diff -r 000000000000 -r f90c822e73f8 src/share/vm/opto/addnode.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/share/vm/opto/addnode.cpp Wed Apr 27 01:25:04 2016 +0800 @@ -0,0 +1,932 @@ +/* + * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + * + */ + +#include "precompiled.hpp" +#include "memory/allocation.inline.hpp" +#include "opto/addnode.hpp" +#include "opto/cfgnode.hpp" +#include "opto/connode.hpp" +#include "opto/machnode.hpp" +#include "opto/mulnode.hpp" +#include "opto/phaseX.hpp" +#include "opto/subnode.hpp" + +// Portions of code courtesy of Clifford Click + +// Classic Add functionality. This covers all the usual 'add' behaviors for +// an algebraic ring. Add-integer, add-float, add-double, and binary-or are +// all inherited from this class. The various identity values are supplied +// by virtual functions. + + +//============================================================================= +//------------------------------hash------------------------------------------- +// Hash function over AddNodes. Needs to be commutative; i.e., I swap +// (commute) inputs to AddNodes willy-nilly so the hash function must return +// the same value in the presence of edge swapping. +uint AddNode::hash() const { + return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode(); +} + +//------------------------------Identity--------------------------------------- +// If either input is a constant 0, return the other input. +Node *AddNode::Identity( PhaseTransform *phase ) { + const Type *zero = add_id(); // The additive identity + if( phase->type( in(1) )->higher_equal( zero ) ) return in(2); + if( phase->type( in(2) )->higher_equal( zero ) ) return in(1); + return this; +} + +//------------------------------commute---------------------------------------- +// Commute operands to move loads and constants to the right. +static bool commute( Node *add, int con_left, int con_right ) { + Node *in1 = add->in(1); + Node *in2 = add->in(2); + + // Convert "1+x" into "x+1". + // Right is a constant; leave it + if( con_right ) return false; + // Left is a constant; move it right. + if( con_left ) { + add->swap_edges(1, 2); + return true; + } + + // Convert "Load+x" into "x+Load". + // Now check for loads + if (in2->is_Load()) { + if (!in1->is_Load()) { + // already x+Load to return + return false; + } + // both are loads, so fall through to sort inputs by idx + } else if( in1->is_Load() ) { + // Left is a Load and Right is not; move it right. + add->swap_edges(1, 2); + return true; + } + + PhiNode *phi; + // Check for tight loop increments: Loop-phi of Add of loop-phi + if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add) + return false; + if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){ + add->swap_edges(1, 2); + return true; + } + + // Otherwise, sort inputs (commutativity) to help value numbering. + if( in1->_idx > in2->_idx ) { + add->swap_edges(1, 2); + return true; + } + return false; +} + +//------------------------------Idealize--------------------------------------- +// If we get here, we assume we are associative! +Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) { + const Type *t1 = phase->type( in(1) ); + const Type *t2 = phase->type( in(2) ); + int con_left = t1->singleton(); + int con_right = t2->singleton(); + + // Check for commutative operation desired + if( commute(this,con_left,con_right) ) return this; + + AddNode *progress = NULL; // Progress flag + + // Convert "(x+1)+2" into "x+(1+2)". If the right input is a + // constant, and the left input is an add of a constant, flatten the + // expression tree. + Node *add1 = in(1); + Node *add2 = in(2); + int add1_op = add1->Opcode(); + int this_op = Opcode(); + if( con_right && t2 != Type::TOP && // Right input is a constant? + add1_op == this_op ) { // Left input is an Add? + + // Type of left _in right input + const Type *t12 = phase->type( add1->in(2) ); + if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant? + // Check for rare case of closed data cycle which can happen inside + // unreachable loops. In these cases the computation is undefined. +#ifdef ASSERT + Node *add11 = add1->in(1); + int add11_op = add11->Opcode(); + if( (add1 == add1->in(1)) + || (add11_op == this_op && add11->in(1) == add1) ) { + assert(false, "dead loop in AddNode::Ideal"); + } +#endif + // The Add of the flattened expression + Node *x1 = add1->in(1); + Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 )); + PhaseIterGVN *igvn = phase->is_IterGVN(); + if( igvn ) { + set_req_X(2,x2,igvn); + set_req_X(1,x1,igvn); + } else { + set_req(2,x2); + set_req(1,x1); + } + progress = this; // Made progress + add1 = in(1); + add1_op = add1->Opcode(); + } + } + + // Convert "(x+1)+y" into "(x+y)+1". Push constants down the expression tree. + if( add1_op == this_op && !con_right ) { + Node *a12 = add1->in(2); + const Type *t12 = phase->type( a12 ); + if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) && + !(add1->in(1)->is_Phi() && add1->in(1)->as_Phi()->is_tripcount()) ) { + assert(add1->in(1) != this, "dead loop in AddNode::Ideal"); + add2 = add1->clone(); + add2->set_req(2, in(2)); + add2 = phase->transform(add2); + set_req(1, add2); + set_req(2, a12); + progress = this; + add2 = a12; + } + } + + // Convert "x+(y+1)" into "(x+y)+1". Push constants down the expression tree. + int add2_op = add2->Opcode(); + if( add2_op == this_op && !con_left ) { + Node *a22 = add2->in(2); + const Type *t22 = phase->type( a22 ); + if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) && + !(add2->in(1)->is_Phi() && add2->in(1)->as_Phi()->is_tripcount()) ) { + assert(add2->in(1) != this, "dead loop in AddNode::Ideal"); + Node *addx = add2->clone(); + addx->set_req(1, in(1)); + addx->set_req(2, add2->in(1)); + addx = phase->transform(addx); + set_req(1, addx); + set_req(2, a22); + progress = this; + PhaseIterGVN *igvn = phase->is_IterGVN(); + if (add2->outcnt() == 0 && igvn) { + // add disconnected. + igvn->_worklist.push(add2); + } + } + } + + return progress; +} + +//------------------------------Value----------------------------------------- +// An add node sums it's two _in. If one input is an RSD, we must mixin +// the other input's symbols. +const Type *AddNode::Value( PhaseTransform *phase ) const { + // Either input is TOP ==> the result is TOP + const Type *t1 = phase->type( in(1) ); + const Type *t2 = phase->type( in(2) ); + if( t1 == Type::TOP ) return Type::TOP; + if( t2 == Type::TOP ) return Type::TOP; + + // Either input is BOTTOM ==> the result is the local BOTTOM + const Type *bot = bottom_type(); + if( (t1 == bot) || (t2 == bot) || + (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) + return bot; + + // Check for an addition involving the additive identity + const Type *tadd = add_of_identity( t1, t2 ); + if( tadd ) return tadd; + + return add_ring(t1,t2); // Local flavor of type addition +} + +//------------------------------add_identity----------------------------------- +// Check for addition of the identity +const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const { + const Type *zero = add_id(); // The additive identity + if( t1->higher_equal( zero ) ) return t2; + if( t2->higher_equal( zero ) ) return t1; + + return NULL; +} + + +//============================================================================= +//------------------------------Idealize--------------------------------------- +Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) { + Node* in1 = in(1); + Node* in2 = in(2); + int op1 = in1->Opcode(); + int op2 = in2->Opcode(); + // Fold (con1-x)+con2 into (con1+con2)-x + if ( op1 == Op_AddI && op2 == Op_SubI ) { + // Swap edges to try optimizations below + in1 = in2; + in2 = in(1); + op1 = op2; + op2 = in2->Opcode(); + } + if( op1 == Op_SubI ) { + const Type *t_sub1 = phase->type( in1->in(1) ); + const Type *t_2 = phase->type( in2 ); + if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP ) + return new (phase->C) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ), + in1->in(2) ); + // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)" + if( op2 == Op_SubI ) { + // Check for dead cycle: d = (a-b)+(c-d) + assert( in1->in(2) != this && in2->in(2) != this, + "dead loop in AddINode::Ideal" ); + Node *sub = new (phase->C) SubINode(NULL, NULL); + sub->init_req(1, phase->transform(new (phase->C) AddINode(in1->in(1), in2->in(1) ) )); + sub->init_req(2, phase->transform(new (phase->C) AddINode(in1->in(2), in2->in(2) ) )); + return sub; + } + // Convert "(a-b)+(b+c)" into "(a+c)" + if( op2 == Op_AddI && in1->in(2) == in2->in(1) ) { + assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal"); + return new (phase->C) AddINode(in1->in(1), in2->in(2)); + } + // Convert "(a-b)+(c+b)" into "(a+c)" + if( op2 == Op_AddI && in1->in(2) == in2->in(2) ) { + assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal"); + return new (phase->C) AddINode(in1->in(1), in2->in(1)); + } + // Convert "(a-b)+(b-c)" into "(a-c)" + if( op2 == Op_SubI && in1->in(2) == in2->in(1) ) { + assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal"); + return new (phase->C) SubINode(in1->in(1), in2->in(2)); + } + // Convert "(a-b)+(c-a)" into "(c-b)" + if( op2 == Op_SubI && in1->in(1) == in2->in(2) ) { + assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddINode::Ideal"); + return new (phase->C) SubINode(in2->in(1), in1->in(2)); + } + } + + // Convert "x+(0-y)" into "(x-y)" + if( op2 == Op_SubI && phase->type(in2->in(1)) == TypeInt::ZERO ) + return new (phase->C) SubINode(in1, in2->in(2) ); + + // Convert "(0-y)+x" into "(x-y)" + if( op1 == Op_SubI && phase->type(in1->in(1)) == TypeInt::ZERO ) + return new (phase->C) SubINode( in2, in1->in(2) ); + + // Convert (x>>>z)+y into (x+(y<>>z for small constant z and y. + // Helps with array allocation math constant folding + // See 4790063: + // Unrestricted transformation is unsafe for some runtime values of 'x' + // ( x == 0, z == 1, y == -1 ) fails + // ( x == -5, z == 1, y == 1 ) fails + // Transform works for small z and small negative y when the addition + // (x + (y << z)) does not cross zero. + // Implement support for negative y and (x >= -(y << z)) + // Have not observed cases where type information exists to support + // positive y and (x <= -(y << z)) + if( op1 == Op_URShiftI && op2 == Op_ConI && + in1->in(2)->Opcode() == Op_ConI ) { + jint z = phase->type( in1->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter + jint y = phase->type( in2 )->is_int()->get_con(); + + if( z < 5 && -5 < y && y < 0 ) { + const Type *t_in11 = phase->type(in1->in(1)); + if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) { + Node *a = phase->transform( new (phase->C) AddINode( in1->in(1), phase->intcon(y<C) URShiftINode( a, in1->in(2) ); + } + } + } + + return AddNode::Ideal(phase, can_reshape); +} + + +//------------------------------Identity--------------------------------------- +// Fold (x-y)+y OR y+(x-y) into x +Node *AddINode::Identity( PhaseTransform *phase ) { + if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) { + return in(1)->in(1); + } + else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) { + return in(2)->in(1); + } + return AddNode::Identity(phase); +} + + +//------------------------------add_ring--------------------------------------- +// Supplied function returns the sum of the inputs. Guaranteed never +// to be passed a TOP or BOTTOM type, these are filtered out by +// pre-check. +const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const { + const TypeInt *r0 = t0->is_int(); // Handy access + const TypeInt *r1 = t1->is_int(); + int lo = r0->_lo + r1->_lo; + int hi = r0->_hi + r1->_hi; + if( !(r0->is_con() && r1->is_con()) ) { + // Not both constants, compute approximate result + if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { + lo = min_jint; hi = max_jint; // Underflow on the low side + } + if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { + lo = min_jint; hi = max_jint; // Overflow on the high side + } + if( lo > hi ) { // Handle overflow + lo = min_jint; hi = max_jint; + } + } else { + // both constants, compute precise result using 'lo' and 'hi' + // Semantics define overflow and underflow for integer addition + // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 + } + return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); +} + + +//============================================================================= +//------------------------------Idealize--------------------------------------- +Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) { + Node* in1 = in(1); + Node* in2 = in(2); + int op1 = in1->Opcode(); + int op2 = in2->Opcode(); + // Fold (con1-x)+con2 into (con1+con2)-x + if ( op1 == Op_AddL && op2 == Op_SubL ) { + // Swap edges to try optimizations below + in1 = in2; + in2 = in(1); + op1 = op2; + op2 = in2->Opcode(); + } + // Fold (con1-x)+con2 into (con1+con2)-x + if( op1 == Op_SubL ) { + const Type *t_sub1 = phase->type( in1->in(1) ); + const Type *t_2 = phase->type( in2 ); + if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP ) + return new (phase->C) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ), + in1->in(2) ); + // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)" + if( op2 == Op_SubL ) { + // Check for dead cycle: d = (a-b)+(c-d) + assert( in1->in(2) != this && in2->in(2) != this, + "dead loop in AddLNode::Ideal" ); + Node *sub = new (phase->C) SubLNode(NULL, NULL); + sub->init_req(1, phase->transform(new (phase->C) AddLNode(in1->in(1), in2->in(1) ) )); + sub->init_req(2, phase->transform(new (phase->C) AddLNode(in1->in(2), in2->in(2) ) )); + return sub; + } + // Convert "(a-b)+(b+c)" into "(a+c)" + if( op2 == Op_AddL && in1->in(2) == in2->in(1) ) { + assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal"); + return new (phase->C) AddLNode(in1->in(1), in2->in(2)); + } + // Convert "(a-b)+(c+b)" into "(a+c)" + if( op2 == Op_AddL && in1->in(2) == in2->in(2) ) { + assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal"); + return new (phase->C) AddLNode(in1->in(1), in2->in(1)); + } + // Convert "(a-b)+(b-c)" into "(a-c)" + if( op2 == Op_SubL && in1->in(2) == in2->in(1) ) { + assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal"); + return new (phase->C) SubLNode(in1->in(1), in2->in(2)); + } + // Convert "(a-b)+(c-a)" into "(c-b)" + if( op2 == Op_SubL && in1->in(1) == in1->in(2) ) { + assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal"); + return new (phase->C) SubLNode(in2->in(1), in1->in(2)); + } + } + + // Convert "x+(0-y)" into "(x-y)" + if( op2 == Op_SubL && phase->type(in2->in(1)) == TypeLong::ZERO ) + return new (phase->C) SubLNode( in1, in2->in(2) ); + + // Convert "(0-y)+x" into "(x-y)" + if( op1 == Op_SubL && phase->type(in1->in(1)) == TypeInt::ZERO ) + return new (phase->C) SubLNode( in2, in1->in(2) ); + + // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)" + // into "(X<<1)+Y" and let shift-folding happen. + if( op2 == Op_AddL && + in2->in(1) == in1 && + op1 != Op_ConL && + 0 ) { + Node *shift = phase->transform(new (phase->C) LShiftLNode(in1,phase->intcon(1))); + return new (phase->C) AddLNode(shift,in2->in(2)); + } + + return AddNode::Ideal(phase, can_reshape); +} + + +//------------------------------Identity--------------------------------------- +// Fold (x-y)+y OR y+(x-y) into x +Node *AddLNode::Identity( PhaseTransform *phase ) { + if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) { + return in(1)->in(1); + } + else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) { + return in(2)->in(1); + } + return AddNode::Identity(phase); +} + + +//------------------------------add_ring--------------------------------------- +// Supplied function returns the sum of the inputs. Guaranteed never +// to be passed a TOP or BOTTOM type, these are filtered out by +// pre-check. +const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const { + const TypeLong *r0 = t0->is_long(); // Handy access + const TypeLong *r1 = t1->is_long(); + jlong lo = r0->_lo + r1->_lo; + jlong hi = r0->_hi + r1->_hi; + if( !