src/share/vm/utilities/taskqueue.hpp

Tue, 11 May 2010 14:35:43 -0700

author
prr
date
Tue, 11 May 2010 14:35:43 -0700
changeset 1840
fb57d4cf76c2
parent 1746
2a1472c30599
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6931180: Migration to recent versions of MS Platform SDK
6951582: Build problems on win64
Summary: Changes to enable building JDK7 with Microsoft Visual Studio 2010
Reviewed-by: ohair, art, ccheung, dcubed

duke@435 1 /*
xdono@1014 2 * Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
jcoomes@1746 25 template <unsigned int N>
duke@435 26 class TaskQueueSuper: public CHeapObj {
duke@435 27 protected:
jcoomes@1342 28 // Internal type for indexing the queue; also used for the tag.
jcoomes@1342 29 typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
jcoomes@1342 30
jcoomes@1342 31 // The first free element after the last one pushed (mod N).
ysr@976 32 volatile uint _bottom;
duke@435 33
jcoomes@1746 34 enum { MOD_N_MASK = N - 1 };
duke@435 35
jcoomes@1342 36 class Age {
jcoomes@1342 37 public:
jcoomes@1342 38 Age(size_t data = 0) { _data = data; }
jcoomes@1342 39 Age(const Age& age) { _data = age._data; }
jcoomes@1342 40 Age(idx_t top, idx_t tag) { _fields._top = top; _fields._tag = tag; }
duke@435 41
jcoomes@1342 42 Age get() const volatile { return _data; }
jcoomes@1342 43 void set(Age age) volatile { _data = age._data; }
duke@435 44
jcoomes@1342 45 idx_t top() const volatile { return _fields._top; }
jcoomes@1342 46 idx_t tag() const volatile { return _fields._tag; }
duke@435 47
jcoomes@1342 48 // Increment top; if it wraps, increment tag also.
jcoomes@1342 49 void increment() {
jcoomes@1342 50 _fields._top = increment_index(_fields._top);
jcoomes@1342 51 if (_fields._top == 0) ++_fields._tag;
jcoomes@1342 52 }
duke@435 53
jcoomes@1342 54 Age cmpxchg(const Age new_age, const Age old_age) volatile {
jcoomes@1342 55 return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
jcoomes@1342 56 (volatile intptr_t *)&_data,
jcoomes@1342 57 (intptr_t)old_age._data);
duke@435 58 }
jcoomes@1342 59
jcoomes@1342 60 bool operator ==(const Age& other) const { return _data == other._data; }
jcoomes@1342 61
jcoomes@1342 62 private:
jcoomes@1342 63 struct fields {
jcoomes@1342 64 idx_t _top;
jcoomes@1342 65 idx_t _tag;
jcoomes@1342 66 };
jcoomes@1342 67 union {
jcoomes@1342 68 size_t _data;
jcoomes@1342 69 fields _fields;
jcoomes@1342 70 };
duke@435 71 };
jcoomes@1342 72
jcoomes@1342 73 volatile Age _age;
jcoomes@1342 74
jcoomes@1342 75 // These both operate mod N.
jcoomes@1342 76 static uint increment_index(uint ind) {
jcoomes@1342 77 return (ind + 1) & MOD_N_MASK;
duke@435 78 }
jcoomes@1342 79 static uint decrement_index(uint ind) {
jcoomes@1342 80 return (ind - 1) & MOD_N_MASK;
duke@435 81 }
duke@435 82
jcoomes@1342 83 // Returns a number in the range [0..N). If the result is "N-1", it should be
jcoomes@1342 84 // interpreted as 0.
jcoomes@1746 85 uint dirty_size(uint bot, uint top) const {
jcoomes@1342 86 return (bot - top) & MOD_N_MASK;
duke@435 87 }
duke@435 88
duke@435 89 // Returns the size corresponding to the given "bot" and "top".
