src/share/vm/utilities/taskqueue.hpp

changeset 435
a61af66fc99e
child 548
ba764ed4b6f2
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/utilities/taskqueue.hpp	Sat Dec 01 00:00:00 2007 +0000
     1.3 @@ -0,0 +1,525 @@
     1.4 +/*
     1.5 + * Copyright 2001-2006 Sun Microsystems, Inc.  All Rights Reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    1.23 + * CA 95054 USA or visit www.sun.com if you need additional information or
    1.24 + * have any questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +class TaskQueueSuper: public CHeapObj {
    1.29 +protected:
    1.30 +  // The first free element after the last one pushed (mod _n).
    1.31 +  // (For now we'll assume only 32-bit CAS).
    1.32 +  volatile juint _bottom;
    1.33 +
    1.34 +  // log2 of the size of the queue.
    1.35 +  enum SomeProtectedConstants {
    1.36 +    Log_n = 14
    1.37 +  };
    1.38 +
    1.39 +  // Size of the queue.
    1.40 +  juint n() { return (1 << Log_n); }
    1.41 +  // For computing "x mod n" efficiently.
    1.42 +  juint n_mod_mask() { return n() - 1; }
    1.43 +
    1.44 +  struct Age {
    1.45 +    jushort _top;
    1.46 +    jushort _tag;
    1.47 +
    1.48 +    jushort tag() const { return _tag; }
    1.49 +    jushort top() const { return _top; }
    1.50 +
    1.51 +    Age() { _tag = 0; _top = 0; }
    1.52 +
    1.53 +    friend bool operator ==(const Age& a1, const Age& a2) {
    1.54 +      return a1.tag() == a2.tag() && a1.top() == a2.top();
    1.55 +    }
    1.56 +
    1.57 +  };
    1.58 +  Age _age;
    1.59 +  // These make sure we do single atomic reads and writes.
    1.60 +  Age get_age() {
    1.61 +    jint res = *(volatile jint*)(&_age);
    1.62 +    return *(Age*)(&res);
    1.63 +  }
    1.64 +  void set_age(Age a) {
    1.65 +    *(volatile jint*)(&_age) = *(int*)(&a);
    1.66 +  }
    1.67 +
    1.68 +  jushort get_top() {
    1.69 +    return get_age().top();
    1.70 +  }
    1.71 +
    1.72 +  // These both operate mod _n.
    1.73 +  juint increment_index(juint ind) {
    1.74 +    return (ind + 1) & n_mod_mask();
    1.75 +  }
    1.76 +  juint decrement_index(juint ind) {
    1.77 +    return (ind - 1) & n_mod_mask();
    1.78 +  }
    1.79 +
    1.80 +  // Returns a number in the range [0.._n).  If the result is "n-1", it
    1.81 +  // should be interpreted as 0.
    1.82 +  juint dirty_size(juint bot, juint top) {
    1.83 +    return ((jint)bot - (jint)top) & n_mod_mask();
    1.84 +  }
    1.85 +
    1.86 +  // Returns the size corresponding to the given "bot" and "top".
    1.87 +  juint size(juint bot, juint top) {
    1.88 +    juint sz = dirty_size(bot, top);
    1.89 +    // Has the queue "wrapped", so that bottom is less than top?
    1.90 +    // There's a complicated special case here.  A pair of threads could
    1.91 +    // perform pop_local and pop_global operations concurrently, starting
    1.92 +    // from a state in which _bottom == _top+1.  The pop_local could
    1.93 +    // succeed in decrementing _bottom, and the pop_global in incrementing
    1.94 +    // _top (in which case the pop_global will be awarded the contested
    1.95 +    // queue element.)  The resulting state must be interpreted as an empty
    1.96 +    // queue.  (We only need to worry about one such event: only the queue
    1.97 +    // owner performs pop_local's, and several concurrent threads
    1.98 +    // attempting to perform the pop_global will all perform the same CAS,
    1.99 +    // and only one can succeed.  Any stealing thread that reads after
   1.100 +    // either the increment or decrement will seen an empty queue, and will
   1.101 +    // not join the competitors.  The "sz == -1 || sz == _n-1" state will
   1.102 +    // not be modified  by concurrent queues, so the owner thread can reset
   1.103 +    // the state to _bottom == top so subsequent pushes will be performed
   1.104 +    // normally.
