src/share/vm/opto/memnode.cpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
equal deleted inserted replaced
-1:000000000000 0:f90c822e73f8
1 /*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "classfile/systemDictionary.hpp"
27 #include "compiler/compileLog.hpp"
28 #include "memory/allocation.inline.hpp"
29 #include "oops/objArrayKlass.hpp"
30 #include "opto/addnode.hpp"
31 #include "opto/cfgnode.hpp"
32 #include "opto/compile.hpp"
33 #include "opto/connode.hpp"
34 #include "opto/loopnode.hpp"
35 #include "opto/machnode.hpp"
36 #include "opto/matcher.hpp"
37 #include "opto/memnode.hpp"
38 #include "opto/mulnode.hpp"
39 #include "opto/phaseX.hpp"
40 #include "opto/regmask.hpp"
41
42 // Portions of code courtesy of Clifford Click
43
44 // Optimization - Graph Style
45
46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
47
48 //=============================================================================
49 uint MemNode::size_of() const { return sizeof(*this); }
50
51 const TypePtr *MemNode::adr_type() const {
52 Node* adr = in(Address);
53 const TypePtr* cross_check = NULL;
54 DEBUG_ONLY(cross_check = _adr_type);
55 return calculate_adr_type(adr->bottom_type(), cross_check);
56 }
57
58 #ifndef PRODUCT
59 void MemNode::dump_spec(outputStream *st) const {
60 if (in(Address) == NULL) return; // node is dead
61 #ifndef ASSERT
62 // fake the missing field
63 const TypePtr* _adr_type = NULL;
64 if (in(Address) != NULL)
65 _adr_type = in(Address)->bottom_type()->isa_ptr();
66 #endif
67 dump_adr_type(this, _adr_type, st);
68
69 Compile* C = Compile::current();
70 if( C->alias_type(_adr_type)->is_volatile() )
71 st->print(" Volatile!");
72 }
73
74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
75 st->print(" @");
76 if (adr_type == NULL) {
77 st->print("NULL");
78 } else {
79 adr_type->dump_on(st);
80 Compile* C = Compile::current();
81 Compile::AliasType* atp = NULL;
82 if (C->have_alias_type(adr_type)) atp = C->alias_type(adr_type);
83 if (atp == NULL)
84 st->print(", idx=?\?;");
85 else if (atp->index() == Compile::AliasIdxBot)
86 st->print(", idx=Bot;");
87 else if (atp->index() == Compile::AliasIdxTop)
88 st->print(", idx=Top;");
89 else if (atp->index() == Compile::AliasIdxRaw)
90 st->print(", idx=Raw;");
91 else {
92 ciField* field = atp->field();
93 if (field) {
94 st->print(", name=");
95 field->print_name_on(st);
96 }
97 st->print(", idx=%d;", atp->index());
98 }
99 }
100 }
101
102 extern void print_alias_types();
103
104 #endif
105
106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
107 assert((t_oop != NULL), "sanity");
108 bool is_instance = t_oop->is_known_instance_field();
109 bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
110 (load != NULL) && load->is_Load() &&
111 (phase->is_IterGVN() != NULL);
112 if (!(is_instance || is_boxed_value_load))
113 return mchain; // don't try to optimize non-instance types
114 uint instance_id = t_oop->instance_id();
115 Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
116 Node *prev = NULL;
117 Node *result = mchain;
118 while (prev != result) {
119 prev = result;
120 if (result == start_mem)
121 break; // hit one of our sentinels
122 // skip over a call which does not affect this memory slice
123 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
124 Node *proj_in = result->in(0);
125 if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
126 break; // hit one of our sentinels
127 } else if (proj_in->is_Call()) {
128 CallNode *call = proj_in->as_Call();
129 if (!call->may_modify(t_oop, phase)) { // returns false for instances
130 result = call->in(TypeFunc::Memory);
131 }
132 } else if (proj_in->is_Initialize()) {
133 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
134 // Stop if this is the initialization for the object instance which
135 // which contains this memory slice, otherwise skip over it.
136 if ((alloc == NULL) || (alloc->_idx == instance_id)) {
137 break;
138 }
139 if (is_instance) {
140 result = proj_in->in(TypeFunc::Memory);
141 } else if (is_boxed_value_load) {
142 Node* klass = alloc->in(AllocateNode::KlassNode);
143 const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
144 if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
145 result = proj_in->in(TypeFunc::Memory); // not related allocation
146 }
147 }
148 } else if (proj_in->is_MemBar()) {
149 result = proj_in->in(TypeFunc::Memory);
150 } else {
151 assert(false, "unexpected projection");
152 }
153 } else if (result->is_ClearArray()) {
154 if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
155 // Can not bypass initialization of the instance
156 // we are looking for.
157 break;
158 }
159 // Otherwise skip it (the call updated 'result' value).
160 } else if (result->is_MergeMem()) {
161 result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
162 }
163 }
164 return result;
165 }
166
167 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
168 const TypeOopPtr* t_oop = t_adr->isa_oopptr();
169 if (t_oop == NULL)
170 return mchain; // don't try to optimize non-oop types
171 Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
172 bool is_instance = t_oop->is_known_instance_field();
173 PhaseIterGVN *igvn = phase->is_IterGVN();
174 if (is_instance && igvn != NULL && result->is_Phi()) {
175 PhiNode *mphi = result->as_Phi();
176 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
177 const TypePtr *t = mphi->adr_type();
178 if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
179 t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
180 t->is_oopptr()->cast_to_exactness(true)
181 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
182 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
183 // clone the Phi with our address type
184 result = mphi->split_out_instance(t_adr, igvn);
185 } else {
186 assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
187 }
188 }
189 return result;
190 }
191
192 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
193 uint alias_idx = phase->C->get_alias_index(tp);
194 Node *mem = mmem;
195 #ifdef ASSERT
196 {
197 // Check that current type is consistent with the alias index used during graph construction
198 assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
199 bool consistent = adr_check == NULL || adr_check->empty() ||
200 phase->C->must_alias(adr_check, alias_idx );
201 // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
202 if( !consistent && adr_check != NULL && !adr_check->empty() &&
203 tp->isa_aryptr() && tp->offset() == Type::OffsetBot &&
204 adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
205 ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
206 adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
207 adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
208 // don't assert if it is dead code.
209 consistent = true;
210 }
211 if( !consistent ) {
212 st->print("alias_idx==%d, adr_check==", alias_idx);
213 if( adr_check == NULL ) {
214 st->print("NULL");
215 } else {
216 adr_check->dump();
217 }
218 st->cr();
219 print_alias_types();
220 assert(consistent, "adr_check must match alias idx");
221 }
222 }
223 #endif
224 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
225 // means an array I have not precisely typed yet. Do not do any
226 // alias stuff with it any time soon.
227 const TypeOopPtr *toop = tp->isa_oopptr();
228 if( tp->base() != Type::AnyPtr &&
229 !(toop &&
230 toop->klass() != NULL &&
231 toop->klass()->is_java_lang_Object() &&
232 toop->offset() == Type::OffsetBot) ) {
233 // compress paths and change unreachable cycles to TOP
234 // If not, we can update the input infinitely along a MergeMem cycle
235 // Equivalent code in PhiNode::Ideal
236 Node* m = phase->transform(mmem);
237 // If transformed to a MergeMem, get the desired slice
238 // Otherwise the returned node represents memory for every slice
239 mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
240 // Update input if it is progress over what we have now
241 }
242 return mem;
243 }
244
245 //--------------------------Ideal_common---------------------------------------
246 // Look for degenerate control and memory inputs. Bypass MergeMem inputs.
247 // Unhook non-raw memories from complete (macro-expanded) initializations.
248 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
249 // If our control input is a dead region, kill all below the region
250 Node *ctl = in(MemNode::Control);
251 if (ctl && remove_dead_region(phase, can_reshape))
252 return this;
253 ctl = in(MemNode::Control);
254 // Don't bother trying to transform a dead node
255 if (ctl && ctl->is_top()) return NodeSentinel;
256
257 PhaseIterGVN *igvn = phase->is_IterGVN();
258 // Wait if control on the worklist.
259 if (ctl && can_reshape && igvn != NULL) {
260 Node* bol = NULL;
261 Node* cmp = NULL;
262 if (ctl->in(0)->is_If()) {
263 assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
264 bol = ctl->in(0)->in(1);
265 if (bol->is_Bool())
266 cmp = ctl->in(0)->in(1)->in(1);
267 }
268 if (igvn->_worklist.member(ctl) ||
269 (bol != NULL && igvn->_worklist.member(bol)) ||
270 (cmp != NULL && igvn->_worklist.member(cmp)) ) {
271 // This control path may be dead.
272 // Delay this memory node transformation until the control is processed.
273 phase->is_IterGVN()->_worklist.push(this);
274 return NodeSentinel; // caller will return NULL
275 }
276 }
277 // Ignore if memory is dead, or self-loop
278 Node *mem = in(MemNode::Memory);
279 if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
280 assert(mem != this, "dead loop in MemNode::Ideal");
281
282 if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
283 // This memory slice may be dead.
284 // Delay this mem node transformation until the memory is processed.
285 phase->is_IterGVN()->_worklist.push(this);
286 return NodeSentinel; // caller will return NULL
287 }
288
289 Node *address = in(MemNode::Address);
290 const Type *t_adr = phase->type(address);
291 if (t_adr == Type::TOP) return NodeSentinel; // caller will return NULL
292
293 if (can_reshape && igvn != NULL &&
294 (igvn->_worklist.member(address) ||
295 igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
296 // The address's base and type may change when the address is processed.
297 // Delay this mem node transformation until the address is processed.
298 phase->is_IterGVN()->_worklist.push(this);
299 return NodeSentinel; // caller will return NULL
300 }
301
302 // Do NOT remove or optimize the next lines: ensure a new alias index
303 // is allocated for an oop pointer type before Escape Analysis.
304 // Note: C++ will not remove it since the call has side effect.
305 if (t_adr->isa_oopptr()) {
306 int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
307 }
308
309 Node* base = NULL;
310 if (address->is_AddP()) {
311 base = address->in(AddPNode::Base);
312 }
313 if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
314 !t_adr->isa_rawptr()) {
315 // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
316 // Skip this node optimization if its address has TOP base.
317 return NodeSentinel; // caller will return NULL
318 }
319
320 // Avoid independent memory operations
321 Node* old_mem = mem;
322
323 // The code which unhooks non-raw memories from complete (macro-expanded)
324 // initializations was removed. After macro-expansion all stores catched
325 // by Initialize node became raw stores and there is no information
326 // which memory slices they modify. So it is unsafe to move any memory
327 // operation above these stores. Also in most cases hooked non-raw memories
328 // were already unhooked by using information from detect_ptr_independence()
329 // and find_previous_store().
330
331 if (mem->is_MergeMem()) {
332 MergeMemNode* mmem = mem->as_MergeMem();
333 const TypePtr *tp = t_adr->is_ptr();
334
335 mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
336 }
337
338 if (mem != old_mem) {
339 set_req(MemNode::Memory, mem);
340 if (can_reshape && old_mem->outcnt() == 0) {
341 igvn->_worklist.push(old_mem);
342 }
343 if (phase->type( mem ) == Type::TOP) return NodeSentinel;
344 return this;
345 }
346
347 // let the subclass continue analyzing...
348 return NULL;
349 }
350
351 // Helper function for proving some simple control dominations.
352 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
353 // Already assumes that 'dom' is available at 'sub', and that 'sub'
354 // is not a constant (dominated by the method's StartNode).
355 // Used by MemNode::find_previous_store to prove that the
356 // control input of a memory operation predates (dominates)
357 // an allocation it wants to look past.
358 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
359 if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
360 return false; // Conservative answer for dead code
361
362 // Check 'dom'. Skip Proj and CatchProj nodes.
363 dom = dom->find_exact_control(dom);
364 if (dom == NULL || dom->is_top())
365 return false; // Conservative answer for dead code
366
367 if (dom == sub) {
368 // For the case when, for example, 'sub' is Initialize and the original
369 // 'dom' is Proj node of the 'sub'.
370 return false;
371 }
372
373 if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
374 return true;
375
376 // 'dom' dominates 'sub' if its control edge and control edges
377 // of all its inputs dominate or equal to sub's control edge.
378
379 // Currently 'sub' is either Allocate, Initialize or Start nodes.
380 // Or Region for the check in LoadNode::Ideal();
381 // 'sub' should have sub->in(0) != NULL.
382 assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
383 sub->is_Region() || sub->is_Call(), "expecting only these nodes");
384
385 // Get control edge of 'sub'.
386 Node* orig_sub = sub;
387 sub = sub->find_exact_control(sub->in(0));
388 if (sub == NULL || sub->is_top())
389 return false; // Conservative answer for dead code
390
391 assert(sub->is_CFG(), "expecting control");
392
393 if (sub == dom)
394 return true;
395
396 if (sub->is_Start() || sub->is_Root())
397 return false;
398
399 {
400 // Check all control edges of 'dom'.
401
402 ResourceMark rm;
403 Arena* arena = Thread::current()->resource_area();
404 Node_List nlist(arena);
405 Unique_Node_List dom_list(arena);
406
407 dom_list.push(dom);
408 bool only_dominating_controls = false;
409
410 for (uint next = 0; next < dom_list.size(); next++) {
411 Node* n = dom_list.at(next);
412 if (n == orig_sub)
413 return false; // One of dom's inputs dominated by sub.
414 if (!n->is_CFG() && n->pinned()) {
415 // Check only own control edge for pinned non-control nodes.
416 n = n->find_exact_control(n->in(0));
417 if (n == NULL || n->is_top())
418 return false; // Conservative answer for dead code
419 assert(n->is_CFG(), "expecting control");
420 dom_list.push(n);
421 } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
422 only_dominating_controls = true;
423 } else if (n->is_CFG()) {
424 if (n->dominates(sub, nlist))
425 only_dominating_controls = true;
426 else
427 return false;
428 } else {
429 // First, own control edge.
430 Node* m = n->find_exact_control(n->in(0));
431 if (m != NULL) {
432 if (m->is_top())
433 return false; // Conservative answer for dead code
434 dom_list.push(m);
435 }
436 // Now, the rest of edges.
437 uint cnt = n->req();
438 for (uint i = 1; i < cnt; i++) {
439 m = n->find_exact_control(n->in(i));
440 if (m == NULL || m->is_top())
441 continue;
442 dom_list.push(m);
443 }
444 }
445 }
446 return only_dominating_controls;
447 }
448 }
449
450 //---------------------detect_ptr_independence---------------------------------
451 // Used by MemNode::find_previous_store to prove that two base
452 // pointers are never equal.
453 // The pointers are accompanied by their associated allocations,
454 // if any, which have been previously discovered by the caller.
455 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
456 Node* p2, AllocateNode* a2,
457 PhaseTransform* phase) {
458 // Attempt to prove that these two pointers cannot be aliased.
459 // They may both manifestly be allocations, and they should differ.
460 // Or, if they are not both allocations, they can be distinct constants.
461 // Otherwise, one is an allocation and the other a pre-existing value.
462 if (a1 == NULL && a2 == NULL) { // neither an allocation
463 return (p1 != p2) && p1->is_Con() && p2->is_Con();
464 } else if (a1 != NULL && a2 != NULL) { // both allocations
465 return (a1 != a2);
466 } else if (a1 != NULL) { // one allocation a1
467 // (Note: p2->is_Con implies p2->in(0)->is_Root, which dominates.)
468 return all_controls_dominate(p2, a1);
469 } else { //(a2 != NULL) // one allocation a2
470 return all_controls_dominate(p1, a2);
471 }
472 return false;
473 }
474
475
476 // The logic for reordering loads and stores uses four steps:
477 // (a) Walk carefully past stores and initializations which we
478 // can prove are independent of this load.
479 // (b) Observe that the next memory state makes an exact match
480 // with self (load or store), and locate the relevant store.
481 // (c) Ensure that, if we were to wire self directly to the store,
482 // the optimizer would fold it up somehow.
483 // (d) Do the rewiring, and return, depending on some other part of
484 // the optimizer to fold up the load.
485 // This routine handles steps (a) and (b). Steps (c) and (d) are
486 // specific to loads and stores, so they are handled by the callers.
487 // (Currently, only LoadNode::Ideal has steps (c), (d). More later.)
488 //
489 Node* MemNode::find_previous_store(PhaseTransform* phase) {
490 Node* ctrl = in(MemNode::Control);
491 Node* adr = in(MemNode::Address);
492 intptr_t offset = 0;
493 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
494 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
495
496 if (offset == Type::OffsetBot)
497 return NULL; // cannot unalias unless there are precise offsets
498
499 const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
500
501 intptr_t size_in_bytes = memory_size();
502
503 Node* mem = in(MemNode::Memory); // start searching here...
504
505 int cnt = 50; // Cycle limiter
506 for (;;) { // While we can dance past unrelated stores...
507 if (--cnt < 0) break; // Caught in cycle or a complicated dance?
508
509 if (mem->is_Store()) {
510 Node* st_adr = mem->in(MemNode::Address);
511 intptr_t st_offset = 0;
512 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
513 if (st_base == NULL)
514 break; // inscrutable pointer
515 if (st_offset != offset && st_offset != Type::OffsetBot) {
516 const int MAX_STORE = BytesPerLong;
517 if (st_offset >= offset + size_in_bytes ||
518 st_offset <= offset - MAX_STORE ||
519 st_offset <= offset - mem->as_Store()->memory_size()) {
520 // Success: The offsets are provably independent.
521 // (You may ask, why not just test st_offset != offset and be done?
522 // The answer is that stores of different sizes can co-exist
523 // in the same sequence of RawMem effects. We sometimes initialize
524 // a whole 'tile' of array elements with a single jint or jlong.)
525 mem = mem->in(MemNode::Memory);
526 continue; // (a) advance through independent store memory
527 }
528 }
529 if (st_base != base &&
530 detect_ptr_independence(base, alloc,
531 st_base,
532 AllocateNode::Ideal_allocation(st_base, phase),
533 phase)) {
534 // Success: The bases are provably independent.
535 mem = mem->in(MemNode::Memory);
536 continue; // (a) advance through independent store memory
537 }
538
539 // (b) At this point, if the bases or offsets do not agree, we lose,
540 // since we have not managed to prove 'this' and 'mem' independent.
541 if (st_base == base && st_offset == offset) {
542 return mem; // let caller handle steps (c), (d)
543 }
544
545 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
546 InitializeNode* st_init = mem->in(0)->as_Initialize();
547 AllocateNode* st_alloc = st_init->allocation();
548 if (st_alloc == NULL)
549 break; // something degenerated
550 bool known_identical = false;
551 bool known_independent = false;
552 if (alloc == st_alloc)
553 known_identical = true;
554 else if (alloc != NULL)
555 known_independent = true;
556 else if (all_controls_dominate(this, st_alloc))
557 known_independent = true;
558
559 if (known_independent) {
560 // The bases are provably independent: Either they are
561 // manifestly distinct allocations, or else the control
562 // of this load dominates the store's allocation.
563 int alias_idx = phase->C->get_alias_index(adr_type());
564 if (alias_idx == Compile::AliasIdxRaw) {
565 mem = st_alloc->in(TypeFunc::Memory);
566 } else {
567 mem = st_init->memory(alias_idx);
568 }
569 continue; // (a) advance through independent store memory
570 }
571
572 // (b) at this point, if we are not looking at a store initializing
573 // the same allocation we are loading from, we lose.
574 if (known_identical) {
575 // From caller, can_see_stored_value will consult find_captured_store.
576 return mem; // let caller handle steps (c), (d)
577 }
578
579 } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
580 // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
581 if (mem->is_Proj() && mem->in(0)->is_Call()) {
582 CallNode *call = mem->in(0)->as_Call();
583 if (!call->may_modify(addr_t, phase)) {
584 mem = call->in(TypeFunc::Memory);
585 continue; // (a) advance through independent call memory
586 }
587 } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
588 mem = mem->in(0)->in(TypeFunc::Memory);
589 continue; // (a) advance through independent MemBar memory
590 } else if (mem->is_ClearArray()) {
591 if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
592 // (the call updated 'mem' value)
593 continue; // (a) advance through independent allocation memory
594 } else {
595 // Can not bypass initialization of the instance
596 // we are looking for.
597 return mem;
598 }
599 } else if (mem->is_MergeMem()) {
600 int alias_idx = phase->C->get_alias_index(adr_type());
601 mem = mem->as_MergeMem()->memory_at(alias_idx);
602 continue; // (a) advance through independent MergeMem memory
603 }
604 }
605
606 // Unless there is an explicit 'continue', we must bail out here,
607 // because 'mem' is an inscrutable memory state (e.g., a call).
608 break;
609 }
610
611 return NULL; // bail out
612 }
613
614 //----------------------calculate_adr_type-------------------------------------
615 // Helper function. Notices when the given type of address hits top or bottom.
616 // Also, asserts a cross-check of the type against the expected address type.
617 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
618 if (t == Type::TOP) return NULL; // does not touch memory any more?