jcoomes@1746 90 uint size(uint bot, uint top) const {
ysr@976 91 uint sz = dirty_size(bot, top);
jcoomes@1342 92 // Has the queue "wrapped", so that bottom is less than top? There's a
jcoomes@1342 93 // complicated special case here. A pair of threads could perform pop_local
jcoomes@1342 94 // and pop_global operations concurrently, starting from a state in which
jcoomes@1342 95 // _bottom == _top+1. The pop_local could succeed in decrementing _bottom,
jcoomes@1342 96 // and the pop_global in incrementing _top (in which case the pop_global
jcoomes@1342 97 // will be awarded the contested queue element.) The resulting state must
jcoomes@1342 98 // be interpreted as an empty queue. (We only need to worry about one such
jcoomes@1342 99 // event: only the queue owner performs pop_local's, and several concurrent
jcoomes@1342 100 // threads attempting to perform the pop_global will all perform the same
jcoomes@1342 101 // CAS, and only one can succeed.) Any stealing thread that reads after
jcoomes@1342 102 // either the increment or decrement will see an empty queue, and will not
jcoomes@1342 103 // join the competitors. The "sz == -1 || sz == N-1" state will not be
jcoomes@1342 104 // modified by concurrent queues, so the owner thread can reset the state to
jcoomes@1342 105 // _bottom == top so subsequent pushes will be performed normally.
jcoomes@1342 106 return (sz == N - 1) ? 0 : sz;
duke@435 107 }
duke@435 108
duke@435 109 public:
duke@435 110 TaskQueueSuper() : _bottom(0), _age() {}
duke@435 111
jcoomes@1746 112 // Return true if the TaskQueue contains any tasks.
jcoomes@1746 113 bool peek() { return _bottom != _age.top(); }
duke@435 114
duke@435 115 // Return an estimate of the number of elements in the queue.
duke@435 116 // The "careful" version admits the possibility of pop_local/pop_global
duke@435 117 // races.
jcoomes@1746 118 uint size() const {
jcoomes@1342 119 return size(_bottom, _age.top());
duke@435 120 }
duke@435 121
jcoomes@1746 122 uint dirty_size() const {
jcoomes@1342 123 return dirty_size(_bottom, _age.top());
duke@435 124 }
duke@435 125
ysr@777 126 void set_empty() {
ysr@777 127 _bottom = 0;
jcoomes@1342 128 _age.set(0);
ysr@777 129 }
ysr@777 130
duke@435 131 // Maximum number of elements allowed in the queue. This is two less
duke@435 132 // than the actual queue size, for somewhat complicated reasons.
jcoomes@1746 133 uint max_elems() const { return N - 2; }
jmasa@1719 134
jmasa@1719 135 // Total size of queue.
jmasa@1719 136 static const uint total_size() { return N; }
duke@435 137 };
duke@435 138
jcoomes@1746 139 template<class E, unsigned int N = TASKQUEUE_SIZE>
jcoomes@1746 140 class GenericTaskQueue: public TaskQueueSuper<N> {
jcoomes@1746 141 protected:
jcoomes@1746 142 typedef typename TaskQueueSuper<N>::Age Age;
jcoomes@1746 143 typedef typename TaskQueueSuper<N>::idx_t idx_t;
jcoomes@1746 144
jcoomes@1746 145 using TaskQueueSuper<N>::_bottom;
jcoomes@1746 146 using TaskQueueSuper<N>::_age;
jcoomes@1746 147 using TaskQueueSuper<N>::increment_index;
jcoomes@1746 148 using TaskQueueSuper<N>::decrement_index;
jcoomes@1746 149 using TaskQueueSuper<N>::dirty_size;
jcoomes@1746 150
jcoomes@1746 151 public:
jcoomes@1746 152 using TaskQueueSuper<N>::max_elems;
jcoomes@1746 153 using TaskQueueSuper<N>::size;
jcoomes@1746 154
duke@435 155 private:
duke@435 156 // Slow paths for push, pop_local. (pop_global has no fast path.)
ysr@976 157 bool push_slow(E t, uint dirty_n_elems);
ysr@976 158 bool pop_local_slow(uint localBot, Age oldAge);
duke@435 159
duke@435 160 public:
jcoomes@1746 161 typedef E element_type;
jcoomes@1746 162
duke@435 163 // Initializes the queue to empty.
