1.4487 +    #ifdef ASSERT
  1.4488 +    if (is_error_reported() || Node::in_dump()) {
  1.4489 +    } else if (might_be_same(n, base_memory())) {
  1.4490 +      // Give it a pass:  It is a mostly harmless repetition of the base.
  1.4491 +      // This can arise normally from node subsumption during optimization.
  1.4492 +    } else {
  1.4493 +      verify_memory_slice(this, alias_idx, n);
  1.4494 +    }
  1.4495 +    #endif
  1.4496 +  }
  1.4497 +  return n;
  1.4498 +}
  1.4499 +
  1.4500 +//---------------------------set_memory_at-------------------------------------
  1.4501 +void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  1.4502 +  verify_memory_slice(this, alias_idx, n);
  1.4503 +  Node* empty_mem = empty_memory();
  1.4504 +  if (n == base_memory())  n = empty_mem;  // collapse default
  1.4505 +  uint need_req = alias_idx+1;
  1.4506 +  if (req() < need_req) {
  1.4507 +    if (n == empty_mem)  return;  // already the default, so do not grow me
  1.4508 +    // grow the sparse array
  1.4509 +    do {
  1.4510 +      add_req(empty_mem);
  1.4511 +    } while (req() < need_req);
  1.4512 +  }
  1.4513 +  set_req( alias_idx, n );
  1.4514 +}
  1.4515 +
  1.4516 +
  1.4517 +
  1.4518 +//--------------------------iteration_setup------------------------------------
  1.4519 +void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  1.4520 +  if (other != NULL) {
  1.4521 +    grow_to_match(other);
  1.4522 +    // invariant:  the finite support of mm2 is within mm->req()
  1.4523 +    #ifdef ASSERT
  1.4524 +    for (uint i = req(); i < other->req(); i++) {
  1.4525 +      assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  1.4526 +    }
  1.4527 +    #endif
  1.4528 +  }
  1.4529 +  // Replace spurious copies of base_memory by top.
  1.4530 +  Node* base_mem = base_memory();
  1.4531 +  if (base_mem != NULL && !base_mem->is_top()) {
  1.4532 +    for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  1.4533 +      if (in(i) == base_mem)
  1.4534 +        set_req(i, empty_memory());
  1.4535 +    }
  1.4536 +  }
  1.4537 +}
  1.4538 +
  1.4539 +//---------------------------grow_to_match-------------------------------------
  1.4540 +void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  1.4541 +  Node* empty_mem = empty_memory();
  1.4542 +  assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  1.4543 +  // look for the finite support of the other memory
  1.4544 +  for (uint i = other->req(); --i >= req(); ) {
  1.4545 +    if (other->in(i) != empty_mem) {
  1.4546 +      uint new_len = i+1;
  1.4547 +      while (req() < new_len)  add_req(empty_mem);
  1.4548 +      break;
  1.4549 +    }
  1.4550 +  }
  1.4551 +}
  1.4552 +
  1.4553 +//---------------------------verify_sparse-------------------------------------
  1.4554 +#ifndef PRODUCT
  1.4555 +bool MergeMemNode::verify_sparse() const {
  1.4556 +  assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  1.4557 +  Node* base_mem = base_memory();
  1.4558 +  // The following can happen in degenerate cases, since empty==top.
  1.4559 +  if (is_empty_memory(base_mem))  return true;
  1.4560 +  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  1.4561 +    assert(in(i) != NULL, "sane slice");
  1.4562 +    if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  1.4563 +  }
  1.4564 +  return true;
  1.4565 +}
  1.4566 +
  1.4567 +bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  1.4568 +  Node* n;
  1.4569 +  n = mm->in(idx);
  1.4570 +  if (mem == n)  return true;  // might be empty_memory()
  1.4571 +  n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  1.4572 +  if (mem == n)  return true;
  1.4573 +  while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  1.4574 +    if (mem == n)  return true;
  1.4575 +    if (n == NULL)  break;
  1.4576 +  }
  1.4577 +  return false;
  1.4578 +}
  1.4579 +#endif // !PRODUCT

mercurial