   1.105 +    if (sz == (n()-1)) return 0;
   1.106 +    else return sz;
   1.107 +  }
   1.108 +
   1.109 +public:
   1.110 +  TaskQueueSuper() : _bottom(0), _age() {}
   1.111 +
   1.112 +  // Return "true" if the TaskQueue contains any tasks.
   1.113 +  bool peek();
   1.114 +
   1.115 +  // Return an estimate of the number of elements in the queue.
   1.116 +  // The "careful" version admits the possibility of pop_local/pop_global
   1.117 +  // races.
   1.118 +  juint size() {
   1.119 +    return size(_bottom, get_top());
   1.120 +  }
   1.121 +
   1.122 +  juint dirty_size() {
   1.123 +    return dirty_size(_bottom, get_top());
   1.124 +  }
   1.125 +
   1.126 +  // Maximum number of elements allowed in the queue.  This is two less
   1.127 +  // than the actual queue size, for somewhat complicated reasons.
   1.128 +  juint max_elems() { return n() - 2; }
   1.129 +
   1.130 +};
   1.131 +
   1.132 +template<class E> class GenericTaskQueue: public TaskQueueSuper {
   1.133 +private:
   1.134 +  // Slow paths for push, pop_local.  (pop_global has no fast path.)
   1.135 +  bool push_slow(E t, juint dirty_n_elems);
   1.136 +  bool pop_local_slow(juint localBot, Age oldAge);
   1.137 +
   1.138 +public:
   1.139 +  // Initializes the queue to empty.
   1.140 +  GenericTaskQueue();
   1.141 +
   1.142 +  void initialize();
   1.143 +
   1.144 +  // Push the task "t" on the queue.  Returns "false" iff the queue is
   1.145 +  // full.
   1.146 +  inline bool push(E t);
   1.147 +
   1.148 +  // If succeeds in claiming a task (from the 'local' end, that is, the
   1.149 +  // most recently pushed task), returns "true" and sets "t" to that task.
   1.150 +  // Otherwise, the queue is empty and returns false.
   1.151 +  inline bool pop_local(E& t);
   1.152 +
   1.153 +  // If succeeds in claiming a task (from the 'global' end, that is, the
   1.154 +  // least recently pushed task), returns "true" and sets "t" to that task.
   1.155 +  // Otherwise, the queue is empty and returns false.
   1.156 +  bool pop_global(E& t);
   1.157 +
   1.158 +  // Delete any resource associated with the queue.
   1.159 +  ~GenericTaskQueue();
   1.160 +
   1.161 +private:
   1.162 +  // Element array.
   1.163 +  volatile E* _elems;
   1.164 +};
   1.165 +
   1.166 +template<class E>
   1.167 +GenericTaskQueue<E>::GenericTaskQueue():TaskQueueSuper() {
   1.168 +  assert(sizeof(Age) == sizeof(jint), "Depends on this.");
   1.169 +}
   1.170 +
   1.171 +template<class E>
   1.172 +void GenericTaskQueue<E>::initialize() {
   1.173 +  _elems = NEW_C_HEAP_ARRAY(E, n());
   1.174 +  guarantee(_elems != NULL, "Allocation failed.");
   1.175 +}
   1.176 +
   1.177 +template<class E>
   1.178 +bool GenericTaskQueue<E>::push_slow(E t, juint dirty_n_elems) {
   1.179 +  if (dirty_n_elems == n() - 1) {
   1.180 +    // Actually means 0, so do the push.
   1.181 +    juint localBot = _bottom;
   1.182 +    _elems[localBot] = t;
   1.183 +    _bottom = increment_index(localBot);
   1.184 +    return true;
   1.185 +  } else
   1.186 +    return false;
   1.187 +}
   1.188 +
   1.189 +template<class E>
   1.190 +bool GenericTaskQueue<E>::
   1.191 +pop_local_slow(juint localBot, Age oldAge) {
   1.192 +  // This queue was observed to contain exactly one element; either this
   1.193 +  // thread will claim it, or a competing "pop_global".  In either case,
   1.194 +  // the queue will be logically empty afterwards.  Create a new Age value
   1.195 +  // that represents the empty queue for the given value of "_bottom".  (We
   1.196 +  // must also increment "tag" because of the case where "bottom == 1",
   1.197 +  // "top == 0".  A pop_global could read the queue element in that case,
   1.198 +  // then have the owner thread do a pop followed by another push.  Without
   1.199 +  // the incrementing of "tag", the pop_global's CAS could succeed,
   1.200 +  // allowing it to believe it has claimed the stale element.)