duke@435 164 GenericTaskQueue();
duke@435 165
duke@435 166 void initialize();
duke@435 167
duke@435 168 // Push the task "t" on the queue. Returns "false" iff the queue is
duke@435 169 // full.
duke@435 170 inline bool push(E t);
duke@435 171
duke@435 172 // If succeeds in claiming a task (from the 'local' end, that is, the
duke@435 173 // most recently pushed task), returns "true" and sets "t" to that task.
duke@435 174 // Otherwise, the queue is empty and returns false.
duke@435 175 inline bool pop_local(E& t);
duke@435 176
duke@435 177 // If succeeds in claiming a task (from the 'global' end, that is, the
duke@435 178 // least recently pushed task), returns "true" and sets "t" to that task.
duke@435 179 // Otherwise, the queue is empty and returns false.
duke@435 180 bool pop_global(E& t);
duke@435 181
duke@435 182 // Delete any resource associated with the queue.
duke@435 183 ~GenericTaskQueue();
duke@435 184
ysr@777 185 // apply the closure to all elements in the task queue
ysr@777 186 void oops_do(OopClosure* f);
ysr@777 187
duke@435 188 private:
duke@435 189 // Element array.
duke@435 190 volatile E* _elems;
duke@435 191 };
duke@435 192
jcoomes@1746 193 template<class E, unsigned int N>
jcoomes@1746 194 GenericTaskQueue<E, N>::GenericTaskQueue() {
jcoomes@1342 195 assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
duke@435 196 }
duke@435 197
jcoomes@1746 198 template<class E, unsigned int N>
jcoomes@1746 199 void GenericTaskQueue<E, N>::initialize() {
jcoomes@1342 200 _elems = NEW_C_HEAP_ARRAY(E, N);
duke@435 201 guarantee(_elems != NULL, "Allocation failed.");
duke@435 202 }
duke@435 203
jcoomes@1746 204 template<class E, unsigned int N>
jcoomes@1746 205 void GenericTaskQueue<E, N>::oops_do(OopClosure* f) {
ysr@777 206 // tty->print_cr("START OopTaskQueue::oops_do");
ysr@976 207 uint iters = size();
ysr@976 208 uint index = _bottom;
ysr@976 209 for (uint i = 0; i < iters; ++i) {
ysr@777 210 index = decrement_index(index);
ysr@777 211 // tty->print_cr(" doing entry %d," INTPTR_T " -> " INTPTR_T,
ysr@777 212 // index, &_elems[index], _elems[index]);
ysr@777 213 E* t = (E*)&_elems[index]; // cast away volatility
ysr@777 214 oop* p = (oop*)t;
ysr@777 215 assert((*t)->is_oop_or_null(), "Not an oop or null");
ysr@777 216 f->do_oop(p);
ysr@777 217 }
ysr@777 218 // tty->print_cr("END OopTaskQueue::oops_do");
ysr@777 219 }
ysr@777 220
jcoomes@1746 221 template<class E, unsigned int N>
jcoomes@1746 222 bool GenericTaskQueue<E, N>::push_slow(E t, uint dirty_n_elems) {
jcoomes@1342 223 if (dirty_n_elems == N - 1) {
duke@435 224 // Actually means 0, so do the push.
ysr@976 225 uint localBot = _bottom;
jcoomes@1746 226 // g++ complains if the volatile result of the assignment is unused.
jcoomes@1746 227 const_cast<E&>(_elems[localBot] = t);
bobv@1459 228 OrderAccess::release_store(&_bottom, increment_index(localBot));
duke@435 229 return true;
jcoomes@1342 230 }
jcoomes@1342 231 return false;
duke@435 232 }
duke@435 233
jcoomes@1746 234 template<class E, unsigned int N>
jcoomes@1746 235 bool GenericTaskQueue<E, N>::
ysr@976 236 pop_local_slow(uint localBot, Age oldAge) {
duke@435 237 // This queue was observed to contain exactly one element; either this
duke@435 238 // thread will claim it, or a competing "pop_global". In either case,
duke@435 239 // the queue will be logically empty afterwards. Create a new Age value
duke@435 240 // that represents the empty queue for the given value of "_bottom". (We
duke@435 241 // must also increment "tag" because of the case where "bottom == 1",
duke@435 242 // "top == 0". A pop_global could read the queue element in that case,
duke@435 243 // then have the owner thread do a pop followed by another push. Without
duke@435 244 // the incrementing of "tag", the pop_global's CAS could succeed,
duke@435 245 // allowing it to believe it has claimed the stale element.)
