src/share/vm/utilities/taskqueue.hpp

Tue, 14 Jul 2009 15:40:39 -0700

author
ysr
date
Tue, 14 Jul 2009 15:40:39 -0700
changeset 1280
df6caf649ff7
parent 1014
0fbdb4381b99
child 1342
3ee342e25e57
permissions
-rw-r--r--

6700789: G1: Enable use of compressed oops with G1 heaps
Summary: Modifications to G1 so as to allow the use of compressed oops.
Reviewed-by: apetrusenko, coleenp, jmasa, kvn, never, phh, tonyp

duke@435 1 /*
xdono@1014 2 * Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
ysr@976 25 #ifdef LP64
ysr@976 26 typedef juint TAG_TYPE;
ysr@976 27 // for a taskqueue size of 4M
ysr@976 28 #define LOG_TASKQ_SIZE 22
ysr@976 29 #else
ysr@976 30 typedef jushort TAG_TYPE;
ysr@976 31 // for a taskqueue size of 16K
ysr@976 32 #define LOG_TASKQ_SIZE 14
ysr@976 33 #endif
ysr@976 34
duke@435 35 class TaskQueueSuper: public CHeapObj {
duke@435 36 protected:
duke@435 37 // The first free element after the last one pushed (mod _n).
ysr@976 38 volatile uint _bottom;
duke@435 39
duke@435 40 // log2 of the size of the queue.
duke@435 41 enum SomeProtectedConstants {
ysr@976 42 Log_n = LOG_TASKQ_SIZE
duke@435 43 };
ysr@976 44 #undef LOG_TASKQ_SIZE
duke@435 45
duke@435 46 // Size of the queue.
ysr@976 47 uint n() { return (1 << Log_n); }
duke@435 48 // For computing "x mod n" efficiently.
ysr@976 49 uint n_mod_mask() { return n() - 1; }
duke@435 50
duke@435 51 struct Age {
ysr@976 52 TAG_TYPE _top;
ysr@976 53 TAG_TYPE _tag;
duke@435 54
ysr@976 55 TAG_TYPE tag() const { return _tag; }
ysr@976 56 TAG_TYPE top() const { return _top; }
duke@435 57
duke@435 58 Age() { _tag = 0; _top = 0; }
duke@435 59
duke@435 60 friend bool operator ==(const Age& a1, const Age& a2) {
duke@435 61 return a1.tag() == a2.tag() && a1.top() == a2.top();
duke@435 62 }
duke@435 63 };
duke@435 64 Age _age;
duke@435 65 // These make sure we do single atomic reads and writes.
duke@435 66 Age get_age() {
ysr@976 67 uint res = *(volatile uint*)(&_age);
duke@435 68 return *(Age*)(&res);
duke@435 69 }
duke@435 70 void set_age(Age a) {
ysr@976 71 *(volatile uint*)(&_age) = *(uint*)(&a);
duke@435 72 }
duke@435 73
ysr@976 74 TAG_TYPE get_top() {
duke@435 75 return get_age().top();
duke@435 76 }
duke@435 77
duke@435 78 // These both operate mod _n.
ysr@976 79 uint increment_index(uint ind) {
duke@435 80 return (ind + 1) & n_mod_mask();
duke@435 81 }
ysr@976 82 uint decrement_index(uint ind) {
duke@435 83 return (ind - 1) & n_mod_mask();
duke@435 84 }
duke@435 85
duke@435 86 // Returns a number in the range [0.._n). If the result is "n-1", it
duke@435 87 // should be interpreted as 0.
ysr@976 88 uint dirty_size(uint bot, uint top) {
ysr@976 89 return ((int)bot - (int)top) & n_mod_mask();
duke@435 90 }
duke@435 91
duke@435 92 // Returns the size corresponding to the given "bot" and "top".
ysr@976 93 uint size(uint bot, uint top) {
ysr@976 94 uint sz = dirty_size(bot, top);
duke@435 95 // Has the queue "wrapped", so that bottom is less than top?
