src/share/vm/opto/addnode.cpp

changeset 0
f90c822e73f8
child 6876
710a3c8b516e
equal deleted inserted replaced
-1:000000000000 0:f90c822e73f8
1 /*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "memory/allocation.inline.hpp"
27 #include "opto/addnode.hpp"
28 #include "opto/cfgnode.hpp"
29 #include "opto/connode.hpp"
30 #include "opto/machnode.hpp"
31 #include "opto/mulnode.hpp"
32 #include "opto/phaseX.hpp"
33 #include "opto/subnode.hpp"
34
35 // Portions of code courtesy of Clifford Click
36
37 // Classic Add functionality. This covers all the usual 'add' behaviors for
38 // an algebraic ring. Add-integer, add-float, add-double, and binary-or are
39 // all inherited from this class. The various identity values are supplied
40 // by virtual functions.
41
42
43 //=============================================================================
44 //------------------------------hash-------------------------------------------
45 // Hash function over AddNodes. Needs to be commutative; i.e., I swap
46 // (commute) inputs to AddNodes willy-nilly so the hash function must return
47 // the same value in the presence of edge swapping.
48 uint AddNode::hash() const {
49 return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
50 }
51
52 //------------------------------Identity---------------------------------------
53 // If either input is a constant 0, return the other input.
54 Node *AddNode::Identity( PhaseTransform *phase ) {
55 const Type *zero = add_id(); // The additive identity
56 if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
57 if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
58 return this;
59 }
60
61 //------------------------------commute----------------------------------------
62 // Commute operands to move loads and constants to the right.
63 static bool commute( Node *add, int con_left, int con_right ) {
64 Node *in1 = add->in(1);
65 Node *in2 = add->in(2);
66
67 // Convert "1+x" into "x+1".
68 // Right is a constant; leave it
69 if( con_right ) return false;
70 // Left is a constant; move it right.
71 if( con_left ) {
72 add->swap_edges(1, 2);
73 return true;
74 }
75
76 // Convert "Load+x" into "x+Load".
77 // Now check for loads
78 if (in2->is_Load()) {
79 if (!in1->is_Load()) {
80 // already x+Load to return
81 return false;
82 }
83 // both are loads, so fall through to sort inputs by idx
84 } else if( in1->is_Load() ) {
85 // Left is a Load and Right is not; move it right.
86 add->swap_edges(1, 2);
87 return true;
88 }
89
90 PhiNode *phi;
91 // Check for tight loop increments: Loop-phi of Add of loop-phi
92 if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
93 return false;
94 if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
95 add->swap_edges(1, 2);
96 return true;
97 }
98
99 // Otherwise, sort inputs (commutativity) to help value numbering.
100 if( in1->_idx > in2->_idx ) {
101 add->swap_edges(1, 2);
102 return true;
103 }
104 return false;
105 }
106
107 //------------------------------Idealize---------------------------------------
108 // If we get here, we assume we are associative!
109 Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
110 const Type *t1 = phase->type( in(1) );
111 const Type *t2 = phase->type( in(2) );
112 int con_left = t1->singleton();
113 int con_right = t2->singleton();
114
115 // Check for commutative operation desired
116 if( commute(this,con_left,con_right) ) return this;
117
118 AddNode *progress = NULL; // Progress flag
119
120 // Convert "(x+1)+2" into "x+(1+2)". If the right input is a
121 // constant, and the left input is an add of a constant, flatten the
122 // expression tree.
123 Node *add1 = in(1);
124 Node *add2 = in(2);
125 int add1_op = add1->Opcode();
126 int this_op = Opcode();
127 if( con_right && t2 != Type::TOP && // Right input is a constant?
128 add1_op == this_op ) { // Left input is an Add?
129
130 // Type of left _in right input
131 const Type *t12 = phase->type( add1->in(2) );
132 if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
133 // Check for rare case of closed data cycle which can happen inside
134 // unreachable loops. In these cases the computation is undefined.
