src/share/vm/opto/ifg.cpp

Fri, 11 Jul 2014 19:51:36 -0400

author
drchase
date
Fri, 11 Jul 2014 19:51:36 -0400
changeset 7161
fc2c88ea11a9
parent 6680
78bbf4d43a14
child 6876
710a3c8b516e
child 7400
dc763d49b82d
permissions
-rw-r--r--

8036588: VerifyFieldClosure fails instanceKlass:3133
Summary: Changed deopt live-pointer test to use returns-object instead of live-and-returns-object
Reviewed-by: iveresov, kvn, jrose

duke@435 1 /*
drchase@6680 2 * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "compiler/oopMap.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
stefank@2314 28 #include "opto/addnode.hpp"
stefank@2314 29 #include "opto/block.hpp"
stefank@2314 30 #include "opto/callnode.hpp"
stefank@2314 31 #include "opto/cfgnode.hpp"
stefank@2314 32 #include "opto/chaitin.hpp"
stefank@2314 33 #include "opto/coalesce.hpp"
stefank@2314 34 #include "opto/connode.hpp"
stefank@2314 35 #include "opto/indexSet.hpp"
stefank@2314 36 #include "opto/machnode.hpp"
stefank@2314 37 #include "opto/memnode.hpp"
stefank@2314 38 #include "opto/opcodes.hpp"
duke@435 39
duke@435 40 PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) {
duke@435 41 }
duke@435 42
duke@435 43 void PhaseIFG::init( uint maxlrg ) {
duke@435 44 _maxlrg = maxlrg;
duke@435 45 _yanked = new (_arena) VectorSet(_arena);
duke@435 46 _is_square = false;
duke@435 47 // Make uninitialized adjacency lists
duke@435 48 _adjs = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*maxlrg);
duke@435 49 // Also make empty live range structures
duke@435 50 _lrgs = (LRG *)_arena->Amalloc( maxlrg * sizeof(LRG) );
duke@435 51 memset(_lrgs,0,sizeof(LRG)*maxlrg);
duke@435 52 // Init all to empty
duke@435 53 for( uint i = 0; i < maxlrg; i++ ) {
duke@435 54 _adjs[i].initialize(maxlrg);
duke@435 55 _lrgs[i].Set_All();
duke@435 56 }
duke@435 57 }
duke@435 58
duke@435 59 // Add edge between vertices a & b. These are sorted (triangular matrix),
duke@435 60 // then the smaller number is inserted in the larger numbered array.
duke@435 61 int PhaseIFG::add_edge( uint a, uint b ) {
duke@435 62 lrgs(a).invalid_degree();
duke@435 63 lrgs(b).invalid_degree();
duke@435 64 // Sort a and b, so that a is bigger
duke@435 65 assert( !_is_square, "only on triangular" );
duke@435 66 if( a < b ) { uint tmp = a; a = b; b = tmp; }
duke@435 67 return _adjs[a].insert( b );
duke@435 68 }
duke@435 69
duke@435 70 // Add an edge between 'a' and everything in the vector.
duke@435 71 void PhaseIFG::add_vector( uint a, IndexSet *vec ) {
duke@435 72 // IFG is triangular, so do the inserts where 'a' < 'b'.
duke@435 73 assert( !_is_square, "only on triangular" );
duke@435 74 IndexSet *adjs_a = &_adjs[a];
duke@435 75 if( !vec->count() ) return;
duke@435 76
duke@435 77 IndexSetIterator elements(vec);
duke@435 78 uint neighbor;
duke@435 79 while ((neighbor = elements.next()) != 0) {
duke@435 80 add_edge( a, neighbor );
duke@435 81 }
duke@435 82 }
duke@435 83
duke@435 84 // Is there an edge between a and b?
duke@435 85 int PhaseIFG::test_edge( uint a, uint b ) const {
duke@435 86 // Sort a and b, so that a is larger
duke@435 87 assert( !_is_square, "only on triangular" );
duke@435 88 if( a < b ) { uint tmp = a; a = b; b = tmp; }
duke@435 89 return _adjs[a].member(b);
duke@435 90 }
duke@435 91
duke@435 92 // Convert triangular matrix to square matrix
duke@435 93 void PhaseIFG::SquareUp() {
duke@435 94 assert( !_is_square, "only on triangular" );
duke@435 95
duke@435 96 // Simple transpose
duke@435 97 for( uint i = 0; i < _maxlrg; i++ ) {
duke@435 98 IndexSetIterator elements(&_adjs[i]);
duke@435 99 uint datum;
duke@435 100 while ((datum = elements.next()) != 0) {
duke@435 101 _adjs[datum].insert( i );
duke@435 102 }
duke@435 103 }
duke@435 104 _is_square = true;
duke@435 105 }
duke@435 106
duke@435 107 // Compute effective degree in bulk
duke@435 108 void PhaseIFG::Compute_Effective_Degree() {
duke@435 109 assert( _is_square, "only on square" );
duke@435 110
duke@435 111 for( uint i = 0; i < _maxlrg; i++ )
duke@435 112 lrgs(i).set_degree(effective_degree(i));
duke@435 113 }
duke@435 114
duke@435 115 int PhaseIFG::test_edge_sq( uint a, uint b ) const {
duke@435 116 assert( _is_square, "only on square" );
duke@435 117 // Swap, so that 'a' has the lesser count. Then binary search is on
duke@435 118 // the smaller of a's list and b's list.
