src/cpu/x86/vm/stubGenerator_x86_32.cpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/cpu/x86/vm/stubGenerator_x86_32.cpp	Wed Apr 27 01:25:04 2016 +0800
     1.3 @@ -0,0 +1,3043 @@
     1.4 +/*
     1.5 + * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.23 + * or visit www.oracle.com if you need additional information or have any
    1.24 + * questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +#include "precompiled.hpp"
    1.29 +#include "asm/macroAssembler.hpp"
    1.30 +#include "asm/macroAssembler.inline.hpp"
    1.31 +#include "interpreter/interpreter.hpp"
    1.32 +#include "nativeInst_x86.hpp"
    1.33 +#include "oops/instanceOop.hpp"
    1.34 +#include "oops/method.hpp"
    1.35 +#include "oops/objArrayKlass.hpp"
    1.36 +#include "oops/oop.inline.hpp"
    1.37 +#include "prims/methodHandles.hpp"
    1.38 +#include "runtime/frame.inline.hpp"
    1.39 +#include "runtime/handles.inline.hpp"
    1.40 +#include "runtime/sharedRuntime.hpp"
    1.41 +#include "runtime/stubCodeGenerator.hpp"
    1.42 +#include "runtime/stubRoutines.hpp"
    1.43 +#include "runtime/thread.inline.hpp"
    1.44 +#include "utilities/top.hpp"
    1.45 +#ifdef COMPILER2
    1.46 +#include "opto/runtime.hpp"
    1.47 +#endif
    1.48 +
    1.49 +// Declaration and definition of StubGenerator (no .hpp file).
    1.50 +// For a more detailed description of the stub routine structure
    1.51 +// see the comment in stubRoutines.hpp
    1.52 +
    1.53 +#define __ _masm->
    1.54 +#define a__ ((Assembler*)_masm)->
    1.55 +
    1.56 +#ifdef PRODUCT
    1.57 +#define BLOCK_COMMENT(str) /* nothing */
    1.58 +#else
    1.59 +#define BLOCK_COMMENT(str) __ block_comment(str)
    1.60 +#endif
    1.61 +
    1.62 +#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    1.63 +
    1.64 +const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
    1.65 +const int FPU_CNTRL_WRD_MASK = 0xFFFF;
    1.66 +
    1.67 +// -------------------------------------------------------------------------------------------------------------------------
    1.68 +// Stub Code definitions
    1.69 +
    1.70 +static address handle_unsafe_access() {
    1.71 +  JavaThread* thread = JavaThread::current();
    1.72 +  address pc  = thread->saved_exception_pc();
    1.73 +  // pc is the instruction which we must emulate
    1.74 +  // doing a no-op is fine:  return garbage from the load
    1.75 +  // therefore, compute npc
    1.76 +  address npc = Assembler::locate_next_instruction(pc);
    1.77 +
    1.78 +  // request an async exception
    1.79 +  thread->set_pending_unsafe_access_error();
    1.80 +
    1.81 +  // return address of next instruction to execute
    1.82 +  return npc;
    1.83 +}
    1.84 +
    1.85 +class StubGenerator: public StubCodeGenerator {
    1.86 + private:
    1.87 +
    1.88 +#ifdef PRODUCT
    1.89 +#define inc_counter_np(counter) ((void)0)
    1.90 +#else
    1.91 +  void inc_counter_np_(int& counter) {
    1.92 +    __ incrementl(ExternalAddress((address)&counter));
    1.93 +  }
    1.94 +#define inc_counter_np(counter) \
    1.95 +  BLOCK_COMMENT("inc_counter " #counter); \
    1.96 +  inc_counter_np_(counter);
    1.97 +#endif //PRODUCT
    1.98 +
    1.99 +  void inc_copy_counter_np(BasicType t) {
   1.100 +#ifndef PRODUCT
   1.101 +    switch (t) {
   1.102 +    case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
   1.103 +    case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
   1.104 +    case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
   1.105 +    case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
   1.106 +    case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
   1.107 +    }
   1.108 +    ShouldNotReachHere();
   1.109 +#endif //PRODUCT
   1.110 +  }
   1.111 +
   1.112 +  //------------------------------------------------------------------------------------------------------------------------
   1.113 +  // Call stubs are used to call Java from C
   1.114 +  //
   1.115 +  //    [ return_from_Java     ] <--- rsp
   1.116 +  //    [ argument word n      ]
   1.117 +  //      ...
   1.118 +  // -N [ argument word 1      ]
   1.119 +  // -7 [ Possible padding for stack alignment ]
   1.120 +  // -6 [ Possible padding for stack alignment ]
   1.121 +  // -5 [ Possible padding for stack alignment ]
   1.122 +  // -4 [ mxcsr save           ] <--- rsp_after_call
   1.123 +  // -3 [ saved rbx,            ]
   1.124 +  // -2 [ saved rsi            ]
   1.125 +  // -1 [ saved rdi            ]
   1.126 +  //  0 [ saved rbp,            ] <--- rbp,
   1.127 +  //  1 [ return address       ]
   1.128 +  //  2 [ ptr. to call wrapper ]
   1.129 +  //  3 [ result               ]
   1.130 +  //  4 [ result_type          ]
   1.131 +  //  5 [ method               ]
   1.132 +  //  6 [ entry_point          ]
   1.133 +  //  7 [ parameters           ]
   1.134 +  //  8 [ parameter_size       ]
   1.135 +  //  9 [ thread               ]
   1.136 +
   1.137 +
   1.138 +  address generate_call_stub(address& return_address) {
   1.139 +    StubCodeMark mark(this, "StubRoutines", "call_stub");
   1.140 +    address start = __ pc();
   1.141 +
   1.142 +    // stub code parameters / addresses
   1.143 +    assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
   1.144 +    bool  sse_save = false;
   1.145 +    const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
   1.146 +    const int     locals_count_in_bytes  (4*wordSize);
   1.147 +    const Address mxcsr_save    (rbp, -4 * wordSize);
   1.148 +    const Address saved_rbx     (rbp, -3 * wordSize);
   1.149 +    const Address saved_rsi     (rbp, -2 * wordSize);
   1.150 +    const Address saved_rdi     (rbp, -1 * wordSize);
   1.151 +    const Address result        (rbp,  3 * wordSize);
   1.152 +    const Address result_type   (rbp,  4 * wordSize);
   1.153 +    const Address method        (rbp,  5 * wordSize);
   1.154 +    const Address entry_point   (rbp,  6 * wordSize);
   1.155 +    const Address parameters    (rbp,  7 * wordSize);
   1.156 +    const Address parameter_size(rbp,  8 * wordSize);
   1.157 +    const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
   1.158 +    sse_save =  UseSSE > 0;
   1.159 +
   1.160 +    // stub code
   1.161 +    __ enter();
   1.162 +    __ movptr(rcx, parameter_size);              // parameter counter
   1.163 +    __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
   1.164 +    __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
   1.165 +    __ subptr(rsp, rcx);
   1.166 +    __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
   1.167 +
   1.168 +    // save rdi, rsi, & rbx, according to C calling conventions
   1.169 +    __ movptr(saved_rdi, rdi);
   1.170 +    __ movptr(saved_rsi, rsi);
   1.171 +    __ movptr(saved_rbx, rbx);
   1.172 +    // save and initialize %mxcsr
   1.173 +    if (sse_save) {
   1.174 +      Label skip_ldmx;
   1.175 +      __ stmxcsr(mxcsr_save);
   1.176 +      __ movl(rax, mxcsr_save);
   1.177 +      __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   1.178 +      ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   1.179 +      __ cmp32(rax, mxcsr_std);
   1.180 +      __ jcc(Assembler::equal, skip_ldmx);
   1.181 +      __ ldmxcsr(mxcsr_std);
   1.182 +      __ bind(skip_ldmx);
   1.183 +    }
   1.184 +
   1.185 +    // make sure the control word is correct.
   1.186 +    __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   1.187 +
   1.188 +#ifdef ASSERT
   1.189 +    // make sure we have no pending exceptions
   1.190 +    { Label L;
   1.191 +      __ movptr(rcx, thread);
   1.192 +      __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   1.193 +      __ jcc(Assembler::equal, L);
   1.194 +      __ stop("StubRoutines::call_stub: entered with pending exception");
   1.195 +      __ bind(L);
   1.196 +    }
   1.197 +#endif
   1.198 +
   1.199 +    // pass parameters if any
   1.200 +    BLOCK_COMMENT("pass parameters if any");
   1.201 +    Label parameters_done;
   1.202 +    __ movl(rcx, parameter_size);  // parameter counter
   1.203 +    __ testl(rcx, rcx);
   1.204 +    __ jcc(Assembler::zero, parameters_done);
   1.205 +
   1.206 +    // parameter passing loop
   1.207 +
   1.208 +    Label loop;
   1.209 +    // Copy Java parameters in reverse order (receiver last)
   1.210 +    // Note that the argument order is inverted in the process
   1.211 +    // source is rdx[rcx: N-1..0]
   1.212 +    // dest   is rsp[rbx: 0..N-1]
   1.213 +
   1.214 +    __ movptr(rdx, parameters);          // parameter pointer
   1.215 +    __ xorptr(rbx, rbx);
   1.216 +
   1.217 +    __ BIND(loop);
   1.218 +
   1.219 +    // get parameter
   1.220 +    __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
   1.221 +    __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
   1.222 +                    Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
   1.223 +    __ increment(rbx);
   1.224 +    __ decrement(rcx);
   1.225 +    __ jcc(Assembler::notZero, loop);
   1.226 +
   1.227 +    // call Java function
   1.228 +    __ BIND(parameters_done);
   1.229 +    __ movptr(rbx, method);           // get Method*
   1.230 +    __ movptr(rax, entry_point);      // get entry_point
   1.231 +    __ mov(rsi, rsp);                 // set sender sp
   1.232 +    BLOCK_COMMENT("call Java function");
   1.233 +    __ call(rax);
   1.234 +
   1.235 +    BLOCK_COMMENT("call_stub_return_address:");
   1.236 +    return_address = __ pc();
   1.237 +
   1.238 +#ifdef COMPILER2
   1.239 +    {
   1.240 +      Label L_skip;
   1.241 +      if (UseSSE >= 2) {
   1.242 +        __ verify_FPU(0, "call_stub_return");
   1.243 +      } else {
   1.244 +        for (int i = 1; i < 8; i++) {
   1.245 +          __ ffree(i);
   1.246 +        }
   1.247 +
   1.248 +        // UseSSE <= 1 so double result should be left on TOS
   1.249 +        __ movl(rsi, result_type);
   1.250 +        __ cmpl(rsi, T_DOUBLE);
   1.251 +        __ jcc(Assembler::equal, L_skip);
   1.252 +        if (UseSSE == 0) {
   1.253 +          // UseSSE == 0 so float result should be left on TOS
   1.254 +          __ cmpl(rsi, T_FLOAT);
   1.255 +          __ jcc(Assembler::equal, L_skip);
   1.256 +        }
   1.257 +        __ ffree(0);
   1.258 +      }
   1.259 +      __ BIND(L_skip);
   1.260 +    }
   1.261 +#endif // COMPILER2
   1.262 +
   1.263 +    // store result depending on type
   1.264 +    // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   1.265 +    __ movptr(rdi, result);
   1.266 +    Label is_long, is_float, is_double, exit;
   1.267 +    __ movl(rsi, result_type);
   1.268 +    __ cmpl(rsi, T_LONG);
   1.269 +    __ jcc(Assembler::equal, is_long);
   1.270 +    __ cmpl(rsi, T_FLOAT);
   1.271 +    __ jcc(Assembler::equal, is_float);
   1.272 +    __ cmpl(rsi, T_DOUBLE);
   1.273 +    __ jcc(Assembler::equal, is_double);
   1.274 +
   1.275 +    // handle T_INT case
   1.276 +    __ movl(Address(rdi, 0), rax);
   1.277 +    __ BIND(exit);
   1.278 +
   1.279 +    // check that FPU stack is empty
   1.280 +    __ verify_FPU(0, "generate_call_stub");
   1.281 +
   1.282 +    // pop parameters
   1.283 +    __ lea(rsp, rsp_after_call);
   1.284 +
   1.285 +    // restore %mxcsr
   1.286 +    if (sse_save) {
   1.287 +      __ ldmxcsr(mxcsr_save);
   1.288 +    }
   1.289 +
   1.290 +    // restore rdi, rsi and rbx,
   1.291 +    __ movptr(rbx, saved_rbx);
   1.292 +    __ movptr(rsi, saved_rsi);
   1.293 +    __ movptr(rdi, saved_rdi);
   1.294 +    __ addptr(rsp, 4*wordSize);
   1.295 +
   1.296 +    // return
   1.297 +    __ pop(rbp);
   1.298 +    __ ret(0);
   1.299 +
   1.300 +    // handle return types different from T_INT
   1.301 +    __ BIND(is_long);
   1.302 +    __ movl(Address(rdi, 0 * wordSize), rax);
   1.303 +    __ movl(Address(rdi, 1 * wordSize), rdx);
   1.304 +    __ jmp(exit);
   1.305 +
   1.306 +    __ BIND(is_float);
   1.307 +    // interpreter uses xmm0 for return values
   1.308 +    if (UseSSE >= 1) {
   1.309 +      __ movflt(Address(rdi, 0), xmm0);
   1.310 +    } else {
   1.311 +      __ fstp_s(Address(rdi, 0));
   1.312 +    }
   1.313 +    __ jmp(exit);
   1.314 +
   1.315 +    __ BIND(is_double);
   1.316 +    // interpreter uses xmm0 for return values
   1.317 +    if (UseSSE >= 2) {
   1.318 +      __ movdbl(Address(rdi, 0), xmm0);
   1.319 +    } else {
   1.320 +      __ fstp_d(Address(rdi, 0));
   1.321 +    }
   1.322 +    __ jmp(exit);
   1.323 +
   1.324 +    return start;
   1.325 +  }
   1.326 +
   1.327 +
   1.328 +  //------------------------------------------------------------------------------------------------------------------------
   1.329 +  // Return point for a Java call if there's an exception thrown in Java code.
   1.330 +  // The exception is caught and transformed into a pending exception stored in
   1.331 +  // JavaThread that can be tested from within the VM.
   1.332 +  //
   1.333 +  // Note: Usually the parameters are removed by the callee. In case of an exception
   1.334 +  //       crossing an activation frame boundary, that is not the case if the callee
   1.335 +  //       is compiled code => need to setup the rsp.
   1.336 +  //
   1.337 +  // rax,: exception oop
   1.338 +
   1.339 +  address generate_catch_exception() {
   1.340 +    StubCodeMark mark(this, "StubRoutines", "catch_exception");
   1.341 +    const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
   1.342 +    const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
   1.343 +    address start = __ pc();
   1.344 +
   1.345 +    // get thread directly
   1.346 +    __ movptr(rcx, thread);
   1.347 +#ifdef ASSERT
   1.348 +    // verify that threads correspond
   1.349 +    { Label L;
   1.350 +      __ get_thread(rbx);
   1.351 +      __ cmpptr(rbx, rcx);
   1.352 +      __ jcc(Assembler::equal, L);
   1.353 +      __ stop("StubRoutines::catch_exception: threads must correspond");
   1.354 +      __ bind(L);
   1.355 +    }
   1.356 +#endif
   1.357 +    // set pending exception
   1.358 +    __ verify_oop(rax);
   1.359 +    __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
   1.360 +    __ lea(Address(rcx, Thread::exception_file_offset   ()),
   1.361 +           ExternalAddress((address)__FILE__));
   1.362 +    __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
   1.363 +    // complete return to VM
   1.364 +    assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
   1.365 +    __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   1.366 +
   1.367 +    return start;
   1.368 +  }
   1.369 +
   1.370 +
   1.371 +  //------------------------------------------------------------------------------------------------------------------------
   1.372 +  // Continuation point for runtime calls returning with a pending exception.
   1.373 +  // The pending exception check happened in the runtime or native call stub.
   1.374 +  // The pending exception in Thread is converted into a Java-level exception.
   1.375 +  //
   1.376 +  // Contract with Java-level exception handlers:
   1.377 +  // rax: exception
   1.378 +  // rdx: throwing pc
   1.379 +  //
   1.380 +  // NOTE: At entry of this stub, exception-pc must be on stack !!
   1.381 +
   1.382 +  address generate_forward_exception() {
   1.383 +    StubCodeMark mark(this, "StubRoutines", "forward exception");
   1.384 +    address start = __ pc();
   1.385 +    const Register thread = rcx;
   1.386 +
   1.387 +    // other registers used in this stub
   1.388 +    const Register exception_oop = rax;
   1.389 +    const Register handler_addr  = rbx;
   1.390 +    const Register exception_pc  = rdx;
   1.391 +
   1.392 +    // Upon entry, the sp points to the return address returning into Java
   1.393 +    // (interpreted or compiled) code; i.e., the return address becomes the
   1.394 +    // throwing pc.
   1.395 +    //
   1.396 +    // Arguments pushed before the runtime call are still on the stack but
   1.397 +    // the exception handler will reset the stack pointer -> ignore them.
   1.398 +    // A potential result in registers can be ignored as well.
   1.399 +
   1.400 +#ifdef ASSERT
   1.401 +    // make sure this code is only executed if there is a pending exception
   1.402 +    { Label L;
   1.403 +      __ get_thread(thread);
   1.404 +      __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   1.405 +      __ jcc(Assembler::notEqual, L);
   1.406 +      __ stop("StubRoutines::forward exception: no pending exception (1)");
   1.407 +      __ bind(L);
   1.408 +    }
   1.409 +#endif
   1.410 +
   1.411 +    // compute exception handler into rbx,
   1.412 +    __ get_thread(thread);
   1.413 +    __ movptr(exception_pc, Address(rsp, 0));
   1.414 +    BLOCK_COMMENT("call exception_handler_for_return_address");
   1.415 +    __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
   1.416 +    __ mov(handler_addr, rax);
   1.417 +
   1.418 +    // setup rax & rdx, remove return address & clear pending exception
   1.419 +    __ get_thread(thread);
   1.420 +    __ pop(exception_pc);
   1.421 +    __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
   1.422 +    __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   1.423 +
   1.424 +#ifdef ASSERT
   1.425 +    // make sure exception is set
   1.426 +    { Label L;
   1.427 +      __ testptr(exception_oop, exception_oop);
   1.428 +      __ jcc(Assembler::notEqual, L);
   1.429 +      __ stop("StubRoutines::forward exception: no pending exception (2)");
   1.430 +      __ bind(L);
   1.431 +    }
   1.432 +#endif
   1.433 +
   1.434 +    // Verify that there is really a valid exception in RAX.
