src/share/vm/gc_implementation/parNew/parNewGeneration.cpp

Tue, 10 May 2011 00:33:21 -0700

author
ysr
date
Tue, 10 May 2011 00:33:21 -0700
changeset 2889
fc2b798ab316
parent 2651
92da084fefc9
child 3294
bca17e38de00
permissions
-rw-r--r--

6883834: ParNew: assert(!_g->to()->is_in_reserved(obj),"Scanning field twice?") with LargeObjects tests
Summary: Fixed process_chunk_boundaries(), used for parallel card scanning when using ParNew/CMS, so as to prevent double-scanning, or worse, non-scanning of imprecisely marked objects exceeding parallel chunk size. Made some sizing parameters for parallel card scanning diagnostic, disabled ParallelGCRetainPLAB, and elaborated and clarified some comments.
Reviewed-by: stefank, johnc

duke@435 1 /*
ysr@2651 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp"
stefank@2314 27 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
stefank@2314 28 #include "gc_implementation/parNew/parNewGeneration.hpp"
stefank@2314 29 #include "gc_implementation/parNew/parOopClosures.inline.hpp"
stefank@2314 30 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
stefank@2314 31 #include "gc_implementation/shared/ageTable.hpp"
stefank@2314 32 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 33 #include "memory/defNewGeneration.inline.hpp"
stefank@2314 34 #include "memory/genCollectedHeap.hpp"
stefank@2314 35 #include "memory/genOopClosures.inline.hpp"
stefank@2314 36 #include "memory/generation.hpp"
stefank@2314 37 #include "memory/generation.inline.hpp"
stefank@2314 38 #include "memory/referencePolicy.hpp"
stefank@2314 39 #include "memory/resourceArea.hpp"
stefank@2314 40 #include "memory/sharedHeap.hpp"
stefank@2314 41 #include "memory/space.hpp"
stefank@2314 42 #include "oops/objArrayOop.hpp"
stefank@2314 43 #include "oops/oop.inline.hpp"
stefank@2314 44 #include "oops/oop.pcgc.inline.hpp"
stefank@2314 45 #include "runtime/handles.hpp"
stefank@2314 46 #include "runtime/handles.inline.hpp"
stefank@2314 47 #include "runtime/java.hpp"
stefank@2314 48 #include "runtime/thread.hpp"
stefank@2314 49 #include "utilities/copy.hpp"
stefank@2314 50 #include "utilities/globalDefinitions.hpp"
stefank@2314 51 #include "utilities/workgroup.hpp"
duke@435 52
duke@435 53 #ifdef _MSC_VER
duke@435 54 #pragma warning( push )
duke@435 55 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
duke@435 56 #endif
duke@435 57 ParScanThreadState::ParScanThreadState(Space* to_space_,
duke@435 58 ParNewGeneration* gen_,
duke@435 59 Generation* old_gen_,
duke@435 60 int thread_num_,
duke@435 61 ObjToScanQueueSet* work_queue_set_,
jcoomes@2191 62 Stack<oop>* overflow_stacks_,
duke@435 63 size_t desired_plab_sz_,
duke@435 64 ParallelTaskTerminator& term_) :
ysr@1114 65 _to_space(to_space_), _old_gen(old_gen_), _young_gen(gen_), _thread_num(thread_num_),
duke@435 66 _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
jcoomes@2191 67 _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
duke@435 68 _ageTable(false), // false ==> not the global age table, no perf data.
duke@435 69 _to_space_alloc_buffer(desired_plab_sz_),
duke@435 70 _to_space_closure(gen_, this), _old_gen_closure(gen_, this),
duke@435 71 _to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
duke@435 72 _older_gen_closure(gen_, this),
duke@435 73 _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
duke@435 74 &_to_space_root_closure, gen_, &_old_gen_root_closure,
duke@435 75 work_queue_set_, &term_),
duke@435 76 _is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
duke@435 77 _keep_alive_closure(&_scan_weak_ref_closure),
ysr@1580 78 _promotion_failure_size(0),
duke@435 79 _strong_roots_time(0.0), _term_time(0.0)
duke@435 80 {
jcoomes@2065 81 #if TASKQUEUE_STATS
jcoomes@2065 82 _term_attempts = 0;
jcoomes@2065 83 _overflow_refills = 0;
jcoomes@2065 84 _overflow_refill_objs = 0;
jcoomes@2065 85 #endif // TASKQUEUE_STATS
jcoomes@2065 86
duke@435 87 _survivor_chunk_array =
duke@435 88 (ChunkArray*) old_gen()->get_data_recorder(thread_num());
duke@435 89 _hash_seed = 17; // Might want to take time-based random value.
duke@435 90 _start = os::elapsedTime();
duke@435 91 _old_gen_closure.set_generation(old_gen_);
duke@435 92 _old_gen_root_closure.set_generation(old_gen_);
duke@435 93 }
duke@435 94 #ifdef _MSC_VER
duke@435 95 #pragma warning( pop )
duke@435 96 #endif
duke@435 97
duke@435 98 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
duke@435 99 size_t plab_word_size) {
duke@435 100 ChunkArray* sca = survivor_chunk_array();
duke@435 101 if (sca != NULL) {
duke@435 102 // A non-null SCA implies that we want the PLAB data recorded.
duke@435 103 sca->record_sample(plab_start, plab_word_size);
duke@435 104 }
duke@435 105 }
duke@435 106
duke@435 107 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
duke@435 108 return new_obj->is_objArray() &&
duke@435 109 arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
duke@435 110 new_obj != old_obj;
duke@435 111 }
duke@435 112
duke@435 113 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
duke@435 114 assert(old->is_objArray(), "must be obj array");
duke@435 115 assert(old->is_forwarded(), "must be forwarded");
duke@435 116 assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
ysr@1114 117 assert(!old_gen()->is_in(old), "must be in young generation.");
duke@435 118
duke@435 119 objArrayOop obj = objArrayOop(old->forwardee());
duke@435 120 // Process ParGCArrayScanChunk elements now
duke@435 121 // and push the remainder back onto queue
duke@435 122 int start = arrayOop(old)->length();
duke@435 123 int end = obj->length();
duke@435 124 int remainder = end - start;
duke@435 125 assert(start <= end, "just checking");
duke@435 126 if (remainder > 2 * ParGCArrayScanChunk) {
duke@435 127 // Test above combines last partial chunk with a full chunk
duke@435 128 end = start + ParGCArrayScanChunk;
duke@435 129 arrayOop(old)->set_length(end);
duke@435 130 // Push remainder.
duke@435 131 bool ok = work_queue()->push(old);
duke@435 132 assert(ok, "just popped, push must be okay");
duke@435 133 } else {
duke@435 134 // Restore length so that it can be used if there
duke@435 135 // is a promotion failure and forwarding pointers
duke@435 136 // must be removed.
duke@435 137 arrayOop(old)->set_length(end);
duke@435 138 }
coleenp@548 139
duke@435 140 // process our set of indices (include header in first chunk)
coleenp@548 141 // should make sure end is even (aligned to HeapWord in case of compressed oops)
duke@435 142 if ((HeapWord *)obj < young_old_boundary()) {
duke@435 143 // object is in to_space
coleenp@548 144 obj->oop_iterate_range(&_to_space_closure, start, end);
duke@435 145 } else {
duke@435 146 // object is in old generation
coleenp@548 147 obj->oop_iterate_range(&_old_gen_closure, start, end);
duke@435 148 }
duke@435 149 }
duke@435 150
duke@435 151
duke@435 152 void ParScanThreadState::trim_queues(int max_size) {
duke@435 153 ObjToScanQueue* queue = work_queue();
ysr@1114 154 do {
ysr@1114 155 while (queue->size() > (juint)max_size) {
ysr@1114 156 oop obj_to_scan;
ysr@1114 157 if (queue->pop_local(obj_to_scan)) {
ysr@1114 158 if ((HeapWord *)obj_to_scan < young_old_boundary()) {
ysr@1114 159 if (obj_to_scan->is_objArray() &&
ysr@1114 160 obj_to_scan->is_forwarded() &&
ysr@1114 161 obj_to_scan->forwardee() != obj_to_scan) {
ysr@1114 162 scan_partial_array_and_push_remainder(obj_to_scan);
ysr@1114 163 } else {
ysr@1114 164 // object is in to_space
ysr@1114 165 obj_to_scan->oop_iterate(&_to_space_closure);
ysr@1114 166 }
duke@435 167 } else {
ysr@1114 168 // object is in old generation
ysr@1114 169 obj_to_scan->oop_iterate(&_old_gen_closure);
duke@435 170 }
duke@435 171 }
duke@435 172 }
ysr@1114 173 // For the case of compressed oops, we have a private, non-shared
ysr@1114 174 // overflow stack, so we eagerly drain it so as to more evenly
ysr@1114 175 // distribute load early. Note: this may be good to do in
ysr@1114 176 // general rather than delay for the final stealing phase.
ysr@1114 177 // If applicable, we'll transfer a set of objects over to our
ysr@1114 178 // work queue, allowing them to be stolen and draining our
ysr@1114 179 // private overflow stack.