duke@435 119 if( neighbor_cnt(a) > neighbor_cnt(b) ) { uint tmp = a; a = b; b = tmp; }
duke@435 120 //return _adjs[a].unordered_member(b);
duke@435 121 return _adjs[a].member(b);
duke@435 122 }
duke@435 123
duke@435 124 // Union edges of B into A
duke@435 125 void PhaseIFG::Union( uint a, uint b ) {
duke@435 126 assert( _is_square, "only on square" );
duke@435 127 IndexSet *A = &_adjs[a];
duke@435 128 IndexSetIterator b_elements(&_adjs[b]);
duke@435 129 uint datum;
duke@435 130 while ((datum = b_elements.next()) != 0) {
duke@435 131 if(A->insert(datum)) {
duke@435 132 _adjs[datum].insert(a);
duke@435 133 lrgs(a).invalid_degree();
duke@435 134 lrgs(datum).invalid_degree();
duke@435 135 }
duke@435 136 }
duke@435 137 }
duke@435 138
duke@435 139 // Yank a Node and all connected edges from the IFG. Return a
duke@435 140 // list of neighbors (edges) yanked.
duke@435 141 IndexSet *PhaseIFG::remove_node( uint a ) {
duke@435 142 assert( _is_square, "only on square" );
duke@435 143 assert( !_yanked->test(a), "" );
duke@435 144 _yanked->set(a);
duke@435 145
duke@435 146 // I remove the LRG from all neighbors.
duke@435 147 IndexSetIterator elements(&_adjs[a]);
duke@435 148 LRG &lrg_a = lrgs(a);
duke@435 149 uint datum;
duke@435 150 while ((datum = elements.next()) != 0) {
duke@435 151 _adjs[datum].remove(a);
duke@435 152 lrgs(datum).inc_degree( -lrg_a.compute_degree(lrgs(datum)) );
duke@435 153 }
duke@435 154 return neighbors(a);
duke@435 155 }
duke@435 156
duke@435 157 // Re-insert a yanked Node.
duke@435 158 void PhaseIFG::re_insert( uint a ) {
duke@435 159 assert( _is_square, "only on square" );
duke@435 160 assert( _yanked->test(a), "" );
duke@435 161 (*_yanked) >>= a;
duke@435 162
duke@435 163 IndexSetIterator elements(&_adjs[a]);
duke@435 164 uint datum;
duke@435 165 while ((datum = elements.next()) != 0) {
duke@435 166 _adjs[datum].insert(a);
duke@435 167 lrgs(datum).invalid_degree();
duke@435 168 }
duke@435 169 }
duke@435 170
duke@435 171 // Compute the degree between 2 live ranges. If both live ranges are
duke@435 172 // aligned-adjacent powers-of-2 then we use the MAX size. If either is
duke@435 173 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
duke@435 174 // MULTIPLY the sizes. Inspect Brigg's thesis on register pairs to see why
duke@435 175 // this is so.
duke@435 176 int LRG::compute_degree( LRG &l ) const {
duke@435 177 int tmp;
duke@435 178 int num_regs = _num_regs;
duke@435 179 int nregs = l.num_regs();
duke@435 180 tmp = (_fat_proj || l._fat_proj) // either is a fat-proj?
duke@435 181 ? (num_regs * nregs) // then use product
duke@435 182 : MAX2(num_regs,nregs); // else use max
duke@435 183 return tmp;
duke@435 184 }
duke@435 185
duke@435 186 // Compute effective degree for this live range. If both live ranges are
duke@435 187 // aligned-adjacent powers-of-2 then we use the MAX size. If either is
duke@435 188 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
duke@435 189 // MULTIPLY the sizes. Inspect Brigg's thesis on register pairs to see why
duke@435 190 // this is so.
duke@435 191 int PhaseIFG::effective_degree( uint lidx ) const {
duke@435 192 int eff = 0;
duke@435 193 int num_regs = lrgs(lidx).num_regs();
duke@435 194 int fat_proj = lrgs(lidx)._fat_proj;
duke@435 195 IndexSet *s = neighbors(lidx);
duke@435 196 IndexSetIterator elements(s);
duke@435 197 uint nidx;
duke@435 198 while((nidx = elements.next()) != 0) {
duke@435 199 LRG &lrgn = lrgs(nidx);
duke@435 200 int nregs = lrgn.num_regs();
duke@435 201 eff += (fat_proj || lrgn._fat_proj) // either is a fat-proj?
