diff -r 000000000000 -r f90c822e73f8 src/cpu/x86/vm/stubGenerator_x86_32.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/cpu/x86/vm/stubGenerator_x86_32.cpp Wed Apr 27 01:25:04 2016 +0800 @@ -0,0 +1,3043 @@ +/* + * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + * + */ + +#include "precompiled.hpp" +#include "asm/macroAssembler.hpp" +#include "asm/macroAssembler.inline.hpp" +#include "interpreter/interpreter.hpp" +#include "nativeInst_x86.hpp" +#include "oops/instanceOop.hpp" +#include "oops/method.hpp" +#include "oops/objArrayKlass.hpp" +#include "oops/oop.inline.hpp" +#include "prims/methodHandles.hpp" +#include "runtime/frame.inline.hpp" +#include "runtime/handles.inline.hpp" +#include "runtime/sharedRuntime.hpp" +#include "runtime/stubCodeGenerator.hpp" +#include "runtime/stubRoutines.hpp" +#include "runtime/thread.inline.hpp" +#include "utilities/top.hpp" +#ifdef COMPILER2 +#include "opto/runtime.hpp" +#endif + +// Declaration and definition of StubGenerator (no .hpp file). +// For a more detailed description of the stub routine structure +// see the comment in stubRoutines.hpp + +#define __ _masm-> +#define a__ ((Assembler*)_masm)-> + +#ifdef PRODUCT +#define BLOCK_COMMENT(str) /* nothing */ +#else +#define BLOCK_COMMENT(str) __ block_comment(str) +#endif + +#define BIND(label) bind(label); BLOCK_COMMENT(#label ":") + +const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions +const int FPU_CNTRL_WRD_MASK = 0xFFFF; + +// ------------------------------------------------------------------------------------------------------------------------- +// Stub Code definitions + +static address handle_unsafe_access() { + JavaThread* thread = JavaThread::current(); + address pc = thread->saved_exception_pc(); + // pc is the instruction which we must emulate + // doing a no-op is fine: return garbage from the load + // therefore, compute npc + address npc = Assembler::locate_next_instruction(pc); + + // request an async exception + thread->set_pending_unsafe_access_error(); + + // return address of next instruction to execute + return npc; +} + +class StubGenerator: public StubCodeGenerator { + private: + +#ifdef PRODUCT +#define inc_counter_np(counter) ((void)0) +#else + void inc_counter_np_(int& counter) { + __ incrementl(ExternalAddress((address)&counter)); + } +#define inc_counter_np(counter) \ + BLOCK_COMMENT("inc_counter " #counter); \ + inc_counter_np_(counter); +#endif //PRODUCT + + void inc_copy_counter_np(BasicType t) { +#ifndef PRODUCT + switch (t) { + case T_BYTE: inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return; + case T_SHORT: inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return; + case T_INT: inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return; + case T_LONG: inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return; + case T_OBJECT: inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return; + } + ShouldNotReachHere(); +#endif //PRODUCT + } + + //------------------------------------------------------------------------------------------------------------------------ + // Call stubs are used to call Java from C + // + // [ return_from_Java ] <--- rsp + // [ argument word n ] + // ... + // -N [ argument word 1 ] + // -7 [ Possible padding for stack alignment ] + // -6 [ Possible padding for stack alignment ] + // -5 [ Possible padding for stack alignment ] + // -4 [ mxcsr save ] <--- rsp_after_call + // -3 [ saved rbx, ] + // -2 [ saved rsi ] + // -1 [ saved rdi ] + // 0 [ saved rbp, ] <--- rbp, + // 1 [ return address ] + // 2 [ ptr. to call wrapper ] + // 3 [ result ] + // 4 [ result_type ] + // 5 [ method ] + // 6 [ entry_point ] + // 7 [ parameters ] + // 8 [ parameter_size ] + // 9 [ thread ] + + + address generate_call_stub(address& return_address) { + StubCodeMark mark(this, "StubRoutines", "call_stub"); + address start = __ pc(); + + // stub code parameters / addresses + assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code"); + bool sse_save = false; + const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()! + const int locals_count_in_bytes (4*wordSize); + const Address mxcsr_save (rbp, -4 * wordSize); + const Address saved_rbx (rbp, -3 * wordSize); + const Address saved_rsi (rbp, -2 * wordSize); + const Address saved_rdi (rbp, -1 * wordSize); + const Address result (rbp, 3 * wordSize); + const Address result_type (rbp, 4 * wordSize); + const Address method (rbp, 5 * wordSize); + const Address entry_point (rbp, 6 * wordSize); + const Address parameters (rbp, 7 * wordSize); + const Address parameter_size(rbp, 8 * wordSize); + const Address thread (rbp, 9 * wordSize); // same as in generate_catch_exception()! + sse_save = UseSSE > 0; + + // stub code + __ enter(); + __ movptr(rcx, parameter_size); // parameter counter + __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes + __ addptr(rcx, locals_count_in_bytes); // reserve space for register saves + __ subptr(rsp, rcx); + __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack + + // save rdi, rsi, & rbx, according to C calling conventions + __ movptr(saved_rdi, rdi); + __ movptr(saved_rsi, rsi); + __ movptr(saved_rbx, rbx); + // save and initialize %mxcsr + if (sse_save) { + Label skip_ldmx; + __ stmxcsr(mxcsr_save); + __ movl(rax, mxcsr_save); + __ andl(rax, MXCSR_MASK); // Only check control and mask bits + ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std()); + __ cmp32(rax, mxcsr_std); + __ jcc(Assembler::equal, skip_ldmx); + __ ldmxcsr(mxcsr_std); + __ bind(skip_ldmx); + } + + // make sure the control word is correct. + __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std())); + +#ifdef ASSERT + // make sure we have no pending exceptions + { Label L; + __ movptr(rcx, thread); + __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD); + __ jcc(Assembler::equal, L); + __ stop("StubRoutines::call_stub: entered with pending exception"); + __ bind(L); + } +#endif + + // pass parameters if any + BLOCK_COMMENT("pass parameters if any"); + Label parameters_done; + __ movl(rcx, parameter_size); // parameter counter + __ testl(rcx, rcx); + __ jcc(Assembler::zero, parameters_done); + + // parameter passing loop + + Label loop; + // Copy Java parameters in reverse order (receiver last) + // Note that the argument order is inverted in the process + // source is rdx[rcx: N-1..0] + // dest is rsp[rbx: 0..N-1] + + __ movptr(rdx, parameters); // parameter pointer + __ xorptr(rbx, rbx); + + __ BIND(loop); + + // get parameter + __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize)); + __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(), + Interpreter::expr_offset_in_bytes(0)), rax); // store parameter + __ increment(rbx); + __ decrement(rcx); + __ jcc(Assembler::notZero, loop); + + // call Java function + __ BIND(parameters_done); + __ movptr(rbx, method); // get Method* + __ movptr(rax, entry_point); // get entry_point + __ mov(rsi, rsp); // set sender sp + BLOCK_COMMENT("call Java function"); + __ call(rax); + + BLOCK_COMMENT("call_stub_return_address:"); + return_address = __ pc(); + +#ifdef COMPILER2 + { + Label L_skip; + if (UseSSE >= 2) { + __ verify_FPU(0, "call_stub_return"); + } else { + for (int i = 1; i < 8; i++) { + __ ffree(i); + } + + // UseSSE <= 1 so double result should be left on TOS + __ movl(rsi, result_type); + __ cmpl(rsi, T_DOUBLE); + __ jcc(Assembler::equal, L_skip); + if (UseSSE == 0) { + // UseSSE == 0 so float result should be left on TOS + __ cmpl(rsi, T_FLOAT); + __ jcc(Assembler::equal, L_skip); + } + __ ffree(0); + } + __ BIND(L_skip); + } +#endif // COMPILER2 + + // store result depending on type + // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT) + __ movptr(rdi, result); + Label is_long, is_float, is_double, exit; + __ movl(rsi, result_type); + __ cmpl(rsi, T_LONG); + __ jcc(Assembler::equal, is_long); + __ cmpl(rsi, T_FLOAT); + __ jcc(Assembler::equal, is_float); + __ cmpl(rsi, T_DOUBLE); + __ jcc(Assembler::equal, is_double); + + // handle T_INT case + __ movl(Address(rdi, 0), rax); + __ BIND(exit); + + // check that FPU stack is empty + __ verify_FPU(0, "generate_call_stub"); + + // pop parameters + __ lea(rsp, rsp_after_call); + + // restore %mxcsr + if (sse_save) { + __ ldmxcsr(mxcsr_save); + } + + // restore rdi, rsi and rbx, + __ movptr(rbx, saved_rbx); + __ movptr(rsi, saved_rsi); + __ movptr(rdi, saved_rdi); + __ addptr(rsp, 4*wordSize); + + // return + __ pop(rbp); + __ ret(0); + + // handle return types different from T_INT + __ BIND(is_long); + __ movl(Address(rdi, 0 * wordSize), rax); + __ movl(Address(rdi, 1 * wordSize), rdx); + __ jmp(exit); + + __ BIND(is_float); + // interpreter uses xmm0 for return values + if (UseSSE >= 1) { + __ movflt(Address(rdi, 0), xmm0); + } else { + __ fstp_s(Address(rdi, 0)); + } + __ jmp(exit); + + __ BIND(is_double); + // interpreter uses xmm0 for return values + if (UseSSE >= 2) { + __ movdbl(Address(rdi, 0), xmm0); + } else { + __ fstp_d(Address(rdi, 0)); + } + __ jmp(exit); + + return start; + } + + + //------------------------------------------------------------------------------------------------------------------------ + // Return point for a Java call if there's an exception thrown in Java code. + // The exception is caught and transformed into a pending exception stored in + // JavaThread that can be tested from within the VM. + // + // Note: Usually the parameters are removed by the callee. In case of an exception + // crossing an activation frame boundary, that is not the case if the callee + // is compiled code => need to setup the rsp. + // + // rax,: exception oop + + address generate_catch_exception() { + StubCodeMark mark(this, "StubRoutines", "catch_exception"); + const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()! + const Address thread (rbp, 9 * wordSize); // same as in generate_call_stub()! + address start = __ pc(); + + // get thread directly + __ movptr(rcx, thread); +#ifdef ASSERT + // verify that threads correspond + { Label L; + __ get_thread(rbx); + __ cmpptr(rbx, rcx); + __ jcc(Assembler::equal, L); + __ stop("StubRoutines::catch_exception: threads must correspond"); + __ bind(L); + } +#endif + // set pending exception + __ verify_oop(rax); + __ movptr(Address(rcx, Thread::pending_exception_offset()), rax ); + __ lea(Address(rcx, Thread::exception_file_offset ()), + ExternalAddress((address)__FILE__)); + __ movl(Address(rcx, Thread::exception_line_offset ()), __LINE__ ); + // complete return to VM + assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before"); + __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address)); + + return start; + } + + + //------------------------------------------------------------------------------------------------------------------------ + // Continuation point for runtime calls returning with a pending exception. + // The pending exception check happened in the runtime or native call stub. + // The pending exception in Thread is converted into a Java-level exception. + // + // Contract with Java-level exception handlers: + // rax: exception + // rdx: throwing pc + // + // NOTE: At entry of this stub, exception-pc must be on stack !! + + address generate_forward_exception() { + StubCodeMark mark(this, "StubRoutines", "forward exception"); + address start = __ pc(); + const Register thread = rcx; + + // other registers used in this stub + const Register exception_oop = rax; + const