   1.201 +  Age newAge;
   1.202 +  newAge._top = localBot;
   1.203 +  newAge._tag = oldAge.tag() + 1;
   1.204 +  // Perhaps a competing pop_global has already incremented "top", in which
   1.205 +  // case it wins the element.
   1.206 +  if (localBot == oldAge.top()) {
   1.207 +    Age tempAge;
   1.208 +    // No competing pop_global has yet incremented "top"; we'll try to
   1.209 +    // install new_age, thus claiming the element.
   1.210 +    assert(sizeof(Age) == sizeof(jint) && sizeof(jint) == sizeof(juint),
   1.211 +           "Assumption about CAS unit.");
   1.212 +    *(jint*)&tempAge = Atomic::cmpxchg(*(jint*)&newAge, (volatile jint*)&_age, *(jint*)&oldAge);
   1.213 +    if (tempAge == oldAge) {
   1.214 +      // We win.
   1.215 +      assert(dirty_size(localBot, get_top()) != n() - 1,
   1.216 +             "Shouldn't be possible...");
   1.217 +      return true;
   1.218 +    }
   1.219 +  }
   1.220 +  // We fail; a completing pop_global gets the element.  But the queue is
   1.221 +  // empty (and top is greater than bottom.)  Fix this representation of
   1.222 +  // the empty queue to become the canonical one.
   1.223 +  set_age(newAge);
   1.224 +  assert(dirty_size(localBot, get_top()) != n() - 1,
   1.225 +         "Shouldn't be possible...");
   1.226 +  return false;
   1.227 +}
   1.228 +
   1.229 +template<class E>
   1.230 +bool GenericTaskQueue<E>::pop_global(E& t) {
   1.231 +  Age newAge;
   1.232 +  Age oldAge = get_age();
   1.233 +  juint localBot = _bottom;
   1.234 +  juint n_elems = size(localBot, oldAge.top());
   1.235 +  if (n_elems == 0) {
   1.236 +    return false;
   1.237 +  }
   1.238 +  t = _elems[oldAge.top()];
   1.239 +  newAge = oldAge;
   1.240 +  newAge._top = increment_index(newAge.top());
   1.241 +  if ( newAge._top == 0 ) newAge._tag++;
   1.242 +  Age resAge;
   1.243 +  *(jint*)&resAge = Atomic::cmpxchg(*(jint*)&newAge, (volatile jint*)&_age, *(jint*)&oldAge);
   1.244 +  // Note that using "_bottom" here might fail, since a pop_local might
   1.245 +  // have decremented it.
   1.246 +  assert(dirty_size(localBot, newAge._top) != n() - 1,
   1.247 +         "Shouldn't be possible...");
   1.248 +  return (resAge == oldAge);
   1.249 +}
   1.250 +
   1.251 +template<class E>
   1.252 +GenericTaskQueue<E>::~GenericTaskQueue() {
   1.253 +  FREE_C_HEAP_ARRAY(E, _elems);
   1.254 +}
   1.255 +
   1.256 +// Inherits the typedef of "Task" from above.
   1.257 +class TaskQueueSetSuper: public CHeapObj {
   1.258 +protected:
   1.259 +  static int randomParkAndMiller(int* seed0);
   1.260 +public:
   1.261 +  // Returns "true" if some TaskQueue in the set contains a task.