jcoomes@1342 246 Age newAge((idx_t)localBot, oldAge.tag() + 1);
duke@435 247 // Perhaps a competing pop_global has already incremented "top", in which
duke@435 248 // case it wins the element.
duke@435 249 if (localBot == oldAge.top()) {
duke@435 250 // No competing pop_global has yet incremented "top"; we'll try to
duke@435 251 // install new_age, thus claiming the element.
jcoomes@1342 252 Age tempAge = _age.cmpxchg(newAge, oldAge);
duke@435 253 if (tempAge == oldAge) {
duke@435 254 // We win.
jcoomes@1342 255 assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
duke@435 256 return true;
duke@435 257 }
duke@435 258 }
jcoomes@1342 259 // We lose; a completing pop_global gets the element. But the queue is empty
jcoomes@1342 260 // and top is greater than bottom. Fix this representation of the empty queue
jcoomes@1342 261 // to become the canonical one.
jcoomes@1342 262 _age.set(newAge);
jcoomes@1342 263 assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
duke@435 264 return false;
duke@435 265 }
duke@435 266
jcoomes@1746 267 template<class E, unsigned int N>
jcoomes@1746 268 bool GenericTaskQueue<E, N>::pop_global(E& t) {
jcoomes@1342 269 Age oldAge = _age.get();
ysr@976 270 uint localBot = _bottom;
ysr@976 271 uint n_elems = size(localBot, oldAge.top());
duke@435 272 if (n_elems == 0) {
duke@435 273 return false;
duke@435 274 }
jcoomes@1342 275
jcoomes@1746 276 const_cast<E&>(t = _elems[oldAge.top()]);
jcoomes@1342 277 Age newAge(oldAge);
jcoomes@1342 278 newAge.increment();
jcoomes@1342 279 Age resAge = _age.cmpxchg(newAge, oldAge);
jcoomes@1342 280
duke@435 281 // Note that using "_bottom" here might fail, since a pop_local might
duke@435 282 // have decremented it.
jcoomes@1342 283 assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
jcoomes@1342 284 return resAge == oldAge;
duke@435 285 }
duke@435 286
jcoomes@1746 287 template<class E, unsigned int N>
jcoomes@1746 288 GenericTaskQueue<E, N>::~GenericTaskQueue() {
duke@435 289 FREE_C_HEAP_ARRAY(E, _elems);
duke@435 290 }
duke@435 291
duke@435 292 // Inherits the typedef of "Task" from above.
duke@435 293 class TaskQueueSetSuper: public CHeapObj {
duke@435 294 protected:
duke@435 295 static int randomParkAndMiller(int* seed0);
duke@435 296 public:
duke@435 297 // Returns "true" if some TaskQueue in the set contains a task.
duke@435 298 virtual bool peek() = 0;
duke@435 299 };
duke@435 300
jcoomes@1746 301 template<class T>
jcoomes@1746 302 class GenericTaskQueueSet: public TaskQueueSetSuper {
duke@435 303 private:
ysr@976 304 uint _n;
jcoomes@1746 305 T** _queues;
duke@435 306
duke@435 307 public:
jcoomes@1746 308 typedef typename T::element_type E;
jcoomes@1746 309
duke@435 310 GenericTaskQueueSet(int n) : _n(n) {
jcoomes@1746 311 typedef T* GenericTaskQueuePtr;
duke@435 312 _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
duke@435 313 for (int i = 0; i < n; i++) {
duke@435 314 _queues[i] = NULL;
duke@435 315 }
duke@435 316 }
duke@435 317
ysr@976 318 bool steal_1_random(uint queue_num, int* seed, E& t);
ysr@976 319 bool steal_best_of_2(uint queue_num, int* seed, E& t);
ysr@976 320 bool steal_best_of_all(uint queue_num, int* seed, E& t);
duke@435 321
jcoomes@1746 322 void register_queue(uint i, T* q);
duke@435 323
jcoomes@1746 324 T* queue(uint n);
duke@435 325
duke@435 326 // The thread with queue number "queue_num" (and whose random number seed
duke@435 327 // is at "seed") is trying to steal a task from some other queue. (It
duke@435 328 // may try several queues, according to some configuration parameter.)