ysr@1114 180 } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
ysr@1114 181 }
ysr@1114 182
ysr@1114 183 bool ParScanThreadState::take_from_overflow_stack() {
ysr@1130 184 assert(ParGCUseLocalOverflow, "Else should not call");
ysr@1114 185 assert(young_gen()->overflow_list() == NULL, "Error");
ysr@1114 186 ObjToScanQueue* queue = work_queue();
jcoomes@2191 187 Stack<oop>* const of_stack = overflow_stack();
jcoomes@2191 188 const size_t num_overflow_elems = of_stack->size();
jcoomes@2191 189 const size_t space_available = queue->max_elems() - queue->size();
jcoomes@2191 190 const size_t num_take_elems = MIN3(space_available / 4,
jcoomes@2191 191 ParGCDesiredObjsFromOverflowList,
jcoomes@2191 192 num_overflow_elems);
ysr@1114 193 // Transfer the most recent num_take_elems from the overflow
ysr@1114 194 // stack to our work queue.
ysr@1114 195 for (size_t i = 0; i != num_take_elems; i++) {
ysr@1114 196 oop cur = of_stack->pop();
ysr@1114 197 oop obj_to_push = cur->forwardee();
ysr@1114 198 assert(Universe::heap()->is_in_reserved(cur), "Should be in heap");
ysr@1114 199 assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
ysr@1114 200 assert(Universe::heap()->is_in_reserved(obj_to_push), "Should be in heap");
ysr@1114 201 if (should_be_partially_scanned(obj_to_push, cur)) {
ysr@1114 202 assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
ysr@1114 203 obj_to_push = cur;
ysr@1114 204 }
ysr@1114 205 bool ok = queue->push(obj_to_push);
ysr@1114 206 assert(ok, "Should have succeeded");
duke@435 207 }
ysr@1114 208 assert(young_gen()->overflow_list() == NULL, "Error");
ysr@1114 209 return num_take_elems > 0; // was something transferred?
ysr@1114 210 }
ysr@1114 211
ysr@1114 212 void ParScanThreadState::push_on_overflow_stack(oop p) {
ysr@1130 213 assert(ParGCUseLocalOverflow, "Else should not call");
ysr@1114 214 overflow_stack()->push(p);
ysr@1114 215 assert(young_gen()->overflow_list() == NULL, "Error");
duke@435 216 }
duke@435 217
duke@435 218 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
duke@435 219
duke@435 220 // Otherwise, if the object is small enough, try to reallocate the
duke@435 221 // buffer.
duke@435 222 HeapWord* obj = NULL;
duke@435 223 if (!_to_space_full) {
duke@435 224 ParGCAllocBuffer* const plab = to_space_alloc_buffer();
duke@435 225 Space* const sp = to_space();
duke@435 226 if (word_sz * 100 <
duke@435 227 ParallelGCBufferWastePct * plab->word_sz()) {
duke@435 228 // Is small enough; abandon this buffer and start a new one.
duke@435 229 plab->retire(false, false);
duke@435 230 size_t buf_size = plab->word_sz();
duke@435 231 HeapWord* buf_space = sp->par_allocate(buf_size);
duke@435 232 if (buf_space == NULL) {
duke@435 233 const size_t min_bytes =
duke@435 234 ParGCAllocBuffer::min_size() << LogHeapWordSize;
duke@435 235 size_t free_bytes = sp->free();
duke@435 236 while(buf_space == NULL && free_bytes >= min_bytes) {
duke@435 237 buf_size = free_bytes >> LogHeapWordSize;
duke@435 238 assert(buf_size == (size_t)align_object_size(buf_size),
duke@435 239 "Invariant");
duke@435 240 buf_space = sp->par_allocate(buf_size);
duke@435 241 free_bytes = sp->free();
duke@435 242 }
duke@435 243 }
duke@435 244 if (buf_space != NULL) {
duke@435 245 plab->set_word_size(buf_size);
duke@435 246 plab->set_buf(buf_space);
duke@435 247 record_survivor_plab(buf_space, buf_size);
duke@435 248 obj = plab->allocate(word_sz);
duke@435 249 // Note that we cannot compare buf_size < word_sz below
duke@435 250 // because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
duke@435 251 assert(obj != NULL || plab->words_remaining() < word_sz,
duke@435 252 "Else should have been able to allocate");
duke@435 253 // It's conceivable that we may be able to use the
duke@435 254 // buffer we just grabbed for subsequent small requests
duke@435 255 // even if not for this one.
duke@435 256 } else {
duke@435 257 // We're used up.
duke@435 258 _to_space_full = true;
duke@435 259 }
duke@435 260
duke@435 261 } else {
duke@435 262 // Too large; allocate the object individually.
duke@435 263 obj = sp->par_allocate(word_sz);
duke@435 264 }
duke@435 265 }
duke@435 266 return obj;
duke@435 267 }
duke@435 268
duke@435 269
duke@435 270 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
duke@435 271 size_t word_sz) {
duke@435 272 // Is the alloc in the current alloc buffer?
duke@435 273 if (to_space_alloc_buffer()->contains(obj)) {
duke@435 274 assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
duke@435 275 "Should contain whole object.");
duke@435 276 to_space_alloc_buffer()->undo_allocation(obj, word_sz);
duke@435 277 } else {
jcoomes@916 278 CollectedHeap::fill_with_object(obj, word_sz);
duke@435 279 }
duke@435 280 }
duke@435 281
ysr@1580 282 void ParScanThreadState::print_and_clear_promotion_failure_size() {
ysr@1580 283 if (_promotion_failure_size != 0) {
ysr@1580 284 if (PrintPromotionFailure) {
ysr@1580 285 gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
ysr@1580 286 _thread_num, _promotion_failure_size);
ysr@1580 287 }
ysr@1580 288 _promotion_failure_size = 0;
ysr@1580 289 }
ysr@1580 290 }
ysr@1580 291
duke@435 292 class ParScanThreadStateSet: private ResourceArray {
duke@435 293 public:
duke@435 294 // Initializes states for the specified number of threads;
duke@435 295 ParScanThreadStateSet(int num_threads,
duke@435 296 Space& to_space,
duke@435 297 ParNewGeneration& gen,
duke@435 298 Generation& old_gen,
duke@435 299 ObjToScanQueueSet& queue_set,
jcoomes@2191 300 Stack<oop>* overflow_stacks_,
duke@435 301 size_t desired_plab_sz,
duke@435 302 ParallelTaskTerminator& term);
jcoomes@2065 303
jcoomes@2065 304 ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
jcoomes@2065 305
ysr@1580 306 inline ParScanThreadState& thread_state(int i);
jcoomes@2065 307
ysr@1580 308 void reset(bool promotion_failed);
duke@435 309 void flush();
jcoomes@2065 310
jcoomes@2065 311 #if TASKQUEUE_STATS
jcoomes@2065 312 static void
jcoomes@2065 313 print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2065 314 void print_termination_stats(outputStream* const st = gclog_or_tty);
jcoomes@2065 315 static void
jcoomes@2065 316 print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2065 317 void print_taskqueue_stats(outputStream* const st = gclog_or_tty);
jcoomes@2065 318 void reset_stats();
jcoomes@2065 319 #endif // TASKQUEUE_STATS
jcoomes@2065 320
duke@435 321 private:
duke@435 322 ParallelTaskTerminator& _term;
duke@435 323 ParNewGeneration& _gen;
duke@435 324 Generation& _next_gen;
duke@435 325 };
duke@435 326
duke@435 327
duke@435 328 ParScanThreadStateSet::ParScanThreadStateSet(
duke@435 329 int num_threads, Space& to_space, ParNewGeneration& gen,
duke@435 330 Generation& old_gen, ObjToScanQueueSet& queue_set,
jcoomes@2191 331 Stack<oop>* overflow_stacks,
duke@435 332 size_t desired_plab_sz, ParallelTaskTerminator& term)
duke@435 333 : ResourceArray(sizeof(ParScanThreadState), num_threads),
jcoomes@2065 334 _gen(gen), _next_gen(old_gen), _term(term)
duke@435 335 {
duke@435 336 assert(num_threads > 0, "sanity check!");
jcoomes@2191 337 assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
jcoomes@2191 338 "overflow_stack allocation mismatch");
duke@435 339 // Initialize states.