duke@435 202 ? (num_regs * nregs) // then use product
duke@435 203 : MAX2(num_regs,nregs); // else use max
duke@435 204 }
duke@435 205 return eff;
duke@435 206 }
duke@435 207
duke@435 208
duke@435 209 #ifndef PRODUCT
duke@435 210 void PhaseIFG::dump() const {
duke@435 211 tty->print_cr("-- Interference Graph --%s--",
duke@435 212 _is_square ? "square" : "triangular" );
duke@435 213 if( _is_square ) {
duke@435 214 for( uint i = 0; i < _maxlrg; i++ ) {
duke@435 215 tty->print( (*_yanked)[i] ? "XX " : " ");
duke@435 216 tty->print("L%d: { ",i);
duke@435 217 IndexSetIterator elements(&_adjs[i]);
duke@435 218 uint datum;
duke@435 219 while ((datum = elements.next()) != 0) {
duke@435 220 tty->print("L%d ", datum);
duke@435 221 }
duke@435 222 tty->print_cr("}");
duke@435 223
duke@435 224 }
duke@435 225 return;
duke@435 226 }
duke@435 227
duke@435 228 // Triangular
duke@435 229 for( uint i = 0; i < _maxlrg; i++ ) {
duke@435 230 uint j;
duke@435 231 tty->print( (*_yanked)[i] ? "XX " : " ");
duke@435 232 tty->print("L%d: { ",i);
duke@435 233 for( j = _maxlrg; j > i; j-- )
duke@435 234 if( test_edge(j - 1,i) ) {
duke@435 235 tty->print("L%d ",j - 1);
duke@435 236 }
duke@435 237 tty->print("| ");
duke@435 238 IndexSetIterator elements(&_adjs[i]);
duke@435 239 uint datum;
duke@435 240 while ((datum = elements.next()) != 0) {
duke@435 241 tty->print("L%d ", datum);
duke@435 242 }
duke@435 243 tty->print("}\n");
duke@435 244 }
duke@435 245 tty->print("\n");
duke@435 246 }
duke@435 247
duke@435 248 void PhaseIFG::stats() const {
duke@435 249 ResourceMark rm;
duke@435 250 int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2);
duke@435 251 memset( h_cnt, 0, sizeof(int)*_maxlrg*2 );
duke@435 252 uint i;
duke@435 253 for( i = 0; i < _maxlrg; i++ ) {
duke@435 254 h_cnt[neighbor_cnt(i)]++;
duke@435 255 }
duke@435 256 tty->print_cr("--Histogram of counts--");
duke@435 257 for( i = 0; i < _maxlrg*2; i++ )
duke@435 258 if( h_cnt[i] )
duke@435 259 tty->print("%d/%d ",i,h_cnt[i]);
drchase@6680 260 tty->cr();
duke@435 261 }
duke@435 262
duke@435 263 void PhaseIFG::verify( const PhaseChaitin *pc ) const {
duke@435 264 // IFG is square, sorted and no need for Find
duke@435 265 for( uint i = 0; i < _maxlrg; i++ ) {
duke@435 266 assert(!((*_yanked)[i]) || !neighbor_cnt(i), "Is removed completely" );
duke@435 267 IndexSet *set = &_adjs[i];
duke@435 268 IndexSetIterator elements(set);
duke@435 269 uint idx;
duke@435 270 uint last = 0;
duke@435 271 while ((idx = elements.next()) != 0) {
neliasso@4949 272 assert(idx != i, "Must have empty diagonal");
neliasso@4949 273 assert(pc->_lrg_map.find_const(idx) == idx, "Must not need Find");
neliasso@4949 274 assert(_adjs[idx].member(i), "IFG not square");
neliasso@4949 275 assert(!(*_yanked)[idx], "No yanked neighbors");
neliasso@4949 276 assert(last < idx, "not sorted increasing");
duke@435 277 last = idx;
duke@435 278 }
neliasso@4949 279 assert(!lrgs(i)._degree_valid || effective_degree(i) == lrgs(i).degree(), "degree is valid but wrong");
duke@435 280 }
duke@435 281 }
duke@435 282 #endif
duke@435 283
duke@435 284 // Interfere this register with everything currently live. Use the RegMasks
duke@435 285 // to trim the set of possible interferences. Return a count of register-only
twisti@1040 286 // interferences as an estimate of register pressure.
duke@435 287 void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) {
duke@435 288 uint retval = 0;
duke@435 289 // Interfere with everything live.
duke@435 290 const RegMask &rm = lrgs(r).mask();
duke@435 291 // Check for interference by checking overlap of regmasks.
duke@435 292 // Only interfere if acceptable register masks overlap.
duke@435 293 IndexSetIterator elements(liveout);
duke@435 294 uint l;
duke@435 295 while( (l = elements.next()) != 0 )
duke@435 296 if( rm.overlap( lrgs(l).mask() ) )
duke@435 297 _ifg->add_edge( r, l );
duke@435 298 }
duke@435 299
duke@435 300 // Actually build the interference graph. Uses virtual registers only, no
duke@435 301 // physical register masks. This allows me to be very aggressive when
duke@435 302 // coalescing copies. Some of this aggressiveness will have to be undone
duke@435 303 // later, but I'd rather get all the copies I can now (since unremoved copies
duke@435 304 // at this point can end up in bad places). Copies I re-insert later I have
duke@435 305 // more opportunity to insert them in low-frequency locations.
duke@435 306 void PhaseChaitin::build_ifg_virtual( ) {
duke@435 307
duke@435 308 // For all blocks (in any order) do...
adlertz@5539 309 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
adlertz@5539 310 Block* block = _cfg.get_block(i);
adlertz@5539 311 IndexSet* liveout = _live->live(block);
duke@435 312
duke@435 313 // The IFG is built by a single reverse pass over each basic block.
duke@435 314 // Starting with the known live-out set, we remove things that get
duke@435 315 // defined and add things that become live (essentially executing one
duke@435 316 // pass of a standard LIVE analysis). Just before a Node defines a value
duke@435 317 // (and removes it from the live-ness set) that value is certainly live.
duke@435 318 // The defined value interferes with everything currently live. The
duke@435 319 // value is then removed from the live-ness set and it's inputs are
duke@435 320 // added to the live-ness set.