   1.262 +  virtual bool peek() = 0;
   1.263 +};
   1.264 +
   1.265 +template<class E> class GenericTaskQueueSet: public TaskQueueSetSuper {
   1.266 +private:
   1.267 +  int _n;
   1.268 +  GenericTaskQueue<E>** _queues;
   1.269 +
   1.270 +public:
   1.271 +  GenericTaskQueueSet(int n) : _n(n) {
   1.272 +    typedef GenericTaskQueue<E>* GenericTaskQueuePtr;
   1.273 +    _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
   1.274 +    guarantee(_queues != NULL, "Allocation failure.");
   1.275 +    for (int i = 0; i < n; i++) {
   1.276 +      _queues[i] = NULL;
   1.277 +    }
   1.278 +  }
   1.279 +
   1.280 +  bool steal_1_random(int queue_num, int* seed, E& t);
   1.281 +  bool steal_best_of_2(int queue_num, int* seed, E& t);
   1.282 +  bool steal_best_of_all(int queue_num, int* seed, E& t);
   1.283 +
   1.284 +  void register_queue(int i, GenericTaskQueue<E>* q);
   1.285 +
   1.286 +  GenericTaskQueue<E>* queue(int n);
   1.287 +
   1.288 +  // The thread with queue number "queue_num" (and whose random number seed
   1.289 +  // is at "seed") is trying to steal a task from some other queue.  (It
   1.290 +  // may try several queues, according to some configuration parameter.)
   1.291 +  // If some steal succeeds, returns "true" and sets "t" the stolen task,
   1.292 +  // otherwise returns false.
   1.293 +  bool steal(int queue_num, int* seed, E& t);
   1.294 +
   1.295 +  bool peek();
   1.296 +};
   1.297 +
   1.298 +template<class E>
   1.299 +void GenericTaskQueueSet<E>::register_queue(int i, GenericTaskQueue<E>* q) {
   1.300 +  assert(0 <= i && i < _n, "index out of range.");
   1.301 +  _queues[i] = q;
   1.302 +}
   1.303 +
   1.304 +template<class E>
   1.305 +GenericTaskQueue<E>* GenericTaskQueueSet<E>::queue(int i) {
   1.306 +  return _queues[i];
   1.307 +}
   1.308 +
   1.309 +template<class E>
   1.310 +bool GenericTaskQueueSet<E>::steal(int queue_num, int* seed, E& t) {
   1.311 +  for (int i = 0; i < 2 * _n; i++)
   1.312 +    if (steal_best_of_2(queue_num, seed, t))
   1.313 +      return true;
   1.314 +  return false;
   1.315 +}
   1.316 +
   1.317 +template<class E>
   1.318 +bool GenericTaskQueueSet<E>::steal_best_of_all(int queue_num, int* seed, E& t) {
   1.319 +  if (_n > 2) {
   1.320 +    int best_k;
   1.321 +    jint best_sz = 0;
   1.322 +    for (int k = 0; k < _n; k++) {
   1.323 +      if (k == queue_num) continue;
   1.324 +      jint sz = _queues[k]->size();
   1.325 +      if (sz > best_sz) {
   1.326 +        best_sz = sz;
   1.327 +        best_k = k;
   1.328 +      }
   1.329 +    }
   1.330 +    return best_sz > 0 && _queues[best_k]->pop_global(t);
   1.331 +  } else if (_n == 2) {
   1.332 +    // Just try the other one.
   1.333 +    int k = (queue_num + 1) % 2;
   1.334 +    return _queues[k]->pop_global(t);
   1.335 +  } else {
   1.336 +    assert(_n == 1, "can't be zero.");
   1.337 +    return false;
   1.338 +  }
   1.339 +}
   1.340 +
   1.341 +template<class E>
   1.342 +bool GenericTaskQueueSet<E>::steal_1_random(int queue_num, int* seed, E& t) {
   1.343 +  if (_n > 2) {
   1.344 +    int k = queue_num;
   1.345 +    while (k == queue_num) k = randomParkAndMiller(seed) % _n;
   1.346 +    return _queues[2]->pop_global(t);
   1.347 +  } else if (_n == 2) {
   1.348 +    // Just try the other one.
   1.349 +    int k = (queue_num + 1) % 2;
   1.350 +    return _queues[k]->pop_global(t);
   1.351 +  } else {
   1.352 +    assert(_n == 1, "can't be zero.");
   1.353 +    return false;
   1.354 +  }
   1.355 +}
   1.356 +
   1.357 +template<class E>
   1.358 +bool GenericTaskQueueSet<E>::steal_best_of_2(int queue_num, int* seed, E& t) {
   1.359 +  if (_n > 2) {
   1.360 +    int k1 = queue_num;
   1.361 +    while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
   1.362 +    int k2 = queue_num;
   1.363 +    while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
   1.364 +    // Sample both and try the larger.