duke@435 340 for (int i = 0; i < num_threads; ++i) {
duke@435 341 new ((ParScanThreadState*)_data + i)
duke@435 342 ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
jcoomes@2191 343 overflow_stacks, desired_plab_sz, term);
duke@435 344 }
duke@435 345 }
duke@435 346
ysr@1580 347 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
duke@435 348 {
duke@435 349 assert(i >= 0 && i < length(), "sanity check!");
duke@435 350 return ((ParScanThreadState*)_data)[i];
duke@435 351 }
duke@435 352
duke@435 353
ysr@1580 354 void ParScanThreadStateSet::reset(bool promotion_failed)
duke@435 355 {
duke@435 356 _term.reset_for_reuse();
ysr@1580 357 if (promotion_failed) {
ysr@1580 358 for (int i = 0; i < length(); ++i) {
ysr@1580 359 thread_state(i).print_and_clear_promotion_failure_size();
ysr@1580 360 }
ysr@1580 361 }
duke@435 362 }
duke@435 363
jcoomes@2065 364 #if TASKQUEUE_STATS
jcoomes@2065 365 void
jcoomes@2065 366 ParScanThreadState::reset_stats()
jcoomes@2065 367 {
jcoomes@2065 368 taskqueue_stats().reset();
jcoomes@2065 369 _term_attempts = 0;
jcoomes@2065 370 _overflow_refills = 0;
jcoomes@2065 371 _overflow_refill_objs = 0;
jcoomes@2065 372 }
jcoomes@2065 373
jcoomes@2065 374 void ParScanThreadStateSet::reset_stats()
jcoomes@2065 375 {
jcoomes@2065 376 for (int i = 0; i < length(); ++i) {
jcoomes@2065 377 thread_state(i).reset_stats();
jcoomes@2065 378 }
jcoomes@2065 379 }
jcoomes@2065 380
jcoomes@2065 381 void
jcoomes@2065 382 ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st)
jcoomes@2065 383 {
jcoomes@2065 384 st->print_raw_cr("GC Termination Stats");
jcoomes@2065 385 st->print_raw_cr(" elapsed --strong roots-- "
jcoomes@2065 386 "-------termination-------");
jcoomes@2065 387 st->print_raw_cr("thr ms ms % "
jcoomes@2065 388 " ms % attempts");
jcoomes@2065 389 st->print_raw_cr("--- --------- --------- ------ "
jcoomes@2065 390 "--------- ------ --------");
jcoomes@2065 391 }
jcoomes@2065 392
jcoomes@2065 393 void ParScanThreadStateSet::print_termination_stats(outputStream* const st)
jcoomes@2065 394 {
jcoomes@2065 395 print_termination_stats_hdr(st);
jcoomes@2065 396
jcoomes@2065 397 for (int i = 0; i < length(); ++i) {
jcoomes@2065 398 const ParScanThreadState & pss = thread_state(i);
jcoomes@2065 399 const double elapsed_ms = pss.elapsed_time() * 1000.0;
jcoomes@2065 400 const double s_roots_ms = pss.strong_roots_time() * 1000.0;
jcoomes@2065 401 const double term_ms = pss.term_time() * 1000.0;
jcoomes@2065 402 st->print_cr("%3d %9.2f %9.2f %6.2f "
jcoomes@2065 403 "%9.2f %6.2f " SIZE_FORMAT_W(8),
jcoomes@2065 404 i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
jcoomes@2065 405 term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
jcoomes@2065 406 }
jcoomes@2065 407 }
jcoomes@2065 408
jcoomes@2065 409 // Print stats related to work queue activity.
jcoomes@2065 410 void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st)
jcoomes@2065 411 {
jcoomes@2065 412 st->print_raw_cr("GC Task Stats");
jcoomes@2065 413 st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
jcoomes@2065 414 st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
jcoomes@2065 415 }
jcoomes@2065 416
jcoomes@2065 417 void ParScanThreadStateSet::print_taskqueue_stats(outputStream* const st)
jcoomes@2065 418 {
jcoomes@2065 419 print_taskqueue_stats_hdr(st);
jcoomes@2065 420
jcoomes@2065 421 TaskQueueStats totals;
jcoomes@2065 422 for (int i = 0; i < length(); ++i) {
jcoomes@2065 423 const ParScanThreadState & pss = thread_state(i);
jcoomes@2065 424 const TaskQueueStats & stats = pss.taskqueue_stats();
jcoomes@2065 425 st->print("%3d ", i); stats.print(st); st->cr();
jcoomes@2065 426 totals += stats;
jcoomes@2065 427
jcoomes@2065 428 if (pss.overflow_refills() > 0) {
jcoomes@2065 429 st->print_cr(" " SIZE_FORMAT_W(10) " overflow refills "
jcoomes@2065 430 SIZE_FORMAT_W(10) " overflow objects",
jcoomes@2065 431 pss.overflow_refills(), pss.overflow_refill_objs());
jcoomes@2065 432 }
jcoomes@2065 433 }
jcoomes@2065 434 st->print("tot "); totals.print(st); st->cr();
jcoomes@2065 435
jcoomes@2065 436 DEBUG_ONLY(totals.verify());
jcoomes@2065 437 }
jcoomes@2065 438 #endif // TASKQUEUE_STATS
jcoomes@2065 439
duke@435 440 void ParScanThreadStateSet::flush()
duke@435 441 {
ysr@1580 442 // Work in this loop should be kept as lightweight as
ysr@1580 443 // possible since this might otherwise become a bottleneck
ysr@1580 444 // to scaling. Should we add heavy-weight work into this
ysr@1580 445 // loop, consider parallelizing the loop into the worker threads.
duke@435 446 for (int i = 0; i < length(); ++i) {
ysr@1580 447 ParScanThreadState& par_scan_state = thread_state(i);
duke@435 448
duke@435 449 // Flush stats related to To-space PLAB activity and
duke@435 450 // retire the last buffer.
duke@435 451 par_scan_state.to_space_alloc_buffer()->
duke@435 452 flush_stats_and_retire(_gen.plab_stats(),
duke@435 453 false /* !retain */);
duke@435 454
duke@435 455 // Every thread has its own age table. We need to merge
duke@435 456 // them all into one.
duke@435 457 ageTable *local_table = par_scan_state.age_table();
duke@435 458 _gen.age_table()->merge(local_table);
duke@435 459
duke@435 460 // Inform old gen that we're done.
duke@435 461 _next_gen.par_promote_alloc_done(i);
duke@435 462 _next_gen.par_oop_since_save_marks_iterate_done(i);
jcoomes@2065 463 }
duke@435 464
ysr@1580 465 if (UseConcMarkSweepGC && ParallelGCThreads > 0) {
ysr@1580 466 // We need to call this even when ResizeOldPLAB is disabled
ysr@1580 467 // so as to avoid breaking some asserts. While we may be able
ysr@1580 468 // to avoid this by reorganizing the code a bit, I am loathe
ysr@1580 469 // to do that unless we find cases where ergo leads to bad
ysr@1580 470 // performance.
ysr@1580 471 CFLS_LAB::compute_desired_plab_size();
ysr@1580 472 }
duke@435 473 }
duke@435 474
duke@435 475 ParScanClosure::ParScanClosure(ParNewGeneration* g,
duke@435 476 ParScanThreadState* par_scan_state) :
duke@435 477 OopsInGenClosure(g), _par_scan_state(par_scan_state), _g(g)
duke@435 478 {
duke@435 479 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 480 _boundary = _g->reserved().end();
duke@435 481 }
duke@435 482
coleenp@548 483 void ParScanWithBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, true, false); }
coleenp@548 484 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
coleenp@548 485
coleenp@548 486 void ParScanWithoutBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, false, false); }
coleenp@548 487 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
coleenp@548 488
coleenp@548 489 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, true, true); }
coleenp@548 490 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
coleenp@548 491
coleenp@548 492 void ParRootScanWithoutBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, false, true); }
coleenp@548 493 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
coleenp@548 494
duke@435 495 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
duke@435 496 ParScanThreadState* par_scan_state)
duke@435 497 : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
coleenp@548 498 {}
coleenp@548 499
coleenp@548 500 void ParScanWeakRefClosure::do_oop(oop* p) { ParScanWeakRefClosure::do_oop_work(p); }
coleenp@548 501 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
duke@435 502
duke@435 503 #ifdef WIN32
duke@435 504 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
duke@435 505 #endif
duke@435 506
duke@435 507 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
duke@435 508 ParScanThreadState* par_scan_state_,
duke@435 509 ParScanWithoutBarrierClosure* to_space_closure_,
duke@435 510 ParScanWithBarrierClosure* old_gen_closure_,
duke@435 511 ParRootScanWithoutBarrierClosure* to_space_root_closure_,
duke@435 512 ParNewGeneration* par_gen_,
duke@435 513 ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
duke@435 514 ObjToScanQueueSet* task_queues_,
duke@435 515 ParallelTaskTerminator* terminator_) :
duke@435 516
duke@435 517 _par_scan_state(par_scan_state_),
duke@435 518 _to_space_closure(to_space_closure_),
duke@435 519 _old_gen_closure(old_gen_closure_),
duke@435 520 _to_space_root_closure(to_space_root_closure_),
duke@435 521 _old_gen_root_closure(old_gen_root_closure_),
duke@435 522 _par_gen(par_gen_),
duke@435 523 _task_queues(task_queues_),
duke@435 524 _terminator(terminator_)
duke@435 525 {}
duke@435 526
duke@435 527 void ParEvacuateFollowersClosure::do_void() {
duke@435 528 ObjToScanQueue* work_q = par_scan_state()->work_queue();
duke@435 529
duke@435 530 while (true) {
duke@435 531
duke@435 532 // Scan to-space and old-gen objs until we run out of both.
duke@435 533 oop obj_to_scan;
duke@435 534 par_scan_state()->trim_queues(0);
duke@435 535
duke@435 536 // We have no local work, attempt to steal from other threads.
duke@435 537
duke@435 538 // attempt to steal work from promoted.
duke@435 539 if (task_queues()->steal(par_scan_state()->thread_num(),
duke@435 540 par_scan_state()->hash_seed(),
duke@435 541 obj_to_scan)) {
duke@435 542 bool res = work_q->push(obj_to_scan);
duke@435 543 assert(res, "Empty queue should have room for a push.");
duke@435 544
duke@435 545 // if successful, goto Start.
duke@435 546 continue;
duke@435 547
duke@435 548 // try global overflow list.
duke@435 549 } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
duke@435 550 continue;
duke@435 551 }
duke@435 552
duke@435 553 // Otherwise, offer termination.
duke@435 554 par_scan_state()->start_term_time();
duke@435 555 if (terminator()->offer_termination()) break;
duke@435 556 par_scan_state()->end_term_time();
duke@435 557 }
ysr@969 558 assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
ysr@969 559 "Broken overflow list?");
duke@435 560 // Finish the last termination pause.
duke@435 561 par_scan_state()->end_term_time();
duke@435 562 }
duke@435 563
duke@435 564 ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
duke@435 565 HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
duke@435 566 AbstractGangTask("ParNewGeneration collection"),
duke@435 567 _gen(gen), _next_gen(next_gen),
duke@435 568 _young_old_boundary(young_old_boundary),
duke@435 569 _state_set(state_set)
duke@435 570 {}
duke@435 571
duke@435 572 void ParNewGenTask::work(int i) {
duke@435 573 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 574 // Since this is being done in a separate thread, need new resource
duke@435 575 // and handle marks.