   1.435 +    __ verify_oop(exception_oop);
   1.436 +
   1.437 +    // continue at exception handler (return address removed)
   1.438 +    // rax: exception
   1.439 +    // rbx: exception handler
   1.440 +    // rdx: throwing pc
   1.441 +    __ jmp(handler_addr);
   1.442 +
   1.443 +    return start;
   1.444 +  }
   1.445 +
   1.446 +
   1.447 +  //----------------------------------------------------------------------------------------------------
   1.448 +  // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
   1.449 +  //
   1.450 +  // xchg exists as far back as 8086, lock needed for MP only
   1.451 +  // Stack layout immediately after call:
   1.452 +  //
   1.453 +  // 0 [ret addr ] <--- rsp
   1.454 +  // 1 [  ex     ]
   1.455 +  // 2 [  dest   ]
   1.456 +  //
   1.457 +  // Result:   *dest <- ex, return (old *dest)
   1.458 +  //
   1.459 +  // Note: win32 does not currently use this code
   1.460 +
   1.461 +  address generate_atomic_xchg() {
   1.462 +    StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   1.463 +    address start = __ pc();
   1.464 +
   1.465 +    __ push(rdx);
   1.466 +    Address exchange(rsp, 2 * wordSize);
   1.467 +    Address dest_addr(rsp, 3 * wordSize);
   1.468 +    __ movl(rax, exchange);
   1.469 +    __ movptr(rdx, dest_addr);
   1.470 +    __ xchgl(rax, Address(rdx, 0));
   1.471 +    __ pop(rdx);
   1.472 +    __ ret(0);
   1.473 +
   1.474 +    return start;
   1.475 +  }
   1.476 +
   1.477 +  //----------------------------------------------------------------------------------------------------
   1.478 +  // Support for void verify_mxcsr()
   1.479 +  //
   1.480 +  // This routine is used with -Xcheck:jni to verify that native
   1.481 +  // JNI code does not return to Java code without restoring the
   1.482 +  // MXCSR register to our expected state.
   1.483 +
   1.484 +
   1.485 +  address generate_verify_mxcsr() {
   1.486 +    StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   1.487 +    address start = __ pc();
   1.488 +
   1.489 +    const Address mxcsr_save(rsp, 0);
   1.490 +
   1.491 +    if (CheckJNICalls && UseSSE > 0 ) {
   1.492 +      Label ok_ret;
   1.493 +      ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   1.494 +      __ push(rax);
   1.495 +      __ subptr(rsp, wordSize);      // allocate a temp location
   1.496 +      __ stmxcsr(mxcsr_save);
   1.497 +      __ movl(rax, mxcsr_save);
   1.498 +      __ andl(rax, MXCSR_MASK);
   1.499 +      __ cmp32(rax, mxcsr_std);
   1.500 +      __ jcc(Assembler::equal, ok_ret);
   1.501 +
   1.502 +      __ warn("MXCSR changed by native JNI code.");
   1.503 +
   1.504 +      __ ldmxcsr(mxcsr_std);
   1.505 +
   1.506 +      __ bind(ok_ret);
   1.507 +      __ addptr(rsp, wordSize);
   1.508 +      __ pop(rax);
   1.509 +    }
   1.510 +
   1.511 +    __ ret(0);
   1.512 +
   1.513 +    return start;
   1.514 +  }
   1.515 +
   1.516 +
   1.517 +  //---------------------------------------------------------------------------
   1.518 +  // Support for void verify_fpu_cntrl_wrd()
   1.519 +  //
   1.520 +  // This routine is used with -Xcheck:jni to verify that native
   1.521 +  // JNI code does not return to Java code without restoring the
   1.522 +  // FP control word to our expected state.
   1.523 +
   1.524 +  address generate_verify_fpu_cntrl_wrd() {
   1.525 +    StubCodeMark mark(this, "StubRoutines", "verify_spcw");
   1.526 +    address start = __ pc();
   1.527 +
   1.528 +    const Address fpu_cntrl_wrd_save(rsp, 0);
   1.529 +
   1.530 +    if (CheckJNICalls) {
   1.531 +      Label ok_ret;
   1.532 +      __ push(rax);
   1.533 +      __ subptr(rsp, wordSize);      // allocate a temp location
   1.534 +      __ fnstcw(fpu_cntrl_wrd_save);
   1.535 +      __ movl(rax, fpu_cntrl_wrd_save);
   1.536 +      __ andl(rax, FPU_CNTRL_WRD_MASK);
   1.537 +      ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
   1.538 +      __ cmp32(rax, fpu_std);
   1.539 +      __ jcc(Assembler::equal, ok_ret);
   1.540 +
   1.541 +      __ warn("Floating point control word changed by native JNI code.");
   1.542 +
   1.543 +      __ fldcw(fpu_std);
   1.544 +
   1.545 +      __ bind(ok_ret);
   1.546 +      __ addptr(rsp, wordSize);
   1.547 +      __ pop(rax);
   1.548 +    }
   1.549 +
   1.550 +    __ ret(0);
   1.551 +
   1.552 +    return start;
   1.553 +  }
   1.554 +
   1.555 +  //---------------------------------------------------------------------------
   1.556 +  // Wrapper for slow-case handling of double-to-integer conversion
   1.557 +  // d2i or f2i fast case failed either because it is nan or because
   1.558 +  // of under/overflow.
   1.559 +  // Input:  FPU TOS: float value
   1.560 +  // Output: rax, (rdx): integer (long) result
   1.561 +
   1.562 +  address generate_d2i_wrapper(BasicType t, address fcn) {
   1.563 +    StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
   1.564 +    address start = __ pc();
   1.565 +
   1.566 +  // Capture info about frame layout
   1.567 +  enum layout { FPUState_off         = 0,
   1.568 +                rbp_off              = FPUStateSizeInWords,
   1.569 +                rdi_off,
   1.570 +                rsi_off,
   1.571 +                rcx_off,
   1.572 +                rbx_off,
   1.573 +                saved_argument_off,
   1.574 +                saved_argument_off2, // 2nd half of double
   1.575 +                framesize
   1.576 +  };
   1.577 +
   1.578 +  assert(FPUStateSizeInWords == 27, "update stack layout");
   1.579 +
   1.580 +    // Save outgoing argument to stack across push_FPU_state()
   1.581 +    __ subptr(rsp, wordSize * 2);
   1.582 +    __ fstp_d(Address(rsp, 0));
   1.583 +
   1.584 +    // Save CPU & FPU state
   1.585 +    __ push(rbx);
   1.586 +    __ push(rcx);
   1.587 +    __ push(rsi);
   1.588 +    __ push(rdi);
   1.589 +    __ push(rbp);
   1.590 +    __ push_FPU_state();
   1.591 +
   1.592 +    // push_FPU_state() resets the FP top of stack
   1.593 +    // Load original double into FP top of stack
   1.594 +    __ fld_d(Address(rsp, saved_argument_off * wordSize));
   1.595 +    // Store double into stack as outgoing argument
   1.596 +    __ subptr(rsp, wordSize*2);
   1.597 +    __ fst_d(Address(rsp, 0));
   1.598 +
   1.599 +    // Prepare FPU for doing math in C-land
   1.600 +    __ empty_FPU_stack();
   1.601 +    // Call the C code to massage the double.  Result in EAX
   1.602 +    if (t == T_INT)
   1.603 +      { BLOCK_COMMENT("SharedRuntime::d2i"); }
   1.604 +    else if (t == T_LONG)
   1.605 +      { BLOCK_COMMENT("SharedRuntime::d2l"); }
   1.606 +    __ call_VM_leaf( fcn, 2 );
   1.607 +
   1.608 +    // Restore CPU & FPU state
   1.609 +    __ pop_FPU_state();
   1.610 +    __ pop(rbp);
   1.611 +    __ pop(rdi);
   1.612 +    __ pop(rsi);
   1.613 +    __ pop(rcx);
   1.614 +    __ pop(rbx);
   1.615 +    __ addptr(rsp, wordSize * 2);
   1.616 +
   1.617 +    __ ret(0);
   1.618 +
   1.619 +    return start;
   1.620 +  }
   1.621 +
   1.622 +
   1.623 +  //---------------------------------------------------------------------------
   1.624 +  // The following routine generates a subroutine to throw an asynchronous
   1.625 +  // UnknownError when an unsafe access gets a fault that could not be
   1.626 +  // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
   1.627 +  address generate_handler_for_unsafe_access() {
   1.628 +    StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   1.629 +    address start = __ pc();
   1.630 +
   1.631 +    __ push(0);                       // hole for return address-to-be
   1.632 +    __ pusha();                       // push registers
   1.633 +    Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   1.634 +    BLOCK_COMMENT("call handle_unsafe_access");
   1.635 +    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   1.636 +    __ movptr(next_pc, rax);          // stuff next address
   1.637 +    __ popa();
   1.638 +    __ ret(0);                        // jump to next address
   1.639 +
   1.640 +    return start;
   1.641 +  }
   1.642 +
   1.643 +
   1.644 +  //----------------------------------------------------------------------------------------------------
   1.645 +  // Non-destructive plausibility checks for oops
   1.646 +
   1.647 +  address generate_verify_oop() {
   1.648 +    StubCodeMark mark(this, "StubRoutines", "verify_oop");
   1.649 +    address start = __ pc();
   1.650 +
   1.651 +    // Incoming arguments on stack after saving rax,:
   1.652 +    //
   1.653 +    // [tos    ]: saved rdx
   1.654 +    // [tos + 1]: saved EFLAGS
   1.655 +    // [tos + 2]: return address
   1.656 +    // [tos + 3]: char* error message
   1.657 +    // [tos + 4]: oop   object to verify
   1.658 +    // [tos + 5]: saved rax, - saved by caller and bashed
   1.659 +
   1.660 +    Label exit, error;
   1.661 +    __ pushf();
   1.662 +    __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   1.663 +    __ push(rdx);                                // save rdx
   1.664 +    // make sure object is 'reasonable'
   1.665 +    __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
   1.666 +    __ testptr(rax, rax);
   1.667 +    __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
   1.668 +
   1.669 +    // Check if the oop is in the right area of memory
   1.670 +    const int oop_mask = Universe::verify_oop_mask();
   1.671 +    const int oop_bits = Universe::verify_oop_bits();
   1.672 +    __ mov(rdx, rax);
   1.673 +    __ andptr(rdx, oop_mask);
   1.674 +    __ cmpptr(rdx, oop_bits);
   1.675 +    __ jcc(Assembler::notZero, error);
   1.676 +
   1.677 +    // make sure klass is 'reasonable', which is not zero.
   1.678 +    __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
   1.679 +    __ testptr(rax, rax);
   1.680 +    __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
   1.681 +
   1.682 +    // return if everything seems ok
   1.683 +    __ bind(exit);
   1.684 +    __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   1.685 +    __ pop(rdx);                                 // restore rdx
   1.686 +    __ popf();                                   // restore EFLAGS
   1.687 +    __ ret(3 * wordSize);                        // pop arguments
   1.688 +
   1.689 +    // handle errors
   1.690 +    __ bind(error);
   1.691 +    __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   1.692 +    __ pop(rdx);                                 // get saved rdx back
   1.693 +    __ popf();                                   // get saved EFLAGS off stack -- will be ignored
   1.694 +    __ pusha();                                  // push registers (eip = return address & msg are already pushed)
   1.695 +    BLOCK_COMMENT("call MacroAssembler::debug");
   1.696 +    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
   1.697 +    __ popa();
   1.698 +    __ ret(3 * wordSize);                        // pop arguments
   1.699 +    return start;
   1.700 +  }
   1.701 +
   1.702 +  //
   1.703 +  //  Generate pre-barrier for array stores
   1.704 +  //
   1.705 +  //  Input:
   1.706 +  //     start   -  starting address
   1.707 +  //     count   -  element count
   1.708 +  void  gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) {
   1.709 +    assert_different_registers(start, count);
   1.710 +    BarrierSet* bs = Universe::heap()->barrier_set();
   1.711 +    switch (bs->kind()) {
   1.712 +      case BarrierSet::G1SATBCT:
   1.713 +      case BarrierSet::G1SATBCTLogging:
   1.714 +        // With G1, don't generate the call if we statically know that the target in uninitialized
   1.715 +        if (!uninitialized_target) {
   1.716 +           __ pusha();                      // push registers
   1.717 +           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
   1.718 +                           start, count);
   1.719 +           __ popa();
   1.720 +         }
   1.721 +        break;
   1.722 +      case BarrierSet::CardTableModRef:
   1.723 +      case BarrierSet::CardTableExtension:
   1.724 +      case BarrierSet::ModRef:
   1.725 +        break;
   1.726 +      default      :
   1.727 +        ShouldNotReachHere();
   1.728 +
   1.729 +    }
   1.730 +  }
   1.731 +
   1.732 +
   1.733 +  //
   1.734 +  // Generate a post-barrier for an array store
   1.735 +  //
   1.736 +  //     start    -  starting address
   1.737 +  //     count    -  element count
   1.738 +  //
   1.739 +  //  The two input registers are overwritten.
   1.740 +  //
   1.741 +  void  gen_write_ref_array_post_barrier(Register start, Register count) {
   1.742 +    BarrierSet* bs = Universe::heap()->barrier_set();
   1.743 +    assert_different_registers(start, count);
   1.744 +    switch (bs->kind()) {
   1.745 +      case BarrierSet::G1SATBCT:
   1.746 +      case BarrierSet::G1SATBCTLogging:
   1.747 +        {
   1.748 +          __ pusha();                      // push registers
   1.749 +          __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
   1.750 +                          start, count);
   1.751 +          __ popa();
   1.752 +        }
   1.753 +        break;
   1.754 +
   1.755 +      case BarrierSet::CardTableModRef:
   1.756 +      case BarrierSet::CardTableExtension:
   1.757 +        {
   1.758 +          CardTableModRefBS* ct = (CardTableModRefBS*)bs;
   1.759 +          assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
   1.760 +
   1.761 +          Label L_loop;
   1.762 +          const Register end = count;  // elements count; end == start+count-1
   1.763 +          assert_different_registers(start, end);
   1.764 +
   1.765 +          __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
   1.766 +          __ shrptr(start, CardTableModRefBS::card_shift);
   1.767 +          __ shrptr(end,   CardTableModRefBS::card_shift);
   1.768 +          __ subptr(end, start); // end --> count
   1.769 +        __ BIND(L_loop);
   1.770 +          intptr_t disp = (intptr_t) ct->byte_map_base;
   1.771 +          Address cardtable(start, count, Address::times_1, disp);
   1.772 +          __ movb(cardtable, 0);
   1.773 +          __ decrement(count);
   1.774 +          __ jcc(Assembler::greaterEqual, L_loop);
   1.775 +        }
   1.776 +        break;
   1.777 +      case BarrierSet::ModRef:
   1.778 +        break;
   1.779 +      default      :
   1.780 +        ShouldNotReachHere();
   1.781 +
   1.782 +    }
   1.783 +  }
   1.784 +
   1.785 +
   1.786 +  // Copy 64 bytes chunks
   1.787 +  //
   1.788 +  // Inputs:
   1.789 +  //   from        - source array address
   1.790 +  //   to_from     - destination array address - from
   1.791 +  //   qword_count - 8-bytes element count, negative
   1.792 +  //
   1.793 +  void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
   1.794 +    assert( UseSSE >= 2, "supported cpu only" );
   1.795 +    Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   1.796 +    // Copy 64-byte chunks
   1.797 +    __ jmpb(L_copy_64_bytes);
   1.798 +    __ align(OptoLoopAlignment);
   1.799 +  __ BIND(L_copy_64_bytes_loop);
   1.800 +
   1.801 +    if (UseUnalignedLoadStores) {
   1.802 +      if (UseAVX >= 2) {
   1.803 +        __ vmovdqu(xmm0, Address(from,  0));
   1.804 +        __ vmovdqu(Address(from, to_from, Address::times_1,  0), xmm0);
   1.805 +        __ vmovdqu(xmm1, Address(from, 32));
   1.806 +        __ vmovdqu(Address(from, to_from, Address::times_1, 32), xmm1);
   1.807 +      } else {
   1.808 +        __ movdqu(xmm0, Address(from, 0));
   1.809 +        __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
   1.810 +        __ movdqu(xmm1, Address(from, 16));
   1.811 +        __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
   1.812 +        __ movdqu(xmm2, Address(from, 32));
   1.813 +        __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
   1.814 +        __ movdqu(xmm3, Address(from, 48));
   1.815 +        __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
   1.816 +      }
   1.817 +    } else {
   1.818 +      __ movq(xmm0, Address(from, 0));
   1.819 +      __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
   1.820 +      __ movq(xmm1, Address(from, 8));
   1.821 +      __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
   1.822 +      __ movq(xmm2, Address(from, 16));
   1.823 +      __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
   1.824 +      __ movq(xmm3, Address(from, 24));
   1.825 +      __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
   1.826 +      __ movq(xmm4, Address(from, 32));
   1.827 +      __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
   1.828 +      __ movq(xmm5, Address(from, 40));
   1.829 +      __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
   1.830 +      __ movq(xmm6, Address(from, 48));
   1.831 +      __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
   1.832 +      __ movq(xmm7, Address(from, 56));
   1.833 +      __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
   1.834 +    }
   1.835 +
   1.836 +    __ addl(from, 64);
   1.837 +  __ BIND(L_copy_64_bytes);
   1.838 +    __ subl(qword_count, 8);
   1.839 +    __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   1.840 +
   1.841 +    if (UseUnalignedLoadStores && (UseAVX >= 2)) {
   1.842 +      // clean upper bits of YMM registers
   1.843 +      __ vzeroupper();
   1.844 +    }
   1.845 +    __ addl(qword_count, 8);
   1.846 +    __ jccb(Assembler::zero, L_exit);
   1.847 +    //
   1.848 +    // length is too short, just copy qwords
   1.849 +    //
   1.850 +  __ BIND(L_copy_8_bytes);
   1.851 +    __ movq(xmm0, Address(from, 0));
   1.852 +    __ movq(Address(from, to_from, Address::times_1), xmm0);
   1.853 +    __ addl(from, 8);
   1.854 +    __ decrement(qword_count);
   1.855 +    __ jcc(Assembler::greater, L_copy_8_bytes);
   1.856 +  __ BIND(L_exit);
   1.857 +  }
   1.858 +
   1.859 +  // Copy 64 bytes chunks
   1.860 +  //
   1.861 +  // Inputs:
   1.862 +  //   from        - source array address
   1.863 +  //   to_from     - destination array address - from
   1.864 +  //   qword_count - 8-bytes element count, negative
   1.865 +  //
   1.866 +  void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
   1.867 +    assert( VM_Version::supports_mmx(), "supported cpu only" );
   1.868 +    Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   1.869 +    // Copy 64-byte chunks
   1.870 +    __ jmpb(L_copy_64_bytes);
   1.871 +    __ align(OptoLoopAlignment);
   1.872 +  __ BIND(L_copy_64_bytes_loop);
   1.873 +    __ movq(mmx0, Address(from, 0));
   1.874 +    __ movq(mmx1, Address(from, 8));
   1.875 +    __ movq(mmx2, Address(from, 16));
   1.876 +    __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
   1.877 +    __ movq(mmx3, Address(from, 24));
   1.878 +    __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
   1.879 +    __ movq(mmx4, Address(from, 32));
   1.880 +    __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
   1.881 +    __ movq(mmx5, Address(from, 40));
   1.882 +    __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
   1.883 +    __ movq(mmx6, Address(from, 48));
   1.884 +    __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
   1.885 +    __ movq(mmx7, Address(from, 56));
   1.886 +    __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
   1.887 +    __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
   1.888 +    __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
   1.889 +    __ addptr(from, 64);
   1.890 +  __ BIND(L_copy_64_bytes);
   1.891 +    __ subl(qword_count, 8);
   1.892 +    __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   1.893 +    __ addl(qword_count, 8);
   1.894 +    __ jccb(Assembler::zero, L_exit);
   1.895 +    //
   1.896 +    // length is too short, just copy qwords
   1.897 +    //
   1.898 +  __ BIND(L_copy_8_bytes);
   1.899 +    __ movq(mmx0, Address(from, 0));
   1.900 +    __ movq(Address(from, to_from, Address::times_1), mmx0);
   1.901 +    __ addptr(from, 8);
   1.902 +    __ decrement(qword_count);
   1.903 +    __ jcc(Assembler::greater, L_copy_8_bytes);
   1.904 +  __ BIND(L_exit);
   1.905 +    __ emms();
   1.906 +  }
   1.907 +
   1.908 +  address generate_disjoint_copy(BasicType t, bool aligned,
   1.909 +                                 Address::ScaleFactor sf,
   1.910 +                                 address* entry, const char *name,
   1.911 +                                 bool dest_uninitialized = false) {
   1.912 +    __ align(CodeEntryAlignment);
   1.913 +    StubCodeMark mark(this, "StubRoutines", name);
   1.914 +    address start = __ pc();
   1.915 +
   1.916 +    Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
   1.917 +    Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
   1.918 +
   1.919 +    int shift = Address::times_ptr - sf;
   1.920 +
   1.921 +    const Register from     = rsi;  // source array address
   1.922 +    const Register to       = rdi;  // destination array address
   1.923 +    const Register count    = rcx;  // elements count
   1.924 +    const Register to_from  = to;   // (to - from)
   1.925 +    const Register saved_to = rdx;  // saved destination array address
   1.926 +
   1.927 +    __ enter(); // required for proper stackwalking of RuntimeStub frame
   1.928 +    __ push(rsi);
   1.929 +    __ push(rdi);
   1.930 +    __ movptr(from , Address(rsp, 12+ 4));
   1.931 +    __ movptr(to   , Address(rsp, 12+ 8));
   1.932 +    __ movl(count, Address(rsp, 12+ 12));
   1.933 +
   1.934 +    if (entry != NULL) {
   1.935 +      *entry = __ pc(); // Entry point from conjoint arraycopy stub.