adlertz@5539 321 for (uint j = block->end_idx() + 1; j > 1; j--) {
adlertz@5635 322 Node* n = block->get_node(j - 1);
duke@435 323
duke@435 324 // Get value being defined
neliasso@4949 325 uint r = _lrg_map.live_range_id(n);
duke@435 326
duke@435 327 // Some special values do not allocate
neliasso@4949 328 if (r) {
duke@435 329
duke@435 330 // Remove from live-out set
duke@435 331 liveout->remove(r);
duke@435 332
duke@435 333 // Copies do not define a new value and so do not interfere.
duke@435 334 // Remove the copies source from the liveout set before interfering.
duke@435 335 uint idx = n->is_Copy();
neliasso@4949 336 if (idx) {
neliasso@4949 337 liveout->remove(_lrg_map.live_range_id(n->in(idx)));
neliasso@4949 338 }
duke@435 339
duke@435 340 // Interfere with everything live
neliasso@4949 341 interfere_with_live(r, liveout);
duke@435 342 }
duke@435 343
duke@435 344 // Make all inputs live
neliasso@4949 345 if (!n->is_Phi()) { // Phi function uses come from prior block
neliasso@4949 346 for(uint k = 1; k < n->req(); k++) {
neliasso@4949 347 liveout->insert(_lrg_map.live_range_id(n->in(k)));
neliasso@4949 348 }
duke@435 349 }
duke@435 350
duke@435 351 // 2-address instructions always have the defined value live
duke@435 352 // on entry to the instruction, even though it is being defined
duke@435 353 // by the instruction. We pretend a virtual copy sits just prior
duke@435 354 // to the instruction and kills the src-def'd register.
duke@435 355 // In other words, for 2-address instructions the defined value
duke@435 356 // interferes with all inputs.
duke@435 357 uint idx;
duke@435 358 if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
duke@435 359 const MachNode *mach = n->as_Mach();
duke@435 360 // Sometimes my 2-address ADDs are commuted in a bad way.
duke@435 361 // We generally want the USE-DEF register to refer to the
duke@435 362 // loop-varying quantity, to avoid a copy.
duke@435 363 uint op = mach->ideal_Opcode();
duke@435 364 // Check that mach->num_opnds() == 3 to ensure instruction is
duke@435 365 // not subsuming constants, effectively excludes addI_cin_imm
duke@435 366 // Can NOT swap for instructions like addI_cin_imm since it
duke@435 367 // is adding zero to yhi + carry and the second ideal-input
duke@435 368 // points to the result of adding low-halves.
duke@435 369 // Checking req() and num_opnds() does NOT distinguish addI_cout from addI_cout_imm
duke@435 370 if( (op == Op_AddI && mach->req() == 3 && mach->num_opnds() == 3) &&
duke@435 371 n->in(1)->bottom_type()->base() == Type::Int &&
duke@435 372 // See if the ADD is involved in a tight data loop the wrong way
duke@435 373 n->in(2)->is_Phi() &&
duke@435 374 n->in(2)->in(2) == n ) {
duke@435 375 Node *tmp = n->in(1);
duke@435 376 n->set_req( 1, n->in(2) );
duke@435 377 n->set_req( 2, tmp );
duke@435 378 }
duke@435 379 // Defined value interferes with all inputs
neliasso@4949 380 uint lidx = _lrg_map.live_range_id(n->in(idx));
neliasso@4949 381 for (uint k = 1; k < n->req(); k++) {
neliasso@4949 382 uint kidx = _lrg_map.live_range_id(n->in(k));
neliasso@4949 383 if (kidx != lidx) {
neliasso@4949 384 _ifg->add_edge(r, kidx);
neliasso@4949 385 }
duke@435 386 }
duke@435 387 }
duke@435 388 } // End of forall instructions in block
duke@435 389 } // End of forall blocks
duke@435 390 }
duke@435 391
duke@435 392 uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) {
duke@435 393 IndexSetIterator elements(liveout);
duke@435 394 uint lidx;
duke@435 395 uint cnt = 0;
duke@435 396 while ((lidx = elements.next()) != 0) {
duke@435 397 if( lrgs(lidx).mask().is_UP() &&
duke@435 398 lrgs(lidx).mask_size() &&
duke@435 399 !lrgs(lidx)._is_float &&
kvn@3882 400 !lrgs(lidx)._is_vector &&
duke@435 401 lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) )
duke@435 402 cnt += lrgs(lidx).reg_pressure();
duke@435 403 }
duke@435 404 return cnt;
duke@435 405 }
duke@435 406
duke@435 407 uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) {
duke@435 408 IndexSetIterator elements(liveout);
duke@435 409 uint lidx;
duke@435 410 uint cnt = 0;
duke@435 411 while ((lidx = elements.next()) != 0) {
duke@435 412 if( lrgs(lidx).mask().is_UP() &&
duke@435 413 lrgs(lidx).mask_size() &&
kvn@3882 414 (lrgs(lidx)._is_float || lrgs(lidx)._is_vector))
duke@435 415 cnt += lrgs(lidx).reg_pressure();
duke@435 416 }
duke@435 417 return cnt;
duke@435 418 }
duke@435 419
duke@435 420 // Adjust register pressure down by 1. Capture last hi-to-low transition,
duke@435 421 static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) {
kvn@3882 422 if (lrg->mask().is_UP() && lrg->mask_size()) {
kvn@3882 423 if (lrg->_is_float || lrg->_is_vector) {
duke@435 424 pressure[1] -= lrg->reg_pressure();
duke@435 425 if( pressure[1] == (uint)FLOATPRESSURE ) {
duke@435 426 hrp_index[1] = where;
neliasso@4867 427 if( pressure[1] > b->_freg_pressure )
neliasso@4867 428 b->_freg_pressure = pressure[1]+1;
duke@435 429 }
duke@435 430 } else if( lrg->mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
duke@435 431 pressure[0] -= lrg->reg_pressure();
duke@435 432 if( pressure[0] == (uint)INTPRESSURE ) {
duke@435 433 hrp_index[0] = where;
neliasso@4867 434 if( pressure[0] > b->_reg_pressure )
neliasso@4867 435 b->_reg_pressure = pressure[0]+1;
duke@435 436 }
duke@435 437 }
duke@435 438 }
duke@435 439 }
duke@435 440
duke@435 441 // Build the interference graph using physical registers when available.