619 #ifdef PRODUCT
620 cross_check = NULL;
621 #else
622 if (!VerifyAliases || is_error_reported() || Node::in_dump()) cross_check = NULL;
623 #endif
624 const TypePtr* tp = t->isa_ptr();
625 if (tp == NULL) {
626 assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
627 return TypePtr::BOTTOM; // touches lots of memory
628 } else {
629 #ifdef ASSERT
630 // %%%% [phh] We don't check the alias index if cross_check is
631 // TypeRawPtr::BOTTOM. Needs to be investigated.
632 if (cross_check != NULL &&
633 cross_check != TypePtr::BOTTOM &&
634 cross_check != TypeRawPtr::BOTTOM) {
635 // Recheck the alias index, to see if it has changed (due to a bug).
636 Compile* C = Compile::current();
637 assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
638 "must stay in the original alias category");
639 // The type of the address must be contained in the adr_type,
640 // disregarding "null"-ness.
641 // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
642 const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
643 assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
644 "real address must not escape from expected memory type");
645 }
646 #endif
647 return tp;
648 }
649 }
650
651 //------------------------adr_phi_is_loop_invariant----------------------------
652 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
653 // loop is loop invariant. Make a quick traversal of Phi and associated
654 // CastPP nodes, looking to see if they are a closed group within the loop.
655 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
656 // The idea is that the phi-nest must boil down to only CastPP nodes
657 // with the same data. This implies that any path into the loop already
658 // includes such a CastPP, and so the original cast, whatever its input,
659 // must be covered by an equivalent cast, with an earlier control input.
660 ResourceMark rm;
661
662 // The loop entry input of the phi should be the unique dominating
663 // node for every Phi/CastPP in the loop.
664 Unique_Node_List closure;
665 closure.push(adr_phi->in(LoopNode::EntryControl));
666
667 // Add the phi node and the cast to the worklist.
668 Unique_Node_List worklist;
669 worklist.push(adr_phi);
670 if( cast != NULL ){
671 if( !cast->is_ConstraintCast() ) return false;
672 worklist.push(cast);
673 }
674
675 // Begin recursive walk of phi nodes.
676 while( worklist.size() ){
677 // Take a node off the worklist
678 Node *n = worklist.pop();
679 if( !closure.member(n) ){
680 // Add it to the closure.
681 closure.push(n);
682 // Make a sanity check to ensure we don't waste too much time here.
683 if( closure.size() > 20) return false;
684 // This node is OK if:
685 // - it is a cast of an identical value
686 // - or it is a phi node (then we add its inputs to the worklist)
687 // Otherwise, the node is not OK, and we presume the cast is not invariant
688 if( n->is_ConstraintCast() ){
689 worklist.push(n->in(1));
690 } else if( n->is_Phi() ) {
691 for( uint i = 1; i < n->req(); i++ ) {
692 worklist.push(n->in(i));
693 }
694 } else {
695 return false;
696 }
697 }
698 }
699
700 // Quit when the worklist is empty, and we've found no offending nodes.
701 return true;
702 }
703
704 //------------------------------Ideal_DU_postCCP-------------------------------
705 // Find any cast-away of null-ness and keep its control. Null cast-aways are
706 // going away in this pass and we need to make this memory op depend on the
707 // gating null check.
708 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
709 return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
710 }
711
712 // I tried to leave the CastPP's in. This makes the graph more accurate in
713 // some sense; we get to keep around the knowledge that an oop is not-null
714 // after some test. Alas, the CastPP's interfere with GVN (some values are
715 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
716 // cannot collapse, etc). This cost us 10% on SpecJVM, even when I removed
717 // some of the more trivial cases in the optimizer. Removing more useless
718 // Phi's started allowing Loads to illegally float above null checks. I gave
719 // up on this approach. CNC 10/20/2000
720 // This static method may be called not from MemNode (EncodePNode calls it).
721 // Only the control edge of the node 'n' might be updated.
722 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
723 Node *skipped_cast = NULL;
724 // Need a null check? Regular static accesses do not because they are
725 // from constant addresses. Array ops are gated by the range check (which
726 // always includes a NULL check). Just check field ops.
727 if( n->in(MemNode::Control) == NULL ) {
728 // Scan upwards for the highest location we can place this memory op.
729 while( true ) {
730 switch( adr->Opcode() ) {
731
732 case Op_AddP: // No change to NULL-ness, so peek thru AddP's
733 adr = adr->in(AddPNode::Base);
734 continue;
735
736 case Op_DecodeN: // No change to NULL-ness, so peek thru
737 case Op_DecodeNKlass:
738 adr = adr->in(1);
739 continue;
740
741 case Op_EncodeP:
742 case Op_EncodePKlass:
743 // EncodeP node's control edge could be set by this method
744 // when EncodeP node depends on CastPP node.
745 //
746 // Use its control edge for memory op because EncodeP may go away
747 // later when it is folded with following or preceding DecodeN node.
748 if (adr->in(0) == NULL) {
749 // Keep looking for cast nodes.
750 adr = adr->in(1);
751 continue;
752 }
753 ccp->hash_delete(n);
754 n->set_req(MemNode::Control, adr->in(0));
755 ccp->hash_insert(n);
756 return n;
757
758 case Op_CastPP:
759 // If the CastPP is useless, just peek on through it.
760 if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
761 // Remember the cast that we've peeked though. If we peek
762 // through more than one, then we end up remembering the highest
763 // one, that is, if in a loop, the one closest to the top.
764 skipped_cast = adr;
765 adr = adr->in(1);
766 continue;
767 }
768 // CastPP is going away in this pass! We need this memory op to be
769 // control-dependent on the test that is guarding the CastPP.
770 ccp->hash_delete(n);
771 n->set_req(MemNode::Control, adr->in(0));
772 ccp->hash_insert(n);
773 return n;
774
775 case Op_Phi:
776 // Attempt to float above a Phi to some dominating point.
777 if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
778 // If we've already peeked through a Cast (which could have set the
779 // control), we can't float above a Phi, because the skipped Cast
780 // may not be loop invariant.
781 if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
782 adr = adr->in(1);
783 continue;
784 }
785 }
786
787 // Intentional fallthrough!
788
789 // No obvious dominating point. The mem op is pinned below the Phi
790 // by the Phi itself. If the Phi goes away (no true value is merged)
791 // then the mem op can float, but not indefinitely. It must be pinned
792 // behind the controls leading to the Phi.
793 case Op_CheckCastPP:
794 // These usually stick around to change address type, however a
795 // useless one can be elided and we still need to pick up a control edge
796 if (adr->in(0) == NULL) {
797 // This CheckCastPP node has NO control and is likely useless. But we
798 // need check further up the ancestor chain for a control input to keep
799 // the node in place. 4959717.
800 skipped_cast = adr;
801 adr = adr->in(1);
802 continue;
803 }
804 ccp->hash_delete(n);
805 n->set_req(MemNode::Control, adr->in(0));
806 ccp->hash_insert(n);
807 return n;
808
809 // List of "safe" opcodes; those that implicitly block the memory
810 // op below any null check.
811 case Op_CastX2P: // no null checks on native pointers
812 case Op_Parm: // 'this' pointer is not null
813 case Op_LoadP: // Loading from within a klass
814 case Op_LoadN: // Loading from within a klass
815 case Op_LoadKlass: // Loading from within a klass
816 case Op_LoadNKlass: // Loading from within a klass
817 case Op_ConP: // Loading from a klass
818 case Op_ConN: // Loading from a klass
819 case Op_ConNKlass: // Loading from a klass
820 case Op_CreateEx: // Sucking up the guts of an exception oop
821 case Op_Con: // Reading from TLS
822 case Op_CMoveP: // CMoveP is pinned
823 case Op_CMoveN: // CMoveN is pinned
824 break; // No progress
825
826 case Op_Proj: // Direct call to an allocation routine
827 case Op_SCMemProj: // Memory state from store conditional ops
828 #ifdef ASSERT
829 {
830 assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
831 const Node* call = adr->in(0);
832 if (call->is_CallJava()) {
833 const CallJavaNode* call_java = call->as_CallJava();
834 const TypeTuple *r = call_java->tf()->range();
835 assert(r->cnt() > TypeFunc::Parms, "must return value");
836 const Type* ret_type = r->field_at(TypeFunc::Parms);
837 assert(ret_type && ret_type->isa_ptr(), "must return pointer");
838 // We further presume that this is one of
839 // new_instance_Java, new_array_Java, or
840 // the like, but do not assert for this.
841 } else if (call->is_Allocate()) {
842 // similar case to new_instance_Java, etc.
843 } else if (!call->is_CallLeaf()) {
844 // Projections from fetch_oop (OSR) are allowed as well.
845 ShouldNotReachHere();
846 }
847 }
848 #endif
849 break;
850 default:
851 ShouldNotReachHere();
852 }
853 break;
854 }
855 }
856
857 return NULL; // No progress
858 }
859
860
861 //=============================================================================
862 uint LoadNode::size_of() const { return sizeof(*this); }
863 uint LoadNode::cmp( const Node &n ) const
864 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
865 const Type *LoadNode::bottom_type() const { return _type; }
866 uint LoadNode::ideal_reg() const {
867 return _type->ideal_reg();
868 }
869
870 #ifndef PRODUCT
871 void LoadNode::dump_spec(outputStream *st) const {
872 MemNode::dump_spec(st);
873 if( !Verbose && !WizardMode ) {
874 // standard dump does this in Verbose and WizardMode
875 st->print(" #"); _type->dump_on(st);
876 }
877 }
878 #endif
879
880 #ifdef ASSERT
881 //----------------------------is_immutable_value-------------------------------
882 // Helper function to allow a raw load without control edge for some cases
883 bool LoadNode::is_immutable_value(Node* adr) {
884 return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
885 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
886 (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
887 in_bytes(JavaThread::osthread_offset())));
888 }
889 #endif
890
891 //----------------------------LoadNode::make-----------------------------------
892 // Polymorphic factory method:
893 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo) {
894 Compile* C = gvn.C;
895
896 // sanity check the alias category against the created node type
897 assert(!(adr_type->isa_oopptr() &&
898 adr_type->offset() == oopDesc::klass_offset_in_bytes()),
899 "use LoadKlassNode instead");
900 assert(!(adr_type->isa_aryptr() &&
901 adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
902 "use LoadRangeNode instead");
903 // Check control edge of raw loads
904 assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
905 // oop will be recorded in oop map if load crosses safepoint
906 rt->isa_oopptr() || is_immutable_value(adr),
907 "raw memory operations should have control edge");
908 switch (bt) {
909 case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(), mo);
910 case T_BYTE: return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int(), mo);
911 case T_INT: return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int(), mo);
912 case T_CHAR: return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(), mo);
913 case T_SHORT: return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int(), mo);
914 case T_LONG: return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo);
915 case T_FLOAT: return new (C) LoadFNode (ctl, mem, adr, adr_type, rt, mo);
916 case T_DOUBLE: return new (C) LoadDNode (ctl, mem, adr, adr_type, rt, mo);
917 case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(), mo);
918 case T_OBJECT:
919 #ifdef _LP64
920 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
921 Node* load = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo));
922 return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
923 } else
924 #endif
925 {
926 assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
927 return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr(), mo);
928 }
929 }
930 ShouldNotReachHere();
931 return (LoadNode*)NULL;
932 }
933
934 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo) {
935 bool require_atomic = true;
936 return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, require_atomic);
937 }
938
939
940
941
942 //------------------------------hash-------------------------------------------
943 uint LoadNode::hash() const {
944 // unroll addition of interesting fields
945 return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
946 }
947
948 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
949 if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
950 bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
951 bool is_stable_ary = FoldStableValues &&
952 (tp != NULL) && (tp->isa_aryptr() != NULL) &&
953 tp->isa_aryptr()->is_stable();
954
955 return (eliminate_boxing && non_volatile) || is_stable_ary;
956 }
957
958 return false;
959 }
960
961 //---------------------------can_see_stored_value------------------------------
962 // This routine exists to make sure this set of tests is done the same
963 // everywhere. We need to make a coordinated change: first LoadNode::Ideal
964 // will change the graph shape in a way which makes memory alive twice at the
965 // same time (uses the Oracle model of aliasing), then some
966 // LoadXNode::Identity will fold things back to the equivalence-class model
967 // of aliasing.
968 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
969 Node* ld_adr = in(MemNode::Address);
970 intptr_t ld_off = 0;
971 AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
972 const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
973 Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
974 // This is more general than load from boxing objects.
975 if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
976 uint alias_idx = atp->index();
977 bool final = !atp->is_rewritable();
978 Node* result = NULL;
979 Node* current = st;
980 // Skip through chains of MemBarNodes checking the MergeMems for
981 // new states for the slice of this load. Stop once any other
982 // kind of node is encountered. Loads from final memory can skip
983 // through any kind of MemBar but normal loads shouldn't skip
984 // through MemBarAcquire since the could allow them to move out of
985 // a synchronized region.
986 while (current->is_Proj()) {
987 int opc = current->in(0)->Opcode();
988 if ((final && (opc == Op_MemBarAcquire ||
989 opc == Op_MemBarAcquireLock ||
990 opc == Op_LoadFence)) ||
991 opc == Op_MemBarRelease ||
992 opc == Op_StoreFence ||
993 opc == Op_MemBarReleaseLock ||
994 opc == Op_MemBarCPUOrder) {
995 Node* mem = current->in(0)->in(TypeFunc::Memory);
996 if (mem->is_MergeMem()) {
997 MergeMemNode* merge = mem->as_MergeMem();
998 Node* new_st = merge->memory_at(alias_idx);
999 if (new_st == merge->base_memory()) {
1000 // Keep searching
1001 current = new_st;
1002 continue;
1003 }
1004 // Save the new memory state for the slice and fall through
1005 // to exit.
1006 result = new_st;
1007 }
1008 }
1009 break;
1010 }
1011 if (result != NULL) {
1012 st = result;
1013 }
1014 }
1015
1016 // Loop around twice in the case Load -> Initialize -> Store.
1017 // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1018 for (int trip = 0; trip <= 1; trip++) {
1019
1020 if (st->is_Store()) {
1021 Node* st_adr = st->in(MemNode::Address);
1022 if (!phase->eqv(st_adr, ld_adr)) {
1023 // Try harder before giving up... Match raw and non-raw pointers.
1024 intptr_t st_off = 0;
1025 AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1026 if (alloc == NULL) return NULL;
1027 if (alloc != ld_alloc) return NULL;
1028 if (ld_off != st_off) return NULL;
1029 // At this point we have proven something like this setup:
1030 // A = Allocate(...)
1031 // L = LoadQ(, AddP(CastPP(, A.Parm),, #Off))
1032 // S = StoreQ(, AddP(, A.Parm , #Off), V)
1033 // (Actually, we haven't yet proven the Q's are the same.)
1034 // In other words, we are loading from a casted version of
1035 // the same pointer-and-offset that we stored to.
1036 // Thus, we are able to replace L by V.
1037 }
1038 // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1039 if (store_Opcode() != st->Opcode())
1040 return NULL;
1041 return st->in(MemNode::ValueIn);
1042 }
1043
1044 // A load from a freshly-created object always returns zero.
1045 // (This can happen after LoadNode::Ideal resets the load's memory input
1046 // to find_captured_store, which returned InitializeNode::zero_memory.)
1047 if (st->is_Proj() && st->in(0)->is_Allocate() &&
1048 (st->in(0) == ld_alloc) &&
1049 (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1050 // return a zero value for the load's basic type
1051 // (This is one of the few places where a generic PhaseTransform
1052 // can create new nodes. Think of it as lazily manifesting
1053 // virtually pre-existing constants.)
1054 return phase->zerocon(memory_type());
1055 }
1056
1057 // A load from an initialization barrier can match a captured store.
1058 if (st->is_Proj() && st->in(0)->is_Initialize()) {
1059 InitializeNode* init = st->in(0)->as_Initialize();
1060 AllocateNode* alloc = init->allocation();
1061 if ((alloc != NULL) && (alloc == ld_alloc)) {
1062 // examine a captured store value
1063 st = init->find_captured_store(ld_off, memory_size(), phase);
1064 if (st != NULL)
1065 continue; // take one more trip around
1066 }
1067 }
1068
1069 // Load boxed value from result of valueOf() call is input parameter.
1070 if (this->is_Load() && ld_adr->is_AddP() &&
1071 (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1072 intptr_t ignore = 0;
1073 Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1074 if (base != NULL && base->is_Proj() &&
1075 base->as_Proj()->_con == TypeFunc::Parms &&
1076 base->in(0)->is_CallStaticJava() &&
1077 base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1078 return base->in(0)->in(TypeFunc::Parms);
1079 }
1080 }
1081
1082 break;
1083 }
1084
1085 return NULL;
1086 }
1087
1088 //----------------------is_instance_field_load_with_local_phi------------------
1089 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1090 if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1091 in(Address)->is_AddP() ) {
1092 const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1093 // Only instances and boxed values.
1094 if( t_oop != NULL &&
1095 (t_oop->is_ptr_to_boxed_value() ||
1096 t_oop->is_known_instance_field()) &&
1097 t_oop->offset() != Type::OffsetBot &&
1098 t_oop->offset() != Type::OffsetTop) {
1099 return true;
1100 }
1101 }
1102 return false;
1103 }
1104
1105 //------------------------------Identity---------------------------------------
1106 // Loads are identity if previous store is to same address
1107 Node *LoadNode::Identity( PhaseTransform *phase ) {
1108 // If the previous store-maker is the right kind of Store, and the store is
1109 // to the same address, then we are equal to the value stored.
1110 Node* mem = in(Memory);
1111 Node* value = can_see_stored_value(mem, phase);
1112 if( value ) {
1113 // byte, short & char stores truncate naturally.
1114 // A load has to load the truncated value which requires
1115 // some sort of masking operation and that requires an
1116 // Ideal call instead of an Identity call.
1117 if (memory_size() < BytesPerInt) {
1118 // If the input to the store does not fit with the load's result type,
1119 // it must be truncated via an Ideal call.
1120 if (!phase->type(value)->higher_equal(phase->type(this)))
1121 return this;
1122 }
1123 // (This works even when value is a Con, but LoadNode::Value
1124 // usually runs first, producing the singleton type of the Con.)
1125 return value;
1126 }
1127
1128 // Search for an existing data phi which was generated before for the same
1129 // instance's field to avoid infinite generation of phis in a loop.
1130 Node *region = mem->in(0);
1131 if (is_instance_field_load_with_local_phi(region)) {
1132 const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1133 int this_index = phase->C->get_alias_index(addr_t);
1134 int this_offset = addr_t->offset();
1135 int this_iid = addr_t->instance_id();
1136 if (!addr_t->is_known_instance() &&
1137 addr_t->is_ptr_to_boxed_value()) {
1138 // Use _idx of address base (could be Phi node) for boxed values.
1139 intptr_t ignore = 0;
1140 Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1141 this_iid = base->_idx;
1142 }
1143 const Type* this_type = bottom_type();
1144 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1145 Node* phi = region->fast_out(i);
1146 if (phi->is_Phi() && phi != mem &&
1147 phi->as_Phi()->is_same_inst_field(this_type, this_iid, this_index, this_offset)) {
1148 return phi;
1149 }
1150 }
1151 }
1152
1153 return this;
1154 }
1155
1156 // We're loading from an object which has autobox behaviour.
1157 // If this object is result of a valueOf call we'll have a phi
1158 // merging a newly allocated object and a load from the cache.
1159 // We want to replace this load with the original incoming
1160 // argument to the valueOf call.
1161 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1162 assert(phase->C->eliminate_boxing(), "sanity");
1163 intptr_t ignore = 0;
1164 Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1165 if ((base == NULL) || base->is_Phi()) {
1166 // Push the loads from the phi that comes from valueOf up
1167 // through it to allow elimination of the loads and the recovery
1168 // of the original value. It is done in split_through_phi().
1169 return NULL;
1170 } else if (base->is_Load() ||
1171 base->is_DecodeN() && base->in(1)->is_Load()) {
1172 // Eliminate the load of boxed value for integer types from the cache
1173 // array by deriving the value from the index into the array.
1174 // Capture the offset of the load and then reverse the computation.
1175
1176 // Get LoadN node which loads a boxing object from 'cache' array.
1177 if (base->is_DecodeN()) {
1178 base = base->in(1);
1179 }
1180 if (!base->in(Address)->is_AddP()) {
1181 return NULL; // Complex address
1182 }
1183 AddPNode* address = base->in(Address)->as_AddP();
1184 Node* cache_base = address->in(AddPNode::Base);
1185 if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1186 // Get ConP node which is static 'cache' field.