   1.936 +      BLOCK_COMMENT("Entry:");
   1.937 +    }
   1.938 +
   1.939 +    if (t == T_OBJECT) {
   1.940 +      __ testl(count, count);
   1.941 +      __ jcc(Assembler::zero, L_0_count);
   1.942 +      gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
   1.943 +      __ mov(saved_to, to);          // save 'to'
   1.944 +    }
   1.945 +
   1.946 +    __ subptr(to, from); // to --> to_from
   1.947 +    __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
   1.948 +    __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
   1.949 +    if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
   1.950 +      // align source address at 4 bytes address boundary
   1.951 +      if (t == T_BYTE) {
   1.952 +        // One byte misalignment happens only for byte arrays
   1.953 +        __ testl(from, 1);
   1.954 +        __ jccb(Assembler::zero, L_skip_align1);
   1.955 +        __ movb(rax, Address(from, 0));
   1.956 +        __ movb(Address(from, to_from, Address::times_1, 0), rax);
   1.957 +        __ increment(from);
   1.958 +        __ decrement(count);
   1.959 +      __ BIND(L_skip_align1);
   1.960 +      }
   1.961 +      // Two bytes misalignment happens only for byte and short (char) arrays
   1.962 +      __ testl(from, 2);
   1.963 +      __ jccb(Assembler::zero, L_skip_align2);
   1.964 +      __ movw(rax, Address(from, 0));
   1.965 +      __ movw(Address(from, to_from, Address::times_1, 0), rax);
   1.966 +      __ addptr(from, 2);
   1.967 +      __ subl(count, 1<<(shift-1));
   1.968 +    __ BIND(L_skip_align2);
   1.969 +    }
   1.970 +    if (!VM_Version::supports_mmx()) {
   1.971 +      __ mov(rax, count);      // save 'count'
   1.972 +      __ shrl(count, shift); // bytes count
   1.973 +      __ addptr(to_from, from);// restore 'to'
   1.974 +      __ rep_mov();
   1.975 +      __ subptr(to_from, from);// restore 'to_from'
   1.976 +      __ mov(count, rax);      // restore 'count'
   1.977 +      __ jmpb(L_copy_2_bytes); // all dwords were copied
   1.978 +    } else {
   1.979 +      if (!UseUnalignedLoadStores) {
   1.980 +        // align to 8 bytes, we know we are 4 byte aligned to start
   1.981 +        __ testptr(from, 4);
   1.982 +        __ jccb(Assembler::zero, L_copy_64_bytes);
   1.983 +        __ movl(rax, Address(from, 0));
   1.984 +        __ movl(Address(from, to_from, Address::times_1, 0), rax);
   1.985 +        __ addptr(from, 4);
   1.986 +        __ subl(count, 1<<shift);
   1.987 +      }
   1.988 +    __ BIND(L_copy_64_bytes);
   1.989 +      __ mov(rax, count);
   1.990 +      __ shrl(rax, shift+1);  // 8 bytes chunk count
   1.991 +      //
   1.992 +      // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
   1.993 +      //
   1.994 +      if (UseXMMForArrayCopy) {
   1.995 +        xmm_copy_forward(from, to_from, rax);
   1.996 +      } else {
   1.997 +        mmx_copy_forward(from, to_from, rax);
   1.998 +      }
   1.999 +    }
  1.1000 +    // copy tailing dword
  1.1001 +  __ BIND(L_copy_4_bytes);
  1.1002 +    __ testl(count, 1<<shift);
  1.1003 +    __ jccb(Assembler::zero, L_copy_2_bytes);
  1.1004 +    __ movl(rax, Address(from, 0));
  1.1005 +    __ movl(Address(from, to_from, Address::times_1, 0), rax);
  1.1006 +    if (t == T_BYTE || t == T_SHORT) {
  1.1007 +      __ addptr(from, 4);
  1.1008 +    __ BIND(L_copy_2_bytes);
  1.1009 +      // copy tailing word
  1.1010 +      __ testl(count, 1<<(shift-1));
  1.1011 +      __ jccb(Assembler::zero, L_copy_byte);
  1.1012 +      __ movw(rax, Address(from, 0));
  1.1013 +      __ movw(Address(from, to_from, Address::times_1, 0), rax);
  1.1014 +      if (t == T_BYTE) {
  1.1015 +        __ addptr(from, 2);
  1.1016 +      __ BIND(L_copy_byte);
  1.1017 +        // copy tailing byte
  1.1018 +        __ testl(count, 1);
  1.1019 +        __ jccb(Assembler::zero, L_exit);
  1.1020 +        __ movb(rax, Address(from, 0));
  1.1021 +        __ movb(Address(from, to_from, Address::times_1, 0), rax);
  1.1022 +      __ BIND(L_exit);
  1.1023 +      } else {
  1.1024 +      __ BIND(L_copy_byte);
  1.1025 +      }
  1.1026 +    } else {
  1.1027 +    __ BIND(L_copy_2_bytes);
  1.1028 +    }
  1.1029 +
  1.1030 +    if (t == T_OBJECT) {
  1.1031 +      __ movl(count, Address(rsp, 12+12)); // reread 'count'
  1.1032 +      __ mov(to, saved_to); // restore 'to'
  1.1033 +      gen_write_ref_array_post_barrier(to, count);
  1.1034 +    __ BIND(L_0_count);
  1.1035 +    }
  1.1036 +    inc_copy_counter_np(t);
  1.1037 +    __ pop(rdi);
  1.1038 +    __ pop(rsi);
  1.1039 +    __ leave(); // required for proper stackwalking of RuntimeStub frame
  1.1040 +    __ xorptr(rax, rax); // return 0
  1.1041 +    __ ret(0);
  1.1042 +    return start;
  1.1043 +  }
  1.1044 +
  1.1045 +
  1.1046 +  address generate_fill(BasicType t, bool aligned, const char *name) {
  1.1047 +    __ align(CodeEntryAlignment);
  1.1048 +    StubCodeMark mark(this, "StubRoutines", name);
  1.1049 +    address start = __ pc();
  1.1050 +
  1.1051 +    BLOCK_COMMENT("Entry:");
  1.1052 +
  1.1053 +    const Register to       = rdi;  // source array address
  1.1054 +    const Register value    = rdx;  // value
  1.1055 +    const Register count    = rsi;  // elements count
  1.1056 +
  1.1057 +    __ enter(); // required for proper stackwalking of RuntimeStub frame
  1.1058 +    __ push(rsi);
  1.1059 +    __ push(rdi);
  1.1060 +    __ movptr(to   , Address(rsp, 12+ 4));
  1.1061 +    __ movl(value, Address(rsp, 12+ 8));
  1.1062 +    __ movl(count, Address(rsp, 12+ 12));
  1.1063 +
  1.1064 +    __ generate_fill(t, aligned, to, value, count, rax, xmm0);
  1.1065 +
  1.1066 +    __ pop(rdi);
  1.1067 +    __ pop(rsi);
  1.1068 +    __ leave(); // required for proper stackwalking of RuntimeStub frame
  1.1069 +    __ ret(0);
  1.1070 +    return start;
  1.1071 +  }
  1.1072 +
  1.1073 +  address generate_conjoint_copy(BasicType t, bool aligned,
  1.1074 +                                 Address::ScaleFactor sf,
  1.1075 +                                 address nooverlap_target,
  1.1076 +                                 address* entry, const char *name,
  1.1077 +                                 bool dest_uninitialized = false) {
  1.1078 +    __ align(CodeEntryAlignment);
  1.1079 +    StubCodeMark mark(this, "StubRoutines", name);
  1.1080 +    address start = __ pc();
  1.1081 +
  1.1082 +    Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
  1.1083 +    Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
  1.1084 +
  1.1085 +    int shift = Address::times_ptr - sf;
  1.1086 +
  1.1087 +    const Register src   = rax;  // source array address
  1.1088 +    const Register dst   = rdx;  // destination array address
  1.1089 +    const Register from  = rsi;  // source array address
  1.1090 +    const Register to    = rdi;  // destination array address
  1.1091 +    const Register count = rcx;  // elements count
  1.1092 +    const Register end   = rax;  // array end address
  1.1093 +
  1.1094 +    __ enter(); // required for proper stackwalking of RuntimeStub frame
  1.1095 +    __ push(rsi);
  1.1096 +    __ push(rdi);
  1.1097 +    __ movptr(src  , Address(rsp, 12+ 4));   // from
  1.1098 +    __ movptr(dst  , Address(rsp, 12+ 8));   // to
  1.1099 +    __ movl2ptr(count, Address(rsp, 12+12)); // count
  1.1100 +
  1.1101 +    if (entry != NULL) {
  1.1102 +      *entry = __ pc(); // Entry point from generic arraycopy stub.
  1.1103 +      BLOCK_COMMENT("Entry:");
  1.1104 +    }
  1.1105 +
  1.1106 +    // nooverlap_target expects arguments in rsi and rdi.
  1.1107 +    __ mov(from, src);
  1.1108 +    __ mov(to  , dst);
  1.1109 +
  1.1110 +    // arrays overlap test: dispatch to disjoint stub if necessary.
  1.1111 +    RuntimeAddress nooverlap(nooverlap_target);
  1.1112 +    __ cmpptr(dst, src);
  1.1113 +    __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
  1.1114 +    __ jump_cc(Assembler::belowEqual, nooverlap);
  1.1115 +    __ cmpptr(dst, end);
  1.1116 +    __ jump_cc(Assembler::aboveEqual, nooverlap);
  1.1117 +
  1.1118 +    if (t == T_OBJECT) {
  1.1119 +      __ testl(count, count);
  1.1120 +      __ jcc(Assembler::zero, L_0_count);
  1.1121 +      gen_write_ref_array_pre_barrier(dst, count, dest_uninitialized);
  1.1122 +    }
  1.1123 +
  1.1124 +    // copy from high to low
  1.1125 +    __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1.1126 +    __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
  1.1127 +    if (t == T_BYTE || t == T_SHORT) {
  1.1128 +      // Align the end of destination array at 4 bytes address boundary
  1.1129 +      __ lea(end, Address(dst, count, sf, 0));
  1.1130 +      if (t == T_BYTE) {
  1.1131 +        // One byte misalignment happens only for byte arrays
  1.1132 +        __ testl(end, 1);
  1.1133 +        __ jccb(Assembler::zero, L_skip_align1);
  1.1134 +        __ decrement(count);
  1.1135 +        __ movb(rdx, Address(from, count, sf, 0));
  1.1136 +        __ movb(Address(to, count, sf, 0), rdx);
  1.1137 +      __ BIND(L_skip_align1);
  1.1138 +      }
  1.1139 +      // Two bytes misalignment happens only for byte and short (char) arrays
  1.1140 +      __ testl(end, 2);
  1.1141 +      __ jccb(Assembler::zero, L_skip_align2);
  1.1142 +      __ subptr(count, 1<<(shift-1));
  1.1143 +      __ movw(rdx, Address(from, count, sf, 0));
  1.1144 +      __ movw(Address(to, count, sf, 0), rdx);
  1.1145 +    __ BIND(L_skip_align2);
  1.1146 +      __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1.1147 +      __ jcc(Assembler::below, L_copy_4_bytes);
  1.1148 +    }
  1.1149 +
  1.1150 +    if (!VM_Version::supports_mmx()) {
  1.1151 +      __ std();
  1.1152 +      __ mov(rax, count); // Save 'count'
  1.1153 +      __ mov(rdx, to);    // Save 'to'
  1.1154 +      __ lea(rsi, Address(from, count, sf, -4));
  1.1155 +      __ lea(rdi, Address(to  , count, sf, -4));
  1.1156 +      __ shrptr(count, shift); // bytes count
  1.1157 +      __ rep_mov();
  1.1158 +      __ cld();
  1.1159 +      __ mov(count, rax); // restore 'count'
  1.1160 +      __ andl(count, (1<<shift)-1);      // mask the number of rest elements
  1.1161 +      __ movptr(from, Address(rsp, 12+4)); // reread 'from'
  1.1162 +      __ mov(to, rdx);   // restore 'to'
  1.1163 +      __ jmpb(L_copy_2_bytes); // all dword were copied
  1.1164 +   } else {
  1.1165 +      // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
  1.1166 +      __ testptr(end, 4);
  1.1167 +      __ jccb(Assembler::zero, L_copy_8_bytes);
  1.1168 +      __ subl(count, 1<<shift);
  1.1169 +      __ movl(rdx, Address(from, count, sf, 0));
  1.1170 +      __ movl(Address(to, count, sf, 0), rdx);
  1.1171 +      __ jmpb(L_copy_8_bytes);
  1.1172 +
  1.1173 +      __ align(OptoLoopAlignment);
  1.1174 +      // Move 8 bytes
  1.1175 +    __ BIND(L_copy_8_bytes_loop);
  1.1176 +      if (UseXMMForArrayCopy) {
  1.1177 +        __ movq(xmm0, Address(from, count, sf, 0));
  1.1178 +        __ movq(Address(to, count, sf, 0), xmm0);
  1.1179 +      } else {
  1.1180 +        __ movq(mmx0, Address(from, count, sf, 0));
  1.1181 +        __ movq(Address(to, count, sf, 0), mmx0);
  1.1182 +      }
  1.1183 +    __ BIND(L_copy_8_bytes);
  1.1184 +      __ subl(count, 2<<shift);
  1.1185 +      __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1.1186 +      __ addl(count, 2<<shift);
  1.1187 +      if (!UseXMMForArrayCopy) {
  1.1188 +        __ emms();
  1.1189 +      }
  1.1190 +    }
  1.1191 +  __ BIND(L_copy_4_bytes);
  1.1192 +    // copy prefix qword
  1.1193 +    __ testl(count, 1<<shift);
  1.1194 +    __ jccb(Assembler::zero, L_copy_2_bytes);
  1.1195 +    __ movl(rdx, Address(from, count, sf, -4));
  1.1196 +    __ movl(Address(to, count, sf, -4), rdx);
  1.1197 +
  1.1198 +    if (t == T_BYTE || t == T_SHORT) {
  1.1199 +        __ subl(count, (1<<shift));
  1.1200 +      __ BIND(L_copy_2_bytes);
  1.1201 +        // copy prefix dword
  1.1202 +        __ testl(count, 1<<(shift-1));
  1.1203 +        __ jccb(Assembler::zero, L_copy_byte);
  1.1204 +        __ movw(rdx, Address(from, count, sf, -2));
  1.1205 +        __ movw(Address(to, count, sf, -2), rdx);
  1.1206 +        if (t == T_BYTE) {
  1.1207 +          __ subl(count, 1<<(shift-1));
  1.1208 +        __ BIND(L_copy_byte);
  1.1209 +          // copy prefix byte
  1.1210 +          __ testl(count, 1);
  1.1211 +          __ jccb(Assembler::zero, L_exit);
  1.1212 +          __ movb(rdx, Address(from, 0));
  1.1213 +          __ movb(Address(to, 0), rdx);
  1.1214 +        __ BIND(L_exit);
  1.1215 +        } else {
  1.1216 +        __ BIND(L_copy_byte);
  1.1217 +        }
  1.1218 +    } else {
  1.1219 +    __ BIND(L_copy_2_bytes);
  1.1220 +    }
  1.1221 +    if (t == T_OBJECT) {
  1.1222 +      __ movl2ptr(count, Address(rsp, 12+12)); // reread count
  1.1223 +      gen_write_ref_array_post_barrier(to, count);
  1.1224 +    __ BIND(L_0_count);
  1.1225 +    }
  1.1226 +    inc_copy_counter_np(t);
  1.1227 +    __ pop(rdi);
  1.1228 +    __ pop(rsi);
  1.1229 +    __ leave(); // required for proper stackwalking of RuntimeStub frame
  1.1230 +    __ xorptr(rax, rax); // return 0
  1.1231 +    __ ret(0);
  1.1232 +    return start;
  1.1233 +  }
  1.1234 +
  1.1235 +
  1.1236 +  address generate_disjoint_long_copy(address* entry, const char *name) {
  1.1237 +    __ align(CodeEntryAlignment);
  1.1238 +    StubCodeMark mark(this, "StubRoutines", name);
  1.1239 +    address start = __ pc();
  1.1240 +
  1.1241 +    Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1.1242 +    const Register from       = rax;  // source array address
  1.1243 +    const Register to         = rdx;  // destination array address
  1.1244 +    const Register count      = rcx;  // elements count
  1.1245 +    const Register to_from    = rdx;  // (to - from)
  1.1246 +
  1.1247 +    __ enter(); // required for proper stackwalking of RuntimeStub frame
  1.1248 +    __ movptr(from , Address(rsp, 8+0));       // from
  1.1249 +    __ movptr(to   , Address(rsp, 8+4));       // to
  1.1250 +    __ movl2ptr(count, Address(rsp, 8+8));     // count
  1.1251 +
  1.1252 +    *entry = __ pc(); // Entry point from conjoint arraycopy stub.