135 #ifdef ASSERT
136 Node *add11 = add1->in(1);
137 int add11_op = add11->Opcode();
138 if( (add1 == add1->in(1))
139 || (add11_op == this_op && add11->in(1) == add1) ) {
140 assert(false, "dead loop in AddNode::Ideal");
141 }
142 #endif
143 // The Add of the flattened expression
144 Node *x1 = add1->in(1);
145 Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
146 PhaseIterGVN *igvn = phase->is_IterGVN();
147 if( igvn ) {
148 set_req_X(2,x2,igvn);
149 set_req_X(1,x1,igvn);
150 } else {
151 set_req(2,x2);
152 set_req(1,x1);
153 }
154 progress = this; // Made progress
155 add1 = in(1);
156 add1_op = add1->Opcode();
157 }
158 }
159
160 // Convert "(x+1)+y" into "(x+y)+1". Push constants down the expression tree.
161 if( add1_op == this_op && !con_right ) {
162 Node *a12 = add1->in(2);
163 const Type *t12 = phase->type( a12 );
164 if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) &&
165 !(add1->in(1)->is_Phi() && add1->in(1)->as_Phi()->is_tripcount()) ) {
166 assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
167 add2 = add1->clone();
168 add2->set_req(2, in(2));
169 add2 = phase->transform(add2);
170 set_req(1, add2);
171 set_req(2, a12);
172 progress = this;
173 add2 = a12;
174 }
175 }
176
177 // Convert "x+(y+1)" into "(x+y)+1". Push constants down the expression tree.
178 int add2_op = add2->Opcode();
179 if( add2_op == this_op && !con_left ) {
180 Node *a22 = add2->in(2);
181 const Type *t22 = phase->type( a22 );
182 if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) &&
183 !(add2->in(1)->is_Phi() && add2->in(1)->as_Phi()->is_tripcount()) ) {
184 assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
185 Node *addx = add2->clone();
186 addx->set_req(1, in(1));
187 addx->set_req(2, add2->in(1));
188 addx = phase->transform(addx);
189 set_req(1, addx);
190 set_req(2, a22);
191 progress = this;
192 PhaseIterGVN *igvn = phase->is_IterGVN();
193 if (add2->outcnt() == 0 && igvn) {
194 // add disconnected.
195 igvn->_worklist.push(add2);
196 }
197 }
198 }
199
200 return progress;
201 }
202
203 //------------------------------Value-----------------------------------------
204 // An add node sums it's two _in. If one input is an RSD, we must mixin
205 // the other input's symbols.
206 const Type *AddNode::Value( PhaseTransform *phase ) const {
207 // Either input is TOP ==> the result is TOP
208 const Type *t1 = phase->type( in(1) );
209 const Type *t2 = phase->type( in(2) );
210 if( t1 == Type::TOP ) return Type::TOP;
211 if( t2 == Type::TOP ) return Type::TOP;
212
213 // Either input is BOTTOM ==> the result is the local BOTTOM
214 const Type *bot = bottom_type();
215 if( (t1 == bot) || (t2 == bot) ||
216 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
217 return bot;
218
219 // Check for an addition involving the additive identity
220 const Type *tadd = add_of_identity( t1, t2 );
221 if( tadd ) return tadd;
222
223 return add_ring(t1,t2); // Local flavor of type addition
224 }
225
226 //------------------------------add_identity-----------------------------------
227 // Check for addition of the identity
228 const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
229 const Type *zero = add_id(); // The additive identity
230 if( t1->higher_equal( zero ) ) return t2;
231 if( t2->higher_equal( zero ) ) return t1;
232
233 return NULL;
234 }
235
236
237 //=============================================================================
238 //------------------------------Idealize---------------------------------------
239 Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
240 Node* in1 = in(1);
241 Node* in2 = in(2);
242 int op1 = in1->Opcode();
243 int op2 = in2->Opcode();
244 // Fold (con1-x)+con2 into (con1+con2)-x
245 if ( op1 == Op_AddI && op2 == Op_SubI ) {
246 // Swap edges to try optimizations below
247 in1 = in2;
248 in2 = in(1);
249 op1 = op2;
250 op2 = in2->Opcode();
