src/share/vm/utilities/taskqueue.hpp

changeset 435
a61af66fc99e
child 548
ba764ed4b6f2
equal deleted inserted replaced
-1:000000000000 435:a61af66fc99e
1 /*
2 * Copyright 2001-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 class TaskQueueSuper: public CHeapObj {
26 protected:
27 // The first free element after the last one pushed (mod _n).
28 // (For now we'll assume only 32-bit CAS).
29 volatile juint _bottom;
30
31 // log2 of the size of the queue.
32 enum SomeProtectedConstants {
33 Log_n = 14
34 };
35
36 // Size of the queue.
37 juint n() { return (1 << Log_n); }
38 // For computing "x mod n" efficiently.
39 juint n_mod_mask() { return n() - 1; }
40
41 struct Age {
42 jushort _top;
43 jushort _tag;
44
45 jushort tag() const { return _tag; }
46 jushort top() const { return _top; }
47
48 Age() { _tag = 0; _top = 0; }
49
50 friend bool operator ==(const Age& a1, const Age& a2) {
51 return a1.tag() == a2.tag() && a1.top() == a2.top();
52 }
53
54 };
55 Age _age;
56 // These make sure we do single atomic reads and writes.
57 Age get_age() {
58 jint res = *(volatile jint*)(&_age);
59 return *(Age*)(&res);
60 }
61 void set_age(Age a) {
62 *(volatile jint*)(&_age) = *(int*)(&a);
63 }
64
65 jushort get_top() {
66 return get_age().top();
67 }
68
69 // These both operate mod _n.
70 juint increment_index(juint ind) {
71 return (ind + 1) & n_mod_mask();
72 }
73 juint decrement_index(juint ind) {
74 return (ind - 1) & n_mod_mask();
75 }
76
77 // Returns a number in the range [0.._n). If the result is "n-1", it
78 // should be interpreted as 0.
79 juint dirty_size(juint bot, juint top) {
80 return ((jint)bot - (jint)top) & n_mod_mask();
81 }
82
83 // Returns the size corresponding to the given "bot" and "top".
84 juint size(juint bot, juint top) {
85 juint sz = dirty_size(bot, top);
86 // Has the queue "wrapped", so that bottom is less than top?
87 // There's a complicated special case here. A pair of threads could
88 // perform pop_local and pop_global operations concurrently, starting
89 // from a state in which _bottom == _top+1. The pop_local could
90 // succeed in decrementing _bottom, and the pop_global in incrementing
91 // _top (in which case the pop_global will be awarded the contested
92 // queue element.) The resulting state must be interpreted as an empty
93 // queue. (We only need to worry about one such event: only the queue
94 // owner performs pop_local's, and several concurrent threads
95 // attempting to perform the pop_global will all perform the same CAS,
96 // and only one can succeed. Any stealing thread that reads after
97 // either the increment or decrement will seen an empty queue, and will
98 // not join the competitors. The "sz == -1 || sz == _n-1" state will
99 // not be modified by concurrent queues, so the owner thread can reset
100 // the state to _bottom == top so subsequent pushes will be performed
101 // normally.
102 if (sz == (n()-1)) return 0;
103 else return sz;
104 }
105
106 public:
107 TaskQueueSuper() : _bottom(0), _age() {}
108
109 // Return "true" if the TaskQueue contains any tasks.
110 bool peek();
111
112 // Return an estimate of the number of elements in the queue.
113 // The "careful" version admits the possibility of pop_local/pop_global
114 // races.
115 juint size() {
116 return size(_bottom, get_top());
117 }
118
119 juint dirty_size() {
120 return dirty_size(_bottom, get_top());
121 }
122
123 // Maximum number of elements allowed in the queue. This is two less
124 // than the actual queue size, for somewhat complicated reasons.
125 juint max_elems() { return n() - 2; }
126
127 };
128
129 template<class E> class GenericTaskQueue: public TaskQueueSuper {
130 private:
131 // Slow paths for push, pop_local. (pop_global has no fast path.)
132 bool push_slow(E t, juint dirty_n_elems);
133 bool pop_local_slow(juint localBot, Age oldAge);
134
135 public:
136 // Initializes the queue to empty.
137 GenericTaskQueue();
138
139 void initialize();
140
141 // Push the task "t" on the queue. Returns "false" iff the queue is
142 // full.
143 inline bool push(E t);
144
145 // If succeeds in claiming a task (from the 'local' end, that is, the
146 // most recently pushed task), returns "true" and sets "t" to that task.
147 // Otherwise, the queue is empty and returns false.
148 inline bool pop_local(E& t);
149
150 // If succeeds in claiming a task (from the 'global' end, that is, the
151 // least recently pushed task), returns "true" and sets "t" to that task.