duke@435 96 // There's a complicated special case here. A pair of threads could
duke@435 97 // perform pop_local and pop_global operations concurrently, starting
duke@435 98 // from a state in which _bottom == _top+1. The pop_local could
duke@435 99 // succeed in decrementing _bottom, and the pop_global in incrementing
duke@435 100 // _top (in which case the pop_global will be awarded the contested
duke@435 101 // queue element.) The resulting state must be interpreted as an empty
duke@435 102 // queue. (We only need to worry about one such event: only the queue
duke@435 103 // owner performs pop_local's, and several concurrent threads
duke@435 104 // attempting to perform the pop_global will all perform the same CAS,
duke@435 105 // and only one can succeed. Any stealing thread that reads after
ysr@976 106 // either the increment or decrement will see an empty queue, and will
duke@435 107 // not join the competitors. The "sz == -1 || sz == _n-1" state will
duke@435 108 // not be modified by concurrent queues, so the owner thread can reset
duke@435 109 // the state to _bottom == top so subsequent pushes will be performed
duke@435 110 // normally.
duke@435 111 if (sz == (n()-1)) return 0;
duke@435 112 else return sz;
duke@435 113 }
duke@435 114
duke@435 115 public:
duke@435 116 TaskQueueSuper() : _bottom(0), _age() {}
duke@435 117
duke@435 118 // Return "true" if the TaskQueue contains any tasks.
duke@435 119 bool peek();
duke@435 120
duke@435 121 // Return an estimate of the number of elements in the queue.
duke@435 122 // The "careful" version admits the possibility of pop_local/pop_global
duke@435 123 // races.
ysr@976 124 uint size() {
duke@435 125 return size(_bottom, get_top());
duke@435 126 }
duke@435 127
ysr@976 128 uint dirty_size() {
duke@435 129 return dirty_size(_bottom, get_top());
duke@435 130 }
duke@435 131
ysr@777 132 void set_empty() {
ysr@777 133 _bottom = 0;
ysr@777 134 _age = Age();
ysr@777 135 }
ysr@777 136
duke@435 137 // Maximum number of elements allowed in the queue. This is two less
duke@435 138 // than the actual queue size, for somewhat complicated reasons.
ysr@976 139 uint max_elems() { return n() - 2; }
duke@435 140
duke@435 141 };
duke@435 142
duke@435 143 template<class E> class GenericTaskQueue: public TaskQueueSuper {
duke@435 144 private:
duke@435 145 // Slow paths for push, pop_local. (pop_global has no fast path.)
ysr@976 146 bool push_slow(E t, uint dirty_n_elems);
ysr@976 147 bool pop_local_slow(uint localBot, Age oldAge);
duke@435 148
duke@435 149 public:
duke@435 150 // Initializes the queue to empty.
duke@435 151 GenericTaskQueue();
duke@435 152
duke@435 153 void initialize();
duke@435 154
duke@435 155 // Push the task "t" on the queue. Returns "false" iff the queue is
duke@435 156 // full.
duke@435 157 inline bool push(E t);
duke@435 158
duke@435 159 // If succeeds in claiming a task (from the 'local' end, that is, the
duke@435 160 // most recently pushed task), returns "true" and sets "t" to that task.
duke@435 161 // Otherwise, the queue is empty and returns false.
duke@435 162 inline bool pop_local(E& t);
duke@435 163
duke@435 164 // If succeeds in claiming a task (from the 'global' end, that is, the
duke@435 165 // least recently pushed task), returns "true" and sets "t" to that task.
duke@435 166 // Otherwise, the queue is empty and returns false.
duke@435 167 bool pop_global(E& t);
duke@435 168
duke@435 169 // Delete any resource associated with the queue.
duke@435 170 ~GenericTaskQueue();
duke@435 171
ysr@777 172 // apply the closure to all elements in the task queue
ysr@777 173 void oops_do(OopClosure* f);
ysr@777 174
duke@435 175 private:
duke@435 176 // Element array.