1187 cache_base = cache_base->in(1);
1188 }
1189 if ((cache_base != NULL) && cache_base->is_Con()) {
1190 const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1191 if ((base_type != NULL) && base_type->is_autobox_cache()) {
1192 Node* elements[4];
1193 int shift = exact_log2(type2aelembytes(T_OBJECT));
1194 int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1195 if ((count > 0) && elements[0]->is_Con() &&
1196 ((count == 1) ||
1197 (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
1198 elements[1]->in(2) == phase->intcon(shift))) {
1199 ciObjArray* array = base_type->const_oop()->as_obj_array();
1200 // Fetch the box object cache[0] at the base of the array and get its value
1201 ciInstance* box = array->obj_at(0)->as_instance();
1202 ciInstanceKlass* ik = box->klass()->as_instance_klass();
1203 assert(ik->is_box_klass(), "sanity");
1204 assert(ik->nof_nonstatic_fields() == 1, "change following code");
1205 if (ik->nof_nonstatic_fields() == 1) {
1206 // This should be true nonstatic_field_at requires calling
1207 // nof_nonstatic_fields so check it anyway
1208 ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1209 BasicType bt = c.basic_type();
1210 // Only integer types have boxing cache.
1211 assert(bt == T_BOOLEAN || bt == T_CHAR ||
1212 bt == T_BYTE || bt == T_SHORT ||
1213 bt == T_INT || bt == T_LONG, err_msg_res("wrong type = %s", type2name(bt)));
1214 jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1215 if (cache_low != (int)cache_low) {
1216 return NULL; // should not happen since cache is array indexed by value
1217 }
1218 jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1219 if (offset != (int)offset) {
1220 return NULL; // should not happen since cache is array indexed by value
1221 }
1222 // Add up all the offsets making of the address of the load
1223 Node* result = elements[0];
1224 for (int i = 1; i < count; i++) {
1225 result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
1226 }
1227 // Remove the constant offset from the address and then
1228 result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-(int)offset)));
1229 // remove the scaling of the offset to recover the original index.
1230 if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1231 // Peel the shift off directly but wrap it in a dummy node
1232 // since Ideal can't return existing nodes
1233 result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
1234 } else if (result->is_Add() && result->in(2)->is_Con() &&
1235 result->in(1)->Opcode() == Op_LShiftX &&
1236 result->in(1)->in(2) == phase->intcon(shift)) {
1237 // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1238 // but for boxing cache access we know that X<<Z will not overflow
1239 // (there is range check) so we do this optimizatrion by hand here.
1240 Node* add_con = new (phase->C) RShiftXNode(result->in(2), phase->intcon(shift));
1241 result = new (phase->C) AddXNode(result->in(1)->in(1), phase->transform(add_con));
1242 } else {
1243 result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
1244 }
1245 #ifdef _LP64
1246 if (bt != T_LONG) {
1247 result = new (phase->C) ConvL2INode(phase->transform(result));
1248 }
1249 #else
1250 if (bt == T_LONG) {
1251 result = new (phase->C) ConvI2LNode(phase->transform(result));
1252 }
1253 #endif
1254 return result;
1255 }
1256 }
1257 }
1258 }
1259 }
1260 return NULL;
1261 }
1262
1263 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1264 Node* region = phi->in(0);
1265 if (region == NULL) {
1266 return false; // Wait stable graph
1267 }
1268 uint cnt = phi->req();
1269 for (uint i = 1; i < cnt; i++) {
1270 Node* rc = region->in(i);
1271 if (rc == NULL || phase->type(rc) == Type::TOP)
1272 return false; // Wait stable graph
1273 Node* in = phi->in(i);
1274 if (in == NULL || phase->type(in) == Type::TOP)
1275 return false; // Wait stable graph
1276 }
1277 return true;
1278 }
1279 //------------------------------split_through_phi------------------------------
1280 // Split instance or boxed field load through Phi.
1281 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1282 Node* mem = in(Memory);
1283 Node* address = in(Address);
1284 const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1285
1286 assert((t_oop != NULL) &&
1287 (t_oop->is_known_instance_field() ||
1288 t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1289
1290 Compile* C = phase->C;
1291 intptr_t ignore = 0;
1292 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1293 bool base_is_phi = (base != NULL) && base->is_Phi();
1294 bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1295 (base != NULL) && (base == address->in(AddPNode::Base)) &&
1296 phase->type(base)->higher_equal(TypePtr::NOTNULL);
1297
1298 if (!((mem->is_Phi() || base_is_phi) &&
1299 (load_boxed_values || t_oop->is_known_instance_field()))) {
1300 return NULL; // memory is not Phi
1301 }
1302
1303 if (mem->is_Phi()) {
1304 if (!stable_phi(mem->as_Phi(), phase)) {
1305 return NULL; // Wait stable graph
1306 }
1307 uint cnt = mem->req();
1308 // Check for loop invariant memory.
1309 if (cnt == 3) {
1310 for (uint i = 1; i < cnt; i++) {
1311 Node* in = mem->in(i);
1312 Node* m = optimize_memory_chain(in, t_oop, this, phase);
1313 if (m == mem) {
1314 set_req(Memory, mem->in(cnt - i));
1315 return this; // made change
1316 }
1317 }
1318 }
1319 }
1320 if (base_is_phi) {
1321 if (!stable_phi(base->as_Phi(), phase)) {
1322 return NULL; // Wait stable graph
1323 }
1324 uint cnt = base->req();
1325 // Check for loop invariant memory.
1326 if (cnt == 3) {
1327 for (uint i = 1; i < cnt; i++) {
1328 if (base->in(i) == base) {
1329 return NULL; // Wait stable graph
1330 }
1331 }
1332 }
1333 }
1334
1335 bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1336
1337 // Split through Phi (see original code in loopopts.cpp).
1338 assert(C->have_alias_type(t_oop), "instance should have alias type");
1339
1340 // Do nothing here if Identity will find a value
1341 // (to avoid infinite chain of value phis generation).
1342 if (!phase->eqv(this, this->Identity(phase)))
1343 return NULL;
1344
1345 // Select Region to split through.
1346 Node* region;
1347 if (!base_is_phi) {
1348 assert(mem->is_Phi(), "sanity");
1349 region = mem->in(0);
1350 // Skip if the region dominates some control edge of the address.
1351 if (!MemNode::all_controls_dominate(address, region))
1352 return NULL;
1353 } else if (!mem->is_Phi()) {
1354 assert(base_is_phi, "sanity");
1355 region = base->in(0);
1356 // Skip if the region dominates some control edge of the memory.
1357 if (!MemNode::all_controls_dominate(mem, region))
1358 return NULL;
1359 } else if (base->in(0) != mem->in(0)) {
1360 assert(base_is_phi && mem->is_Phi(), "sanity");
1361 if (MemNode::all_controls_dominate(mem, base->in(0))) {
1362 region = base->in(0);
1363 } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1364 region = mem->in(0);
1365 } else {
1366 return NULL; // complex graph
1367 }
1368 } else {
1369 assert(base->in(0) == mem->in(0), "sanity");
1370 region = mem->in(0);
1371 }
1372
1373 const Type* this_type = this->bottom_type();
1374 int this_index = C->get_alias_index(t_oop);
1375 int this_offset = t_oop->offset();
1376 int this_iid = t_oop->instance_id();
1377 if (!t_oop->is_known_instance() && load_boxed_values) {
1378 // Use _idx of address base for boxed values.
1379 this_iid = base->_idx;
1380 }
1381 PhaseIterGVN* igvn = phase->is_IterGVN();
1382 Node* phi = new (C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1383 for (uint i = 1; i < region->req(); i++) {
1384 Node* x;
1385 Node* the_clone = NULL;
1386 if (region->in(i) == C->top()) {
1387 x = C->top(); // Dead path? Use a dead data op
1388 } else {
1389 x = this->clone(); // Else clone up the data op
1390 the_clone = x; // Remember for possible deletion.
1391 // Alter data node to use pre-phi inputs
1392 if (this->in(0) == region) {
1393 x->set_req(0, region->in(i));
1394 } else {
1395 x->set_req(0, NULL);
1396 }
1397 if (mem->is_Phi() && (mem->in(0) == region)) {
1398 x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1399 }
1400 if (address->is_Phi() && address->in(0) == region) {
1401 x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1402 }
1403 if (base_is_phi && (base->in(0) == region)) {
1404 Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1405 Node* adr_x = phase->transform(new (C) AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1406 x->set_req(Address, adr_x);
1407 }
1408 }
1409 // Check for a 'win' on some paths
1410 const Type *t = x->Value(igvn);
1411
1412 bool singleton = t->singleton();
1413
1414 // See comments in PhaseIdealLoop::split_thru_phi().
1415 if (singleton && t == Type::TOP) {
1416 singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1417 }
1418
1419 if (singleton) {
1420 x = igvn->makecon(t);
1421 } else {
1422 // We now call Identity to try to simplify the cloned node.
1423 // Note that some Identity methods call phase->type(this).
1424 // Make sure that the type array is big enough for
1425 // our new node, even though we may throw the node away.
1426 // (This tweaking with igvn only works because x is a new node.)
1427 igvn->set_type(x, t);
1428 // If x is a TypeNode, capture any more-precise type permanently into Node
1429 // otherwise it will be not updated during igvn->transform since
1430 // igvn->type(x) is set to x->Value() already.
1431 x->raise_bottom_type(t);
1432 Node *y = x->Identity(igvn);
1433 if (y != x) {
1434 x = y;
1435 } else {
1436 y = igvn->hash_find_insert(x);
1437 if (y) {
1438 x = y;
1439 } else {
1440 // Else x is a new node we are keeping
1441 // We do not need register_new_node_with_optimizer
1442 // because set_type has already been called.
1443 igvn->_worklist.push(x);
1444 }
1445 }
1446 }
1447 if (x != the_clone && the_clone != NULL) {
1448 igvn->remove_dead_node(the_clone);
1449 }
1450 phi->set_req(i, x);
1451 }
1452 // Record Phi
1453 igvn->register_new_node_with_optimizer(phi);
1454 return phi;
1455 }
1456
1457 //------------------------------Ideal------------------------------------------
1458 // If the load is from Field memory and the pointer is non-null, we can
1459 // zero out the control input.
1460 // If the offset is constant and the base is an object allocation,
1461 // try to hook me up to the exact initializing store.
1462 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1463 Node* p = MemNode::Ideal_common(phase, can_reshape);
1464 if (p) return (p == NodeSentinel) ? NULL : p;
1465
1466 Node* ctrl = in(MemNode::Control);
1467 Node* address = in(MemNode::Address);
1468
1469 // Skip up past a SafePoint control. Cannot do this for Stores because
1470 // pointer stores & cardmarks must stay on the same side of a SafePoint.
1471 if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1472 phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1473 ctrl = ctrl->in(0);
1474 set_req(MemNode::Control,ctrl);
1475 }
1476
1477 intptr_t ignore = 0;
1478 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1479 if (base != NULL
1480 && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1481 // Check for useless control edge in some common special cases
1482 if (in(MemNode::Control) != NULL
1483 && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1484 && all_controls_dominate(base, phase->C->start())) {
1485 // A method-invariant, non-null address (constant or 'this' argument).
1486 set_req(MemNode::Control, NULL);
1487 }
1488 }
1489
1490 Node* mem = in(MemNode::Memory);
1491 const TypePtr *addr_t = phase->type(address)->isa_ptr();
1492
1493 if (can_reshape && (addr_t != NULL)) {
1494 // try to optimize our memory input
1495 Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1496 if (opt_mem != mem) {
1497 set_req(MemNode::Memory, opt_mem);
1498 if (phase->type( opt_mem ) == Type::TOP) return NULL;
1499 return this;
1500 }
1501 const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1502 if ((t_oop != NULL) &&
1503 (t_oop->is_known_instance_field() ||
1504 t_oop->is_ptr_to_boxed_value())) {
1505 PhaseIterGVN *igvn = phase->is_IterGVN();
1506 if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1507 // Delay this transformation until memory Phi is processed.
1508 phase->is_IterGVN()->_worklist.push(this);
1509 return NULL;
1510 }
1511 // Split instance field load through Phi.
1512 Node* result = split_through_phi(phase);
1513 if (result != NULL) return result;
1514
1515 if (t_oop->is_ptr_to_boxed_value()) {
1516 Node* result = eliminate_autobox(phase);
1517 if (result != NULL) return result;
1518 }
1519 }
1520 }
1521
1522 // Check for prior store with a different base or offset; make Load
1523 // independent. Skip through any number of them. Bail out if the stores
1524 // are in an endless dead cycle and report no progress. This is a key
1525 // transform for Reflection. However, if after skipping through the Stores
1526 // we can't then fold up against a prior store do NOT do the transform as
1527 // this amounts to using the 'Oracle' model of aliasing. It leaves the same
1528 // array memory alive twice: once for the hoisted Load and again after the
1529 // bypassed Store. This situation only works if EVERYBODY who does
1530 // anti-dependence work knows how to bypass. I.e. we need all
1531 // anti-dependence checks to ask the same Oracle. Right now, that Oracle is
1532 // the alias index stuff. So instead, peek through Stores and IFF we can
1533 // fold up, do so.
1534 Node* prev_mem = find_previous_store(phase);
1535 // Steps (a), (b): Walk past independent stores to find an exact match.
1536 if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1537 // (c) See if we can fold up on the spot, but don't fold up here.
1538 // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1539 // just return a prior value, which is done by Identity calls.
1540 if (can_see_stored_value(prev_mem, phase)) {
1541 // Make ready for step (d):
1542 set_req(MemNode::Memory, prev_mem);
1543 return this;
1544 }
1545 }
1546
1547 return NULL; // No further progress
1548 }
1549
1550 // Helper to recognize certain Klass fields which are invariant across
1551 // some group of array types (e.g., int[] or all T[] where T < Object).
1552 const Type*
1553 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1554 ciKlass* klass) const {
1555 if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1556 // The field is Klass::_modifier_flags. Return its (constant) value.
1557 // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1558 assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1559 return TypeInt::make(klass->modifier_flags());
1560 }
1561 if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1562 // The field is Klass::_access_flags. Return its (constant) value.
1563 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1564 assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1565 return TypeInt::make(klass->access_flags());
1566 }
1567 if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1568 // The field is Klass::_layout_helper. Return its constant value if known.
1569 assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1570 return TypeInt::make(klass->layout_helper());
1571 }
1572
1573 // No match.
1574 return NULL;
1575 }
1576
1577 // Try to constant-fold a stable array element.
1578 static const Type* fold_stable_ary_elem(const TypeAryPtr* ary, int off, BasicType loadbt) {
1579 assert(ary->const_oop(), "array should be constant");
1580 assert(ary->is_stable(), "array should be stable");
1581
1582 // Decode the results of GraphKit::array_element_address.
1583 ciArray* aobj = ary->const_oop()->as_array();
1584 ciConstant con = aobj->element_value_by_offset(off);
1585
1586 if (con.basic_type() != T_ILLEGAL && !con.is_null_or_zero()) {
1587 const Type* con_type = Type::make_from_constant(con);
1588 if (con_type != NULL) {
1589 if (con_type->isa_aryptr()) {
1590 // Join with the array element type, in case it is also stable.
1591 int dim = ary->stable_dimension();
1592 con_type = con_type->is_aryptr()->cast_to_stable(true, dim-1);
1593 }
1594 if (loadbt == T_NARROWOOP && con_type->isa_oopptr()) {
1595 con_type = con_type->make_narrowoop();
1596 }
1597 #ifndef PRODUCT
1598 if (TraceIterativeGVN) {
1599 tty->print("FoldStableValues: array element [off=%d]: con_type=", off);
1600 con_type->dump(); tty->cr();
1601 }
1602 #endif //PRODUCT
1603 return con_type;
1604 }
1605 }
1606 return NULL;
1607 }
1608
1609 //------------------------------Value-----------------------------------------
1610 const Type *LoadNode::Value( PhaseTransform *phase ) const {
1611 // Either input is TOP ==> the result is TOP
1612 Node* mem = in(MemNode::Memory);
1613 const Type *t1 = phase->type(mem);
1614 if (t1 == Type::TOP) return Type::TOP;
1615 Node* adr = in(MemNode::Address);
1616 const TypePtr* tp = phase->type(adr)->isa_ptr();
1617 if (tp == NULL || tp->empty()) return Type::TOP;
1618 int off = tp->offset();
1619 assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1620 Compile* C = phase->C;
1621
1622 // Try to guess loaded type from pointer type
1623 if (tp->isa_aryptr()) {
1624 const TypeAryPtr* ary = tp->is_aryptr();
1625 const Type* t = ary->elem();
1626
1627 // Determine whether the reference is beyond the header or not, by comparing
1628 // the offset against the offset of the start of the array's data.
1629 // Different array types begin at slightly different offsets (12 vs. 16).
1630 // We choose T_BYTE as an example base type that is least restrictive
1631 // as to alignment, which will therefore produce the smallest
1632 // possible base offset.
1633 const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1634 const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1635
1636 // Try to constant-fold a stable array element.
1637 if (FoldStableValues && ary->is_stable() && ary->const_oop() != NULL) {
1638 // Make sure the reference is not into the header and the offset is constant
1639 if (off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1640 const Type* con_type = fold_stable_ary_elem(ary, off, memory_type());
1641 if (con_type != NULL) {
1642 return con_type;
1643 }
1644 }
1645 }
1646
1647 // Don't do this for integer types. There is only potential profit if
1648 // the element type t is lower than _type; that is, for int types, if _type is
1649 // more restrictive than t. This only happens here if one is short and the other
1650 // char (both 16 bits), and in those cases we've made an intentional decision
1651 // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1652 // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1653 //
1654 // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1655 // where the _gvn.type of the AddP is wider than 8. This occurs when an earlier
1656 // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1657 // subsumed by p1. If p1 is on the worklist but has not yet been re-transformed,
1658 // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1659 // In fact, that could have been the original type of p1, and p1 could have
1660 // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1661 // expression (LShiftL quux 3) independently optimized to the constant 8.
1662 if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1663 && (_type->isa_vect() == NULL)
1664 && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1665 // t might actually be lower than _type, if _type is a unique
1666 // concrete subclass of abstract class t.
1667 if (off_beyond_header) { // is the offset beyond the header?
1668 const Type* jt = t->join_speculative(_type);
1669 // In any case, do not allow the join, per se, to empty out the type.
1670 if (jt->empty() && !t->empty()) {
1671 // This can happen if a interface-typed array narrows to a class type.
1672 jt = _type;
1673 }
1674 #ifdef ASSERT
1675 if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1676 // The pointers in the autobox arrays are always non-null
1677 Node* base = adr->in(AddPNode::Base);
1678 if ((base != NULL) && base->is_DecodeN()) {
1679 // Get LoadN node which loads IntegerCache.cache field
1680 base = base->in(1);
1681 }
1682 if ((base != NULL) && base->is_Con()) {
1683 const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1684 if ((base_type != NULL) && base_type->is_autobox_cache()) {
1685 // It could be narrow oop
1686 assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1687 }
1688 }
1689 }
1690 #endif
1691 return jt;
1692 }
1693 }
1694 } else if (tp->base() == Type::InstPtr) {
1695 ciEnv* env = C->env();
1696 const TypeInstPtr* tinst = tp->is_instptr();
1697 ciKlass* klass = tinst->klass();
1698 assert( off != Type::OffsetBot ||
1699 // arrays can be cast to Objects
1700 tp->is_oopptr()->klass()->is_java_lang_Object() ||
1701 // unsafe field access may not have a constant offset
1702 C->has_unsafe_access(),
1703 "Field accesses must be precise" );
1704 // For oop loads, we expect the _type to be precise
1705 if (klass == env->String_klass() &&
1706 adr->is_AddP() && off != Type::OffsetBot) {
1707 // For constant Strings treat the final fields as compile time constants.
1708 Node* base = adr->in(AddPNode::Base);
1709 const TypeOopPtr* t = phase->type(base)->isa_oopptr();
1710 if (t != NULL && t->singleton()) {
1711 ciField* field = env->String_klass()->get_field_by_offset(off, false);
1712 if (field != NULL && field->is_final()) {
1713 ciObject* string = t->const_oop();
1714 ciConstant constant = string->as_instance()->field_value(field);
1715 if (constant.basic_type() == T_INT) {
1716 return TypeInt::make(constant.as_int());
1717 } else if (constant.basic_type() == T_ARRAY) {
1718 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1719 return TypeNarrowOop::make_from_constant(constant.as_object(), true);
1720 } else {
1721 return TypeOopPtr::make_from_constant(constant.as_object(), true);
1722 }
1723 }
1724 }
1725 }
1726 }
1727 // Optimizations for constant objects
1728 ciObject* const_oop = tinst->const_oop();
1729 if (const_oop != NULL) {
1730 // For constant Boxed value treat the target field as a compile time constant.
1731 if (tinst->is_ptr_to_boxed_value()) {
1732 return tinst->get_const_boxed_value();
1733 } else
1734 // For constant CallSites treat the target field as a compile time constant.
1735 if (const_oop->is_call_site()) {
1736 ciCallSite* call_site = const_oop->as_call_site();
1737 ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
1738 if (field != NULL && field->is_call_site_target()) {
1739 ciMethodHandle* target = call_site->get_target();
1740 if (target != NULL) { // just in case
1741 ciConstant constant(T_OBJECT, target);
1742 const Type* t;
1743 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1744 t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
1745 } else {
1746 t = TypeOopPtr::make_from_constant(constant.as_object(), true);
1747 }
1748 // Add a dependence for invalidation of the optimization.