duke@435 329 // If some steal succeeds, returns "true" and sets "t" the stolen task,
duke@435 330 // otherwise returns false.
ysr@976 331 bool steal(uint queue_num, int* seed, E& t);
duke@435 332
duke@435 333 bool peek();
duke@435 334 };
duke@435 335
jcoomes@1746 336 template<class T> void
jcoomes@1746 337 GenericTaskQueueSet<T>::register_queue(uint i, T* q) {
ysr@976 338 assert(i < _n, "index out of range.");
duke@435 339 _queues[i] = q;
duke@435 340 }
duke@435 341
jcoomes@1746 342 template<class T> T*
jcoomes@1746 343 GenericTaskQueueSet<T>::queue(uint i) {
duke@435 344 return _queues[i];
duke@435 345 }
duke@435 346
jcoomes@1746 347 template<class T> bool
jcoomes@1746 348 GenericTaskQueueSet<T>::steal(uint queue_num, int* seed, E& t) {
ysr@976 349 for (uint i = 0; i < 2 * _n; i++)
duke@435 350 if (steal_best_of_2(queue_num, seed, t))
duke@435 351 return true;
duke@435 352 return false;
duke@435 353 }
duke@435 354
jcoomes@1746 355 template<class T> bool
jcoomes@1746 356 GenericTaskQueueSet<T>::steal_best_of_all(uint queue_num, int* seed, E& t) {
duke@435 357 if (_n > 2) {
duke@435 358 int best_k;
ysr@976 359 uint best_sz = 0;
ysr@976 360 for (uint k = 0; k < _n; k++) {
duke@435 361 if (k == queue_num) continue;
ysr@976 362 uint sz = _queues[k]->size();
duke@435 363 if (sz > best_sz) {
duke@435 364 best_sz = sz;
duke@435 365 best_k = k;
duke@435 366 }
duke@435 367 }
duke@435 368 return best_sz > 0 && _queues[best_k]->pop_global(t);
duke@435 369 } else if (_n == 2) {
duke@435 370 // Just try the other one.
duke@435 371 int k = (queue_num + 1) % 2;
duke@435 372 return _queues[k]->pop_global(t);
duke@435 373 } else {
duke@435 374 assert(_n == 1, "can't be zero.");
duke@435 375 return false;
duke@435 376 }
duke@435 377 }
duke@435 378
jcoomes@1746 379 template<class T> bool
jcoomes@1746 380 GenericTaskQueueSet<T>::steal_1_random(uint queue_num, int* seed, E& t) {
duke@435 381 if (_n > 2) {
ysr@976 382 uint k = queue_num;
duke@435 383 while (k == queue_num) k = randomParkAndMiller(seed) % _n;
duke@435 384 return _queues[2]->pop_global(t);
duke@435 385 } else if (_n == 2) {
duke@435 386 // Just try the other one.
duke@435 387 int k = (queue_num + 1) % 2;
duke@435 388 return _queues[k]->pop_global(t);
duke@435 389 } else {
duke@435 390 assert(_n == 1, "can't be zero.");
duke@435 391 return false;
duke@435 392 }
duke@435 393 }
duke@435 394
jcoomes@1746 395 template<class T> bool
jcoomes@1746 396 GenericTaskQueueSet<T>::steal_best_of_2(uint queue_num, int* seed, E& t) {
duke@435 397 if (_n > 2) {
ysr@976 398 uint k1 = queue_num;
duke@435 399 while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
ysr@976 400 uint k2 = queue_num;
duke@435 401 while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
duke@435 402 // Sample both and try the larger.
