src/share/vm/c1/c1_LIRGenerator.cpp

changeset 0
f90c822e73f8
child 1
2d8a650513c2
equal deleted inserted replaced
-1:000000000000 0:f90c822e73f8
1 /*
2 * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "c1/c1_Compilation.hpp"
27 #include "c1/c1_FrameMap.hpp"
28 #include "c1/c1_Instruction.hpp"
29 #include "c1/c1_LIRAssembler.hpp"
30 #include "c1/c1_LIRGenerator.hpp"
31 #include "c1/c1_ValueStack.hpp"
32 #include "ci/ciArrayKlass.hpp"
33 #include "ci/ciInstance.hpp"
34 #include "ci/ciObjArray.hpp"
35 #include "runtime/sharedRuntime.hpp"
36 #include "runtime/stubRoutines.hpp"
37 #include "utilities/bitMap.inline.hpp"
38 #include "utilities/macros.hpp"
39 #if INCLUDE_ALL_GCS
40 #include "gc_implementation/g1/heapRegion.hpp"
41 #endif // INCLUDE_ALL_GCS
42
43 #ifdef ASSERT
44 #define __ gen()->lir(__FILE__, __LINE__)->
45 #else
46 #define __ gen()->lir()->
47 #endif
48
49 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
50 #ifdef ARM
51 #define PATCHED_ADDR (204)
52 #else
53 #define PATCHED_ADDR (max_jint)
54 #endif
55
56 void PhiResolverState::reset(int max_vregs) {
57 // Initialize array sizes
58 _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
59 _virtual_operands.trunc_to(0);
60 _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
61 _other_operands.trunc_to(0);
62 _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
63 _vreg_table.trunc_to(0);
64 }
65
66
67
68 //--------------------------------------------------------------
69 // PhiResolver
70
71 // Resolves cycles:
72 //
73 // r1 := r2 becomes temp := r1
74 // r2 := r1 r1 := r2
75 // r2 := temp
76 // and orders moves:
77 //
78 // r2 := r3 becomes r1 := r2
79 // r1 := r2 r2 := r3
80
81 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
82 : _gen(gen)
83 , _state(gen->resolver_state())
84 , _temp(LIR_OprFact::illegalOpr)
85 {
86 // reinitialize the shared state arrays
87 _state.reset(max_vregs);
88 }
89
90
91 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
92 assert(src->is_valid(), "");
93 assert(dest->is_valid(), "");
94 __ move(src, dest);
95 }
96
97
98 void PhiResolver::move_temp_to(LIR_Opr dest) {
99 assert(_temp->is_valid(), "");
100 emit_move(_temp, dest);
101 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
102 }
103
104
105 void PhiResolver::move_to_temp(LIR_Opr src) {
106 assert(_temp->is_illegal(), "");
107 _temp = _gen->new_register(src->type());
108 emit_move(src, _temp);
109 }
110
111
112 // Traverse assignment graph in depth first order and generate moves in post order
113 // ie. two assignments: b := c, a := b start with node c:
114 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
115 // Generates moves in this order: move b to a and move c to b
116 // ie. cycle a := b, b := a start with node a
117 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
118 // Generates moves in this order: move b to temp, move a to b, move temp to a
119 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
120 if (!dest->visited()) {
121 dest->set_visited();
122 for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
123 move(dest, dest->destination_at(i));
124 }
125 } else if (!dest->start_node()) {
126 // cylce in graph detected
127 assert(_loop == NULL, "only one loop valid!");
128 _loop = dest;
129 move_to_temp(src->operand());
130 return;
131 } // else dest is a start node
132
133 if (!dest->assigned()) {
134 if (_loop == dest) {
135 move_temp_to(dest->operand());
136 dest->set_assigned();
137 } else if (src != NULL) {
138 emit_move(src->operand(), dest->operand());
139 dest->set_assigned();
140 }
141 }
142 }
143
144
145 PhiResolver::~PhiResolver() {
146 int i;
147 // resolve any cycles in moves from and to virtual registers
148 for (i = virtual_operands().length() - 1; i >= 0; i --) {
149 ResolveNode* node = virtual_operands()[i];
150 if (!node->visited()) {
151 _loop = NULL;
152 move(NULL, node);
153 node->set_start_node();
154 assert(_temp->is_illegal(), "move_temp_to() call missing");
155 }
156 }
157
158 // generate move for move from non virtual register to abitrary destination
159 for (i = other_operands().length() - 1; i >= 0; i --) {
160 ResolveNode* node = other_operands()[i];
161 for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
162 emit_move(node->operand(), node->destination_at(j)->operand());
163 }
164 }
165 }
166
167
168 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
169 ResolveNode* node;
170 if (opr->is_virtual()) {
171 int vreg_num = opr->vreg_number();
172 node = vreg_table().at_grow(vreg_num, NULL);
173 assert(node == NULL || node->operand() == opr, "");
174 if (node == NULL) {
175 node = new ResolveNode(opr);
176 vreg_table()[vreg_num] = node;
177 }
178 // Make sure that all virtual operands show up in the list when
179 // they are used as the source of a move.
180 if (source && !virtual_operands().contains(node)) {
181 virtual_operands().append(node);
182 }
183 } else {
184 assert(source, "");
185 node = new ResolveNode(opr);
186 other_operands().append(node);
187 }
188 return node;
189 }
190
191
192 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
193 assert(dest->is_virtual(), "");
194 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
195 assert(src->is_valid(), "");
196 assert(dest->is_valid(), "");
197 ResolveNode* source = source_node(src);
198 source->append(destination_node(dest));
199 }
200
201
202 //--------------------------------------------------------------
203 // LIRItem
204
205 void LIRItem::set_result(LIR_Opr opr) {
206 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
207 value()->set_operand(opr);
208
209 if (opr->is_virtual()) {
210 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
211 }
212
213 _result = opr;
214 }
215
216 void LIRItem::load_item() {
217 if (result()->is_illegal()) {
218 // update the items result
219 _result = value()->operand();
220 }
221 if (!result()->is_register()) {
222 LIR_Opr reg = _gen->new_register(value()->type());
223 __ move(result(), reg);
224 if (result()->is_constant()) {
225 _result = reg;
226 } else {
227 set_result(reg);
228 }
229 }
230 }
231
232
233 void LIRItem::load_for_store(BasicType type) {
234 if (_gen->can_store_as_constant(value(), type)) {
235 _result = value()->operand();
236 if (!_result->is_constant()) {
237 _result = LIR_OprFact::value_type(value()->type());
238 }
239 } else if (type == T_BYTE || type == T_BOOLEAN) {
240 load_byte_item();
241 } else {
242 load_item();
243 }
244 }
245
246 void LIRItem::load_item_force(LIR_Opr reg) {
247 LIR_Opr r = result();
248 if (r != reg) {
249 #if !defined(ARM) && !defined(E500V2)
250 if (r->type() != reg->type()) {
251 // moves between different types need an intervening spill slot
252 r = _gen->force_to_spill(r, reg->type());
253 }
254 #endif
255 __ move(r, reg);
256 _result = reg;
257 }
258 }
259
260 ciObject* LIRItem::get_jobject_constant() const {
261 ObjectType* oc = type()->as_ObjectType();
262 if (oc) {
263 return oc->constant_value();
264 }
265 return NULL;
266 }
267
268
269 jint LIRItem::get_jint_constant() const {
270 assert(is_constant() && value() != NULL, "");
271 assert(type()->as_IntConstant() != NULL, "type check");
272 return type()->as_IntConstant()->value();
273 }
274
275
276 jint LIRItem::get_address_constant() const {
277 assert(is_constant() && value() != NULL, "");
278 assert(type()->as_AddressConstant() != NULL, "type check");
279 return type()->as_AddressConstant()->value();
280 }
281
282
283 jfloat LIRItem::get_jfloat_constant() const {
284 assert(is_constant() && value() != NULL, "");
285 assert(type()->as_FloatConstant() != NULL, "type check");
286 return type()->as_FloatConstant()->value();
287 }
288
289
290 jdouble LIRItem::get_jdouble_constant() const {
291 assert(is_constant() && value() != NULL, "");
292 assert(type()->as_DoubleConstant() != NULL, "type check");
293 return type()->as_DoubleConstant()->value();
294 }
295
296
297 jlong LIRItem::get_jlong_constant() const {
298 assert(is_constant() && value() != NULL, "");
299 assert(type()->as_LongConstant() != NULL, "type check");
300 return type()->as_LongConstant()->value();
301 }
302
303
304
305 //--------------------------------------------------------------
306
307
308 void LIRGenerator::init() {
309 _bs = Universe::heap()->barrier_set();
310 }
311
312
313 void LIRGenerator::block_do_prolog(BlockBegin* block) {
314 #ifndef PRODUCT
315 if (PrintIRWithLIR) {
316 block->print();
317 }
318 #endif
319
320 // set up the list of LIR instructions
321 assert(block->lir() == NULL, "LIR list already computed for this block");
322 _lir = new LIR_List(compilation(), block);
323 block->set_lir(_lir);
324
325 __ branch_destination(block->label());
326
327 if (LIRTraceExecution &&
328 Compilation::current()->hir()->start()->block_id() != block->block_id() &&
329 !block->is_set(BlockBegin::exception_entry_flag)) {
330 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
331 trace_block_entry(block);
332 }
333 }
334
335
336 void LIRGenerator::block_do_epilog(BlockBegin* block) {
337 #ifndef PRODUCT
338 if (PrintIRWithLIR) {
339 tty->cr();
340 }
341 #endif
342
343 // LIR_Opr for unpinned constants shouldn't be referenced by other
344 // blocks so clear them out after processing the block.
345 for (int i = 0; i < _unpinned_constants.length(); i++) {
346 _unpinned_constants.at(i)->clear_operand();
347 }
348 _unpinned_constants.trunc_to(0);
349
350 // clear our any registers for other local constants
351 _constants.trunc_to(0);
352 _reg_for_constants.trunc_to(0);
353 }
354
355
356 void LIRGenerator::block_do(BlockBegin* block) {
357 CHECK_BAILOUT();
358
359 block_do_prolog(block);
360 set_block(block);
361
362 for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
363 if (instr->is_pinned()) do_root(instr);
364 }
365
366 set_block(NULL);
367 block_do_epilog(block);
368 }
369
370
371 //-------------------------LIRGenerator-----------------------------
372
373 // This is where the tree-walk starts; instr must be root;
374 void LIRGenerator::do_root(Value instr) {
375 CHECK_BAILOUT();
376
377 InstructionMark im(compilation(), instr);
378
379 assert(instr->is_pinned(), "use only with roots");
380 assert(instr->subst() == instr, "shouldn't have missed substitution");
381
382 instr->visit(this);
383
384 assert(!instr->has_uses() || instr->operand()->is_valid() ||
385 instr->as_Constant() != NULL || bailed_out(), "invalid item set");
386 }
387
388
389 // This is called for each node in tree; the walk stops if a root is reached
390 void LIRGenerator::walk(Value instr) {
391 InstructionMark im(compilation(), instr);
392 //stop walk when encounter a root
393 if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
394 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
395 } else {
396 assert(instr->subst() == instr, "shouldn't have missed substitution");
397 instr->visit(this);
398 // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
399 }
400 }
401
402
403 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
404 assert(state != NULL, "state must be defined");
405
406 #ifndef PRODUCT
407 state->verify();
408 #endif
409
410 ValueStack* s = state;
411 for_each_state(s) {
412 if (s->kind() == ValueStack::EmptyExceptionState) {
413 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
414 continue;
415 }
416
417 int index;
418 Value value;
419 for_each_stack_value(s, index, value) {
420 assert(value->subst() == value, "missed substitution");
421 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
422 walk(value);
423 assert(value->operand()->is_valid(), "must be evaluated now");
424 }
425 }
426
427 int bci = s->bci();
428 IRScope* scope = s->scope();
429 ciMethod* method = scope->method();
430
431 MethodLivenessResult liveness = method->liveness_at_bci(bci);
432 if (bci == SynchronizationEntryBCI) {
433 if (x->as_ExceptionObject() || x->as_Throw()) {
434 // all locals are dead on exit from the synthetic unlocker
435 liveness.clear();
436 } else {
437 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
438 }
439 }
440 if (!liveness.is_valid()) {
441 // Degenerate or breakpointed method.
442 bailout("Degenerate or breakpointed method");
443 } else {
444 assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
445 for_each_local_value(s, index, value) {
446 assert(value->subst() == value, "missed substition");
447 if (liveness.at(index) && !value->type()->is_illegal()) {
448 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
449 walk(value);
450 assert(value->operand()->is_valid(), "must be evaluated now");
451 }
452 } else {
453 // NULL out this local so that linear scan can assume that all non-NULL values are live.