duke@435 576 ResourceMark rm;
duke@435 577 HandleMark hm;
duke@435 578 // We would need multiple old-gen queues otherwise.
ysr@1114 579 assert(gch->n_gens() == 2, "Par young collection currently only works with one older gen.");
duke@435 580
duke@435 581 Generation* old_gen = gch->next_gen(_gen);
duke@435 582
ysr@1580 583 ParScanThreadState& par_scan_state = _state_set->thread_state(i);
duke@435 584 par_scan_state.set_young_old_boundary(_young_old_boundary);
duke@435 585
duke@435 586 par_scan_state.start_strong_roots();
duke@435 587 gch->gen_process_strong_roots(_gen->level(),
jrose@1424 588 true, // Process younger gens, if any,
jrose@1424 589 // as strong roots.
jrose@1424 590 false, // no scope; this is parallel code
jrose@1424 591 false, // not collecting perm generation.
duke@435 592 SharedHeap::SO_AllClasses,
jrose@1424 593 &par_scan_state.to_space_root_closure(),
jrose@1424 594 true, // walk *all* scavengable nmethods
jrose@1424 595 &par_scan_state.older_gen_closure());
duke@435 596 par_scan_state.end_strong_roots();
duke@435 597
duke@435 598 // "evacuate followers".
duke@435 599 par_scan_state.evacuate_followers_closure().do_void();
duke@435 600 }
duke@435 601
duke@435 602 #ifdef _MSC_VER
duke@435 603 #pragma warning( push )
duke@435 604 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
duke@435 605 #endif
duke@435 606 ParNewGeneration::
duke@435 607 ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
duke@435 608 : DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
duke@435 609 _overflow_list(NULL),
duke@435 610 _is_alive_closure(this),
duke@435 611 _plab_stats(YoungPLABSize, PLABWeight)
duke@435 612 {
ysr@969 613 NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
ysr@969 614 NOT_PRODUCT(_num_par_pushes = 0;)
duke@435 615 _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
duke@435 616 guarantee(_task_queues != NULL, "task_queues allocation failure.");
duke@435 617
duke@435 618 for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
jcoomes@2020 619 ObjToScanQueue *q = new ObjToScanQueue();
jcoomes@2020 620 guarantee(q != NULL, "work_queue Allocation failure.");
jcoomes@2020 621 _task_queues->register_queue(i1, q);
duke@435 622 }
duke@435 623
duke@435 624 for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
duke@435 625 _task_queues->queue(i2)->initialize();
duke@435 626
jcoomes@2191 627 _overflow_stacks = NULL;
jcoomes@2191 628 if (ParGCUseLocalOverflow) {
jcoomes@2191 629 _overflow_stacks = NEW_C_HEAP_ARRAY(Stack<oop>, ParallelGCThreads);
jcoomes@2191 630 for (size_t i = 0; i < ParallelGCThreads; ++i) {
jcoomes@2191 631 new (_overflow_stacks + i) Stack<oop>();
ysr@1130 632 }
ysr@1130 633 }
ysr@1130 634
duke@435 635 if (UsePerfData) {
duke@435 636 EXCEPTION_MARK;
duke@435 637 ResourceMark rm;
duke@435 638
duke@435 639 const char* cname =
duke@435 640 PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
duke@435 641 PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
duke@435 642 ParallelGCThreads, CHECK);
duke@435 643 }
duke@435 644 }
duke@435 645 #ifdef _MSC_VER
duke@435 646 #pragma warning( pop )
duke@435 647 #endif
duke@435 648
duke@435 649 // ParNewGeneration::
duke@435 650 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
duke@435 651 DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
duke@435 652
coleenp@548 653 template <class T>
coleenp@548 654 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
coleenp@548 655 #ifdef ASSERT
coleenp@548 656 {
coleenp@548 657 assert(!oopDesc::is_null(*p), "expected non-null ref");
coleenp@548 658 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 659 // We never expect to see a null reference being processed
coleenp@548 660 // as a weak reference.
coleenp@548 661 assert(obj->is_oop(), "expected an oop while scanning weak refs");
coleenp@548 662 }
coleenp@548 663 #endif // ASSERT
duke@435 664
duke@435 665 _par_cl->do_oop_nv(p);
duke@435 666
duke@435 667 if (Universe::heap()->is_in_reserved(p)) {
coleenp@548 668 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 669 _rs->write_ref_field_gc_par(p, obj);
duke@435 670 }
duke@435 671 }
duke@435 672
coleenp@548 673 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p) { ParKeepAliveClosure::do_oop_work(p); }
coleenp@548 674 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
coleenp@548 675
duke@435 676 // ParNewGeneration::
duke@435 677 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
duke@435 678 DefNewGeneration::KeepAliveClosure(cl) {}
duke@435 679
coleenp@548 680 template <class T>
coleenp@548 681 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
coleenp@548 682 #ifdef ASSERT
coleenp@548 683 {
coleenp@548 684 assert(!oopDesc::is_null(*p), "expected non-null ref");
coleenp@548 685 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 686 // We never expect to see a null reference being processed
coleenp@548 687 // as a weak reference.
coleenp@548 688 assert(obj->is_oop(), "expected an oop while scanning weak refs");
coleenp@548 689 }
coleenp@548 690 #endif // ASSERT
duke@435 691
duke@435 692 _cl->do_oop_nv(p);
duke@435 693
duke@435 694 if (Universe::heap()->is_in_reserved(p)) {
coleenp@548 695 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 696 _rs->write_ref_field_gc_par(p, obj);
duke@435 697 }
duke@435 698 }
duke@435 699
coleenp@548 700 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p) { KeepAliveClosure::do_oop_work(p); }
coleenp@548 701 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
coleenp@548 702
coleenp@548 703 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
coleenp@548 704 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 705 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 706 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
duke@435 707 if ((HeapWord*)obj < _boundary) {
duke@435 708 assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
coleenp@548 709 oop new_obj = obj->is_forwarded()
coleenp@548 710 ? obj->forwardee()
coleenp@548 711 : _g->DefNewGeneration::copy_to_survivor_space(obj);
coleenp@548 712 oopDesc::encode_store_heap_oop_not_null(p, new_obj);
duke@435 713 }
duke@435 714 if (_gc_barrier) {
duke@435 715 // If p points to a younger generation, mark the card.
duke@435 716 if ((HeapWord*)obj < _gen_boundary) {
duke@435 717 _rs->write_ref_field_gc_par(p, obj);
duke@435 718 }
duke@435 719 }
duke@435 720 }
duke@435 721 }
duke@435 722
coleenp@548 723 void ScanClosureWithParBarrier::do_oop(oop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
coleenp@548 724 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
coleenp@548 725
duke@435 726 class ParNewRefProcTaskProxy: public AbstractGangTask {
duke@435 727 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
duke@435 728 public:
duke@435 729 ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
duke@435 730 Generation& next_gen,
duke@435 731 HeapWord* young_old_boundary,
duke@435 732 ParScanThreadStateSet& state_set);
duke@435 733
duke@435 734 private:
duke@435 735 virtual void work(int i);
duke@435 736
duke@435 737 private:
duke@435 738 ParNewGeneration& _gen;
duke@435 739 ProcessTask& _task;
duke@435 740 Generation& _next_gen;
duke@435 741 HeapWord* _young_old_boundary;
duke@435 742 ParScanThreadStateSet& _state_set;
duke@435 743 };
duke@435 744
duke@435 745 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
duke@435 746 ProcessTask& task, ParNewGeneration& gen,
duke@435 747 Generation& next_gen,
duke@435 748 HeapWord* young_old_boundary,
duke@435 749 ParScanThreadStateSet& state_set)
duke@435 750 : AbstractGangTask("ParNewGeneration parallel reference processing"),
duke@435 751 _gen(gen),
duke@435 752 _task(task),
duke@435 753 _next_gen(next_gen),
duke@435 754 _young_old_boundary(young_old_boundary),
duke@435 755 _state_set(state_set)
duke@435 756 {
duke@435 757 }
duke@435 758
duke@435 759 void ParNewRefProcTaskProxy::work(int i)
duke@435 760 {
duke@435 761 ResourceMark rm;
duke@435 762 HandleMark hm;
ysr@1580 763 ParScanThreadState& par_scan_state = _state_set.thread_state(i);
duke@435 764 par_scan_state.set_young_old_boundary(_young_old_boundary);
duke@435 765 _task.work(i, par_scan_state.is_alive_closure(),
duke@435 766 par_scan_state.keep_alive_closure(),
duke@435 767 par_scan_state.evacuate_followers_closure());
duke@435 768 }
duke@435 769
duke@435 770 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
duke@435 771 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
duke@435 772 EnqueueTask& _task;
duke@435 773
duke@435 774 public:
duke@435 775 ParNewRefEnqueueTaskProxy(EnqueueTask& task)
duke@435 776 : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
duke@435 777 _task(task)
duke@435 778 { }
duke@435 779
duke@435 780 virtual void work(int i)
duke@435 781 {
duke@435 782 _task.work(i);
duke@435 783 }
duke@435 784 };
duke@435 785
duke@435 786
duke@435 787 void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
duke@435 788 {
duke@435 789 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 790 assert(gch->kind() == CollectedHeap::GenCollectedHeap,
duke@435 791 "not a generational heap");
duke@435 792 WorkGang* workers = gch->workers();
duke@435 793 assert(workers != NULL, "Need parallel worker threads.");
duke@435 794 ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
duke@435 795 _generation.reserved().end(), _state_set);
duke@435 796 workers->run_task(&rp_task);
ysr@1580 797 _state_set.reset(_generation.promotion_failed());
duke@435 798 }
duke@435 799
duke@435 800 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
duke@435 801 {
duke@435 802 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 803 WorkGang* workers = gch->workers();
duke@435 804 assert(workers != NULL, "Need parallel worker threads.");
duke@435 805 ParNewRefEnqueueTaskProxy enq_task(task);
duke@435 806 workers->run_task(&enq_task);
duke@435 807 }
duke@435 808
duke@435 809 void ParNewRefProcTaskExecutor::set_single_threaded_mode()
duke@435 810 {
duke@435 811 _state_set.flush();
duke@435 812 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 813 gch->set_par_threads(0); // 0 ==> non-parallel.