ysr@976 403 uint sz1 = _queues[k1]->size();
ysr@976 404 uint sz2 = _queues[k2]->size();
duke@435 405 if (sz2 > sz1) return _queues[k2]->pop_global(t);
duke@435 406 else return _queues[k1]->pop_global(t);
duke@435 407 } else if (_n == 2) {
duke@435 408 // Just try the other one.
ysr@976 409 uint k = (queue_num + 1) % 2;
duke@435 410 return _queues[k]->pop_global(t);
duke@435 411 } else {
duke@435 412 assert(_n == 1, "can't be zero.");
duke@435 413 return false;
duke@435 414 }
duke@435 415 }
duke@435 416
jcoomes@1746 417 template<class T>
jcoomes@1746 418 bool GenericTaskQueueSet<T>::peek() {
duke@435 419 // Try all the queues.
ysr@976 420 for (uint j = 0; j < _n; j++) {
duke@435 421 if (_queues[j]->peek())
duke@435 422 return true;
duke@435 423 }
duke@435 424 return false;
duke@435 425 }
duke@435 426
ysr@777 427 // When to terminate from the termination protocol.
ysr@777 428 class TerminatorTerminator: public CHeapObj {
ysr@777 429 public:
ysr@777 430 virtual bool should_exit_termination() = 0;
ysr@777 431 };
ysr@777 432
duke@435 433 // A class to aid in the termination of a set of parallel tasks using
duke@435 434 // TaskQueueSet's for work stealing.
duke@435 435
jmasa@981 436 #undef TRACESPINNING
jmasa@981 437
duke@435 438 class ParallelTaskTerminator: public StackObj {
duke@435 439 private:
duke@435 440 int _n_threads;
duke@435 441 TaskQueueSetSuper* _queue_set;
ysr@976 442 int _offered_termination;
duke@435 443
jmasa@981 444 #ifdef TRACESPINNING
jmasa@981 445 static uint _total_yields;
jmasa@981 446 static uint _total_spins;
jmasa@981 447 static uint _total_peeks;
jmasa@981 448 #endif
jmasa@981 449
duke@435 450 bool peek_in_queue_set();
duke@435 451 protected:
duke@435 452 virtual void yield();
duke@435 453 void sleep(uint millis);
duke@435 454
duke@435 455 public:
duke@435 456
duke@435 457 // "n_threads" is the number of threads to be terminated. "queue_set" is a
duke@435 458 // queue sets of work queues of other threads.
duke@435 459 ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
duke@435 460
duke@435 461 // The current thread has no work, and is ready to terminate if everyone
duke@435 462 // else is. If returns "true", all threads are terminated. If returns
duke@435 463 // "false", available work has been observed in one of the task queues,
duke@435 464 // so the global task is not complete.
ysr@777 465 bool offer_termination() {
ysr@777 466 return offer_termination(NULL);
ysr@777 467 }
ysr@777 468
jcoomes@1342 469 // As above, but it also terminates if the should_exit_termination()
ysr@777 470 // method of the terminator parameter returns true. If terminator is
ysr@777 471 // NULL, then it is ignored.
ysr@777 472 bool offer_termination(TerminatorTerminator* terminator);
duke@435 473
duke@435 474 // Reset the terminator, so that it may be reused again.
duke@435 475 // The caller is responsible for ensuring that this is done
duke@435 476 // in an MT-safe manner, once the previous round of use of
duke@435 477 // the terminator is finished.
duke@435 478 void reset_for_reuse();
duke@435 479
jmasa@981 480 #ifdef TRACESPINNING
jmasa@981 481 static uint total_yields() { return _total_yields; }
jmasa@981 482 static uint total_spins() { return _total_spins; }
jmasa@981 483 static uint total_peeks() { return _total_peeks; }
jmasa@981 484 static void print_termination_counts();
jmasa@981 485 #endif
duke@435 486 };
duke@435 487
jcoomes@1746 488 template<class E, unsigned int N> inline bool
jcoomes@1746 489 GenericTaskQueue<E, N>::push(E t) {
ysr@976 490 uint localBot = _bottom;
jcoomes@1342 491 assert((localBot >= 0) && (localBot < N), "_bottom out of range.");
jcoomes@1342 492 idx_t top = _age.top();
ysr@976 493 uint dirty_n_elems = dirty_size(localBot, top);
jcoomes@1746 494 assert(dirty_n_elems < N, "n_elems out of range.");
duke@435 495 if (dirty_n_elems < max_elems()) {
jcoomes@1746 496 // g++ complains if the volatile result of the assignment is unused.