duke@435 177 volatile E* _elems;
duke@435 178 };
duke@435 179
duke@435 180 template<class E>
duke@435 181 GenericTaskQueue<E>::GenericTaskQueue():TaskQueueSuper() {
ysr@976 182 assert(sizeof(Age) == sizeof(int), "Depends on this.");
duke@435 183 }
duke@435 184
duke@435 185 template<class E>
duke@435 186 void GenericTaskQueue<E>::initialize() {
duke@435 187 _elems = NEW_C_HEAP_ARRAY(E, n());
duke@435 188 guarantee(_elems != NULL, "Allocation failed.");
duke@435 189 }
duke@435 190
duke@435 191 template<class E>
ysr@777 192 void GenericTaskQueue<E>::oops_do(OopClosure* f) {
ysr@777 193 // tty->print_cr("START OopTaskQueue::oops_do");
ysr@976 194 uint iters = size();
ysr@976 195 uint index = _bottom;
ysr@976 196 for (uint i = 0; i < iters; ++i) {
ysr@777 197 index = decrement_index(index);
ysr@777 198 // tty->print_cr(" doing entry %d," INTPTR_T " -> " INTPTR_T,
ysr@777 199 // index, &_elems[index], _elems[index]);
ysr@777 200 E* t = (E*)&_elems[index]; // cast away volatility
ysr@777 201 oop* p = (oop*)t;
ysr@777 202 assert((*t)->is_oop_or_null(), "Not an oop or null");
ysr@777 203 f->do_oop(p);
ysr@777 204 }
ysr@777 205 // tty->print_cr("END OopTaskQueue::oops_do");
ysr@777 206 }
ysr@777 207
ysr@777 208
ysr@777 209 template<class E>
ysr@976 210 bool GenericTaskQueue<E>::push_slow(E t, uint dirty_n_elems) {
duke@435 211 if (dirty_n_elems == n() - 1) {
duke@435 212 // Actually means 0, so do the push.
ysr@976 213 uint localBot = _bottom;
duke@435 214 _elems[localBot] = t;
duke@435 215 _bottom = increment_index(localBot);
duke@435 216 return true;
duke@435 217 } else
duke@435 218 return false;
duke@435 219 }
duke@435 220
duke@435 221 template<class E>
duke@435 222 bool GenericTaskQueue<E>::
ysr@976 223 pop_local_slow(uint localBot, Age oldAge) {
duke@435 224 // This queue was observed to contain exactly one element; either this
duke@435 225 // thread will claim it, or a competing "pop_global". In either case,
duke@435 226 // the queue will be logically empty afterwards. Create a new Age value
duke@435 227 // that represents the empty queue for the given value of "_bottom". (We
duke@435 228 // must also increment "tag" because of the case where "bottom == 1",
duke@435 229 // "top == 0". A pop_global could read the queue element in that case,
duke@435 230 // then have the owner thread do a pop followed by another push. Without
duke@435 231 // the incrementing of "tag", the pop_global's CAS could succeed,
duke@435 232 // allowing it to believe it has claimed the stale element.)
duke@435 233 Age newAge;
duke@435 234 newAge._top = localBot;
duke@435 235 newAge._tag = oldAge.tag() + 1;
duke@435 236 // Perhaps a competing pop_global has already incremented "top", in which
duke@435 237 // case it wins the element.
duke@435 238 if (localBot == oldAge.top()) {
duke@435 239 Age tempAge;
duke@435 240 // No competing pop_global has yet incremented "top"; we'll try to
duke@435 241 // install new_age, thus claiming the element.
ysr@976 242 assert(sizeof(Age) == sizeof(int), "Assumption about CAS unit.");
ysr@976 243 *(uint*)&tempAge = Atomic::cmpxchg(*(uint*)&newAge, (volatile uint*)&_age, *(uint*)&oldAge);
duke@435 244 if (tempAge == oldAge) {
duke@435 245 // We win.
duke@435 246 assert(dirty_size(localBot, get_top()) != n() - 1,
duke@435 247 "Shouldn't be possible...");
duke@435 248 return true;
duke@435 249 }
duke@435 250 }
duke@435 251 // We fail; a completing pop_global gets the element. But the queue is
duke@435 252 // empty (and top is greater than bottom.) Fix this representation of
duke@435 253 // the empty queue to become the canonical one.