   1.365 +    juint sz1 = _queues[k1]->size();
   1.366 +    juint sz2 = _queues[k2]->size();
   1.367 +    if (sz2 > sz1) return _queues[k2]->pop_global(t);
   1.368 +    else return _queues[k1]->pop_global(t);
   1.369 +  } else if (_n == 2) {
   1.370 +    // Just try the other one.
   1.371 +    int k = (queue_num + 1) % 2;
   1.372 +    return _queues[k]->pop_global(t);
   1.373 +  } else {
   1.374 +    assert(_n == 1, "can't be zero.");
   1.375 +    return false;
   1.376 +  }
   1.377 +}
   1.378 +
   1.379 +template<class E>
   1.380 +bool GenericTaskQueueSet<E>::peek() {
   1.381 +  // Try all the queues.
   1.382 +  for (int j = 0; j < _n; j++) {
   1.383 +    if (_queues[j]->peek())
   1.384 +      return true;
   1.385 +  }
   1.386 +  return false;
   1.387 +}
   1.388 +
   1.389 +// A class to aid in the termination of a set of parallel tasks using
   1.390 +// TaskQueueSet's for work stealing.
   1.391 +
   1.392 +class ParallelTaskTerminator: public StackObj {
   1.393 +private:
   1.394 +  int _n_threads;
   1.395 +  TaskQueueSetSuper* _queue_set;
   1.396 +  jint _offered_termination;
   1.397 +
   1.398 +  bool peek_in_queue_set();
   1.399 +protected:
   1.400 +  virtual void yield();
   1.401 +  void sleep(uint millis);
   1.402 +
   1.403 +public:
   1.404 +
   1.405 +  // "n_threads" is the number of threads to be terminated.  "queue_set" is a
   1.406 +  // queue sets of work queues of other threads.
   1.407 +  ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
   1.408 +
   1.409 +  // The current thread has no work, and is ready to terminate if everyone
   1.410 +  // else is.  If returns "true", all threads are terminated.  If returns
   1.411 +  // "false", available work has been observed in one of the task queues,
   1.412 +  // so the global task is not complete.
   1.413 +  bool offer_termination();
   1.414 +
   1.415 +  // Reset the terminator, so that it may be reused again.
   1.416 +  // The caller is responsible for ensuring that this is done
   1.417 +  // in an MT-safe manner, once the previous round of use of
   1.418 +  // the terminator is finished.
   1.419 +  void reset_for_reuse();
   1.420 +
   1.421 +};
   1.422 +
   1.423 +#define SIMPLE_STACK 0
   1.424 +
   1.425 +template<class E> inline bool GenericTaskQueue<E>::push(E t) {
   1.426 +#if SIMPLE_STACK
   1.427 +  juint localBot = _bottom;
   1.428 +  if (_bottom < max_elems()) {
   1.429 +    _elems[localBot] = t;
   1.430 +    _bottom = localBot + 1;
   1.431 +    return true;
   1.432 +  } else {
   1.433 +    return false;
   1.434 +  }
   1.435 +#else
   1.436 +  juint localBot = _bottom;
   1.437 +  assert((localBot >= 0) && (localBot < n()), "_bottom out of range.");
   1.438 +  jushort top = get_top();
   1.439 +  juint dirty_n_elems = dirty_size(localBot, top);
   1.440 +  assert((dirty_n_elems >= 0) && (dirty_n_elems < n()),
   1.441 +         "n_elems out of range.");
   1.442 +  if (dirty_n_elems < max_elems()) {
   1.443 +    _elems[localBot] = t;
   1.444 +    _bottom = increment_index(localBot);
   1.445 +    return true;
   1.446 +  } else {
   1.447 +    return push_slow(t, dirty_n_elems);
   1.448 +  }
   1.449 +#endif
   1.450 +}
   1.451 +
   1.452 +template<class E> inline bool GenericTaskQueue<E>::pop_local(E& t) {
   1.453 +#if SIMPLE_STACK
   1.454 +  juint localBot = _bottom;
   1.455 +  assert(localBot > 0, "precondition.");
   1.456 +  localBot--;
   1.457 +  t = _elems[localBot];
   1.458 +  _bottom = localBot;
   1.459 +  return true;
   1.460 +#else
   1.461 +  juint localBot = _bottom;
   1.462 +  // This value cannot be n-1.  That can only occur as a result of
   1.463 +  // the assignment to bottom in this method.  If it does, this method
   1.464 +  // resets the size( to 0 before the next call (which is sequential,
   1.465 +  // since this is pop_local.)