duke@435 442 // That is, if 2 live ranges are simultaneously alive but in their acceptable
duke@435 443 // register sets do not overlap, then they do not interfere.
duke@435 444 uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
duke@435 445 NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); )
duke@435 446
duke@435 447 uint must_spill = 0;
duke@435 448
duke@435 449 // For all blocks (in any order) do...
adlertz@5539 450 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
adlertz@5539 451 Block* block = _cfg.get_block(i);
duke@435 452 // Clone (rather than smash in place) the liveout info, so it is alive
duke@435 453 // for the "collect_gc_info" phase later.
adlertz@5539 454 IndexSet liveout(_live->live(block));
adlertz@5539 455 uint last_inst = block->end_idx();
kvn@1001 456 // Compute first nonphi node index
kvn@1001 457 uint first_inst;
adlertz@5539 458 for (first_inst = 1; first_inst < last_inst; first_inst++) {
adlertz@5635 459 if (!block->get_node(first_inst)->is_Phi()) {
duke@435 460 break;
adlertz@5539 461 }
adlertz@5539 462 }
duke@435 463
kvn@1001 464 // Spills could be inserted before CreateEx node which should be
kvn@1001 465 // first instruction in block after Phis. Move CreateEx up.
adlertz@5539 466 for (uint insidx = first_inst; insidx < last_inst; insidx++) {
adlertz@5635 467 Node *ex = block->get_node(insidx);
adlertz@5539 468 if (ex->is_SpillCopy()) {
adlertz@5539 469 continue;
adlertz@5539 470 }
adlertz@5539 471 if (insidx > first_inst && ex->is_Mach() && ex->as_Mach()->ideal_Opcode() == Op_CreateEx) {
kvn@1001 472 // If the CreateEx isn't above all the MachSpillCopies
kvn@1001 473 // then move it to the top.
adlertz@5635 474 block->remove_node(insidx);
adlertz@5635 475 block->insert_node(ex, first_inst);
kvn@1001 476 }
kvn@1001 477 // Stop once a CreateEx or any other node is found
kvn@1001 478 break;
kvn@1001 479 }
kvn@1001 480
duke@435 481 // Reset block's register pressure values for each ifg construction
duke@435 482 uint pressure[2], hrp_index[2];
duke@435 483 pressure[0] = pressure[1] = 0;
duke@435 484 hrp_index[0] = hrp_index[1] = last_inst+1;
adlertz@5539 485 block->_reg_pressure = block->_freg_pressure = 0;
duke@435 486 // Liveout things are presumed live for the whole block. We accumulate
duke@435 487 // 'area' accordingly. If they get killed in the block, we'll subtract
duke@435 488 // the unused part of the block from the area.
kvn@1001 489 int inst_count = last_inst - first_inst;
adlertz@5539 490 double cost = (inst_count <= 0) ? 0.0 : block->_freq * double(inst_count);
rasbold@804 491 assert(!(cost < 0.0), "negative spill cost" );
duke@435 492 IndexSetIterator elements(&liveout);
duke@435 493 uint lidx;
duke@435 494 while ((lidx = elements.next()) != 0) {
duke@435 495 LRG &lrg = lrgs(lidx);
duke@435 496 lrg._area += cost;
duke@435 497 // Compute initial register pressure
kvn@3882 498 if (lrg.mask().is_UP() && lrg.mask_size()) {
kvn@3882 499 if (lrg._is_float || lrg._is_vector) { // Count float pressure
duke@435 500 pressure[1] += lrg.reg_pressure();
adlertz@5539 501 if (pressure[1] > block->_freg_pressure) {
adlertz@5539 502 block->_freg_pressure = pressure[1];
adlertz@5539 503 }
duke@435 504 // Count int pressure, but do not count the SP, flags
adlertz@5539 505 } else if(lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI])) {
duke@435 506 pressure[0] += lrg.reg_pressure();
adlertz@5539 507 if (pressure[0] > block->_reg_pressure) {
adlertz@5539 508 block->_reg_pressure = pressure[0];
adlertz@5539 509 }
duke@435 510 }
duke@435 511 }
duke@435 512 }
duke@435 513 assert( pressure[0] == count_int_pressure (&liveout), "" );
duke@435 514 assert( pressure[1] == count_float_pressure(&liveout), "" );
duke@435 515
duke@435 516 // The IFG is built by a single reverse pass over each basic block.