454 s->invalidate_local(index);
455 }
456 }
457 }
458 }
459
460 return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
461 }
462
463
464 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
465 return state_for(x, x->exception_state());
466 }
467
468
469 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info) {
470 if (!obj->is_loaded() || PatchALot) {
471 assert(info != NULL, "info must be set if class is not loaded");
472 __ klass2reg_patch(NULL, r, info);
473 } else {
474 // no patching needed
475 __ metadata2reg(obj->constant_encoding(), r);
476 }
477 }
478
479
480 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
481 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
482 CodeStub* stub = new RangeCheckStub(range_check_info, index);
483 if (index->is_constant()) {
484 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
485 index->as_jint(), null_check_info);
486 __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
487 } else {
488 cmp_reg_mem(lir_cond_aboveEqual, index, array,
489 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
490 __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
491 }
492 }
493
494
495 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
496 CodeStub* stub = new RangeCheckStub(info, index, true);
497 if (index->is_constant()) {
498 cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
499 __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
500 } else {
501 cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
502 java_nio_Buffer::limit_offset(), T_INT, info);
503 __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
504 }
505 __ move(index, result);
506 }
507
508
509
510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
511 LIR_Opr result_op = result;
512 LIR_Opr left_op = left;
513 LIR_Opr right_op = right;
514
515 if (TwoOperandLIRForm && left_op != result_op) {
516 assert(right_op != result_op, "malformed");
517 __ move(left_op, result_op);
518 left_op = result_op;
519 }
520
521 switch(code) {
522 case Bytecodes::_dadd:
523 case Bytecodes::_fadd:
524 case Bytecodes::_ladd:
525 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break;
526 case Bytecodes::_fmul:
527 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break;
528
529 case Bytecodes::_dmul:
530 {
531 if (is_strictfp) {
532 __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
533 } else {
534 __ mul(left_op, right_op, result_op); break;
535 }
536 }
537 break;
538
539 case Bytecodes::_imul:
540 {
541 bool did_strength_reduce = false;
542
543 if (right->is_constant()) {
544 int c = right->as_jint();
545 if (is_power_of_2(c)) {
546 // do not need tmp here
547 __ shift_left(left_op, exact_log2(c), result_op);
548 did_strength_reduce = true;
549 } else {
550 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
551 }
552 }
553 // we couldn't strength reduce so just emit the multiply
554 if (!did_strength_reduce) {
555 __ mul(left_op, right_op, result_op);
556 }
557 }
558 break;
559
560 case Bytecodes::_dsub:
561 case Bytecodes::_fsub:
562 case Bytecodes::_lsub:
563 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
564
565 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
566 // ldiv and lrem are implemented with a direct runtime call
567
568 case Bytecodes::_ddiv:
569 {
570 if (is_strictfp) {
571 __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
572 } else {
573 __ div (left_op, right_op, result_op); break;
574 }
575 }
576 break;
577
578 case Bytecodes::_drem:
579 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
580
581 default: ShouldNotReachHere();
582 }
583 }
584
585
586 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
587 arithmetic_op(code, result, left, right, false, tmp);
588 }
589
590
591 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
592 arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
593 }
594
595
596 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
597 arithmetic_op(code, result, left, right, is_strictfp, tmp);
598 }
599
600
601 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
602 if (TwoOperandLIRForm && value != result_op) {
603 assert(count != result_op, "malformed");
604 __ move(value, result_op);
605 value = result_op;
606 }
607
608 assert(count->is_constant() || count->is_register(), "must be");
609 switch(code) {
610 case Bytecodes::_ishl:
611 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
612 case Bytecodes::_ishr:
613 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
614 case Bytecodes::_iushr:
615 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
616 default: ShouldNotReachHere();
617 }
618 }
619
620
621 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
622 if (TwoOperandLIRForm && left_op != result_op) {
623 assert(right_op != result_op, "malformed");
624 __ move(left_op, result_op);
625 left_op = result_op;
626 }
627
628 switch(code) {
629 case Bytecodes::_iand:
630 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
631
632 case Bytecodes::_ior:
633 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
634
635 case Bytecodes::_ixor:
636 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
637
638 default: ShouldNotReachHere();
639 }
640 }
641
642
643 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
644 if (!GenerateSynchronizationCode) return;
645 // for slow path, use debug info for state after successful locking
646 CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
647 __ load_stack_address_monitor(monitor_no, lock);
648 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
649 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
650 }
651
652
653 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
654 if (!GenerateSynchronizationCode) return;
655 // setup registers
656 LIR_Opr hdr = lock;
657 lock = new_hdr;
658 CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
659 __ load_stack_address_monitor(monitor_no, lock);
660 __ unlock_object(hdr, object, lock, scratch, slow_path);
661 }
662
663
664 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
665 klass2reg_with_patching(klass_reg, klass, info);
666 // If klass is not loaded we do not know if the klass has finalizers:
667 if (UseFastNewInstance && klass->is_loaded()
668 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
669
670 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
671
672 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
673
674 assert(klass->is_loaded(), "must be loaded");
675 // allocate space for instance
676 assert(klass->size_helper() >= 0, "illegal instance size");
677 const int instance_size = align_object_size(klass->size_helper());
678 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
679 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
680 } else {
681 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
682 __ branch(lir_cond_always, T_ILLEGAL, slow_path);
683 __ branch_destination(slow_path->continuation());
684 }
685 }
686
687
688 static bool is_constant_zero(Instruction* inst) {
689 IntConstant* c = inst->type()->as_IntConstant();
690 if (c) {
691 return (c->value() == 0);
692 }
693 return false;
694 }
695
696
697 static bool positive_constant(Instruction* inst) {
698 IntConstant* c = inst->type()->as_IntConstant();
699 if (c) {
700 return (c->value() >= 0);
701 }
702 return false;
703 }
704
705
706 static ciArrayKlass* as_array_klass(ciType* type) {
707 if (type != NULL && type->is_array_klass() && type->is_loaded()) {
708 return (ciArrayKlass*)type;
709 } else {
710 return NULL;
711 }
712 }
713
714 static ciType* phi_declared_type(Phi* phi) {
715 ciType* t = phi->operand_at(0)->declared_type();
716 if (t == NULL) {
717 return NULL;
718 }
719 for(int i = 1; i < phi->operand_count(); i++) {
720 if (t != phi->operand_at(i)->declared_type()) {
721 return NULL;
722 }
723 }
724 return t;
725 }
726
727 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
728 Instruction* src = x->argument_at(0);
729 Instruction* src_pos = x->argument_at(1);
730 Instruction* dst = x->argument_at(2);
731 Instruction* dst_pos = x->argument_at(3);
732 Instruction* length = x->argument_at(4);
733
734 // first try to identify the likely type of the arrays involved
735 ciArrayKlass* expected_type = NULL;
736 bool is_exact = false, src_objarray = false, dst_objarray = false;
737 {
738 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type());
739 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
740 Phi* phi;
741 if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
742 src_declared_type = as_array_klass(phi_declared_type(phi));
743 }
744 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type());
745 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
746 if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
747 dst_declared_type = as_array_klass(phi_declared_type(phi));
748 }
749
750 if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
751 // the types exactly match so the type is fully known
752 is_exact = true;
753 expected_type = src_exact_type;
754 } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
755 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
756 ciArrayKlass* src_type = NULL;
757 if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
758 src_type = (ciArrayKlass*) src_exact_type;
759 } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
760 src_type = (ciArrayKlass*) src_declared_type;
761 }
762 if (src_type != NULL) {
763 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
764 is_exact = true;
765 expected_type = dst_type;
766 }
767 }
768 }
769 // at least pass along a good guess
770 if (expected_type == NULL) expected_type = dst_exact_type;
771 if (expected_type == NULL) expected_type = src_declared_type;
772 if (expected_type == NULL) expected_type = dst_declared_type;
773
774 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
775 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
776 }
777
778 // if a probable array type has been identified, figure out if any
779 // of the required checks for a fast case can be elided.
780 int flags = LIR_OpArrayCopy::all_flags;
781
782 if (!src_objarray)
783 flags &= ~LIR_OpArrayCopy::src_objarray;
784 if (!dst_objarray)
785 flags &= ~LIR_OpArrayCopy::dst_objarray;
786
787 if (!x->arg_needs_null_check(0))
788 flags &= ~LIR_OpArrayCopy::src_null_check;
789 if (!x->arg_needs_null_check(2))
790 flags &= ~LIR_OpArrayCopy::dst_null_check;
791
792
793 if (expected_type != NULL) {
794 Value length_limit = NULL;
795
796 IfOp* ifop = length->as_IfOp();
797 if (ifop != NULL) {
798 // look for expressions like min(v, a.length) which ends up as
799 // x > y ? y : x or x >= y ? y : x
800 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
801 ifop->x() == ifop->fval() &&
802 ifop->y() == ifop->tval()) {
803 length_limit = ifop->y();
804 }
805 }
806
807 // try to skip null checks and range checks
808 NewArray* src_array = src->as_NewArray();
809 if (src_array != NULL) {
810 flags &= ~LIR_OpArrayCopy::src_null_check;
811 if (length_limit != NULL &&
812 src_array->length() == length_limit &&
813 is_constant_zero(src_pos)) {
814 flags &= ~LIR_OpArrayCopy::src_range_check;
815 }
816 }
817
818 NewArray* dst_array = dst->as_NewArray();
819 if (dst_array != NULL) {
820 flags &= ~LIR_OpArrayCopy::dst_null_check;
821 if (length_limit != NULL &&
822 dst_array->length() == length_limit &&
823 is_constant_zero(dst_pos)) {
824 flags &= ~LIR_OpArrayCopy::dst_range_check;
825 }
826 }
827
828 // check from incoming constant values
829 if (positive_constant(src_pos))
830 flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
831 if (positive_constant(dst_pos))
832 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
833 if (positive_constant(length))
834 flags &= ~LIR_OpArrayCopy::length_positive_check;
835
836 // see if the range check can be elided, which might also imply
837 // that src or dst is non-null.
838 ArrayLength* al = length->as_ArrayLength();
839 if (al != NULL) {
840 if (al->array() == src) {
841 // it's the length of the source array
842 flags &= ~LIR_OpArrayCopy::length_positive_check;
843 flags &= ~LIR_OpArrayCopy::src_null_check;
844 if (is_constant_zero(src_pos))
845 flags &= ~LIR_OpArrayCopy::src_range_check;
846 }
847 if (al->array() == dst) {
848 // it's the length of the destination array
849 flags &= ~LIR_OpArrayCopy::length_positive_check;
850 flags &= ~LIR_OpArrayCopy::dst_null_check;
851 if (is_constant_zero(dst_pos))
852 flags &= ~LIR_OpArrayCopy::dst_range_check;
853 }
854 }
855 if (is_exact) {
856 flags &= ~LIR_OpArrayCopy::type_check;
857 }
858 }
859
860 IntConstant* src_int = src_pos->type()->as_IntConstant();
861 IntConstant* dst_int = dst_pos->type()->as_IntConstant();
862 if (src_int && dst_int) {
863 int s_offs = src_int->value();
864 int d_offs = dst_int->value();
865 if (src_int->value() >= dst_int->value()) {
866 flags &= ~LIR_OpArrayCopy::overlapping;
867 }
868 if (expected_type != NULL) {
869 BasicType t = expected_type->element_type()->basic_type();
870 int element_size = type2aelembytes(t);
871 if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
872 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
873 flags &= ~LIR_OpArrayCopy::unaligned;
874 }
875 }
876 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
877 // src and dest positions are the same, or dst is zero so assume
878 // nonoverlapping copy.
879 flags &= ~LIR_OpArrayCopy::overlapping;
880 }
881
882 if (src == dst) {
883 // moving within a single array so no type checks are needed
884 if (flags & LIR_OpArrayCopy::type_check) {
885 flags &= ~LIR_OpArrayCopy::type_check;
886 }
887 }
888 *flagsp = flags;
889 *expected_typep = (ciArrayKlass*)expected_type;
890 }
891
892
893 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
894 assert(opr->is_register(), "why spill if item is not register?");
895
896 if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
897 LIR_Opr result = new_register(T_FLOAT);
898 set_vreg_flag(result, must_start_in_memory);
899 assert(opr->is_register(), "only a register can be spilled");
900 assert(opr->value_type()->is_float(), "rounding only for floats available");
901 __ roundfp(opr, LIR_OprFact::illegalOpr, result);
902 return result;
903 }
904 return opr;
905 }
906
907
908 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
909 assert(type2size[t] == type2size[value->type()],
910 err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
911 if (!value->is_register()) {
912 // force into a register
913 LIR_Opr r = new_register(value->type());
914 __ move(value, r);
915 value = r;
916 }
917
918 // create a spill location
919 LIR_Opr tmp = new_register(t);
920 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
921
922 // move from register to spill
923 __ move(value, tmp);
924 return tmp;
925 }
926
927 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
928 if (if_instr->should_profile()) {
929 ciMethod* method = if_instr->profiled_method();
930 assert(method != NULL, "method should be set if branch is profiled");
931 ciMethodData* md = method->method_data_or_null();
932 assert(md != NULL, "Sanity");
933 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
934 assert(data != NULL, "must have profiling data");
935 assert(data->is_BranchData(), "need BranchData for two-way branches");
936 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
937 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
938 if (if_instr->is_swapped()) {
939 int t = taken_count_offset;
940 taken_count_offset = not_taken_count_offset;
941 not_taken_count_offset = t;
942 }
943
944 LIR_Opr md_reg = new_register(T_METADATA);
945 __ metadata2reg(md->constant_encoding(), md_reg);
946
947 LIR_Opr data_offset_reg = new_pointer_register();
948 __ cmove(lir_cond(cond),
949 LIR_OprFact::intptrConst(taken_count_offset),
950 LIR_OprFact::intptrConst(not_taken_count_offset),
951 data_offset_reg, as_BasicType(if_instr->x()->type()));
952
953 // MDO cells are intptr_t, so the data_reg width is arch-dependent.
954 LIR_Opr data_reg = new_pointer_register();
955 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
956 __ move(data_addr, data_reg);
957 // Use leal instead of add to avoid destroying condition codes on x86
958 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
959 __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
960 __ move(data_reg, data_addr);
961 }
962 }
963
964 // Phi technique:
965 // This is about passing live values from one basic block to the other.
966 // In code generated with Java it is rather rare that more than one
967 // value is on the stack from one basic block to the other.
968 // We optimize our technique for efficient passing of one value
969 // (of type long, int, double..) but it can be extended.
970 // When entering or leaving a basic block, all registers and all spill
971 // slots are release and empty. We use the released registers
972 // and spill slots to pass the live values from one block
973 // to the other. The topmost value, i.e., the value on TOS of expression
974 // stack is passed in registers. All other values are stored in spilling
975 // area. Every Phi has an index which designates its spill slot
976 // At exit of a basic block, we fill the register(s) and spill slots.
977 // At entry of a basic block, the block_prolog sets up the content of phi nodes
978 // and locks necessary registers and spilling slots.