Register handler_addr = rbx; + const Register exception_pc = rdx; + + // Upon entry, the sp points to the return address returning into Java + // (interpreted or compiled) code; i.e., the return address becomes the + // throwing pc. + // + // Arguments pushed before the runtime call are still on the stack but + // the exception handler will reset the stack pointer -> ignore them. + // A potential result in registers can be ignored as well. + +#ifdef ASSERT + // make sure this code is only executed if there is a pending exception + { Label L; + __ get_thread(thread); + __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); + __ jcc(Assembler::notEqual, L); + __ stop("StubRoutines::forward exception: no pending exception (1)"); + __ bind(L); + } +#endif + + // compute exception handler into rbx, + __ get_thread(thread); + __ movptr(exception_pc, Address(rsp, 0)); + BLOCK_COMMENT("call exception_handler_for_return_address"); + __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc); + __ mov(handler_addr, rax); + + // setup rax & rdx, remove return address & clear pending exception + __ get_thread(thread); + __ pop(exception_pc); + __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset())); + __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD); + +#ifdef ASSERT + // make sure exception is set + { Label L; + __ testptr(exception_oop, exception_oop); + __ jcc(Assembler::notEqual, L); + __ stop("StubRoutines::forward exception: no pending exception (2)"); + __ bind(L); + } +#endif + + // Verify that there is really a valid exception in RAX. + __ verify_oop(exception_oop); + + // continue at exception handler (return address removed) + // rax: exception + // rbx: exception handler + // rdx: throwing pc + __ jmp(handler_addr); + + return start; + } + + + //---------------------------------------------------------------------------------------------------- + // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest) + // + // xchg exists as far back as 8086, lock needed for MP only + // Stack layout immediately after call: + // + // 0 [ret addr ] <--- rsp + // 1 [ ex ] + // 2 [ dest ] + // + // Result: *dest <- ex, return (old *dest) + // + // Note: win32 does not currently use this code + + address generate_atomic_xchg() { + StubCodeMark mark(this, "StubRoutines", "atomic_xchg"); + address start = __ pc(); + + __ push(rdx); + Address exchange(rsp, 2 * wordSize); + Address dest_addr(rsp, 3 * wordSize); + __ movl(rax, exchange); + __ movptr(rdx, dest_addr); + __ xchgl(rax, Address(rdx, 0)); + __ pop(rdx); + __ ret(0); + + return start; + } + + //---------------------------------------------------------------------------------------------------- + // Support for void verify_mxcsr() + // + // This routine is used with -Xcheck:jni to verify that native + // JNI code does not return to Java code without restoring the + // MXCSR register to our expected state. + + + address generate_verify_mxcsr() { + StubCodeMark mark(this, "StubRoutines", "verify_mxcsr"); + address start = __ pc(); + + const Address mxcsr_save(rsp, 0); + + if (CheckJNICalls && UseSSE > 0 ) { + Label ok_ret; + ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std()); + __ push(rax); + __ subptr(rsp, wordSize); // allocate a temp location + __ stmxcsr(mxcsr_save); + __ movl(rax, mxcsr_save); + __ andl(rax, MXCSR_MASK); + __ cmp32(rax, mxcsr_std); + __ jcc(Assembler::equal, ok_ret); + + __ warn("MXCSR changed by native JNI code."); + + __ ldmxcsr(mxcsr_std); + + __ bind(ok_ret); + __ addptr(rsp, wordSize); + __ pop(rax); + } + + __ ret(0); + + return start; + } + + + //--------------------------------------------------------------------------- + // Support for void verify_fpu_cntrl_wrd() + // + // This routine is used with -Xcheck:jni to verify that native + // JNI code does not return to Java code without restoring the + // FP control word to our expected state. + + address generate_verify_fpu_cntrl_wrd() { + StubCodeMark mark(this, "StubRoutines", "verify_spcw"); + address start = __ pc(); + + const Address fpu_cntrl_wrd_save(rsp, 0); + + if (CheckJNICalls) { + Label ok_ret; + __ push(rax); + __ subptr(rsp, wordSize); // allocate a temp location + __ fnstcw(fpu_cntrl_wrd_save); + __ movl(rax, fpu_cntrl_wrd_save); + __ andl(rax, FPU_CNTRL_WRD_MASK); + ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std()); + __ cmp32(rax, fpu_std); + __ jcc(Assembler::equal, ok_ret); + + __ warn("Floating point control word changed by native JNI code."); + + __ fldcw(fpu_std); + + __ bind(ok_ret); + __ addptr(rsp, wordSize); + __ pop(rax); + } + + __ ret(0); + + return start; + } + + //--------------------------------------------------------------------------- + // Wrapper for slow-case handling of double-to-integer conversion + // d2i or f2i fast case failed either because it is nan or because + // of under/overflow. + // Input: FPU TOS: float value + // Output: rax, (rdx): integer (long) result + + address generate_d2i_wrapper(BasicType t, address fcn) { + StubCodeMark mark(this, "StubRoutines", "d2i_wrapper"); + address start = __ pc(); + + // Capture info about frame layout + enum layout { FPUState_off = 0, + rbp_off = FPUStateSizeInWords, + rdi_off, + rsi_off, + rcx_off, + rbx_off, + saved_argument_off, + saved_argument_off2, // 2nd half of double + framesize + }; + + assert(FPUStateSizeInWords == 27, "update stack layout"); + + // Save outgoing argument to stack across push_FPU_state() + __ subptr(rsp, wordSize * 2); + __ fstp_d(Address(rsp, 0)); + + // Save CPU & FPU state + __ push(rbx); + __ push(rcx); + __ push(rsi); + __ push(rdi); + __ push(rbp); + __ push_FPU_state(); + + // push_FPU_state() resets the FP top of stack + // Load original double into FP top of stack + __ fld_d(Address(rsp, saved_argument_off * wordSize)); + // Store double into stack as outgoing argument + __ subptr(rsp, wordSize*2); + __ fst_d(Address(rsp, 0)); + + // Prepare FPU for doing math in C-land + __ empty_FPU_stack(); + // Call the C code to massage the double. Result in EAX + if (t == T_INT) + { BLOCK_COMMENT("SharedRuntime::d2i"); } + else if (t == T_LONG) + { BLOCK_COMMENT("SharedRuntime::d2l"); } + __ call_VM_leaf( fcn, 2 ); + + // Restore CPU & FPU state + __ pop_FPU_state(); + __ pop(rbp); + __ pop(rdi); + __ pop(rsi); + __ pop(rcx); + __ pop(rbx); + __ addptr(rsp, wordSize * 2); + + __ ret(0); + + return start; + } + + + //--------------------------------------------------------------------------- + // The following routine generates a subroutine to throw an asynchronous + // UnknownError when an unsafe access gets a fault that could not be + // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.) + address generate_handler_for_unsafe_access() { + StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access"); + address start = __ pc(); + + __ push(0); // hole for return address-to-be + __ pusha(); // push registers + Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord); + BLOCK_COMMENT("call handle_unsafe_access"); + __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access))); + __ movptr(next_pc, rax); // stuff next address + __ popa(); + __ ret(0); // jump to next address + + return start; + } + + + //---------------------------------------------------------------------------------------------------- + // Non-destructive plausibility checks for oops + + address generate_verify_oop() { + StubCodeMark mark(this, "StubRoutines", "verify_oop"); + address start = __ pc(); + + // Incoming arguments on stack after saving rax,: + // + // [tos ]: saved rdx + // [tos + 1]: saved EFLAGS + // [tos + 2]: return address + // [tos + 3]: char* error message + // [tos + 4]: oop object to verify + // [tos + 5]: saved rax, - saved by caller and bashed + + Label exit, error; + __ pushf(); + __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr())); + __ push(rdx); // save rdx + // make sure object is 'reasonable' + __ movptr(rax, Address(rsp, 4 * wordSize)); // get object + __ testptr(rax, rax); + __ jcc(Assembler::zero, exit); // if obj is NULL it is ok + + // Check if the oop is in the right area of memory + const int oop_mask = Universe::verify_oop_mask(); + const int oop_bits = Universe::verify_oop_bits(); + __ mov(rdx, rax); + __ andptr(rdx, oop_mask); + __ cmpptr(rdx, oop_bits); + __ jcc(Assembler::notZero, error); + + // make sure klass is 'reasonable', which is not zero. + __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass + __ testptr(rax, rax); + __ jcc(Assembler::zero, error); // if klass is NULL it is broken + + // return if everything seems ok + __ bind(exit); + __ movptr(rax, Address(rsp, 5 * wordSize)); // get saved rax, back + __ pop(rdx); // restore rdx + __ popf(); // restore EFLAGS + __ ret(3 * wordSize); // pop arguments + + // handle errors + __ bind(error); + __ movptr(rax, Address(rsp, 5 * wordSize)); // get saved rax, back + __ pop(rdx); // get saved rdx back + __ popf(); // get saved EFLAGS off stack -- will be ignored + __ pusha(); // push registers (eip = return address & msg are already pushed) + BLOCK_COMMENT("call MacroAssembler::debug"); + __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32))); + __ popa(); + __ ret(3 * wordSize); // pop arguments + return start; + } + + // + // Generate pre-barrier for array stores + // + // Input: + // start - starting address + // count - element count + void gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) { + assert_different_registers(start, count); + BarrierSet* bs = Universe::heap()->barrier_set(); + switch (bs->kind()) { + case BarrierSet::G1SATBCT: + case BarrierSet::G1SATBCTLogging: + // With G1, don't generate the call if we statically know that the target in uninitialized + if (!uninitialized_target) { + __ pusha(); // push registers + __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), + start, count); + __ popa(); + } + break; + case BarrierSet::CardTableModRef: + case BarrierSet::CardTableExtension: + case BarrierSet::ModRef: + break; + default : + ShouldNotReachHere(); + + } + } + + + // + // Generate a post-barrier for an array store + // + // start - starting address + // count - element count + // + // The two input registers are overwritten. + // + void gen_write_ref_array_post_barrier(Register start, Register count) { + BarrierSet* bs = Universe::heap()->barrier_set(); + assert_different_registers(start, count); + switch (bs->kind()) { + case BarrierSet::G1SATBCT: + case BarrierSet::G1SATBCTLogging: + { + __ pusha(); // push registers + __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), + start, count); + __ popa(); + } + break; + + case BarrierSet::CardTableModRef: + case BarrierSet::CardTableExtension: + { + CardTableModRefBS* ct = (CardTableModRefBS*)bs; + assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); + + Label L_loop; + const Register end = count; // elements count; end == start+count-1 + assert_different_registers(start, end); + + __ lea(end, Address(start, count, Address::times_ptr, -wordSize)); + __ shrptr(start, CardTableModRefBS::card_shift); + __ shrptr(end, CardTableModRefBS::card_shift); + __ subptr(end, start); // end --> count + __ BIND(L_loop); + intptr_t disp = (intptr_t) ct->byte_map_base; + Address cardtable(start, count, Address::times_1, disp); + __ movb(cardtable, 0); + __ decrement(count); + __ jcc(Assembler::greaterEqual, L_loop); + } + break; + case BarrierSet::ModRef: + break; + default : + ShouldNotReachHere(); + + } + } + + + // Copy 64 bytes chunks + // + // Inputs: + // from - source array address + // to_from - destination array address - from + // qword_count - 8-bytes element count, negative + // + void xmm_copy_forward(Register from, Register to_from, Register qword_count) { + assert( UseSSE >= 2, "supported cpu only" ); + Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit; + // Copy 64-byte chunks + __ jmpb(L_copy_64_bytes); + __ align(OptoLoopAlignment); + __ BIND(L_copy_64_bytes_loop); + + if (UseUnalignedLoadStores) { + if (UseAVX >= 2) { + __ vmovdqu(xmm0, Address(from, 0)); + __ vmovdqu(Address(from, to_from, Address::times_1, 0), xmm0); + __ vmovdqu(xmm1, Address(from, 32)); + __ vmovdqu(Address(from, to_from, Address::times_1, 32), xmm1); + } else { + __ movdqu(xmm0, Address(from, 0)); + __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0); + __ movdqu(xmm1, Address(from, 16)); + __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1); + __ movdqu(xmm2, Address(from, 32)); + __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2); + __ movdqu(xmm3, Address(from, 48)); + __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3); + } + } else { + __ movq(xmm0, Address(from, 0)); + __ movq(Address(from, to_from, Address::times_1, 0), xmm0); + __ movq(xmm1, Address(from, 8)); + __ movq(Address(from, to_from, Address::times_1, 8), xmm1); + __ movq(xmm2, Address(from, 16)); + __ movq(Address(from, to_from, Address::times_1, 16), xmm2); + __ movq(xmm3, Address(from, 24)); + __ movq(Address(from, to_from, Address::times_1, 24), xmm3); + __ movq(xmm4, Address(from, 32)); + __ movq(Address(from, to_from, Address::times_1, 32), xmm4); + __ movq(xmm5, Address(from, 40)); + __ movq(Address(from, to_from, Address::times_1, 40), xmm5); + __ movq(xmm6, Address(from, 48)); + __ movq(Address(from, to_from, Address::times_1, 48), xmm6); + __ movq(xmm7, Address(from, 56)); + __ movq(Address(from, to_from, Address::times_1, 56), xmm7); + } + + __ addl(from, 64); + __ BIND(L_copy_64_bytes); + __ subl(qword_count, 8); + __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop); + + if (UseUnalignedLoadStores && (UseAVX >= 2)) { + // clean upper bits of YMM registers + __ vzeroupper(); + } + __ addl(qword_count, 8); + __ jccb(Assembler::zero, L_exit); + // + // length is too short, just copy qwords + // + __ BIND(L_copy_8_bytes); + __ movq(xmm0, Address(from, 0)); + __ movq(Address(from, to_from, Address::times_1), xmm0); + __ addl(from, 8); + __ decrement(qword_count); + __ jcc(Assembler::greater, L_copy_8_bytes); + __ BIND(L_exit); + } + + // Copy 64 bytes chunks + // + // Inputs: + // from - source array address + // to_from - destination array address - from + // qword_count - 8-bytes element count, negative + // + void mmx_copy_forward(Register from, Register to_from, Register qword_count) { + assert( VM_Version::supports_mmx(), "supported cpu only" ); + Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit; + // Copy 64-byte chunks + __ jmpb(L_copy_64_bytes); + __ align(OptoLoopAlignment); + __ BIND(L_copy_64_bytes_loop); + __ movq(mmx0, Address(from, 0)); + __ movq(mmx1, Address(from, 8)); + __ movq(mmx2, Address(from, 16)); + __ movq(Address(from, to_from, Address::times_1, 0), mmx0); + __ movq(mmx3, Address(from, 24)); + __ movq(Address(from, to_from, Address::times_1, 8), mmx1); + __ movq(mmx4, Address(from, 32)); + __ movq(Address(from, to_from, Address::times_1, 16), mmx2); + __ movq(mmx5, Address(from, 40)); + __ movq(Address(from, to_from, Address::times_1, 24), mmx3); + __ movq(mmx6, Address(from, 48)); + __ movq(Address(from, to_from, Address::times_1, 32), mmx4); + __ movq(mmx7, Address(from, 56)); + __ movq(Address(from, to_from, Address::times_1, 40), mmx5); + __ movq(Address(from, to_from, Address::times_1, 48), mmx6); + __ movq(Address(from, to_from, Address::times_1, 56), mmx7); + __ addptr(from, 64); + __ BIND(L_copy_64_bytes); + __ subl(qword_count, 8); + __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop); + __ addl(qword_count, 8); + __ jccb(Assembler::zero, L_exit); + // + // length is too short, just copy qwords + // + __ BIND(L_copy_8_bytes); + __ movq(mmx0, Address(from, 0)); + __ movq(Address(from, to_from, Address::times_1), mmx0); + __ addptr(from, 8); + __ decrement(qword_count); + __ jcc(Assembler::greater, L_copy_8_bytes); + __ BIND(L_exit); + __ emms(); + } + + address generate_disjoint_copy(BasicType t, bool aligned, + Address::ScaleFactor sf, + address* entry, const char *name, + bool dest_uninitialized = false) { + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", name); + address start = __ pc(); + + Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte; + Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes; + + int shift = Address::times_ptr - sf; + + const Register from = rsi; // source array address + const Register to = rdi; // destination array address + const Register count = rcx; // elements count + const Register to_from = to; // (to - from) + const Register saved_to = rdx; // saved destination array address + + __ enter(); // required for proper stackwalking of RuntimeStub frame + __ push(rsi); + __ push(rdi); + __ movptr(from , Address(rsp, 12+ 4)); + __ movptr(to , Address(rsp, 12+ 8)); + __ movl(count, Address(rsp, 12+ 12)); + + if (entry != NULL) { + *entry = __ pc(); // Entry point from conjoint arraycopy stub. + BLOCK_COMMENT("Entry:"); + } + + if (t == T_OBJECT) { + __ testl(count, count); + __ jcc(Assembler::zero, L_0_count); + gen_write_ref_array_pre_barrier(to, count, dest_uninitialized); + __ mov(saved_to, to); // save 'to' + } + + __ subptr(to, from); // to --> to_from + __ cmpl(count, 2< to_from + if (VM_Version::supports_mmx()) { + if (UseXMMForArrayCopy) { + xmm_copy_forward(from, to_from, count); + } else { + mmx_copy_forward(from, to_from, count); + } + } else { + __ jmpb(L_copy_8_bytes); + __ align(OptoLoopAlignment); + __ BIND(L_copy_8_bytes_loop); + __ fild_d(Address(from, 0)); + __ fistp_d(Address(from, to_from, Address::times_1)); + __ addptr(from, 8); + __ BIND(L_copy_8_bytes); + __ decrement(count); + __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop); + } + inc_copy_counter_np(T_LONG); + __ leave(); // required for proper stackwalking of RuntimeStub frame + __ xorptr(rax, rax); // return 0 + __ ret(0); + return start; + } + + address generate_conjoint_long_copy(address nooverlap_target, + address* entry, const char *name) { + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", name); + address start = __ pc(); + + Label L_copy_8_bytes, L_copy_8_bytes_loop; + const Register from = rax; // source array address + const Register to = rdx; // destination array address + const Register count = rcx; // elements count + const Register end_from = rax; // source array end address + + __ enter(); // required for proper stackwalking of RuntimeStub frame + __ movptr(from , Address(rsp, 8+0)); // from + __ movptr(to , Address(rsp, 8+4)); // to + __ movl2ptr(count, Address(rsp, 8+8)); // count + + *entry = __ pc(); // Entry point from generic arraycopy stub. + BLOCK_COMMENT("Entry:"); + + // arrays overlap test + __ cmpptr(to, from); + RuntimeAddress nooverlap(nooverlap_target); + __ jump_cc(Assembler::belowEqual, nooverlap); + __ lea(end_from, Address(from, count, Address::times_8, 0)); + __ cmpptr(to, end_from); + __ movptr(from, Address(rsp, 8)); // from + __ jump_cc(Assembler::aboveEqual, nooverlap); + + __ jmpb(L_copy_8_bytes); + + __ align(OptoLoopAlignment); + __ BIND(L_copy_8_bytes_loop); + if (VM_Version::supports_mmx()) { + if (UseXMMForArrayCopy) { + __ movq(xmm0, Address(from, count, Address::times_8)); + __ movq(Address(to, count, Address::times_8), xmm0); + } else { + __ movq(mmx0, Address(from, count, Address::times_8)); + __ movq(Address(to, count, Address::times_8), mmx0); + } + } else { + __ fild_d(Address(from, count, Address::times_8)); + __ fistp_d(Address(to, count, Address::times_8)); + } + __ BIND(L_copy_8_bytes); + __ decrement(count); + __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop); + + if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) { + __ emms(); + } + inc_copy_counter_np(T_LONG); + __ leave(); // required for proper stackwalking of RuntimeStub frame + __ xorptr(rax, rax); // return 0 + __ ret(0); + return start; + } + + + // Helper for generating a dynamic type check. + // The sub_klass must be one of {rbx, rdx, rsi}. + // The temp is killed. + void generate_type_check(Register sub_klass, + Address& super_check_offset_addr, + Address& super_klass_addr, + Register temp, + Label* L_success, Label* L_failure) { + BLOCK_COMMENT("type_check:"); + + Label L_fallthrough; +#define LOCAL_JCC(assembler_con, label_ptr) \ + if (label_ptr != NULL) __ jcc(assembler_con, *(label_ptr)); \ + else __ jcc(assembler_con, L_fallthrough) /*omit semi*/ + + // The following is a strange variation of the fast path which requires + // one less register, because needed values are on the argument stack. + // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp, + // L_success, L_failure, NULL); + assert_different_registers(sub_klass, temp); + + int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); + + // if the pointers are equal, we are done (e.g., String[] elements) + __ cmpptr(sub_klass, super_klass_addr); + LOCAL_JCC(Assembler::equal, L_success); + + // check the supertype display: + __ movl2ptr(temp, super_check_offset_addr); + Address super_check_addr(sub_klass, temp, Address::times_1, 0); + __ movptr(temp, super_check_addr); // load displayed supertype + __ cmpptr(temp, super_klass_addr); // test the super type + LOCAL_JCC(Assembler::equal, L_success); + + // if it was a primary super, we can just fail immediately + __ cmpl(super_check_offset_addr, sc_offset); + LOCAL_JCC(Assembler::notEqual, L_failure); + + // The repne_scan instruction uses fixed registers, which will get spilled. + // We happen to know this works best when super_klass is in rax. + Register super_klass = temp; + __ movptr(super_klass, super_klass_addr); + __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, + L_success, L_failure); + + __ bind(L_fallthrough); + + if (L_success == NULL) { BLOCK_COMMENT("L_success:"); } + if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); } + +#undef LOCAL_JCC + } + + // + // Generate checkcasting array copy stub + // + // Input: + // 4(rsp) - source array address + // 8(rsp) - destination array address + // 12(rsp) - element count, can be zero + // 16(rsp) - size_t ckoff (super_check_offset) + // 20(rsp) - oop ckval (super_klass) + // + // Output: + // rax, == 0 - success + // rax, == -1^K - failure, where K is partial transfer count + // + address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) { + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", name); + address start = __ pc(); + + Label L_load_element, L_store_element, L_do_card_marks, L_done; + + // register use: + // rax, rdx, rcx -- loop control (end_from, end_to, count) + // rdi, rsi -- element access (oop, klass) + // rbx, -- temp + const Register from = rax; // source array address + const Register to = rdx; // destination array address + const Register length = rcx; // elements count + const Register elem = rdi; // each oop copied + const Register elem_klass = rsi; // each elem._klass (sub_klass) + const Register temp = rbx; // lone remaining temp + + __ enter(); // required