duke@435 254 set_age(newAge);
duke@435 255 assert(dirty_size(localBot, get_top()) != n() - 1,
duke@435 256 "Shouldn't be possible...");
duke@435 257 return false;
duke@435 258 }
duke@435 259
duke@435 260 template<class E>
duke@435 261 bool GenericTaskQueue<E>::pop_global(E& t) {
duke@435 262 Age newAge;
duke@435 263 Age oldAge = get_age();
ysr@976 264 uint localBot = _bottom;
ysr@976 265 uint n_elems = size(localBot, oldAge.top());
duke@435 266 if (n_elems == 0) {
duke@435 267 return false;
duke@435 268 }
duke@435 269 t = _elems[oldAge.top()];
duke@435 270 newAge = oldAge;
duke@435 271 newAge._top = increment_index(newAge.top());
duke@435 272 if ( newAge._top == 0 ) newAge._tag++;
duke@435 273 Age resAge;
ysr@976 274 *(uint*)&resAge = Atomic::cmpxchg(*(uint*)&newAge, (volatile uint*)&_age, *(uint*)&oldAge);
duke@435 275 // Note that using "_bottom" here might fail, since a pop_local might
duke@435 276 // have decremented it.
duke@435 277 assert(dirty_size(localBot, newAge._top) != n() - 1,
duke@435 278 "Shouldn't be possible...");
duke@435 279 return (resAge == oldAge);
duke@435 280 }
duke@435 281
duke@435 282 template<class E>
duke@435 283 GenericTaskQueue<E>::~GenericTaskQueue() {
duke@435 284 FREE_C_HEAP_ARRAY(E, _elems);
duke@435 285 }
duke@435 286
duke@435 287 // Inherits the typedef of "Task" from above.
duke@435 288 class TaskQueueSetSuper: public CHeapObj {
duke@435 289 protected:
duke@435 290 static int randomParkAndMiller(int* seed0);
duke@435 291 public:
duke@435 292 // Returns "true" if some TaskQueue in the set contains a task.
duke@435 293 virtual bool peek() = 0;
duke@435 294 };
duke@435 295
duke@435 296 template<class E> class GenericTaskQueueSet: public TaskQueueSetSuper {
duke@435 297 private:
ysr@976 298 uint _n;
duke@435 299 GenericTaskQueue<E>** _queues;
duke@435 300
duke@435 301 public:
duke@435 302 GenericTaskQueueSet(int n) : _n(n) {
duke@435 303 typedef GenericTaskQueue<E>* GenericTaskQueuePtr;
duke@435 304 _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
duke@435 305 guarantee(_queues != NULL, "Allocation failure.");
duke@435 306 for (int i = 0; i < n; i++) {
duke@435 307 _queues[i] = NULL;
duke@435 308 }
duke@435 309 }
duke@435 310
ysr@976 311 bool steal_1_random(uint queue_num, int* seed, E& t);
ysr@976 312 bool steal_best_of_2(uint queue_num, int* seed, E& t);
ysr@976 313 bool steal_best_of_all(uint queue_num, int* seed, E& t);
duke@435 314
ysr@976 315 void register_queue(uint i, GenericTaskQueue<E>* q);
duke@435 316
ysr@976 317 GenericTaskQueue<E>* queue(uint n);
duke@435 318
duke@435 319 // The thread with queue number "queue_num" (and whose random number seed
duke@435 320 // is at "seed") is trying to steal a task from some other queue. (It
duke@435 321 // may try several queues, according to some configuration parameter.)
duke@435 322 // If some steal succeeds, returns "true" and sets "t" the stolen task,
duke@435 323 // otherwise returns false.