duke@435 517 // Starting with the known live-out set, we remove things that get
duke@435 518 // defined and add things that become live (essentially executing one
duke@435 519 // pass of a standard LIVE analysis). Just before a Node defines a value
duke@435 520 // (and removes it from the live-ness set) that value is certainly live.
duke@435 521 // The defined value interferes with everything currently live. The
duke@435 522 // value is then removed from the live-ness set and it's inputs are added
duke@435 523 // to the live-ness set.
duke@435 524 uint j;
adlertz@5539 525 for (j = last_inst + 1; j > 1; j--) {
adlertz@5635 526 Node* n = block->get_node(j - 1);
duke@435 527
duke@435 528 // Get value being defined
neliasso@4949 529 uint r = _lrg_map.live_range_id(n);
duke@435 530
duke@435 531 // Some special values do not allocate
neliasso@4949 532 if(r) {
duke@435 533 // A DEF normally costs block frequency; rematerialized values are
duke@435 534 // removed from the DEF sight, so LOWER costs here.
adlertz@5539 535 lrgs(r)._cost += n->rematerialize() ? 0 : block->_freq;
duke@435 536
duke@435 537 // If it is not live, then this instruction is dead. Probably caused
duke@435 538 // by spilling and rematerialization. Who cares why, yank this baby.
duke@435 539 if( !liveout.member(r) && n->Opcode() != Op_SafePoint ) {
duke@435 540 Node *def = n->in(0);
duke@435 541 if( !n->is_Proj() ||
duke@435 542 // Could also be a flags-projection of a dead ADD or such.
neliasso@4949 543 (_lrg_map.live_range_id(def) && !liveout.member(_lrg_map.live_range_id(def)))) {
adlertz@5635 544 block->remove_node(j - 1);
neliasso@4949 545 if (lrgs(r)._def == n) {
neliasso@4949 546 lrgs(r)._def = 0;
neliasso@4949 547 }
bharadwaj@4315 548 n->disconnect_inputs(NULL, C);
adlertz@5509 549 _cfg.unmap_node_from_block(n);
duke@435 550 n->replace_by(C->top());
duke@435 551 // Since yanking a Node from block, high pressure moves up one
duke@435 552 hrp_index[0]--;
duke@435 553 hrp_index[1]--;
duke@435 554 continue;
duke@435 555 }
duke@435 556
duke@435 557 // Fat-projections kill many registers which cannot be used to
duke@435 558 // hold live ranges.
neliasso@4949 559 if (lrgs(r)._fat_proj) {
duke@435 560 // Count the int-only registers
duke@435 561 RegMask itmp = lrgs(r).mask();
duke@435 562 itmp.AND(*Matcher::idealreg2regmask[Op_RegI]);
duke@435 563 int iregs = itmp.Size();
adlertz@5539 564 if (pressure[0]+iregs > block->_reg_pressure) {
adlertz@5539 565 block->_reg_pressure = pressure[0] + iregs;
adlertz@5539 566 }
adlertz@5539 567 if (pressure[0] <= (uint)INTPRESSURE && pressure[0] + iregs > (uint)INTPRESSURE) {
adlertz@5539 568 hrp_index[0] = j - 1;
duke@435 569 }
duke@435 570 // Count the float-only registers
duke@435 571 RegMask ftmp = lrgs(r).mask();
duke@435 572 ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]);
duke@435 573 int fregs = ftmp.Size();
adlertz@5539 574 if (pressure[1] + fregs > block->_freg_pressure) {
adlertz@5539 575 block->_freg_pressure = pressure[1] + fregs;
adlertz@5539 576 }
adlertz@5539 577 if(pressure[1] <= (uint)FLOATPRESSURE && pressure[1]+fregs > (uint)FLOATPRESSURE) {
adlertz@5539 578 hrp_index[1] = j - 1;
duke@435 579 }
duke@435 580 }
duke@435 581
duke@435 582 } else { // Else it is live
duke@435 583 // A DEF also ends 'area' partway through the block.
duke@435 584 lrgs(r)._area -= cost;
rasbold@804 585 assert(!(lrgs(r)._area < 0.0), "negative spill area" );
duke@435 586
duke@435 587 // Insure high score for immediate-use spill copies so they get a color
duke@435 588 if( n->is_SpillCopy()
never@730 589 && lrgs(r).is_singledef() // MultiDef live range can still split
duke@435 590 && n->outcnt() == 1 // and use must be in this block
adlertz@5539 591 && _cfg.get_block_for_node(n->unique_out()) == block) {
duke@435 592 // All single-use MachSpillCopy(s) that immediately precede their
duke@435 593 // use must color early. If a longer live range steals their
duke@435 594 // color, the spill copy will split and may push another spill copy
duke@435 595 // further away resulting in an infinite spill-split-retry cycle.
duke@435 596 // Assigning a zero area results in a high score() and a good
duke@435 597 // location in the simplify list.
duke@435 598 //
duke@435 599
duke@435 600 Node *single_use = n->unique_out();
adlertz@5539 601 assert(block->find_node(single_use) >= j, "Use must be later in block");
duke@435 602 // Use can be earlier in block if it is a Phi, but then I should be a MultiDef
duke@435 603
duke@435 604 // Find first non SpillCopy 'm' that follows the current instruction
duke@435 605 // (j - 1) is index for current instruction 'n'
duke@435 606 Node *m = n;
adlertz@5539 607 for (uint i = j; i <= last_inst && m->is_SpillCopy(); ++i) {
adlertz@5635 608 m = block->get_node(i);
adlertz@5539 609 }
adlertz@5539 610 if (m == single_use) {
duke@435 611 lrgs(r)._area = 0.0;
duke@435 612 }
duke@435 613 }
duke@435 614
duke@435 615 // Remove from live-out set
duke@435 616 if( liveout.remove(r) ) {
duke@435 617 // Adjust register pressure.