(r0->is_con() && r1->is_con()) ) { + // Not both constants, compute approximate result + if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { + lo =min_jlong; hi = max_jlong; // Underflow on the low side + } + if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { + lo = min_jlong; hi = max_jlong; // Overflow on the high side + } + if( lo > hi ) { // Handle overflow + lo = min_jlong; hi = max_jlong; + } + } else { + // both constants, compute precise result using 'lo' and 'hi' + // Semantics define overflow and underflow for integer addition + // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 + } + return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); +} + + +//============================================================================= +//------------------------------add_of_identity-------------------------------- +// Check for addition of the identity +const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const { + // x ADD 0 should return x unless 'x' is a -zero + // + // const Type *zero = add_id(); // The additive identity + // jfloat f1 = t1->getf(); + // jfloat f2 = t2->getf(); + // + // if( t1->higher_equal( zero ) ) return t2; + // if( t2->higher_equal( zero ) ) return t1; + + return NULL; +} + +//------------------------------add_ring--------------------------------------- +// Supplied function returns the sum of the inputs. +// This also type-checks the inputs for sanity. Guaranteed never to +// be passed a TOP or BOTTOM type, these are filtered out by pre-check. +const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const { + // We must be adding 2 float constants. + return TypeF::make( t0->getf() + t1->getf() ); +} + +//------------------------------Ideal------------------------------------------ +Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) { + if( IdealizedNumerics && !phase->C->method()->is_strict() ) { + return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms + } + + // Floating point additions are not associative because of boundary conditions (infinity) + return commute(this, + phase->type( in(1) )->singleton(), + phase->type( in(2) )->singleton() ) ? this : NULL; +} + + +//============================================================================= +//------------------------------add_of_identity-------------------------------- +// Check for addition of the identity +const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const { + // x ADD 0 should return x unless 'x' is a -zero + // + // const Type *zero = add_id(); // The additive identity + // jfloat f1 = t1->getf(); + // jfloat f2 = t2->getf(); + // + // if( t1->higher_equal( zero ) ) return t2; + // if( t2->higher_equal( zero ) ) return t1; + + return NULL; +} +//------------------------------add_ring--------------------------------------- +// Supplied function returns the sum of the inputs. +// This also type-checks the inputs for sanity. Guaranteed never to +// be passed a TOP or BOTTOM type, these are filtered out by pre-check. +const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const { + // We must be adding 2 double constants. + return TypeD::make( t0->getd() + t1->getd() ); +} + +//------------------------------Ideal------------------------------------------ +Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) { + if( IdealizedNumerics && !phase->C->method()->is_strict() ) { + return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms + } + + // Floating point additions are not associative because of boundary conditions (infinity) + return commute(this, + phase->type( in(1) )->singleton(), + phase->type( in(2) )->singleton() ) ? this : NULL; +} + + +//============================================================================= +//------------------------------Identity--------------------------------------- +// If one input is a constant 0, return the other input. +Node *AddPNode::Identity( PhaseTransform *phase ) { + return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this; +} + +//------------------------------Idealize--------------------------------------- +Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) { + // Bail out if dead inputs + if( phase->type( in(Address) ) == Type::TOP ) return NULL; + + // If the left input is an add of a constant, flatten the expression tree. + const Node *n = in(Address); + if (n->is_AddP() && n->in(Base) == in(Base)) { + const AddPNode *addp = n->as_AddP(); // Left input is an AddP + assert( !addp->in(Address)->is_AddP() || + addp->in(Address)->as_AddP() != addp, + "dead loop in AddPNode::Ideal" ); + // Type of