251 }
252 if( op1 == Op_SubI ) {
253 const Type *t_sub1 = phase->type( in1->in(1) );
254 const Type *t_2 = phase->type( in2 );
255 if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
256 return new (phase->C) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
257 in1->in(2) );
258 // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
259 if( op2 == Op_SubI ) {
260 // Check for dead cycle: d = (a-b)+(c-d)
261 assert( in1->in(2) != this && in2->in(2) != this,
262 "dead loop in AddINode::Ideal" );
263 Node *sub = new (phase->C) SubINode(NULL, NULL);
264 sub->init_req(1, phase->transform(new (phase->C) AddINode(in1->in(1), in2->in(1) ) ));
265 sub->init_req(2, phase->transform(new (phase->C) AddINode(in1->in(2), in2->in(2) ) ));
266 return sub;
267 }
268 // Convert "(a-b)+(b+c)" into "(a+c)"
269 if( op2 == Op_AddI && in1->in(2) == in2->in(1) ) {
270 assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
271 return new (phase->C) AddINode(in1->in(1), in2->in(2));
272 }
273 // Convert "(a-b)+(c+b)" into "(a+c)"
274 if( op2 == Op_AddI && in1->in(2) == in2->in(2) ) {
275 assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
276 return new (phase->C) AddINode(in1->in(1), in2->in(1));
277 }
278 // Convert "(a-b)+(b-c)" into "(a-c)"
279 if( op2 == Op_SubI && in1->in(2) == in2->in(1) ) {
280 assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
281 return new (phase->C) SubINode(in1->in(1), in2->in(2));
282 }
283 // Convert "(a-b)+(c-a)" into "(c-b)"
284 if( op2 == Op_SubI && in1->in(1) == in2->in(2) ) {
285 assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
286 return new (phase->C) SubINode(in2->in(1), in1->in(2));
287 }
288 }
289
290 // Convert "x+(0-y)" into "(x-y)"
291 if( op2 == Op_SubI && phase->type(in2->in(1)) == TypeInt::ZERO )
292 return new (phase->C) SubINode(in1, in2->in(2) );
293
294 // Convert "(0-y)+x" into "(x-y)"
295 if( op1 == Op_SubI && phase->type(in1->in(1)) == TypeInt::ZERO )
296 return new (phase->C) SubINode( in2, in1->in(2) );
297
298 // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
299 // Helps with array allocation math constant folding
300 // See 4790063:
301 // Unrestricted transformation is unsafe for some runtime values of 'x'
302 // ( x == 0, z == 1, y == -1 ) fails
303 // ( x == -5, z == 1, y == 1 ) fails
304 // Transform works for small z and small negative y when the addition
305 // (x + (y << z)) does not cross zero.
306 // Implement support for negative y and (x >= -(y << z))
307 // Have not observed cases where type information exists to support
308 // positive y and (x <= -(y << z))
309 if( op1 == Op_URShiftI && op2 == Op_ConI &&
310 in1->in(2)->Opcode() == Op_ConI ) {
311 jint z = phase->type( in1->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
312 jint y = phase->type( in2 )->is_int()->get_con();
313
314 if( z < 5 && -5 < y && y < 0 ) {
315 const Type *t_in11 = phase->type(in1->in(1));
316 if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
317 Node *a = phase->transform( new (phase->C) AddINode( in1->in(1), phase->intcon(y<<z) ) );
318 return new (phase->C) URShiftINode( a, in1->in(2) );
319 }
320 }
321 }
322
323 return AddNode::Ideal(phase, can_reshape);
324 }
325
326
327 //------------------------------Identity---------------------------------------
328 // Fold (x-y)+y OR y+(x-y) into x
329 Node *AddINode::Identity( PhaseTransform *phase ) {
330 if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
331 return in(1)->in(1);
332 }
333 else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
334 return in(2)->in(1);
335 }
336 return AddNode::Identity(phase);
337 }
338
339
340 //------------------------------add_ring---------------------------------------
341 // Supplied function returns the sum of the inputs. Guaranteed never
342 // to be passed a TOP or BOTTOM type, these are filtered out by
343 // pre-check.