duke@435 618 // Capture last hi-to-lo pressure transition
adlertz@5539 619 lower_pressure(&lrgs(r), j - 1, block, pressure, hrp_index);
duke@435 620 assert( pressure[0] == count_int_pressure (&liveout), "" );
duke@435 621 assert( pressure[1] == count_float_pressure(&liveout), "" );
duke@435 622 }
duke@435 623
duke@435 624 // Copies do not define a new value and so do not interfere.
duke@435 625 // Remove the copies source from the liveout set before interfering.
duke@435 626 uint idx = n->is_Copy();
neliasso@4949 627 if (idx) {
neliasso@4949 628 uint x = _lrg_map.live_range_id(n->in(idx));
neliasso@4949 629 if (liveout.remove(x)) {
duke@435 630 lrgs(x)._area -= cost;
duke@435 631 // Adjust register pressure.
adlertz@5539 632 lower_pressure(&lrgs(x), j - 1, block, pressure, hrp_index);
duke@435 633 assert( pressure[0] == count_int_pressure (&liveout), "" );
duke@435 634 assert( pressure[1] == count_float_pressure(&liveout), "" );
duke@435 635 }
duke@435 636 }
duke@435 637 } // End of if live or not
duke@435 638
duke@435 639 // Interfere with everything live. If the defined value must
duke@435 640 // go in a particular register, just remove that register from
duke@435 641 // all conflicting parties and avoid the interference.
duke@435 642
duke@435 643 // Make exclusions for rematerializable defs. Since rematerializable
duke@435 644 // DEFs are not bound but the live range is, some uses must be bound.
duke@435 645 // If we spill live range 'r', it can rematerialize at each use site
duke@435 646 // according to its bindings.
duke@435 647 const RegMask &rmask = lrgs(r).mask();
duke@435 648 if( lrgs(r).is_bound() && !(n->rematerialize()) && rmask.is_NotEmpty() ) {
duke@435 649 // Check for common case
duke@435 650 int r_size = lrgs(r).num_regs();
duke@435 651 OptoReg::Name r_reg = (r_size == 1) ? rmask.find_first_elem() : OptoReg::Physical;
kvn@3882 652 // Smear odd bits
duke@435 653 IndexSetIterator elements(&liveout);
duke@435 654 uint l;
duke@435 655 while ((l = elements.next()) != 0) {
duke@435 656 LRG &lrg = lrgs(l);
duke@435 657 // If 'l' must spill already, do not further hack his bits.
duke@435 658 // He'll get some interferences and be forced to spill later.
duke@435 659 if( lrg._must_spill ) continue;
duke@435 660 // Remove bound register(s) from 'l's choices
duke@435 661 RegMask old = lrg.mask();
duke@435 662 uint old_size = lrg.mask_size();
duke@435 663 // Remove the bits from LRG 'r' from LRG 'l' so 'l' no
duke@435 664 // longer interferes with 'r'. If 'l' requires aligned
duke@435 665 // adjacent pairs, subtract out bit pairs.
kvn@3882 666 assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
kvn@3882 667 if (lrg.num_regs() > 1 && !lrg._fat_proj) {
kvn@3882 668 RegMask r2mask = rmask;
kvn@3882 669 // Leave only aligned set of bits.
kvn@3882 670 r2mask.smear_to_sets(lrg.num_regs());
kvn@3882 671 // It includes vector case.
duke@435 672 lrg.SUBTRACT( r2mask );
duke@435 673 lrg.compute_set_mask_size();
kvn@3882 674 } else if( r_size != 1 ) { // fat proj
duke@435 675 lrg.SUBTRACT( rmask );
duke@435 676 lrg.compute_set_mask_size();
duke@435 677 } else { // Common case: size 1 bound removal
duke@435 678 if( lrg.mask().Member(r_reg) ) {
duke@435 679 lrg.Remove(r_reg);
adlertz@5916 680 lrg.set_mask_size(lrg.mask().is_AllStack() ? LRG::AllStack_size : old_size - 1);
duke@435 681 }
duke@435 682 }
duke@435 683 // If 'l' goes completely dry, it must spill.
duke@435 684 if( lrg.not_free() ) {
duke@435 685 // Give 'l' some kind of reasonable mask, so he picks up
duke@435 686 // interferences (and will spill later).
duke@435 687 lrg.set_mask( old );
duke@435 688 lrg.set_mask_size(old_size);
duke@435 689 must_spill++;
duke@435 690 lrg._must_spill = 1;
duke@435 691 lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
duke@435 692 }
duke@435 693 }
duke@435 694 } // End of if bound
duke@435 695
duke@435 696 // Now interference with everything that is live and has
duke@435 697 // compatible register sets.