979
980
981 // move current value to referenced phi function
982 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
983 Phi* phi = sux_val->as_Phi();
984 // cur_val can be null without phi being null in conjunction with inlining
985 if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
986 LIR_Opr operand = cur_val->operand();
987 if (cur_val->operand()->is_illegal()) {
988 assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
989 "these can be produced lazily");
990 operand = operand_for_instruction(cur_val);
991 }
992 resolver->move(operand, operand_for_instruction(phi));
993 }
994 }
995
996
997 // Moves all stack values into their PHI position
998 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
999 BlockBegin* bb = block();
1000 if (bb->number_of_sux() == 1) {
1001 BlockBegin* sux = bb->sux_at(0);
1002 assert(sux->number_of_preds() > 0, "invalid CFG");
1003
1004 // a block with only one predecessor never has phi functions
1005 if (sux->number_of_preds() > 1) {
1006 int max_phis = cur_state->stack_size() + cur_state->locals_size();
1007 PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1008
1009 ValueStack* sux_state = sux->state();
1010 Value sux_value;
1011 int index;
1012
1013 assert(cur_state->scope() == sux_state->scope(), "not matching");
1014 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1015 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1016
1017 for_each_stack_value(sux_state, index, sux_value) {
1018 move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1019 }
1020
1021 for_each_local_value(sux_state, index, sux_value) {
1022 move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1023 }
1024
1025 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1026 }
1027 }
1028 }
1029
1030
1031 LIR_Opr LIRGenerator::new_register(BasicType type) {
1032 int vreg = _virtual_register_number;
1033 // add a little fudge factor for the bailout, since the bailout is
1034 // only checked periodically. This gives a few extra registers to
1035 // hand out before we really run out, which helps us keep from
1036 // tripping over assertions.
1037 if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1038 bailout("out of virtual registers");
1039 if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1040 // wrap it around
1041 _virtual_register_number = LIR_OprDesc::vreg_base;
1042 }
1043 }
1044 _virtual_register_number += 1;
1045 return LIR_OprFact::virtual_register(vreg, type);
1046 }
1047
1048
1049 // Try to lock using register in hint
1050 LIR_Opr LIRGenerator::rlock(Value instr) {
1051 return new_register(instr->type());
1052 }
1053
1054
1055 // does an rlock and sets result
1056 LIR_Opr LIRGenerator::rlock_result(Value x) {
1057 LIR_Opr reg = rlock(x);
1058 set_result(x, reg);
1059 return reg;
1060 }
1061
1062
1063 // does an rlock and sets result
1064 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1065 LIR_Opr reg;
1066 switch (type) {
1067 case T_BYTE:
1068 case T_BOOLEAN:
1069 reg = rlock_byte(type);
1070 break;
1071 default:
1072 reg = rlock(x);
1073 break;
1074 }
1075
1076 set_result(x, reg);
1077 return reg;
1078 }
1079
1080
1081 //---------------------------------------------------------------------
1082 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1083 ObjectType* oc = value->type()->as_ObjectType();
1084 if (oc) {
1085 return oc->constant_value();
1086 }
1087 return NULL;
1088 }
1089
1090
1091 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1092 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1093 assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1094
1095 // no moves are created for phi functions at the begin of exception
1096 // handlers, so assign operands manually here
1097 for_each_phi_fun(block(), phi,
1098 operand_for_instruction(phi));
1099
1100 LIR_Opr thread_reg = getThreadPointer();
1101 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1102 exceptionOopOpr());
1103 __ move_wide(LIR_OprFact::oopConst(NULL),
1104 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1105 __ move_wide(LIR_OprFact::oopConst(NULL),
1106 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1107
1108 LIR_Opr result = new_register(T_OBJECT);
1109 __ move(exceptionOopOpr(), result);
1110 set_result(x, result);
1111 }
1112
1113
1114 //----------------------------------------------------------------------
1115 //----------------------------------------------------------------------
1116 //----------------------------------------------------------------------
1117 //----------------------------------------------------------------------
1118 // visitor functions
1119 //----------------------------------------------------------------------
1120 //----------------------------------------------------------------------
1121 //----------------------------------------------------------------------
1122 //----------------------------------------------------------------------
1123
1124 void LIRGenerator::do_Phi(Phi* x) {
1125 // phi functions are never visited directly
1126 ShouldNotReachHere();
1127 }
1128
1129
1130 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1131 void LIRGenerator::do_Constant(Constant* x) {
1132 if (x->state_before() != NULL) {
1133 // Any constant with a ValueStack requires patching so emit the patch here
1134 LIR_Opr reg = rlock_result(x);
1135 CodeEmitInfo* info = state_for(x, x->state_before());
1136 __ oop2reg_patch(NULL, reg, info);
1137 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1138 if (!x->is_pinned()) {
1139 // unpinned constants are handled specially so that they can be
1140 // put into registers when they are used multiple times within a
1141 // block. After the block completes their operand will be
1142 // cleared so that other blocks can't refer to that register.
1143 set_result(x, load_constant(x));
1144 } else {
1145 LIR_Opr res = x->operand();
1146 if (!res->is_valid()) {
1147 res = LIR_OprFact::value_type(x->type());
1148 }
1149 if (res->is_constant()) {
1150 LIR_Opr reg = rlock_result(x);
1151 __ move(res, reg);
1152 } else {
1153 set_result(x, res);
1154 }
1155 }
1156 } else {
1157 set_result(x, LIR_OprFact::value_type(x->type()));
1158 }
1159 }
1160
1161
1162 void LIRGenerator::do_Local(Local* x) {
1163 // operand_for_instruction has the side effect of setting the result
1164 // so there's no need to do it here.
1165 operand_for_instruction(x);
1166 }
1167
1168
1169 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1170 Unimplemented();
1171 }
1172
1173
1174 void LIRGenerator::do_Return(Return* x) {
1175 if (compilation()->env()->dtrace_method_probes()) {
1176 BasicTypeList signature;
1177 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
1178 signature.append(T_METADATA); // Method*
1179 LIR_OprList* args = new LIR_OprList();
1180 args->append(getThreadPointer());
1181 LIR_Opr meth = new_register(T_METADATA);
1182 __ metadata2reg(method()->constant_encoding(), meth);
1183 args->append(meth);
1184 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1185 }
1186
1187 if (x->type()->is_void()) {
1188 __ return_op(LIR_OprFact::illegalOpr);
1189 } else {
1190 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1191 LIRItem result(x->result(), this);
1192
1193 result.load_item_force(reg);
1194 __ return_op(result.result());
1195 }
1196 set_no_result(x);
1197 }
1198
1199 // Examble: ref.get()
1200 // Combination of LoadField and g1 pre-write barrier
1201 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1202
1203 const int referent_offset = java_lang_ref_Reference::referent_offset;
1204 guarantee(referent_offset > 0, "referent offset not initialized");
1205
1206 assert(x->number_of_arguments() == 1, "wrong type");
1207
1208 LIRItem reference(x->argument_at(0), this);
1209 reference.load_item();
1210
1211 // need to perform the null check on the reference objecy
1212 CodeEmitInfo* info = NULL;
1213 if (x->needs_null_check()) {
1214 info = state_for(x);
1215 }
1216
1217 LIR_Address* referent_field_adr =
1218 new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1219
1220 LIR_Opr result = rlock_result(x);
1221
1222 __ load(referent_field_adr, result, info);
1223
1224 // Register the value in the referent field with the pre-barrier
1225 pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1226 result /* pre_val */,
1227 false /* do_load */,
1228 false /* patch */,
1229 NULL /* info */);
1230 }
1231
1232 // Example: clazz.isInstance(object)
1233 void LIRGenerator::do_isInstance(Intrinsic* x) {
1234 assert(x->number_of_arguments() == 2, "wrong type");
1235
1236 // TODO could try to substitute this node with an equivalent InstanceOf
1237 // if clazz is known to be a constant Class. This will pick up newly found
1238 // constants after HIR construction. I'll leave this to a future change.
1239
1240 // as a first cut, make a simple leaf call to runtime to stay platform independent.
1241 // could follow the aastore example in a future change.
1242
1243 LIRItem clazz(x->argument_at(0), this);
1244 LIRItem object(x->argument_at(1), this);
1245 clazz.load_item();
1246 object.load_item();
1247 LIR_Opr result = rlock_result(x);
1248
1249 // need to perform null check on clazz
1250 if (x->needs_null_check()) {
1251 CodeEmitInfo* info = state_for(x);
1252 __ null_check(clazz.result(), info);
1253 }
1254
1255 LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1256 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1257 x->type(),
1258 NULL); // NULL CodeEmitInfo results in a leaf call
1259 __ move(call_result, result);
1260 }
1261
1262 // Example: object.getClass ()
1263 void LIRGenerator::do_getClass(Intrinsic* x) {
1264 assert(x->number_of_arguments() == 1, "wrong type");
1265
1266 LIRItem rcvr(x->argument_at(0), this);
1267 rcvr.load_item();
1268 LIR_Opr temp = new_register(T_METADATA);
1269 LIR_Opr result = rlock_result(x);
1270
1271 // need to perform the null check on the rcvr
1272 CodeEmitInfo* info = NULL;
1273 if (x->needs_null_check()) {
1274 info = state_for(x);
1275 }
1276
1277 // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1278 // meaning of these two is mixed up (see JDK-8026837).
1279 __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1280 __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1281 }
1282
1283
1284 // Example: Thread.currentThread()
1285 void LIRGenerator::do_currentThread(Intrinsic* x) {
1286 assert(x->number_of_arguments() == 0, "wrong type");
1287 LIR_Opr reg = rlock_result(x);
1288 __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1289 }
1290
1291
1292 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1293 assert(x->number_of_arguments() == 1, "wrong type");
1294 LIRItem receiver(x->argument_at(0), this);
1295
1296 receiver.load_item();
1297 BasicTypeList signature;
1298 signature.append(T_OBJECT); // receiver
1299 LIR_OprList* args = new LIR_OprList();
1300 args->append(receiver.result());
1301 CodeEmitInfo* info = state_for(x, x->state());
1302 call_runtime(&signature, args,
1303 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1304 voidType, info);
1305
1306 set_no_result(x);
1307 }
1308
1309
1310 //------------------------local access--------------------------------------
1311
1312 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1313 if (x->operand()->is_illegal()) {
1314 Constant* c = x->as_Constant();
1315 if (c != NULL) {
1316 x->set_operand(LIR_OprFact::value_type(c->type()));
1317 } else {
1318 assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1319 // allocate a virtual register for this local or phi
1320 x->set_operand(rlock(x));
1321 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1322 }
1323 }
1324 return x->operand();
1325 }
1326
1327
1328 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1329 if (opr->is_virtual()) {
1330 return instruction_for_vreg(opr->vreg_number());
1331 }
1332 return NULL;
1333 }
1334
1335
1336 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1337 if (reg_num < _instruction_for_operand.length()) {
1338 return _instruction_for_operand.at(reg_num);
1339 }
1340 return NULL;
1341 }
1342
1343
1344 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1345 if (_vreg_flags.size_in_bits() == 0) {
1346 BitMap2D temp(100, num_vreg_flags);
1347 temp.clear();
1348 _vreg_flags = temp;
1349 }
1350 _vreg_flags.at_put_grow(vreg_num, f, true);
1351 }
1352
1353 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1354 if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1355 return false;
1356 }
1357 return _vreg_flags.at(vreg_num, f);
1358 }
1359
1360
1361 // Block local constant handling. This code is useful for keeping
1362 // unpinned constants and constants which aren't exposed in the IR in
1363 // registers. Unpinned Constant instructions have their operands
1364 // cleared when the block is finished so that other blocks can't end
1365 // up referring to their registers.
1366
1367 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1368 assert(!x->is_pinned(), "only for unpinned constants");
1369 _unpinned_constants.append(x);
1370 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1371 }
1372
1373
1374 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1375 BasicType t = c->type();
1376 for (int i = 0; i < _constants.length(); i++) {
1377 LIR_Const* other = _constants.at(i);
1378 if (t == other->type()) {
1379 switch (t) {
1380 case T_INT:
1381 case T_FLOAT:
1382 if (c->as_jint_bits() != other->as_jint_bits()) continue;
1383 break;
1384 case T_LONG:
1385 case T_DOUBLE:
1386 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1387 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1388 break;
1389 case T_OBJECT:
1390 if (c->as_jobject() != other->as_jobject()) continue;
1391 break;
1392 }
1393 return _reg_for_constants.at(i);
1394 }
1395 }
1396
1397 LIR_Opr result = new_register(t);
1398 __ move((LIR_Opr)c, result);
1399 _constants.append(c);
1400 _reg_for_constants.append(result);
1401 return result;
1402 }
1403
1404 // Various barriers
1405
1406 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1407 bool do_load, bool patch, CodeEmitInfo* info) {
1408 // Do the pre-write barrier, if any.
1409 switch (_bs->kind()) {
1410 #if INCLUDE_ALL_GCS
1411 case BarrierSet::G1SATBCT:
1412 case BarrierSet::G1SATBCTLogging:
1413 G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1414 break;
1415 #endif // INCLUDE_ALL_GCS
1416 case BarrierSet::CardTableModRef:
1417 case BarrierSet::CardTableExtension:
1418 // No pre barriers
1419 break;
1420 case BarrierSet::ModRef:
1421 case BarrierSet::Other:
1422 // No pre barriers
1423 break;
1424 default :
1425 ShouldNotReachHere();
1426
1427 }
1428 }
1429
1430 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1431 switch (_bs->kind()) {
1432 #if INCLUDE_ALL_GCS
1433 case BarrierSet::G1SATBCT:
1434 case BarrierSet::G1SATBCTLogging:
1435 G1SATBCardTableModRef_post_barrier(addr, new_val);
1436 break;
1437 #endif // INCLUDE_ALL_GCS
1438 case BarrierSet::CardTableModRef:
1439 case BarrierSet::CardTableExtension:
1440 CardTableModRef_post_barrier(addr, new_val);
1441 break;
1442 case BarrierSet::ModRef:
1443 case BarrierSet::Other:
1444 // No post barriers
1445 break;
1446 default :
1447 ShouldNotReachHere();
1448 }
1449 }
1450
1451 ////////////////////////////////////////////////////////////////////////
1452 #if INCLUDE_ALL_GCS
1453
1454 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1455 bool do_load, bool patch, CodeEmitInfo* info) {
1456 // First we test whether marking is in progress.