ysr@976 324 bool steal(uint queue_num, int* seed, E& t);
duke@435 325
duke@435 326 bool peek();
duke@435 327 };
duke@435 328
duke@435 329 template<class E>
ysr@976 330 void GenericTaskQueueSet<E>::register_queue(uint i, GenericTaskQueue<E>* q) {
ysr@976 331 assert(i < _n, "index out of range.");
duke@435 332 _queues[i] = q;
duke@435 333 }
duke@435 334
duke@435 335 template<class E>
ysr@976 336 GenericTaskQueue<E>* GenericTaskQueueSet<E>::queue(uint i) {
duke@435 337 return _queues[i];
duke@435 338 }
duke@435 339
duke@435 340 template<class E>
ysr@976 341 bool GenericTaskQueueSet<E>::steal(uint queue_num, int* seed, E& t) {
ysr@976 342 for (uint i = 0; i < 2 * _n; i++)
duke@435 343 if (steal_best_of_2(queue_num, seed, t))
duke@435 344 return true;
duke@435 345 return false;
duke@435 346 }
duke@435 347
duke@435 348 template<class E>
ysr@976 349 bool GenericTaskQueueSet<E>::steal_best_of_all(uint queue_num, int* seed, E& t) {
duke@435 350 if (_n > 2) {
duke@435 351 int best_k;
ysr@976 352 uint best_sz = 0;
ysr@976 353 for (uint k = 0; k < _n; k++) {
duke@435 354 if (k == queue_num) continue;
ysr@976 355 uint sz = _queues[k]->size();
duke@435 356 if (sz > best_sz) {
duke@435 357 best_sz = sz;
duke@435 358 best_k = k;
duke@435 359 }
duke@435 360 }
duke@435 361 return best_sz > 0 && _queues[best_k]->pop_global(t);
duke@435 362 } else if (_n == 2) {
duke@435 363 // Just try the other one.
duke@435 364 int k = (queue_num + 1) % 2;
duke@435 365 return _queues[k]->pop_global(t);
duke@435 366 } else {
duke@435 367 assert(_n == 1, "can't be zero.");
duke@435 368 return false;
duke@435 369 }
duke@435 370 }
duke@435 371
duke@435 372 template<class E>
ysr@976 373 bool GenericTaskQueueSet<E>::steal_1_random(uint queue_num, int* seed, E& t) {
duke@435 374 if (_n > 2) {
ysr@976 375 uint k = queue_num;
duke@435 376 while (k == queue_num) k = randomParkAndMiller(seed) % _n;
duke@435 377 return _queues[2]->pop_global(t);
duke@435 378 } else if (_n == 2) {
duke@435 379 // Just try the other one.
duke@435 380 int k = (queue_num + 1) % 2;
duke@435 381 return _queues[k]->pop_global(t);
duke@435 382 } else {
duke@435 383 assert(_n == 1, "can't be zero.");
duke@435 384 return false;
duke@435 385 }
duke@435 386 }
duke@435 387
duke@435 388 template<class E>
ysr@976 389 bool GenericTaskQueueSet<E>::steal_best_of_2(uint queue_num, int* seed, E& t) {
duke@435 390 if (_n > 2) {
ysr@976 391 uint k1 = queue_num;
duke@435 392 while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
ysr@976 393 uint k2 = queue_num;
duke@435 394 while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
duke@435 395 // Sample both and try the larger.
ysr@976 396 uint sz1 = _queues[k1]->size();
ysr@976 397 uint sz2 = _queues[k2]->size();
duke@435 398 if (sz2 > sz1) return _queues[k2]->pop_global(t);
duke@435 399 else return _queues[k1]->pop_global(t);
duke@435 400 } else if (_n == 2) {
duke@435 401 // Just try the other one.
ysr@976 402 uint k = (queue_num + 1) % 2;
duke@435 403 return _queues[k]->pop_global(t);
duke@435 404 } else {
duke@435 405 assert(_n == 1, "can't be zero.");
duke@435 406 return false;
duke@435 407 }
duke@435 408 }
duke@435 409
duke@435 410 template<class E>
duke@435 411 bool GenericTaskQueueSet<E>::peek() {
duke@435 412 // Try all the queues.
ysr@976 413 for (uint j = 0; j < _n; j++) {
duke@435 414 if (_queues[j]->peek())
duke@435 415 return true;
duke@435 416 }
duke@435 417 return false;
duke@435 418 }
duke@435 419
ysr@777 420 // When to terminate from the termination protocol.