1749 if (!call_site->is_constant_call_site()) {
1750 C->dependencies()->assert_call_site_target_value(call_site, target);
1751 }
1752 return t;
1753 }
1754 }
1755 }
1756 }
1757 } else if (tp->base() == Type::KlassPtr) {
1758 assert( off != Type::OffsetBot ||
1759 // arrays can be cast to Objects
1760 tp->is_klassptr()->klass()->is_java_lang_Object() ||
1761 // also allow array-loading from the primary supertype
1762 // array during subtype checks
1763 Opcode() == Op_LoadKlass,
1764 "Field accesses must be precise" );
1765 // For klass/static loads, we expect the _type to be precise
1766 }
1767
1768 const TypeKlassPtr *tkls = tp->isa_klassptr();
1769 if (tkls != NULL && !StressReflectiveCode) {
1770 ciKlass* klass = tkls->klass();
1771 if (klass->is_loaded() && tkls->klass_is_exact()) {
1772 // We are loading a field from a Klass metaobject whose identity
1773 // is known at compile time (the type is "exact" or "precise").
1774 // Check for fields we know are maintained as constants by the VM.
1775 if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1776 // The field is Klass::_super_check_offset. Return its (constant) value.
1777 // (Folds up type checking code.)
1778 assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1779 return TypeInt::make(klass->super_check_offset());
1780 }
1781 // Compute index into primary_supers array
1782 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1783 // Check for overflowing; use unsigned compare to handle the negative case.
1784 if( depth < ciKlass::primary_super_limit() ) {
1785 // The field is an element of Klass::_primary_supers. Return its (constant) value.
1786 // (Folds up type checking code.)
1787 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1788 ciKlass *ss = klass->super_of_depth(depth);
1789 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1790 }
1791 const Type* aift = load_array_final_field(tkls, klass);
1792 if (aift != NULL) return aift;
1793 if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
1794 && klass->is_array_klass()) {
1795 // The field is ArrayKlass::_component_mirror. Return its (constant) value.
1796 // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1797 assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1798 return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1799 }
1800 if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1801 // The field is Klass::_java_mirror. Return its (constant) value.
1802 // (Folds up the 2nd indirection in anObjConstant.getClass().)
1803 assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1804 return TypeInstPtr::make(klass->java_mirror());
1805 }
1806 }
1807
1808 // We can still check if we are loading from the primary_supers array at a
1809 // shallow enough depth. Even though the klass is not exact, entries less
1810 // than or equal to its super depth are correct.
1811 if (klass->is_loaded() ) {
1812 ciType *inner = klass;
1813 while( inner->is_obj_array_klass() )
1814 inner = inner->as_obj_array_klass()->base_element_type();
1815 if( inner->is_instance_klass() &&
1816 !inner->as_instance_klass()->flags().is_interface() ) {
1817 // Compute index into primary_supers array
1818 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1819 // Check for overflowing; use unsigned compare to handle the negative case.
1820 if( depth < ciKlass::primary_super_limit() &&
1821 depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1822 // The field is an element of Klass::_primary_supers. Return its (constant) value.
1823 // (Folds up type checking code.)
1824 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1825 ciKlass *ss = klass->super_of_depth(depth);
1826 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1827 }
1828 }
1829 }
1830
1831 // If the type is enough to determine that the thing is not an array,
1832 // we can give the layout_helper a positive interval type.
1833 // This will help short-circuit some reflective code.
1834 if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1835 && !klass->is_array_klass() // not directly typed as an array
1836 && !klass->is_interface() // specifically not Serializable & Cloneable
1837 && !klass->is_java_lang_Object() // not the supertype of all T[]
1838 ) {
1839 // Note: When interfaces are reliable, we can narrow the interface
1840 // test to (klass != Serializable && klass != Cloneable).
1841 assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1842 jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1843 // The key property of this type is that it folds up tests
1844 // for array-ness, since it proves that the layout_helper is positive.
1845 // Thus, a generic value like the basic object layout helper works fine.
1846 return TypeInt::make(min_size, max_jint, Type::WidenMin);
1847 }
1848 }
1849
1850 // If we are loading from a freshly-allocated object, produce a zero,
1851 // if the load is provably beyond the header of the object.
1852 // (Also allow a variable load from a fresh array to produce zero.)
1853 const TypeOopPtr *tinst = tp->isa_oopptr();
1854 bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1855 bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1856 if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1857 Node* value = can_see_stored_value(mem,phase);
1858 if (value != NULL && value->is_Con()) {
1859 assert(value->bottom_type()->higher_equal(_type),"sanity");
1860 return value->bottom_type();
1861 }
1862 }
1863
1864 if (is_instance) {
1865 // If we have an instance type and our memory input is the
1866 // programs's initial memory state, there is no matching store,
1867 // so just return a zero of the appropriate type
1868 Node *mem = in(MemNode::Memory);
1869 if (mem->is_Parm() && mem->in(0)->is_Start()) {
1870 assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1871 return Type::get_zero_type(_type->basic_type());
1872 }
1873 }
1874 return _type;
1875 }
1876
1877 //------------------------------match_edge-------------------------------------
1878 // Do we Match on this edge index or not? Match only the address.
1879 uint LoadNode::match_edge(uint idx) const {
1880 return idx == MemNode::Address;
1881 }
1882
1883 //--------------------------LoadBNode::Ideal--------------------------------------
1884 //
1885 // If the previous store is to the same address as this load,
1886 // and the value stored was larger than a byte, replace this load
1887 // with the value stored truncated to a byte. If no truncation is
1888 // needed, the replacement is done in LoadNode::Identity().
1889 //
1890 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1891 Node* mem = in(MemNode::Memory);
1892 Node* value = can_see_stored_value(mem,phase);
1893 if( value && !phase->type(value)->higher_equal( _type ) ) {
1894 Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
1895 return new (phase->C) RShiftINode(result, phase->intcon(24));
1896 }
1897 // Identity call will handle the case where truncation is not needed.
1898 return LoadNode::Ideal(phase, can_reshape);
1899 }
1900
1901 const Type* LoadBNode::Value(PhaseTransform *phase) const {
1902 Node* mem = in(MemNode::Memory);
1903 Node* value = can_see_stored_value(mem,phase);
1904 if (value != NULL && value->is_Con() &&
1905 !value->bottom_type()->higher_equal(_type)) {
1906 // If the input to the store does not fit with the load's result type,
1907 // it must be truncated. We can't delay until Ideal call since
1908 // a singleton Value is needed for split_thru_phi optimization.
1909 int con = value->get_int();
1910 return TypeInt::make((con << 24) >> 24);
1911 }
1912 return LoadNode::Value(phase);
1913 }
1914
1915 //--------------------------LoadUBNode::Ideal-------------------------------------
1916 //
1917 // If the previous store is to the same address as this load,
1918 // and the value stored was larger than a byte, replace this load
1919 // with the value stored truncated to a byte. If no truncation is
1920 // needed, the replacement is done in LoadNode::Identity().
1921 //
1922 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1923 Node* mem = in(MemNode::Memory);
1924 Node* value = can_see_stored_value(mem, phase);
1925 if (value && !phase->type(value)->higher_equal(_type))
1926 return new (phase->C) AndINode(value, phase->intcon(0xFF));
1927 // Identity call will handle the case where truncation is not needed.
1928 return LoadNode::Ideal(phase, can_reshape);
1929 }
1930
1931 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
1932 Node* mem = in(MemNode::Memory);
1933 Node* value = can_see_stored_value(mem,phase);
1934 if (value != NULL && value->is_Con() &&
1935 !value->bottom_type()->higher_equal(_type)) {
1936 // If the input to the store does not fit with the load's result type,
1937 // it must be truncated. We can't delay until Ideal call since
1938 // a singleton Value is needed for split_thru_phi optimization.
1939 int con = value->get_int();
1940 return TypeInt::make(con & 0xFF);
1941 }
1942 return LoadNode::Value(phase);
1943 }
1944
1945 //--------------------------LoadUSNode::Ideal-------------------------------------
1946 //
1947 // If the previous store is to the same address as this load,
1948 // and the value stored was larger than a char, replace this load
1949 // with the value stored truncated to a char. If no truncation is
1950 // needed, the replacement is done in LoadNode::Identity().
1951 //
1952 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1953 Node* mem = in(MemNode::Memory);
1954 Node* value = can_see_stored_value(mem,phase);
1955 if( value && !phase->type(value)->higher_equal( _type ) )
1956 return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
1957 // Identity call will handle the case where truncation is not needed.
1958 return LoadNode::Ideal(phase, can_reshape);
1959 }
1960
1961 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
1962 Node* mem = in(MemNode::Memory);
1963 Node* value = can_see_stored_value(mem,phase);
1964 if (value != NULL && value->is_Con() &&
1965 !value->bottom_type()->higher_equal(_type)) {
1966 // If the input to the store does not fit with the load's result type,
1967 // it must be truncated. We can't delay until Ideal call since
1968 // a singleton Value is needed for split_thru_phi optimization.
1969 int con = value->get_int();
1970 return TypeInt::make(con & 0xFFFF);
1971 }
1972 return LoadNode::Value(phase);
1973 }
1974
1975 //--------------------------LoadSNode::Ideal--------------------------------------
1976 //
1977 // If the previous store is to the same address as this load,
1978 // and the value stored was larger than a short, replace this load
1979 // with the value stored truncated to a short. If no truncation is
1980 // needed, the replacement is done in LoadNode::Identity().
1981 //
1982 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1983 Node* mem = in(MemNode::Memory);
1984 Node* value = can_see_stored_value(mem,phase);
1985 if( value && !phase->type(value)->higher_equal( _type ) ) {
1986 Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
1987 return new (phase->C) RShiftINode(result, phase->intcon(16));
1988 }
1989 // Identity call will handle the case where truncation is not needed.
1990 return LoadNode::Ideal(phase, can_reshape);
1991 }
1992
1993 const Type* LoadSNode::Value(PhaseTransform *phase) const {
1994 Node* mem = in(MemNode::Memory);
1995 Node* value = can_see_stored_value(mem,phase);
1996 if (value != NULL && value->is_Con() &&
1997 !value->bottom_type()->higher_equal(_type)) {
1998 // If the input to the store does not fit with the load's result type,
1999 // it must be truncated. We can't delay until Ideal call since
2000 // a singleton Value is needed for split_thru_phi optimization.
2001 int con = value->get_int();
2002 return TypeInt::make((con << 16) >> 16);
2003 }
2004 return LoadNode::Value(phase);
2005 }
2006
2007 //=============================================================================
2008 //----------------------------LoadKlassNode::make------------------------------
2009 // Polymorphic factory method:
2010 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
2011 Compile* C = gvn.C;
2012 Node *ctl = NULL;
2013 // sanity check the alias category against the created node type
2014 const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2015 assert(adr_type != NULL, "expecting TypeKlassPtr");
2016 #ifdef _LP64
2017 if (adr_type->is_ptr_to_narrowklass()) {
2018 assert(UseCompressedClassPointers, "no compressed klasses");
2019 Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2020 return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2021 }
2022 #endif
2023 assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2024 return new (C) LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2025 }
2026
2027 //------------------------------Value------------------------------------------
2028 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
2029 return klass_value_common(phase);
2030 }
2031
2032 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
2033 // Either input is TOP ==> the result is TOP
2034 const Type *t1 = phase->type( in(MemNode::Memory) );
2035 if (t1 == Type::TOP) return Type::TOP;
2036 Node *adr = in(MemNode::Address);
2037 const Type *t2 = phase->type( adr );
2038 if (t2 == Type::TOP) return Type::TOP;
2039 const TypePtr *tp = t2->is_ptr();
2040 if (TypePtr::above_centerline(tp->ptr()) ||
2041 tp->ptr() == TypePtr::Null) return Type::TOP;
2042
2043 // Return a more precise klass, if possible
2044 const TypeInstPtr *tinst = tp->isa_instptr();
2045 if (tinst != NULL) {
2046 ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2047 int offset = tinst->offset();
2048 if (ik == phase->C->env()->Class_klass()
2049 && (offset == java_lang_Class::klass_offset_in_bytes() ||
2050 offset == java_lang_Class::array_klass_offset_in_bytes())) {
2051 // We are loading a special hidden field from a Class mirror object,
2052 // the field which points to the VM's Klass metaobject.
2053 ciType* t = tinst->java_mirror_type();
2054 // java_mirror_type returns non-null for compile-time Class constants.
2055 if (t != NULL) {
2056 // constant oop => constant klass
2057 if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2058 if (t->is_void()) {
2059 // We cannot create a void array. Since void is a primitive type return null
2060 // klass. Users of this result need to do a null check on the returned klass.
2061 return TypePtr::NULL_PTR;
2062 }
2063 return TypeKlassPtr::make(ciArrayKlass::make(t));
2064 }
2065 if (!t->is_klass()) {
2066 // a primitive Class (e.g., int.class) has NULL for a klass field
2067 return TypePtr::NULL_PTR;
2068 }
2069 // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2070 return TypeKlassPtr::make(t->as_klass());
2071 }
2072 // non-constant mirror, so we can't tell what's going on
2073 }
2074 if( !ik->is_loaded() )
2075 return _type; // Bail out if not loaded
2076 if (offset == oopDesc::klass_offset_in_bytes()) {
2077 if (tinst->klass_is_exact()) {
2078 return TypeKlassPtr::make(ik);
2079 }
2080 // See if we can become precise: no subklasses and no interface
2081 // (Note: We need to support verified interfaces.)
2082 if (!ik->is_interface() && !ik->has_subklass()) {
2083 //assert(!UseExactTypes, "this code should be useless with exact types");
2084 // Add a dependence; if any subclass added we need to recompile
2085 if (!ik->is_final()) {
2086 // %%% should use stronger assert_unique_concrete_subtype instead
2087 phase->C->dependencies()->assert_leaf_type(ik);
2088 }
2089 // Return precise klass
2090 return TypeKlassPtr::make(ik);
2091 }
2092
2093 // Return root of possible klass
2094 return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2095 }
2096 }
2097
2098 // Check for loading klass from an array
2099 const TypeAryPtr *tary = tp->isa_aryptr();
2100 if( tary != NULL ) {
2101 ciKlass *tary_klass = tary->klass();
2102 if (tary_klass != NULL // can be NULL when at BOTTOM or TOP
2103 && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2104 if (tary->klass_is_exact()) {
2105 return TypeKlassPtr::make(tary_klass);
2106 }
2107 ciArrayKlass *ak = tary->klass()->as_array_klass();
2108 // If the klass is an object array, we defer the question to the
2109 // array component klass.
2110 if( ak->is_obj_array_klass() ) {
2111 assert( ak->is_loaded(), "" );
2112 ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2113 if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2114 ciInstanceKlass* ik = base_k->as_instance_klass();
2115 // See if we can become precise: no subklasses and no interface
2116 if (!ik->is_interface() && !ik->has_subklass()) {
2117 //assert(!UseExactTypes, "this code should be useless with exact types");
2118 // Add a dependence; if any subclass added we need to recompile
2119 if (!ik->is_final()) {
2120 phase->C->dependencies()->assert_leaf_type(ik);
2121 }
2122 // Return precise array klass
2123 return TypeKlassPtr::make(ak);
2124 }
2125 }
2126 return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2127 } else { // Found a type-array?
2128 //assert(!UseExactTypes, "this code should be useless with exact types");
2129 assert( ak->is_type_array_klass(), "" );
2130 return TypeKlassPtr::make(ak); // These are always precise
2131 }
2132 }
2133 }
2134
2135 // Check for loading klass from an array klass
2136 const TypeKlassPtr *tkls = tp->isa_klassptr();
2137 if (tkls != NULL && !StressReflectiveCode) {
2138 ciKlass* klass = tkls->klass();
2139 if( !klass->is_loaded() )
2140 return _type; // Bail out if not loaded
2141 if( klass->is_obj_array_klass() &&
2142 tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2143 ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2144 // // Always returning precise element type is incorrect,
2145 // // e.g., element type could be object and array may contain strings
2146 // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2147
2148 // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2149 // according to the element type's subclassing.
2150 return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2151 }
2152 if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2153 tkls->offset() == in_bytes(Klass::super_offset())) {
2154 ciKlass* sup = klass->as_instance_klass()->super();
2155 // The field is Klass::_super. Return its (constant) value.
2156 // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2157 return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2158 }
2159 }
2160
2161 // Bailout case
2162 return LoadNode::Value(phase);
2163 }
2164
2165 //------------------------------Identity---------------------------------------
2166 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2167 // Also feed through the klass in Allocate(...klass...)._klass.
2168 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
2169 return klass_identity_common(phase);
2170 }
2171
2172 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
2173 Node* x = LoadNode::Identity(phase);
2174 if (x != this) return x;
2175
2176 // Take apart the address into an oop and and offset.
2177 // Return 'this' if we cannot.
2178 Node* adr = in(MemNode::Address);
2179 intptr_t offset = 0;
2180 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2181 if (base == NULL) return this;
2182 const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2183 if (toop == NULL) return this;
2184
2185 // We can fetch the klass directly through an AllocateNode.
2186 // This works even if the klass is not constant (clone or newArray).
2187 if (offset == oopDesc::klass_offset_in_bytes()) {
2188 Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2189 if (allocated_klass != NULL) {
2190 return allocated_klass;
2191 }
2192 }
2193
2194 // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2195 // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
2196 // See inline_native_Class_query for occurrences of these patterns.
2197 // Java Example: x.getClass().isAssignableFrom(y)
2198 // Java Example: Array.newInstance(x.getClass().getComponentType(), n)
2199 //
2200 // This improves reflective code, often making the Class
2201 // mirror go completely dead. (Current exception: Class
2202 // mirrors may appear in debug info, but we could clean them out by
2203 // introducing a new debug info operator for Klass*.java_mirror).
2204 if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2205 && (offset == java_lang_Class::klass_offset_in_bytes() ||
2206 offset == java_lang_Class::array_klass_offset_in_bytes())) {
2207 // We are loading a special hidden field from a Class mirror,
2208 // the field which points to its Klass or ArrayKlass metaobject.
2209 if (base->is_Load()) {
2210 Node* adr2 = base->in(MemNode::Address);
2211 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2212 if (tkls != NULL && !tkls->empty()
2213 && (tkls->klass()->is_instance_klass() ||
2214 tkls->klass()->is_array_klass())
2215 && adr2->is_AddP()
2216 ) {
2217 int mirror_field = in_bytes(Klass::java_mirror_offset());
2218 if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2219 mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
2220 }
2221 if (tkls->offset() == mirror_field) {
2222 return adr2->in(AddPNode::Base);
2223 }
2224 }
2225 }
2226 }
2227
2228 return this;
2229 }
2230
2231
2232 //------------------------------Value------------------------------------------
2233 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
2234 const Type *t = klass_value_common(phase);
2235 if (t == Type::TOP)
2236 return t;
2237
2238 return t->make_narrowklass();
2239 }
2240
2241 //------------------------------Identity---------------------------------------
2242 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2243 // Also feed through the klass in Allocate(...klass...)._klass.
2244 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
2245 Node *x = klass_identity_common(phase);
2246
2247 const Type *t = phase->type( x );
2248 if( t == Type::TOP ) return x;
2249 if( t->isa_narrowklass()) return x;
2250 assert (!t->isa_narrowoop(), "no narrow oop here");
2251
2252 return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
2253 }
2254
2255 //------------------------------Value-----------------------------------------
2256 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
2257 // Either input is TOP ==> the result is TOP
2258 const Type *t1 = phase->type( in(MemNode::Memory) );
2259 if( t1 == Type::TOP ) return Type::TOP;
2260 Node *adr = in(MemNode::Address);
2261 const Type *t2 = phase->type( adr );
2262 if( t2 == Type::TOP ) return Type::TOP;
2263 const TypePtr *tp = t2->is_ptr();
2264 if (TypePtr::above_centerline(tp->ptr())) return Type::TOP;
2265 const TypeAryPtr *tap = tp->isa_aryptr();
2266 if( !tap ) return _type;
2267 return tap->size();
2268 }
2269
2270 //-------------------------------Ideal---------------------------------------
2271 // Feed through the length in AllocateArray(...length...)._length.
2272 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2273 Node* p = MemNode::Ideal_common(phase, can_reshape);
2274 if (p) return (p == NodeSentinel) ? NULL : p;
2275
2276 // Take apart the address into an oop and and offset.
2277 // Return 'this' if we cannot.
2278 Node* adr = in(MemNode::Address);
2279 intptr_t offset = 0;
2280 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2281 if (base == NULL) return NULL;
2282 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2283 if (tary == NULL) return NULL;
2284
2285 // We can fetch the length directly through an AllocateArrayNode.
2286 // This works even if the length is not constant (clone or newArray).
2287 if (offset == arrayOopDesc::length_offset_in_bytes()) {
2288 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2289 if (alloc != NULL) {
2290 Node* allocated_length = alloc->Ideal_length();
2291 Node* len = alloc->make_ideal_length(tary, phase);
2292 if (allocated_length != len) {
2293 // New CastII improves on this.