jcoomes@1746 497 const_cast<E&>(_elems[localBot] = t);
bobv@1459 498 OrderAccess::release_store(&_bottom, increment_index(localBot));
duke@435 499 return true;
duke@435 500 } else {
duke@435 501 return push_slow(t, dirty_n_elems);
duke@435 502 }
duke@435 503 }
duke@435 504
jcoomes@1746 505 template<class E, unsigned int N> inline bool
jcoomes@1746 506 GenericTaskQueue<E, N>::pop_local(E& t) {
ysr@976 507 uint localBot = _bottom;
jcoomes@1342 508 // This value cannot be N-1. That can only occur as a result of
duke@435 509 // the assignment to bottom in this method. If it does, this method
duke@435 510 // resets the size( to 0 before the next call (which is sequential,
duke@435 511 // since this is pop_local.)
jcoomes@1342 512 uint dirty_n_elems = dirty_size(localBot, _age.top());
jcoomes@1342 513 assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
duke@435 514 if (dirty_n_elems == 0) return false;
duke@435 515 localBot = decrement_index(localBot);
duke@435 516 _bottom = localBot;
duke@435 517 // This is necessary to prevent any read below from being reordered
duke@435 518 // before the store just above.
duke@435 519 OrderAccess::fence();
jcoomes@1746 520 const_cast<E&>(t = _elems[localBot]);
duke@435 521 // This is a second read of "age"; the "size()" above is the first.
duke@435 522 // If there's still at least one element in the queue, based on the
duke@435 523 // "_bottom" and "age" we've read, then there can be no interference with
duke@435 524 // a "pop_global" operation, and we're done.
jcoomes@1342 525 idx_t tp = _age.top(); // XXX
duke@435 526 if (size(localBot, tp) > 0) {
jcoomes@1342 527 assert(dirty_size(localBot, tp) != N - 1, "sanity");
duke@435 528 return true;
duke@435 529 } else {
duke@435 530 // Otherwise, the queue contained exactly one element; we take the slow
duke@435 531 // path.
jcoomes@1342 532 return pop_local_slow(localBot, _age.get());
duke@435 533 }
duke@435 534 }
duke@435 535
duke@435 536 typedef oop Task;
jcoomes@1746 537 typedef GenericTaskQueue<Task> OopTaskQueue;
jcoomes@1746 538 typedef GenericTaskQueueSet<OopTaskQueue> OopTaskQueueSet;
duke@435 539
jcoomes@1746 540 #ifdef _MSC_VER
jcoomes@1746 541 #pragma warning(push)
jcoomes@1746 542 // warning C4522: multiple assignment operators specified
jcoomes@1746 543 #pragma warning(disable:4522)
jcoomes@1746 544 #endif
coleenp@548 545
coleenp@548 546 // This is a container class for either an oop* or a narrowOop*.
coleenp@548 547 // Both are pushed onto a task queue and the consumer will test is_narrow()
coleenp@548 548 // to determine which should be processed.