344 const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
345 const TypeInt *r0 = t0->is_int(); // Handy access
346 const TypeInt *r1 = t1->is_int();
347 int lo = r0->_lo + r1->_lo;
348 int hi = r0->_hi + r1->_hi;
349 if( !(r0->is_con() && r1->is_con()) ) {
350 // Not both constants, compute approximate result
351 if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
352 lo = min_jint; hi = max_jint; // Underflow on the low side
353 }
354 if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
355 lo = min_jint; hi = max_jint; // Overflow on the high side
356 }
357 if( lo > hi ) { // Handle overflow
358 lo = min_jint; hi = max_jint;
359 }
360 } else {
361 // both constants, compute precise result using 'lo' and 'hi'
362 // Semantics define overflow and underflow for integer addition
363 // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0
364 }
365 return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
366 }
367
368
369 //=============================================================================
370 //------------------------------Idealize---------------------------------------
371 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
372 Node* in1 = in(1);
373 Node* in2 = in(2);
374 int op1 = in1->Opcode();
375 int op2 = in2->Opcode();
376 // Fold (con1-x)+con2 into (con1+con2)-x
377 if ( op1 == Op_AddL && op2 == Op_SubL ) {
378 // Swap edges to try optimizations below
379 in1 = in2;
380 in2 = in(1);
381 op1 = op2;
382 op2 = in2->Opcode();
383 }
384 // Fold (con1-x)+con2 into (con1+con2)-x
385 if( op1 == Op_SubL ) {
386 const Type *t_sub1 = phase->type( in1->in(1) );
387 const Type *t_2 = phase->type( in2 );
388 if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
389 return new (phase->C) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
390 in1->in(2) );
391 // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
392 if( op2 == Op_SubL ) {
393 // Check for dead cycle: d = (a-b)+(c-d)
394 assert( in1->in(2) != this && in2->in(2) != this,
395 "dead loop in AddLNode::Ideal" );
396 Node *sub = new (phase->C) SubLNode(NULL, NULL);
397 sub->init_req(1, phase->transform(new (phase->C) AddLNode(in1->in(1), in2->in(1) ) ));
398 sub->init_req(2, phase->transform(new (phase->C) AddLNode(in1->in(2), in2->in(2) ) ));
399 return sub;
400 }
401 // Convert "(a-b)+(b+c)" into "(a+c)"
402 if( op2 == Op_AddL && in1->in(2) == in2->in(1) ) {
403 assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
404 return new (phase->C) AddLNode(in1->in(1), in2->in(2));
405 }
406 // Convert "(a-b)+(c+b)" into "(a+c)"
407 if( op2 == Op_AddL && in1->in(2) == in2->in(2) ) {
408 assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
409 return new (phase->C) AddLNode(in1->in(1), in2->in(1));
410 }
411 // Convert "(a-b)+(b-c)" into "(a-c)"
412 if( op2 == Op_SubL && in1->in(2) == in2->in(1) ) {
413 assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
414 return new (phase->C) SubLNode(in1->in(1), in2->in(2));
415 }
416 // Convert "(a-b)+(c-a)" into "(c-b)"
417 if( op2 == Op_SubL && in1->in(1) == in1->in(2) ) {
418 assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
419 return new (phase->C) SubLNode(in2->in(1), in1->in(2));
420 }
421 }
422
423 // Convert "x+(0-y)" into "(x-y)"
424 if( op2 == Op_SubL && phase->type(in2->in(1)) == TypeLong::ZERO )
425 return new (phase->C) SubLNode( in1, in2->in(2) );
426
427 // Convert "(0-y)+x" into "(x-y)"
428 if( op1 == Op_SubL && phase->type(in1->in(1)) == TypeInt::ZERO )
429 return new (phase->C) SubLNode( in2, in1->in(2) );
430
431 // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
432 // into "(X<<1)+Y" and let shift-folding happen.
433 if( op2 == Op_AddL &&
434 in2->in(1) == in1 &&
435 op1 != Op_ConL &&
436 0 ) {
437 Node *shift = phase->transform(new (phase->C) LShiftLNode(in1,phase->intcon(1)));
438 return new (phase->C) AddLNode(shift,in2->in(2));
439 }
440
441 return AddNode::Ideal(phase, can_reshape);
442 }
443
444
445 //------------------------------Identity---------------------------------------
446 // Fold (x-y)+y OR y+(x-y) into x
447 Node *AddLNode::Identity( PhaseTransform *phase ) {
448 if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
449 return in(1)->in(1);
450 }
451 else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
452 return in(2)->in(1);
453 }
454 return AddNode::Identity(phase);
455 }
456
457
458 //------------------------------add_ring---------------------------------------
459 // Supplied function returns the sum of the inputs. Guaranteed never
460 // to be passed a TOP or BOTTOM type, these are filtered out by
461 // pre-check.