left input's right input + const Type *t = phase->type( addp->in(Offset) ); + if( t == Type::TOP ) return NULL; + const TypeX *t12 = t->is_intptr_t(); + if( t12->is_con() ) { // Left input is an add of a constant? + // If the right input is a constant, combine constants + const Type *temp_t2 = phase->type( in(Offset) ); + if( temp_t2 == Type::TOP ) return NULL; + const TypeX *t2 = temp_t2->is_intptr_t(); + Node* address; + Node* offset; + if( t2->is_con() ) { + // The Add of the flattened expression + address = addp->in(Address); + offset = phase->MakeConX(t2->get_con() + t12->get_con()); + } else { + // Else move the constant to the right. ((A+con)+B) into ((A+B)+con) + address = phase->transform(new (phase->C) AddPNode(in(Base),addp->in(Address),in(Offset))); + offset = addp->in(Offset); + } + PhaseIterGVN *igvn = phase->is_IterGVN(); + if( igvn ) { + set_req_X(Address,address,igvn); + set_req_X(Offset,offset,igvn); + } else { + set_req(Address,address); + set_req(Offset,offset); + } + return this; + } + } + + // Raw pointers? + if( in(Base)->bottom_type() == Type::TOP ) { + // If this is a NULL+long form (from unsafe accesses), switch to a rawptr. + if (phase->type(in(Address)) == TypePtr::NULL_PTR) { + Node* offset = in(Offset); + return new (phase->C) CastX2PNode(offset); + } + } + + // If the right is an add of a constant, push the offset down. + // Convert: (ptr + (offset+con)) into (ptr+offset)+con. + // The idea is to merge array_base+scaled_index groups together, + // and only have different constant offsets from the same base. + const Node *add = in(Offset); + if( add->Opcode() == Op_AddX && add->in(1) != add ) { + const Type *t22 = phase->type( add->in(2) ); + if( t22->singleton() && (t22 != Type::TOP) ) { // Right input is an add of a constant? + set_req(Address, phase->transform(new (phase->C) AddPNode(in(Base),in(Address),add->in(1)))); + set_req(Offset, add->in(2)); + PhaseIterGVN *igvn = phase->is_IterGVN(); + if (add->outcnt() == 0 && igvn) { + // add disconnected. + igvn->_worklist.push((Node*)add); + } + return this; // Made progress + } + } + + return NULL; // No progress +} + +//------------------------------bottom_type------------------------------------ +// Bottom-type is the pointer-type with unknown offset. +const Type *AddPNode::bottom_type() const { + if (in(Address) == NULL) return TypePtr::BOTTOM; + const TypePtr *tp = in(Address)->bottom_type()->isa_ptr(); + if( !tp ) return Type::TOP; // TOP input means TOP output + assert( in(Offset)->Opcode() != Op_ConP, "" ); + const Type *t = in(Offset)->bottom_type(); + if( t == Type::TOP ) + return tp->add_offset(Type::OffsetTop); + const TypeX *tx = t->is_intptr_t(); + intptr_t txoffset = Type::OffsetBot; + if (tx->is_con()) { // Left input is an add of a constant? + txoffset = tx->get_con(); + } + return tp->add_offset(txoffset); +} + +//------------------------------Value------------------------------------------ +const Type *AddPNode::Value( PhaseTransform *phase ) const { + // Either input is TOP ==> the result is TOP + const Type *t1 = phase->type( in(Address) ); + const Type *t2 = phase->type( in(Offset) ); + if( t1 == Type::TOP ) return Type::TOP; + if( t2 == Type::TOP ) return Type::TOP; + + // Left input is a pointer + const TypePtr *p1 = t1->isa_ptr(); + // Right input is an int + const TypeX *p2 = t2->is_intptr_t(); + // Add 'em + intptr_t p2offset = Type::OffsetBot; + if (p2->is_con()) { // Left input is an add of a constant? + p2offset = p2->get_con(); + } + return p1->add_offset(p2offset); +} + +//------------------------Ideal_base_and_offset-------------------------------- +// Split an oop pointer into a base and offset. +// (The offset might be Type::OffsetBot in the case of an array.) +// Return the base, or NULL if failure. +Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase, + // second return value: + intptr_t& offset) { + if (ptr->is_AddP()) { + Node* base = ptr->in(AddPNode::Base); + Node* addr = ptr->in(AddPNode::Address); + Node* offs = ptr->in(AddPNode::Offset); + if (base == addr || base->is_top()) { + offset = phase->find_intptr_t_con(offs, Type::OffsetBot); + if (offset != Type::OffsetBot) { + return addr; + } + } + } + offset = Type::OffsetBot; + return NULL; +} + +//------------------------------unpack_offsets---------------------------------- +// Collect the AddP offset values into the elements array, giving up +// if there are more than length. +int AddPNode::unpack_offsets(Node* elements[], int length) { + int count = 0; + Node* addr = this; + Node* base = addr->in(AddPNode::Base); + while (addr->is_AddP()) { + if (addr->in(AddPNode::Base) != base) { + // give up + return -1; + } + elements[count++] = addr->in(AddPNode::Offset); + if (count == length) { + // give up + return -1; + } + addr = addr->in(AddPNode::Address); + } + if (addr != base) { + return -1; + } + return count; +} + +//------------------------------match_edge------------------------------------- +// Do we Match on this edge index or not? Do not match base pointer edge +uint AddPNode::match_edge(uint idx) const { + return idx > Base; +} + +//============================================================================= +//------------------------------Identity--------------------------------------- +Node *OrINode::Identity( PhaseTransform *phase ) { + // x | x => x + if (phase->eqv(in(1), in(2))) { + return in(1); + } + + return AddNode::Identity(phase); +} + +//------------------------------add_ring--------------------------------------- +// Supplied function returns the sum of the inputs IN THE CURRENT RING. For +// the logical operations the ring's ADD is really a logical OR function. +// This also type-checks the inputs for sanity. Guaranteed never to +// be passed a TOP or BOTTOM type, these are filtered out by pre-check. +const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const { + const TypeInt *r0 = t0->is_int(); // Handy access + const TypeInt *r1 = t1->is_int(); + + // If both args are bool, can figure out better types + if ( r0 == TypeInt::BOOL ) { + if ( r1 == TypeInt::ONE) { + return TypeInt::ONE; + } else if ( r1 == TypeInt::BOOL ) { + return TypeInt::BOOL; + } + } else if ( r0 == TypeInt::ONE ) { + if ( r1 == TypeInt::BOOL ) { + return TypeInt::ONE; + } + } + + // If either input is not a constant, just return all integers. + if( !r0->is_con() || !r1->is_con() ) + return TypeInt::INT; // Any integer, but still no symbols. + + // Otherwise just OR them bits. + return TypeInt::make( r0->get_con() | r1->get_con() ); +} + +//============================================================================= +//------------------------------Identity--------------------------------------- +Node *OrLNode::Identity( PhaseTransform *phase ) { + // x | x => x + if (phase->eqv(in(1), in(2))) { + return in(1); + } + + return AddNode::Identity(phase); +} + +//------------------------------add_ring--------------------------------------- +const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const { + const TypeLong *r0 = t0->is_long(); // Handy access + const TypeLong *r1 = t1->is_long(); + + // If either input is not a constant, just return all integers. + if( !r0->is_con() || !r1->is_con() ) + return TypeLong::LONG; // Any integer, but still no symbols. + + // Otherwise just OR them bits. + return TypeLong::make( r0->get_con() | r1->get_con() ); +} + +//============================================================================= +//------------------------------add_ring--------------------------------------- +// Supplied function returns the sum of the inputs IN THE CURRENT RING. For +// the logical operations the ring's ADD is really a logical OR function. +// This also type-checks the inputs for sanity. Guaranteed never to +// be passed a TOP or BOTTOM type, these are filtered out by pre-check. +const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const { + const TypeInt *r0 = t0->is_int(); // Handy access + const TypeInt *r1 = t1->is_int(); + + // Complementing a boolean? + if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE + || r1 == TypeInt::BOOL)) + return TypeInt::BOOL; + + if( !r0->is_con() || !r1->is_con() ) // Not constants + return TypeInt::INT; // Any integer, but still no symbols. + + // Otherwise