1457 BasicType flag_type;
1458 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1459 flag_type = T_INT;
1460 } else {
1461 guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1462 "Assumption");
1463 flag_type = T_BYTE;
1464 }
1465 LIR_Opr thrd = getThreadPointer();
1466 LIR_Address* mark_active_flag_addr =
1467 new LIR_Address(thrd,
1468 in_bytes(JavaThread::satb_mark_queue_offset() +
1469 PtrQueue::byte_offset_of_active()),
1470 flag_type);
1471 // Read the marking-in-progress flag.
1472 LIR_Opr flag_val = new_register(T_INT);
1473 __ load(mark_active_flag_addr, flag_val);
1474 __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1475
1476 LIR_PatchCode pre_val_patch_code = lir_patch_none;
1477
1478 CodeStub* slow;
1479
1480 if (do_load) {
1481 assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1482 assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1483
1484 if (patch)
1485 pre_val_patch_code = lir_patch_normal;
1486
1487 pre_val = new_register(T_OBJECT);
1488
1489 if (!addr_opr->is_address()) {
1490 assert(addr_opr->is_register(), "must be");
1491 addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1492 }
1493 slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1494 } else {
1495 assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1496 assert(pre_val->is_register(), "must be");
1497 assert(pre_val->type() == T_OBJECT, "must be an object");
1498 assert(info == NULL, "sanity");
1499
1500 slow = new G1PreBarrierStub(pre_val);
1501 }
1502
1503 __ branch(lir_cond_notEqual, T_INT, slow);
1504 __ branch_destination(slow->continuation());
1505 }
1506
1507 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1508 // If the "new_val" is a constant NULL, no barrier is necessary.
1509 if (new_val->is_constant() &&
1510 new_val->as_constant_ptr()->as_jobject() == NULL) return;
1511
1512 if (!new_val->is_register()) {
1513 LIR_Opr new_val_reg = new_register(T_OBJECT);
1514 if (new_val->is_constant()) {
1515 __ move(new_val, new_val_reg);
1516 } else {
1517 __ leal(new_val, new_val_reg);
1518 }
1519 new_val = new_val_reg;
1520 }
1521 assert(new_val->is_register(), "must be a register at this point");
1522
1523 if (addr->is_address()) {
1524 LIR_Address* address = addr->as_address_ptr();
1525 LIR_Opr ptr = new_pointer_register();
1526 if (!address->index()->is_valid() && address->disp() == 0) {
1527 __ move(address->base(), ptr);
1528 } else {
1529 assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1530 __ leal(addr, ptr);
1531 }
1532 addr = ptr;
1533 }
1534 assert(addr->is_register(), "must be a register at this point");
1535
1536 LIR_Opr xor_res = new_pointer_register();
1537 LIR_Opr xor_shift_res = new_pointer_register();
1538 if (TwoOperandLIRForm ) {
1539 __ move(addr, xor_res);
1540 __ logical_xor(xor_res, new_val, xor_res);
1541 __ move(xor_res, xor_shift_res);
1542 __ unsigned_shift_right(xor_shift_res,
1543 LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1544 xor_shift_res,
1545 LIR_OprDesc::illegalOpr());
1546 } else {
1547 __ logical_xor(addr, new_val, xor_res);
1548 __ unsigned_shift_right(xor_res,
1549 LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1550 xor_shift_res,
1551 LIR_OprDesc::illegalOpr());
1552 }
1553
1554 if (!new_val->is_register()) {
1555 LIR_Opr new_val_reg = new_register(T_OBJECT);
1556 __ leal(new_val, new_val_reg);
1557 new_val = new_val_reg;
1558 }
1559 assert(new_val->is_register(), "must be a register at this point");
1560
1561 __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1562
1563 CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1564 __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1565 __ branch_destination(slow->continuation());
1566 }
1567
1568 #endif // INCLUDE_ALL_GCS
1569 ////////////////////////////////////////////////////////////////////////
1570
1571 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1572
1573 assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1574 LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1575 if (addr->is_address()) {
1576 LIR_Address* address = addr->as_address_ptr();
1577 // ptr cannot be an object because we use this barrier for array card marks
1578 // and addr can point in the middle of an array.
1579 LIR_Opr ptr = new_pointer_register();
1580 if (!address->index()->is_valid() && address->disp() == 0) {
1581 __ move(address->base(), ptr);
1582 } else {
1583 assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1584 __ leal(addr, ptr);
1585 }
1586 addr = ptr;
1587 }
1588 assert(addr->is_register(), "must be a register at this point");
1589
1590 #ifdef ARM
1591 // TODO: ARM - move to platform-dependent code
1592 LIR_Opr tmp = FrameMap::R14_opr;
1593 if (VM_Version::supports_movw()) {
1594 __ move((LIR_Opr)card_table_base, tmp);
1595 } else {
1596 __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
1597 }
1598
1599 CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
1600 LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
1601 if(((int)ct->byte_map_base & 0xff) == 0) {
1602 __ move(tmp, card_addr);
1603 } else {
1604 LIR_Opr tmp_zero = new_register(T_INT);
1605 __ move(LIR_OprFact::intConst(0), tmp_zero);
1606 __ move(tmp_zero, card_addr);
1607 }
1608 #else // ARM
1609 LIR_Opr tmp = new_pointer_register();
1610 if (TwoOperandLIRForm) {
1611 __ move(addr, tmp);
1612 __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1613 } else {
1614 __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1615 }
1616 if (can_inline_as_constant(card_table_base)) {
1617 __ move(LIR_OprFact::intConst(0),
1618 new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1619 } else {
1620 __ move(LIR_OprFact::intConst(0),
1621 new LIR_Address(tmp, load_constant(card_table_base),
1622 T_BYTE));
1623 }
1624 #endif // ARM
1625 }
1626
1627
1628 //------------------------field access--------------------------------------
1629
1630 // Comment copied form templateTable_i486.cpp
1631 // ----------------------------------------------------------------------------
1632 // Volatile variables demand their effects be made known to all CPU's in
1633 // order. Store buffers on most chips allow reads & writes to reorder; the
1634 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1635 // memory barrier (i.e., it's not sufficient that the interpreter does not
1636 // reorder volatile references, the hardware also must not reorder them).
1637 //
1638 // According to the new Java Memory Model (JMM):
1639 // (1) All volatiles are serialized wrt to each other.
1640 // ALSO reads & writes act as aquire & release, so:
1641 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1642 // the read float up to before the read. It's OK for non-volatile memory refs
1643 // that happen before the volatile read to float down below it.
1644 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1645 // that happen BEFORE the write float down to after the write. It's OK for
1646 // non-volatile memory refs that happen after the volatile write to float up
1647 // before it.
1648 //
1649 // We only put in barriers around volatile refs (they are expensive), not
1650 // _between_ memory refs (that would require us to track the flavor of the
1651 // previous memory refs). Requirements (2) and (3) require some barriers
1652 // before volatile stores and after volatile loads. These nearly cover
1653 // requirement (1) but miss the volatile-store-volatile-load case. This final
1654 // case is placed after volatile-stores although it could just as well go
1655 // before volatile-loads.
1656
1657
1658 void LIRGenerator::do_StoreField(StoreField* x) {
1659 bool needs_patching = x->needs_patching();
1660 bool is_volatile = x->field()->is_volatile();
1661 BasicType field_type = x->field_type();
1662 bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1663
1664 CodeEmitInfo* info = NULL;
1665 if (needs_patching) {
1666 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1667 info = state_for(x, x->state_before());
1668 } else if (x->needs_null_check()) {
1669 NullCheck* nc = x->explicit_null_check();
1670 if (nc == NULL) {
1671 info = state_for(x);
1672 } else {
1673 info = state_for(nc);
1674 }
1675 }
1676
1677
1678 LIRItem object(x->obj(), this);
1679 LIRItem value(x->value(), this);
1680
1681 object.load_item();
1682
1683 if (is_volatile || needs_patching) {
1684 // load item if field is volatile (fewer special cases for volatiles)
1685 // load item if field not initialized
1686 // load item if field not constant
1687 // because of code patching we cannot inline constants
1688 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1689 value.load_byte_item();
1690 } else {
1691 value.load_item();
1692 }
1693 } else {
1694 value.load_for_store(field_type);
1695 }
1696
1697 set_no_result(x);
1698
1699 #ifndef PRODUCT
1700 if (PrintNotLoaded && needs_patching) {
1701 tty->print_cr(" ###class not loaded at store_%s bci %d",
1702 x->is_static() ? "static" : "field", x->printable_bci());
1703 }
1704 #endif
1705
1706 if (x->needs_null_check() &&
1707 (needs_patching ||
1708 MacroAssembler::needs_explicit_null_check(x->offset()))) {
1709 // emit an explicit null check because the offset is too large
1710 __ null_check(object.result(), new CodeEmitInfo(info));
1711 }
1712
1713 LIR_Address* address;
1714 if (needs_patching) {
1715 // we need to patch the offset in the instruction so don't allow
1716 // generate_address to try to be smart about emitting the -1.
1717 // Otherwise the patching code won't know how to find the
1718 // instruction to patch.
1719 address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1720 } else {
1721 address = generate_address(object.result(), x->offset(), field_type);
1722 }
1723
1724 if (is_volatile && os::is_MP()) {
1725 __ membar_release();
1726 }
1727
1728 if (is_oop) {
1729 // Do the pre-write barrier, if any.
1730 pre_barrier(LIR_OprFact::address(address),
1731 LIR_OprFact::illegalOpr /* pre_val */,
1732 true /* do_load*/,
1733 needs_patching,
1734 (info ? new CodeEmitInfo(info) : NULL));
1735 }
1736
1737 if (is_volatile && !needs_patching) {
1738 volatile_field_store(value.result(), address, info);
1739 } else {
1740 LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1741 __ store(value.result(), address, info, patch_code);
1742 }
1743
1744 if (is_oop) {
1745 // Store to object so mark the card of the header
1746 post_barrier(object.result(), value.result());
1747 }
1748
1749 if (is_volatile && os::is_MP()) {
1750 __ membar();
1751 }
1752 }
1753
1754
1755 void LIRGenerator::do_LoadField(LoadField* x) {
1756 bool needs_patching = x->needs_patching();
1757 bool is_volatile = x->field()->is_volatile();
1758 BasicType field_type = x->field_type();
1759
1760 CodeEmitInfo* info = NULL;
1761 if (needs_patching) {
1762 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1763 info = state_for(x, x->state_before());
1764 } else if (x->needs_null_check()) {
1765 NullCheck* nc = x->explicit_null_check();
1766 if (nc == NULL) {
1767 info = state_for(x);
1768 } else {
1769 info = state_for(nc);
1770 }
1771 }
1772
1773 LIRItem object(x->obj(), this);
1774
1775 object.load_item();
1776
1777 #ifndef PRODUCT
1778 if (PrintNotLoaded && needs_patching) {
1779 tty->print_cr(" ###class not loaded at load_%s bci %d",
1780 x->is_static() ? "static" : "field", x->printable_bci());
1781 }
1782 #endif
1783
1784 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1785 if (x->needs_null_check() &&
1786 (needs_patching ||
1787 MacroAssembler::needs_explicit_null_check(x->offset()) ||
1788 stress_deopt)) {
1789 LIR_Opr obj = object.result();
1790 if (stress_deopt) {
1791 obj = new_register(T_OBJECT);
1792 __ move(LIR_OprFact::oopConst(NULL), obj);
1793 }
1794 // emit an explicit null check because the offset is too large
1795 __ null_check(obj, new CodeEmitInfo(info));
1796 }
1797
1798 LIR_Opr reg = rlock_result(x, field_type);
1799 LIR_Address* address;
1800 if (needs_patching) {
1801 // we need to patch the offset in the instruction so don't allow
1802 // generate_address to try to be smart about emitting the -1.
1803 // Otherwise the patching code won't know how to find the
1804 // instruction to patch.
1805 address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1806 } else {
1807 address = generate_address(object.result(), x->offset(), field_type);
1808 }
1809
1810 if (is_volatile && !needs_patching) {
1811 volatile_field_load(address, reg, info);
1812 } else {
1813 LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1814 __ load(address, reg, info, patch_code);
1815 }
1816
1817 if (is_volatile && os::is_MP()) {
1818 __ membar_acquire();
1819 }
1820 }
1821
1822
1823 //------------------------java.nio.Buffer.checkIndex------------------------
1824
1825 // int java.nio.Buffer.checkIndex(int)
1826 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1827 // NOTE: by the time we are in checkIndex() we are guaranteed that
1828 // the buffer is non-null (because checkIndex is package-private and
1829 // only called from within other methods in the buffer).