2294 return len;
2295 }
2296 }
2297 }
2298
2299 return NULL;
2300 }
2301
2302 //------------------------------Identity---------------------------------------
2303 // Feed through the length in AllocateArray(...length...)._length.
2304 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
2305 Node* x = LoadINode::Identity(phase);
2306 if (x != this) return x;
2307
2308 // Take apart the address into an oop and and offset.
2309 // Return 'this' if we cannot.
2310 Node* adr = in(MemNode::Address);
2311 intptr_t offset = 0;
2312 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2313 if (base == NULL) return this;
2314 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2315 if (tary == NULL) return this;
2316
2317 // We can fetch the length directly through an AllocateArrayNode.
2318 // This works even if the length is not constant (clone or newArray).
2319 if (offset == arrayOopDesc::length_offset_in_bytes()) {
2320 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2321 if (alloc != NULL) {
2322 Node* allocated_length = alloc->Ideal_length();
2323 // Do not allow make_ideal_length to allocate a CastII node.
2324 Node* len = alloc->make_ideal_length(tary, phase, false);
2325 if (allocated_length == len) {
2326 // Return allocated_length only if it would not be improved by a CastII.
2327 return allocated_length;
2328 }
2329 }
2330 }
2331
2332 return this;
2333
2334 }
2335
2336 //=============================================================================
2337 //---------------------------StoreNode::make-----------------------------------
2338 // Polymorphic factory method:
2339 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2340 assert((mo == unordered || mo == release), "unexpected");
2341 Compile* C = gvn.C;
2342 assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2343 ctl != NULL, "raw memory operations should have control edge");
2344
2345 switch (bt) {
2346 case T_BOOLEAN:
2347 case T_BYTE: return new (C) StoreBNode(ctl, mem, adr, adr_type, val, mo);
2348 case T_INT: return new (C) StoreINode(ctl, mem, adr, adr_type, val, mo);
2349 case T_CHAR:
2350 case T_SHORT: return new (C) StoreCNode(ctl, mem, adr, adr_type, val, mo);
2351 case T_LONG: return new (C) StoreLNode(ctl, mem, adr, adr_type, val, mo);
2352 case T_FLOAT: return new (C) StoreFNode(ctl, mem, adr, adr_type, val, mo);
2353 case T_DOUBLE: return new (C) StoreDNode(ctl, mem, adr, adr_type, val, mo);
2354 case T_METADATA:
2355 case T_ADDRESS:
2356 case T_OBJECT:
2357 #ifdef _LP64
2358 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2359 val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
2360 return new (C) StoreNNode(ctl, mem, adr, adr_type, val, mo);
2361 } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2362 (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2363 adr->bottom_type()->isa_rawptr())) {
2364 val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2365 return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2366 }
2367 #endif
2368 {
2369 return new (C) StorePNode(ctl, mem, adr, adr_type, val, mo);
2370 }
2371 }
2372 ShouldNotReachHere();
2373 return (StoreNode*)NULL;
2374 }
2375
2376 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2377 bool require_atomic = true;
2378 return new (C) StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2379 }
2380
2381
2382 //--------------------------bottom_type----------------------------------------
2383 const Type *StoreNode::bottom_type() const {
2384 return Type::MEMORY;
2385 }
2386
2387 //------------------------------hash-------------------------------------------
2388 uint StoreNode::hash() const {
2389 // unroll addition of interesting fields
2390 //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2391
2392 // Since they are not commoned, do not hash them:
2393 return NO_HASH;
2394 }
2395
2396 //------------------------------Ideal------------------------------------------
2397 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2398 // When a store immediately follows a relevant allocation/initialization,
2399 // try to capture it into the initialization, or hoist it above.
2400 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2401 Node* p = MemNode::Ideal_common(phase, can_reshape);
2402 if (p) return (p == NodeSentinel) ? NULL : p;
2403
2404 Node* mem = in(MemNode::Memory);
2405 Node* address = in(MemNode::Address);
2406
2407 // Back-to-back stores to same address? Fold em up. Generally
2408 // unsafe if I have intervening uses... Also disallowed for StoreCM
2409 // since they must follow each StoreP operation. Redundant StoreCMs
2410 // are eliminated just before matching in final_graph_reshape.
2411 if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
2412 mem->Opcode() != Op_StoreCM) {
2413 // Looking at a dead closed cycle of memory?
2414 assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2415
2416 assert(Opcode() == mem->Opcode() ||
2417 phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2418 "no mismatched stores, except on raw memory");
2419
2420 if (mem->outcnt() == 1 && // check for intervening uses
2421 mem->as_Store()->memory_size() <= this->memory_size()) {
2422 // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2423 // For example, 'mem' might be the final state at a conditional return.
2424 // Or, 'mem' might be used by some node which is live at the same time
2425 // 'this' is live, which might be unschedulable. So, require exactly
2426 // ONE user, the 'this' store, until such time as we clone 'mem' for
2427 // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2428 if (can_reshape) { // (%%% is this an anachronism?)
2429 set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2430 phase->is_IterGVN());
2431 } else {
2432 // It's OK to do this in the parser, since DU info is always accurate,
2433 // and the parser always refers to nodes via SafePointNode maps.
2434 set_req(MemNode::Memory, mem->in(MemNode::Memory));
2435 }
2436 return this;
2437 }
2438 }
2439
2440 // Capture an unaliased, unconditional, simple store into an initializer.
2441 // Or, if it is independent of the allocation, hoist it above the allocation.
2442 if (ReduceFieldZeroing && /*can_reshape &&*/
2443 mem->is_Proj() && mem->in(0)->is_Initialize()) {
2444 InitializeNode* init = mem->in(0)->as_Initialize();
2445 intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2446 if (offset > 0) {
2447 Node* moved = init->capture_store(this, offset, phase, can_reshape);
2448 // If the InitializeNode captured me, it made a raw copy of me,
2449 // and I need to disappear.
2450 if (moved != NULL) {
2451 // %%% hack to ensure that Ideal returns a new node:
2452 mem = MergeMemNode::make(phase->C, mem);
2453 return mem; // fold me away
2454 }
2455 }
2456 }
2457
2458 return NULL; // No further progress
2459 }
2460
2461 //------------------------------Value-----------------------------------------
2462 const Type *StoreNode::Value( PhaseTransform *phase ) const {
2463 // Either input is TOP ==> the result is TOP
2464 const Type *t1 = phase->type( in(MemNode::Memory) );
2465 if( t1 == Type::TOP ) return Type::TOP;
2466 const Type *t2 = phase->type( in(MemNode::Address) );
2467 if( t2 == Type::TOP ) return Type::TOP;
2468 const Type *t3 = phase->type( in(MemNode::ValueIn) );
2469 if( t3 == Type::TOP ) return Type::TOP;
2470 return Type::MEMORY;
2471 }
2472
2473 //------------------------------Identity---------------------------------------
2474 // Remove redundant stores:
2475 // Store(m, p, Load(m, p)) changes to m.
2476 // Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2477 Node *StoreNode::Identity( PhaseTransform *phase ) {
2478 Node* mem = in(MemNode::Memory);
2479 Node* adr = in(MemNode::Address);
2480 Node* val = in(MemNode::ValueIn);
2481
2482 // Load then Store? Then the Store is useless
2483 if (val->is_Load() &&
2484 val->in(MemNode::Address)->eqv_uncast(adr) &&
2485 val->in(MemNode::Memory )->eqv_uncast(mem) &&
2486 val->as_Load()->store_Opcode() == Opcode()) {
2487 return mem;
2488 }
2489
2490 // Two stores in a row of the same value?
2491 if (mem->is_Store() &&
2492 mem->in(MemNode::Address)->eqv_uncast(adr) &&
2493 mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2494 mem->Opcode() == Opcode()) {
2495 return mem;
2496 }
2497
2498 // Store of zero anywhere into a freshly-allocated object?
2499 // Then the store is useless.
2500 // (It must already have been captured by the InitializeNode.)
2501 if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2502 // a newly allocated object is already all-zeroes everywhere
2503 if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2504 return mem;
2505 }
2506
2507 // the store may also apply to zero-bits in an earlier object
2508 Node* prev_mem = find_previous_store(phase);
2509 // Steps (a), (b): Walk past independent stores to find an exact match.
2510 if (prev_mem != NULL) {
2511 Node* prev_val = can_see_stored_value(prev_mem, phase);
2512 if (prev_val != NULL && phase->eqv(prev_val, val)) {
2513 // prev_val and val might differ by a cast; it would be good
2514 // to keep the more informative of the two.
2515 return mem;
2516 }
2517 }
2518 }
2519
2520 return this;
2521 }
2522
2523 //------------------------------match_edge-------------------------------------
2524 // Do we Match on this edge index or not? Match only memory & value
2525 uint StoreNode::match_edge(uint idx) const {
2526 return idx == MemNode::Address || idx == MemNode::ValueIn;
2527 }
2528
2529 //------------------------------cmp--------------------------------------------
2530 // Do not common stores up together. They generally have to be split
2531 // back up anyways, so do not bother.
2532 uint StoreNode::cmp( const Node &n ) const {
2533 return (&n == this); // Always fail except on self
2534 }
2535
2536 //------------------------------Ideal_masked_input-----------------------------
2537 // Check for a useless mask before a partial-word store
2538 // (StoreB ... (AndI valIn conIa) )
2539 // If (conIa & mask == mask) this simplifies to
2540 // (StoreB ... (valIn) )
2541 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2542 Node *val = in(MemNode::ValueIn);
2543 if( val->Opcode() == Op_AndI ) {
2544 const TypeInt *t = phase->type( val->in(2) )->isa_int();
2545 if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2546 set_req(MemNode::ValueIn, val->in(1));
2547 return this;
2548 }
2549 }
2550 return NULL;
2551 }
2552
2553
2554 //------------------------------Ideal_sign_extended_input----------------------
2555 // Check for useless sign-extension before a partial-word store
2556 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2557 // If (conIL == conIR && conIR <= num_bits) this simplifies to
2558 // (StoreB ... (valIn) )
2559 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2560 Node *val = in(MemNode::ValueIn);
2561 if( val->Opcode() == Op_RShiftI ) {
2562 const TypeInt *t = phase->type( val->in(2) )->isa_int();
2563 if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2564 Node *shl = val->in(1);
2565 if( shl->Opcode() == Op_LShiftI ) {
2566 const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2567 if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2568 set_req(MemNode::ValueIn, shl->in(1));
2569 return this;
2570 }
2571 }
2572 }
2573 }
2574 return NULL;
2575 }
2576
2577 //------------------------------value_never_loaded-----------------------------------
2578 // Determine whether there are any possible loads of the value stored.
2579 // For simplicity, we actually check if there are any loads from the
2580 // address stored to, not just for loads of the value stored by this node.
2581 //
2582 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2583 Node *adr = in(Address);
2584 const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2585 if (adr_oop == NULL)
2586 return false;
2587 if (!adr_oop->is_known_instance_field())
2588 return false; // if not a distinct instance, there may be aliases of the address
2589 for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2590 Node *use = adr->fast_out(i);
2591 int opc = use->Opcode();
2592 if (use->is_Load() || use->is_LoadStore()) {
2593 return false;
2594 }
2595 }
2596 return true;
2597 }
2598
2599 //=============================================================================
2600 //------------------------------Ideal------------------------------------------
2601 // If the store is from an AND mask that leaves the low bits untouched, then
2602 // we can skip the AND operation. If the store is from a sign-extension
2603 // (a left shift, then right shift) we can skip both.
2604 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2605 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2606 if( progress != NULL ) return progress;
2607
2608 progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2609 if( progress != NULL ) return progress;
2610
2611 // Finally check the default case
2612 return StoreNode::Ideal(phase, can_reshape);
2613 }
2614
2615 //=============================================================================
2616 //------------------------------Ideal------------------------------------------
2617 // If the store is from an AND mask that leaves the low bits untouched, then
2618 // we can skip the AND operation
2619 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2620 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2621 if( progress != NULL ) return progress;
2622
2623 progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2624 if( progress != NULL ) return progress;
2625
2626 // Finally check the default case
2627 return StoreNode::Ideal(phase, can_reshape);
2628 }
2629
2630 //=============================================================================
2631 //------------------------------Identity---------------------------------------
2632 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2633 // No need to card mark when storing a null ptr
2634 Node* my_store = in(MemNode::OopStore);
2635 if (my_store->is_Store()) {
2636 const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2637 if( t1 == TypePtr::NULL_PTR ) {
2638 return in(MemNode::Memory);
2639 }
2640 }
2641 return this;
2642 }
2643
2644 //=============================================================================
2645 //------------------------------Ideal---------------------------------------
2646 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2647 Node* progress = StoreNode::Ideal(phase, can_reshape);
2648 if (progress != NULL) return progress;
2649
2650 Node* my_store = in(MemNode::OopStore);
2651 if (my_store->is_MergeMem()) {
2652 Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2653 set_req(MemNode::OopStore, mem);
2654 return this;
2655 }
2656
2657 return NULL;
2658 }
2659
2660 //------------------------------Value-----------------------------------------
2661 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2662 // Either input is TOP ==> the result is TOP
2663 const Type *t = phase->type( in(MemNode::Memory) );
2664 if( t == Type::TOP ) return Type::TOP;
2665 t = phase->type( in(MemNode::Address) );
2666 if( t == Type::TOP ) return Type::TOP;
2667 t = phase->type( in(MemNode::ValueIn) );
2668 if( t == Type::TOP ) return Type::TOP;
2669 // If extra input is TOP ==> the result is TOP
2670 t = phase->type( in(MemNode::OopStore) );
2671 if( t == Type::TOP ) return Type::TOP;
2672
2673 return StoreNode::Value( phase );
2674 }
2675
2676
2677 //=============================================================================
2678 //----------------------------------SCMemProjNode------------------------------
2679 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2680 {
2681 return bottom_type();
2682 }
2683
2684 //=============================================================================
2685 //----------------------------------LoadStoreNode------------------------------
2686 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2687 : Node(required),
2688 _type(rt),
2689 _adr_type(at)
2690 {
2691 init_req(MemNode::Control, c );
2692 init_req(MemNode::Memory , mem);
2693 init_req(MemNode::Address, adr);
2694 init_req(MemNode::ValueIn, val);
2695 init_class_id(Class_LoadStore);
2696 }
2697
2698 uint LoadStoreNode::ideal_reg() const {
2699 return _type->ideal_reg();
2700 }
2701
2702 bool LoadStoreNode::result_not_used() const {
2703 for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2704 Node *x = fast_out(i);
2705 if (x->Opcode() == Op_SCMemProj) continue;
2706 return false;
2707 }
2708 return true;
2709 }
2710
2711 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2712
2713 //=============================================================================
2714 //----------------------------------LoadStoreConditionalNode--------------------
2715 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2716 init_req(ExpectedIn, ex );
2717 }
2718
2719 //=============================================================================
2720 //-------------------------------adr_type--------------------------------------
2721 // Do we Match on this edge index or not? Do not match memory
2722 const TypePtr* ClearArrayNode::adr_type() const {
2723 Node *adr = in(3);
2724 return MemNode::calculate_adr_type(adr->bottom_type());
2725 }
2726
2727 //------------------------------match_edge-------------------------------------
2728 // Do we Match on this edge index or not? Do not match memory
2729 uint ClearArrayNode::match_edge(uint idx) const {
2730 return idx > 1;
2731 }
2732
2733 //------------------------------Identity---------------------------------------
2734 // Clearing a zero length array does nothing
2735 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2736 return phase->type(in(2))->higher_equal(TypeX::ZERO) ? in(1) : this;
2737 }
2738
2739 //------------------------------Idealize---------------------------------------
2740 // Clearing a short array is faster with stores
2741 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2742 const int unit = BytesPerLong;
2743 const TypeX* t = phase->type(in(2))->isa_intptr_t();
2744 if (!t) return NULL;
2745 if (!t->is_con()) return NULL;
2746 intptr_t raw_count = t->get_con();
2747 intptr_t size = raw_count;
2748 if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2749 // Clearing nothing uses the Identity call.
2750 // Negative clears are possible on dead ClearArrays
2751 // (see jck test stmt114.stmt11402.val).
2752 if (size <= 0 || size % unit != 0) return NULL;
2753 intptr_t count = size / unit;
2754 // Length too long; use fast hardware clear
2755 if (size > Matcher::init_array_short_size) return NULL;
2756 Node *mem = in(1);
2757 if( phase->type(mem)==Type::TOP ) return NULL;
2758 Node *adr = in(3);
2759 const Type* at = phase->type(adr);
2760 if( at==Type::TOP ) return NULL;
2761 const TypePtr* atp = at->isa_ptr();
2762 // adjust atp to be the correct array element address type
2763 if (atp == NULL) atp = TypePtr::BOTTOM;
2764 else atp = atp->add_offset(Type::OffsetBot);
2765 // Get base for derived pointer purposes
2766 if( adr->Opcode() != Op_AddP ) Unimplemented();
2767 Node *base = adr->in(1);
2768
2769 Node *zero = phase->makecon(TypeLong::ZERO);
2770 Node *off = phase->MakeConX(BytesPerLong);
2771 mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2772 count--;
2773 while( count-- ) {
2774 mem = phase->transform(mem);
2775 adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
2776 mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2777 }
2778 return mem;
2779 }
2780
2781 //----------------------------step_through----------------------------------
2782 // Return allocation input memory edge if it is different instance
2783 // or itself if it is the one we are looking for.
2784 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2785 Node* n = *np;
2786 assert(n->is_ClearArray(), "sanity");
2787 intptr_t offset;
2788 AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2789 // This method is called only before Allocate nodes are expanded during
2790 // macro nodes expansion. Before that ClearArray nodes are only generated
2791 // in LibraryCallKit::generate_arraycopy() which follows allocations.
2792 assert(alloc != NULL, "should have allocation");
2793 if (alloc->_idx == instance_id) {
2794 // Can not bypass initialization of the instance we are looking for.
2795 return false;
2796 }
2797 // Otherwise skip it.
2798 InitializeNode* init = alloc->initialization();
2799 if (init != NULL)
2800 *np = init->in(TypeFunc::Memory);
2801 else
2802 *np = alloc->in(TypeFunc::Memory);
2803 return true;
2804 }
2805
2806 //----------------------------clear_memory-------------------------------------
2807 // Generate code to initialize object storage to zero.
2808 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2809 intptr_t start_offset,
2810 Node* end_offset,
2811 PhaseGVN* phase) {
2812 Compile* C = phase->C;
2813 intptr_t offset = start_offset;
2814
2815 int unit = BytesPerLong;
2816 if ((offset % unit) != 0) {
2817 Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
2818 adr = phase->transform(adr);
2819 const TypePtr* atp = TypeRawPtr::BOTTOM;
2820 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2821 mem = phase->transform(mem);
2822 offset += BytesPerInt;
2823 }
2824 assert((offset % unit) == 0, "");
2825
2826 // Initialize the remaining stuff, if any, with a ClearArray.
2827 return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2828 }
2829
2830 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2831 Node* start_offset,
2832 Node* end_offset,
2833 PhaseGVN* phase) {
2834 if (start_offset == end_offset) {
2835 // nothing to do
2836 return mem;
2837 }
2838
2839 Compile* C = phase->C;
2840 int unit = BytesPerLong;
2841 Node* zbase = start_offset;
2842 Node* zend = end_offset;
2843
2844 // Scale to the unit required by the CPU:
2845 if (!Matcher::init_array_count_is_in_bytes) {
2846 Node* shift = phase->intcon(exact_log2(unit));
2847 zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
2848 zend = phase->transform( new(C) URShiftXNode(zend, shift) );
2849 }
2850
2851 // Bulk clear double-words
2852 Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
2853 Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
2854 mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
2855 return phase->transform(mem);
2856 }
2857
2858 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2859 intptr_t start_offset,
2860 intptr_t end_offset,
2861 PhaseGVN* phase) {
2862 if (start_offset == end_offset) {
2863 // nothing to do
2864 return mem;
2865 }
2866
2867 Compile* C = phase->C;
2868 assert((end_offset % BytesPerInt) == 0, "odd end offset");
2869 intptr_t done_offset = end_offset;
2870 if ((done_offset % BytesPerLong) != 0) {
2871 done_offset -= BytesPerInt;
2872 }
2873 if (done_offset > start_offset) {
2874 mem = clear_memory(ctl, mem, dest,
2875 start_offset, phase->MakeConX(done_offset), phase);
2876 }
2877 if (done_offset < end_offset) { // emit the final 32-bit store
2878 Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
2879 adr = phase->transform(adr);
2880 const TypePtr* atp = TypeRawPtr::BOTTOM;
2881 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2882 mem = phase->transform(mem);
2883 done_offset += BytesPerInt;
2884 }
2885 assert(done_offset == end_offset, "");
2886 return mem;
2887 }
2888
2889 //=============================================================================
2890 // Do not match memory edge.