462 const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
463 const TypeLong *r0 = t0->is_long(); // Handy access
464 const TypeLong *r1 = t1->is_long();
465 jlong lo = r0->_lo + r1->_lo;
466 jlong hi = r0->_hi + r1->_hi;
467 if( !(r0->is_con() && r1->is_con()) ) {
468 // Not both constants, compute approximate result
469 if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
470 lo =min_jlong; hi = max_jlong; // Underflow on the low side
471 }
472 if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
473 lo = min_jlong; hi = max_jlong; // Overflow on the high side
474 }
475 if( lo > hi ) { // Handle overflow
476 lo = min_jlong; hi = max_jlong;
477 }
478 } else {
479 // both constants, compute precise result using 'lo' and 'hi'
480 // Semantics define overflow and underflow for integer addition
481 // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0
482 }
483 return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
484 }
485
486
487 //=============================================================================
488 //------------------------------add_of_identity--------------------------------
489 // Check for addition of the identity
490 const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
491 // x ADD 0 should return x unless 'x' is a -zero
492 //
493 // const Type *zero = add_id(); // The additive identity
494 // jfloat f1 = t1->getf();
495 // jfloat f2 = t2->getf();
496 //
497 // if( t1->higher_equal( zero ) ) return t2;
498 // if( t2->higher_equal( zero ) ) return t1;
499
500 return NULL;
501 }
502
503 //------------------------------add_ring---------------------------------------
504 // Supplied function returns the sum of the inputs.
505 // This also type-checks the inputs for sanity. Guaranteed never to
506 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
507 const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
508 // We must be adding 2 float constants.
509 return TypeF::make( t0->getf() + t1->getf() );
510 }
511
512 //------------------------------Ideal------------------------------------------
513 Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
514 if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
515 return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
516 }
517
518 // Floating point additions are not associative because of boundary conditions (infinity)
519 return commute(this,
520 phase->type( in(1) )->singleton(),
521 phase->type( in(2) )->singleton() ) ? this : NULL;
522 }
523
524
525 //=============================================================================
526 //------------------------------add_of_identity--------------------------------
527 // Check for addition of the identity
528 const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
529 // x ADD 0 should return x unless 'x' is a -zero
530 //
531 // const Type *zero = add_id(); // The additive identity
532 // jfloat f1 = t1->getf();
533 // jfloat f2 = t2->getf();
534 //
535 // if( t1->higher_equal( zero ) ) return t2;
536 // if( t2->higher_equal( zero ) ) return t1;
537
538 return NULL;
539 }
540 //------------------------------add_ring---------------------------------------
541 // Supplied function returns the sum of the inputs.
542 // This also type-checks the inputs for sanity. Guaranteed never to
543 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
544 const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
545 // We must be adding 2 double constants.
546 return TypeD::make( t0->getd() + t1->getd() );
547 }
548
549 //------------------------------Ideal------------------------------------------
550 Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
551 if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
552 return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
553 }
554
555 // Floating point additions are not associative because of boundary conditions (infinity)
556 return commute(this,
557 phase->type( in(1) )->singleton(),
558 phase->type( in(2) )->singleton() ) ? this : NULL;
559 }
560
561
562 //=============================================================================
563 //------------------------------Identity---------------------------------------
564 // If one input is a constant 0, return the other input.
565 Node *AddPNode::Identity( PhaseTransform *phase ) {
566 return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
567 }
568
569 //------------------------------Idealize---------------------------------------
570 Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
571 // Bail out if dead inputs
572 if( phase->type( in(Address) ) == Type::TOP ) return NULL;
573
574 // If the left input is an add of a constant, flatten the expression tree.
575 const Node *n = in(Address);
576 if (n->is_AddP() && n->in(Base) == in(Base)) {
577 const AddPNode *addp = n->as_AddP(); // Left input is an AddP
578 assert( !addp->in(Address)->is_AddP() ||
579 addp->in(Address)->as_AddP() != addp,
580 "dead loop in AddPNode::Ideal" );
581 // Type of left input's right input
582 const Type *t = phase->type( addp->in(Offset) );
583 if( t == Type::TOP ) return NULL;
584 const TypeX *t12 = t->is_intptr_t();
585 if( t12->is_con() ) { // Left input is an add of a constant?