coleenp@548 549 class StarTask {
coleenp@548 550 void* _holder; // either union oop* or narrowOop*
jcoomes@1746 551
jcoomes@1746 552 enum { COMPRESSED_OOP_MASK = 1 };
jcoomes@1746 553
coleenp@548 554 public:
ysr@1280 555 StarTask(narrowOop* p) {
ysr@1280 556 assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
ysr@1280 557 _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
ysr@1280 558 }
ysr@1280 559 StarTask(oop* p) {
ysr@1280 560 assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
ysr@1280 561 _holder = (void*)p;
ysr@1280 562 }
coleenp@548 563 StarTask() { _holder = NULL; }
coleenp@548 564 operator oop*() { return (oop*)_holder; }
coleenp@548 565 operator narrowOop*() {
coleenp@548 566 return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
coleenp@548 567 }
coleenp@548 568
jcoomes@1746 569 StarTask& operator=(const StarTask& t) {
jcoomes@1746 570 _holder = t._holder;
jcoomes@1746 571 return *this;
jcoomes@1746 572 }
jcoomes@1746 573 volatile StarTask& operator=(const volatile StarTask& t) volatile {
jcoomes@1746 574 _holder = t._holder;
jcoomes@1746 575 return *this;
jcoomes@1746 576 }
coleenp@548 577
coleenp@548 578 bool is_narrow() const {
coleenp@548 579 return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
coleenp@548 580 }
coleenp@548 581 };
coleenp@548 582
jcoomes@1746 583 class ObjArrayTask
jcoomes@1746 584 {
jcoomes@1746 585 public:
jcoomes@1746 586 ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
jcoomes@1746 587 ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
jcoomes@1746 588 assert(idx <= size_t(max_jint), "too big");
jcoomes@1746 589 }
jcoomes@1746 590 ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
jcoomes@1746 591
jcoomes@1746 592 ObjArrayTask& operator =(const ObjArrayTask& t) {
jcoomes@1746 593 _obj = t._obj;
jcoomes@1746 594 _index = t._index;
jcoomes@1746 595 return *this;
jcoomes@1746 596 }
jcoomes@1746 597 volatile ObjArrayTask&
jcoomes@1746 598 operator =(const volatile ObjArrayTask& t) volatile {
jcoomes@1746 599 _obj = t._obj;
jcoomes@1746 600 _index = t._index;
jcoomes@1746 601 return *this;
jcoomes@1746 602 }
jcoomes@1746 603
jcoomes@1746 604 inline oop obj() const { return _obj; }
jcoomes@1746 605 inline int index() const { return _index; }
jcoomes@1746 606
jcoomes@1746 607 DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
jcoomes@1746 608
jcoomes@1746 609 private:
jcoomes@1746 610 oop _obj;
jcoomes@1746 611 int _index;
jcoomes@1746 612 };
jcoomes@1746 613
jcoomes@1746 614 #ifdef _MSC_VER
jcoomes@1746 615 #pragma warning(pop)
jcoomes@1746 616 #endif
jcoomes@1746 617
jcoomes@1746 618 typedef GenericTaskQueue<StarTask> OopStarTaskQueue;
jcoomes@1746 619 typedef GenericTaskQueueSet<OopStarTaskQueue> OopStarTaskQueueSet;
duke@435 620
jcoomes@810 621 typedef size_t RegionTask; // index for region
jcoomes@1746 622 typedef GenericTaskQueue<RegionTask> RegionTaskQueue;
jcoomes@1746 623 typedef GenericTaskQueueSet<RegionTaskQueue> RegionTaskQueueSet;
duke@435 624
jcoomes@810 625 class RegionTaskQueueWithOverflow: public CHeapObj {
duke@435 626 protected:
jcoomes@810 627 RegionTaskQueue _region_queue;
jcoomes@810 628 GrowableArray<RegionTask>* _overflow_stack;
duke@435 629
duke@435 630 public:
jcoomes@810 631 RegionTaskQueueWithOverflow() : _overflow_stack(NULL) {}
duke@435 632 // Initialize both stealable queue and overflow
duke@435 633 void initialize();
duke@435 634 // Save first to stealable queue and then to overflow
jcoomes@810 635 void save(RegionTask t);
duke@435 636 // Retrieve first from overflow and then from stealable queue
jcoomes@810 637 bool retrieve(RegionTask& region_index);
duke@435 638 // Retrieve from stealable queue
jcoomes@810 639 bool retrieve_from_stealable_queue(RegionTask& region_index);
duke@435 640 // Retrieve from overflow
jcoomes@810 641 bool retrieve_from_overflow(RegionTask& region_index);
duke@435 642 bool is_empty();
duke@435 643 bool stealable_is_empty();
duke@435 644 bool overflow_is_empty();
ysr@976 645 uint stealable_size() { return _region_queue.size(); }
jcoomes@810 646 RegionTaskQueue* task_queue() { return &_region_queue; }
duke@435 647 };
duke@435 648
jcoomes@810 649 #define USE_RegionTaskQueueWithOverflow

mercurial