just XOR them bits. + return TypeInt::make( r0->get_con() ^ r1->get_con() ); +} + +//============================================================================= +//------------------------------add_ring--------------------------------------- +const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const { + const TypeLong *r0 = t0->is_long(); // Handy access + const TypeLong *r1 = t1->is_long(); + + // If either input is not a constant, just return all integers. + if( !r0->is_con() || !r1->is_con() ) + return TypeLong::LONG; // Any integer, but still no symbols. + + // Otherwise just OR them bits. + return TypeLong::make( r0->get_con() ^ r1->get_con() ); +} + +//============================================================================= +//------------------------------add_ring--------------------------------------- +// Supplied function returns the sum of the inputs. +const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const { + const TypeInt *r0 = t0->is_int(); // Handy access + const TypeInt *r1 = t1->is_int(); + + // Otherwise just MAX them bits. + return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); +} + +//============================================================================= +//------------------------------Idealize--------------------------------------- +// MINs show up in range-check loop limit calculations. Look for +// "MIN2(x+c0,MIN2(y,x+c1))". Pick the smaller constant: "MIN2(x+c0,y)" +Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) { + Node *progress = NULL; + // Force a right-spline graph + Node *l = in(1); + Node *r = in(2); + // Transform MinI1( MinI2(a,b), c) into MinI1( a, MinI2(b,c) ) + // to force a right-spline graph for the rest of MinINode::Ideal(). + if( l->Opcode() == Op_MinI ) { + assert( l != l->in(1), "dead loop in MinINode::Ideal" ); + r = phase->transform(new (phase->C) MinINode(l->in(2),r)); + l = l->in(1); + set_req(1, l); + set_req(2, r); + return this; + } + + // Get left input & constant + Node *x = l; + int x_off = 0; + if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant + x->in(2)->is_Con() ) { + const Type *t = x->in(2)->bottom_type(); + if( t == Type::TOP ) return NULL; // No progress + x_off = t->is_int()->get_con(); + x = x->in(1); + } + + // Scan a right-spline-tree for MINs + Node *y = r; + int y_off = 0; + // Check final part of MIN tree + if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant + y->in(2)->is_Con() ) { + const Type *t = y->in(2)->bottom_type(); + if( t == Type::TOP ) return NULL; // No progress + y_off = t->is_int()->get_con(); + y = y->in(1); + } + if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) { + swap_edges(1, 2); + return this; + } + + + if( r->Opcode() == Op_MinI ) { + assert( r != r->in(2), "dead loop in MinINode::Ideal" ); + y = r->in(1); + // Check final part of MIN tree + if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant + y->in(2)->is_Con() ) { + const Type *t = y->in(2)->bottom_type(); + if( t == Type::TOP ) return NULL; // No progress + y_off = t->is_int()->get_con(); + y = y->in(1); + } + + if( x->_idx > y->_idx ) + return new (phase->C) MinINode(r->in(1),phase->transform(new (phase->C) MinINode(l,r->in(2)))); + + // See if covers: MIN2(x+c0,MIN2(y+c1,z)) + if( !phase->eqv(x,y) ) return NULL; + // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into + // MIN2(x+c0 or x+c1 which less, z). + return new (phase->C) MinINode(phase->transform(new (phase->C) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2)); + } else { + // See if covers: MIN2(x+c0,y+c1) + if( !phase->eqv(x,y) ) return NULL; + // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less. + return new (phase->C) AddINode(x,phase->intcon(MIN2(x_off,y_off))); + } + +} + +//------------------------------add_ring--------------------------------------- +// Supplied function returns the sum of the inputs. +const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const { + const TypeInt *r0 = t0->is_int(); // Handy access + const TypeInt *r1 = t1->is_int(); + + // Otherwise just MIN them bits. + return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); +}