2891 uint StrIntrinsicNode::match_edge(uint idx) const {
2892 return idx == 2 || idx == 3;
2893 }
2894
2895 //------------------------------Ideal------------------------------------------
2896 // Return a node which is more "ideal" than the current node. Strip out
2897 // control copies
2898 Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2899 if (remove_dead_region(phase, can_reshape)) return this;
2900 // Don't bother trying to transform a dead node
2901 if (in(0) && in(0)->is_top()) return NULL;
2902
2903 if (can_reshape) {
2904 Node* mem = phase->transform(in(MemNode::Memory));
2905 // If transformed to a MergeMem, get the desired slice
2906 uint alias_idx = phase->C->get_alias_index(adr_type());
2907 mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
2908 if (mem != in(MemNode::Memory)) {
2909 set_req(MemNode::Memory, mem);
2910 return this;
2911 }
2912 }
2913 return NULL;
2914 }
2915
2916 //------------------------------Value------------------------------------------
2917 const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
2918 if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2919 return bottom_type();
2920 }
2921
2922 //=============================================================================
2923 //------------------------------match_edge-------------------------------------
2924 // Do not match memory edge
2925 uint EncodeISOArrayNode::match_edge(uint idx) const {
2926 return idx == 2 || idx == 3; // EncodeISOArray src (Binary dst len)
2927 }
2928
2929 //------------------------------Ideal------------------------------------------
2930 // Return a node which is more "ideal" than the current node. Strip out
2931 // control copies
2932 Node *EncodeISOArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2933 return remove_dead_region(phase, can_reshape) ? this : NULL;
2934 }
2935
2936 //------------------------------Value------------------------------------------
2937 const Type *EncodeISOArrayNode::Value(PhaseTransform *phase) const {
2938 if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2939 return bottom_type();
2940 }
2941
2942 //=============================================================================
2943 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2944 : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2945 _adr_type(C->get_adr_type(alias_idx))
2946 {
2947 init_class_id(Class_MemBar);
2948 Node* top = C->top();
2949 init_req(TypeFunc::I_O,top);
2950 init_req(TypeFunc::FramePtr,top);
2951 init_req(TypeFunc::ReturnAdr,top);
2952 if (precedent != NULL)
2953 init_req(TypeFunc::Parms, precedent);
2954 }
2955
2956 //------------------------------cmp--------------------------------------------
2957 uint MemBarNode::hash() const { return NO_HASH; }
2958 uint MemBarNode::cmp( const Node &n ) const {
2959 return (&n == this); // Always fail except on self
2960 }
2961
2962 //------------------------------make-------------------------------------------
2963 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2964 switch (opcode) {
2965 case Op_MemBarAcquire: return new(C) MemBarAcquireNode(C, atp, pn);
2966 case Op_LoadFence: return new(C) LoadFenceNode(C, atp, pn);
2967 case Op_MemBarRelease: return new(C) MemBarReleaseNode(C, atp, pn);
2968 case Op_StoreFence: return new(C) StoreFenceNode(C, atp, pn);
2969 case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C, atp, pn);
2970 case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C, atp, pn);
2971 case Op_MemBarVolatile: return new(C) MemBarVolatileNode(C, atp, pn);
2972 case Op_MemBarCPUOrder: return new(C) MemBarCPUOrderNode(C, atp, pn);
2973 case Op_Initialize: return new(C) InitializeNode(C, atp, pn);
2974 case Op_MemBarStoreStore: return new(C) MemBarStoreStoreNode(C, atp, pn);
2975 default: ShouldNotReachHere(); return NULL;
2976 }
2977 }
2978
2979 //------------------------------Ideal------------------------------------------
2980 // Return a node which is more "ideal" than the current node. Strip out
2981 // control copies
2982 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2983 if (remove_dead_region(phase, can_reshape)) return this;
2984 // Don't bother trying to transform a dead node
2985 if (in(0) && in(0)->is_top()) {
2986 return NULL;
2987 }
2988
2989 // Eliminate volatile MemBars for scalar replaced objects.
2990 if (can_reshape && req() == (Precedent+1)) {
2991 bool eliminate = false;
2992 int opc = Opcode();
2993 if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
2994 // Volatile field loads and stores.
2995 Node* my_mem = in(MemBarNode::Precedent);
2996 // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
2997 if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
2998 // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
2999 // replace this Precedent (decodeN) with the Load instead.
3000 if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1)) {
3001 Node* load_node = my_mem->in(1);
3002 set_req(MemBarNode::Precedent, load_node);
3003 phase->is_IterGVN()->_worklist.push(my_mem);
3004 my_mem = load_node;
3005 } else {
3006 assert(my_mem->unique_out() == this, "sanity");
3007 del_req(Precedent);
3008 phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3009 my_mem = NULL;
3010 }
3011 }
3012 if (my_mem != NULL && my_mem->is_Mem()) {
3013 const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3014 // Check for scalar replaced object reference.
3015 if( t_oop != NULL && t_oop->is_known_instance_field() &&
3016 t_oop->offset() != Type::OffsetBot &&
3017 t_oop->offset() != Type::OffsetTop) {
3018 eliminate = true;
3019 }
3020 }
3021 } else if (opc == Op_MemBarRelease) {
3022 // Final field stores.
3023 Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3024 if ((alloc != NULL) && alloc->is_Allocate() &&
3025 alloc->as_Allocate()->_is_non_escaping) {
3026 // The allocated object does not escape.
3027 eliminate = true;
3028 }
3029 }
3030 if (eliminate) {
3031 // Replace MemBar projections by its inputs.
3032 PhaseIterGVN* igvn = phase->is_IterGVN();
3033 igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3034 igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3035 // Must return either the original node (now dead) or a new node
3036 // (Do not return a top here, since that would break the uniqueness of top.)
3037 return new (phase->C) ConINode(TypeInt::ZERO);
3038 }
3039 }
3040 return NULL;
3041 }
3042
3043 //------------------------------Value------------------------------------------
3044 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
3045 if( !in(0) ) return Type::TOP;
3046 if( phase->type(in(0)) == Type::TOP )
3047 return Type::TOP;
3048 return TypeTuple::MEMBAR;
3049 }
3050
3051 //------------------------------match------------------------------------------
3052 // Construct projections for memory.
3053 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3054 switch (proj->_con) {
3055 case TypeFunc::Control:
3056 case TypeFunc::Memory:
3057 return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3058 }
3059 ShouldNotReachHere();
3060 return NULL;
3061 }
3062
3063 //===========================InitializeNode====================================
3064 // SUMMARY:
3065 // This node acts as a memory barrier on raw memory, after some raw stores.
3066 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3067 // The Initialize can 'capture' suitably constrained stores as raw inits.
3068 // It can coalesce related raw stores into larger units (called 'tiles').
3069 // It can avoid zeroing new storage for memory units which have raw inits.
3070 // At macro-expansion, it is marked 'complete', and does not optimize further.
3071 //
3072 // EXAMPLE:
3073 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3074 // ctl = incoming control; mem* = incoming memory
3075 // (Note: A star * on a memory edge denotes I/O and other standard edges.)
3076 // First allocate uninitialized memory and fill in the header:
3077 // alloc = (Allocate ctl mem* 16 #short[].klass ...)
3078 // ctl := alloc.Control; mem* := alloc.Memory*
3079 // rawmem = alloc.Memory; rawoop = alloc.RawAddress
3080 // Then initialize to zero the non-header parts of the raw memory block:
3081 // init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3082 // ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3083 // After the initialize node executes, the object is ready for service:
3084 // oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3085 // Suppose its body is immediately initialized as {1,2}:
3086 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3087 // store2 = (StoreC init.Control store1 (+ oop 14) 2)
3088 // mem.SLICE(#short[*]) := store2
3089 //
3090 // DETAILS:
3091 // An InitializeNode collects and isolates object initialization after
3092 // an AllocateNode and before the next possible safepoint. As a
3093 // memory barrier (MemBarNode), it keeps critical stores from drifting
3094 // down past any safepoint or any publication of the allocation.
3095 // Before this barrier, a newly-allocated object may have uninitialized bits.
3096 // After this barrier, it may be treated as a real oop, and GC is allowed.
3097 //
3098 // The semantics of the InitializeNode include an implicit zeroing of
3099 // the new object from object header to the end of the object.
3100 // (The object header and end are determined by the AllocateNode.)
3101 //
3102 // Certain stores may be added as direct inputs to the InitializeNode.
3103 // These stores must update raw memory, and they must be to addresses
3104 // derived from the raw address produced by AllocateNode, and with
3105 // a constant offset. They must be ordered by increasing offset.
3106 // The first one is at in(RawStores), the last at in(req()-1).
3107 // Unlike most memory operations, they are not linked in a chain,
3108 // but are displayed in parallel as users of the rawmem output of
3109 // the allocation.
3110 //
3111 // (See comments in InitializeNode::capture_store, which continue
3112 // the example given above.)
3113 //
3114 // When the associated Allocate is macro-expanded, the InitializeNode
3115 // may be rewritten to optimize collected stores. A ClearArrayNode
3116 // may also be created at that point to represent any required zeroing.
3117 // The InitializeNode is then marked 'complete', prohibiting further
3118 // capturing of nearby memory operations.
3119 //
3120 // During macro-expansion, all captured initializations which store
3121 // constant values of 32 bits or smaller are coalesced (if advantageous)
3122 // into larger 'tiles' 32 or 64 bits. This allows an object to be
3123 // initialized in fewer memory operations. Memory words which are
3124 // covered by neither tiles nor non-constant stores are pre-zeroed
3125 // by explicit stores of zero. (The code shape happens to do all
3126 // zeroing first, then all other stores, with both sequences occurring
3127 // in order of ascending offsets.)
3128 //
3129 // Alternatively, code may be inserted between an AllocateNode and its
3130 // InitializeNode, to perform arbitrary initialization of the new object.
3131 // E.g., the object copying intrinsics insert complex data transfers here.
3132 // The initialization must then be marked as 'complete' disable the
3133 // built-in zeroing semantics and the collection of initializing stores.
3134 //
3135 // While an InitializeNode is incomplete, reads from the memory state
3136 // produced by it are optimizable if they match the control edge and
3137 // new oop address associated with the allocation/initialization.
3138 // They return a stored value (if the offset matches) or else zero.
3139 // A write to the memory state, if it matches control and address,
3140 // and if it is to a constant offset, may be 'captured' by the
3141 // InitializeNode. It is cloned as a raw memory operation and rewired
3142 // inside the initialization, to the raw oop produced by the allocation.
3143 // Operations on addresses which are provably distinct (e.g., to
3144 // other AllocateNodes) are allowed to bypass the initialization.
3145 //
3146 // The effect of all this is to consolidate object initialization
3147 // (both arrays and non-arrays, both piecewise and bulk) into a
3148 // single location, where it can be optimized as a unit.
3149 //
3150 // Only stores with an offset less than TrackedInitializationLimit words
3151 // will be considered for capture by an InitializeNode. This puts a
3152 // reasonable limit on the complexity of optimized initializations.
3153
3154 //---------------------------InitializeNode------------------------------------
3155 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3156 : _is_complete(Incomplete), _does_not_escape(false),
3157 MemBarNode(C, adr_type, rawoop)
3158 {
3159 init_class_id(Class_Initialize);
3160
3161 assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3162 assert(in(RawAddress) == rawoop, "proper init");
3163 // Note: allocation() can be NULL, for secondary initialization barriers
3164 }
3165
3166 // Since this node is not matched, it will be processed by the
3167 // register allocator. Declare that there are no constraints
3168 // on the allocation of the RawAddress edge.
3169 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3170 // This edge should be set to top, by the set_complete. But be conservative.
3171 if (idx == InitializeNode::RawAddress)
3172 return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3173 return RegMask::Empty;
3174 }
3175
3176 Node* InitializeNode::memory(uint alias_idx) {
3177 Node* mem = in(Memory);
3178 if (mem->is_MergeMem()) {
3179 return mem->as_MergeMem()->memory_at(alias_idx);
3180 } else {
3181 // incoming raw memory is not split
3182 return mem;
3183 }
3184 }
3185
3186 bool InitializeNode::is_non_zero() {
3187 if (is_complete()) return false;
3188 remove_extra_zeroes();
3189 return (req() > RawStores);
3190 }
3191
3192 void InitializeNode::set_complete(PhaseGVN* phase) {
3193 assert(!is_complete(), "caller responsibility");
3194 _is_complete = Complete;
3195
3196 // After this node is complete, it contains a bunch of
3197 // raw-memory initializations. There is no need for
3198 // it to have anything to do with non-raw memory effects.
3199 // Therefore, tell all non-raw users to re-optimize themselves,
3200 // after skipping the memory effects of this initialization.
3201 PhaseIterGVN* igvn = phase->is_IterGVN();
3202 if (igvn) igvn->add_users_to_worklist(this);
3203 }
3204
3205 // convenience function
3206 // return false if the init contains any stores already
3207 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3208 InitializeNode* init = initialization();
3209 if (init == NULL || init->is_complete()) return false;
3210 init->remove_extra_zeroes();
3211 // for now, if this allocation has already collected any inits, bail:
3212 if (init->is_non_zero()) return false;
3213 init->set_complete(phase);
3214 return true;
3215 }
3216
3217 void InitializeNode::remove_extra_zeroes() {
3218 if (req() == RawStores) return;
3219 Node* zmem = zero_memory();
3220 uint fill = RawStores;
3221 for (uint i = fill; i < req(); i++) {
3222 Node* n = in(i);
3223 if (n->is_top() || n == zmem) continue; // skip
3224 if (fill < i) set_req(fill, n); // compact
3225 ++fill;
3226 }
3227 // delete any empty spaces created:
3228 while (fill < req()) {
3229 del_req(fill);
3230 }
3231 }
3232
3233 // Helper for remembering which stores go with which offsets.
3234 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3235 if (!st->is_Store()) return -1; // can happen to dead code via subsume_node
3236 intptr_t offset = -1;
3237 Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3238 phase, offset);
3239 if (base == NULL) return -1; // something is dead,
3240 if (offset < 0) return -1; // dead, dead
3241 return offset;
3242 }
3243
3244 // Helper for proving that an initialization expression is
3245 // "simple enough" to be folded into an object initialization.
3246 // Attempts to prove that a store's initial value 'n' can be captured
3247 // within the initialization without creating a vicious cycle, such as:
3248 // { Foo p = new Foo(); p.next = p; }
3249 // True for constants and parameters and small combinations thereof.
3250 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3251 if (n == NULL) return true; // (can this really happen?)
3252 if (n->is_Proj()) n = n->in(0);
3253 if (n == this) return false; // found a cycle
3254 if (n->is_Con()) return true;
3255 if (n->is_Start()) return true; // params, etc., are OK
3256 if (n->is_Root()) return true; // even better
3257
3258 Node* ctl = n->in(0);
3259 if (ctl != NULL && !ctl->is_top()) {
3260 if (ctl->is_Proj()) ctl = ctl->in(0);
3261 if (ctl == this) return false;
3262
3263 // If we already know that the enclosing memory op is pinned right after
3264 // the init, then any control flow that the store has picked up
3265 // must have preceded the init, or else be equal to the init.
3266 // Even after loop optimizations (which might change control edges)
3267 // a store is never pinned *before* the availability of its inputs.
3268 if (!MemNode::all_controls_dominate(n, this))
3269 return false; // failed to prove a good control
3270 }
3271
3272 // Check data edges for possible dependencies on 'this'.
3273 if ((count += 1) > 20) return false; // complexity limit
3274 for (uint i = 1; i < n->req(); i++) {
3275 Node* m = n->in(i);
3276 if (m == NULL || m == n || m->is_top()) continue;
3277 uint first_i = n->find_edge(m);
3278 if (i != first_i) continue; // process duplicate edge just once
3279 if (!detect_init_independence(m, count)) {
3280 return false;
3281 }
3282 }
3283
3284 return true;
3285 }
3286
3287 // Here are all the checks a Store must pass before it can be moved into
3288 // an initialization. Returns zero if a check fails.
3289 // On success, returns the (constant) offset to which the store applies,
3290 // within the initialized memory.
3291 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3292 const int FAIL = 0;
3293 if (st->req() != MemNode::ValueIn + 1)
3294 return FAIL; // an inscrutable StoreNode (card mark?)
3295 Node* ctl = st->in(MemNode::Control);
3296 if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3297 return FAIL; // must be unconditional after the initialization
3298 Node* mem = st->in(MemNode::Memory);
3299 if (!(mem->is_Proj() && mem->in(0) == this))
3300 return FAIL; // must not be preceded by other stores
3301 Node* adr = st->in(MemNode::Address);
3302 intptr_t offset;
3303 AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3304 if (alloc == NULL)
3305 return FAIL; // inscrutable address
3306 if (alloc != allocation())
3307 return FAIL; // wrong allocation! (store needs to float up)
3308 Node* val = st->in(MemNode::ValueIn);
3309 int complexity_count = 0;
3310 if (!detect_init_independence(val, complexity_count))
3311 return FAIL; // stored value must be 'simple enough'
3312
3313 // The Store can be captured only if nothing after the allocation
3314 // and before the Store is using the memory location that the store
3315 // overwrites.
3316 bool failed = false;
3317 // If is_complete_with_arraycopy() is true the shape of the graph is
3318 // well defined and is safe so no need for extra checks.
3319 if (!is_complete_with_arraycopy()) {
3320 // We are going to look at each use of the memory state following
3321 // the allocation to make sure nothing reads the memory that the
3322 // Store writes.
3323 const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3324 int alias_idx = phase->C->get_alias_index(t_adr);
3325 ResourceMark rm;
3326 Unique_Node_List mems;
3327 mems.push(mem);
3328 Node* unique_merge = NULL;
3329 for (uint next = 0; next < mems.size(); ++next) {
3330 Node *m = mems.at(next);
3331 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3332 Node *n = m->fast_out(j);
3333 if (n->outcnt() == 0) {
3334 continue;
3335 }
3336 if (n == st) {
3337 continue;
3338 } else if (n->in(0) != NULL && n->in(0) != ctl) {
3339 // If the control of this use is different from the control
3340 // of the Store which is right after the InitializeNode then
3341 // this node cannot be between the InitializeNode and the
3342 // Store.
3343 continue;
3344 } else if (n->is_MergeMem()) {
3345 if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3346 // We can hit a MergeMemNode (that will likely go away
3347 // later) that is a direct use of the memory state
3348 // following the InitializeNode on the same slice as the
3349 // store node that we'd like to capture. We need to check
3350 // the uses of the MergeMemNode.
3351 mems.push(n);
3352 }
3353 } else if (n->is_Mem()) {
3354 Node* other_adr = n->in(MemNode::Address);
3355 if (other_adr == adr) {
3356 failed = true;
3357 break;
3358 } else {
3359 const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3360 if (other_t_adr != NULL) {
3361 int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3362 if (other_alias_idx == alias_idx) {
3363 // A load from the same memory slice as the store right
3364 // after the InitializeNode. We check the control of the
3365 // object/array that is loaded from. If it's the same as
3366 // the store control then we cannot capture the store.
3367 assert(!n->is_Store(), "2 stores to same slice on same control?");
3368 Node* base = other_adr;
3369 assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
3370 base = base->in(AddPNode::Base);
3371 if (base != NULL) {
3372 base = base->uncast();
3373 if (base->is_Proj() && base->in(0) == alloc) {
3374 failed = true;
3375 break;
3376 }
3377 }
3378 }
3379 }
3380 }
3381 } else {
3382 failed = true;
3383 break;
3384 }
3385 }
3386 }
3387 }
3388 if (failed) {
3389 if (!can_reshape) {
3390 // We decided we couldn't capture the store during parsing. We
3391 // should try again during the next IGVN once the graph is
3392 // cleaner.
3393 phase->C->record_for_igvn(st);
3394 }
3395 return FAIL;
3396 }
3397
3398 return offset; // success
3399 }
3400
3401 // Find the captured store in(i) which corresponds to the range
3402 // [start..start+size) in the initialized object.
3403 // If there is one, return its index i. If there isn't, return the
3404 // negative of the index where it should be inserted.
3405 // Return 0 if the queried range overlaps an initialization boundary
3406 // or if dead code is encountered.
3407 // If size_in_bytes is zero, do not bother with overlap checks.