duke@435 698 interfere_with_live(r,&liveout);
duke@435 699
duke@435 700 } // End of if normal register-allocated value
duke@435 701
rasbold@804 702 // Area remaining in the block
rasbold@804 703 inst_count--;
adlertz@5539 704 cost = (inst_count <= 0) ? 0.0 : block->_freq * double(inst_count);
duke@435 705
duke@435 706 // Make all inputs live
duke@435 707 if( !n->is_Phi() ) { // Phi function uses come from prior block
duke@435 708 JVMState* jvms = n->jvms();
duke@435 709 uint debug_start = jvms ? jvms->debug_start() : 999999;
duke@435 710 // Start loop at 1 (skip control edge) for most Nodes.
duke@435 711 // SCMemProj's might be the sole use of a StoreLConditional.
duke@435 712 // While StoreLConditionals set memory (the SCMemProj use)
duke@435 713 // they also def flags; if that flag def is unused the
duke@435 714 // allocator sees a flag-setting instruction with no use of
duke@435 715 // the flags and assumes it's dead. This keeps the (useless)
duke@435 716 // flag-setting behavior alive while also keeping the (useful)
duke@435 717 // memory update effect.
neliasso@4949 718 for (uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++) {
duke@435 719 Node *def = n->in(k);
neliasso@4949 720 uint x = _lrg_map.live_range_id(def);
neliasso@4949 721 if (!x) {
neliasso@4949 722 continue;
neliasso@4949 723 }
duke@435 724 LRG &lrg = lrgs(x);
duke@435 725 // No use-side cost for spilling debug info
neliasso@4949 726 if (k < debug_start) {
duke@435 727 // A USE costs twice block frequency (once for the Load, once
duke@435 728 // for a Load-delay). Rematerialized uses only cost once.
adlertz@5539 729 lrg._cost += (def->rematerialize() ? block->_freq : (block->_freq + block->_freq));
neliasso@4949 730 }
duke@435 731 // It is live now
neliasso@4949 732 if (liveout.insert(x)) {
duke@435 733 // Newly live things assumed live from here to top of block
duke@435 734 lrg._area += cost;
duke@435 735 // Adjust register pressure
kvn@3882 736 if (lrg.mask().is_UP() && lrg.mask_size()) {
kvn@3882 737 if (lrg._is_float || lrg._is_vector) {
duke@435 738 pressure[1] += lrg.reg_pressure();
adlertz@5539 739 if (pressure[1] > block->_freg_pressure) {
adlertz@5539 740 block->_freg_pressure = pressure[1];
adlertz@5539 741 }
duke@435 742 } else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
duke@435 743 pressure[0] += lrg.reg_pressure();
adlertz@5539 744 if (pressure[0] > block->_reg_pressure) {
adlertz@5539 745 block->_reg_pressure = pressure[0];
adlertz@5539 746 }
duke@435 747 }
duke@435 748 }
duke@435 749 assert( pressure[0] == count_int_pressure (&liveout), "" );
duke@435 750 assert( pressure[1] == count_float_pressure(&liveout), "" );
duke@435 751 }
rasbold@804 752 assert(!(lrg._area < 0.0), "negative spill area" );
duke@435 753 }
duke@435 754 }
duke@435 755 } // End of reverse pass over all instructions in block
duke@435 756
duke@435 757 // If we run off the top of the block with high pressure and
duke@435 758 // never see a hi-to-low pressure transition, just record that
duke@435 759 // the whole block is high pressure.
adlertz@5539 760 if (pressure[0] > (uint)INTPRESSURE) {
duke@435 761 hrp_index[0] = 0;
adlertz@5539 762 if (pressure[0] > block->_reg_pressure) {
adlertz@5539 763 block->_reg_pressure = pressure[0];
adlertz@5539 764 }
duke@435 765 }
adlertz@5539 766 if (pressure[1] > (uint)FLOATPRESSURE) {
duke@435 767 hrp_index[1] = 0;
adlertz@5539 768 if (pressure[1] > block->_freg_pressure) {
adlertz@5539 769 block->_freg_pressure = pressure[1];
adlertz@5539 770 }
duke@435 771 }
duke@435 772
duke@435 773 // Compute high pressure indice; avoid landing in the middle of projnodes
duke@435 774 j = hrp_index[0];
adlertz@5635 775 if (j < block->number_of_nodes() && j < block->end_idx() + 1) {
adlertz@5635 776 Node* cur = block->get_node(j);
adlertz@5539 777 while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) {
duke@435 778 j--;
adlertz@5635 779 cur = block->get_node(j);
duke@435 780 }
duke@435 781 }
adlertz@5539 782 block->_ihrp_index = j;
duke@435 783 j = hrp_index[1];
adlertz@5635 784 if (j < block->number_of_nodes() && j < block->end_idx() + 1) {
adlertz@5635 785 Node* cur = block->get_node(j);
adlertz@5539 786 while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) {
duke@435 787 j--;
adlertz@5635 788 cur = block->get_node(j);
duke@435 789 }
duke@435 790 }
adlertz@5539 791 block->_fhrp_index = j;
duke@435 792
duke@435 793 #ifndef PRODUCT
duke@435 794 // Gather Register Pressure Statistics
duke@435 795 if( PrintOptoStatistics ) {
adlertz@5539 796 if (block->_reg_pressure > (uint)INTPRESSURE || block->_freg_pressure > (uint)FLOATPRESSURE) {
duke@435 797 _high_pressure++;
adlertz@5539 798 } else {
duke@435 799 _low_pressure++;
adlertz@5539 800 }
duke@435 801 }
duke@435 802 #endif
duke@435 803 } // End of for all blocks
duke@435 804
duke@435 805 return must_spill;
duke@435 806 }

mercurial