duke@435 814 gch->save_marks();
duke@435 815 }
duke@435 816
duke@435 817 ScanClosureWithParBarrier::
duke@435 818 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
duke@435 819 ScanClosure(g, gc_barrier) {}
duke@435 820
duke@435 821 EvacuateFollowersClosureGeneral::
duke@435 822 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
duke@435 823 OopsInGenClosure* cur,
duke@435 824 OopsInGenClosure* older) :
duke@435 825 _gch(gch), _level(level),
duke@435 826 _scan_cur_or_nonheap(cur), _scan_older(older)
duke@435 827 {}
duke@435 828
duke@435 829 void EvacuateFollowersClosureGeneral::do_void() {
duke@435 830 do {
duke@435 831 // Beware: this call will lead to closure applications via virtual
duke@435 832 // calls.
duke@435 833 _gch->oop_since_save_marks_iterate(_level,
duke@435 834 _scan_cur_or_nonheap,
duke@435 835 _scan_older);
duke@435 836 } while (!_gch->no_allocs_since_save_marks(_level));
duke@435 837 }
duke@435 838
duke@435 839
duke@435 840 bool ParNewGeneration::_avoid_promotion_undo = false;
duke@435 841
duke@435 842 void ParNewGeneration::adjust_desired_tenuring_threshold() {
duke@435 843 // Set the desired survivor size to half the real survivor space
duke@435 844 _tenuring_threshold =
duke@435 845 age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
duke@435 846 }
duke@435 847
duke@435 848 // A Generation that does parallel young-gen collection.
duke@435 849
duke@435 850 void ParNewGeneration::collect(bool full,
duke@435 851 bool clear_all_soft_refs,
duke@435 852 size_t size,
duke@435 853 bool is_tlab) {
duke@435 854 assert(full || size > 0, "otherwise we don't want to collect");
duke@435 855 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 856 assert(gch->kind() == CollectedHeap::GenCollectedHeap,
duke@435 857 "not a CMS generational heap");
duke@435 858 AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
duke@435 859 WorkGang* workers = gch->workers();
duke@435 860 _next_gen = gch->next_gen(this);
duke@435 861 assert(_next_gen != NULL,
duke@435 862 "This must be the youngest gen, and not the only gen");
duke@435 863 assert(gch->n_gens() == 2,
duke@435 864 "Par collection currently only works with single older gen.");
duke@435 865 // Do we have to avoid promotion_undo?
duke@435 866 if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
duke@435 867 set_avoid_promotion_undo(true);
duke@435 868 }
duke@435 869
duke@435 870 // If the next generation is too full to accomodate worst-case promotion
duke@435 871 // from this generation, pass on collection; let the next generation
duke@435 872 // do it.
duke@435 873 if (!collection_attempt_is_safe()) {
ysr@2243 874 gch->set_incremental_collection_failed(); // slight lie, in that we did not even attempt one
duke@435 875 return;
duke@435 876 }
duke@435 877 assert(to()->is_empty(), "Else not collection_attempt_is_safe");
duke@435 878
duke@435 879 init_assuming_no_promotion_failure();
duke@435 880
duke@435 881 if (UseAdaptiveSizePolicy) {
duke@435 882 set_survivor_overflow(false);
duke@435 883 size_policy->minor_collection_begin();
duke@435 884 }
duke@435 885
duke@435 886 TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
duke@435 887 // Capture heap used before collection (for printing).
duke@435 888 size_t gch_prev_used = gch->used();
duke@435 889
duke@435 890 SpecializationStats::clear();
duke@435 891
duke@435 892 age_table()->clear();
jmasa@698 893 to()->clear(SpaceDecorator::Mangle);
duke@435 894
duke@435 895 gch->save_marks();
duke@435 896 assert(workers != NULL, "Need parallel worker threads.");
duke@435 897 ParallelTaskTerminator _term(workers->total_workers(), task_queues());
duke@435 898 ParScanThreadStateSet thread_state_set(workers->total_workers(),
duke@435 899 *to(), *this, *_next_gen, *task_queues(),
ysr@1130 900 _overflow_stacks, desired_plab_sz(), _term);
duke@435 901
duke@435 902 ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
duke@435 903 int n_workers = workers->total_workers();
duke@435 904 gch->set_par_threads(n_workers);
duke@435 905 gch->rem_set()->prepare_for_younger_refs_iterate(true);
duke@435 906 // It turns out that even when we're using 1 thread, doing the work in a
duke@435 907 // separate thread causes wide variance in run times. We can't help this
duke@435 908 // in the multi-threaded case, but we special-case n=1 here to get
duke@435 909 // repeatable measurements of the 1-thread overhead of the parallel code.
duke@435 910 if (n_workers > 1) {
jrose@1424 911 GenCollectedHeap::StrongRootsScope srs(gch);
duke@435 912 workers->run_task(&tsk);
duke@435 913 } else {
jrose@1424 914 GenCollectedHeap::StrongRootsScope srs(gch);
duke@435 915 tsk.work(0);
duke@435 916 }
ysr@1580 917 thread_state_set.reset(promotion_failed());
duke@435 918
duke@435 919 // Process (weak) reference objects found during scavenge.
ysr@888 920 ReferenceProcessor* rp = ref_processor();
duke@435 921 IsAliveClosure is_alive(this);
duke@435 922 ScanWeakRefClosure scan_weak_ref(this);
duke@435 923 KeepAliveClosure keep_alive(&scan_weak_ref);
duke@435 924 ScanClosure scan_without_gc_barrier(this, false);
duke@435 925 ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
duke@435 926 set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
duke@435 927 EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
duke@435 928 &scan_without_gc_barrier, &scan_with_gc_barrier);
ysr@892 929 rp->setup_policy(clear_all_soft_refs);
ysr@888 930 if (rp->processing_is_mt()) {
duke@435 931 ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
ysr@888 932 rp->process_discovered_references(&is_alive, &keep_alive,
ysr@888 933 &evacuate_followers, &task_executor);
duke@435 934 } else {
duke@435 935 thread_state_set.flush();
duke@435 936 gch->set_par_threads(0); // 0 ==> non-parallel.
duke@435 937 gch->save_marks();
ysr@888 938 rp->process_discovered_references(&is_alive, &keep_alive,
ysr@888 939 &evacuate_followers, NULL);
duke@435 940 }
duke@435 941 if (!promotion_failed()) {
duke@435 942 // Swap the survivor spaces.
jmasa@698 943 eden()->clear(SpaceDecorator::Mangle);
jmasa@698 944 from()->clear(SpaceDecorator::Mangle);
jmasa@698 945 if (ZapUnusedHeapArea) {
jmasa@698 946 // This is now done here because of the piece-meal mangling which
jmasa@698 947 // can check for valid mangling at intermediate points in the
jmasa@698 948 // collection(s). When a minor collection fails to collect
jmasa@698 949 // sufficient space resizing of the young generation can occur
jmasa@698 950 // an redistribute the spaces in the young generation. Mangle
jmasa@698 951 // here so that unzapped regions don't get distributed to
jmasa@698 952 // other spaces.
jmasa@698 953 to()->mangle_unused_area();
jmasa@698 954 }
duke@435 955 swap_spaces();
duke@435 956
jmasa@1822 957 // A successful scavenge should restart the GC time limit count which is
jmasa@1822 958 // for full GC's.
jmasa@1822 959 size_policy->reset_gc_overhead_limit_count();
jmasa@1822 960
duke@435 961 assert(to()->is_empty(), "to space should be empty now");
duke@435 962 } else {
jcoomes@2191 963 assert(_promo_failure_scan_stack.is_empty(), "post condition");
jcoomes@2191 964 _promo_failure_scan_stack.clear(true); // Clear cached segments.
jcoomes@2191 965
duke@435 966 remove_forwarding_pointers();
duke@435 967 if (PrintGCDetails) {
duke@435 968 gclog_or_tty->print(" (promotion failed)");
duke@435 969 }
duke@435 970 // All the spaces are in play for mark-sweep.
duke@435 971 swap_spaces(); // Make life simpler for CMS || rescan; see 6483690.
duke@435 972 from()->set_next_compaction_space(to());
ysr@2243 973 gch->set_incremental_collection_failed();
ysr@1580 974 // Inform the next generation that a promotion failure occurred.
ysr@1580 975 _next_gen->promotion_failure_occurred();
jmasa@441 976
jmasa@441 977 // Reset the PromotionFailureALot counters.