for proper stackwalking of RuntimeStub frame + + __ push(rsi); + __ push(rdi); + __ push(rbx); + + Address from_arg(rsp, 16+ 4); // from + Address to_arg(rsp, 16+ 8); // to + Address length_arg(rsp, 16+12); // elements count + Address ckoff_arg(rsp, 16+16); // super_check_offset + Address ckval_arg(rsp, 16+20); // super_klass + + // Load up: + __ movptr(from, from_arg); + __ movptr(to, to_arg); + __ movl2ptr(length, length_arg); + + if (entry != NULL) { + *entry = __ pc(); // Entry point from generic arraycopy stub. + BLOCK_COMMENT("Entry:"); + } + + //--------------------------------------------------------------- + // Assembler stub will be used for this call to arraycopy + // if the two arrays are subtypes of Object[] but the + // destination array type is not equal to or a supertype + // of the source type. Each element must be separately + // checked. + + // Loop-invariant addresses. They are exclusive end pointers. + Address end_from_addr(from, length, Address::times_ptr, 0); + Address end_to_addr(to, length, Address::times_ptr, 0); + + Register end_from = from; // re-use + Register end_to = to; // re-use + Register count = length; // re-use + + // Loop-variant addresses. They assume post-incremented count < 0. + Address from_element_addr(end_from, count, Address::times_ptr, 0); + Address to_element_addr(end_to, count, Address::times_ptr, 0); + Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes()); + + // Copy from low to high addresses, indexed from the end of each array. + gen_write_ref_array_pre_barrier(to, count, dest_uninitialized); + __ lea(end_from, end_from_addr); + __ lea(end_to, end_to_addr); + assert(length == count, ""); // else fix next line: + __ negptr(count); // negate and test the length + __ jccb(Assembler::notZero, L_load_element); + + // Empty array: Nothing to do. + __ xorptr(rax, rax); // return 0 on (trivial) success + __ jmp(L_done); + + // ======== begin loop ======== + // (Loop is rotated; its entry is L_load_element.) + // Loop control: + // for (count = -count; count != 0; count++) + // Base pointers src, dst are biased by 8*count,to last element. + __ align(OptoLoopAlignment); + + __ BIND(L_store_element); + __ movptr(to_element_addr, elem); // store the oop + __ increment(count); // increment the count toward zero + __ jccb(Assembler::zero, L_do_card_marks); + + // ======== loop entry is here ======== + __ BIND(L_load_element); + __ movptr(elem, from_element_addr); // load the oop + __ testptr(elem, elem); + __ jccb(Assembler::zero, L_store_element); + + // (Could do a trick here: Remember last successful non-null + // element stored and make a quick oop equality check on it.) + + __ movptr(elem_klass, elem_klass_addr); // query the object klass + generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp, + &L_store_element, NULL); + // (On fall-through, we have failed the element type check.) + // ======== end loop ======== + + // It was a real error; we must depend on the caller to finish the job. + // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops. + // Emit GC store barriers for the oops we have copied (length_arg + count), + // and report their number to the caller. + assert_different_registers(to, count, rax); + Label L_post_barrier; + __ addl(count, length_arg); // transfers = (length - remaining) + __ movl2ptr(rax, count); // save the value + __ notptr(rax); // report (-1^K) to caller (does not affect flags) + __ jccb(Assembler::notZero, L_post_barrier); + __ jmp(L_done); // K == 0, nothing was copied, skip post barrier + + // Come here on success only. + __ BIND(L_do_card_marks); + __ xorptr(rax, rax); // return 0 on success + __ movl2ptr(count, length_arg); + + __ BIND(L_post_barrier); + __ movptr(to, to_arg); // reload + gen_write_ref_array_post_barrier(to, count); + + // Common exit point (success or failure). + __ BIND(L_done); + __ pop(rbx); + __ pop(rdi); + __ pop(rsi); + inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); + __ leave(); // required for proper stackwalking of RuntimeStub frame + __ ret(0); + + return start; + } + + // + // Generate 'unsafe' array copy stub + // Though just as safe as the other stubs, it takes an unscaled + // size_t argument instead of an element count. + // + // Input: + // 4(rsp) - source array address + // 8(rsp) - destination array address + // 12(rsp) - byte count, can be zero + // + // Output: + // rax, == 0 - success + // rax, == -1 - need to call System.arraycopy + // + // Examines the alignment of the operands and dispatches + // to a long, int, short, or byte copy loop. + // + address generate_unsafe_copy(const char *name, + address byte_copy_entry, + address short_copy_entry, + address int_copy_entry, + address long_copy_entry) { + + Label L_long_aligned, L_int_aligned, L_short_aligned; + + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", name); + address start = __ pc(); + + const Register from = rax; // source array address + const Register to = rdx; // destination array address + const Register count = rcx; // elements count + + __ enter(); // required for proper stackwalking of RuntimeStub frame + __ push(rsi); + __ push(rdi); + Address from_arg(rsp, 12+ 4); // from + Address to_arg(rsp, 12+ 8); // to + Address count_arg(rsp, 12+12); // byte count + + // Load up: + __ movptr(from , from_arg); + __ movptr(to , to_arg); + __ movl2ptr(count, count_arg); + + // bump this on entry, not on exit: + inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr); + + const Register bits = rsi; + __ mov(bits, from); + __ orptr(bits, to); + __ orptr(bits, count); + + __ testl(bits, BytesPerLong-1); + __ jccb(Assembler::zero, L_long_aligned); + + __ testl(bits, BytesPerInt-1); + __ jccb(Assembler::zero, L_int_aligned); + + __ testl(bits, BytesPerShort-1); + __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry)); + + __ BIND(L_short_aligned); + __ shrptr(count, LogBytesPerShort); // size => short_count + __ movl(count_arg, count); // update 'count' + __ jump(RuntimeAddress(short_copy_entry)); + + __ BIND(L_int_aligned); + __ shrptr(count, LogBytesPerInt); // size => int_count + __ movl(count_arg, count); // update 'count' + __ jump(RuntimeAddress(int_copy_entry)); + + __ BIND(L_long_aligned); + __ shrptr(count, LogBytesPerLong); // size => qword_count + __ movl(count_arg, count); // update 'count' + __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it. + __ pop(rsi); + __ jump(RuntimeAddress(long_copy_entry)); + + return start; + } + + + // Perform range checks on the proposed arraycopy. + // Smashes src_pos and dst_pos. (Uses them up for temps.) + void arraycopy_range_checks(Register src, + Register src_pos, + Register dst, + Register dst_pos, + Address& length, + Label& L_failed) { + BLOCK_COMMENT("arraycopy_range_checks:"); + const Register src_end = src_pos; // source array end position + const Register dst_end = dst_pos; // destination array end position + __ addl(src_end, length); // src_pos + length + __ addl(dst_end, length); // dst_pos + length + + // if (src_pos + length > arrayOop(src)->length() ) FAIL; + __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes())); + __ jcc(Assembler::above, L_failed); + + // if (dst_pos + length > arrayOop(dst)->length() ) FAIL; + __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes())); + __ jcc(Assembler::above, L_failed); + + BLOCK_COMMENT("arraycopy_range_checks done"); + } + + + // + // Generate generic array copy stubs + // + // Input: + // 4(rsp) - src oop + // 8(rsp) - src_pos + // 12(rsp) - dst oop + // 16(rsp) - dst_pos + // 20(rsp) - element count + // + // Output: + // rax, == 0 - success + // rax, == -1^K - failure, where K is partial transfer count + // + address generate_generic_copy(const char *name, + address entry_jbyte_arraycopy, + address entry_jshort_arraycopy, + address entry_jint_arraycopy, + address entry_oop_arraycopy, + address entry_jlong_arraycopy, + address entry_checkcast_arraycopy) { + Label L_failed, L_failed_0, L_objArray; + + { int modulus = CodeEntryAlignment; + int target = modulus - 5; // 5 = sizeof jmp(L_failed) + int advance = target - (__ offset() % modulus); + if (advance < 0) advance += modulus; + if (advance > 0) __ nop(advance); + } + StubCodeMark mark(this, "StubRoutines", name); + + // Short-hop target to L_failed. Makes for denser prologue code. + __ BIND(L_failed_0); + __ jmp(L_failed); + assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed"); + + __ align(CodeEntryAlignment); + address start = __ pc(); + + __ enter(); // required for proper stackwalking of RuntimeStub frame + __ push(rsi); + __ push(rdi); + + // bump this on entry, not on exit: + inc_counter_np(SharedRuntime::_generic_array_copy_ctr); + + // Input values + Address SRC (rsp, 12+ 4); + Address SRC_POS (rsp, 12+ 8); + Address DST (rsp, 12+12); + Address DST_POS (rsp, 12+16); + Address LENGTH (rsp, 12+20); + + //----------------------------------------------------------------------- + // Assembler stub will be used for this call to arraycopy + // if the following conditions are met: + // + // (1) src and dst must not be null. + // (2) src_pos must not be negative. + // (3) dst_pos must not be negative. + // (4) length must not be negative. + // (5) src klass and dst klass should be the same and not NULL. + // (6) src and dst should be arrays. + // (7) src_pos + length must not exceed length of src. + // (8) dst_pos + length must not exceed length of dst. + // + + const Register src = rax; // source array oop + const Register src_pos = rsi; + const Register dst = rdx; // destination array oop + const Register dst_pos = rdi; + const Register length = rcx; // transfer count + + // if (src == NULL) return -1; + __ movptr(src, SRC); // src oop + __ testptr(src, src); + __ jccb(Assembler::zero, L_failed_0); + + // if (src_pos < 0) return -1; + __ movl2ptr(src_pos, SRC_POS); // src_pos + __ testl(src_pos, src_pos); + __ jccb(Assembler::negative, L_failed_0); + + // if (dst == NULL) return -1; + __ movptr(dst, DST); // dst oop + __ testptr(dst, dst); + __ jccb(Assembler::zero, L_failed_0); + + // if (dst_pos < 0) return -1; + __ movl2ptr(dst_pos, DST_POS); // dst_pos + __ testl(dst_pos, dst_pos); + __ jccb(Assembler::negative, L_failed_0); + + // if (length < 0) return -1; + __ movl2ptr(length, LENGTH); // length + __ testl(length, length); + __ jccb(Assembler::negative, L_failed_0); + + // if (src->klass() == NULL) return -1; + Address src_klass_addr(src, oopDesc::klass_offset_in_bytes()); + Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes()); + const Register rcx_src_klass = rcx; // array klass + __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes())); + +#ifdef ASSERT + // assert(src->klass() != NULL); + BLOCK_COMMENT("assert klasses not null"); + { Label L1, L2; + __ testptr(rcx_src_klass, rcx_src_klass); + __ jccb(Assembler::notZero, L2); // it is broken if klass is NULL + __ bind(L1); + __ stop("broken null klass"); + __ bind(L2); + __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD); + __ jccb(Assembler::equal, L1); // this would be broken also + BLOCK_COMMENT("assert done"); + } +#endif //ASSERT + + // Load layout helper (32-bits) + // + // |array_tag| | header_size | element_type | |log2_element_size| + // 32 30 24 16 8 2 0 + // + // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0 + // + + int lh_offset = in_bytes(Klass::layout_helper_offset()); + Address src_klass_lh_addr(rcx_src_klass, lh_offset); + + // Handle