586 // If the right input is a constant, combine constants
587 const Type *temp_t2 = phase->type( in(Offset) );
588 if( temp_t2 == Type::TOP ) return NULL;
589 const TypeX *t2 = temp_t2->is_intptr_t();
590 Node* address;
591 Node* offset;
592 if( t2->is_con() ) {
593 // The Add of the flattened expression
594 address = addp->in(Address);
595 offset = phase->MakeConX(t2->get_con() + t12->get_con());
596 } else {
597 // Else move the constant to the right. ((A+con)+B) into ((A+B)+con)
598 address = phase->transform(new (phase->C) AddPNode(in(Base),addp->in(Address),in(Offset)));
599 offset = addp->in(Offset);
600 }
601 PhaseIterGVN *igvn = phase->is_IterGVN();
602 if( igvn ) {
603 set_req_X(Address,address,igvn);
604 set_req_X(Offset,offset,igvn);
605 } else {
606 set_req(Address,address);
607 set_req(Offset,offset);
608 }
609 return this;
610 }
611 }
612
613 // Raw pointers?
614 if( in(Base)->bottom_type() == Type::TOP ) {
615 // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
616 if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
617 Node* offset = in(Offset);
618 return new (phase->C) CastX2PNode(offset);
619 }
620 }
621
622 // If the right is an add of a constant, push the offset down.
623 // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
624 // The idea is to merge array_base+scaled_index groups together,
625 // and only have different constant offsets from the same base.
626 const Node *add = in(Offset);
627 if( add->Opcode() == Op_AddX && add->in(1) != add ) {
628 const Type *t22 = phase->type( add->in(2) );
629 if( t22->singleton() && (t22 != Type::TOP) ) { // Right input is an add of a constant?
630 set_req(Address, phase->transform(new (phase->C) AddPNode(in(Base),in(Address),add->in(1))));
631 set_req(Offset, add->in(2));
632 PhaseIterGVN *igvn = phase->is_IterGVN();
633 if (add->outcnt() == 0 && igvn) {
634 // add disconnected.
635 igvn->_worklist.push((Node*)add);
636 }
637 return this; // Made progress
638 }
639 }
640
641 return NULL; // No progress
642 }
643
644 //------------------------------bottom_type------------------------------------
645 // Bottom-type is the pointer-type with unknown offset.
646 const Type *AddPNode::bottom_type() const {
647 if (in(Address) == NULL) return TypePtr::BOTTOM;
648 const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
649 if( !tp ) return Type::TOP; // TOP input means TOP output
650 assert( in(Offset)->Opcode() != Op_ConP, "" );
651 const Type *t = in(Offset)->bottom_type();
652 if( t == Type::TOP )
653 return tp->add_offset(Type::OffsetTop);
654 const TypeX *tx = t->is_intptr_t();
655 intptr_t txoffset = Type::OffsetBot;
656 if (tx->is_con()) { // Left input is an add of a constant?
657 txoffset = tx->get_con();
658 }
659 return tp->add_offset(txoffset);
660 }
661
662 //------------------------------Value------------------------------------------
663 const Type *AddPNode::Value( PhaseTransform *phase ) const {
664 // Either input is TOP ==> the result is TOP
665 const Type *t1 = phase->type( in(Address) );
666 const Type *t2 = phase->type( in(Offset) );
667 if( t1 == Type::TOP ) return Type::TOP;
668 if( t2 == Type::TOP ) return Type::TOP;
669
670 // Left input is a pointer
671 const TypePtr *p1 = t1->isa_ptr();
672 // Right input is an int
673 const TypeX *p2 = t2->is_intptr_t();
674 // Add 'em
675 intptr_t p2offset = Type::OffsetBot;
676 if (p2->is_con()) { // Left input is an add of a constant?
677 p2offset = p2->get_con();
678 }
679 return p1->add_offset(p2offset);
680 }
681
682 //------------------------Ideal_base_and_offset--------------------------------
683 // Split an oop pointer into a base and offset.
684 // (The offset might be Type::OffsetBot in the case of an array.)
685 // Return the base, or NULL if failure.