ysr@777 421 class TerminatorTerminator: public CHeapObj {
ysr@777 422 public:
ysr@777 423 virtual bool should_exit_termination() = 0;
ysr@777 424 };
ysr@777 425
duke@435 426 // A class to aid in the termination of a set of parallel tasks using
duke@435 427 // TaskQueueSet's for work stealing.
duke@435 428
jmasa@981 429 #undef TRACESPINNING
jmasa@981 430
duke@435 431 class ParallelTaskTerminator: public StackObj {
duke@435 432 private:
duke@435 433 int _n_threads;
duke@435 434 TaskQueueSetSuper* _queue_set;
ysr@976 435 int _offered_termination;
duke@435 436
jmasa@981 437 #ifdef TRACESPINNING
jmasa@981 438 static uint _total_yields;
jmasa@981 439 static uint _total_spins;
jmasa@981 440 static uint _total_peeks;
jmasa@981 441 #endif
jmasa@981 442
duke@435 443 bool peek_in_queue_set();
duke@435 444 protected:
duke@435 445 virtual void yield();
duke@435 446 void sleep(uint millis);
duke@435 447
duke@435 448 public:
duke@435 449
duke@435 450 // "n_threads" is the number of threads to be terminated. "queue_set" is a
duke@435 451 // queue sets of work queues of other threads.
duke@435 452 ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
duke@435 453
duke@435 454 // The current thread has no work, and is ready to terminate if everyone
duke@435 455 // else is. If returns "true", all threads are terminated. If returns
duke@435 456 // "false", available work has been observed in one of the task queues,
duke@435 457 // so the global task is not complete.
ysr@777 458 bool offer_termination() {
ysr@777 459 return offer_termination(NULL);
ysr@777 460 }
ysr@777 461
ysr@777 462 // As above, but it also terminates of the should_exit_termination()
ysr@777 463 // method of the terminator parameter returns true. If terminator is
ysr@777 464 // NULL, then it is ignored.
ysr@777 465 bool offer_termination(TerminatorTerminator* terminator);
duke@435 466
duke@435 467 // Reset the terminator, so that it may be reused again.
duke@435 468 // The caller is responsible for ensuring that this is done
duke@435 469 // in an MT-safe manner, once the previous round of use of
duke@435 470 // the terminator is finished.
duke@435 471 void reset_for_reuse();
duke@435 472
jmasa@981 473 #ifdef TRACESPINNING
jmasa@981 474 static uint total_yields() { return _total_yields; }
jmasa@981 475 static uint total_spins() { return _total_spins; }
jmasa@981 476 static uint total_peeks() { return _total_peeks; }
jmasa@981 477 static void print_termination_counts();
jmasa@981 478 #endif
duke@435 479 };
duke@435 480
duke@435 481 #define SIMPLE_STACK 0
duke@435 482
duke@435 483 template<class E> inline bool GenericTaskQueue<E>::push(E t) {
duke@435 484 #if SIMPLE_STACK
ysr@976 485 uint localBot = _bottom;
duke@435 486 if (_bottom < max_elems()) {
duke@435 487 _elems[localBot] = t;
duke@435 488 _bottom = localBot + 1;
duke@435 489 return true;
duke@435 490 } else {
duke@435 491 return false;
duke@435 492 }
duke@435 493 #else
ysr@976 494 uint localBot = _bottom;
duke@435 495 assert((localBot >= 0) && (localBot < n()), "_bottom out of range.");
ysr@976 496 TAG_TYPE top = get_top();
ysr@976 497 uint dirty_n_elems = dirty_size(localBot, top);
duke@435 498 assert((dirty_n_elems >= 0) && (dirty_n_elems < n()),
duke@435 499 "n_elems out of range.");
duke@435 500 if (dirty_n_elems < max_elems()) {
duke@435 501 _elems[localBot] = t;
duke@435 502 _bottom = increment_index(localBot);
duke@435 503 return true;
duke@435 504 } else {
duke@435 505 return push_slow(t, dirty_n_elems);
duke@435 506 }
duke@435 507 #endif
duke@435 508 }
duke@435 509
duke@435 510 template<class E> inline bool GenericTaskQueue<E>::pop_local(E& t) {
duke@435 511 #if SIMPLE_STACK
ysr@976 512 uint localBot = _bottom;
duke@435 513 assert(localBot > 0, "precondition.");
duke@435 514 localBot--;
duke@435 515 t = _elems[localBot];
duke@435 516 _bottom = localBot;
duke@435 517 return true;
duke@435 518 #else
ysr@976 519 uint localBot = _bottom;
duke@435 520 // This value cannot be n-1. That can only occur as a result of
duke@435 521 // the assignment to bottom in this method. If it does, this method
duke@435 522 // resets the size( to 0 before the next call (which is sequential,
duke@435 523 // since this is pop_local.)