1830 assert(x->number_of_arguments() == 2, "wrong type");
1831 LIRItem buf (x->argument_at(0), this);
1832 LIRItem index(x->argument_at(1), this);
1833 buf.load_item();
1834 index.load_item();
1835
1836 LIR_Opr result = rlock_result(x);
1837 if (GenerateRangeChecks) {
1838 CodeEmitInfo* info = state_for(x);
1839 CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1840 if (index.result()->is_constant()) {
1841 cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1842 __ branch(lir_cond_belowEqual, T_INT, stub);
1843 } else {
1844 cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1845 java_nio_Buffer::limit_offset(), T_INT, info);
1846 __ branch(lir_cond_aboveEqual, T_INT, stub);
1847 }
1848 __ move(index.result(), result);
1849 } else {
1850 // Just load the index into the result register
1851 __ move(index.result(), result);
1852 }
1853 }
1854
1855
1856 //------------------------array access--------------------------------------
1857
1858
1859 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1860 LIRItem array(x->array(), this);
1861 array.load_item();
1862 LIR_Opr reg = rlock_result(x);
1863
1864 CodeEmitInfo* info = NULL;
1865 if (x->needs_null_check()) {
1866 NullCheck* nc = x->explicit_null_check();
1867 if (nc == NULL) {
1868 info = state_for(x);
1869 } else {
1870 info = state_for(nc);
1871 }
1872 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1873 LIR_Opr obj = new_register(T_OBJECT);
1874 __ move(LIR_OprFact::oopConst(NULL), obj);
1875 __ null_check(obj, new CodeEmitInfo(info));
1876 }
1877 }
1878 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1879 }
1880
1881
1882 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1883 bool use_length = x->length() != NULL;
1884 LIRItem array(x->array(), this);
1885 LIRItem index(x->index(), this);
1886 LIRItem length(this);
1887 bool needs_range_check = x->compute_needs_range_check();
1888
1889 if (use_length && needs_range_check) {
1890 length.set_instruction(x->length());
1891 length.load_item();
1892 }
1893
1894 array.load_item();
1895 if (index.is_constant() && can_inline_as_constant(x->index())) {
1896 // let it be a constant
1897 index.dont_load_item();
1898 } else {
1899 index.load_item();
1900 }
1901
1902 CodeEmitInfo* range_check_info = state_for(x);
1903 CodeEmitInfo* null_check_info = NULL;
1904 if (x->needs_null_check()) {
1905 NullCheck* nc = x->explicit_null_check();
1906 if (nc != NULL) {
1907 null_check_info = state_for(nc);
1908 } else {
1909 null_check_info = range_check_info;
1910 }
1911 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1912 LIR_Opr obj = new_register(T_OBJECT);
1913 __ move(LIR_OprFact::oopConst(NULL), obj);
1914 __ null_check(obj, new CodeEmitInfo(null_check_info));
1915 }
1916 }
1917
1918 // emit array address setup early so it schedules better
1919 LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1920
1921 if (GenerateRangeChecks && needs_range_check) {
1922 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1923 __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1924 } else if (use_length) {
1925 // TODO: use a (modified) version of array_range_check that does not require a
1926 // constant length to be loaded to a register
1927 __ cmp(lir_cond_belowEqual, length.result(), index.result());
1928 __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1929 } else {
1930 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1931 // The range check performs the null check, so clear it out for the load
1932 null_check_info = NULL;
1933 }
1934 }
1935
1936 __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1937 }
1938
1939
1940 void LIRGenerator::do_NullCheck(NullCheck* x) {
1941 if (x->can_trap()) {
1942 LIRItem value(x->obj(), this);
1943 value.load_item();
1944 CodeEmitInfo* info = state_for(x);
1945 __ null_check(value.result(), info);
1946 }
1947 }
1948
1949
1950 void LIRGenerator::do_TypeCast(TypeCast* x) {
1951 LIRItem value(x->obj(), this);
1952 value.load_item();
1953 // the result is the same as from the node we are casting
1954 set_result(x, value.result());
1955 }
1956
1957
1958 void LIRGenerator::do_Throw(Throw* x) {
1959 LIRItem exception(x->exception(), this);
1960 exception.load_item();
1961 set_no_result(x);
1962 LIR_Opr exception_opr = exception.result();
1963 CodeEmitInfo* info = state_for(x, x->state());
1964
1965 #ifndef PRODUCT
1966 if (PrintC1Statistics) {
1967 increment_counter(Runtime1::throw_count_address(), T_INT);
1968 }
1969 #endif
1970
1971 // check if the instruction has an xhandler in any of the nested scopes
1972 bool unwind = false;
1973 if (info->exception_handlers()->length() == 0) {
1974 // this throw is not inside an xhandler
1975 unwind = true;
1976 } else {
1977 // get some idea of the throw type
1978 bool type_is_exact = true;
1979 ciType* throw_type = x->exception()->exact_type();
1980 if (throw_type == NULL) {
1981 type_is_exact = false;
1982 throw_type = x->exception()->declared_type();
1983 }
1984 if (throw_type != NULL && throw_type->is_instance_klass()) {
1985 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1986 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1987 }
1988 }
1989
1990 // do null check before moving exception oop into fixed register
1991 // to avoid a fixed interval with an oop during the null check.
1992 // Use a copy of the CodeEmitInfo because debug information is
1993 // different for null_check and throw.
1994 if (GenerateCompilerNullChecks &&
1995 (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1996 // if the exception object wasn't created using new then it might be null.
1997 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1998 }
1999
2000 if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2001 // we need to go through the exception lookup path to get JVMTI
2002 // notification done
2003 unwind = false;
2004 }
2005
2006 // move exception oop into fixed register
2007 __ move(exception_opr, exceptionOopOpr());
2008
2009 if (unwind) {
2010 __ unwind_exception(exceptionOopOpr());
2011 } else {
2012 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2013 }
2014 }
2015
2016
2017 void LIRGenerator::do_RoundFP(RoundFP* x) {
2018 LIRItem input(x->input(), this);
2019 input.load_item();
2020 LIR_Opr input_opr = input.result();
2021 assert(input_opr->is_register(), "why round if value is not in a register?");
2022 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2023 if (input_opr->is_single_fpu()) {
2024 set_result(x, round_item(input_opr)); // This code path not currently taken
2025 } else {
2026 LIR_Opr result = new_register(T_DOUBLE);
2027 set_vreg_flag(result, must_start_in_memory);
2028 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2029 set_result(x, result);
2030 }
2031 }
2032
2033 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2034 LIRItem base(x->base(), this);
2035 LIRItem idx(this);
2036
2037 base.load_item();
2038 if (x->has_index()) {
2039 idx.set_instruction(x->index());
2040 idx.load_nonconstant();
2041 }
2042
2043 LIR_Opr reg = rlock_result(x, x->basic_type());
2044
2045 int log2_scale = 0;
2046 if (x->has_index()) {
2047 assert(x->index()->type()->tag() == intTag, "should not find non-int index");
2048 log2_scale = x->log2_scale();
2049 }
2050
2051 assert(!x->has_index() || idx.value() == x->index(), "should match");
2052
2053 LIR_Opr base_op = base.result();
2054 #ifndef _LP64
2055 if (x->base()->type()->tag() == longTag) {
2056 base_op = new_register(T_INT);
2057 __ convert(Bytecodes::_l2i, base.result(), base_op);
2058 } else {
2059 assert(x->base()->type()->tag() == intTag, "must be");
2060 }
2061 #endif
2062
2063 BasicType dst_type = x->basic_type();
2064 LIR_Opr index_op = idx.result();
2065
2066 LIR_Address* addr;
2067 if (index_op->is_constant()) {
2068 assert(log2_scale == 0, "must not have a scale");
2069 addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2070 } else {
2071 #ifdef X86
2072 #ifdef _LP64
2073 if (!index_op->is_illegal() && index_op->type() == T_INT) {
2074 LIR_Opr tmp = new_pointer_register();
2075 __ convert(Bytecodes::_i2l, index_op, tmp);
2076 index_op = tmp;
2077 }
2078 #endif
2079 addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2080 #elif defined(ARM)
2081 addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2082 #else
2083 if (index_op->is_illegal() || log2_scale == 0) {
2084 #ifdef _LP64
2085 if (!index_op->is_illegal() && index_op->type() == T_INT) {
2086 LIR_Opr tmp = new_pointer_register();
2087 __ convert(Bytecodes::_i2l, index_op, tmp);
2088 index_op = tmp;
2089 }
2090 #endif
2091 addr = new LIR_Address(base_op, index_op, dst_type);
2092 } else {
2093 LIR_Opr tmp = new_pointer_register();
2094 __ shift_left(index_op, log2_scale, tmp);
2095 addr = new LIR_Address(base_op, tmp, dst_type);
2096 }
2097 #endif
2098 }
2099
2100 if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2101 __ unaligned_move(addr, reg);
2102 } else {
2103 if (dst_type == T_OBJECT && x->is_wide()) {
2104 __ move_wide(addr, reg);
2105 } else {
2106 __ move(addr, reg);
2107 }
2108 }
2109 }
2110
2111
2112 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2113 int log2_scale = 0;
2114 BasicType type = x->basic_type();
2115
2116 if (x->has_index()) {
2117 assert(x->index()->type()->tag() == intTag, "should not find non-int index");
2118 log2_scale = x->log2_scale();
2119 }
2120
2121 LIRItem base(x->base(), this);
2122 LIRItem value(x->value(), this);
2123 LIRItem idx(this);
2124
2125 base.load_item();
2126 if (x->has_index()) {
2127 idx.set_instruction(x->index());
2128 idx.load_item();
2129 }
2130
2131 if (type == T_BYTE || type == T_BOOLEAN) {
2132 value.load_byte_item();
2133 } else {
2134 value.load_item();
2135 }
2136
2137 set_no_result(x);
2138
2139 LIR_Opr base_op = base.result();
2140 #ifndef _LP64
2141 if (x->base()->type()->tag() == longTag) {
2142 base_op = new_register(T_INT);
2143 __ convert(Bytecodes::_l2i, base.result(), base_op);
2144 } else {
2145 assert(x->base()->type()->tag() == intTag, "must be");
2146 }
2147 #endif
2148
2149 LIR_Opr index_op = idx.result();
2150 if (log2_scale != 0) {
2151 // temporary fix (platform dependent code without shift on Intel would be better)
2152 index_op = new_pointer_register();
2153 #ifdef _LP64
2154 if(idx.result()->type() == T_INT) {
2155 __ convert(Bytecodes::_i2l, idx.result(), index_op);
2156 } else {
2157 #endif
2158 // TODO: ARM also allows embedded shift in the address
2159 __ move(idx.result(), index_op);
2160 #ifdef _LP64
2161 }
2162 #endif
2163 __ shift_left(index_op, log2_scale, index_op);
2164 }
2165 #ifdef _LP64
2166 else if(!index_op->is_illegal() && index_op->type() == T_INT) {
2167 LIR_Opr tmp = new_pointer_register();
2168 __ convert(Bytecodes::_i2l, index_op, tmp);
2169 index_op = tmp;
2170 }
2171 #endif
2172
2173 LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2174 __ move(value.result(), addr);
2175 }
2176
2177
2178 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2179 BasicType type = x->basic_type();
2180 LIRItem src(x->object(), this);
2181 LIRItem off(x->offset(), this);
2182
2183 off.load_item();
2184 src.load_item();
2185
2186 LIR_Opr value = rlock_result(x, x->basic_type());
2187
2188 get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2189
2190 #if INCLUDE_ALL_GCS
2191 // We might be reading the value of the referent field of a
2192 // Reference object in order to attach it back to the live
2193 // object graph. If G1 is enabled then we need to record
2194 // the value that is being returned in an SATB log buffer.
2195 //
2196 // We need to generate code similar to the following...
2197 //
2198 // if (offset == java_lang_ref_Reference::referent_offset) {
2199 // if (src != NULL) {
2200 // if (klass(src)->reference_type() != REF_NONE) {
2201 // pre_barrier(..., value, ...);
2202 // }
2203 // }
2204 // }
2205
2206 if (UseG1GC && type == T_OBJECT) {
2207 bool gen_pre_barrier = true; // Assume we need to generate pre_barrier.
2208 bool gen_offset_check = true; // Assume we need to generate the offset guard.
2209 bool gen_source_check = true; // Assume we need to check the src object for null.
2210 bool gen_type_check = true; // Assume we need to check the reference_type.
2211
2212 if (off.is_constant()) {
2213 jlong off_con = (off.type()->is_int() ?
2214 (jlong) off.get_jint_constant() :
2215 off.get_jlong_constant());
2216
2217
2218 if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2219 // The constant offset is something other than referent_offset.
2220 // We can skip generating/checking the remaining guards and
2221 // skip generation of the code stub.
2222 gen_pre_barrier = false;
2223 } else {
2224 // The constant offset is the same as referent_offset -
2225 // we do not need to generate a runtime offset check.
2226 gen_offset_check = false;
2227 }
2228 }
2229
2230 // We don't need to generate stub if the source object is an array
2231 if (gen_pre_barrier && src.type()->is_array()) {
2232 gen_pre_barrier = false;
2233 }
2234
2235 if (gen_pre_barrier) {
2236 // We still need to continue with the checks.
2237 if (src.is_constant()) {
2238 ciObject* src_con = src.get_jobject_constant();
2239 guarantee(src_con != NULL, "no source constant");
2240
2241 if (src_con->is_null_object()) {
2242 // The constant src object is null - We can skip
2243 // generating the code stub.
2244 gen_pre_barrier = false;
2245 } else {
2246 // Non-null constant source object. We still have to generate
2247 // the slow stub - but we don't need to generate the runtime
2248 // null object check.
2249 gen_source_check = false;
2250 }
2251 }
2252 }
2253 if (gen_pre_barrier && !PatchALot) {
2254 // Can the klass of object be statically determined to be
2255 // a sub-class of Reference?
2256 ciType* type = src.value()->declared_type();
2257 if ((type != NULL) && type->is_loaded()) {
2258 if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2259 gen_type_check = false;
2260 } else if (type->is_klass() &&
2261 !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2262 // Not Reference and not Object klass.
2263 gen_pre_barrier = false;
2264 }
2265 }
2266 }
2267
2268 if (gen_pre_barrier) {
2269 LabelObj* Lcont = new LabelObj();
2270
2271 // We can have generate one runtime check here. Let's start with
2272 // the offset check.
2273 if (gen_offset_check) {
2274 // if (offset != referent_offset) -> continue
2275 // If offset is an int then we can do the comparison with the
2276 // referent_offset constant; otherwise we need to move
2277 // referent_offset into a temporary register and generate
2278 // a reg-reg compare.
2279
2280 LIR_Opr referent_off;
2281
2282 if (off.type()->is_int()) {
2283 referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2284 } else {
2285 assert(off.type()->is_long(), "what else?");
2286 referent_off = new_register(T_LONG);
2287 __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2288 }
2289 __ cmp(lir_cond_notEqual, off.result(), referent_off);
2290 __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2291 }
2292 if (gen_source_check) {
2293 // offset is a const and equals referent offset
2294 // if (source == null) -> continue
2295 __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2296 __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2297 }
2298 LIR_Opr src_klass = new_register(T_OBJECT);
2299 if (gen_type_check) {
2300 // We have determined that offset == referent_offset && src != null.
2301 // if (src->_klass->_reference_type == REF_NONE) -> continue
2302 __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2303 LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2304 LIR_Opr reference_type = new_register(T_INT);
2305 __ move(reference_type_addr, reference_type);
2306 __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2307 __ branch(lir_cond_equal, T_INT, Lcont->label());
2308 }
2309 {
2310 // We have determined that src->_klass->_reference_type != REF_NONE
2311 // so register the value in the referent field with the pre-barrier.