  1.1253 +    BLOCK_COMMENT("Entry:");
  1.1254 +
  1.1255 +    __ subptr(to, from); // to --> to_from
  1.1256 +    if (VM_Version::supports_mmx()) {
  1.1257 +      if (UseXMMForArrayCopy) {
  1.1258 +        xmm_copy_forward(from, to_from, count);
  1.1259 +      } else {
  1.1260 +        mmx_copy_forward(from, to_from, count);
  1.1261 +      }
  1.1262 +    } else {
  1.1263 +      __ jmpb(L_copy_8_bytes);
  1.1264 +      __ align(OptoLoopAlignment);
  1.1265 +    __ BIND(L_copy_8_bytes_loop);
  1.1266 +      __ fild_d(Address(from, 0));
  1.1267 +      __ fistp_d(Address(from, to_from, Address::times_1));
  1.1268 +      __ addptr(from, 8);
  1.1269 +    __ BIND(L_copy_8_bytes);
  1.1270 +      __ decrement(count);
  1.1271 +      __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1.1272 +    }
  1.1273 +    inc_copy_counter_np(T_LONG);
  1.1274 +    __ leave(); // required for proper stackwalking of RuntimeStub frame
  1.1275 +    __ xorptr(rax, rax); // return 0
  1.1276 +    __ ret(0);
  1.1277 +    return start;
  1.1278 +  }
  1.1279 +
  1.1280 +  address generate_conjoint_long_copy(address nooverlap_target,
  1.1281 +                                      address* entry, const char *name) {
  1.1282 +    __ align(CodeEntryAlignment);
  1.1283 +    StubCodeMark mark(this, "StubRoutines", name);
  1.1284 +    address start = __ pc();
  1.1285 +
  1.1286 +    Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1.1287 +    const Register from       = rax;  // source array address
  1.1288 +    const Register to         = rdx;  // destination array address
  1.1289 +    const Register count      = rcx;  // elements count
  1.1290 +    const Register end_from   = rax;  // source array end address
  1.1291 +
  1.1292 +    __ enter(); // required for proper stackwalking of RuntimeStub frame
  1.1293 +    __ movptr(from , Address(rsp, 8+0));       // from
  1.1294 +    __ movptr(to   , Address(rsp, 8+4));       // to
  1.1295 +    __ movl2ptr(count, Address(rsp, 8+8));     // count
  1.1296 +
  1.1297 +    *entry = __ pc(); // Entry point from generic arraycopy stub.
  1.1298 +    BLOCK_COMMENT("Entry:");
  1.1299 +
  1.1300 +    // arrays overlap test
  1.1301 +    __ cmpptr(to, from);
  1.1302 +    RuntimeAddress nooverlap(nooverlap_target);
  1.1303 +    __ jump_cc(Assembler::belowEqual, nooverlap);
  1.1304 +    __ lea(end_from, Address(from, count, Address::times_8, 0));
  1.1305 +    __ cmpptr(to, end_from);
  1.1306 +    __ movptr(from, Address(rsp, 8));  // from
  1.1307 +    __ jump_cc(Assembler::aboveEqual, nooverlap);
  1.1308 +
  1.1309 +    __ jmpb(L_copy_8_bytes);
  1.1310 +
  1.1311 +    __ align(OptoLoopAlignment);
  1.1312 +  __ BIND(L_copy_8_bytes_loop);
  1.1313 +    if (VM_Version::supports_mmx()) {
  1.1314 +      if (UseXMMForArrayCopy) {
  1.1315 +        __ movq(xmm0, Address(from, count, Address::times_8));
  1.1316 +        __ movq(Address(to, count, Address::times_8), xmm0);
  1.1317 +      } else {
  1.1318 +        __ movq(mmx0, Address(from, count, Address::times_8));
  1.1319 +        __ movq(Address(to, count, Address::times_8), mmx0);
  1.1320 +      }
  1.1321 +    } else {
  1.1322 +      __ fild_d(Address(from, count, Address::times_8));
  1.1323 +      __ fistp_d(Address(to, count, Address::times_8));
  1.1324 +    }
  1.1325 +  __ BIND(L_copy_8_bytes);
  1.1326 +    __ decrement(count);
  1.1327 +    __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1.1328 +
  1.1329 +    if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
  1.1330 +      __ emms();
  1.1331 +    }
  1.1332 +    inc_copy_counter_np(T_LONG);
  1.1333 +    __ leave(); // required for proper stackwalking of RuntimeStub frame
  1.1334 +    __ xorptr(rax, rax); // return 0
  1.1335 +    __ ret(0);
  1.1336 +    return start;
  1.1337 +  }
  1.1338 +
  1.1339 +
  1.1340 +  // Helper for generating a dynamic type check.
  1.1341 +  // The sub_klass must be one of {rbx, rdx, rsi}.
  1.1342 +  // The temp is killed.
  1.1343 +  void generate_type_check(Register sub_klass,
  1.1344 +                           Address& super_check_offset_addr,
  1.1345 +                           Address& super_klass_addr,
  1.1346 +                           Register temp,
  1.1347 +                           Label* L_success, Label* L_failure) {
  1.1348 +    BLOCK_COMMENT("type_check:");
  1.1349 +
  1.1350 +    Label L_fallthrough;
  1.1351 +#define LOCAL_JCC(assembler_con, label_ptr)                             \
  1.1352 +    if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
  1.1353 +    else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
  1.1354 +
  1.1355 +    // The following is a strange variation of the fast path which requires
  1.1356 +    // one less register, because needed values are on the argument stack.
  1.1357 +    // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
  1.1358 +    //                                  L_success, L_failure, NULL);
  1.1359 +    assert_different_registers(sub_klass, temp);
  1.1360 +
  1.1361 +    int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  1.1362 +
  1.1363 +    // if the pointers are equal, we are done (e.g., String[] elements)
  1.1364 +    __ cmpptr(sub_klass, super_klass_addr);
  1.1365 +    LOCAL_JCC(Assembler::equal, L_success);
  1.1366 +
  1.1367 +    // check the supertype display:
  1.1368 +    __ movl2ptr(temp, super_check_offset_addr);
  1.1369 +    Address super_check_addr(sub_klass, temp, Address::times_1, 0);
  1.1370 +    __ movptr(temp, super_check_addr); // load displayed supertype
  1.1371 +    __ cmpptr(temp, super_klass_addr); // test the super type
  1.1372 +    LOCAL_JCC(Assembler::equal, L_success);
  1.1373 +
  1.1374 +    // if it was a primary super, we can just fail immediately
  1.1375 +    __ cmpl(super_check_offset_addr, sc_offset);
  1.1376 +    LOCAL_JCC(Assembler::notEqual, L_failure);
  1.1377 +
  1.1378 +    // The repne_scan instruction uses fixed registers, which will get spilled.
  1.1379 +    // We happen to know this works best when super_klass is in rax.
  1.1380 +    Register super_klass = temp;
  1.1381 +    __ movptr(super_klass, super_klass_addr);
  1.1382 +    __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
  1.1383 +                                     L_success, L_failure);
  1.1384 +
  1.1385 +    __ bind(L_fallthrough);
  1.1386 +
  1.1387 +    if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
  1.1388 +    if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
  1.1389 +
  1.1390 +#undef LOCAL_JCC
  1.1391 +  }
  1.1392 +
  1.1393 +  //
  1.1394 +  //  Generate checkcasting array copy stub
  1.1395 +  //
  1.1396 +  //  Input:
  1.1397 +  //    4(rsp)   - source array address
  1.1398 +  //    8(rsp)   - destination array address
  1.1399 +  //   12(rsp)   - element count, can be zero
  1.1400 +  //   16(rsp)   - size_t ckoff (super_check_offset)
  1.1401 +  //   20(rsp)   - oop ckval (super_klass)
  1.1402 +  //
  1.1403 +  //  Output:
  1.1404 +  //    rax, ==  0  -  success
  1.1405 +  //    rax, == -1^K - failure, where K is partial transfer count
  1.1406 +  //
  1.1407 +  address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
  1.1408 +    __ align(CodeEntryAlignment);
  1.1409 +    StubCodeMark mark(this, "StubRoutines", name);
  1.1410 +    address start = __ pc();
  1.1411 +
  1.1412 +    Label L_load_element, L_store_element, L_do_card_marks, L_done;
  1.1413 +
  1.1414 +    // register use:
  1.1415 +    //  rax, rdx, rcx -- loop control (end_from, end_to, count)
  1.1416 +    //  rdi, rsi      -- element access (oop, klass)
  1.1417 +    //  rbx,           -- temp
  1.1418 +    const Register from       = rax;    // source array address
  1.1419 +    const Register to         = rdx;    // destination array address
  1.1420 +    const Register length     = rcx;    // elements count
  1.1421 +    const Register elem       = rdi;    // each oop copied
  1.1422 +    const Register elem_klass = rsi;    // each elem._klass (sub_klass)
  1.1423 +    const Register temp       = rbx;    // lone remaining temp
  1.1424 +
  1.1425 +    __ enter(); // required for proper stackwalking of RuntimeStub frame
  1.1426 +
  1.1427 +    __ push(rsi);
  1.1428 +    __ push(rdi);
  1.1429 +    __ push(rbx);
  1.1430 +
  1.1431 +    Address   from_arg(rsp, 16+ 4);     // from
  1.1432 +    Address     to_arg(rsp, 16+ 8);     // to
  1.1433 +    Address length_arg(rsp, 16+12);     // elements count
  1.1434 +    Address  ckoff_arg(rsp, 16+16);     // super_check_offset
  1.1435 +    Address  ckval_arg(rsp, 16+20);     // super_klass
  1.1436 +
  1.1437 +    // Load up:
  1.1438 +    __ movptr(from,     from_arg);
  1.1439 +    __ movptr(to,         to_arg);
  1.1440 +    __ movl2ptr(length, length_arg);
  1.1441 +
  1.1442 +    if (entry != NULL) {
  1.1443 +      *entry = __ pc(); // Entry point from generic arraycopy stub.
  1.1444 +      BLOCK_COMMENT("Entry:");
  1.1445 +    }
  1.1446 +
  1.1447 +    //---------------------------------------------------------------
  1.1448 +    // Assembler stub will be used for this call to arraycopy
  1.1449 +    // if the two arrays are subtypes of Object[] but the
  1.1450 +    // destination array type is not equal to or a supertype
  1.1451 +    // of the source type.  Each element must be separately
  1.1452 +    // checked.
  1.1453 +
  1.1454 +    // Loop-invariant addresses.  They are exclusive end pointers.
  1.1455 +    Address end_from_addr(from, length, Address::times_ptr, 0);
  1.1456 +    Address   end_to_addr(to,   length, Address::times_ptr, 0);
  1.1457 +
  1.1458 +    Register end_from = from;           // re-use
  1.1459 +    Register end_to   = to;             // re-use
  1.1460 +    Register count    = length;         // re-use
  1.1461 +
  1.1462 +    // Loop-variant addresses.  They assume post-incremented count < 0.
  1.1463 +    Address from_element_addr(end_from, count, Address::times_ptr, 0);
  1.1464 +    Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
  1.1465 +    Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
  1.1466 +
  1.1467 +    // Copy from low to high addresses, indexed from the end of each array.
  1.1468 +    gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
  1.1469 +    __ lea(end_from, end_from_addr);
  1.1470 +    __ lea(end_to,   end_to_addr);
  1.1471 +    assert(length == count, "");        // else fix next line:
  1.1472 +    __ negptr(count);                   // negate and test the length
  1.1473 +    __ jccb(Assembler::notZero, L_load_element);
  1.1474 +
  1.1475 +    // Empty array:  Nothing to do.
  1.1476 +    __ xorptr(rax, rax);                  // return 0 on (trivial) success
  1.1477 +    __ jmp(L_done);
  1.1478 +
  1.1479 +    // ======== begin loop ========
  1.1480 +    // (Loop is rotated; its entry is L_load_element.)
  1.1481 +    // Loop control:
  1.1482 +    //   for (count = -count; count != 0; count++)
  1.1483 +    // Base pointers src, dst are biased by 8*count,to last element.
  1.1484 +    __ align(OptoLoopAlignment);
  1.1485 +
  1.1486 +    __ BIND(L_store_element);
  1.1487 +    __ movptr(to_element_addr, elem);     // store the oop
  1.1488 +    __ increment(count);                // increment the count toward zero
  1.1489 +    __ jccb(Assembler::zero, L_do_card_marks);
  1.1490 +
  1.1491 +    // ======== loop entry is here ========
  1.1492 +    __ BIND(L_load_element);
  1.1493 +    __ movptr(elem, from_element_addr);   // load the oop
  1.1494 +    __ testptr(elem, elem);
  1.1495 +    __ jccb(Assembler::zero, L_store_element);
  1.1496 +
  1.1497 +    // (Could do a trick here:  Remember last successful non-null
  1.1498 +    // element stored and make a quick oop equality check on it.)
  1.1499 +
  1.1500 +    __ movptr(elem_klass, elem_klass_addr); // query the object klass
  1.1501 +    generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
  1.1502 +                        &L_store_element, NULL);
  1.1503 +    // (On fall-through, we have failed the element type check.)
  1.1504 +    // ======== end loop ========
  1.1505 +
  1.1506 +    // It was a real error; we must depend on the caller to finish the job.
  1.1507 +    // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
  1.1508 +    // Emit GC store barriers for the oops we have copied (length_arg + count),
  1.1509 +    // and report their number to the caller.
  1.1510 +    assert_different_registers(to, count, rax);
  1.1511 +    Label L_post_barrier;
  1.1512 +    __ addl(count, length_arg);         // transfers = (length - remaining)
  1.1513 +    __ movl2ptr(rax, count);            // save the value
  1.1514 +    __ notptr(rax);                     // report (-1^K) to caller (does not affect flags)
  1.1515 +    __ jccb(Assembler::notZero, L_post_barrier);
  1.1516 +    __ jmp(L_done); // K == 0, nothing was copied, skip post barrier
  1.1517 +
  1.1518 +    // Come here on success only.
  1.1519 +    __ BIND(L_do_card_marks);
  1.1520 +    __ xorptr(rax, rax);                // return 0 on success
  1.1521 +    __ movl2ptr(count, length_arg);
  1.1522 +
  1.1523 +    __ BIND(L_post_barrier);
  1.1524 +    __ movptr(to, to_arg);              // reload
  1.1525 +    gen_write_ref_array_post_barrier(to, count);
  1.1526 +
  1.1527 +    // Common exit point (success or failure).
  1.1528 +    __ BIND(L_done);
  1.1529 +    __ pop(rbx);
  1.1530 +    __ pop(rdi);
  1.1531 +    __ pop(rsi);
  1.1532 +    inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
  1.1533 +    __ leave(); // required for proper stackwalking of RuntimeStub frame
  1.1534 +    __ ret(0);
  1.1535 +
  1.1536 +    return start;
  1.1537 +  }
  1.1538 +
  1.1539 +  //
  1.1540 +  //  Generate 'unsafe' array copy stub
  1.1541 +  //  Though just as safe as the other stubs, it takes an unscaled
  1.1542 +  //  size_t argument instead of an element count.