152 // Otherwise, the queue is empty and returns false.
153 bool pop_global(E& t);
154
155 // Delete any resource associated with the queue.
156 ~GenericTaskQueue();
157
158 private:
159 // Element array.
160 volatile E* _elems;
161 };
162
163 template<class E>
164 GenericTaskQueue<E>::GenericTaskQueue():TaskQueueSuper() {
165 assert(sizeof(Age) == sizeof(jint), "Depends on this.");
166 }
167
168 template<class E>
169 void GenericTaskQueue<E>::initialize() {
170 _elems = NEW_C_HEAP_ARRAY(E, n());
171 guarantee(_elems != NULL, "Allocation failed.");
172 }
173
174 template<class E>
175 bool GenericTaskQueue<E>::push_slow(E t, juint dirty_n_elems) {
176 if (dirty_n_elems == n() - 1) {
177 // Actually means 0, so do the push.
178 juint localBot = _bottom;
179 _elems[localBot] = t;
180 _bottom = increment_index(localBot);
181 return true;
182 } else
183 return false;
184 }
185
186 template<class E>
187 bool GenericTaskQueue<E>::
188 pop_local_slow(juint localBot, Age oldAge) {
189 // This queue was observed to contain exactly one element; either this
190 // thread will claim it, or a competing "pop_global". In either case,
191 // the queue will be logically empty afterwards. Create a new Age value
192 // that represents the empty queue for the given value of "_bottom". (We
193 // must also increment "tag" because of the case where "bottom == 1",
194 // "top == 0". A pop_global could read the queue element in that case,
195 // then have the owner thread do a pop followed by another push. Without
196 // the incrementing of "tag", the pop_global's CAS could succeed,
197 // allowing it to believe it has claimed the stale element.)
198 Age newAge;
199 newAge._top = localBot;
200 newAge._tag = oldAge.tag() + 1;
201 // Perhaps a competing pop_global has already incremented "top", in which
202 // case it wins the element.
203 if (localBot == oldAge.top()) {
204 Age tempAge;
205 // No competing pop_global has yet incremented "top"; we'll try to
206 // install new_age, thus claiming the element.
207 assert(sizeof(Age) == sizeof(jint) && sizeof(jint) == sizeof(juint),
208 "Assumption about CAS unit.");
209 *(jint*)&tempAge = Atomic::cmpxchg(*(jint*)&newAge, (volatile jint*)&_age, *(jint*)&oldAge);
210 if (tempAge == oldAge) {
211 // We win.
212 assert(dirty_size(localBot, get_top()) != n() - 1,
213 "Shouldn't be possible...");
214 return true;
215 }
216 }
217 // We fail; a completing pop_global gets the element. But the queue is
218 // empty (and top is greater than bottom.) Fix this representation of
219 // the empty queue to become the canonical one.
220 set_age(newAge);
221 assert(dirty_size(localBot, get_top()) != n() - 1,
222 "Shouldn't be possible...");
223 return false;
224 }
225
226 template<class E>
227 bool GenericTaskQueue<E>::pop_global(E& t) {
228 Age newAge;
229 Age oldAge = get_age();
230 juint localBot = _bottom;
231 juint n_elems = size(localBot, oldAge.top());
232 if (n_elems == 0) {
233 return false;
234 }
235 t = _elems[oldAge.top()];
236 newAge = oldAge;
237 newAge._top = increment_index(newAge.top());
238 if ( newAge._top == 0 ) newAge._tag++;
239 Age resAge;
240 *(jint*)&resAge = Atomic::cmpxchg(*(jint*)&newAge, (volatile jint*)&_age, *(jint*)&oldAge);
241 // Note that using "_bottom" here might fail, since a pop_local might
242 // have decremented it.
243 assert(dirty_size(localBot, newAge._top) != n() - 1,
244 "Shouldn't be possible...");
245 return (resAge == oldAge);
246 }
247
248 template<class E>
249 GenericTaskQueue<E>::~GenericTaskQueue() {
250 FREE_C_HEAP_ARRAY(E, _elems);
251 }
252
253 // Inherits the typedef of "Task" from above.
254 class TaskQueueSetSuper: public CHeapObj {
255 protected:
256 static int randomParkAndMiller(int* seed0);
257 public:
258 // Returns "true" if some TaskQueue in the set contains a task.