3408 int InitializeNode::captured_store_insertion_point(intptr_t start,
3409 int size_in_bytes,
3410 PhaseTransform* phase) {
3411 const int FAIL = 0, MAX_STORE = BytesPerLong;
3412
3413 if (is_complete())
3414 return FAIL; // arraycopy got here first; punt
3415
3416 assert(allocation() != NULL, "must be present");
3417
3418 // no negatives, no header fields:
3419 if (start < (intptr_t) allocation()->minimum_header_size()) return FAIL;
3420
3421 // after a certain size, we bail out on tracking all the stores:
3422 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3423 if (start >= ti_limit) return FAIL;
3424
3425 for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3426 if (i >= limit) return -(int)i; // not found; here is where to put it
3427
3428 Node* st = in(i);
3429 intptr_t st_off = get_store_offset(st, phase);
3430 if (st_off < 0) {
3431 if (st != zero_memory()) {
3432 return FAIL; // bail out if there is dead garbage
3433 }
3434 } else if (st_off > start) {
3435 // ...we are done, since stores are ordered
3436 if (st_off < start + size_in_bytes) {
3437 return FAIL; // the next store overlaps
3438 }
3439 return -(int)i; // not found; here is where to put it
3440 } else if (st_off < start) {
3441 if (size_in_bytes != 0 &&
3442 start < st_off + MAX_STORE &&
3443 start < st_off + st->as_Store()->memory_size()) {
3444 return FAIL; // the previous store overlaps
3445 }
3446 } else {
3447 if (size_in_bytes != 0 &&
3448 st->as_Store()->memory_size() != size_in_bytes) {
3449 return FAIL; // mismatched store size
3450 }
3451 return i;
3452 }
3453
3454 ++i;
3455 }
3456 }
3457
3458 // Look for a captured store which initializes at the offset 'start'
3459 // with the given size. If there is no such store, and no other
3460 // initialization interferes, then return zero_memory (the memory
3461 // projection of the AllocateNode).
3462 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3463 PhaseTransform* phase) {
3464 assert(stores_are_sane(phase), "");
3465 int i = captured_store_insertion_point(start, size_in_bytes, phase);
3466 if (i == 0) {
3467 return NULL; // something is dead
3468 } else if (i < 0) {
3469 return zero_memory(); // just primordial zero bits here
3470 } else {
3471 Node* st = in(i); // here is the store at this position
3472 assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3473 return st;
3474 }
3475 }
3476
3477 // Create, as a raw pointer, an address within my new object at 'offset'.
3478 Node* InitializeNode::make_raw_address(intptr_t offset,
3479 PhaseTransform* phase) {
3480 Node* addr = in(RawAddress);
3481 if (offset != 0) {
3482 Compile* C = phase->C;
3483 addr = phase->transform( new (C) AddPNode(C->top(), addr,
3484 phase->MakeConX(offset)) );
3485 }
3486 return addr;
3487 }
3488
3489 // Clone the given store, converting it into a raw store
3490 // initializing a field or element of my new object.
3491 // Caller is responsible for retiring the original store,
3492 // with subsume_node or the like.
3493 //
3494 // From the example above InitializeNode::InitializeNode,
3495 // here are the old stores to be captured:
3496 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3497 // store2 = (StoreC init.Control store1 (+ oop 14) 2)
3498 //
3499 // Here is the changed code; note the extra edges on init:
3500 // alloc = (Allocate ...)
3501 // rawoop = alloc.RawAddress
3502 // rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3503 // rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3504 // init = (Initialize alloc.Control alloc.Memory rawoop
3505 // rawstore1 rawstore2)
3506 //
3507 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3508 PhaseTransform* phase, bool can_reshape) {
3509 assert(stores_are_sane(phase), "");
3510
3511 if (start < 0) return NULL;
3512 assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3513
3514 Compile* C = phase->C;
3515 int size_in_bytes = st->memory_size();
3516 int i = captured_store_insertion_point(start, size_in_bytes, phase);
3517 if (i == 0) return NULL; // bail out
3518 Node* prev_mem = NULL; // raw memory for the captured store
3519 if (i > 0) {
3520 prev_mem = in(i); // there is a pre-existing store under this one
3521 set_req(i, C->top()); // temporarily disconnect it
3522 // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3523 } else {
3524 i = -i; // no pre-existing store
3525 prev_mem = zero_memory(); // a slice of the newly allocated object
3526 if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3527 set_req(--i, C->top()); // reuse this edge; it has been folded away
3528 else
3529 ins_req(i, C->top()); // build a new edge
3530 }
3531 Node* new_st = st->clone();
3532 new_st->set_req(MemNode::Control, in(Control));
3533 new_st->set_req(MemNode::Memory, prev_mem);
3534 new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3535 new_st = phase->transform(new_st);
3536
3537 // At this point, new_st might have swallowed a pre-existing store
3538 // at the same offset, or perhaps new_st might have disappeared,
3539 // if it redundantly stored the same value (or zero to fresh memory).
3540
3541 // In any case, wire it in:
3542 set_req(i, new_st);
3543
3544 // The caller may now kill the old guy.
3545 DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3546 assert(check_st == new_st || check_st == NULL, "must be findable");
3547 assert(!is_complete(), "");
3548 return new_st;
3549 }
3550
3551 static bool store_constant(jlong* tiles, int num_tiles,
3552 intptr_t st_off, int st_size,
3553 jlong con) {
3554 if ((st_off & (st_size-1)) != 0)
3555 return false; // strange store offset (assume size==2**N)
3556 address addr = (address)tiles + st_off;
3557 assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3558 switch (st_size) {
3559 case sizeof(jbyte): *(jbyte*) addr = (jbyte) con; break;
3560 case sizeof(jchar): *(jchar*) addr = (jchar) con; break;
3561 case sizeof(jint): *(jint*) addr = (jint) con; break;
3562 case sizeof(jlong): *(jlong*) addr = (jlong) con; break;
3563 default: return false; // strange store size (detect size!=2**N here)
3564 }
3565 return true; // return success to caller
3566 }
3567
3568 // Coalesce subword constants into int constants and possibly
3569 // into long constants. The goal, if the CPU permits,
3570 // is to initialize the object with a small number of 64-bit tiles.
3571 // Also, convert floating-point constants to bit patterns.
3572 // Non-constants are not relevant to this pass.
3573 //
3574 // In terms of the running example on InitializeNode::InitializeNode
3575 // and InitializeNode::capture_store, here is the transformation
3576 // of rawstore1 and rawstore2 into rawstore12:
3577 // alloc = (Allocate ...)
3578 // rawoop = alloc.RawAddress
3579 // tile12 = 0x00010002
3580 // rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3581 // init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3582 //
3583 void
3584 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3585 Node* size_in_bytes,
3586 PhaseGVN* phase) {
3587 Compile* C = phase->C;
3588
3589 assert(stores_are_sane(phase), "");
3590 // Note: After this pass, they are not completely sane,
3591 // since there may be some overlaps.
3592
3593 int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3594
3595 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3596 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3597 size_limit = MIN2(size_limit, ti_limit);
3598 size_limit = align_size_up(size_limit, BytesPerLong);
3599 int num_tiles = size_limit / BytesPerLong;
3600
3601 // allocate space for the tile map:
3602 const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3603 jlong tiles_buf[small_len];
3604 Node* nodes_buf[small_len];
3605 jlong inits_buf[small_len];
3606 jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3607 : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3608 Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3609 : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3610 jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3611 : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3612 // tiles: exact bitwise model of all primitive constants
3613 // nodes: last constant-storing node subsumed into the tiles model
3614 // inits: which bytes (in each tile) are touched by any initializations
3615
3616 //// Pass A: Fill in the tile model with any relevant stores.
3617
3618 Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3619 Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3620 Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3621 Node* zmem = zero_memory(); // initially zero memory state
3622 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3623 Node* st = in(i);
3624 intptr_t st_off = get_store_offset(st, phase);
3625
3626 // Figure out the store's offset and constant value:
3627 if (st_off < header_size) continue; //skip (ignore header)
3628 if (st->in(MemNode::Memory) != zmem) continue; //skip (odd store chain)
3629 int st_size = st->as_Store()->memory_size();
3630 if (st_off + st_size > size_limit) break;
3631
3632 // Record which bytes are touched, whether by constant or not.
3633 if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3634 continue; // skip (strange store size)
3635
3636 const Type* val = phase->type(st->in(MemNode::ValueIn));
3637 if (!val->singleton()) continue; //skip (non-con store)
3638 BasicType type = val->basic_type();
3639
3640 jlong con = 0;
3641 switch (type) {
3642 case T_INT: con = val->is_int()->get_con(); break;
3643 case T_LONG: con = val->is_long()->get_con(); break;
3644 case T_FLOAT: con = jint_cast(val->getf()); break;
3645 case T_DOUBLE: con = jlong_cast(val->getd()); break;
3646 default: continue; //skip (odd store type)
3647 }
3648
3649 if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3650 st->Opcode() == Op_StoreL) {
3651 continue; // This StoreL is already optimal.
3652 }
3653
3654 // Store down the constant.
3655 store_constant(tiles, num_tiles, st_off, st_size, con);
3656
3657 intptr_t j = st_off >> LogBytesPerLong;
3658
3659 if (type == T_INT && st_size == BytesPerInt
3660 && (st_off & BytesPerInt) == BytesPerInt) {
3661 jlong lcon = tiles[j];
3662 if (!Matcher::isSimpleConstant64(lcon) &&
3663 st->Opcode() == Op_StoreI) {
3664 // This StoreI is already optimal by itself.
3665 jint* intcon = (jint*) &tiles[j];
3666 intcon[1] = 0; // undo the store_constant()
3667
3668 // If the previous store is also optimal by itself, back up and
3669 // undo the action of the previous loop iteration... if we can.
3670 // But if we can't, just let the previous half take care of itself.
3671 st = nodes[j];
3672 st_off -= BytesPerInt;
3673 con = intcon[0];
3674 if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3675 assert(st_off >= header_size, "still ignoring header");
3676 assert(get_store_offset(st, phase) == st_off, "must be");
3677 assert(in(i-1) == zmem, "must be");
3678 DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3679 assert(con == tcon->is_int()->get_con(), "must be");
3680 // Undo the effects of the previous loop trip, which swallowed st:
3681 intcon[0] = 0; // undo store_constant()
3682 set_req(i-1, st); // undo set_req(i, zmem)
3683 nodes[j] = NULL; // undo nodes[j] = st
3684 --old_subword; // undo ++old_subword
3685 }
3686 continue; // This StoreI is already optimal.
3687 }
3688 }
3689
3690 // This store is not needed.
3691 set_req(i, zmem);
3692 nodes[j] = st; // record for the moment
3693 if (st_size < BytesPerLong) // something has changed
3694 ++old_subword; // includes int/float, but who's counting...
3695 else ++old_long;
3696 }
3697
3698 if ((old_subword + old_long) == 0)
3699 return; // nothing more to do
3700
3701 //// Pass B: Convert any non-zero tiles into optimal constant stores.
3702 // Be sure to insert them before overlapping non-constant stores.
3703 // (E.g., byte[] x = { 1,2,y,4 } => x[int 0] = 0x01020004, x[2]=y.)
3704 for (int j = 0; j < num_tiles; j++) {
3705 jlong con = tiles[j];
3706 jlong init = inits[j];
3707 if (con == 0) continue;
3708 jint con0, con1; // split the constant, address-wise
3709 jint init0, init1; // split the init map, address-wise
3710 { union { jlong con; jint intcon[2]; } u;
3711 u.con = con;
3712 con0 = u.intcon[0];
3713 con1 = u.intcon[1];
3714 u.con = init;
3715 init0 = u.intcon[0];
3716 init1 = u.intcon[1];
3717 }
3718
3719 Node* old = nodes[j];
3720 assert(old != NULL, "need the prior store");
3721 intptr_t offset = (j * BytesPerLong);
3722
3723 bool split = !Matcher::isSimpleConstant64(con);
3724
3725 if (offset < header_size) {
3726 assert(offset + BytesPerInt >= header_size, "second int counts");
3727 assert(*(jint*)&tiles[j] == 0, "junk in header");
3728 split = true; // only the second word counts
3729 // Example: int a[] = { 42 ... }
3730 } else if (con0 == 0 && init0 == -1) {
3731 split = true; // first word is covered by full inits
3732 // Example: int a[] = { ... foo(), 42 ... }
3733 } else if (con1 == 0 && init1 == -1) {
3734 split = true; // second word is covered by full inits
3735 // Example: int a[] = { ... 42, foo() ... }
3736 }
3737
3738 // Here's a case where init0 is neither 0 nor -1:
3739 // byte a[] = { ... 0,0,foo(),0, 0,0,0,42 ... }
3740 // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3741 // In this case the tile is not split; it is (jlong)42.
3742 // The big tile is stored down, and then the foo() value is inserted.
3743 // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3744
3745 Node* ctl = old->in(MemNode::Control);
3746 Node* adr = make_raw_address(offset, phase);
3747 const TypePtr* atp = TypeRawPtr::BOTTOM;
3748
3749 // One or two coalesced stores to plop down.
3750 Node* st[2];
3751 intptr_t off[2];
3752 int nst = 0;
3753 if (!split) {
3754 ++new_long;
3755 off[nst] = offset;
3756 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3757 phase->longcon(con), T_LONG, MemNode::unordered);
3758 } else {
3759 // Omit either if it is a zero.
3760 if (con0 != 0) {
3761 ++new_int;
3762 off[nst] = offset;
3763 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3764 phase->intcon(con0), T_INT, MemNode::unordered);
3765 }
3766 if (con1 != 0) {
3767 ++new_int;
3768 offset += BytesPerInt;
3769 adr = make_raw_address(offset, phase);
3770 off[nst] = offset;
3771 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3772 phase->intcon(con1), T_INT, MemNode::unordered);
3773 }
3774 }
3775
3776 // Insert second store first, then the first before the second.
3777 // Insert each one just before any overlapping non-constant stores.
3778 while (nst > 0) {
3779 Node* st1 = st[--nst];
3780 C->copy_node_notes_to(st1, old);
3781 st1 = phase->transform(st1);
3782 offset = off[nst];
3783 assert(offset >= header_size, "do not smash header");
3784 int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3785 guarantee(ins_idx != 0, "must re-insert constant store");
3786 if (ins_idx < 0) ins_idx = -ins_idx; // never overlap
3787 if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3788 set_req(--ins_idx, st1);
3789 else
3790 ins_req(ins_idx, st1);
3791 }
3792 }
3793
3794 if (PrintCompilation && WizardMode)
3795 tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3796 old_subword, old_long, new_int, new_long);
3797 if (C->log() != NULL)
3798 C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3799 old_subword, old_long, new_int, new_long);
3800
3801 // Clean up any remaining occurrences of zmem:
3802 remove_extra_zeroes();
3803 }
3804
3805 // Explore forward from in(start) to find the first fully initialized
3806 // word, and return its offset. Skip groups of subword stores which
3807 // together initialize full words. If in(start) is itself part of a
3808 // fully initialized word, return the offset of in(start). If there
3809 // are no following full-word stores, or if something is fishy, return
3810 // a negative value.
3811 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3812 int int_map = 0;
3813 intptr_t int_map_off = 0;
3814 const int FULL_MAP = right_n_bits(BytesPerInt); // the int_map we hope for
3815
3816 for (uint i = start, limit = req(); i < limit; i++) {
3817 Node* st = in(i);
3818
3819 intptr_t st_off = get_store_offset(st, phase);
3820 if (st_off < 0) break; // return conservative answer
3821
3822 int st_size = st->as_Store()->memory_size();
3823 if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3824 return st_off; // we found a complete word init
3825 }
3826
3827 // update the map:
3828
3829 intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3830 if (this_int_off != int_map_off) {
3831 // reset the map:
3832 int_map = 0;
3833 int_map_off = this_int_off;
3834 }
3835
3836 int subword_off = st_off - this_int_off;
3837 int_map |= right_n_bits(st_size) << subword_off;
3838 if ((int_map & FULL_MAP) == FULL_MAP) {
3839 return this_int_off; // we found a complete word init
3840 }
3841
3842 // Did this store hit or cross the word boundary?
3843 intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3844 if (next_int_off == this_int_off + BytesPerInt) {
3845 // We passed the current int, without fully initializing it.
3846 int_map_off = next_int_off;
3847 int_map >>= BytesPerInt;
3848 } else if (next_int_off > this_int_off + BytesPerInt) {
3849 // We passed the current and next int.
3850 return this_int_off + BytesPerInt;
3851 }
3852 }
3853
3854 return -1;
3855 }
3856
3857
3858 // Called when the associated AllocateNode is expanded into CFG.
3859 // At this point, we may perform additional optimizations.
3860 // Linearize the stores by ascending offset, to make memory
3861 // activity as coherent as possible.
3862 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3863 intptr_t header_size,
3864 Node* size_in_bytes,
3865 PhaseGVN* phase) {
3866 assert(!is_complete(), "not already complete");
3867 assert(stores_are_sane(phase), "");
3868 assert(allocation() != NULL, "must be present");
3869
3870 remove_extra_zeroes();
3871
3872 if (ReduceFieldZeroing || ReduceBulkZeroing)
3873 // reduce instruction count for common initialization patterns
3874 coalesce_subword_stores(header_size, size_in_bytes, phase);
3875
3876 Node* zmem = zero_memory(); // initially zero memory state
3877 Node* inits = zmem; // accumulating a linearized chain of inits
3878 #ifdef ASSERT
3879 intptr_t first_offset = allocation()->minimum_header_size();
3880 intptr_t last_init_off = first_offset; // previous init offset
3881 intptr_t last_init_end = first_offset; // previous init offset+size
3882 intptr_t last_tile_end = first_offset; // previous tile offset+size
3883 #endif
3884 intptr_t zeroes_done = header_size;
3885
3886 bool do_zeroing = true; // we might give up if inits are very sparse
3887 int big_init_gaps = 0; // how many large gaps have we seen?
3888
3889 if (ZeroTLAB) do_zeroing = false;
3890 if (!ReduceFieldZeroing && !ReduceBulkZeroing) do_zeroing = false;
3891
3892 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3893 Node* st = in(i);
3894 intptr_t st_off = get_store_offset(st, phase);
3895 if (st_off < 0)
3896 break; // unknown junk in the inits
3897 if (st->in(MemNode::Memory) != zmem)
3898 break; // complicated store chains somehow in list
3899
3900 int st_size = st->as_Store()->memory_size();
3901 intptr_t next_init_off = st_off + st_size;
3902
3903 if (do_zeroing && zeroes_done < next_init_off) {
3904 // See if this store needs a zero before it or under it.
3905 intptr_t zeroes_needed = st_off;
3906
3907 if (st_size < BytesPerInt) {
3908 // Look for subword stores which only partially initialize words.
3909 // If we find some, we must lay down some word-level zeroes first,
3910 // underneath the subword stores.
3911 //
3912 // Examples:
3913 // byte[] a = { p,q,r,s } => a[0]=p,a[1]=q,a[2]=r,a[3]=s
3914 // byte[] a = { x,y,0,0 } => a[0..3] = 0, a[0]=x,a[1]=y
3915 // byte[] a = { 0,0,z,0 } => a[0..3] = 0, a[2]=z
3916 //
3917 // Note: coalesce_subword_stores may have already done this,
3918 // if it was prompted by constant non-zero subword initializers.
3919 // But this case can still arise with non-constant stores.
3920
3921 intptr_t next_full_store = find_next_fullword_store(i, phase);
3922
3923 // In the examples above:
3924 // in(i) p q r s x y z
3925 // st_off 12 13 14 15 12 13 14
3926 // st_size 1 1 1 1 1 1 1
3927 // next_full_s. 12 16 16 16 16 16 16
3928 // z's_done 12 16 16 16 12 16 12
3929 // z's_needed 12 16 16 16 16 16 16
3930 // zsize 0 0 0 0 4 0 4
3931 if (next_full_store < 0) {
3932 // Conservative tack: Zero to end of current word.
3933 zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3934 } else {
3935 // Zero to beginning of next fully initialized word.
3936 // Or, don't zero at all, if we are already in that word.
3937 assert(next_full_store >= zeroes_needed, "must go forward");
3938 assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3939 zeroes_needed = next_full_store;
3940 }
3941 }
3942
3943 if (zeroes_needed > zeroes_done) {
3944 intptr_t zsize = zeroes_needed - zeroes_done;
3945 // Do some incremental zeroing on rawmem, in parallel with inits.
3946 zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3947 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3948 zeroes_done, zeroes_needed,
3949 phase);
3950 zeroes_done = zeroes_needed;
3951 if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3952 do_zeroing = false; // leave the hole, next time
3953 }
3954 }
3955
3956 // Collect the store and move on:
3957 st->set_req(MemNode::Memory, inits);
3958 inits = st; // put it on the linearized chain
3959 set_req(i, zmem); // unhook from previous position
3960
3961 if (zeroes_done == st_off)
3962 zeroes_done = next_init_off;
3963
3964 assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3965
3966 #ifdef ASSERT
3967 // Various order invariants. Weaker than stores_are_sane because
3968 // a large constant tile can be filled in by smaller non-constant stores.
3969 assert(st_off >= last_init_off, "inits do not reverse");
3970 last_init_off = st_off;
3971 const Type* val = NULL;
3972 if (st_size >= BytesPerInt &&
3973 (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3974 (int)val->basic_type() < (int)T_OBJECT) {
3975 assert(st_off >= last_tile_end, "tiles do not overlap");
3976 assert(st_off >= last_init_end, "tiles do not overwrite inits");
3977 last_tile_end = MAX2(last_tile_end, next_init_off);
3978 } else {
3979 intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3980 assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3981 assert(st_off >= last_init_end, "inits do not overlap");
3982 last_init_end = next_init_off; // it's a non-tile
3983 }
3984 #endif //ASSERT
3985 }
3986
3987 remove_extra_zeroes(); // clear out all the zmems left over
3988 add_req(inits);
3989
3990 if (!ZeroTLAB) {
3991 // If anything remains to be zeroed, zero it all now.