jmasa@441 978 NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
duke@435 979 }
duke@435 980 // set new iteration safe limit for the survivor spaces
duke@435 981 from()->set_concurrent_iteration_safe_limit(from()->top());
duke@435 982 to()->set_concurrent_iteration_safe_limit(to()->top());
duke@435 983
duke@435 984 adjust_desired_tenuring_threshold();
duke@435 985 if (ResizePLAB) {
duke@435 986 plab_stats()->adjust_desired_plab_sz();
duke@435 987 }
duke@435 988
duke@435 989 if (PrintGC && !PrintGCDetails) {
duke@435 990 gch->print_heap_change(gch_prev_used);
duke@435 991 }
duke@435 992
jcoomes@2067 993 if (PrintGCDetails && ParallelGCVerbose) {
jcoomes@2067 994 TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
jcoomes@2067 995 TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
jcoomes@2067 996 }
jcoomes@2065 997
duke@435 998 if (UseAdaptiveSizePolicy) {
duke@435 999 size_policy->minor_collection_end(gch->gc_cause());
duke@435 1000 size_policy->avg_survived()->sample(from()->used());
duke@435 1001 }
duke@435 1002
duke@435 1003 update_time_of_last_gc(os::javaTimeMillis());
duke@435 1004
duke@435 1005 SpecializationStats::print();
duke@435 1006
ysr@888 1007 rp->set_enqueuing_is_done(true);
ysr@888 1008 if (rp->processing_is_mt()) {
duke@435 1009 ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
ysr@888 1010 rp->enqueue_discovered_references(&task_executor);
duke@435 1011 } else {
ysr@888 1012 rp->enqueue_discovered_references(NULL);
duke@435 1013 }
ysr@888 1014 rp->verify_no_references_recorded();
duke@435 1015 }
duke@435 1016
duke@435 1017 static int sum;
duke@435 1018 void ParNewGeneration::waste_some_time() {
duke@435 1019 for (int i = 0; i < 100; i++) {
duke@435 1020 sum += i;
duke@435 1021 }
duke@435 1022 }
duke@435 1023
duke@435 1024 static const oop ClaimedForwardPtr = oop(0x4);
duke@435 1025
duke@435 1026 // Because of concurrency, there are times where an object for which
duke@435 1027 // "is_forwarded()" is true contains an "interim" forwarding pointer
duke@435 1028 // value. Such a value will soon be overwritten with a real value.
duke@435 1029 // This method requires "obj" to have a forwarding pointer, and waits, if
duke@435 1030 // necessary for a real one to be inserted, and returns it.
duke@435 1031
duke@435 1032 oop ParNewGeneration::real_forwardee(oop obj) {
duke@435 1033 oop forward_ptr = obj->forwardee();
duke@435 1034 if (forward_ptr != ClaimedForwardPtr) {
duke@435 1035 return forward_ptr;
duke@435 1036 } else {
duke@435 1037 return real_forwardee_slow(obj);
duke@435 1038 }
duke@435 1039 }
duke@435 1040
duke@435 1041 oop ParNewGeneration::real_forwardee_slow(oop obj) {
duke@435 1042 // Spin-read if it is claimed but not yet written by another thread.
duke@435 1043 oop forward_ptr = obj->forwardee();
duke@435 1044 while (forward_ptr == ClaimedForwardPtr) {
duke@435 1045 waste_some_time();
duke@435 1046 assert(obj->is_forwarded(), "precondition");
duke@435 1047 forward_ptr = obj->forwardee();
duke@435 1048 }
duke@435 1049 return forward_ptr;
duke@435 1050 }
duke@435 1051
duke@435 1052 #ifdef ASSERT
duke@435 1053 bool ParNewGeneration::is_legal_forward_ptr(oop p) {
duke@435 1054 return
duke@435 1055 (_avoid_promotion_undo && p == ClaimedForwardPtr)
duke@435 1056 || Universe::heap()->is_in_reserved(p);
duke@435 1057 }
duke@435 1058 #endif
duke@435 1059
duke@435 1060 void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
ysr@2380 1061 if (m->must_be_preserved_for_promotion_failure(obj)) {
ysr@2380 1062 // We should really have separate per-worker stacks, rather
ysr@2380 1063 // than use locking of a common pair of stacks.
duke@435 1064 MutexLocker ml(ParGCRareEvent_lock);
ysr@2380 1065 preserve_mark(obj, m);
duke@435 1066 }
duke@435 1067 }
duke@435 1068
duke@435 1069 // Multiple GC threads may try to promote an object. If the object
duke@435 1070 // is successfully promoted, a forwarding pointer will be installed in
duke@435 1071 // the object in the young generation. This method claims the right
duke@435 1072 // to install the forwarding pointer before it copies the object,
duke@435 1073 // thus avoiding the need to undo the copy as in
duke@435 1074 // copy_to_survivor_space_avoiding_with_undo.
duke@435 1075
duke@435 1076 oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
duke@435 1077 ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
duke@435 1078 // In the sequential version, this assert also says that the object is
duke@435 1079 // not forwarded. That might not be the case here. It is the case that
duke@435 1080 // the caller observed it to be not forwarded at some time in the past.
duke@435 1081 assert(is_in_reserved(old), "shouldn't be scavenging this oop");
duke@435 1082
duke@435 1083 // The sequential code read "old->age()" below. That doesn't work here,
duke@435 1084 // since the age is in the mark word, and that might be overwritten with
duke@435 1085 // a forwarding pointer by a parallel thread. So we must save the mark
duke@435 1086 // word in a local and then analyze it.
duke@435 1087 oopDesc dummyOld;
duke@435 1088 dummyOld.set_mark(m);
duke@435 1089 assert(!dummyOld.is_forwarded(),
duke@435 1090 "should not be called with forwarding pointer mark word.");
duke@435 1091
duke@435 1092 oop new_obj = NULL;
duke@435 1093 oop forward_ptr;
duke@435 1094
duke@435 1095 // Try allocating obj in to-space (unless too old)
duke@435 1096 if (dummyOld.age() < tenuring_threshold()) {
duke@435 1097 new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
duke@435 1098 if (new_obj == NULL) {
duke@435 1099 set_survivor_overflow(true);
duke@435 1100 }
duke@435 1101 }
duke@435 1102
duke@435 1103 if (new_obj == NULL) {
duke@435 1104 // Either to-space is full or we decided to promote
duke@435 1105 // try allocating obj tenured
duke@435 1106
duke@435 1107 // Attempt to install a null forwarding pointer (atomically),
duke@435 1108 // to claim the right to install the real forwarding pointer.
duke@435 1109 forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
duke@435 1110 if (forward_ptr != NULL) {
duke@435 1111 // someone else beat us to it.
duke@435 1112 return real_forwardee(old);
duke@435 1113 }
duke@435 1114
duke@435 1115 new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
duke@435 1116 old, m, sz);
duke@435 1117
duke@435 1118 if (new_obj == NULL) {
duke@435 1119 // promotion failed, forward to self
duke@435 1120 _promotion_failed = true;
duke@435 1121 new_obj = old;
duke@435 1122
duke@435 1123 preserve_mark_if_necessary(old, m);
ysr@1580 1124 // Log the size of the maiden promotion failure
ysr@1580 1125 par_scan_state->log_promotion_failure(sz);
duke@435 1126 }
duke@435 1127
duke@435 1128 old->forward_to(new_obj);
duke@435 1129 forward_ptr = NULL;
duke@435 1130 } else {
duke@435 1131 // Is in to-space; do copying ourselves.
duke@435 1132 Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
duke@435 1133 forward_ptr = old->forward_to_atomic(new_obj);
duke@435 1134 // Restore the mark word copied above.
duke@435 1135 new_obj->set_mark(m);
duke@435 1136 // Increment age if obj still in new generation
duke@435 1137 new_obj->incr_age();
duke@435 1138 par_scan_state->age_table()->add(new_obj, sz);
duke@435 1139 }
duke@435 1140 assert(new_obj != NULL, "just checking");
duke@435 1141
duke@435 1142 if (forward_ptr == NULL) {
duke@435 1143 oop obj_to_push = new_obj;
duke@435 1144 if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
duke@435 1145 // Length field used as index of next element to be scanned.
duke@435 1146 // Real length can be obtained from real_forwardee()
duke@435 1147 arrayOop(old)->set_length(0);
duke@435 1148 obj_to_push = old;
duke@435 1149 assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
duke@435 1150 "push forwarded object");
duke@435 1151 }
duke@435 1152 // Push it on one of the queues of to-be-scanned objects.
ysr@969 1153 bool simulate_overflow = false;
ysr@969 1154 NOT_PRODUCT(
ysr@969 1155 if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
ysr@969 1156 // simulate a stack overflow
ysr@969 1157 simulate_overflow = true;
ysr@969 1158 }
ysr@969 1159 )
ysr@969 1160 if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
duke@435 1161 // Add stats for overflow pushes.
duke@435 1162 if (Verbose && PrintGCDetails) {
duke@435 1163 gclog_or_tty->print("queue overflow!\n");
duke@435 1164 }
ysr@969 1165 push_on_overflow_list(old, par_scan_state);
jcoomes@2065 1166 TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
duke@435 1167 }
duke@435 1168
duke@435 1169 return new_obj;
duke@435 1170 }
duke@435 1171
duke@435 1172 // Oops. Someone beat us to it. Undo the allocation. Where did we
duke@435 1173 // allocate it?
duke@435 1174 if (is_in_reserved(new_obj)) {
duke@435 1175 // Must be in to_space.
duke@435 1176 assert(to()->is_in_reserved(new_obj), "Checking");
duke@435 1177 if (forward_ptr == ClaimedForwardPtr) {
duke@435 1178 // Wait to get the real forwarding pointer value.