objArrays completely differently... + jint objArray_lh = Klass::array_layout_helper(T_OBJECT); + __ cmpl(src_klass_lh_addr, objArray_lh); + __ jcc(Assembler::equal, L_objArray); + + // if (src->klass() != dst->klass()) return -1; + __ cmpptr(rcx_src_klass, dst_klass_addr); + __ jccb(Assembler::notEqual, L_failed_0); + + const Register rcx_lh = rcx; // layout helper + assert(rcx_lh == rcx_src_klass, "known alias"); + __ movl(rcx_lh, src_klass_lh_addr); + + // if (!src->is_Array()) return -1; + __ cmpl(rcx_lh, Klass::_lh_neutral_value); + __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp + + // At this point, it is known to be a typeArray (array_tag 0x3). +#ifdef ASSERT + { Label L; + __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift)); + __ jcc(Assembler::greaterEqual, L); // signed cmp + __ stop("must be a primitive array"); + __ bind(L); + } +#endif + + assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh); + arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed); + + // TypeArrayKlass + // + // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize); + // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize); + // + const Register rsi_offset = rsi; // array offset + const Register src_array = src; // src array offset + const Register dst_array = dst; // dst array offset + const Register rdi_elsize = rdi; // log2 element size + + __ mov(rsi_offset, rcx_lh); + __ shrptr(rsi_offset, Klass::_lh_header_size_shift); + __ andptr(rsi_offset, Klass::_lh_header_size_mask); // array_offset + __ addptr(src_array, rsi_offset); // src array offset + __ addptr(dst_array, rsi_offset); // dst array offset + __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize + + // next registers should be set before the jump to corresponding stub + const Register from = src; // source array address + const Register to = dst; // destination array address + const Register count = rcx; // elements count + // some of them should be duplicated on stack +#define FROM Address(rsp, 12+ 4) +#define TO Address(rsp, 12+ 8) // Not used now +#define COUNT Address(rsp, 12+12) // Only for oop arraycopy + + BLOCK_COMMENT("scale indexes to element size"); + __ movl2ptr(rsi, SRC_POS); // src_pos + __ shlptr(rsi); // src_pos << rcx (log2 elsize) + assert(src_array == from, ""); + __ addptr(from, rsi); // from = src_array + SRC_POS << log2 elsize + __ movl2ptr(rdi, DST_POS); // dst_pos + __ shlptr(rdi); // dst_pos << rcx (log2 elsize) + assert(dst_array == to, ""); + __ addptr(to, rdi); // to = dst_array + DST_POS << log2 elsize + __ movptr(FROM, from); // src_addr + __ mov(rdi_elsize, rcx_lh); // log2 elsize + __ movl2ptr(count, LENGTH); // elements count + + BLOCK_COMMENT("choose copy loop based on element size"); + __ cmpl(rdi_elsize, 0); + + __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy)); + __ cmpl(rdi_elsize, LogBytesPerShort); + __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy)); + __ cmpl(rdi_elsize, LogBytesPerInt); + __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy)); +#ifdef ASSERT + __ cmpl(rdi_elsize, LogBytesPerLong); + __ jccb(Assembler::notEqual, L_failed); +#endif + __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it. + __ pop(rsi); + __ jump(RuntimeAddress(entry_jlong_arraycopy)); + + __ BIND(L_failed); + __ xorptr(rax, rax); + __ notptr(rax); // return -1 + __ pop(rdi); + __ pop(rsi); + __ leave(); // required for proper stackwalking of RuntimeStub frame + __ ret(0); + + // ObjArrayKlass + __ BIND(L_objArray); + // live at this point: rcx_src_klass, src[_pos], dst[_pos] + + Label L_plain_copy, L_checkcast_copy; + // test array classes for subtyping + __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality + __ jccb(Assembler::notEqual, L_checkcast_copy); + + // Identically typed arrays can be copied without element-wise checks. + assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass); + arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed); + + __ BIND(L_plain_copy); + __ movl2ptr(count, LENGTH); // elements count + __ movl2ptr(src_pos, SRC_POS); // reload src_pos + __ lea(from, Address(src, src_pos, Address::times_ptr, + arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr + __ movl2ptr(dst_pos, DST_POS); // reload dst_pos + __ lea(to, Address(dst, dst_pos, Address::times_ptr, + arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr + __ movptr(FROM, from); // src_addr + __ movptr(TO, to); // dst_addr + __ movl(COUNT, count); // count + __ jump(RuntimeAddress(entry_oop_arraycopy)); + + __ BIND(L_checkcast_copy); + // live at this point: rcx_src_klass, dst[_pos], src[_pos] + { + // Handy offsets: + int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); + int sco_offset = in_bytes(Klass::super_check_offset_offset()); + + Register rsi_dst_klass = rsi; + Register rdi_temp = rdi; + assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos"); + assert(rdi_temp == dst_pos, "expected alias w/ dst_pos"); + Address dst_klass_lh_addr(rsi_dst_klass, lh_offset); + + // Before looking at dst.length, make sure dst is also an objArray. + __ movptr(rsi_dst_klass, dst_klass_addr); + __ cmpl(dst_klass_lh_addr, objArray_lh); + __ jccb(Assembler::notEqual, L_failed); + + // It is safe to examine both src.length and dst.length. + __ movl2ptr(src_pos, SRC_POS); // reload rsi + arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed); + // (Now src_pos and dst_pos are killed, but not src and dst.) + + // We'll need this temp (don't forget to pop it after the type check). + __ push(rbx); + Register rbx_src_klass = rbx; + + __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx + __ movptr(rsi_dst_klass, dst_klass_addr); + Address super_check_offset_addr(rsi_dst_klass, sco_offset); + Label L_fail_array_check; + generate_type_check(rbx_src_klass, + super_check_offset_addr, dst_klass_addr, + rdi_temp, NULL, &L_fail_array_check); + // (On fall-through, we have passed the array type check.) + __ pop(rbx); + __ jmp(L_plain_copy); + + __ BIND(L_fail_array_check); + // Reshuffle arguments so we can call checkcast_arraycopy: + + // match initial saves for checkcast_arraycopy + // push(rsi); // already done; see above + // push(rdi); // already done; see above + // push(rbx); // already done; see above + + // Marshal outgoing arguments now, freeing registers. + Address from_arg(rsp, 16+ 4); // from + Address to_arg(rsp, 16+ 8); // to + Address length_arg(rsp, 16+12); // elements count + Address ckoff_arg(rsp, 16+16); // super_check_offset + Address ckval_arg(rsp, 16+20); // super_klass + + Address SRC_POS_arg(rsp, 16+ 8); + Address DST_POS_arg(rsp, 16+16); + Address LENGTH_arg(rsp, 16+20); + // push rbx, changed the incoming offsets (why not just use rbp,??) + // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, ""); + + __ movptr(rbx, Address(rsi_dst_klass, ek_offset)); + __ movl2ptr(length, LENGTH_arg); // reload elements count + __ movl2ptr(src_pos, SRC_POS_arg); // reload src_pos + __ movl2ptr(dst_pos, DST_POS_arg); // reload dst_pos + + __ movptr(ckval_arg, rbx); // destination element type + __ movl(rbx, Address(rbx, sco_offset)); + __ movl(ckoff_arg, rbx); // corresponding class check offset + + __ movl(length_arg, length); // outgoing length argument + + __ lea(from, Address(src, src_pos, Address::times_ptr, + arrayOopDesc::base_offset_in_bytes(T_OBJECT))); + __ movptr(from_arg, from); + + __ lea(to, Address(dst, dst_pos, Address::times_ptr, + arrayOopDesc::base_offset_in_bytes(T_OBJECT))); + __ movptr(to_arg, to); + __ jump(RuntimeAddress(entry_checkcast_arraycopy)); + } + + return start; + } + + void generate_arraycopy_stubs() { + address entry; + address entry_jbyte_arraycopy; + address entry_jshort_arraycopy; + address entry_jint_arraycopy; + address entry_oop_arraycopy; + address entry_jlong_arraycopy; + address entry_checkcast_arraycopy; + + StubRoutines::_arrayof_jbyte_disjoint_arraycopy = + generate_disjoint_copy(T_BYTE, true, Address::times_1, &entry, + "arrayof_jbyte_disjoint_arraycopy"); + StubRoutines::_arrayof_jbyte_arraycopy = + generate_conjoint_copy(T_BYTE, true, Address::times_1, entry, + NULL, "arrayof_jbyte_arraycopy"); + StubRoutines::_jbyte_disjoint_arraycopy = + generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry, + "jbyte_disjoint_arraycopy"); + StubRoutines::_jbyte_arraycopy = + generate_conjoint_copy(T_BYTE, false, Address::times_1, entry, + &entry_jbyte_arraycopy, "jbyte_arraycopy"); + + StubRoutines::_arrayof_jshort_disjoint_arraycopy = + generate_disjoint_copy(T_SHORT, true, Address::times_2, &entry, + "arrayof_jshort_disjoint_arraycopy"); + StubRoutines::_arrayof_jshort_arraycopy = + generate_conjoint_copy(T_SHORT, true, Address::times_2, entry, + NULL, "arrayof_jshort_arraycopy"); + StubRoutines::_jshort_disjoint_arraycopy = + generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry, + "jshort_disjoint_arraycopy"); + StubRoutines::_jshort_arraycopy = + generate_conjoint_copy(T_SHORT, false, Address::times_2, entry, + &entry_jshort_arraycopy, "jshort_arraycopy"); + + // Next arrays are always aligned on 4 bytes at least. + StubRoutines::_jint_disjoint_arraycopy = + generate_disjoint_copy(T_INT, true, Address::times_4, &entry, + "jint_disjoint_arraycopy"); + StubRoutines::_jint_arraycopy = + generate_conjoint_copy(T_INT, true, Address::times_4, entry, + &entry_jint_arraycopy, "jint_arraycopy"); + + StubRoutines::_oop_disjoint_arraycopy = + generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry, + "oop_disjoint_arraycopy"); + StubRoutines::_oop_arraycopy = + generate_conjoint_copy(T_OBJECT, true, Address::times_ptr, entry, + &entry_oop_arraycopy, "oop_arraycopy"); + + StubRoutines::_oop_disjoint_arraycopy_uninit = + generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry, + "oop_disjoint_arraycopy_uninit", + /*dest_uninitialized*/true); + StubRoutines::_oop_arraycopy_uninit = + generate_conjoint_copy(T_OBJECT, true, Address::times_ptr, entry, + NULL, "oop_arraycopy_uninit", + /*dest_uninitialized*/true); + + StubRoutines::_jlong_disjoint_arraycopy = + generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy"); + StubRoutines::_jlong_arraycopy = + generate_conjoint_long_copy(entry, &entry_jlong_arraycopy, + "jlong_arraycopy"); + + StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill"); + StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill"); + StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill"); + StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill"); + StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill"); + StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill"); + + StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy; + StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy; + StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit; + StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy; + + StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy; + StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy; + StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit; + StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy; + + StubRoutines::_checkcast_arraycopy = + generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy); + StubRoutines::_checkcast_arraycopy_uninit = + generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true); + + StubRoutines::_unsafe_arraycopy = + generate_unsafe_copy("unsafe_arraycopy", + entry_jbyte_arraycopy, + entry_jshort_arraycopy, + entry_jint_arraycopy, + entry_jlong_arraycopy); + + StubRoutines::_generic_arraycopy = + generate_generic_copy("generic_arraycopy", + entry_jbyte_arraycopy, + entry_jshort_arraycopy, + entry_jint_arraycopy, + entry_oop_arraycopy, + entry_jlong_arraycopy, + entry_checkcast_arraycopy); + } + + void generate_math_stubs() { + { + StubCodeMark mark(this, "StubRoutines", "log"); + StubRoutines::_intrinsic_log = (double (*)(double)) __ pc(); + + __ fld_d(Address(rsp, 4)); + __ flog(); + __ ret(0); + } + { + StubCodeMark mark(this, "StubRoutines", "log10"); + StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc(); + + __ fld_d(Address(rsp, 4)); + __ flog10(); + __ ret(0); + } + { + StubCodeMark mark(this, "StubRoutines", "sin"); + StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc(); + + __ fld_d(Address(rsp, 4)); + __ trigfunc('s'); + __ ret(0); + } + { + StubCodeMark mark(this, "StubRoutines", "cos"); + StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc(); + + __ fld_d(Address(rsp, 4)); + __ trigfunc('c'); + __ ret(0); + } + { + StubCodeMark mark(this, "StubRoutines", "tan"); + StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc(); + + __ fld_d(Address(rsp, 4)); + __ trigfunc('t'); + __ ret(0); + } + { + StubCodeMark mark(this, "StubRoutines", "exp"); + StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc(); + + __ fld_d(Address(rsp, 4)); + __ exp_with_fallback(0); + __ ret(0); + } + { + StubCodeMark mark(this, "StubRoutines", "pow"); + StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc(); + + __ fld_d(Address(rsp, 12)); + __ fld_d(Address(rsp, 4)); + __ pow_with_fallback(0); + __ ret(0); + } + } + + // AES intrinsic stubs + enum {AESBlockSize = 16}; + + address generate_key_shuffle_mask() { + __ align(16); + StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask"); + address start = __ pc(); + __ emit_data(0x00010203, relocInfo::none, 0 ); + __ emit_data(0x04050607, relocInfo::none, 0 ); + __ emit_data(0x08090a0b, relocInfo::none, 0 ); + __ emit_data(0x0c0d0e0f, relocInfo::none, 0 ); + return start; + } + + // Utility routine for loading a 128-bit key word in little endian format + // can optionally specify that the shuffle mask is already in an xmmregister + void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) { + __ movdqu(xmmdst, Address(key, offset)); + if (xmm_shuf_mask != NULL) { + __ pshufb(xmmdst, xmm_shuf_mask); + } else { + __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); + } + } + + // aesenc using specified key+offset + // can optionally specify that the shuffle mask is already in an xmmregister + void aes_enc_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) { + load_key(xmmtmp, key, offset, xmm_shuf_mask); + __ aesenc(xmmdst, xmmtmp); + } + + // aesdec using specified key+offset + // can optionally specify that the shuffle mask is already in an xmmregister + void aes_dec_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) { + load_key(xmmtmp, key, offset, xmm_shuf_mask); + __ aesdec(xmmdst, xmmtmp); + } + + + // Arguments: + // + // Inputs: + // c_rarg0 - source byte array address + // c_rarg1 - destination byte array address + // c_rarg2 - K (key) in little endian int array + // + address generate_aescrypt_encryptBlock() { + assert(UseAES, "need AES instructions and misaligned SSE support"); + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock"); + Label L_doLast; + address start = __ pc(); + + const Register from = rdx; // source array address + const Register to = rdx; // destination array address + const Register key = rcx; // key array address + const Register keylen = rax; + const Address from_param(rbp, 8+0); + const Address to_param (rbp, 8+4); + const Address key_param (rbp, 8+8); + + const XMMRegister xmm_result = xmm0; + const XMMRegister xmm_key_shuf_mask = xmm1; + const XMMRegister xmm_temp1 = xmm2; + const XMMRegister xmm_temp2 = xmm3; + const XMMRegister xmm_temp3 = xmm4; + const XMMRegister xmm_temp4 = xmm5; + + __ enter(); // required for proper stackwalking of RuntimeStub frame + __ movptr(from, from_param); + __ movptr(key, key_param); + + // keylen could be only {11, 13, 15} * 4 = {44, 52, 60} + __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); + + __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); + __ movdqu(xmm_result, Address(from, 0)); // get 16 bytes of input + __ movptr(to, to_param); + + // For encryption, the java expanded key ordering is just what we need + + load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask); + __ pxor(xmm_result, xmm_temp1); + + load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask); + load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask); + load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask); + load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask); + + __ aesenc(xmm_result, xmm_temp1); + __ aesenc(xmm_result, xmm_temp2); + __ aesenc(xmm_result, xmm_temp3); + __ aesenc(xmm_result, xmm_temp4); + + load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask); + load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask); + load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask); + load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask); + + __ aesenc(xmm_result, xmm_temp1); + __ aesenc(xmm_result, xmm_temp2); + __ aesenc(xmm_result, xmm_temp3); + __ aesenc(xmm_result, xmm_temp4); + + load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask); + load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask); + + __ cmpl(keylen, 44); + __ jccb(Assembler::equal, L_doLast); + + __ aesenc(xmm_result, xmm_temp1); + __ aesenc(xmm_result, xmm_temp2); + + load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask); + load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask); + + __ cmpl(keylen, 52); + __ jccb(Assembler::equal, L_doLast); + + __ aesenc(xmm_result, xmm_temp1); + __ aesenc(xmm_result, xmm_temp2); + + load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask); + load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask); + + __ BIND(L_doLast); + __ aesenc(xmm_result, xmm_temp1); + __ aesenclast(xmm_result, xmm_temp2); + __ movdqu(Address(to, 0), xmm_result); // store the result + __ xorptr(rax, rax); // return 0 + __ leave(); // required for proper stackwalking of RuntimeStub frame + __ ret(0); + + return start; + } + + + // Arguments: + // + // Inputs: + // c_rarg0 - source byte array address + // c_rarg1 - destination byte array address + // c_rarg2 - K (key) in little endian int array + // + address generate_aescrypt_decryptBlock() { + assert(UseAES, "need AES instructions and misaligned SSE support"); + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock"); + Label L_doLast; + address start = __ pc(); + + const Register from = rdx; // source array address + const Register to = rdx; // destination array address + const Register key = rcx; // key array address + const Register keylen = rax; + const Address from_param(rbp, 8+0); + const Address to_param (rbp, 8+4); + const Address key_param (rbp, 8+8); + + const XMMRegister xmm_result = xmm0; + const XMMRegister xmm_key_shuf_mask = xmm1; + const XMMRegister xmm_temp1 = xmm2; + const XMMRegister xmm_temp2 = xmm3; + const XMMRegister xmm_temp3 = xmm4; + const XMMRegister xmm_temp4 = xmm5; + + __ enter(); // required for proper stackwalking of RuntimeStub frame + __ movptr(from, from_param); + __ movptr(key, key_param); + + // keylen could be only {11, 13, 15} * 4 = {44, 52, 60} + __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); + + __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); + __ movdqu(xmm_result, Address(from, 0)); + __ movptr(to, to_param); + + // for decryption java expanded key ordering is rotated one position from what we want + // so we start from 0x10 here and hit 0x00 last + // we don't know if the key is aligned, hence not using load-execute form + load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask); + load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask); + load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask); + load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask); + + __ pxor (xmm_result, xmm_temp1); + __ aesdec(xmm_result, xmm_temp2); + __ aesdec(xmm_result, xmm_temp3); + __ aesdec(xmm_result, xmm_temp4); + + load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask); + load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask); + load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask); + load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask); + + __ aesdec(xmm_result, xmm_temp1); + __ aesdec(xmm_result, xmm_temp2); + __ aesdec(xmm_result, xmm_temp3); + __ aesdec(xmm_result, xmm_temp4); + + load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask); + load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask); + load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask); + + __ cmpl(keylen, 44); + __ jccb(Assembler::equal, L_doLast); + + __ aesdec(xmm_result, xmm_temp1); + __ aesdec(xmm_result, xmm_temp2); + + load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask); + load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask); + + __ cmpl(keylen, 52); + __ jccb(Assembler::equal, L_doLast); + + __ aesdec(xmm_result, xmm_temp1); + __ aesdec(xmm_result, xmm_temp2); + + load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask); + load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask); + + __ BIND(L_doLast); + __ aesdec(xmm_result, xmm_temp1); + __ aesdec(xmm_result, xmm_temp2); + + // for decryption the aesdeclast operation is always on key+0x00 + __ aesdeclast(xmm_result, xmm_temp3); + __ movdqu(Address(to, 0), xmm_result); // store the result + __ xorptr(rax, rax); // return 0 + __ leave(); // required for proper stackwalking of RuntimeStub frame + __ ret(0); + + return start; + } + + void handleSOERegisters(bool saving) { + const int saveFrameSizeInBytes = 4 * wordSize; + const Address saved_rbx (rbp, -3 * wordSize); + const Address saved_rsi (rbp, -2 * wordSize); + const Address saved_rdi (rbp, -1 * wordSize); + + if (saving) { + __ subptr(rsp, saveFrameSizeInBytes); + __ movptr(saved_rsi, rsi); + __ movptr(saved_rdi, rdi); + __ movptr(saved_rbx, rbx); + } else { + // restoring + __ movptr(rsi, saved_rsi); + __ movptr(rdi, saved_rdi); + __ movptr(rbx, saved_rbx); + } + } + + // Arguments: + // + // Inputs: + // c_rarg0 - source byte array address + // c_rarg1 - destination byte array address + // c_rarg2 - K (key) in little endian int array + // c_rarg3 - r vector byte array address + // c_rarg4 - input length + // + // Output: + // rax - input length + // + address generate_cipherBlockChaining_encryptAESCrypt() { + assert(UseAES, "need AES instructions and misaligned SSE support"); + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt"); + address start = __ pc(); + + Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256; + const Register from = rsi; // source array address + const Register to = rdx; // destination array address + const Register key = rcx; // key array address + const Register rvec = rdi; // r byte array initialized from initvector array address + // and left with the results of the last encryption block + const Register len_reg = rbx; // src len (must be multiple of blocksize 16) + const Register pos = rax; + + // xmm register assignments for the