3992 zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3993 // if it is the last unused 4 bytes of an instance, forget about it
3994 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3995 if (zeroes_done + BytesPerLong >= size_limit) {
3996 assert(allocation() != NULL, "");
3997 if (allocation()->Opcode() == Op_Allocate) {
3998 Node* klass_node = allocation()->in(AllocateNode::KlassNode);
3999 ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4000 if (zeroes_done == k->layout_helper())
4001 zeroes_done = size_limit;
4002 }
4003 }
4004 if (zeroes_done < size_limit) {
4005 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4006 zeroes_done, size_in_bytes, phase);
4007 }
4008 }
4009
4010 set_complete(phase);
4011 return rawmem;
4012 }
4013
4014
4015 #ifdef ASSERT
4016 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4017 if (is_complete())
4018 return true; // stores could be anything at this point
4019 assert(allocation() != NULL, "must be present");
4020 intptr_t last_off = allocation()->minimum_header_size();
4021 for (uint i = InitializeNode::RawStores; i < req(); i++) {
4022 Node* st = in(i);
4023 intptr_t st_off = get_store_offset(st, phase);
4024 if (st_off < 0) continue; // ignore dead garbage
4025 if (last_off > st_off) {
4026 tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
4027 this->dump(2);
4028 assert(false, "ascending store offsets");
4029 return false;
4030 }
4031 last_off = st_off + st->as_Store()->memory_size();
4032 }
4033 return true;
4034 }
4035 #endif //ASSERT
4036
4037
4038
4039
4040 //============================MergeMemNode=====================================
4041 //
4042 // SEMANTICS OF MEMORY MERGES: A MergeMem is a memory state assembled from several
4043 // contributing store or call operations. Each contributor provides the memory
4044 // state for a particular "alias type" (see Compile::alias_type). For example,
4045 // if a MergeMem has an input X for alias category #6, then any memory reference
4046 // to alias category #6 may use X as its memory state input, as an exact equivalent
4047 // to using the MergeMem as a whole.
4048 // Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4049 //
4050 // (Here, the <N> notation gives the index of the relevant adr_type.)
4051 //
4052 // In one special case (and more cases in the future), alias categories overlap.
4053 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4054 // states. Therefore, if a MergeMem has only one contributing input W for Bot,
4055 // it is exactly equivalent to that state W:
4056 // MergeMem(<Bot>: W) <==> W
4057 //
4058 // Usually, the merge has more than one input. In that case, where inputs
4059 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4060 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4061 // Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4062 // Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4063 //
4064 // A merge can take a "wide" memory state as one of its narrow inputs.
4065 // This simply means that the merge observes out only the relevant parts of
4066 // the wide input. That is, wide memory states arriving at narrow merge inputs
4067 // are implicitly "filtered" or "sliced" as necessary. (This is rare.)
4068 //
4069 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4070 // and that memory slices "leak through":
4071 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4072 //
4073 // But, in such a cascade, repeated memory slices can "block the leak":
4074 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4075 //
4076 // In the last example, Y is not part of the combined memory state of the
4077 // outermost MergeMem. The system must, of course, prevent unschedulable
4078 // memory states from arising, so you can be sure that the state Y is somehow
4079 // a precursor to state Y'.
4080 //
4081 //
4082 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4083 // of each MergeMemNode array are exactly the numerical alias indexes, including
4084 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw. The functions
4085 // Compile::alias_type (and kin) produce and manage these indexes.
4086 //
4087 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4088 // (Note that this provides quick access to the top node inside MergeMem methods,
4089 // without the need to reach out via TLS to Compile::current.)
4090 //
4091 // As a consequence of what was just described, a MergeMem that represents a full
4092 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4093 // containing all alias categories.
4094 //
4095 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4096 //
4097 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4098 // a memory state for the alias type <N>, or else the top node, meaning that
4099 // there is no particular input for that alias type. Note that the length of
4100 // a MergeMem is variable, and may be extended at any time to accommodate new
4101 // memory states at larger alias indexes. When merges grow, they are of course
4102 // filled with "top" in the unused in() positions.
4103 //
4104 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4105 // (Top was chosen because it works smoothly with passes like GCM.)
4106 //
4107 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM. (It is
4108 // the type of random VM bits like TLS references.) Since it is always the
4109 // first non-Bot memory slice, some low-level loops use it to initialize an
4110 // index variable: for (i = AliasIdxRaw; i < req(); i++).
4111 //
4112 //
4113 // ACCESSORS: There is a special accessor MergeMemNode::base_memory which returns
4114 // the distinguished "wide" state. The accessor MergeMemNode::memory_at(N) returns
4115 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4116 // it returns the base memory. To prevent bugs, memory_at does not accept <Top>
4117 // or <Bot> indexes. The iterator MergeMemStream provides robust iteration over
4118 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4119 //
4120 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4121 // really that different from the other memory inputs. An abbreviation called
4122 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4123 //
4124 //
4125 // PARTIAL MEMORY STATES: During optimization, MergeMem nodes may arise that represent
4126 // partial memory states. When a Phi splits through a MergeMem, the copy of the Phi
4127 // that "emerges though" the base memory will be marked as excluding the alias types
4128 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4129 //
4130 // Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4131 // ==Ideal=> MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4132 //
4133 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4134 // (It is currently unimplemented.) As you can see, the resulting merge is
4135 // actually a disjoint union of memory states, rather than an overlay.
4136 //
4137
4138 //------------------------------MergeMemNode-----------------------------------
4139 Node* MergeMemNode::make_empty_memory() {
4140 Node* empty_memory = (Node*) Compile::current()->top();
4141 assert(empty_memory->is_top(), "correct sentinel identity");
4142 return empty_memory;
4143 }
4144
4145 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4146 init_class_id(Class_MergeMem);
4147 // all inputs are nullified in Node::Node(int)
4148 // set_input(0, NULL); // no control input
4149
4150 // Initialize the edges uniformly to top, for starters.
4151 Node* empty_mem = make_empty_memory();
4152 for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4153 init_req(i,empty_mem);
4154 }
4155 assert(empty_memory() == empty_mem, "");
4156
4157 if( new_base != NULL && new_base->is_MergeMem() ) {
4158 MergeMemNode* mdef = new_base->as_MergeMem();
4159 assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4160 for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4161 mms.set_memory(mms.memory2());
4162 }
4163 assert(base_memory() == mdef->base_memory(), "");
4164 } else {
4165 set_base_memory(new_base);
4166 }
4167 }
4168
4169 // Make a new, untransformed MergeMem with the same base as 'mem'.
4170 // If mem is itself a MergeMem, populate the result with the same edges.
4171 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
4172 return new(C) MergeMemNode(mem);
4173 }
4174
4175 //------------------------------cmp--------------------------------------------
4176 uint MergeMemNode::hash() const { return NO_HASH; }
4177 uint MergeMemNode::cmp( const Node &n ) const {
4178 return (&n == this); // Always fail except on self
4179 }
4180
4181 //------------------------------Identity---------------------------------------
4182 Node* MergeMemNode::Identity(PhaseTransform *phase) {
4183 // Identity if this merge point does not record any interesting memory
4184 // disambiguations.
4185 Node* base_mem = base_memory();
4186 Node* empty_mem = empty_memory();
4187 if (base_mem != empty_mem) { // Memory path is not dead?
4188 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4189 Node* mem = in(i);
4190 if (mem != empty_mem && mem != base_mem) {
4191 return this; // Many memory splits; no change
4192 }
4193 }
4194 }
4195 return base_mem; // No memory splits; ID on the one true input
4196 }
4197
4198 //------------------------------Ideal------------------------------------------
4199 // This method is invoked recursively on chains of MergeMem nodes
4200 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4201 // Remove chain'd MergeMems
4202 //
4203 // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4204 // relative to the "in(Bot)". Since we are patching both at the same time,
4205 // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4206 // but rewrite each "in(i)" relative to the new "in(Bot)".
4207 Node *progress = NULL;
4208
4209
4210 Node* old_base = base_memory();
4211 Node* empty_mem = empty_memory();
4212 if (old_base == empty_mem)
4213 return NULL; // Dead memory path.
4214
4215 MergeMemNode* old_mbase;
4216 if (old_base != NULL && old_base->is_MergeMem())
4217 old_mbase = old_base->as_MergeMem();
4218 else
4219 old_mbase = NULL;
4220 Node* new_base = old_base;
4221
4222 // simplify stacked MergeMems in base memory
4223 if (old_mbase) new_base = old_mbase->base_memory();
4224
4225 // the base memory might contribute new slices beyond my req()
4226 if (old_mbase) grow_to_match(old_mbase);
4227
4228 // Look carefully at the base node if it is a phi.
4229 PhiNode* phi_base;
4230 if (new_base != NULL && new_base->is_Phi())
4231 phi_base = new_base->as_Phi();
4232 else
4233 phi_base = NULL;
4234
4235 Node* phi_reg = NULL;
4236 uint phi_len = (uint)-1;
4237 if (phi_base != NULL && !phi_base->is_copy()) {
4238 // do not examine phi if degraded to a copy
4239 phi_reg = phi_base->region();
4240 phi_len = phi_base->req();
4241 // see if the phi is unfinished
4242 for (uint i = 1; i < phi_len; i++) {
4243 if (phi_base->in(i) == NULL) {
4244 // incomplete phi; do not look at it yet!
4245 phi_reg = NULL;
4246 phi_len = (uint)-1;
4247 break;
4248 }
4249 }
4250 }
4251
4252 // Note: We do not call verify_sparse on entry, because inputs
4253 // can normalize to the base_memory via subsume_node or similar
4254 // mechanisms. This method repairs that damage.
4255
4256 assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4257
4258 // Look at each slice.
4259 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4260 Node* old_in = in(i);
4261 // calculate the old memory value
4262 Node* old_mem = old_in;
4263 if (old_mem == empty_mem) old_mem = old_base;
4264 assert(old_mem == memory_at(i), "");
4265
4266 // maybe update (reslice) the old memory value
4267
4268 // simplify stacked MergeMems
4269 Node* new_mem = old_mem;
4270 MergeMemNode* old_mmem;
4271 if (old_mem != NULL && old_mem->is_MergeMem())
4272 old_mmem = old_mem->as_MergeMem();
4273 else
4274 old_mmem = NULL;
4275 if (old_mmem == this) {
4276 // This can happen if loops break up and safepoints disappear.
4277 // A merge of BotPtr (default) with a RawPtr memory derived from a
4278 // safepoint can be rewritten to a merge of the same BotPtr with
4279 // the BotPtr phi coming into the loop. If that phi disappears
4280 // also, we can end up with a self-loop of the mergemem.
4281 // In general, if loops degenerate and memory effects disappear,
4282 // a mergemem can be left looking at itself. This simply means
4283 // that the mergemem's default should be used, since there is
4284 // no longer any apparent effect on this slice.
4285 // Note: If a memory slice is a MergeMem cycle, it is unreachable
4286 // from start. Update the input to TOP.
4287 new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4288 }
4289 else if (old_mmem != NULL) {
4290 new_mem = old_mmem->memory_at(i);
4291 }
4292 // else preceding memory was not a MergeMem
4293
4294 // replace equivalent phis (unfortunately, they do not GVN together)
4295 if (new_mem != NULL && new_mem != new_base &&
4296 new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4297 if (new_mem->is_Phi()) {
4298 PhiNode* phi_mem = new_mem->as_Phi();
4299 for (uint i = 1; i < phi_len; i++) {
4300 if (phi_base->in(i) != phi_mem->in(i)) {
4301 phi_mem = NULL;
4302 break;
4303 }
4304 }
4305 if (phi_mem != NULL) {
4306 // equivalent phi nodes; revert to the def
4307 new_mem = new_base;
4308 }
4309 }
4310 }
4311
4312 // maybe store down a new value
4313 Node* new_in = new_mem;
4314 if (new_in == new_base) new_in = empty_mem;
4315
4316 if (new_in != old_in) {
4317 // Warning: Do not combine this "if" with the previous "if"
4318 // A memory slice might have be be rewritten even if it is semantically
4319 // unchanged, if the base_memory value has changed.
4320 set_req(i, new_in);
4321 progress = this; // Report progress
4322 }
4323 }
4324
4325 if (new_base != old_base) {
4326 set_req(Compile::AliasIdxBot, new_base);
4327 // Don't use set_base_memory(new_base), because we need to update du.
4328 assert(base_memory() == new_base, "");
4329 progress = this;
4330 }
4331
4332 if( base_memory() == this ) {
4333 // a self cycle indicates this memory path is dead
4334 set_req(Compile::AliasIdxBot, empty_mem);
4335 }
4336
4337 // Resolve external cycles by calling Ideal on a MergeMem base_memory
4338 // Recursion must occur after the self cycle check above
4339 if( base_memory()->is_MergeMem() ) {
4340 MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4341 Node *m = phase->transform(new_mbase); // Rollup any cycles
4342 if( m != NULL && (m->is_top() ||
4343 m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4344 // propagate rollup of dead cycle to self
4345 set_req(Compile::AliasIdxBot, empty_mem);
4346 }
4347 }
4348
4349 if( base_memory() == empty_mem ) {
4350 progress = this;
4351 // Cut inputs during Parse phase only.
4352 // During Optimize phase a dead MergeMem node will be subsumed by Top.
4353 if( !can_reshape ) {
4354 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4355 if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4356 }
4357 }
4358 }
4359
4360 if( !progress && base_memory()->is_Phi() && can_reshape ) {
4361 // Check if PhiNode::Ideal's "Split phis through memory merges"
4362 // transform should be attempted. Look for this->phi->this cycle.
4363 uint merge_width = req();
4364 if (merge_width > Compile::AliasIdxRaw) {
4365 PhiNode* phi = base_memory()->as_Phi();
4366 for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4367 if (phi->in(i) == this) {
4368 phase->is_IterGVN()->_worklist.push(phi);
4369 break;
4370 }
4371 }
4372 }
4373 }
4374
4375 assert(progress || verify_sparse(), "please, no dups of base");
4376 return progress;
4377 }
4378
4379 //-------------------------set_base_memory-------------------------------------
4380 void MergeMemNode::set_base_memory(Node *new_base) {
4381 Node* empty_mem = empty_memory();
4382 set_req(Compile::AliasIdxBot, new_base);
4383 assert(memory_at(req()) == new_base, "must set default memory");
4384 // Clear out other occurrences of new_base:
4385 if (new_base != empty_mem) {
4386 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4387 if (in(i) == new_base) set_req(i, empty_mem);
4388 }
4389 }
4390 }
4391
4392 //------------------------------out_RegMask------------------------------------
4393 const RegMask &MergeMemNode::out_RegMask() const {
4394 return RegMask::Empty;
4395 }
4396
4397 //------------------------------dump_spec--------------------------------------
4398 #ifndef PRODUCT
4399 void MergeMemNode::dump_spec(outputStream *st) const {
4400 st->print(" {");
4401 Node* base_mem = base_memory();
4402 for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4403 Node* mem = memory_at(i);
4404 if (mem == base_mem) { st->print(" -"); continue; }
4405 st->print( " N%d:", mem->_idx );
4406 Compile::current()->get_adr_type(i)->dump_on(st);
4407 }
4408 st->print(" }");
4409 }
4410 #endif // !PRODUCT
4411
4412
4413 #ifdef ASSERT
4414 static bool might_be_same(Node* a, Node* b) {
4415 if (a == b) return true;
4416 if (!(a->is_Phi() || b->is_Phi())) return false;
4417 // phis shift around during optimization
4418 return true; // pretty stupid...
4419 }
4420
4421 // verify a narrow slice (either incoming or outgoing)
4422 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4423 if (!VerifyAliases) return; // don't bother to verify unless requested
4424 if (is_error_reported()) return; // muzzle asserts when debugging an error
4425 if (Node::in_dump()) return; // muzzle asserts when printing
4426 assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4427 assert(n != NULL, "");
4428 // Elide intervening MergeMem's
4429 while (n->is_MergeMem()) {
4430 n = n->as_MergeMem()->memory_at(alias_idx);
4431 }
4432 Compile* C = Compile::current();
4433 const TypePtr* n_adr_type = n->adr_type();
4434 if (n == m->empty_memory()) {
4435 // Implicit copy of base_memory()
4436 } else if (n_adr_type != TypePtr::BOTTOM) {
4437 assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4438 assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4439 } else {
4440 // A few places like make_runtime_call "know" that VM calls are narrow,
4441 // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4442 bool expected_wide_mem = false;
4443 if (n == m->base_memory()) {
4444 expected_wide_mem = true;
4445 } else if (alias_idx == Compile::AliasIdxRaw ||
4446 n == m->memory_at(Compile::AliasIdxRaw)) {
4447 expected_wide_mem = true;
4448 } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4449 // memory can "leak through" calls on channels that
4450 // are write-once. Allow this also.
4451 expected_wide_mem = true;
4452 }
4453 assert(expected_wide_mem, "expected narrow slice replacement");
4454 }
4455 }
4456 #else // !ASSERT
4457 #define verify_memory_slice(m,i,n) (void)(0) // PRODUCT version is no-op
4458 #endif
4459
4460
4461 //-----------------------------memory_at---------------------------------------
4462 Node* MergeMemNode::memory_at(uint alias_idx) const {
4463 assert(alias_idx >= Compile::AliasIdxRaw ||
4464 alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4465 "must avoid base_memory and AliasIdxTop");
4466
4467 // Otherwise, it is a narrow slice.
4468 Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4469 Compile *C = Compile::current();
4470 if (is_empty_memory(n)) {
4471 // the array is sparse; empty slots are the "top" node
4472 n = base_memory();
4473 assert(Node::in_dump()
4474 || n == NULL || n->bottom_type() == Type::TOP
4475 || n->adr_type() == NULL // address is TOP
4476 || n->adr_type() == TypePtr::BOTTOM
4477 || n->adr_type() == TypeRawPtr::BOTTOM
4478 || Compile::current()->AliasLevel() == 0,
4479 "must be a wide memory");
4480 // AliasLevel == 0 if we are organizing the memory states manually.
4481 // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4482 } else {
4483 // make sure the stored slice is sane
4484 #ifdef ASSERT
4485 if (is_error_reported() || Node::in_dump()) {
4486 } else if (might_be_same(n, base_memory())) {
4487 // Give it a pass: It is a mostly harmless repetition of the base.
4488 // This can arise normally from node subsumption during optimization.
4489 } else {
4490 verify_memory_slice(this, alias_idx, n);
4491 }
4492 #endif
4493 }
4494 return n;
4495 }
4496
4497 //---------------------------set_memory_at-------------------------------------
4498 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4499 verify_memory_slice(this, alias_idx, n);
4500 Node* empty_mem = empty_memory();
4501 if (n == base_memory()) n = empty_mem; // collapse default
4502 uint need_req = alias_idx+1;
4503 if (req() < need_req) {
4504 if (n == empty_mem) return; // already the default, so do not grow me
4505 // grow the sparse array
4506 do {
4507 add_req(empty_mem);
4508 } while (req() < need_req);
4509 }
4510 set_req( alias_idx, n );
4511 }
4512
4513
4514
4515 //--------------------------iteration_setup------------------------------------
4516 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4517 if (other != NULL) {
4518 grow_to_match(other);
4519 // invariant: the finite support of mm2 is within mm->req()
4520 #ifdef ASSERT
4521 for (uint i = req(); i < other->req(); i++) {
4522 assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4523 }
4524 #endif
4525 }
4526 // Replace spurious copies of base_memory by top.
4527 Node* base_mem = base_memory();
4528 if (base_mem != NULL && !base_mem->is_top()) {
4529 for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4530 if (in(i) == base_mem)
4531 set_req(i, empty_memory());
4532 }
4533 }
4534 }
4535
4536 //---------------------------grow_to_match-------------------------------------
4537 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4538 Node* empty_mem = empty_memory();
4539 assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4540 // look for the finite support of the other memory
4541 for (uint i = other->req(); --i >= req(); ) {
4542 if (other->in(i) != empty_mem) {
4543 uint new_len = i+1;
4544 while (req() < new_len) add_req(empty_mem);
4545 break;
4546 }
4547 }
4548 }
4549
4550 //---------------------------verify_sparse-------------------------------------
4551 #ifndef PRODUCT
4552 bool MergeMemNode::verify_sparse() const {
4553 assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4554 Node* base_mem = base_memory();
4555 // The following can happen in degenerate cases, since empty==top.
4556 if (is_empty_memory(base_mem)) return true;
4557 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4558 assert(in(i) != NULL, "sane slice");
4559 if (in(i) == base_mem) return false; // should have been the sentinel value!
4560 }
4561 return true;
4562 }
4563
4564 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4565 Node* n;
4566 n = mm->in(idx);
4567 if (mem == n) return true; // might be empty_memory()
4568 n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4569 if (mem == n) return true;
4570 while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4571 if (mem == n) return true;
4572 if (n == NULL) break;
4573 }
4574 return false;
4575 }
4576 #endif // !PRODUCT

mercurial