duke@435 1179 forward_ptr = real_forwardee(old);
duke@435 1180 }
duke@435 1181 par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
duke@435 1182 }
duke@435 1183
duke@435 1184 return forward_ptr;
duke@435 1185 }
duke@435 1186
duke@435 1187
duke@435 1188 // Multiple GC threads may try to promote the same object. If two
duke@435 1189 // or more GC threads copy the object, only one wins the race to install
duke@435 1190 // the forwarding pointer. The other threads have to undo their copy.
duke@435 1191
duke@435 1192 oop ParNewGeneration::copy_to_survivor_space_with_undo(
duke@435 1193 ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
duke@435 1194
duke@435 1195 // In the sequential version, this assert also says that the object is
duke@435 1196 // not forwarded. That might not be the case here. It is the case that
duke@435 1197 // the caller observed it to be not forwarded at some time in the past.
duke@435 1198 assert(is_in_reserved(old), "shouldn't be scavenging this oop");
duke@435 1199
duke@435 1200 // The sequential code read "old->age()" below. That doesn't work here,
duke@435 1201 // since the age is in the mark word, and that might be overwritten with
duke@435 1202 // a forwarding pointer by a parallel thread. So we must save the mark
duke@435 1203 // word here, install it in a local oopDesc, and then analyze it.
duke@435 1204 oopDesc dummyOld;
duke@435 1205 dummyOld.set_mark(m);
duke@435 1206 assert(!dummyOld.is_forwarded(),
duke@435 1207 "should not be called with forwarding pointer mark word.");
duke@435 1208
duke@435 1209 bool failed_to_promote = false;
duke@435 1210 oop new_obj = NULL;
duke@435 1211 oop forward_ptr;
duke@435 1212
duke@435 1213 // Try allocating obj in to-space (unless too old)
duke@435 1214 if (dummyOld.age() < tenuring_threshold()) {
duke@435 1215 new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
duke@435 1216 if (new_obj == NULL) {
duke@435 1217 set_survivor_overflow(true);
duke@435 1218 }
duke@435 1219 }
duke@435 1220
duke@435 1221 if (new_obj == NULL) {
duke@435 1222 // Either to-space is full or we decided to promote
duke@435 1223 // try allocating obj tenured
duke@435 1224 new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
duke@435 1225 old, m, sz);
duke@435 1226
duke@435 1227 if (new_obj == NULL) {
duke@435 1228 // promotion failed, forward to self
duke@435 1229 forward_ptr = old->forward_to_atomic(old);
duke@435 1230 new_obj = old;
duke@435 1231
duke@435 1232 if (forward_ptr != NULL) {
duke@435 1233 return forward_ptr; // someone else succeeded
duke@435 1234 }
duke@435 1235
duke@435 1236 _promotion_failed = true;
duke@435 1237 failed_to_promote = true;
duke@435 1238
duke@435 1239 preserve_mark_if_necessary(old, m);
ysr@1580 1240 // Log the size of the maiden promotion failure
ysr@1580 1241 par_scan_state->log_promotion_failure(sz);
duke@435 1242 }
duke@435 1243 } else {
duke@435 1244 // Is in to-space; do copying ourselves.
duke@435 1245 Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
duke@435 1246 // Restore the mark word copied above.
duke@435 1247 new_obj->set_mark(m);
duke@435 1248 // Increment age if new_obj still in new generation
duke@435 1249 new_obj->incr_age();
duke@435 1250 par_scan_state->age_table()->add(new_obj, sz);
duke@435 1251 }
duke@435 1252 assert(new_obj != NULL, "just checking");
duke@435 1253
duke@435 1254 // Now attempt to install the forwarding pointer (atomically).
duke@435 1255 // We have to copy the mark word before overwriting with forwarding
duke@435 1256 // ptr, so we can restore it below in the copy.
duke@435 1257 if (!failed_to_promote) {
duke@435 1258 forward_ptr = old->forward_to_atomic(new_obj);
duke@435 1259 }
duke@435 1260
duke@435 1261 if (forward_ptr == NULL) {
duke@435 1262 oop obj_to_push = new_obj;
duke@435 1263 if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
duke@435 1264 // Length field used as index of next element to be scanned.
duke@435 1265 // Real length can be obtained from real_forwardee()
duke@435 1266 arrayOop(old)->set_length(0);
duke@435 1267 obj_to_push = old;
duke@435 1268 assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
duke@435 1269 "push forwarded object");
duke@435 1270 }
duke@435 1271 // Push it on one of the queues of to-be-scanned objects.
ysr@969 1272 bool simulate_overflow = false;
ysr@969 1273 NOT_PRODUCT(
ysr@969 1274 if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
ysr@969 1275 // simulate a stack overflow
ysr@969 1276 simulate_overflow = true;
ysr@969 1277 }
ysr@969 1278 )
ysr@969 1279 if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
duke@435 1280 // Add stats for overflow pushes.
ysr@969 1281 push_on_overflow_list(old, par_scan_state);
jcoomes@2065 1282 TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
duke@435 1283 }
duke@435 1284
duke@435 1285 return new_obj;
duke@435 1286 }
duke@435 1287
duke@435 1288 // Oops. Someone beat us to it. Undo the allocation. Where did we
duke@435 1289 // allocate it?
duke@435 1290 if (is_in_reserved(new_obj)) {
duke@435 1291 // Must be in to_space.
duke@435 1292 assert(to()->is_in_reserved(new_obj), "Checking");
duke@435 1293 par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
duke@435 1294 } else {
duke@435 1295 assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
duke@435 1296 _next_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
duke@435 1297 (HeapWord*)new_obj, sz);
duke@435 1298 }
duke@435 1299
duke@435 1300 return forward_ptr;
duke@435 1301 }
duke@435 1302
ysr@969 1303 #ifndef PRODUCT
ysr@969 1304 // It's OK to call this multi-threaded; the worst thing
ysr@969 1305 // that can happen is that we'll get a bunch of closely
ysr@969 1306 // spaced simulated oveflows, but that's OK, in fact
ysr@969 1307 // probably good as it would exercise the overflow code
ysr@969 1308 // under contention.
ysr@969 1309 bool ParNewGeneration::should_simulate_overflow() {
ysr@969 1310 if (_overflow_counter-- <= 0) { // just being defensive
ysr@969 1311 _overflow_counter = ParGCWorkQueueOverflowInterval;
ysr@969 1312 return true;
ysr@969 1313 } else {
ysr@969 1314 return false;
ysr@969 1315 }
ysr@969 1316 }
ysr@969 1317 #endif
ysr@969 1318
ysr@1114 1319 // In case we are using compressed oops, we need to be careful.
ysr@1114 1320 // If the object being pushed is an object array, then its length
ysr@1114 1321 // field keeps track of the "grey boundary" at which the next
ysr@1114 1322 // incremental scan will be done (see ParGCArrayScanChunk).
ysr@1114 1323 // When using compressed oops, this length field is kept in the
ysr@1114 1324 // lower 32 bits of the erstwhile klass word and cannot be used
ysr@1114 1325 // for the overflow chaining pointer (OCP below). As such the OCP
ysr@1114 1326 // would itself need to be compressed into the top 32-bits in this
ysr@1114 1327 // case. Unfortunately, see below, in the event that we have a
ysr@1114 1328 // promotion failure, the node to be pushed on the list can be
ysr@1114 1329 // outside of the Java heap, so the heap-based pointer compression
ysr@1114 1330 // would not work (we would have potential aliasing between C-heap
ysr@1114 1331 // and Java-heap pointers). For this reason, when using compressed
ysr@1114 1332 // oops, we simply use a worker-thread-local, non-shared overflow
ysr@1114 1333 // list in the form of a growable array, with a slightly different
ysr@1114 1334 // overflow stack draining strategy. If/when we start using fat
ysr@1114 1335 // stacks here, we can go back to using (fat) pointer chains
ysr@1114 1336 // (although some performance comparisons would be useful since
ysr@1114 1337 // single global lists have their own performance disadvantages
ysr@1114 1338 // as we were made painfully aware not long ago, see 6786503).
ysr@969 1339 #define BUSY (oop(0x1aff1aff))
ysr@969 1340 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
ysr@1114 1341 assert(is_in_reserved(from_space_obj), "Should be from this generation");
ysr@1130 1342 if (ParGCUseLocalOverflow) {
ysr@1114 1343 // In the case of compressed oops, we use a private, not-shared
ysr@1114 1344 // overflow stack.
ysr@1114 1345 par_scan_state->push_on_overflow_stack(from_space_obj);
ysr@1114 1346 } else {
ysr@1130 1347 assert(!UseCompressedOops, "Error");
ysr@1114 1348 // if the object has been forwarded to itself, then we cannot
ysr@1114 1349 // use the klass pointer for the linked list. Instead we have
ysr@1114 1350 // to allocate an oopDesc in the C-Heap and use that for the linked list.
ysr@1114 1351 // XXX This is horribly inefficient when a promotion failure occurs
ysr@1114 1352 // and should be fixed. XXX FIX ME !!!