  1.1543 +  //
  1.1544 +  //  Input:
  1.1545 +  //    4(rsp)   - source array address
  1.1546 +  //    8(rsp)   - destination array address
  1.1547 +  //   12(rsp)   - byte count, can be zero
  1.1548 +  //
  1.1549 +  //  Output:
  1.1550 +  //    rax, ==  0  -  success
  1.1551 +  //    rax, == -1  -  need to call System.arraycopy
  1.1552 +  //
  1.1553 +  // Examines the alignment of the operands and dispatches
  1.1554 +  // to a long, int, short, or byte copy loop.
  1.1555 +  //
  1.1556 +  address generate_unsafe_copy(const char *name,
  1.1557 +                               address byte_copy_entry,
  1.1558 +                               address short_copy_entry,
  1.1559 +                               address int_copy_entry,
  1.1560 +                               address long_copy_entry) {
  1.1561 +
  1.1562 +    Label L_long_aligned, L_int_aligned, L_short_aligned;
  1.1563 +
  1.1564 +    __ align(CodeEntryAlignment);
  1.1565 +    StubCodeMark mark(this, "StubRoutines", name);
  1.1566 +    address start = __ pc();
  1.1567 +
  1.1568 +    const Register from       = rax;  // source array address
  1.1569 +    const Register to         = rdx;  // destination array address
  1.1570 +    const Register count      = rcx;  // elements count
  1.1571 +
  1.1572 +    __ enter(); // required for proper stackwalking of RuntimeStub frame
  1.1573 +    __ push(rsi);
  1.1574 +    __ push(rdi);
  1.1575 +    Address  from_arg(rsp, 12+ 4);      // from
  1.1576 +    Address    to_arg(rsp, 12+ 8);      // to
  1.1577 +    Address count_arg(rsp, 12+12);      // byte count
  1.1578 +
  1.1579 +    // Load up:
  1.1580 +    __ movptr(from ,  from_arg);
  1.1581 +    __ movptr(to   ,    to_arg);
  1.1582 +    __ movl2ptr(count, count_arg);
  1.1583 +
  1.1584 +    // bump this on entry, not on exit:
  1.1585 +    inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  1.1586 +
  1.1587 +    const Register bits = rsi;
  1.1588 +    __ mov(bits, from);
  1.1589 +    __ orptr(bits, to);
  1.1590 +    __ orptr(bits, count);
  1.1591 +
  1.1592 +    __ testl(bits, BytesPerLong-1);
  1.1593 +    __ jccb(Assembler::zero, L_long_aligned);
  1.1594 +
  1.1595 +    __ testl(bits, BytesPerInt-1);
  1.1596 +    __ jccb(Assembler::zero, L_int_aligned);
  1.1597 +
  1.1598 +    __ testl(bits, BytesPerShort-1);
  1.1599 +    __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  1.1600 +
  1.1601 +    __ BIND(L_short_aligned);
  1.1602 +    __ shrptr(count, LogBytesPerShort); // size => short_count
  1.1603 +    __ movl(count_arg, count);          // update 'count'
  1.1604 +    __ jump(RuntimeAddress(short_copy_entry));
  1.1605 +
  1.1606 +    __ BIND(L_int_aligned);
  1.1607 +    __ shrptr(count, LogBytesPerInt); // size => int_count
  1.1608 +    __ movl(count_arg, count);          // update 'count'
  1.1609 +    __ jump(RuntimeAddress(int_copy_entry));
  1.1610 +
  1.1611 +    __ BIND(L_long_aligned);
  1.1612 +    __ shrptr(count, LogBytesPerLong); // size => qword_count
  1.1613 +    __ movl(count_arg, count);          // update 'count'
  1.1614 +    __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1.1615 +    __ pop(rsi);
  1.1616 +    __ jump(RuntimeAddress(long_copy_entry));
  1.1617 +
  1.1618 +    return start;
  1.1619 +  }
  1.1620 +
  1.1621 +
  1.1622 +  // Perform range checks on the proposed arraycopy.
  1.1623 +  // Smashes src_pos and dst_pos.  (Uses them up for temps.)
  1.1624 +  void arraycopy_range_checks(Register src,
  1.1625 +                              Register src_pos,
  1.1626 +                              Register dst,
  1.1627 +                              Register dst_pos,
  1.1628 +                              Address& length,
  1.1629 +                              Label& L_failed) {
  1.1630 +    BLOCK_COMMENT("arraycopy_range_checks:");
  1.1631 +    const Register src_end = src_pos;   // source array end position
  1.1632 +    const Register dst_end = dst_pos;   // destination array end position
  1.1633 +    __ addl(src_end, length); // src_pos + length
  1.1634 +    __ addl(dst_end, length); // dst_pos + length
  1.1635 +
  1.1636 +    //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
  1.1637 +    __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
  1.1638 +    __ jcc(Assembler::above, L_failed);
  1.1639 +
  1.1640 +    //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
  1.1641 +    __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  1.1642 +    __ jcc(Assembler::above, L_failed);
  1.1643 +
  1.1644 +    BLOCK_COMMENT("arraycopy_range_checks done");
  1.1645 +  }
  1.1646 +
  1.1647 +
  1.1648 +  //
  1.1649 +  //  Generate generic array copy stubs
  1.1650 +  //
  1.1651 +  //  Input:
  1.1652 +  //     4(rsp)    -  src oop
  1.1653 +  //     8(rsp)    -  src_pos
  1.1654 +  //    12(rsp)    -  dst oop
  1.1655 +  //    16(rsp)    -  dst_pos
  1.1656 +  //    20(rsp)    -  element count
  1.1657 +  //
  1.1658 +  //  Output:
  1.1659 +  //    rax, ==  0  -  success
  1.1660 +  //    rax, == -1^K - failure, where K is partial transfer count
  1.1661 +  //
  1.1662 +  address generate_generic_copy(const char *name,
  1.1663 +                                address entry_jbyte_arraycopy,
  1.1664 +                                address entry_jshort_arraycopy,
  1.1665 +                                address entry_jint_arraycopy,
  1.1666 +                                address entry_oop_arraycopy,
  1.1667 +                                address entry_jlong_arraycopy,
  1.1668 +                                address entry_checkcast_arraycopy) {
  1.1669 +    Label L_failed, L_failed_0, L_objArray;
  1.1670 +
  1.1671 +    { int modulus = CodeEntryAlignment;
  1.1672 +      int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  1.1673 +      int advance = target - (__ offset() % modulus);
  1.1674 +      if (advance < 0)  advance += modulus;
  1.1675 +      if (advance > 0)  __ nop(advance);
  1.1676 +    }
  1.1677 +    StubCodeMark mark(this, "StubRoutines", name);
  1.1678 +
  1.1679 +    // Short-hop target to L_failed.  Makes for denser prologue code.
  1.1680 +    __ BIND(L_failed_0);
  1.1681 +    __ jmp(L_failed);
  1.1682 +    assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  1.1683 +
  1.1684 +    __ align(CodeEntryAlignment);
  1.1685 +    address start = __ pc();
  1.1686 +
  1.1687 +    __ enter(); // required for proper stackwalking of RuntimeStub frame
  1.1688 +    __ push(rsi);
  1.1689 +    __ push(rdi);
  1.1690 +
  1.1691 +    // bump this on entry, not on exit:
  1.1692 +    inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  1.1693 +
  1.1694 +    // Input values
  1.1695 +    Address SRC     (rsp, 12+ 4);
  1.1696 +    Address SRC_POS (rsp, 12+ 8);
  1.1697 +    Address DST     (rsp, 12+12);
  1.1698 +    Address DST_POS (rsp, 12+16);
  1.1699 +    Address LENGTH  (rsp, 12+20);
  1.1700 +
  1.1701 +    //-----------------------------------------------------------------------
  1.1702 +    // Assembler stub will be used for this call to arraycopy
  1.1703 +    // if the following conditions are met:
  1.1704 +    //
  1.1705 +    // (1) src and dst must not be null.
  1.1706 +    // (2) src_pos must not be negative.
  1.1707 +    // (3) dst_pos must not be negative.
  1.1708 +    // (4) length  must not be negative.
  1.1709 +    // (5) src klass and dst klass should be the same and not NULL.
  1.1710 +    // (6) src and dst should be arrays.
  1.1711 +    // (7) src_pos + length must not exceed length of src.
  1.1712 +    // (8) dst_pos + length must not exceed length of dst.
  1.1713 +    //
  1.1714 +
  1.1715 +    const Register src     = rax;       // source array oop
  1.1716 +    const Register src_pos = rsi;
  1.1717 +    const Register dst     = rdx;       // destination array oop
  1.1718 +    const Register dst_pos = rdi;
  1.1719 +    const Register length  = rcx;       // transfer count
  1.1720 +
  1.1721 +    //  if (src == NULL) return -1;
  1.1722 +    __ movptr(src, SRC);      // src oop
  1.1723 +    __ testptr(src, src);
  1.1724 +    __ jccb(Assembler::zero, L_failed_0);
  1.1725 +
  1.1726 +    //  if (src_pos < 0) return -1;
  1.1727 +    __ movl2ptr(src_pos, SRC_POS);  // src_pos
  1.1728 +    __ testl(src_pos, src_pos);
  1.1729 +    __ jccb(Assembler::negative, L_failed_0);
  1.1730 +
  1.1731 +    //  if (dst == NULL) return -1;
  1.1732 +    __ movptr(dst, DST);      // dst oop
  1.1733 +    __ testptr(dst, dst);
  1.1734 +    __ jccb(Assembler::zero, L_failed_0);
  1.1735 +
  1.1736 +    //  if (dst_pos < 0) return -1;
  1.1737 +    __ movl2ptr(dst_pos, DST_POS);  // dst_pos
  1.1738 +    __ testl(dst_pos, dst_pos);
  1.1739 +    __ jccb(Assembler::negative, L_failed_0);
  1.1740 +
  1.1741 +    //  if (length < 0) return -1;
  1.1742 +    __ movl2ptr(length, LENGTH);   // length
  1.1743 +    __ testl(length, length);
  1.1744 +    __ jccb(Assembler::negative, L_failed_0);
  1.1745 +
  1.1746 +    //  if (src->klass() == NULL) return -1;
  1.1747 +    Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
  1.1748 +    Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
  1.1749 +    const Register rcx_src_klass = rcx;    // array klass
  1.1750 +    __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
  1.1751 +
  1.1752 +#ifdef ASSERT
  1.1753 +    //  assert(src->klass() != NULL);
  1.1754 +    BLOCK_COMMENT("assert klasses not null");
  1.1755 +    { Label L1, L2;
  1.1756 +      __ testptr(rcx_src_klass, rcx_src_klass);
  1.1757 +      __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
  1.1758 +      __ bind(L1);
  1.1759 +      __ stop("broken null klass");
  1.1760 +      __ bind(L2);
  1.1761 +      __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
  1.1762 +      __ jccb(Assembler::equal, L1);      // this would be broken also
  1.1763 +      BLOCK_COMMENT("assert done");
  1.1764 +    }
  1.1765 +#endif //ASSERT
  1.1766 +
  1.1767 +    // Load layout helper (32-bits)
  1.1768 +    //
  1.1769 +    //  |array_tag|     | header_size | element_type |     |log2_element_size|
  1.1770 +    // 32        30    24            16              8     2                 0
  1.1771 +    //
  1.1772 +    //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  1.1773 +    //
  1.1774 +
  1.1775 +    int lh_offset = in_bytes(Klass::layout_helper_offset());
  1.1776 +    Address src_klass_lh_addr(rcx_src_klass, lh_offset);
  1.1777 +
  1.1778 +    // Handle objArrays completely differently...
  1.1779 +    jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  1.1780 +    __ cmpl(src_klass_lh_addr, objArray_lh);
  1.1781 +    __ jcc(Assembler::equal, L_objArray);
  1.1782 +
  1.1783 +    //  if (src->klass() != dst->klass()) return -1;
  1.1784 +    __ cmpptr(rcx_src_klass, dst_klass_addr);
  1.1785 +    __ jccb(Assembler::notEqual, L_failed_0);
  1.1786 +
  1.1787 +    const Register rcx_lh = rcx;  // layout helper
  1.1788 +    assert(rcx_lh == rcx_src_klass, "known alias");
  1.1789 +    __ movl(rcx_lh, src_klass_lh_addr);
  1.1790 +
  1.1791 +    //  if (!src->is_Array()) return -1;
  1.1792 +    __ cmpl(rcx_lh, Klass::_lh_neutral_value);
  1.1793 +    __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
  1.1794 +
  1.1795 +    // At this point, it is known to be a typeArray (array_tag 0x3).
  1.1796 +#ifdef ASSERT
  1.1797 +    { Label L;
  1.1798 +      __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  1.1799 +      __ jcc(Assembler::greaterEqual, L); // signed cmp
  1.1800 +      __ stop("must be a primitive array");
  1.1801 +      __ bind(L);
  1.1802 +    }
  1.1803 +#endif
  1.1804 +
  1.1805 +    assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
  1.1806 +    arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1.1807 +
  1.1808 +    // TypeArrayKlass
  1.1809 +    //
  1.1810 +    // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  1.1811 +    // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  1.1812 +    //
  1.1813 +    const Register rsi_offset = rsi; // array offset
  1.1814 +    const Register src_array  = src; // src array offset
  1.1815 +    const Register dst_array  = dst; // dst array offset
  1.1816 +    const Register rdi_elsize = rdi; // log2 element size
  1.1817 +
  1.1818 +    __ mov(rsi_offset, rcx_lh);
  1.1819 +    __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
  1.1820 +    __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
  1.1821 +    __ addptr(src_array, rsi_offset);  // src array offset
  1.1822 +    __ addptr(dst_array, rsi_offset);  // dst array offset
  1.1823 +    __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
  1.1824 +
  1.1825 +    // next registers should be set before the jump to corresponding stub
  1.1826 +    const Register from       = src; // source array address
  1.1827 +    const Register to         = dst; // destination array address
  1.1828 +    const Register count      = rcx; // elements count
  1.1829 +    // some of them should be duplicated on stack
  1.1830 +#define FROM   Address(rsp, 12+ 4)
  1.1831 +#define TO     Address(rsp, 12+ 8)   // Not used now
  1.1832 +#define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
  1.1833 +
  1.1834 +    BLOCK_COMMENT("scale indexes to element size");
  1.1835 +    __ movl2ptr(rsi, SRC_POS);  // src_pos
  1.1836 +    __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
  1.1837 +    assert(src_array == from, "");
  1.1838 +    __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
  1.1839 +    __ movl2ptr(rdi, DST_POS);  // dst_pos
  1.1840 +    __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
  1.1841 +    assert(dst_array == to, "");
  1.1842 +    __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
  1.1843 +    __ movptr(FROM, from);      // src_addr
  1.1844 +    __ mov(rdi_elsize, rcx_lh); // log2 elsize
  1.1845 +    __ movl2ptr(count, LENGTH); // elements count
  1.1846 +
  1.1847 +    BLOCK_COMMENT("choose copy loop based on element size");
  1.1848 +    __ cmpl(rdi_elsize, 0);
  1.1849 +
  1.1850 +    __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
  1.1851 +    __ cmpl(rdi_elsize, LogBytesPerShort);
  1.1852 +    __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
  1.1853 +    __ cmpl(rdi_elsize, LogBytesPerInt);
  1.1854 +    __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
  1.1855 +#ifdef ASSERT
  1.1856 +    __ cmpl(rdi_elsize, LogBytesPerLong);
  1.1857 +    __ jccb(Assembler::notEqual, L_failed);
  1.1858 +#endif
  1.1859 +    __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1.1860 +    __ pop(rsi);
  1.1861 +    __ jump(RuntimeAddress(entry_jlong_arraycopy));
  1.1862 +
  1.1863 +  __ BIND(L_failed);
  1.1864 +    __ xorptr(rax, rax);
  1.1865 +    __ notptr(rax); // return -1
  1.1866 +    __ pop(rdi);
  1.1867 +    __ pop(rsi);
  1.1868 +    __ leave(); // required for proper stackwalking of RuntimeStub frame
  1.1869 +    __ ret(0);
  1.1870 +
  1.1871 +    // ObjArrayKlass
  1.1872 +  __ BIND(L_objArray);
  1.1873 +    // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
  1.1874 +
  1.1875 +    Label L_plain_copy, L_checkcast_copy;
  1.1876 +    //  test array classes for subtyping
  1.1877 +    __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
  1.1878 +    __ jccb(Assembler::notEqual, L_checkcast_copy);
  1.1879 +
  1.1880 +    // Identically typed arrays can be copied without element-wise checks.
  1.1881 +    assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
  1.1882 +    arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1.1883 +
  1.1884 +  __ BIND(L_plain_copy);
  1.1885 +    __ movl2ptr(count, LENGTH); // elements count
  1.1886 +    __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
  1.1887 +    __ lea(from, Address(src, src_pos, Address::times_ptr,
  1.1888 +                 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  1.1889 +    __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
  1.1890 +    __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
  1.1891 +                 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  1.1892 +    __ movptr(FROM,  from);   // src_addr
  1.1893 +    __ movptr(TO,    to);     // dst_addr
  1.1894 +    __ movl(COUNT, count);  // count
  1.1895 +    __ jump(RuntimeAddress(entry_oop_arraycopy));
  1.1896 +
  1.1897 +  __ BIND(L_checkcast_copy);
  1.1898 +    // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
  1.1899 +    {
  1.1900 +      // Handy offsets:
  1.1901 +      int  ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  1.1902 +      int sco_offset = in_bytes(Klass::super_check_offset_offset());
  1.1903 +
  1.1904 +      Register rsi_dst_klass = rsi;
  1.1905 +      Register rdi_temp      = rdi;
  1.1906 +      assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
  1.1907 +      assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
  1.1908 +      Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
  1.1909 +
  1.1910 +      // Before looking at dst.length, make sure dst is also an objArray.
  1.1911 +      __ movptr(rsi_dst_klass, dst_klass_addr);
  1.1912 +      __ cmpl(dst_klass_lh_addr, objArray_lh);
  1.1913 +      __ jccb(Assembler::notEqual, L_failed);
  1.1914 +
  1.1915 +      // It is safe to examine both src.length and dst.length.
  1.1916 +      __ movl2ptr(src_pos, SRC_POS);        // reload rsi
  1.1917 +      arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1.1918 +      // (Now src_pos and dst_pos are killed, but not src and dst.)
  1.1919 +
  1.1920 +      // We'll need this temp (don't forget to pop it after the type check).