2312 pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2313 value /* pre_val */,
2314 false /* do_load */,
2315 false /* patch */,
2316 NULL /* info */);
2317 }
2318 __ branch_destination(Lcont->label());
2319 }
2320 }
2321 #endif // INCLUDE_ALL_GCS
2322
2323 if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2324 }
2325
2326
2327 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2328 BasicType type = x->basic_type();
2329 LIRItem src(x->object(), this);
2330 LIRItem off(x->offset(), this);
2331 LIRItem data(x->value(), this);
2332
2333 src.load_item();
2334 if (type == T_BOOLEAN || type == T_BYTE) {
2335 data.load_byte_item();
2336 } else {
2337 data.load_item();
2338 }
2339 off.load_item();
2340
2341 set_no_result(x);
2342
2343 if (x->is_volatile() && os::is_MP()) __ membar_release();
2344 put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2345 if (x->is_volatile() && os::is_MP()) __ membar();
2346 }
2347
2348
2349 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2350 LIRItem src(x->object(), this);
2351 LIRItem off(x->offset(), this);
2352
2353 src.load_item();
2354 if (off.is_constant() && can_inline_as_constant(x->offset())) {
2355 // let it be a constant
2356 off.dont_load_item();
2357 } else {
2358 off.load_item();
2359 }
2360
2361 set_no_result(x);
2362
2363 LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2364 __ prefetch(addr, is_store);
2365 }
2366
2367
2368 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2369 do_UnsafePrefetch(x, false);
2370 }
2371
2372
2373 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2374 do_UnsafePrefetch(x, true);
2375 }
2376
2377
2378 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2379 int lng = x->length();
2380
2381 for (int i = 0; i < lng; i++) {
2382 SwitchRange* one_range = x->at(i);
2383 int low_key = one_range->low_key();
2384 int high_key = one_range->high_key();
2385 BlockBegin* dest = one_range->sux();
2386 if (low_key == high_key) {
2387 __ cmp(lir_cond_equal, value, low_key);
2388 __ branch(lir_cond_equal, T_INT, dest);
2389 } else if (high_key - low_key == 1) {
2390 __ cmp(lir_cond_equal, value, low_key);
2391 __ branch(lir_cond_equal, T_INT, dest);
2392 __ cmp(lir_cond_equal, value, high_key);
2393 __ branch(lir_cond_equal, T_INT, dest);
2394 } else {
2395 LabelObj* L = new LabelObj();
2396 __ cmp(lir_cond_less, value, low_key);
2397 __ branch(lir_cond_less, T_INT, L->label());
2398 __ cmp(lir_cond_lessEqual, value, high_key);
2399 __ branch(lir_cond_lessEqual, T_INT, dest);
2400 __ branch_destination(L->label());
2401 }
2402 }
2403 __ jump(default_sux);
2404 }
2405
2406
2407 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2408 SwitchRangeList* res = new SwitchRangeList();
2409 int len = x->length();
2410 if (len > 0) {
2411 BlockBegin* sux = x->sux_at(0);
2412 int key = x->lo_key();
2413 BlockBegin* default_sux = x->default_sux();
2414 SwitchRange* range = new SwitchRange(key, sux);
2415 for (int i = 0; i < len; i++, key++) {
2416 BlockBegin* new_sux = x->sux_at(i);
2417 if (sux == new_sux) {
2418 // still in same range
2419 range->set_high_key(key);
2420 } else {
2421 // skip tests which explicitly dispatch to the default
2422 if (sux != default_sux) {
2423 res->append(range);
2424 }
2425 range = new SwitchRange(key, new_sux);
2426 }
2427 sux = new_sux;
2428 }
2429 if (res->length() == 0 || res->last() != range) res->append(range);
2430 }
2431 return res;
2432 }
2433
2434
2435 // we expect the keys to be sorted by increasing value
2436 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2437 SwitchRangeList* res = new SwitchRangeList();
2438 int len = x->length();
2439 if (len > 0) {
2440 BlockBegin* default_sux = x->default_sux();
2441 int key = x->key_at(0);
2442 BlockBegin* sux = x->sux_at(0);
2443 SwitchRange* range = new SwitchRange(key, sux);
2444 for (int i = 1; i < len; i++) {
2445 int new_key = x->key_at(i);
2446 BlockBegin* new_sux = x->sux_at(i);
2447 if (key+1 == new_key && sux == new_sux) {
2448 // still in same range
2449 range->set_high_key(new_key);
2450 } else {
2451 // skip tests which explicitly dispatch to the default
2452 if (range->sux() != default_sux) {
2453 res->append(range);
2454 }
2455 range = new SwitchRange(new_key, new_sux);
2456 }
2457 key = new_key;
2458 sux = new_sux;
2459 }
2460 if (res->length() == 0 || res->last() != range) res->append(range);
2461 }
2462 return res;
2463 }
2464
2465
2466 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2467 LIRItem tag(x->tag(), this);
2468 tag.load_item();
2469 set_no_result(x);
2470
2471 if (x->is_safepoint()) {
2472 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2473 }
2474
2475 // move values into phi locations
2476 move_to_phi(x->state());
2477
2478 int lo_key = x->lo_key();
2479 int hi_key = x->hi_key();
2480 int len = x->length();
2481 LIR_Opr value = tag.result();
2482 if (UseTableRanges) {
2483 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2484 } else {
2485 for (int i = 0; i < len; i++) {
2486 __ cmp(lir_cond_equal, value, i + lo_key);
2487 __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2488 }
2489 __ jump(x->default_sux());
2490 }
2491 }
2492
2493
2494 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2495 LIRItem tag(x->tag(), this);
2496 tag.load_item();
2497 set_no_result(x);
2498
2499 if (x->is_safepoint()) {
2500 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2501 }
2502
2503 // move values into phi locations
2504 move_to_phi(x->state());
2505
2506 LIR_Opr value = tag.result();
2507 if (UseTableRanges) {
2508 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2509 } else {
2510 int len = x->length();
2511 for (int i = 0; i < len; i++) {
2512 __ cmp(lir_cond_equal, value, x->key_at(i));
2513 __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2514 }
2515 __ jump(x->default_sux());
2516 }
2517 }
2518
2519
2520 void LIRGenerator::do_Goto(Goto* x) {
2521 set_no_result(x);
2522
2523 if (block()->next()->as_OsrEntry()) {
2524 // need to free up storage used for OSR entry point
2525 LIR_Opr osrBuffer = block()->next()->operand();
2526 BasicTypeList signature;
2527 signature.append(T_INT);
2528 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2529 __ move(osrBuffer, cc->args()->at(0));
2530 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2531 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2532 }
2533
2534 if (x->is_safepoint()) {
2535 ValueStack* state = x->state_before() ? x->state_before() : x->state();
2536
2537 // increment backedge counter if needed
2538 CodeEmitInfo* info = state_for(x, state);
2539 increment_backedge_counter(info, x->profiled_bci());
2540 CodeEmitInfo* safepoint_info = state_for(x, state);
2541 __ safepoint(safepoint_poll_register(), safepoint_info);
2542 }
2543
2544 // Gotos can be folded Ifs, handle this case.
2545 if (x->should_profile()) {
2546 ciMethod* method = x->profiled_method();
2547 assert(method != NULL, "method should be set if branch is profiled");
2548 ciMethodData* md = method->method_data_or_null();
2549 assert(md != NULL, "Sanity");
2550 ciProfileData* data = md->bci_to_data(x->profiled_bci());
2551 assert(data != NULL, "must have profiling data");
2552 int offset;
2553 if (x->direction() == Goto::taken) {
2554 assert(data->is_BranchData(), "need BranchData for two-way branches");
2555 offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2556 } else if (x->direction() == Goto::not_taken) {
2557 assert(data->is_BranchData(), "need BranchData for two-way branches");
2558 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2559 } else {
2560 assert(data->is_JumpData(), "need JumpData for branches");
2561 offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2562 }
2563 LIR_Opr md_reg = new_register(T_METADATA);
2564 __ metadata2reg(md->constant_encoding(), md_reg);
2565
2566 increment_counter(new LIR_Address(md_reg, offset,
2567 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2568 }
2569
2570 // emit phi-instruction move after safepoint since this simplifies
2571 // describing the state as the safepoint.
2572 move_to_phi(x->state());
2573
2574 __ jump(x->default_sux());
2575 }
2576
2577 /**
2578 * Emit profiling code if needed for arguments, parameters, return value types
2579 *
2580 * @param md MDO the code will update at runtime
2581 * @param md_base_offset common offset in the MDO for this profile and subsequent ones
2582 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile
2583 * @param profiled_k current profile
2584 * @param obj IR node for the object to be profiled
2585 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset).
2586 * Set once we find an update to make and use for next ones.
2587 * @param not_null true if we know obj cannot be null
2588 * @param signature_at_call_k signature at call for obj
2589 * @param callee_signature_k signature of callee for obj
2590 * at call and callee signatures differ at method handle call
2591 * @return the only klass we know will ever be seen at this profile point
2592 */
2593 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2594 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2595 ciKlass* callee_signature_k) {
2596 ciKlass* result = NULL;
2597 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2598 bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2599 // known not to be null or null bit already set and already set to
2600 // unknown: nothing we can do to improve profiling
2601 if (!do_null && !do_update) {
2602 return result;
2603 }
2604
2605 ciKlass* exact_klass = NULL;
2606 Compilation* comp = Compilation::current();
2607 if (do_update) {
2608 // try to find exact type, using CHA if possible, so that loading
2609 // the klass from the object can be avoided
2610 ciType* type = obj->exact_type();
2611 if (type == NULL) {
2612 type = obj->declared_type();
2613 type = comp->cha_exact_type(type);
2614 }
2615 assert(type == NULL || type->is_klass(), "type should be class");
2616 exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2617
2618 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2619 }
2620
2621 if (!do_null && !do_update) {
2622 return result;
2623 }
2624
2625 ciKlass* exact_signature_k = NULL;
2626 if (do_update) {
2627 // Is the type from the signature exact (the only one possible)?
2628 exact_signature_k = signature_at_call_k->exact_klass();
2629 if (exact_signature_k == NULL) {
2630 exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2631 } else {
2632 result = exact_signature_k;
2633 // Known statically. No need to emit any code: prevent
2634 // LIR_Assembler::emit_profile_type() from emitting useless code
2635 profiled_k = ciTypeEntries::with_status(result, profiled_k);
2636 }
2637 // exact_klass and exact_signature_k can be both non NULL but
2638 // different if exact_klass is loaded after the ciObject for
2639 // exact_signature_k is created.
2640 if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2641 // sometimes the type of the signature is better than the best type
2642 // the compiler has
2643 exact_klass = exact_signature_k;
2644 }
2645 if (callee_signature_k != NULL &&
2646 callee_signature_k != signature_at_call_k) {
2647 ciKlass* improved_klass = callee_signature_k->exact_klass();
2648 if (improved_klass == NULL) {
2649 improved_klass = comp->cha_exact_type(callee_signature_k);
2650 }
2651 if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2652 exact_klass = exact_signature_k;
2653 }
2654 }
2655 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2656 }
2657
2658 if (!do_null && !do_update) {
2659 return result;
2660 }
2661
2662 if (mdp == LIR_OprFact::illegalOpr) {
2663 mdp = new_register(T_METADATA);
2664 __ metadata2reg(md->constant_encoding(), mdp);
2665 if (md_base_offset != 0) {
2666 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2667 mdp = new_pointer_register();
2668 __ leal(LIR_OprFact::address(base_type_address), mdp);
2669 }
2670 }
2671 LIRItem value(obj, this);
2672 value.load_item();
2673 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2674 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2675 return result;
2676 }
2677
2678 // profile parameters on entry to the root of the compilation
2679 void LIRGenerator::profile_parameters(Base* x) {
2680 if (compilation()->profile_parameters()) {
2681 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2682 ciMethodData* md = scope()->method()->method_data_or_null();
2683 assert(md != NULL, "Sanity");
2684
2685 if (md->parameters_type_data() != NULL) {
2686 ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2687 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
2688 LIR_Opr mdp = LIR_OprFact::illegalOpr;
2689 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2690 LIR_Opr src = args->at(i);
2691 assert(!src->is_illegal(), "check");
2692 BasicType t = src->type();
2693 if (t == T_OBJECT || t == T_ARRAY) {
2694 intptr_t profiled_k = parameters->type(j);
2695 Local* local = x->state()->local_at(java_index)->as_Local();
2696 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2697 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2698 profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2699 // If the profile is known statically set it once for all and do not emit any code
2700 if (exact != NULL) {
2701 md->set_parameter_type(j, exact);
2702 }
2703 j++;
2704 }
2705 java_index += type2size[t];
2706 }
2707 }
2708 }
2709 }
2710
2711 void LIRGenerator::do_Base(Base* x) {
2712 __ std_entry(LIR_OprFact::illegalOpr);
2713 // Emit moves from physical registers / stack slots to virtual registers
2714 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2715 IRScope* irScope = compilation()->hir()->top_scope();
2716 int java_index = 0;
2717 for (int i = 0; i < args->length(); i++) {
2718 LIR_Opr src = args->at(i);
2719 assert(!src->is_illegal(), "check");
2720 BasicType t = src->type();
2721
2722 // Types which are smaller than int are passed as int, so
2723 // correct the type which passed.
2724 switch (t) {
2725 case T_BYTE:
2726 case T_BOOLEAN:
2727 case T_SHORT:
2728 case T_CHAR:
2729 t = T_INT;
2730 break;
2731 }
2732
2733 LIR_Opr dest = new_register(t);
2734 __ move(src, dest);
2735
2736 // Assign new location to Local instruction for this local
2737 Local* local = x->state()->local_at(java_index)->as_Local();
2738 assert(local != NULL, "Locals for incoming arguments must have been created");
2739 #ifndef __SOFTFP__
2740 // The java calling convention passes double as long and float as int.