686 Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
687 // second return value:
688 intptr_t& offset) {
689 if (ptr->is_AddP()) {
690 Node* base = ptr->in(AddPNode::Base);
691 Node* addr = ptr->in(AddPNode::Address);
692 Node* offs = ptr->in(AddPNode::Offset);
693 if (base == addr || base->is_top()) {
694 offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
695 if (offset != Type::OffsetBot) {
696 return addr;
697 }
698 }
699 }
700 offset = Type::OffsetBot;
701 return NULL;
702 }
703
704 //------------------------------unpack_offsets----------------------------------
705 // Collect the AddP offset values into the elements array, giving up
706 // if there are more than length.
707 int AddPNode::unpack_offsets(Node* elements[], int length) {
708 int count = 0;
709 Node* addr = this;
710 Node* base = addr->in(AddPNode::Base);
711 while (addr->is_AddP()) {
712 if (addr->in(AddPNode::Base) != base) {
713 // give up
714 return -1;
715 }
716 elements[count++] = addr->in(AddPNode::Offset);
717 if (count == length) {
718 // give up
719 return -1;
720 }
721 addr = addr->in(AddPNode::Address);
722 }
723 if (addr != base) {
724 return -1;
725 }
726 return count;
727 }
728
729 //------------------------------match_edge-------------------------------------
730 // Do we Match on this edge index or not? Do not match base pointer edge
731 uint AddPNode::match_edge(uint idx) const {
732 return idx > Base;
733 }
734
735 //=============================================================================
736 //------------------------------Identity---------------------------------------
737 Node *OrINode::Identity( PhaseTransform *phase ) {
738 // x | x => x
739 if (phase->eqv(in(1), in(2))) {
740 return in(1);
741 }
742
743 return AddNode::Identity(phase);
744 }
745
746 //------------------------------add_ring---------------------------------------
747 // Supplied function returns the sum of the inputs IN THE CURRENT RING. For
748 // the logical operations the ring's ADD is really a logical OR function.
749 // This also type-checks the inputs for sanity. Guaranteed never to
750 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
751 const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
752 const TypeInt *r0 = t0->is_int(); // Handy access
753 const TypeInt *r1 = t1->is_int();
754
755 // If both args are bool, can figure out better types
756 if ( r0 == TypeInt::BOOL ) {
757 if ( r1 == TypeInt::ONE) {
758 return TypeInt::ONE;
759 } else if ( r1 == TypeInt::BOOL ) {
760 return TypeInt::BOOL;
761 }
762 } else if ( r0 == TypeInt::ONE ) {
763 if ( r1 == TypeInt::BOOL ) {
764 return TypeInt::ONE;
765 }
766 }
767
768 // If either input is not a constant, just return all integers.
769 if( !r0->is_con() || !r1->is_con() )
770 return TypeInt::INT; // Any integer, but still no symbols.
771
772 // Otherwise just OR them bits.
773 return TypeInt::make( r0->get_con() | r1->get_con() );
774 }
775
776 //=============================================================================
777 //------------------------------Identity---------------------------------------
778 Node *OrLNode::Identity( PhaseTransform *phase ) {
779 // x | x => x
780 if (phase->eqv(in(1), in(2))) {
781 return in(1);
782 }
783
784 return AddNode::Identity(phase);
785 }
786
787 //------------------------------add_ring---------------------------------------
788 const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
789 const TypeLong *r0 = t0->is_long(); // Handy access
790 const TypeLong *r1 = t1->is_long();
791
792 // If either input is not a constant, just return all integers.
793 if( !r0->is_con() || !r1->is_con() )
794 return TypeLong::LONG; // Any integer, but still no symbols.
795
796 // Otherwise just OR them bits.
797 return TypeLong::make( r0->get_con() | r1->get_con() );
798 }
799
800 //=============================================================================
801 //------------------------------add_ring---------------------------------------
802 // Supplied function returns the sum of the inputs IN THE CURRENT RING. For
803 // the logical operations the ring's ADD is really a logical OR function.
804 // This also type-checks the inputs for sanity. Guaranteed never to
805 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
806 const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
807 const TypeInt *r0 = t0->is_int(); // Handy access
808 const TypeInt *r1 = t1->is_int();
809
810 // Complementing a boolean?
811 if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
812 || r1 == TypeInt::BOOL))
813 return TypeInt::BOOL;
814
815 if( !r0->is_con() || !r1->is_con() ) // Not constants
816 return TypeInt::INT; // Any integer, but still no symbols.