  1.1921 +      __ push(rbx);
  1.1922 +      Register rbx_src_klass = rbx;
  1.1923 +
  1.1924 +      __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
  1.1925 +      __ movptr(rsi_dst_klass, dst_klass_addr);
  1.1926 +      Address super_check_offset_addr(rsi_dst_klass, sco_offset);
  1.1927 +      Label L_fail_array_check;
  1.1928 +      generate_type_check(rbx_src_klass,
  1.1929 +                          super_check_offset_addr, dst_klass_addr,
  1.1930 +                          rdi_temp, NULL, &L_fail_array_check);
  1.1931 +      // (On fall-through, we have passed the array type check.)
  1.1932 +      __ pop(rbx);
  1.1933 +      __ jmp(L_plain_copy);
  1.1934 +
  1.1935 +      __ BIND(L_fail_array_check);
  1.1936 +      // Reshuffle arguments so we can call checkcast_arraycopy:
  1.1937 +
  1.1938 +      // match initial saves for checkcast_arraycopy
  1.1939 +      // push(rsi);    // already done; see above
  1.1940 +      // push(rdi);    // already done; see above
  1.1941 +      // push(rbx);    // already done; see above
  1.1942 +
  1.1943 +      // Marshal outgoing arguments now, freeing registers.
  1.1944 +      Address   from_arg(rsp, 16+ 4);   // from
  1.1945 +      Address     to_arg(rsp, 16+ 8);   // to
  1.1946 +      Address length_arg(rsp, 16+12);   // elements count
  1.1947 +      Address  ckoff_arg(rsp, 16+16);   // super_check_offset
  1.1948 +      Address  ckval_arg(rsp, 16+20);   // super_klass
  1.1949 +
  1.1950 +      Address SRC_POS_arg(rsp, 16+ 8);
  1.1951 +      Address DST_POS_arg(rsp, 16+16);
  1.1952 +      Address  LENGTH_arg(rsp, 16+20);
  1.1953 +      // push rbx, changed the incoming offsets (why not just use rbp,??)
  1.1954 +      // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
  1.1955 +
  1.1956 +      __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
  1.1957 +      __ movl2ptr(length, LENGTH_arg);    // reload elements count
  1.1958 +      __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
  1.1959 +      __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
  1.1960 +
  1.1961 +      __ movptr(ckval_arg, rbx);          // destination element type
  1.1962 +      __ movl(rbx, Address(rbx, sco_offset));
  1.1963 +      __ movl(ckoff_arg, rbx);          // corresponding class check offset
  1.1964 +
  1.1965 +      __ movl(length_arg, length);      // outgoing length argument
  1.1966 +
  1.1967 +      __ lea(from, Address(src, src_pos, Address::times_ptr,
  1.1968 +                            arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1.1969 +      __ movptr(from_arg, from);
  1.1970 +
  1.1971 +      __ lea(to, Address(dst, dst_pos, Address::times_ptr,
  1.1972 +                          arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1.1973 +      __ movptr(to_arg, to);
  1.1974 +      __ jump(RuntimeAddress(entry_checkcast_arraycopy));
  1.1975 +    }
  1.1976 +
  1.1977 +    return start;
  1.1978 +  }
  1.1979 +
  1.1980 +  void generate_arraycopy_stubs() {
  1.1981 +    address entry;
  1.1982 +    address entry_jbyte_arraycopy;
  1.1983 +    address entry_jshort_arraycopy;
  1.1984 +    address entry_jint_arraycopy;
  1.1985 +    address entry_oop_arraycopy;
  1.1986 +    address entry_jlong_arraycopy;
  1.1987 +    address entry_checkcast_arraycopy;
  1.1988 +
  1.1989 +    StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
  1.1990 +        generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
  1.1991 +                               "arrayof_jbyte_disjoint_arraycopy");
  1.1992 +    StubRoutines::_arrayof_jbyte_arraycopy =
  1.1993 +        generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
  1.1994 +                               NULL, "arrayof_jbyte_arraycopy");
  1.1995 +    StubRoutines::_jbyte_disjoint_arraycopy =
  1.1996 +        generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
  1.1997 +                               "jbyte_disjoint_arraycopy");
  1.1998 +    StubRoutines::_jbyte_arraycopy =
  1.1999 +        generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
  1.2000 +                               &entry_jbyte_arraycopy, "jbyte_arraycopy");
  1.2001 +
  1.2002 +    StubRoutines::_arrayof_jshort_disjoint_arraycopy =
  1.2003 +        generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
  1.2004 +                               "arrayof_jshort_disjoint_arraycopy");
  1.2005 +    StubRoutines::_arrayof_jshort_arraycopy =
  1.2006 +        generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
  1.2007 +                               NULL, "arrayof_jshort_arraycopy");
  1.2008 +    StubRoutines::_jshort_disjoint_arraycopy =
  1.2009 +        generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
  1.2010 +                               "jshort_disjoint_arraycopy");
  1.2011 +    StubRoutines::_jshort_arraycopy =
  1.2012 +        generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
  1.2013 +                               &entry_jshort_arraycopy, "jshort_arraycopy");
  1.2014 +
  1.2015 +    // Next arrays are always aligned on 4 bytes at least.
  1.2016 +    StubRoutines::_jint_disjoint_arraycopy =
  1.2017 +        generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
  1.2018 +                               "jint_disjoint_arraycopy");
  1.2019 +    StubRoutines::_jint_arraycopy =
  1.2020 +        generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
  1.2021 +                               &entry_jint_arraycopy, "jint_arraycopy");
  1.2022 +
  1.2023 +    StubRoutines::_oop_disjoint_arraycopy =
  1.2024 +        generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
  1.2025 +                               "oop_disjoint_arraycopy");
  1.2026 +    StubRoutines::_oop_arraycopy =
  1.2027 +        generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
  1.2028 +                               &entry_oop_arraycopy, "oop_arraycopy");
  1.2029 +
  1.2030 +    StubRoutines::_oop_disjoint_arraycopy_uninit =
  1.2031 +        generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
  1.2032 +                               "oop_disjoint_arraycopy_uninit",
  1.2033 +                               /*dest_uninitialized*/true);
  1.2034 +    StubRoutines::_oop_arraycopy_uninit =
  1.2035 +        generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
  1.2036 +                               NULL, "oop_arraycopy_uninit",
  1.2037 +                               /*dest_uninitialized*/true);
  1.2038 +
  1.2039 +    StubRoutines::_jlong_disjoint_arraycopy =
  1.2040 +        generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
  1.2041 +    StubRoutines::_jlong_arraycopy =
  1.2042 +        generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
  1.2043 +                                    "jlong_arraycopy");
  1.2044 +
  1.2045 +    StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
  1.2046 +    StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
  1.2047 +    StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
  1.2048 +    StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
  1.2049 +    StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
  1.2050 +    StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
  1.2051 +
  1.2052 +    StubRoutines::_arrayof_jint_disjoint_arraycopy       = StubRoutines::_jint_disjoint_arraycopy;
  1.2053 +    StubRoutines::_arrayof_oop_disjoint_arraycopy        = StubRoutines::_oop_disjoint_arraycopy;
  1.2054 +    StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
  1.2055 +    StubRoutines::_arrayof_jlong_disjoint_arraycopy      = StubRoutines::_jlong_disjoint_arraycopy;
  1.2056 +
  1.2057 +    StubRoutines::_arrayof_jint_arraycopy       = StubRoutines::_jint_arraycopy;
  1.2058 +    StubRoutines::_arrayof_oop_arraycopy        = StubRoutines::_oop_arraycopy;
  1.2059 +    StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
  1.2060 +    StubRoutines::_arrayof_jlong_arraycopy      = StubRoutines::_jlong_arraycopy;
  1.2061 +
  1.2062 +    StubRoutines::_checkcast_arraycopy =
  1.2063 +        generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
  1.2064 +    StubRoutines::_checkcast_arraycopy_uninit =
  1.2065 +        generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);
  1.2066 +
  1.2067 +    StubRoutines::_unsafe_arraycopy =
  1.2068 +        generate_unsafe_copy("unsafe_arraycopy",
  1.2069 +                               entry_jbyte_arraycopy,
  1.2070 +                               entry_jshort_arraycopy,
  1.2071 +                               entry_jint_arraycopy,
  1.2072 +                               entry_jlong_arraycopy);
  1.2073 +
  1.2074 +    StubRoutines::_generic_arraycopy =
  1.2075 +        generate_generic_copy("generic_arraycopy",
  1.2076 +                               entry_jbyte_arraycopy,
  1.2077 +                               entry_jshort_arraycopy,
  1.2078 +                               entry_jint_arraycopy,
  1.2079 +                               entry_oop_arraycopy,
  1.2080 +                               entry_jlong_arraycopy,
  1.2081 +                               entry_checkcast_arraycopy);
  1.2082 +  }
  1.2083 +
  1.2084 +  void generate_math_stubs() {
  1.2085 +    {
  1.2086 +      StubCodeMark mark(this, "StubRoutines", "log");
  1.2087 +      StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
  1.2088 +
  1.2089 +      __ fld_d(Address(rsp, 4));
  1.2090 +      __ flog();
  1.2091 +      __ ret(0);
  1.2092 +    }
  1.2093 +    {
  1.2094 +      StubCodeMark mark(this, "StubRoutines", "log10");
  1.2095 +      StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
  1.2096 +
  1.2097 +      __ fld_d(Address(rsp, 4));
  1.2098 +      __ flog10();
  1.2099 +      __ ret(0);
  1.2100 +    }
  1.2101 +    {
  1.2102 +      StubCodeMark mark(this, "StubRoutines", "sin");
  1.2103 +      StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
  1.2104 +
  1.2105 +      __ fld_d(Address(rsp, 4));
  1.2106 +      __ trigfunc('s');
  1.2107 +      __ ret(0);
  1.2108 +    }
  1.2109 +    {
  1.2110 +      StubCodeMark mark(this, "StubRoutines", "cos");
  1.2111 +      StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
  1.2112 +
  1.2113 +      __ fld_d(Address(rsp, 4));
  1.2114 +      __ trigfunc('c');
  1.2115 +      __ ret(0);
  1.2116 +    }
  1.2117 +    {
  1.2118 +      StubCodeMark mark(this, "StubRoutines", "tan");
  1.2119 +      StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
  1.2120 +
  1.2121 +      __ fld_d(Address(rsp, 4));
  1.2122 +      __ trigfunc('t');
  1.2123 +      __ ret(0);
  1.2124 +    }
  1.2125 +    {
  1.2126 +      StubCodeMark mark(this, "StubRoutines", "exp");
  1.2127 +      StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
  1.2128 +
  1.2129 +      __ fld_d(Address(rsp, 4));
  1.2130 +      __ exp_with_fallback(0);
  1.2131 +      __ ret(0);
  1.2132 +    }
  1.2133 +    {
  1.2134 +      StubCodeMark mark(this, "StubRoutines", "pow");
  1.2135 +      StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
  1.2136 +
  1.2137 +      __ fld_d(Address(rsp, 12));
  1.2138 +      __ fld_d(Address(rsp, 4));
  1.2139 +      __ pow_with_fallback(0);
  1.2140 +      __ ret(0);
  1.2141 +    }
  1.2142 +  }
  1.2143 +
  1.2144 +  // AES intrinsic stubs
  1.2145 +  enum {AESBlockSize = 16};
  1.2146 +
  1.2147 +  address generate_key_shuffle_mask() {
  1.2148 +    __ align(16);
  1.2149 +    StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
  1.2150 +    address start = __ pc();
  1.2151 +    __ emit_data(0x00010203, relocInfo::none, 0 );
  1.2152 +    __ emit_data(0x04050607, relocInfo::none, 0 );
  1.2153 +    __ emit_data(0x08090a0b, relocInfo::none, 0 );
  1.2154 +    __ emit_data(0x0c0d0e0f, relocInfo::none, 0 );
  1.2155 +    return start;
  1.2156 +  }
  1.2157 +
  1.2158 +  // Utility routine for loading a 128-bit key word in little endian format
  1.2159 +  // can optionally specify that the shuffle mask is already in an xmmregister
  1.2160 +  void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
  1.2161 +    __ movdqu(xmmdst, Address(key, offset));
  1.2162 +    if (xmm_shuf_mask != NULL) {
  1.2163 +      __ pshufb(xmmdst, xmm_shuf_mask);
  1.2164 +    } else {
  1.2165 +      __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
  1.2166 +    }
  1.2167 +  }
  1.2168 +
  1.2169 +  // aesenc using specified key+offset
  1.2170 +  // can optionally specify that the shuffle mask is already in an xmmregister
  1.2171 +  void aes_enc_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
  1.2172 +    load_key(xmmtmp, key, offset, xmm_shuf_mask);
  1.2173 +    __ aesenc(xmmdst, xmmtmp);
  1.2174 +  }
  1.2175 +
  1.2176 +  // aesdec using specified key+offset
  1.2177 +  // can optionally specify that the shuffle mask is already in an xmmregister
  1.2178 +  void aes_dec_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
  1.2179 +    load_key(xmmtmp, key, offset, xmm_shuf_mask);
  1.2180 +    __ aesdec(xmmdst, xmmtmp);
  1.2181 +  }
  1.2182 +
  1.2183 +
  1.2184 +  // Arguments:
  1.2185 +  //
  1.2186 +  // Inputs:
  1.2187 +  //   c_rarg0   - source byte array address
  1.2188 +  //   c_rarg1   - destination byte array address
  1.2189 +  //   c_rarg2   - K (key) in little endian int array
  1.2190 +  //
  1.2191 +  address generate_aescrypt_encryptBlock() {
  1.2192 +    assert(UseAES, "need AES instructions and misaligned SSE support");
  1.2193 +    __ align(CodeEntryAlignment);
  1.2194 +    StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
  1.2195 +    Label L_doLast;
  1.2196 +    address start = __ pc();
  1.2197 +
  1.2198 +    const Register from        = rdx;      // source array address
  1.2199 +    const Register to          = rdx;      // destination array address
  1.2200 +    const Register key         = rcx;      // key array address
  1.2201 +    const Register keylen      = rax;
  1.2202 +    const Address  from_param(rbp, 8+0);
  1.2203 +    const Address  to_param  (rbp, 8+4);
  1.2204 +    const Address  key_param (rbp, 8+8);
  1.2205 +
  1.2206 +    const XMMRegister xmm_result = xmm0;
  1.2207 +    const XMMRegister xmm_key_shuf_mask = xmm1;
  1.2208 +    const XMMRegister xmm_temp1  = xmm2;
  1.2209 +    const XMMRegister xmm_temp2  = xmm3;
  1.2210 +    const XMMRegister xmm_temp3  = xmm4;
  1.2211 +    const XMMRegister xmm_temp4  = xmm5;
  1.2212 +
  1.2213 +    __ enter();   // required for proper stackwalking of RuntimeStub frame
  1.2214 +    __ movptr(from, from_param);
  1.2215 +    __ movptr(key, key_param);
  1.2216 +
  1.2217 +    // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
  1.2218 +    __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
  1.2219 +
  1.2220 +    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
  1.2221 +    __ movdqu(xmm_result, Address(from, 0));  // get 16 bytes of input
  1.2222 +    __ movptr(to, to_param);
  1.2223 +
  1.2224 +    // For encryption, the java expanded key ordering is just what we need
  1.2225 +
  1.2226 +    load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
  1.2227 +    __ pxor(xmm_result, xmm_temp1);
  1.2228 +
  1.2229 +    load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
  1.2230 +    load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
  1.2231 +    load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
  1.2232 +    load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
  1.2233 +
  1.2234 +    __ aesenc(xmm_result, xmm_temp1);
  1.2235 +    __ aesenc(xmm_result, xmm_temp2);
  1.2236 +    __ aesenc(xmm_result, xmm_temp3);
  1.2237 +    __ aesenc(xmm_result, xmm_temp4);
  1.2238 +
  1.2239 +    load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
  1.2240 +    load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
  1.2241 +    load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
  1.2242 +    load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
  1.2243 +
  1.2244 +    __ aesenc(xmm_result, xmm_temp1);
  1.2245 +    __ aesenc(xmm_result, xmm_temp2);
  1.2246 +    __ aesenc(xmm_result, xmm_temp3);
  1.2247 +    __ aesenc(xmm_result, xmm_temp4);
  1.2248 +
  1.2249 +    load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
  1.2250 +    load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
  1.2251 +
  1.2252 +    __ cmpl(keylen, 44);
  1.2253 +    __ jccb(Assembler::equal, L_doLast);
  1.2254 +
  1.2255 +    __ aesenc(xmm_result, xmm_temp1);
  1.2256 +    __ aesenc(xmm_result, xmm_temp2);
  1.2257 +
  1.2258 +    load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
  1.2259 +    load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
  1.2260 +
  1.2261 +    __ cmpl(keylen, 52);
  1.2262 +    __ jccb(Assembler::equal, L_doLast);
  1.2263 +
  1.2264 +    __ aesenc(xmm_result, xmm_temp1);
  1.2265 +    __ aesenc(xmm_result, xmm_temp2);
  1.2266 +
  1.2267 +    load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
  1.2268 +    load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
  1.2269 +
  1.2270 +    __ BIND(L_doLast);
  1.2271 +    __ aesenc(xmm_result, xmm_temp1);
  1.2272 +    __ aesenclast(xmm_result, xmm_temp2);
  1.2273 +    __ movdqu(Address(to, 0), xmm_result);        // store the result