loops below + const XMMRegister xmm_result = xmm0; + const XMMRegister xmm_temp = xmm1; + // first 6 keys preloaded into xmm2-xmm7 + const int XMM_REG_NUM_KEY_FIRST = 2; + const int XMM_REG_NUM_KEY_LAST = 7; + const XMMRegister xmm_key0 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST); + + __ enter(); // required for proper stackwalking of RuntimeStub frame + handleSOERegisters(true /*saving*/); + + // load registers from incoming parameters + const Address from_param(rbp, 8+0); + const Address to_param (rbp, 8+4); + const Address key_param (rbp, 8+8); + const Address rvec_param (rbp, 8+12); + const Address len_param (rbp, 8+16); + __ movptr(from , from_param); + __ movptr(to , to_param); + __ movptr(key , key_param); + __ movptr(rvec , rvec_param); + __ movptr(len_reg , len_param); + + const XMMRegister xmm_key_shuf_mask = xmm_temp; // used temporarily to swap key bytes up front + __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); + // load up xmm regs 2 thru 7 with keys 0-5 + for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) { + load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask); + offset += 0x10; + } + + __ movdqu(xmm_result, Address(rvec, 0x00)); // initialize xmm_result with r vec + + // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256)) + __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); + __ cmpl(rax, 44); + __ jcc(Assembler::notEqual, L_key_192_256); + + // 128 bit code follows here + __ movl(pos, 0); + __ align(OptoLoopAlignment); + __ BIND(L_loopTop_128); + __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input + __ pxor (xmm_result, xmm_temp); // xor with the current r vector + + __ pxor (xmm_result, xmm_key0); // do the aes rounds + for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) { + __ aesenc(xmm_result, as_XMMRegister(rnum)); + } + for (int key_offset = 0x60; key_offset <= 0x90; key_offset += 0x10) { + aes_enc_key(xmm_result, xmm_temp, key, key_offset); + } + load_key(xmm_temp, key, 0xa0); + __ aesenclast(xmm_result, xmm_temp); + + __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output + // no need to store r to memory until we exit + __ addptr(pos, AESBlockSize); + __ subptr(len_reg, AESBlockSize); + __ jcc(Assembler::notEqual, L_loopTop_128); + + __ BIND(L_exit); + __ movdqu(Address(rvec, 0), xmm_result); // final value of r stored in rvec of CipherBlockChaining object + + handleSOERegisters(false /*restoring*/); + __ movptr(rax, len_param); // return length + __ leave(); // required for proper stackwalking of RuntimeStub frame + __ ret(0); + + __ BIND(L_key_192_256); + // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256) + __ cmpl(rax, 52); + __ jcc(Assembler::notEqual, L_key_256); + + // 192-bit code follows here (could be changed to use more xmm registers) + __ movl(pos, 0); + __ align(OptoLoopAlignment); + __ BIND(L_loopTop_192); + __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input + __ pxor (xmm_result, xmm_temp); // xor with the current r vector + + __ pxor (xmm_result, xmm_key0); // do the aes rounds + for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) { + __ aesenc(xmm_result, as_XMMRegister(rnum)); + } + for (int key_offset = 0x60; key_offset <= 0xb0; key_offset += 0x10) { + aes_enc_key(xmm_result, xmm_temp, key, key_offset); + } + load_key(xmm_temp, key, 0xc0); + __ aesenclast(xmm_result, xmm_temp); + + __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output + // no need to store r to memory until we exit + __ addptr(pos, AESBlockSize); + __ subptr(len_reg, AESBlockSize); + __ jcc(Assembler::notEqual, L_loopTop_192); + __ jmp(L_exit); + + __ BIND(L_key_256); + // 256-bit code follows here (could be changed to use more xmm registers) + __ movl(pos, 0); + __ align(OptoLoopAlignment); + __ BIND(L_loopTop_256); + __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input + __ pxor (xmm_result, xmm_temp); // xor with the current r vector + + __ pxor (xmm_result, xmm_key0); // do the aes rounds + for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) { + __ aesenc(xmm_result, as_XMMRegister(rnum)); + } + for (int key_offset = 0x60; key_offset <= 0xd0; key_offset += 0x10) { + aes_enc_key(xmm_result, xmm_temp, key, key_offset); + } + load_key(xmm_temp, key, 0xe0); + __ aesenclast(xmm_result, xmm_temp); + + __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output + // no need to store r to memory until we exit + __ addptr(pos, AESBlockSize); + __ subptr(len_reg, AESBlockSize); + __ jcc(Assembler::notEqual, L_loopTop_256); + __ jmp(L_exit); + + return start; + } + + + // CBC AES Decryption. + // In 32-bit stub, because of lack of registers we do not try to parallelize 4 blocks at a time. + // + // Arguments: + // + // Inputs: + // c_rarg0 - source byte array address + // c_rarg1 - destination byte array address + // c_rarg2 - K (key) in little endian int array + // c_rarg3 - r vector byte array address + // c_rarg4 - input length + // + // Output: + // rax - input length + // + + address generate_cipherBlockChaining_decryptAESCrypt() { + assert(UseAES, "need AES instructions and misaligned SSE support"); + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt"); + address start = __ pc(); + + Label L_exit, L_key_192_256, L_key_256; + Label L_singleBlock_loopTop_128; + Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256; + const Register from = rsi; // source array address + const Register to = rdx; // destination array address + const Register key = rcx; // key array address + const Register rvec = rdi; // r byte array initialized from initvector array address + // and left with the results of the last encryption block + const Register len_reg = rbx; // src len (must be multiple of blocksize 16) + const Register pos = rax; + + // xmm register assignments for the loops below + const XMMRegister xmm_result = xmm0; + const XMMRegister xmm_temp = xmm1; + // first 6 keys preloaded into xmm2-xmm7 + const int XMM_REG_NUM_KEY_FIRST = 2; + const int XMM_REG_NUM_KEY_LAST = 7; + const int FIRST_NON_REG_KEY_offset = 0x70; + const XMMRegister xmm_key_first = as_XMMRegister(XMM_REG_NUM_KEY_FIRST); + + __ enter(); // required for proper stackwalking of RuntimeStub frame + handleSOERegisters(true /*saving*/); + + // load registers from incoming parameters + const Address from_param(rbp, 8+0); + const Address to_param (rbp, 8+4); + const Address key_param (rbp, 8+8); + const Address rvec_param (rbp, 8+12); + const Address len_param (rbp, 8+16); + __ movptr(from , from_param); + __ movptr(to , to_param); + __ movptr(key , key_param); + __ movptr(rvec , rvec_param); + __ movptr(len_reg , len_param); + + // the java expanded key ordering is rotated one position from what we want + // so we start from 0x10 here and hit 0x00 last + const XMMRegister xmm_key_shuf_mask = xmm1; // used temporarily to swap key bytes up front + __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); + // load up xmm regs 2 thru 6 with first 5 keys + for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) { + load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask); + offset += 0x10; + } + + // inside here, use the rvec register to point to previous block cipher + // with which we xor at the end of each newly decrypted block + const Register prev_block_cipher_ptr = rvec; + + // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256)) + __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); + __ cmpl(rax, 44); + __ jcc(Assembler::notEqual, L_key_192_256); + + + // 128-bit code follows here, parallelized + __ movl(pos, 0); + __ align(OptoLoopAlignment); + __ BIND(L_singleBlock_loopTop_128); + __ cmpptr(len_reg, 0); // any blocks left?? + __ jcc(Assembler::equal, L_exit); + __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input + __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds + for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) { + __ aesdec(xmm_result, as_XMMRegister(rnum)); + } + for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xa0; key_offset += 0x10) { // 128-bit runs up to key offset a0 + aes_dec_key(xmm_result, xmm_temp, key, key_offset); + } + load_key(xmm_temp, key, 0x00); // final key is stored in java expanded array at offset 0 + __ aesdeclast(xmm_result, xmm_temp); + __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00)); + __ pxor (xmm_result, xmm_temp); // xor with the current r vector + __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output + // no need to store r to memory until we exit + __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0)); // set up new ptr + __ addptr(pos, AESBlockSize); + __ subptr(len_reg, AESBlockSize); + __ jmp(L_singleBlock_loopTop_128); + + + __ BIND(L_exit); + __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00)); + __ movptr(rvec , rvec_param); // restore this since used in loop + __ movdqu(Address(rvec, 0), xmm_temp); // final value of r stored in rvec of CipherBlockChaining object + handleSOERegisters(false /*restoring*/); + __ movptr(rax, len_param); // return length + __ leave(); // required for proper stackwalking of RuntimeStub frame + __ ret(0); + + + __ BIND(L_key_192_256); + // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256) + __ cmpl(rax, 52); + __ jcc(Assembler::notEqual, L_key_256); + + // 192-bit code follows here (could be optimized to use parallelism) + __ movl(pos, 0); + __ align(OptoLoopAlignment); + __ BIND(L_singleBlock_loopTop_192); + __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input + __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds + for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) { + __ aesdec(xmm_result, as_XMMRegister(rnum)); + } + for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xc0; key_offset += 0x10) { // 192-bit runs up to key offset c0 + aes_dec_key(xmm_result, xmm_temp, key, key_offset); + } + load_key(xmm_temp, key, 0x00); // final key is stored in java expanded array at offset 0 + __ aesdeclast(xmm_result, xmm_temp); + __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00)); + __ pxor (xmm_result, xmm_temp); // xor with the current r vector + __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output + // no need to store r to memory until we exit + __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0)); // set up new ptr + __ addptr(pos, AESBlockSize); + __ subptr(len_reg, AESBlockSize); + __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192); + __ jmp(L_exit); + + __ BIND(L_key_256); + // 256-bit code follows here (could be optimized to use parallelism) + __ movl(pos, 0); + __ align(OptoLoopAlignment); + __ BIND(L_singleBlock_loopTop_256); + __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input + __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds + for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) { + __ aesdec(xmm_result, as_XMMRegister(rnum)); + } + for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xe0; key_offset += 0x10) { // 256-bit runs up to key offset e0 + aes_dec_key(xmm_result, xmm_temp, key, key_offset); + } + load_key(xmm_temp, key, 0x00); // final key is stored in java expanded array at offset 0 + __ aesdeclast(xmm_result, xmm_temp); + __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00)); + __ pxor (xmm_result, xmm_temp); // xor with the current r vector + __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output + // no need to store r to memory until we exit + __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0)); // set up new ptr + __ addptr(pos, AESBlockSize); + __ subptr(len_reg, AESBlockSize); + __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256); + __ jmp(L_exit); + + return start; + } + + /** + * Arguments: + * + * Inputs: + * rsp(4) - int crc + * rsp(8) - byte* buf + * rsp(12) - int length + * + * Ouput: + * rax - int crc result + */ + address generate_updateBytesCRC32() { + assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions"); + + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32"); + + address start = __ pc(); + + const Register crc = rdx; // crc + const Register buf = rsi; // source java byte array address + const Register len = rcx; // length + const Register table = rdi; // crc_table address (reuse register) + const Register tmp = rbx; + assert_different_registers(crc, buf, len, table, tmp, rax); + + BLOCK_COMMENT("Entry:"); + __ enter(); // required for proper stackwalking of RuntimeStub frame + __ push(rsi); + __ push(rdi); + __ push(rbx); + + Address crc_arg(rbp, 8 + 0); + Address buf_arg(rbp, 8 + 4); + Address len_arg(rbp, 8 + 8); + + // Load up: + __ movl(crc, crc_arg); + __ movptr(buf, buf_arg); + __ movl(len, len_arg); + + __ kernel_crc32(crc, buf, len, table, tmp); + + __ movl(rax, crc); + __ pop(rbx); + __ pop(rdi); + __ pop(rsi); + __ leave(); // required for proper stackwalking of RuntimeStub frame + __ ret(0); + + return start; + } + + // Safefetch stubs. + void generate_safefetch(const char* name, int size, address* entry, + address* fault_pc, address* continuation_pc) { + // safefetch signatures: + // int SafeFetch32(int* adr, int errValue); + // intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue); + + StubCodeMark mark(this, "StubRoutines", name); + + // Entry point, pc or function descriptor. + *entry = __ pc(); + + __ movl(rax, Address(rsp, 0x8)); + __ movl(rcx, Address(rsp, 0x4)); + // Load *adr into eax, may fault. + *fault_pc = __ pc(); + switch (size) { + case 4: + // int32_t + __ movl(rax, Address(rcx, 0)); + break; + case 8: + // int64_t + Unimplemented(); + break; + default: + ShouldNotReachHere(); + } + + // Return errValue or *adr. + *continuation_pc = __ pc(); + __ ret(0); + } + + public: + // Information about frame layout at time of blocking runtime call. + // Note that we only have to preserve callee-saved registers since + // the compilers are responsible for supplying a continuation point + // if they expect all registers to be preserved. + enum layout { + thread_off, // last_java_sp + arg1_off, + arg2_off, + rbp_off, // callee saved register + ret_pc, + framesize + }; + + private: + +#undef __ +#define __ masm-> + + //------------------------------------------------------------------------------------------------------------------------ + // Continuation point for throwing of implicit exceptions that are not handled in + // the current activation. Fabricates an exception oop and initiates normal + // exception dispatching in this frame. + // + // Previously the compiler (c2) allowed for callee save registers on Java calls. + // This is no longer true after adapter frames were removed but could possibly + // be brought back in the future if the interpreter code was reworked and it + // was deemed worthwhile. The comment below was left to describe what must + // happen here if callee saves were resurrected. As it stands now this stub + // could actually be a vanilla BufferBlob and have now oopMap at all. + // Since it doesn't make much difference we've chosen to leave it the + // way it was in the callee save days and keep the comment. + + // If we need to preserve callee-saved values we need a callee-saved oop map and + // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs. + // If the compiler needs all registers to be preserved between the fault + // point and the exception handler then it must assume responsibility for that in + // AbstractCompiler::continuation_for_implicit_null_exception or + // continuation_for_implicit_division_by_zero_exception. All other implicit + // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are + // either at call sites or otherwise assume that stack unwinding will be initiated, + // so caller saved registers were assumed volatile in the compiler. + address generate_throw_exception(const char* name, address runtime_entry, + Register arg1 = noreg, Register arg2 = noreg) { + + int insts_size = 256; + int locs_size = 32; + + CodeBuffer code(name, insts_size, locs_size); + OopMapSet* oop_maps = new OopMapSet(); + MacroAssembler* masm = new MacroAssembler(&code); + + address start = __ pc(); + + // This is an inlined and slightly modified version of call_VM + // which has the ability to fetch the return PC out of + // thread-local storage and also sets up last_Java_sp slightly + // differently than the real call_VM + Register java_thread = rbx; + __ get_thread(java_thread); + + __ enter(); // required for proper stackwalking of RuntimeStub frame + + // pc and rbp, already pushed + __ subptr(rsp, (framesize-2) * wordSize); // prolog + + // Frame is now completed as far as size and linkage. + + int frame_complete = __ pc() - start; + + // push java thread (becomes first argument of C function) + __ movptr(Address(rsp, thread_off * wordSize), java_thread); + if (arg1 != noreg) { + __ movptr(Address(rsp, arg1_off * wordSize), arg1); + } + if (arg2 != noreg) { + assert(arg1 != noreg, "missing reg arg"); + __ movptr(Address(rsp, arg2_off * wordSize), arg2); + } + + // Set up last_Java_sp and last_Java_fp + __ set_last_Java_frame(java_thread, rsp, rbp, NULL); + + // Call runtime + BLOCK_COMMENT("call runtime_entry"); + __ call(RuntimeAddress(runtime_entry)); + // Generate oop map + OopMap* map = new OopMap(framesize, 0); + oop_maps->add_gc_map(__ pc() - start, map); + + // restore the thread (cannot use the pushed argument since arguments + // may be overwritten by C code generated by an optimizing compiler); + // however can use the register value directly if it is callee saved. + __ get_thread(java_thread); + + __ reset_last_Java_frame(java_thread, true, false); + + __ leave(); // required for proper stackwalking of RuntimeStub frame + + // check for pending exceptions +#ifdef ASSERT + Label L; + __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); + __ jcc(Assembler::notEqual, L); + __ should_not_reach_here(); + __ bind(L); +#endif /* ASSERT */ + __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); + + + RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false); + return stub->entry_point(); + } + + + void create_control_words() { + // Round to nearest, 53-bit mode, exceptions masked + StubRoutines::_fpu_cntrl_wrd_std = 0x027F; + // Round to zero, 53-bit mode, exception mased + StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F; + // Round to nearest, 24-bit mode, exceptions masked + StubRoutines::_fpu_cntrl_wrd_24 = 0x007F; + // Round to nearest, 64-bit mode, exceptions masked + StubRoutines::_fpu_cntrl_wrd_64 = 0x037F; + // Round to nearest, 64-bit mode, exceptions masked + StubRoutines::_mxcsr_std = 0x1F80; + // Note: the following two constants are 80-bit values + // layout is critical for correct loading by FPU. + // Bias for strict fp multiply/divide + StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000 + StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000; + StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff; + // Un-Bias for strict fp multiply/divide + StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000 + StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000; + StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff; + } + + //--------------------------------------------------------------------------- + // Initialization + + void generate_initial() { + // Generates all stubs and initializes the entry points + + //------------------------------------------------------------------------------------------------------------------------ + // entry points that exist in all platforms + // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than + // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp. + StubRoutines::_forward_exception_entry = generate_forward_exception(); + + StubRoutines::_call_stub_entry = + generate_call_stub(StubRoutines::_call_stub_return_address); + // is referenced by megamorphic call + StubRoutines::_catch_exception_entry = generate_catch_exception(); + + // These are currently used by Solaris/Intel + StubRoutines::_atomic_xchg_entry = generate_atomic_xchg(); + + StubRoutines::_handler_for_unsafe_access_entry = + generate_handler_for_unsafe_access(); + + // platform dependent + create_control_words(); + + StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr(); + StubRoutines::x86::_verify_fpu_cntrl_wrd_entry = generate_verify_fpu_cntrl_wrd(); + StubRoutines::_d2i_wrapper = generate_d2i_wrapper(T_INT, + CAST_FROM_FN_PTR(address, SharedRuntime::d2i)); + StubRoutines::_d2l_wrapper = generate_d2i_wrapper(T_LONG, + CAST_FROM_FN_PTR(address, SharedRuntime::d2l)); + + // Build this early so it's available for the interpreter + StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); + + if (UseCRC32Intrinsics) { + // set table address before stub generation which use it + StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table; + StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32(); + } + } + + + void generate_all() { + // Generates all stubs and initializes the entry points + + // These entry points require SharedInfo::stack0 to be set up in non-core builds + // and need to be relocatable, so they each fabricate a RuntimeStub internally. + StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError)); + StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError)); + StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call)); + + //------------------------------------------------------------------------------------------------------------------------ + // entry points that are platform specific + + // support for verify_oop (must happen after universe_init) + StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop(); + + // arraycopy stubs used by compilers + generate_arraycopy_stubs(); + + generate_math_stubs(); + + // don't bother generating these AES intrinsic stubs unless global flag is set + if (UseAESIntrinsics) { + StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask(); // might be needed by the others + + StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock(); + StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock(); + StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt(); + StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt(); + } + + // Safefetch stubs. + generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry, + &StubRoutines::_safefetch32_fault_pc, + &StubRoutines::_safefetch32_continuation_pc); + StubRoutines::_safefetchN_entry = StubRoutines::_safefetch32_entry; + StubRoutines::_safefetchN_fault_pc = StubRoutines::_safefetch32_fault_pc; + StubRoutines::_safefetchN_continuation_pc = StubRoutines::_safefetch32_continuation_pc; + } + + + public: + StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) { + if (all) { + generate_all(); + } else { + generate_initial(); + } + } +}; // end class declaration + + +void StubGenerator_generate(CodeBuffer* code, bool all) { + StubGenerator g(code, all); +}