817
818 // Otherwise just XOR them bits.
819 return TypeInt::make( r0->get_con() ^ r1->get_con() );
820 }
821
822 //=============================================================================
823 //------------------------------add_ring---------------------------------------
824 const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
825 const TypeLong *r0 = t0->is_long(); // Handy access
826 const TypeLong *r1 = t1->is_long();
827
828 // If either input is not a constant, just return all integers.
829 if( !r0->is_con() || !r1->is_con() )
830 return TypeLong::LONG; // Any integer, but still no symbols.
831
832 // Otherwise just OR them bits.
833 return TypeLong::make( r0->get_con() ^ r1->get_con() );
834 }
835
836 //=============================================================================
837 //------------------------------add_ring---------------------------------------
838 // Supplied function returns the sum of the inputs.
839 const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
840 const TypeInt *r0 = t0->is_int(); // Handy access
841 const TypeInt *r1 = t1->is_int();
842
843 // Otherwise just MAX them bits.
844 return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
845 }
846
847 //=============================================================================
848 //------------------------------Idealize---------------------------------------
849 // MINs show up in range-check loop limit calculations. Look for
850 // "MIN2(x+c0,MIN2(y,x+c1))". Pick the smaller constant: "MIN2(x+c0,y)"
851 Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
852 Node *progress = NULL;
853 // Force a right-spline graph
854 Node *l = in(1);
855 Node *r = in(2);
856 // Transform MinI1( MinI2(a,b), c) into MinI1( a, MinI2(b,c) )
857 // to force a right-spline graph for the rest of MinINode::Ideal().
858 if( l->Opcode() == Op_MinI ) {
859 assert( l != l->in(1), "dead loop in MinINode::Ideal" );
860 r = phase->transform(new (phase->C) MinINode(l->in(2),r));
861 l = l->in(1);
862 set_req(1, l);
863 set_req(2, r);
864 return this;
865 }
866
867 // Get left input & constant
868 Node *x = l;
869 int x_off = 0;
870 if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
871 x->in(2)->is_Con() ) {
872 const Type *t = x->in(2)->bottom_type();
873 if( t == Type::TOP ) return NULL; // No progress
874 x_off = t->is_int()->get_con();
875 x = x->in(1);
876 }
877
878 // Scan a right-spline-tree for MINs
879 Node *y = r;
880 int y_off = 0;
881 // Check final part of MIN tree
882 if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
883 y->in(2)->is_Con() ) {
884 const Type *t = y->in(2)->bottom_type();
885 if( t == Type::TOP ) return NULL; // No progress
886 y_off = t->is_int()->get_con();
887 y = y->in(1);
888 }
889 if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
890 swap_edges(1, 2);
891 return this;
892 }
893
894
895 if( r->Opcode() == Op_MinI ) {
896 assert( r != r->in(2), "dead loop in MinINode::Ideal" );
897 y = r->in(1);
898 // Check final part of MIN tree
899 if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
900 y->in(2)->is_Con() ) {
901 const Type *t = y->in(2)->bottom_type();
902 if( t == Type::TOP ) return NULL; // No progress
903 y_off = t->is_int()->get_con();
904 y = y->in(1);
905 }
906
907 if( x->_idx > y->_idx )
908 return new (phase->C) MinINode(r->in(1),phase->transform(new (phase->C) MinINode(l,r->in(2))));
909
910 // See if covers: MIN2(x+c0,MIN2(y+c1,z))
911 if( !phase->eqv(x,y) ) return NULL;
912 // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
913 // MIN2(x+c0 or x+c1 which less, z).
914 return new (phase->C) MinINode(phase->transform(new (phase->C) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
915 } else {
916 // See if covers: MIN2(x+c0,y+c1)
917 if( !phase->eqv(x,y) ) return NULL;
918 // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
919 return new (phase->C) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
920 }
921
922 }
923
924 //------------------------------add_ring---------------------------------------
925 // Supplied function returns the sum of the inputs.
926 const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
927 const TypeInt *r0 = t0->is_int(); // Handy access
928 const TypeInt *r1 = t1->is_int();
929
930 // Otherwise just MIN them bits.
931 return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
932 }

mercurial