  1.2274 +    __ xorptr(rax, rax); // return 0
  1.2275 +    __ leave(); // required for proper stackwalking of RuntimeStub frame
  1.2276 +    __ ret(0);
  1.2277 +
  1.2278 +    return start;
  1.2279 +  }
  1.2280 +
  1.2281 +
  1.2282 +  // Arguments:
  1.2283 +  //
  1.2284 +  // Inputs:
  1.2285 +  //   c_rarg0   - source byte array address
  1.2286 +  //   c_rarg1   - destination byte array address
  1.2287 +  //   c_rarg2   - K (key) in little endian int array
  1.2288 +  //
  1.2289 +  address generate_aescrypt_decryptBlock() {
  1.2290 +    assert(UseAES, "need AES instructions and misaligned SSE support");
  1.2291 +    __ align(CodeEntryAlignment);
  1.2292 +    StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
  1.2293 +    Label L_doLast;
  1.2294 +    address start = __ pc();
  1.2295 +
  1.2296 +    const Register from        = rdx;      // source array address
  1.2297 +    const Register to          = rdx;      // destination array address
  1.2298 +    const Register key         = rcx;      // key array address
  1.2299 +    const Register keylen      = rax;
  1.2300 +    const Address  from_param(rbp, 8+0);
  1.2301 +    const Address  to_param  (rbp, 8+4);
  1.2302 +    const Address  key_param (rbp, 8+8);
  1.2303 +
  1.2304 +    const XMMRegister xmm_result = xmm0;
  1.2305 +    const XMMRegister xmm_key_shuf_mask = xmm1;
  1.2306 +    const XMMRegister xmm_temp1  = xmm2;
  1.2307 +    const XMMRegister xmm_temp2  = xmm3;
  1.2308 +    const XMMRegister xmm_temp3  = xmm4;
  1.2309 +    const XMMRegister xmm_temp4  = xmm5;
  1.2310 +
  1.2311 +    __ enter(); // required for proper stackwalking of RuntimeStub frame
  1.2312 +    __ movptr(from, from_param);
  1.2313 +    __ movptr(key, key_param);
  1.2314 +
  1.2315 +    // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
  1.2316 +    __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
  1.2317 +
  1.2318 +    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
  1.2319 +    __ movdqu(xmm_result, Address(from, 0));
  1.2320 +    __ movptr(to, to_param);
  1.2321 +
  1.2322 +    // for decryption java expanded key ordering is rotated one position from what we want
  1.2323 +    // so we start from 0x10 here and hit 0x00 last
  1.2324 +    // we don't know if the key is aligned, hence not using load-execute form
  1.2325 +    load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
  1.2326 +    load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
  1.2327 +    load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
  1.2328 +    load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
  1.2329 +
  1.2330 +    __ pxor  (xmm_result, xmm_temp1);
  1.2331 +    __ aesdec(xmm_result, xmm_temp2);
  1.2332 +    __ aesdec(xmm_result, xmm_temp3);
  1.2333 +    __ aesdec(xmm_result, xmm_temp4);
  1.2334 +
  1.2335 +    load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
  1.2336 +    load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
  1.2337 +    load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
  1.2338 +    load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
  1.2339 +
  1.2340 +    __ aesdec(xmm_result, xmm_temp1);
  1.2341 +    __ aesdec(xmm_result, xmm_temp2);
  1.2342 +    __ aesdec(xmm_result, xmm_temp3);
  1.2343 +    __ aesdec(xmm_result, xmm_temp4);
  1.2344 +
  1.2345 +    load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
  1.2346 +    load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
  1.2347 +    load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
  1.2348 +
  1.2349 +    __ cmpl(keylen, 44);
  1.2350 +    __ jccb(Assembler::equal, L_doLast);
  1.2351 +
  1.2352 +    __ aesdec(xmm_result, xmm_temp1);
  1.2353 +    __ aesdec(xmm_result, xmm_temp2);
  1.2354 +
  1.2355 +    load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
  1.2356 +    load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
  1.2357 +
  1.2358 +    __ cmpl(keylen, 52);
  1.2359 +    __ jccb(Assembler::equal, L_doLast);
  1.2360 +
  1.2361 +    __ aesdec(xmm_result, xmm_temp1);
  1.2362 +    __ aesdec(xmm_result, xmm_temp2);
  1.2363 +
  1.2364 +    load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
  1.2365 +    load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
  1.2366 +
  1.2367 +    __ BIND(L_doLast);
  1.2368 +    __ aesdec(xmm_result, xmm_temp1);
  1.2369 +    __ aesdec(xmm_result, xmm_temp2);
  1.2370 +
  1.2371 +    // for decryption the aesdeclast operation is always on key+0x00
  1.2372 +    __ aesdeclast(xmm_result, xmm_temp3);
  1.2373 +    __ movdqu(Address(to, 0), xmm_result);  // store the result
  1.2374 +    __ xorptr(rax, rax); // return 0
  1.2375 +    __ leave(); // required for proper stackwalking of RuntimeStub frame
  1.2376 +    __ ret(0);
  1.2377 +
  1.2378 +    return start;
  1.2379 +  }
  1.2380 +
  1.2381 +  void handleSOERegisters(bool saving) {
  1.2382 +    const int saveFrameSizeInBytes = 4 * wordSize;
  1.2383 +    const Address saved_rbx     (rbp, -3 * wordSize);
  1.2384 +    const Address saved_rsi     (rbp, -2 * wordSize);
  1.2385 +    const Address saved_rdi     (rbp, -1 * wordSize);
  1.2386 +
  1.2387 +    if (saving) {
  1.2388 +      __ subptr(rsp, saveFrameSizeInBytes);
  1.2389 +      __ movptr(saved_rsi, rsi);
  1.2390 +      __ movptr(saved_rdi, rdi);
  1.2391 +      __ movptr(saved_rbx, rbx);
  1.2392 +    } else {
  1.2393 +      // restoring
  1.2394 +      __ movptr(rsi, saved_rsi);
  1.2395 +      __ movptr(rdi, saved_rdi);
  1.2396 +      __ movptr(rbx, saved_rbx);
  1.2397 +    }
  1.2398 +  }
  1.2399 +
  1.2400 +  // Arguments:
  1.2401 +  //
  1.2402 +  // Inputs:
  1.2403 +  //   c_rarg0   - source byte array address
  1.2404 +  //   c_rarg1   - destination byte array address
  1.2405 +  //   c_rarg2   - K (key) in little endian int array
  1.2406 +  //   c_rarg3   - r vector byte array address
  1.2407 +  //   c_rarg4   - input length
  1.2408 +  //
  1.2409 +  // Output:
  1.2410 +  //   rax       - input length
  1.2411 +  //
  1.2412 +  address generate_cipherBlockChaining_encryptAESCrypt() {
  1.2413 +    assert(UseAES, "need AES instructions and misaligned SSE support");
  1.2414 +    __ align(CodeEntryAlignment);
  1.2415 +    StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
  1.2416 +    address start = __ pc();
  1.2417 +
  1.2418 +    Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
  1.2419 +    const Register from        = rsi;      // source array address
  1.2420 +    const Register to          = rdx;      // destination array address
  1.2421 +    const Register key         = rcx;      // key array address
  1.2422 +    const Register rvec        = rdi;      // r byte array initialized from initvector array address
  1.2423 +                                           // and left with the results of the last encryption block
  1.2424 +    const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
  1.2425 +    const Register pos         = rax;
  1.2426 +
  1.2427 +    // xmm register assignments for the loops below
  1.2428 +    const XMMRegister xmm_result = xmm0;
  1.2429 +    const XMMRegister xmm_temp   = xmm1;
  1.2430 +    // first 6 keys preloaded into xmm2-xmm7
  1.2431 +    const int XMM_REG_NUM_KEY_FIRST = 2;
  1.2432 +    const int XMM_REG_NUM_KEY_LAST  = 7;
  1.2433 +    const XMMRegister xmm_key0   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
  1.2434 +
  1.2435 +    __ enter(); // required for proper stackwalking of RuntimeStub frame
  1.2436 +    handleSOERegisters(true /*saving*/);
  1.2437 +
  1.2438 +    // load registers from incoming parameters
  1.2439 +    const Address  from_param(rbp, 8+0);
  1.2440 +    const Address  to_param  (rbp, 8+4);
  1.2441 +    const Address  key_param (rbp, 8+8);
  1.2442 +    const Address  rvec_param (rbp, 8+12);
  1.2443 +    const Address  len_param  (rbp, 8+16);
  1.2444 +    __ movptr(from , from_param);
  1.2445 +    __ movptr(to   , to_param);
  1.2446 +    __ movptr(key  , key_param);
  1.2447 +    __ movptr(rvec , rvec_param);
  1.2448 +    __ movptr(len_reg , len_param);
  1.2449 +
  1.2450 +    const XMMRegister xmm_key_shuf_mask = xmm_temp;  // used temporarily to swap key bytes up front
  1.2451 +    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
  1.2452 +    // load up xmm regs 2 thru 7 with keys 0-5
  1.2453 +    for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
  1.2454 +      load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
  1.2455 +      offset += 0x10;
  1.2456 +    }
  1.2457 +
  1.2458 +    __ movdqu(xmm_result, Address(rvec, 0x00));   // initialize xmm_result with r vec
  1.2459 +
  1.2460 +    // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
  1.2461 +    __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
  1.2462 +    __ cmpl(rax, 44);
  1.2463 +    __ jcc(Assembler::notEqual, L_key_192_256);
  1.2464 +
  1.2465 +    // 128 bit code follows here
  1.2466 +    __ movl(pos, 0);
  1.2467 +    __ align(OptoLoopAlignment);
  1.2468 +    __ BIND(L_loopTop_128);
  1.2469 +    __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
  1.2470 +    __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
  1.2471 +
  1.2472 +    __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
  1.2473 +    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
  1.2474 +      __ aesenc(xmm_result, as_XMMRegister(rnum));
  1.2475 +    }
  1.2476 +    for (int key_offset = 0x60; key_offset <= 0x90; key_offset += 0x10) {
  1.2477 +      aes_enc_key(xmm_result, xmm_temp, key, key_offset);
  1.2478 +    }
  1.2479 +    load_key(xmm_temp, key, 0xa0);
  1.2480 +    __ aesenclast(xmm_result, xmm_temp);
  1.2481 +
  1.2482 +    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
  1.2483 +    // no need to store r to memory until we exit
  1.2484 +    __ addptr(pos, AESBlockSize);
  1.2485 +    __ subptr(len_reg, AESBlockSize);
  1.2486 +    __ jcc(Assembler::notEqual, L_loopTop_128);
  1.2487 +
  1.2488 +    __ BIND(L_exit);
  1.2489 +    __ movdqu(Address(rvec, 0), xmm_result);     // final value of r stored in rvec of CipherBlockChaining object
  1.2490 +
  1.2491 +    handleSOERegisters(false /*restoring*/);
  1.2492 +    __ movptr(rax, len_param); // return length
  1.2493 +    __ leave();                                  // required for proper stackwalking of RuntimeStub frame
  1.2494 +    __ ret(0);
  1.2495 +
  1.2496 +    __ BIND(L_key_192_256);
  1.2497 +    // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
  1.2498 +    __ cmpl(rax, 52);
  1.2499 +    __ jcc(Assembler::notEqual, L_key_256);
  1.2500 +
  1.2501 +    // 192-bit code follows here (could be changed to use more xmm registers)
  1.2502 +    __ movl(pos, 0);
  1.2503 +    __ align(OptoLoopAlignment);
  1.2504 +    __ BIND(L_loopTop_192);
  1.2505 +    __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
  1.2506 +    __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
  1.2507 +
  1.2508 +    __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
  1.2509 +    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
  1.2510 +      __ aesenc(xmm_result, as_XMMRegister(rnum));
  1.2511 +    }
  1.2512 +    for (int key_offset = 0x60; key_offset <= 0xb0; key_offset += 0x10) {
  1.2513 +      aes_enc_key(xmm_result, xmm_temp, key, key_offset);
  1.2514 +    }
  1.2515 +    load_key(xmm_temp, key, 0xc0);
  1.2516 +    __ aesenclast(xmm_result, xmm_temp);
  1.2517 +
  1.2518 +    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
  1.2519 +    // no need to store r to memory until we exit
  1.2520 +    __ addptr(pos, AESBlockSize);
  1.2521 +    __ subptr(len_reg, AESBlockSize);
  1.2522 +    __ jcc(Assembler::notEqual, L_loopTop_192);
  1.2523 +    __ jmp(L_exit);
  1.2524 +
  1.2525 +    __ BIND(L_key_256);
  1.2526 +    // 256-bit code follows here (could be changed to use more xmm registers)
  1.2527 +    __ movl(pos, 0);
  1.2528 +    __ align(OptoLoopAlignment);
  1.2529 +    __ BIND(L_loopTop_256);
  1.2530 +    __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
  1.2531 +    __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
  1.2532 +
  1.2533 +    __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
  1.2534 +    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
  1.2535 +      __ aesenc(xmm_result, as_XMMRegister(rnum));
  1.2536 +    }
  1.2537 +    for (int key_offset = 0x60; key_offset <= 0xd0; key_offset += 0x10) {
  1.2538 +      aes_enc_key(xmm_result, xmm_temp, key, key_offset);
  1.2539 +    }
  1.2540 +    load_key(xmm_temp, key, 0xe0);
  1.2541 +    __ aesenclast(xmm_result, xmm_temp);
  1.2542 +
  1.2543 +    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
  1.2544 +    // no need to store r to memory until we exit
  1.2545 +    __ addptr(pos, AESBlockSize);
  1.2546 +    __ subptr(len_reg, AESBlockSize);
  1.2547 +    __ jcc(Assembler::notEqual, L_loopTop_256);
  1.2548 +    __ jmp(L_exit);
  1.2549 +
  1.2550 +    return start;
  1.2551 +  }
  1.2552 +
  1.2553 +
  1.2554 +  // CBC AES Decryption.
  1.2555 +  // In 32-bit stub, because of lack of registers we do not try to parallelize 4 blocks at a time.
  1.2556 +  //
  1.2557 +  // Arguments:
  1.2558 +  //
  1.2559 +  // Inputs:
  1.2560 +  //   c_rarg0   - source byte array address
  1.2561 +  //   c_rarg1   - destination byte array address
  1.2562 +  //   c_rarg2   - K (key) in little endian int array
  1.2563 +  //   c_rarg3   - r vector byte array address
  1.2564 +  //   c_rarg4   - input length
  1.2565 +  //
  1.2566 +  // Output:
  1.2567 +  //   rax       - input length
  1.2568 +  //
  1.2569 +
  1.2570 +  address generate_cipherBlockChaining_decryptAESCrypt() {
  1.2571 +    assert(UseAES, "need AES instructions and misaligned SSE support");
  1.2572 +    __ align(CodeEntryAlignment);
  1.2573 +    StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
  1.2574 +    address start = __ pc();
  1.2575 +
  1.2576 +    Label L_exit, L_key_192_256, L_key_256;
  1.2577 +    Label L_singleBlock_loopTop_128;
  1.2578 +    Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
  1.2579 +    const Register from        = rsi;      // source array address
  1.2580 +    const Register to          = rdx;      // destination array address
  1.2581 +    const Register key         = rcx;      // key array address
  1.2582 +    const Register rvec        = rdi;      // r byte array initialized from initvector array address
  1.2583 +                                           // and left with the results of the last encryption block
  1.2584 +    const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
  1.2585 +    const Register pos         = rax;
  1.2586 +
  1.2587 +    // xmm register assignments for the loops below
  1.2588 +    const XMMRegister xmm_result = xmm0;
  1.2589 +    const XMMRegister xmm_temp   = xmm1;
  1.2590 +    // first 6 keys preloaded into xmm2-xmm7
  1.2591 +    const int XMM_REG_NUM_KEY_FIRST = 2;
  1.2592 +    const int XMM_REG_NUM_KEY_LAST  = 7;
  1.2593 +    const int FIRST_NON_REG_KEY_offset = 0x70;
  1.2594 +    const XMMRegister xmm_key_first   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
  1.2595 +
  1.2596 +    __ enter(); // required for proper stackwalking of RuntimeStub frame
  1.2597 +    handleSOERegisters(true /*saving*/);
  1.2598 +
  1.2599 +    // load registers from incoming parameters
  1.2600 +    const Address  from_param(rbp, 8+0);
  1.2601 +    const Address  to_param  (rbp, 8+4);
  1.2602 +    const Address  key_param (rbp, 8+8);
  1.2603 +    const Address  rvec_param (rbp, 8+12);
  1.2604 +    const Address  len_param  (rbp, 8+16);
  1.2605 +    __ movptr(from , from_param);
  1.2606 +    __ movptr(to   , to_param);
  1.2607 +    __ movptr(key  , key_param);
  1.2608 +    __ movptr(rvec , rvec_param);
  1.2609 +    __ movptr(len_reg , len_param);
  1.2610 +
  1.2611 +    // the java expanded key ordering is rotated one position from what we want
  1.2612 +    // so we start from 0x10 here and hit 0x00 last
  1.2613 +    const XMMRegister xmm_key_shuf_mask = xmm1;  // used temporarily to swap key bytes up front
  1.2614 +    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
  1.2615 +    // load up xmm regs 2 thru 6 with first 5 keys
  1.2616 +    for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
  1.2617 +      load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
  1.2618 +      offset += 0x10;
  1.2619 +    }
  1.2620 +
  1.2621 +    // inside here, use the rvec register to point to previous block cipher
  1.2622 +    // with which we xor at the end of each newly decrypted block
  1.2623 +    const Register  prev_block_cipher_ptr = rvec;
  1.2624 +
  1.2625 +    // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
  1.2626 +    __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
  1.2627 +    __ cmpl(rax, 44);
  1.2628 +    __ jcc(Assembler::notEqual, L_key_192_256);
  1.2629 +
  1.2630 +
  1.2631 +    // 128-bit code follows here, parallelized
  1.2632 +    __ movl(pos, 0);
  1.2633 +    __ align(OptoLoopAlignment);
  1.2634 +    __ BIND(L_singleBlock_loopTop_128);
  1.2635 +    __ cmpptr(len_reg, 0);           // any blocks left??