259 virtual bool peek() = 0;
260 };
261
262 template<class E> class GenericTaskQueueSet: public TaskQueueSetSuper {
263 private:
264 int _n;
265 GenericTaskQueue<E>** _queues;
266
267 public:
268 GenericTaskQueueSet(int n) : _n(n) {
269 typedef GenericTaskQueue<E>* GenericTaskQueuePtr;
270 _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
271 guarantee(_queues != NULL, "Allocation failure.");
272 for (int i = 0; i < n; i++) {
273 _queues[i] = NULL;
274 }
275 }
276
277 bool steal_1_random(int queue_num, int* seed, E& t);
278 bool steal_best_of_2(int queue_num, int* seed, E& t);
279 bool steal_best_of_all(int queue_num, int* seed, E& t);
280
281 void register_queue(int i, GenericTaskQueue<E>* q);
282
283 GenericTaskQueue<E>* queue(int n);
284
285 // The thread with queue number "queue_num" (and whose random number seed
286 // is at "seed") is trying to steal a task from some other queue. (It
287 // may try several queues, according to some configuration parameter.)
288 // If some steal succeeds, returns "true" and sets "t" the stolen task,
289 // otherwise returns false.
290 bool steal(int queue_num, int* seed, E& t);
291
292 bool peek();
293 };
294
295 template<class E>
296 void GenericTaskQueueSet<E>::register_queue(int i, GenericTaskQueue<E>* q) {
297 assert(0 <= i && i < _n, "index out of range.");
298 _queues[i] = q;
299 }
300
301 template<class E>
302 GenericTaskQueue<E>* GenericTaskQueueSet<E>::queue(int i) {
303 return _queues[i];
304 }
305
306 template<class E>
307 bool GenericTaskQueueSet<E>::steal(int queue_num, int* seed, E& t) {
308 for (int i = 0; i < 2 * _n; i++)
309 if (steal_best_of_2(queue_num, seed, t))
310 return true;
311 return false;
312 }
313
314 template<class E>
315 bool GenericTaskQueueSet<E>::steal_best_of_all(int queue_num, int* seed, E& t) {
316 if (_n > 2) {
317 int best_k;
318 jint best_sz = 0;
319 for (int k = 0; k < _n; k++) {
320 if (k == queue_num) continue;
321 jint sz = _queues[k]->size();
322 if (sz > best_sz) {
323 best_sz = sz;
324 best_k = k;
325 }
326 }
327 return best_sz > 0 && _queues[best_k]->pop_global(t);
328 } else if (_n == 2) {
329 // Just try the other one.
330 int k = (queue_num + 1) % 2;
331 return _queues[k]->pop_global(t);
332 } else {
333 assert(_n == 1, "can't be zero.");
334 return false;
335 }
336 }
337
338 template<class E>
339 bool GenericTaskQueueSet<E>::steal_1_random(int queue_num, int* seed, E& t) {
340 if (_n > 2) {
341 int k = queue_num;
342 while (k == queue_num) k = randomParkAndMiller(seed) % _n;
343 return _queues[2]->pop_global(t);
344 } else if (_n == 2) {
345 // Just try the other one.
346 int k = (queue_num + 1) % 2;
347 return _queues[k]->pop_global(t);
348 } else {
349 assert(_n == 1, "can't be zero.");
350 return false;
351 }
352 }
353
354 template<class E>
355 bool GenericTaskQueueSet<E>::steal_best_of_2(int queue_num, int* seed, E& t) {
356 if (_n > 2) {
357 int k1 = queue_num;
358 while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
359 int k2 = queue_num;
360 while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
361 // Sample both and try the larger.
362 juint sz1 = _queues[k1]->size();
363 juint sz2 = _queues[k2]->size();
364 if (sz2 > sz1) return _queues[k2]->pop_global(t);
365 else return _queues[k1]->pop_global(t);
366 } else if (_n == 2) {
367 // Just try the other one.
368 int k = (queue_num + 1) % 2;
369 return _queues[k]->pop_global(t);
370 } else {
371 assert(_n == 1, "can't be zero.");
372 return false;
373 }
374 }
375
376 template<class E>
377 bool GenericTaskQueueSet<E>::peek() {
378 // Try all the queues.
379 for (int j = 0; j < _n; j++) {
380 if (_queues[j]->peek())
381 return true;
382 }
383 return false;
384 }
385
386 // A class to aid in the termination of a set of parallel tasks using
387 // TaskQueueSet's for work stealing.
388
389 class ParallelTaskTerminator: public StackObj {
390 private:
391 int _n_threads;
392 TaskQueueSetSuper* _queue_set;
393 jint _offered_termination;
394
395 bool peek_in_queue_set();
396 protected:
397 virtual void yield();
398 void sleep(uint millis);
399
400 public:
401
402 // "n_threads" is the number of threads to be terminated. "queue_set" is a
403 // queue sets of work queues of other threads.
404 ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
405
406 // The current thread has no work, and is ready to terminate if everyone
407 // else is. If returns "true", all threads are terminated. If returns
408 // "false", available work has been observed in one of the task queues,
409 // so the global task is not complete.