   1.466 +  juint dirty_n_elems = dirty_size(localBot, get_top());
   1.467 +  assert(dirty_n_elems != n() - 1, "Shouldn't be possible...");
   1.468 +  if (dirty_n_elems == 0) return false;
   1.469 +  localBot = decrement_index(localBot);
   1.470 +  _bottom = localBot;
   1.471 +  // This is necessary to prevent any read below from being reordered
   1.472 +  // before the store just above.
   1.473 +  OrderAccess::fence();
   1.474 +  t = _elems[localBot];
   1.475 +  // This is a second read of "age"; the "size()" above is the first.
   1.476 +  // If there's still at least one element in the queue, based on the
   1.477 +  // "_bottom" and "age" we've read, then there can be no interference with
   1.478 +  // a "pop_global" operation, and we're done.
   1.479 +  juint tp = get_top();
   1.480 +  if (size(localBot, tp) > 0) {
   1.481 +    assert(dirty_size(localBot, tp) != n() - 1,
   1.482 +           "Shouldn't be possible...");
   1.483 +    return true;
   1.484 +  } else {
   1.485 +    // Otherwise, the queue contained exactly one element; we take the slow
   1.486 +    // path.
   1.487 +    return pop_local_slow(localBot, get_age());
   1.488 +  }
   1.489 +#endif
   1.490 +}
   1.491 +
   1.492 +typedef oop Task;
   1.493 +typedef GenericTaskQueue<Task>         OopTaskQueue;
   1.494 +typedef GenericTaskQueueSet<Task>      OopTaskQueueSet;
   1.495 +
   1.496 +typedef oop* StarTask;
   1.497 +typedef GenericTaskQueue<StarTask>     OopStarTaskQueue;
   1.498 +typedef GenericTaskQueueSet<StarTask>  OopStarTaskQueueSet;
   1.499 +
   1.500 +typedef size_t ChunkTask;  // index for chunk
   1.501 +typedef GenericTaskQueue<ChunkTask>    ChunkTaskQueue;
   1.502 +typedef GenericTaskQueueSet<ChunkTask> ChunkTaskQueueSet;
   1.503 +
   1.504 +class ChunkTaskQueueWithOverflow: public CHeapObj {
   1.505 + protected:
   1.506 +  ChunkTaskQueue              _chunk_queue;
   1.507 +  GrowableArray<ChunkTask>*   _overflow_stack;
   1.508 +
   1.509 + public:
   1.510 +  ChunkTaskQueueWithOverflow() : _overflow_stack(NULL) {}
   1.511 +  // Initialize both stealable queue and overflow
   1.512 +  void initialize();
   1.513 +  // Save first to stealable queue and then to overflow
   1.514 +  void save(ChunkTask t);
   1.515 +  // Retrieve first from overflow and then from stealable queue
   1.516 +  bool retrieve(ChunkTask& chunk_index);
   1.517 +  // Retrieve from stealable queue
   1.518 +  bool retrieve_from_stealable_queue(ChunkTask& chunk_index);
   1.519 +  // Retrieve from overflow
   1.520 +  bool retrieve_from_overflow(ChunkTask& chunk_index);
   1.521 +  bool is_empty();
   1.522 +  bool stealable_is_empty();
   1.523 +  bool overflow_is_empty();
   1.524 +  juint stealable_size() { return _chunk_queue.size(); }
   1.525 +  ChunkTaskQueue* task_queue() { return &_chunk_queue; }
   1.526 +};
   1.527 +
   1.528 +#define USE_ChunkTaskQueueWithOverflow

mercurial