ysr@969 1353 #ifndef PRODUCT
ysr@1114 1354 Atomic::inc_ptr(&_num_par_pushes);
ysr@1114 1355 assert(_num_par_pushes > 0, "Tautology");
ysr@969 1356 #endif
ysr@1114 1357 if (from_space_obj->forwardee() == from_space_obj) {
ysr@1114 1358 oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1);
ysr@1114 1359 listhead->forward_to(from_space_obj);
ysr@1114 1360 from_space_obj = listhead;
ysr@1114 1361 }
ysr@1114 1362 oop observed_overflow_list = _overflow_list;
ysr@1114 1363 oop cur_overflow_list;
ysr@1114 1364 do {
ysr@1114 1365 cur_overflow_list = observed_overflow_list;
ysr@1114 1366 if (cur_overflow_list != BUSY) {
ysr@1114 1367 from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
ysr@1114 1368 } else {
ysr@1114 1369 from_space_obj->set_klass_to_list_ptr(NULL);
ysr@1114 1370 }
ysr@1114 1371 observed_overflow_list =
ysr@1114 1372 (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
ysr@1114 1373 } while (cur_overflow_list != observed_overflow_list);
duke@435 1374 }
duke@435 1375 }
duke@435 1376
ysr@1114 1377 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
ysr@1114 1378 bool res;
ysr@1114 1379
ysr@1130 1380 if (ParGCUseLocalOverflow) {
ysr@1114 1381 res = par_scan_state->take_from_overflow_stack();
ysr@1114 1382 } else {
ysr@1130 1383 assert(!UseCompressedOops, "Error");
ysr@1114 1384 res = take_from_overflow_list_work(par_scan_state);
ysr@1114 1385 }
ysr@1114 1386 return res;
ysr@1114 1387 }
ysr@1114 1388
ysr@1114 1389
ysr@969 1390 // *NOTE*: The overflow list manipulation code here and
ysr@969 1391 // in CMSCollector:: are very similar in shape,
ysr@969 1392 // except that in the CMS case we thread the objects
ysr@969 1393 // directly into the list via their mark word, and do
ysr@969 1394 // not need to deal with special cases below related
ysr@969 1395 // to chunking of object arrays and promotion failure
ysr@969 1396 // handling.
ysr@969 1397 // CR 6797058 has been filed to attempt consolidation of
ysr@969 1398 // the common code.
ysr@969 1399 // Because of the common code, if you make any changes in
ysr@969 1400 // the code below, please check the CMS version to see if
ysr@969 1401 // similar changes might be needed.
ysr@969 1402 // See CMSCollector::par_take_from_overflow_list() for
ysr@969 1403 // more extensive documentation comments.
ysr@1114 1404 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
duke@435 1405 ObjToScanQueue* work_q = par_scan_state->work_queue();
duke@435 1406 // How many to take?
ysr@1114 1407 size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
ysr@969 1408 (size_t)ParGCDesiredObjsFromOverflowList);
duke@435 1409
jcoomes@2191 1410 assert(!UseCompressedOops, "Error");
ysr@1114 1411 assert(par_scan_state->overflow_stack() == NULL, "Error");
duke@435 1412 if (_overflow_list == NULL) return false;
duke@435 1413
duke@435 1414 // Otherwise, there was something there; try claiming the list.
ysr@969 1415 oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
ysr@969 1416 // Trim off a prefix of at most objsFromOverflow items
ysr@969 1417 Thread* tid = Thread::current();
ysr@969 1418 size_t spin_count = (size_t)ParallelGCThreads;
ysr@969 1419 size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
ysr@969 1420 for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
ysr@969 1421 // someone grabbed it before we did ...
ysr@969 1422 // ... we spin for a short while...
ysr@969 1423 os::sleep(tid, sleep_time_millis, false);
ysr@969 1424 if (_overflow_list == NULL) {
ysr@969 1425 // nothing left to take
ysr@969 1426 return false;
ysr@969 1427 } else if (_overflow_list != BUSY) {
ysr@969 1428 // try and grab the prefix
ysr@969 1429 prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
ysr@969 1430 }
duke@435 1431 }
ysr@969 1432 if (prefix == NULL || prefix == BUSY) {
ysr@969 1433 // Nothing to take or waited long enough
ysr@969 1434 if (prefix == NULL) {
ysr@969 1435 // Write back the NULL in case we overwrote it with BUSY above
ysr@969 1436 // and it is still the same value.
ysr@969 1437 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
ysr@969 1438 }
ysr@969 1439 return false;
ysr@969 1440 }
ysr@969 1441 assert(prefix != NULL && prefix != BUSY, "Error");
ysr@969 1442 size_t i = 1;
duke@435 1443 oop cur = prefix;
coleenp@602 1444 while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
duke@435 1445 i++; cur = oop(cur->klass());
duke@435 1446 }
duke@435 1447
duke@435 1448 // Reattach remaining (suffix) to overflow list
ysr@969 1449 if (cur->klass_or_null() == NULL) {
ysr@969 1450 // Write back the NULL in lieu of the BUSY we wrote
ysr@969 1451 // above and it is still the same value.
ysr@969 1452 if (_overflow_list == BUSY) {
ysr@969 1453 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
duke@435 1454 }
ysr@969 1455 } else {
ysr@969 1456 assert(cur->klass_or_null() != BUSY, "Error");
ysr@969 1457 oop suffix = oop(cur->klass()); // suffix will be put back on global list
ysr@969 1458 cur->set_klass_to_list_ptr(NULL); // break off suffix
ysr@969 1459 // It's possible that the list is still in the empty(busy) state
ysr@969 1460 // we left it in a short while ago; in that case we may be
ysr@969 1461 // able to place back the suffix.
ysr@969 1462 oop observed_overflow_list = _overflow_list;
ysr@969 1463 oop cur_overflow_list = observed_overflow_list;
ysr@969 1464 bool attached = false;
ysr@969 1465 while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
ysr@969 1466 observed_overflow_list =
ysr@969 1467 (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
ysr@969 1468 if (cur_overflow_list == observed_overflow_list) {
ysr@969 1469 attached = true;
ysr@969 1470 break;
ysr@969 1471 } else cur_overflow_list = observed_overflow_list;
ysr@969 1472 }
ysr@969 1473 if (!attached) {
ysr@969 1474 // Too bad, someone else got in in between; we'll need to do a splice.
ysr@969 1475 // Find the last item of suffix list
ysr@969 1476 oop last = suffix;
ysr@969 1477 while (last->klass_or_null() != NULL) {
ysr@969 1478 last = oop(last->klass());
ysr@969 1479 }
ysr@969 1480 // Atomically prepend suffix to current overflow list
ysr@969 1481 observed_overflow_list = _overflow_list;
ysr@969 1482 do {
ysr@969 1483 cur_overflow_list = observed_overflow_list;
ysr@969 1484 if (cur_overflow_list != BUSY) {
ysr@969 1485 // Do the splice ...
ysr@969 1486 last->set_klass_to_list_ptr(cur_overflow_list);
ysr@969 1487 } else { // cur_overflow_list == BUSY
ysr@969 1488 last->set_klass_to_list_ptr(NULL);
ysr@969 1489 }
ysr@969 1490 observed_overflow_list =
ysr@969 1491 (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
ysr@969 1492 } while (cur_overflow_list != observed_overflow_list);
duke@435 1493 }
duke@435 1494 }
duke@435 1495
duke@435 1496 // Push objects on prefix list onto this thread's work queue
ysr@969 1497 assert(prefix != NULL && prefix != BUSY, "program logic");
duke@435 1498 cur = prefix;
ysr@969 1499 ssize_t n = 0;
duke@435 1500 while (cur != NULL) {
duke@435 1501 oop obj_to_push = cur->forwardee();
ysr@889 1502 oop next = oop(cur->klass_or_null());
duke@435 1503 cur->set_klass(obj_to_push->klass());
ysr@969 1504 // This may be an array object that is self-forwarded. In that case, the list pointer
ysr@969 1505 // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
ysr@969 1506 if (!is_in_reserved(cur)) {
ysr@969 1507 // This can become a scaling bottleneck when there is work queue overflow coincident
ysr@969 1508 // with promotion failure.
ysr@969 1509 oopDesc* f = cur;
ysr@969 1510 FREE_C_HEAP_ARRAY(oopDesc, f);
ysr@969 1511 } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
ysr@969 1512 assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
duke@435 1513 obj_to_push = cur;
duke@435 1514 }
ysr@969 1515 bool ok = work_q->push(obj_to_push);
ysr@969 1516 assert(ok, "Should have succeeded");
duke@435 1517 cur = next;
duke@435 1518 n++;
duke@435 1519 }
jcoomes@2065 1520 TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
ysr@969 1521 #ifndef PRODUCT
ysr@969 1522 assert(_num_par_pushes >= n, "Too many pops?");
ysr@969 1523 Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
ysr@969 1524 #endif
duke@435 1525 return true;
duke@435 1526 }
ysr@969 1527 #undef BUSY
duke@435 1528
duke@435 1529 void ParNewGeneration::ref_processor_init()
duke@435 1530 {
duke@435 1531 if (_ref_processor == NULL) {
duke@435 1532 // Allocate and initialize a reference processor
ysr@2651 1533 _ref_processor =
ysr@2651 1534 new ReferenceProcessor(_reserved, // span
ysr@2651 1535 ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
ysr@2651 1536 (int) ParallelGCThreads, // mt processing degree
ysr@2651 1537 refs_discovery_is_mt(), // mt discovery
ysr@2651 1538 (int) ParallelGCThreads, // mt discovery degree
ysr@2651 1539 refs_discovery_is_atomic(), // atomic_discovery
ysr@2651 1540 NULL, // is_alive_non_header
ysr@2651 1541 false); // write barrier for next field updates
duke@435 1542 }
duke@435 1543 }
duke@435 1544
duke@435 1545 const char* ParNewGeneration::name() const {
duke@435 1546 return "par new generation";
duke@435 1547 }
jmasa@2188 1548
jmasa@2188 1549 bool ParNewGeneration::in_use() {
jmasa@2188 1550 return UseParNewGC && ParallelGCThreads > 0;
jmasa@2188 1551 }

mercurial