2741 assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2742 #endif // __SOFTFP__
2743 local->set_operand(dest);
2744 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2745 java_index += type2size[t];
2746 }
2747
2748 if (compilation()->env()->dtrace_method_probes()) {
2749 BasicTypeList signature;
2750 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
2751 signature.append(T_METADATA); // Method*
2752 LIR_OprList* args = new LIR_OprList();
2753 args->append(getThreadPointer());
2754 LIR_Opr meth = new_register(T_METADATA);
2755 __ metadata2reg(method()->constant_encoding(), meth);
2756 args->append(meth);
2757 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2758 }
2759
2760 if (method()->is_synchronized()) {
2761 LIR_Opr obj;
2762 if (method()->is_static()) {
2763 obj = new_register(T_OBJECT);
2764 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2765 } else {
2766 Local* receiver = x->state()->local_at(0)->as_Local();
2767 assert(receiver != NULL, "must already exist");
2768 obj = receiver->operand();
2769 }
2770 assert(obj->is_valid(), "must be valid");
2771
2772 if (method()->is_synchronized() && GenerateSynchronizationCode) {
2773 LIR_Opr lock = new_register(T_INT);
2774 __ load_stack_address_monitor(0, lock);
2775
2776 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2777 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2778
2779 // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2780 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2781 }
2782 }
2783
2784 // increment invocation counters if needed
2785 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2786 profile_parameters(x);
2787 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2788 increment_invocation_counter(info);
2789 }
2790
2791 // all blocks with a successor must end with an unconditional jump
2792 // to the successor even if they are consecutive
2793 __ jump(x->default_sux());
2794 }
2795
2796
2797 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2798 // construct our frame and model the production of incoming pointer
2799 // to the OSR buffer.
2800 __ osr_entry(LIR_Assembler::osrBufferPointer());
2801 LIR_Opr result = rlock_result(x);
2802 __ move(LIR_Assembler::osrBufferPointer(), result);
2803 }
2804
2805
2806 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2807 assert(args->length() == arg_list->length(),
2808 err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
2809 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2810 LIRItem* param = args->at(i);
2811 LIR_Opr loc = arg_list->at(i);
2812 if (loc->is_register()) {
2813 param->load_item_force(loc);
2814 } else {
2815 LIR_Address* addr = loc->as_address_ptr();
2816 param->load_for_store(addr->type());
2817 if (addr->type() == T_OBJECT) {
2818 __ move_wide(param->result(), addr);
2819 } else
2820 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2821 __ unaligned_move(param->result(), addr);
2822 } else {
2823 __ move(param->result(), addr);
2824 }
2825 }
2826 }
2827
2828 if (x->has_receiver()) {
2829 LIRItem* receiver = args->at(0);
2830 LIR_Opr loc = arg_list->at(0);
2831 if (loc->is_register()) {
2832 receiver->load_item_force(loc);
2833 } else {
2834 assert(loc->is_address(), "just checking");
2835 receiver->load_for_store(T_OBJECT);
2836 __ move_wide(receiver->result(), loc->as_address_ptr());
2837 }
2838 }
2839 }
2840
2841
2842 // Visits all arguments, returns appropriate items without loading them
2843 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2844 LIRItemList* argument_items = new LIRItemList();
2845 if (x->has_receiver()) {
2846 LIRItem* receiver = new LIRItem(x->receiver(), this);
2847 argument_items->append(receiver);
2848 }
2849 for (int i = 0; i < x->number_of_arguments(); i++) {
2850 LIRItem* param = new LIRItem(x->argument_at(i), this);
2851 argument_items->append(param);
2852 }
2853 return argument_items;
2854 }
2855
2856
2857 // The invoke with receiver has following phases:
2858 // a) traverse and load/lock receiver;
2859 // b) traverse all arguments -> item-array (invoke_visit_argument)
2860 // c) push receiver on stack
2861 // d) load each of the items and push on stack
2862 // e) unlock receiver
2863 // f) move receiver into receiver-register %o0
2864 // g) lock result registers and emit call operation
2865 //
2866 // Before issuing a call, we must spill-save all values on stack
2867 // that are in caller-save register. "spill-save" moves thos registers
2868 // either in a free callee-save register or spills them if no free
2869 // callee save register is available.
2870 //
2871 // The problem is where to invoke spill-save.
2872 // - if invoked between e) and f), we may lock callee save
2873 // register in "spill-save" that destroys the receiver register
2874 // before f) is executed
2875 // - if we rearange the f) to be earlier, by loading %o0, it
2876 // may destroy a value on the stack that is currently in %o0
2877 // and is waiting to be spilled
2878 // - if we keep the receiver locked while doing spill-save,
2879 // we cannot spill it as it is spill-locked
2880 //
2881 void LIRGenerator::do_Invoke(Invoke* x) {
2882 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2883
2884 LIR_OprList* arg_list = cc->args();
2885 LIRItemList* args = invoke_visit_arguments(x);
2886 LIR_Opr receiver = LIR_OprFact::illegalOpr;
2887
2888 // setup result register
2889 LIR_Opr result_register = LIR_OprFact::illegalOpr;
2890 if (x->type() != voidType) {
2891 result_register = result_register_for(x->type());
2892 }
2893
2894 CodeEmitInfo* info = state_for(x, x->state());
2895
2896 invoke_load_arguments(x, args, arg_list);
2897
2898 if (x->has_receiver()) {
2899 args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2900 receiver = args->at(0)->result();
2901 }
2902
2903 // emit invoke code
2904 bool optimized = x->target_is_loaded() && x->target_is_final();
2905 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2906
2907 // JSR 292
2908 // Preserve the SP over MethodHandle call sites.
2909 ciMethod* target = x->target();
2910 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2911 target->is_method_handle_intrinsic() ||
2912 target->is_compiled_lambda_form());
2913 if (is_method_handle_invoke) {
2914 info->set_is_method_handle_invoke(true);
2915 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2916 }
2917
2918 switch (x->code()) {
2919 case Bytecodes::_invokestatic:
2920 __ call_static(target, result_register,
2921 SharedRuntime::get_resolve_static_call_stub(),
2922 arg_list, info);
2923 break;
2924 case Bytecodes::_invokespecial:
2925 case Bytecodes::_invokevirtual:
2926 case Bytecodes::_invokeinterface:
2927 // for final target we still produce an inline cache, in order
2928 // to be able to call mixed mode
2929 if (x->code() == Bytecodes::_invokespecial || optimized) {
2930 __ call_opt_virtual(target, receiver, result_register,
2931 SharedRuntime::get_resolve_opt_virtual_call_stub(),
2932 arg_list, info);
2933 } else if (x->vtable_index() < 0) {
2934 __ call_icvirtual(target, receiver, result_register,
2935 SharedRuntime::get_resolve_virtual_call_stub(),
2936 arg_list, info);
2937 } else {
2938 int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2939 int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2940 __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2941 }
2942 break;
2943 case Bytecodes::_invokedynamic: {
2944 __ call_dynamic(target, receiver, result_register,
2945 SharedRuntime::get_resolve_static_call_stub(),
2946 arg_list, info);
2947 break;
2948 }
2949 default:
2950 fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
2951 break;
2952 }
2953
2954 // JSR 292
2955 // Restore the SP after MethodHandle call sites.
2956 if (is_method_handle_invoke) {
2957 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2958 }
2959
2960 if (x->type()->is_float() || x->type()->is_double()) {
2961 // Force rounding of results from non-strictfp when in strictfp
2962 // scope (or when we don't know the strictness of the callee, to
2963 // be safe.)
2964 if (method()->is_strict()) {
2965 if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2966 result_register = round_item(result_register);
2967 }
2968 }
2969 }
2970
2971 if (result_register->is_valid()) {
2972 LIR_Opr result = rlock_result(x);
2973 __ move(result_register, result);
2974 }
2975 }
2976
2977
2978 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2979 assert(x->number_of_arguments() == 1, "wrong type");
2980 LIRItem value (x->argument_at(0), this);
2981 LIR_Opr reg = rlock_result(x);
2982 value.load_item();
2983 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2984 __ move(tmp, reg);
2985 }
2986
2987
2988
2989 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2990 void LIRGenerator::do_IfOp(IfOp* x) {
2991 #ifdef ASSERT
2992 {
2993 ValueTag xtag = x->x()->type()->tag();
2994 ValueTag ttag = x->tval()->type()->tag();
2995 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2996 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2997 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2998 }
2999 #endif
3000
3001 LIRItem left(x->x(), this);
3002 LIRItem right(x->y(), this);
3003 left.load_item();
3004 if (can_inline_as_constant(right.value())) {
3005 right.dont_load_item();
3006 } else {
3007 right.load_item();
3008 }
3009
3010 LIRItem t_val(x->tval(), this);
3011 LIRItem f_val(x->fval(), this);
3012 t_val.dont_load_item();
3013 f_val.dont_load_item();
3014 LIR_Opr reg = rlock_result(x);
3015
3016 __ cmp(lir_cond(x->cond()), left.result(), right.result());
3017 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3018 }
3019
3020 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
3021 assert(x->number_of_arguments() == expected_arguments, "wrong type");
3022 LIR_Opr reg = result_register_for(x->type());
3023 __ call_runtime_leaf(routine, getThreadTemp(),
3024 reg, new LIR_OprList());
3025 LIR_Opr result = rlock_result(x);
3026 __ move(reg, result);
3027 }
3028
3029 #ifdef TRACE_HAVE_INTRINSICS
3030 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
3031 LIR_Opr thread = getThreadPointer();
3032 LIR_Opr osthread = new_pointer_register();
3033 __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
3034 size_t thread_id_size = OSThread::thread_id_size();
3035 if (thread_id_size == (size_t) BytesPerLong) {
3036 LIR_Opr id = new_register(T_LONG);
3037 __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
3038 __ convert(Bytecodes::_l2i, id, rlock_result(x));
3039 } else if (thread_id_size == (size_t) BytesPerInt) {
3040 __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
3041 } else {
3042 ShouldNotReachHere();
3043 }
3044 }
3045
3046 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3047 CodeEmitInfo* info = state_for(x);
3048 CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3049 BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
3050 assert(info != NULL, "must have info");
3051 LIRItem arg(x->argument_at(1), this);
3052 arg.load_item();
3053 LIR_Opr klass = new_pointer_register();
3054 __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
3055 LIR_Opr id = new_register(T_LONG);
3056 ByteSize offset = TRACE_ID_OFFSET;
3057 LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3058 __ move(trace_id_addr, id);
3059 __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3060 __ store(id, trace_id_addr);
3061 __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
3062 __ move(id, rlock_result(x));
3063 }
3064 #endif
3065
3066 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3067 switch (x->id()) {
3068 case vmIntrinsics::_intBitsToFloat :
3069 case vmIntrinsics::_doubleToRawLongBits :
3070 case vmIntrinsics::_longBitsToDouble :
3071 case vmIntrinsics::_floatToRawIntBits : {
3072 do_FPIntrinsics(x);
3073 break;
3074 }
3075
3076 #ifdef TRACE_HAVE_INTRINSICS
3077 case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
3078 case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
3079 case vmIntrinsics::_counterTime:
3080 do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
3081 break;
3082 #endif
3083
3084 case vmIntrinsics::_currentTimeMillis:
3085 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
3086 break;
3087
3088 case vmIntrinsics::_nanoTime:
3089 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
3090 break;
3091
3092 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break;
3093 case vmIntrinsics::_isInstance: do_isInstance(x); break;
3094 case vmIntrinsics::_getClass: do_getClass(x); break;
3095 case vmIntrinsics::_currentThread: do_currentThread(x); break;
3096
3097 case vmIntrinsics::_dlog: // fall through
3098 case vmIntrinsics::_dlog10: // fall through
3099 case vmIntrinsics::_dabs: // fall through
3100 case vmIntrinsics::_dsqrt: // fall through
3101 case vmIntrinsics::_dtan: // fall through
3102 case vmIntrinsics::_dsin : // fall through
3103 case vmIntrinsics::_dcos : // fall through
3104 case vmIntrinsics::_dexp : // fall through
3105 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break;
3106 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break;
3107
3108 // java.nio.Buffer.checkIndex
3109 case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break;
3110
3111 case vmIntrinsics::_compareAndSwapObject:
3112 do_CompareAndSwap(x, objectType);
3113 break;
3114 case vmIntrinsics::_compareAndSwapInt:
3115 do_CompareAndSwap(x, intType);
3116 break;
3117 case vmIntrinsics::_compareAndSwapLong:
3118 do_CompareAndSwap(x, longType);
3119 break;
3120
3121 case vmIntrinsics::_loadFence :
3122 if (os::is_MP()) __ membar_acquire();
3123 break;
3124 case vmIntrinsics::_storeFence:
3125 if (os::is_MP()) __ membar_release();
3126 break;
3127 case vmIntrinsics::_fullFence :
3128 if (os::is_MP()) __ membar();
3129 break;
3130
3131 case vmIntrinsics::_Reference_get:
3132 do_Reference_get(x);
3133 break;
3134
3135 case vmIntrinsics::_updateCRC32:
3136 case vmIntrinsics::_updateBytesCRC32:
3137 case vmIntrinsics::_updateByteBufferCRC32:
3138 do_update_CRC32(x);
3139 break;
3140
3141 default: ShouldNotReachHere(); break;
3142 }
3143 }
3144
3145 void LIRGenerator::profile_arguments(ProfileCall* x) {
3146 if (compilation()->profile_arguments()) {
3147 int bci = x->bci_of_invoke();
3148 ciMethodData* md = x->method()->method_data_or_null();
3149 ciProfileData* data = md->bci_to_data(bci);
3150 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3151 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3152 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3153 int base_offset = md->byte_offset_of_slot(data, extra);
3154 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3155 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3156
3157 Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3158 int start = 0;
3159 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3160 if (x->inlined() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3161 // first argument is not profiled at call (method handle invoke)
3162 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3163 start = 1;
3164 }
3165 ciSignature* callee_signature = x->callee()->signature();
3166 // method handle call to virtual method
3167 bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3168 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3169
3170 bool ignored_will_link;
3171 ciSignature* signature_at_call = NULL;
3172 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3173 ciSignatureStream signature_at_call_stream(signature_at_call);
3174
3175 // if called through method handle invoke, some arguments may have been popped
3176 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3177 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3178 ciKlass* exact = profile_type(md, base_offset, off,
3179 args->type(i), x->profiled_arg_at(i+start), mdp,
3180 !x->arg_needs_null_check(i+start),
3181 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3182 if (exact != NULL) {
3183 md->set_argument_type(bci, i, exact);
3184 }
3185 }
3186 } else {
3187 #ifdef ASSERT
3188 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3189 int n = x->nb_profiled_args();
3190 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3191 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3192 "only at JSR292 bytecodes");
3193 #endif
3194 }
3195 }
3196 }
3197
3198 // profile parameters on entry to an inlined method
3199 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3200 if (compilation()->profile_parameters() && x->inlined()) {
3201 ciMethodData* md = x->callee()->method_data_or_null();
3202 if (md != NULL) {
3203 ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3204 if (parameters_type_data != NULL) {
3205 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
3206 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3207 bool has_receiver = !x->callee()->is_static();
3208 ciSignature* sig = x->callee()->signature();
3209 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3210 int i = 0; // to iterate on the Instructions
3211 Value arg = x->recv();
3212 bool not_null = false;
3213 int bci = x->bci_of_invoke();
3214 Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3215 // The first parameter is the receiver so that's what we start
3216 // with if it exists. One exception is method handle call to
3217 // virtual method: the receiver is in the args list
3218 if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3219 i = 1;
3220 arg = x->profiled_arg_at(0);
3221 not_null = !x->arg_needs_null_check(0);
3222 }
3223 int k = 0; // to iterate on the profile data
3224 for (;;) {
3225 intptr_t profiled_k = parameters->type(k);
3226 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3227 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3228 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3229 // If the profile is known statically set it once for all and do not emit any code
3230 if (exact != NULL) {
3231 md->set_parameter_type(k, exact);
3232 }
3233 k++;
3234 if (k >= parameters_type_data->number_of_parameters()) {
3235 #ifdef ASSERT
3236 int extra = 0;
3237 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3238 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3239 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3240 extra += 1;
3241 }
3242 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3243 #endif
3244 break;
3245 }
3246 arg = x->profiled_arg_at(i);
3247 not_null = !x->arg_needs_null_check(i);
3248 i++;
3249 }
3250 }
3251 }
3252 }
3253 }
3254
3255 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3256 // Need recv in a temporary register so it interferes with the other temporaries
3257 LIR_Opr recv = LIR_OprFact::illegalOpr;
3258 LIR_Opr mdo = new_register(T_OBJECT);
3259 // tmp is used to hold the counters on SPARC
3260 LIR_Opr tmp = new_pointer_register();
3261
3262 if (x->nb_profiled_args() > 0) {
3263 profile_arguments(x);
3264 }
3265
3266 // profile parameters on inlined method entry including receiver
3267 if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3268 profile_parameters_at_call(x);
3269 }
3270
3271 if (x->recv() != NULL) {
3272 LIRItem value(x->recv(), this);
3273 value.load_item();
3274 recv = new_register(T_OBJECT);
3275 __ move(value.result(), recv);
3276 }
3277 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3278 }
3279
3280 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3281 int bci = x->bci_of_invoke();
3282 ciMethodData* md = x->method()->method_data_or_null();
3283 ciProfileData* data = md->bci_to_data(bci);
3284 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3285 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3286 LIR_Opr mdp = LIR_OprFact::illegalOpr;
3287
3288 bool ignored_will_link;
3289 ciSignature* signature_at_call = NULL;
3290 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3291
3292 // The offset within the MDO of the entry to update may be too large
3293 // to be used in load/store instructions on some platforms. So have
3294 // profile_type() compute the address of the profile in a register.