410 bool offer_termination();
411
412 // Reset the terminator, so that it may be reused again.
413 // The caller is responsible for ensuring that this is done
414 // in an MT-safe manner, once the previous round of use of
415 // the terminator is finished.
416 void reset_for_reuse();
417
418 };
419
420 #define SIMPLE_STACK 0
421
422 template<class E> inline bool GenericTaskQueue<E>::push(E t) {
423 #if SIMPLE_STACK
424 juint localBot = _bottom;
425 if (_bottom < max_elems()) {
426 _elems[localBot] = t;
427 _bottom = localBot + 1;
428 return true;
429 } else {
430 return false;
431 }
432 #else
433 juint localBot = _bottom;
434 assert((localBot >= 0) && (localBot < n()), "_bottom out of range.");
435 jushort top = get_top();
436 juint dirty_n_elems = dirty_size(localBot, top);
437 assert((dirty_n_elems >= 0) && (dirty_n_elems < n()),
438 "n_elems out of range.");
439 if (dirty_n_elems < max_elems()) {
440 _elems[localBot] = t;
441 _bottom = increment_index(localBot);
442 return true;
443 } else {
444 return push_slow(t, dirty_n_elems);
445 }
446 #endif
447 }
448
449 template<class E> inline bool GenericTaskQueue<E>::pop_local(E& t) {
450 #if SIMPLE_STACK
451 juint localBot = _bottom;
452 assert(localBot > 0, "precondition.");
453 localBot--;
454 t = _elems[localBot];
455 _bottom = localBot;
456 return true;
457 #else
458 juint localBot = _bottom;
459 // This value cannot be n-1. That can only occur as a result of
460 // the assignment to bottom in this method. If it does, this method
461 // resets the size( to 0 before the next call (which is sequential,
462 // since this is pop_local.)
463 juint dirty_n_elems = dirty_size(localBot, get_top());
464 assert(dirty_n_elems != n() - 1, "Shouldn't be possible...");
465 if (dirty_n_elems == 0) return false;
466 localBot = decrement_index(localBot);
467 _bottom = localBot;
468 // This is necessary to prevent any read below from being reordered
469 // before the store just above.
470 OrderAccess::fence();
471 t = _elems[localBot];
472 // This is a second read of "age"; the "size()" above is the first.
473 // If there's still at least one element in the queue, based on the
474 // "_bottom" and "age" we've read, then there can be no interference with
475 // a "pop_global" operation, and we're done.
476 juint tp = get_top();
477 if (size(localBot, tp) > 0) {
478 assert(dirty_size(localBot, tp) != n() - 1,
479 "Shouldn't be possible...");
480 return true;
481 } else {
482 // Otherwise, the queue contained exactly one element; we take the slow
483 // path.
484 return pop_local_slow(localBot, get_age());
485 }
486 #endif
487 }
488
489 typedef oop Task;
490 typedef GenericTaskQueue<Task> OopTaskQueue;
491 typedef GenericTaskQueueSet<Task> OopTaskQueueSet;
492
493 typedef oop* StarTask;
494 typedef GenericTaskQueue<StarTask> OopStarTaskQueue;
495 typedef GenericTaskQueueSet<StarTask> OopStarTaskQueueSet;
496
497 typedef size_t ChunkTask; // index for chunk
498 typedef GenericTaskQueue<ChunkTask> ChunkTaskQueue;
499 typedef GenericTaskQueueSet<ChunkTask> ChunkTaskQueueSet;
500
501 class ChunkTaskQueueWithOverflow: public CHeapObj {
502 protected:
503 ChunkTaskQueue _chunk_queue;
504 GrowableArray<ChunkTask>* _overflow_stack;
505
506 public:
507 ChunkTaskQueueWithOverflow() : _overflow_stack(NULL) {}
508 // Initialize both stealable queue and overflow
509 void initialize();
510 // Save first to stealable queue and then to overflow
511 void save(ChunkTask t);
512 // Retrieve first from overflow and then from stealable queue
513 bool retrieve(ChunkTask& chunk_index);
514 // Retrieve from stealable queue
515 bool retrieve_from_stealable_queue(ChunkTask& chunk_index);
516 // Retrieve from overflow
517 bool retrieve_from_overflow(ChunkTask& chunk_index);
518 bool is_empty();
519 bool stealable_is_empty();
520 bool overflow_is_empty();
521 juint stealable_size() { return _chunk_queue.size(); }
522 ChunkTaskQueue* task_queue() { return &_chunk_queue; }
523 };
524
525 #define USE_ChunkTaskQueueWithOverflow

mercurial