  1.2636 +    __ jcc(Assembler::equal, L_exit);
  1.2637 +    __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
  1.2638 +    __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
  1.2639 +    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
  1.2640 +      __ aesdec(xmm_result, as_XMMRegister(rnum));
  1.2641 +    }
  1.2642 +    for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xa0; key_offset += 0x10) {   // 128-bit runs up to key offset a0
  1.2643 +      aes_dec_key(xmm_result, xmm_temp, key, key_offset);
  1.2644 +    }
  1.2645 +    load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
  1.2646 +    __ aesdeclast(xmm_result, xmm_temp);
  1.2647 +    __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
  1.2648 +    __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
  1.2649 +    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
  1.2650 +    // no need to store r to memory until we exit
  1.2651 +    __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
  1.2652 +    __ addptr(pos, AESBlockSize);
  1.2653 +    __ subptr(len_reg, AESBlockSize);
  1.2654 +    __ jmp(L_singleBlock_loopTop_128);
  1.2655 +
  1.2656 +
  1.2657 +    __ BIND(L_exit);
  1.2658 +    __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
  1.2659 +    __ movptr(rvec , rvec_param);                                     // restore this since used in loop
  1.2660 +    __ movdqu(Address(rvec, 0), xmm_temp);                            // final value of r stored in rvec of CipherBlockChaining object
  1.2661 +    handleSOERegisters(false /*restoring*/);
  1.2662 +    __ movptr(rax, len_param); // return length
  1.2663 +    __ leave();                                                       // required for proper stackwalking of RuntimeStub frame
  1.2664 +    __ ret(0);
  1.2665 +
  1.2666 +
  1.2667 +    __ BIND(L_key_192_256);
  1.2668 +    // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
  1.2669 +    __ cmpl(rax, 52);
  1.2670 +    __ jcc(Assembler::notEqual, L_key_256);
  1.2671 +
  1.2672 +    // 192-bit code follows here (could be optimized to use parallelism)
  1.2673 +    __ movl(pos, 0);
  1.2674 +    __ align(OptoLoopAlignment);
  1.2675 +    __ BIND(L_singleBlock_loopTop_192);
  1.2676 +    __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
  1.2677 +    __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
  1.2678 +    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
  1.2679 +      __ aesdec(xmm_result, as_XMMRegister(rnum));
  1.2680 +    }
  1.2681 +    for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xc0; key_offset += 0x10) {   // 192-bit runs up to key offset c0
  1.2682 +      aes_dec_key(xmm_result, xmm_temp, key, key_offset);
  1.2683 +    }
  1.2684 +    load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
  1.2685 +    __ aesdeclast(xmm_result, xmm_temp);
  1.2686 +    __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
  1.2687 +    __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
  1.2688 +    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
  1.2689 +    // no need to store r to memory until we exit
  1.2690 +    __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
  1.2691 +    __ addptr(pos, AESBlockSize);
  1.2692 +    __ subptr(len_reg, AESBlockSize);
  1.2693 +    __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
  1.2694 +    __ jmp(L_exit);
  1.2695 +
  1.2696 +    __ BIND(L_key_256);
  1.2697 +    // 256-bit code follows here (could be optimized to use parallelism)
  1.2698 +    __ movl(pos, 0);
  1.2699 +    __ align(OptoLoopAlignment);
  1.2700 +    __ BIND(L_singleBlock_loopTop_256);
  1.2701 +    __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
  1.2702 +    __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
  1.2703 +    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
  1.2704 +      __ aesdec(xmm_result, as_XMMRegister(rnum));
  1.2705 +    }
  1.2706 +    for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xe0; key_offset += 0x10) {   // 256-bit runs up to key offset e0
  1.2707 +      aes_dec_key(xmm_result, xmm_temp, key, key_offset);
  1.2708 +    }
  1.2709 +    load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
  1.2710 +    __ aesdeclast(xmm_result, xmm_temp);
  1.2711 +    __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
  1.2712 +    __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
  1.2713 +    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
  1.2714 +    // no need to store r to memory until we exit
  1.2715 +    __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
  1.2716 +    __ addptr(pos, AESBlockSize);
  1.2717 +    __ subptr(len_reg, AESBlockSize);
  1.2718 +    __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
  1.2719 +    __ jmp(L_exit);
  1.2720 +
  1.2721 +    return start;
  1.2722 +  }
  1.2723 +
  1.2724 +  /**
  1.2725 +   *  Arguments:
  1.2726 +   *
  1.2727 +   * Inputs:
  1.2728 +   *   rsp(4)   - int crc
  1.2729 +   *   rsp(8)   - byte* buf
  1.2730 +   *   rsp(12)  - int length
  1.2731 +   *
  1.2732 +   * Ouput:
  1.2733 +   *       rax   - int crc result
  1.2734 +   */
  1.2735 +  address generate_updateBytesCRC32() {
  1.2736 +    assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
  1.2737 +
  1.2738 +    __ align(CodeEntryAlignment);
  1.2739 +    StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
  1.2740 +
  1.2741 +    address start = __ pc();
  1.2742 +
  1.2743 +    const Register crc   = rdx;  // crc
  1.2744 +    const Register buf   = rsi;  // source java byte array address
  1.2745 +    const Register len   = rcx;  // length
  1.2746 +    const Register table = rdi;  // crc_table address (reuse register)
  1.2747 +    const Register tmp   = rbx;
  1.2748 +    assert_different_registers(crc, buf, len, table, tmp, rax);
  1.2749 +
  1.2750 +    BLOCK_COMMENT("Entry:");
  1.2751 +    __ enter(); // required for proper stackwalking of RuntimeStub frame
  1.2752 +    __ push(rsi);
  1.2753 +    __ push(rdi);
  1.2754 +    __ push(rbx);
  1.2755 +
  1.2756 +    Address crc_arg(rbp, 8 + 0);
  1.2757 +    Address buf_arg(rbp, 8 + 4);
  1.2758 +    Address len_arg(rbp, 8 + 8);
  1.2759 +
  1.2760 +    // Load up:
  1.2761 +    __ movl(crc,   crc_arg);
  1.2762 +    __ movptr(buf, buf_arg);
  1.2763 +    __ movl(len,   len_arg);
  1.2764 +
  1.2765 +    __ kernel_crc32(crc, buf, len, table, tmp);
  1.2766 +
  1.2767 +    __ movl(rax, crc);
  1.2768 +    __ pop(rbx);
  1.2769 +    __ pop(rdi);
  1.2770 +    __ pop(rsi);
  1.2771 +    __ leave(); // required for proper stackwalking of RuntimeStub frame
  1.2772 +    __ ret(0);
  1.2773 +
  1.2774 +    return start;
  1.2775 +  }
  1.2776 +
  1.2777 +  // Safefetch stubs.
  1.2778 +  void generate_safefetch(const char* name, int size, address* entry,
  1.2779 +                          address* fault_pc, address* continuation_pc) {
  1.2780 +    // safefetch signatures:
  1.2781 +    //   int      SafeFetch32(int*      adr, int      errValue);
  1.2782 +    //   intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
  1.2783 +
  1.2784 +    StubCodeMark mark(this, "StubRoutines", name);
  1.2785 +
  1.2786 +    // Entry point, pc or function descriptor.
  1.2787 +    *entry = __ pc();
  1.2788 +
  1.2789 +    __ movl(rax, Address(rsp, 0x8));
  1.2790 +    __ movl(rcx, Address(rsp, 0x4));
  1.2791 +    // Load *adr into eax, may fault.
  1.2792 +    *fault_pc = __ pc();
  1.2793 +    switch (size) {
  1.2794 +      case 4:
  1.2795 +        // int32_t
  1.2796 +        __ movl(rax, Address(rcx, 0));
  1.2797 +        break;
  1.2798 +      case 8:
  1.2799 +        // int64_t
  1.2800 +        Unimplemented();
  1.2801 +        break;
  1.2802 +      default:
  1.2803 +        ShouldNotReachHere();
  1.2804 +    }
  1.2805 +
  1.2806 +    // Return errValue or *adr.
  1.2807 +    *continuation_pc = __ pc();
  1.2808 +    __ ret(0);
  1.2809 +  }
  1.2810 +
  1.2811 + public:
  1.2812 +  // Information about frame layout at time of blocking runtime call.
  1.2813 +  // Note that we only have to preserve callee-saved registers since
  1.2814 +  // the compilers are responsible for supplying a continuation point
  1.2815 +  // if they expect all registers to be preserved.
  1.2816 +  enum layout {
  1.2817 +    thread_off,    // last_java_sp
  1.2818 +    arg1_off,
  1.2819 +    arg2_off,
  1.2820 +    rbp_off,       // callee saved register
  1.2821 +    ret_pc,
  1.2822 +    framesize
  1.2823 +  };
  1.2824 +
  1.2825 + private:
  1.2826 +
  1.2827 +#undef  __
  1.2828 +#define __ masm->
  1.2829 +
  1.2830 +  //------------------------------------------------------------------------------------------------------------------------
  1.2831 +  // Continuation point for throwing of implicit exceptions that are not handled in
  1.2832 +  // the current activation. Fabricates an exception oop and initiates normal
  1.2833 +  // exception dispatching in this frame.
  1.2834 +  //
  1.2835 +  // Previously the compiler (c2) allowed for callee save registers on Java calls.
  1.2836 +  // This is no longer true after adapter frames were removed but could possibly
  1.2837 +  // be brought back in the future if the interpreter code was reworked and it
  1.2838 +  // was deemed worthwhile. The comment below was left to describe what must
  1.2839 +  // happen here if callee saves were resurrected. As it stands now this stub
  1.2840 +  // could actually be a vanilla BufferBlob and have now oopMap at all.
  1.2841 +  // Since it doesn't make much difference we've chosen to leave it the
  1.2842 +  // way it was in the callee save days and keep the comment.
  1.2843 +
  1.2844 +  // If we need to preserve callee-saved values we need a callee-saved oop map and
  1.2845 +  // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
  1.2846 +  // If the compiler needs all registers to be preserved between the fault
  1.2847 +  // point and the exception handler then it must assume responsibility for that in
  1.2848 +  // AbstractCompiler::continuation_for_implicit_null_exception or
  1.2849 +  // continuation_for_implicit_division_by_zero_exception. All other implicit
  1.2850 +  // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
  1.2851 +  // either at call sites or otherwise assume that stack unwinding will be initiated,
  1.2852 +  // so caller saved registers were assumed volatile in the compiler.
  1.2853 +  address generate_throw_exception(const char* name, address runtime_entry,
  1.2854 +                                   Register arg1 = noreg, Register arg2 = noreg) {
  1.2855 +
  1.2856 +    int insts_size = 256;
  1.2857 +    int locs_size  = 32;
  1.2858 +
  1.2859 +    CodeBuffer code(name, insts_size, locs_size);
  1.2860 +    OopMapSet* oop_maps  = new OopMapSet();
  1.2861 +    MacroAssembler* masm = new MacroAssembler(&code);
  1.2862 +
  1.2863 +    address start = __ pc();
  1.2864 +
  1.2865 +    // This is an inlined and slightly modified version of call_VM
  1.2866 +    // which has the ability to fetch the return PC out of
  1.2867 +    // thread-local storage and also sets up last_Java_sp slightly
  1.2868 +    // differently than the real call_VM
  1.2869 +    Register java_thread = rbx;
  1.2870 +    __ get_thread(java_thread);
  1.2871 +
  1.2872 +    __ enter(); // required for proper stackwalking of RuntimeStub frame
  1.2873 +
  1.2874 +    // pc and rbp, already pushed
  1.2875 +    __ subptr(rsp, (framesize-2) * wordSize); // prolog
  1.2876 +
  1.2877 +    // Frame is now completed as far as size and linkage.
  1.2878 +
  1.2879 +    int frame_complete = __ pc() - start;
  1.2880 +
  1.2881 +    // push java thread (becomes first argument of C function)
  1.2882 +    __ movptr(Address(rsp, thread_off * wordSize), java_thread);
  1.2883 +    if (arg1 != noreg) {
  1.2884 +      __ movptr(Address(rsp, arg1_off * wordSize), arg1);
  1.2885 +    }
  1.2886 +    if (arg2 != noreg) {
  1.2887 +      assert(arg1 != noreg, "missing reg arg");
  1.2888 +      __ movptr(Address(rsp, arg2_off * wordSize), arg2);
  1.2889 +    }
  1.2890 +
  1.2891 +    // Set up last_Java_sp and last_Java_fp
  1.2892 +    __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
  1.2893 +
  1.2894 +    // Call runtime
  1.2895 +    BLOCK_COMMENT("call runtime_entry");
  1.2896 +    __ call(RuntimeAddress(runtime_entry));
  1.2897 +    // Generate oop map
  1.2898 +    OopMap* map =  new OopMap(framesize, 0);
  1.2899 +    oop_maps->add_gc_map(__ pc() - start, map);
  1.2900 +
  1.2901 +    // restore the thread (cannot use the pushed argument since arguments
  1.2902 +    // may be overwritten by C code generated by an optimizing compiler);
  1.2903 +    // however can use the register value directly if it is callee saved.
  1.2904 +    __ get_thread(java_thread);
  1.2905 +
  1.2906 +    __ reset_last_Java_frame(java_thread, true, false);
  1.2907 +
  1.2908 +    __ leave(); // required for proper stackwalking of RuntimeStub frame
  1.2909 +
  1.2910 +    // check for pending exceptions
  1.2911 +#ifdef ASSERT
  1.2912 +    Label L;
  1.2913 +    __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1.2914 +    __ jcc(Assembler::notEqual, L);
  1.2915 +    __ should_not_reach_here();
  1.2916 +    __ bind(L);
  1.2917 +#endif /* ASSERT */
  1.2918 +    __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1.2919 +
  1.2920 +
  1.2921 +    RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
  1.2922 +    return stub->entry_point();
  1.2923 +  }
  1.2924 +
  1.2925 +
  1.2926 +  void create_control_words() {
  1.2927 +    // Round to nearest, 53-bit mode, exceptions masked
  1.2928 +    StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
  1.2929 +    // Round to zero, 53-bit mode, exception mased
  1.2930 +    StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
  1.2931 +    // Round to nearest, 24-bit mode, exceptions masked
  1.2932 +    StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
  1.2933 +    // Round to nearest, 64-bit mode, exceptions masked
  1.2934 +    StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
  1.2935 +    // Round to nearest, 64-bit mode, exceptions masked
  1.2936 +    StubRoutines::_mxcsr_std           = 0x1F80;
  1.2937 +    // Note: the following two constants are 80-bit values
  1.2938 +    //       layout is critical for correct loading by FPU.
  1.2939 +    // Bias for strict fp multiply/divide
  1.2940 +    StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
  1.2941 +    StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
  1.2942 +    StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
  1.2943 +    // Un-Bias for strict fp multiply/divide
  1.2944 +    StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
  1.2945 +    StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
  1.2946 +    StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
  1.2947 +  }
  1.2948 +
  1.2949 +  //---------------------------------------------------------------------------
  1.2950 +  // Initialization
  1.2951 +
  1.2952 +  void generate_initial() {
  1.2953 +    // Generates all stubs and initializes the entry points
  1.2954 +
  1.2955 +    //------------------------------------------------------------------------------------------------------------------------
  1.2956 +    // entry points that exist in all platforms
  1.2957 +    // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
  1.2958 +    //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
  1.2959 +    StubRoutines::_forward_exception_entry      = generate_forward_exception();
  1.2960 +
  1.2961 +    StubRoutines::_call_stub_entry              =
  1.2962 +      generate_call_stub(StubRoutines::_call_stub_return_address);
  1.2963 +    // is referenced by megamorphic call
  1.2964 +    StubRoutines::_catch_exception_entry        = generate_catch_exception();
  1.2965 +
  1.2966 +    // These are currently used by Solaris/Intel
  1.2967 +    StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
  1.2968 +
  1.2969 +    StubRoutines::_handler_for_unsafe_access_entry =
  1.2970 +      generate_handler_for_unsafe_access();
  1.2971 +
  1.2972 +    // platform dependent
  1.2973 +    create_control_words();
  1.2974 +
  1.2975 +    StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
  1.2976 +    StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
  1.2977 +    StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
  1.2978 +                                                                                   CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
  1.2979 +    StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
  1.2980 +                                                                                   CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  1.2981 +
  1.2982 +    // Build this early so it's available for the interpreter
  1.2983 +    StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
  1.2984 +
  1.2985 +    if (UseCRC32Intrinsics) {
  1.2986 +      // set table address before stub generation which use it
  1.2987 +      StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
  1.2988 +      StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
  1.2989 +    }
  1.2990 +  }
  1.2991 +
  1.2992 +
  1.2993 +  void generate_all() {
  1.2994 +    // Generates all stubs and initializes the entry points
  1.2995 +
  1.2996 +    // These entry points require SharedInfo::stack0 to be set up in non-core builds
  1.2997 +    // and need to be relocatable, so they each fabricate a RuntimeStub internally.
  1.2998 +    StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
  1.2999 +    StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
  1.3000 +    StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
  1.3001 +
  1.3002 +    //------------------------------------------------------------------------------------------------------------------------
  1.3003 +    // entry points that are platform specific
  1.3004 +
  1.3005 +    // support for verify_oop (must happen after universe_init)
  1.3006 +    StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
  1.3007 +
  1.3008 +    // arraycopy stubs used by compilers
  1.3009 +    generate_arraycopy_stubs();
  1.3010 +
  1.3011 +    generate_math_stubs();
  1.3012 +
  1.3013 +    // don't bother generating these AES intrinsic stubs unless global flag is set
  1.3014 +    if (UseAESIntrinsics) {
  1.3015 +      StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask();  // might be needed by the others
  1.3016 +
  1.3017 +      StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
  1.3018 +      StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
  1.3019 +      StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
  1.3020 +      StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
  1.3021 +    }
  1.3022 +
  1.3023 +    // Safefetch stubs.
  1.3024 +    generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
  1.3025 +                                                   &StubRoutines::_safefetch32_fault_pc,
  1.3026 +                                                   &StubRoutines::_safefetch32_continuation_pc);
  1.3027 +    StubRoutines::_safefetchN_entry           = StubRoutines::_safefetch32_entry;
  1.3028 +    StubRoutines::_safefetchN_fault_pc        = StubRoutines::_safefetch32_fault_pc;
  1.3029 +    StubRoutines::_safefetchN_continuation_pc = StubRoutines::_safefetch32_continuation_pc;
  1.3030 +  }
  1.3031 +
  1.3032 +
  1.3033 + public:
  1.3034 +  StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  1.3035 +    if (all) {
  1.3036 +      generate_all();
  1.3037 +    } else {
  1.3038 +      generate_initial();
  1.3039 +    }
  1.3040 +  }
  1.3041 +}; // end class declaration
  1.3042 +
  1.3043 +
  1.3044 +void StubGenerator_generate(CodeBuffer* code, bool all) {
  1.3045 +  StubGenerator g(code, all);
  1.3046 +}

mercurial