3295 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3296 ret->type(), x->ret(), mdp,
3297 !x->needs_null_check(),
3298 signature_at_call->return_type()->as_klass(),
3299 x->callee()->signature()->return_type()->as_klass());
3300 if (exact != NULL) {
3301 md->set_return_type(bci, exact);
3302 }
3303 }
3304
3305 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3306 // We can safely ignore accessors here, since c2 will inline them anyway,
3307 // accessors are also always mature.
3308 if (!x->inlinee()->is_accessor()) {
3309 CodeEmitInfo* info = state_for(x, x->state(), true);
3310 // Notify the runtime very infrequently only to take care of counter overflows
3311 increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
3312 }
3313 }
3314
3315 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3316 int freq_log;
3317 int level = compilation()->env()->comp_level();
3318 if (level == CompLevel_limited_profile) {
3319 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3320 } else if (level == CompLevel_full_profile) {
3321 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3322 } else {
3323 ShouldNotReachHere();
3324 }
3325 // Increment the appropriate invocation/backedge counter and notify the runtime.
3326 increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
3327 }
3328
3329 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3330 ciMethod *method, int frequency,
3331 int bci, bool backedge, bool notify) {
3332 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3333 int level = _compilation->env()->comp_level();
3334 assert(level > CompLevel_simple, "Shouldn't be here");
3335
3336 int offset = -1;
3337 LIR_Opr counter_holder;
3338 if (level == CompLevel_limited_profile) {
3339 MethodCounters* counters_adr = method->ensure_method_counters();
3340 if (counters_adr == NULL) {
3341 bailout("method counters allocation failed");
3342 return;
3343 }
3344 counter_holder = new_pointer_register();
3345 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3346 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3347 MethodCounters::invocation_counter_offset());
3348 } else if (level == CompLevel_full_profile) {
3349 counter_holder = new_register(T_METADATA);
3350 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3351 MethodData::invocation_counter_offset());
3352 ciMethodData* md = method->method_data_or_null();
3353 assert(md != NULL, "Sanity");
3354 __ metadata2reg(md->constant_encoding(), counter_holder);
3355 } else {
3356 ShouldNotReachHere();
3357 }
3358 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3359 LIR_Opr result = new_register(T_INT);
3360 __ load(counter, result);
3361 __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3362 __ store(result, counter);
3363 if (notify) {
3364 LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3365 LIR_Opr meth = new_register(T_METADATA);
3366 __ metadata2reg(method->constant_encoding(), meth);
3367 __ logical_and(result, mask, result);
3368 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3369 // The bci for info can point to cmp for if's we want the if bci
3370 CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3371 __ branch(lir_cond_equal, T_INT, overflow);
3372 __ branch_destination(overflow->continuation());
3373 }
3374 }
3375
3376 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3377 LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3378 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3379
3380 if (x->pass_thread()) {
3381 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
3382 args->append(getThreadPointer());
3383 }
3384
3385 for (int i = 0; i < x->number_of_arguments(); i++) {
3386 Value a = x->argument_at(i);
3387 LIRItem* item = new LIRItem(a, this);
3388 item->load_item();
3389 args->append(item->result());
3390 signature->append(as_BasicType(a->type()));
3391 }
3392
3393 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3394 if (x->type() == voidType) {
3395 set_no_result(x);
3396 } else {
3397 __ move(result, rlock_result(x));
3398 }
3399 }
3400
3401 #ifdef ASSERT
3402 void LIRGenerator::do_Assert(Assert *x) {
3403 ValueTag tag = x->x()->type()->tag();
3404 If::Condition cond = x->cond();
3405
3406 LIRItem xitem(x->x(), this);
3407 LIRItem yitem(x->y(), this);
3408 LIRItem* xin = &xitem;
3409 LIRItem* yin = &yitem;
3410
3411 assert(tag == intTag, "Only integer assertions are valid!");
3412
3413 xin->load_item();
3414 yin->dont_load_item();
3415
3416 set_no_result(x);
3417
3418 LIR_Opr left = xin->result();
3419 LIR_Opr right = yin->result();
3420
3421 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3422 }
3423 #endif
3424
3425 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3426
3427
3428 Instruction *a = x->x();
3429 Instruction *b = x->y();
3430 if (!a || StressRangeCheckElimination) {
3431 assert(!b || StressRangeCheckElimination, "B must also be null");
3432
3433 CodeEmitInfo *info = state_for(x, x->state());
3434 CodeStub* stub = new PredicateFailedStub(info);
3435
3436 __ jump(stub);
3437 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3438 int a_int = a->type()->as_IntConstant()->value();
3439 int b_int = b->type()->as_IntConstant()->value();
3440
3441 bool ok = false;
3442
3443 switch(x->cond()) {
3444 case Instruction::eql: ok = (a_int == b_int); break;
3445 case Instruction::neq: ok = (a_int != b_int); break;
3446 case Instruction::lss: ok = (a_int < b_int); break;
3447 case Instruction::leq: ok = (a_int <= b_int); break;
3448 case Instruction::gtr: ok = (a_int > b_int); break;
3449 case Instruction::geq: ok = (a_int >= b_int); break;
3450 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3451 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3452 default: ShouldNotReachHere();
3453 }
3454
3455 if (ok) {
3456
3457 CodeEmitInfo *info = state_for(x, x->state());
3458 CodeStub* stub = new PredicateFailedStub(info);
3459
3460 __ jump(stub);
3461 }
3462 } else {
3463
3464 ValueTag tag = x->x()->type()->tag();
3465 If::Condition cond = x->cond();
3466 LIRItem xitem(x->x(), this);
3467 LIRItem yitem(x->y(), this);
3468 LIRItem* xin = &xitem;
3469 LIRItem* yin = &yitem;
3470
3471 assert(tag == intTag, "Only integer deoptimizations are valid!");
3472
3473 xin->load_item();
3474 yin->dont_load_item();
3475 set_no_result(x);
3476
3477 LIR_Opr left = xin->result();
3478 LIR_Opr right = yin->result();
3479
3480 CodeEmitInfo *info = state_for(x, x->state());
3481 CodeStub* stub = new PredicateFailedStub(info);
3482
3483 __ cmp(lir_cond(cond), left, right);
3484 __ branch(lir_cond(cond), right->type(), stub);
3485 }
3486 }
3487
3488
3489 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3490 LIRItemList args(1);
3491 LIRItem value(arg1, this);
3492 args.append(&value);
3493 BasicTypeList signature;
3494 signature.append(as_BasicType(arg1->type()));
3495
3496 return call_runtime(&signature, &args, entry, result_type, info);
3497 }
3498
3499
3500 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3501 LIRItemList args(2);
3502 LIRItem value1(arg1, this);
3503 LIRItem value2(arg2, this);
3504 args.append(&value1);
3505 args.append(&value2);
3506 BasicTypeList signature;
3507 signature.append(as_BasicType(arg1->type()));
3508 signature.append(as_BasicType(arg2->type()));
3509
3510 return call_runtime(&signature, &args, entry, result_type, info);
3511 }
3512
3513
3514 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3515 address entry, ValueType* result_type, CodeEmitInfo* info) {
3516 // get a result register
3517 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3518 LIR_Opr result = LIR_OprFact::illegalOpr;
3519 if (result_type->tag() != voidTag) {
3520 result = new_register(result_type);
3521 phys_reg = result_register_for(result_type);
3522 }
3523
3524 // move the arguments into the correct location
3525 CallingConvention* cc = frame_map()->c_calling_convention(signature);
3526 assert(cc->length() == args->length(), "argument mismatch");
3527 for (int i = 0; i < args->length(); i++) {
3528 LIR_Opr arg = args->at(i);
3529 LIR_Opr loc = cc->at(i);
3530 if (loc->is_register()) {
3531 __ move(arg, loc);
3532 } else {
3533 LIR_Address* addr = loc->as_address_ptr();
3534 // if (!can_store_as_constant(arg)) {
3535 // LIR_Opr tmp = new_register(arg->type());
3536 // __ move(arg, tmp);
3537 // arg = tmp;
3538 // }
3539 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3540 __ unaligned_move(arg, addr);
3541 } else {
3542 __ move(arg, addr);
3543 }
3544 }
3545 }
3546
3547 if (info) {
3548 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3549 } else {
3550 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3551 }
3552 if (result->is_valid()) {
3553 __ move(phys_reg, result);
3554 }
3555 return result;
3556 }
3557
3558
3559 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3560 address entry, ValueType* result_type, CodeEmitInfo* info) {
3561 // get a result register
3562 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3563 LIR_Opr result = LIR_OprFact::illegalOpr;
3564 if (result_type->tag() != voidTag) {
3565 result = new_register(result_type);
3566 phys_reg = result_register_for(result_type);
3567 }
3568
3569 // move the arguments into the correct location
3570 CallingConvention* cc = frame_map()->c_calling_convention(signature);
3571
3572 assert(cc->length() == args->length(), "argument mismatch");
3573 for (int i = 0; i < args->length(); i++) {
3574 LIRItem* arg = args->at(i);
3575 LIR_Opr loc = cc->at(i);
3576 if (loc->is_register()) {
3577 arg->load_item_force(loc);
3578 } else {
3579 LIR_Address* addr = loc->as_address_ptr();
3580 arg->load_for_store(addr->type());
3581 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3582 __ unaligned_move(arg->result(), addr);
3583 } else {
3584 __ move(arg->result(), addr);
3585 }
3586 }
3587 }
3588
3589 if (info) {
3590 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3591 } else {
3592 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3593 }
3594 if (result->is_valid()) {
3595 __ move(phys_reg, result);
3596 }
3597 return result;
3598 }
3599
3600 void LIRGenerator::do_MemBar(MemBar* x) {
3601 if (os::is_MP()) {
3602 LIR_Code code = x->code();
3603 switch(code) {
3604 case lir_membar_acquire : __ membar_acquire(); break;
3605 case lir_membar_release : __ membar_release(); break;
3606 case lir_membar : __ membar(); break;
3607 case lir_membar_loadload : __ membar_loadload(); break;
3608 case lir_membar_storestore: __ membar_storestore(); break;
3609 case lir_membar_loadstore : __ membar_loadstore(); break;
3610 case lir_membar_storeload : __ membar_storeload(); break;
3611 default : ShouldNotReachHere(); break;
3612 }
3613 }
3614 }

mercurial