ysr@976 524 uint dirty_n_elems = dirty_size(localBot, get_top());
duke@435 525 assert(dirty_n_elems != n() - 1, "Shouldn't be possible...");
duke@435 526 if (dirty_n_elems == 0) return false;
duke@435 527 localBot = decrement_index(localBot);
duke@435 528 _bottom = localBot;
duke@435 529 // This is necessary to prevent any read below from being reordered
duke@435 530 // before the store just above.
duke@435 531 OrderAccess::fence();
duke@435 532 t = _elems[localBot];
duke@435 533 // This is a second read of "age"; the "size()" above is the first.
duke@435 534 // If there's still at least one element in the queue, based on the
duke@435 535 // "_bottom" and "age" we've read, then there can be no interference with
duke@435 536 // a "pop_global" operation, and we're done.
ysr@976 537 TAG_TYPE tp = get_top(); // XXX
duke@435 538 if (size(localBot, tp) > 0) {
duke@435 539 assert(dirty_size(localBot, tp) != n() - 1,
duke@435 540 "Shouldn't be possible...");
duke@435 541 return true;
duke@435 542 } else {
duke@435 543 // Otherwise, the queue contained exactly one element; we take the slow
duke@435 544 // path.
duke@435 545 return pop_local_slow(localBot, get_age());
duke@435 546 }
duke@435 547 #endif
duke@435 548 }
duke@435 549
duke@435 550 typedef oop Task;
duke@435 551 typedef GenericTaskQueue<Task> OopTaskQueue;
duke@435 552 typedef GenericTaskQueueSet<Task> OopTaskQueueSet;
duke@435 553
coleenp@548 554
coleenp@548 555 #define COMPRESSED_OOP_MASK 1
coleenp@548 556
coleenp@548 557 // This is a container class for either an oop* or a narrowOop*.
coleenp@548 558 // Both are pushed onto a task queue and the consumer will test is_narrow()
coleenp@548 559 // to determine which should be processed.
coleenp@548 560 class StarTask {
coleenp@548 561 void* _holder; // either union oop* or narrowOop*
coleenp@548 562 public:
ysr@1280 563 StarTask(narrowOop* p) {
ysr@1280 564 assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
ysr@1280 565 _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
ysr@1280 566 }
ysr@1280 567 StarTask(oop* p) {
ysr@1280 568 assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
ysr@1280 569 _holder = (void*)p;
ysr@1280 570 }
coleenp@548 571 StarTask() { _holder = NULL; }
coleenp@548 572 operator oop*() { return (oop*)_holder; }
coleenp@548 573 operator narrowOop*() {
coleenp@548 574 return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
coleenp@548 575 }
coleenp@548 576
coleenp@548 577 // Operators to preserve const/volatile in assignments required by gcc
coleenp@548 578 void operator=(const volatile StarTask& t) volatile { _holder = t._holder; }
coleenp@548 579
coleenp@548 580 bool is_narrow() const {
coleenp@548 581 return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
coleenp@548 582 }
coleenp@548 583 };
coleenp@548 584
duke@435 585 typedef GenericTaskQueue<StarTask> OopStarTaskQueue;
duke@435 586 typedef GenericTaskQueueSet<StarTask> OopStarTaskQueueSet;
duke@435 587
jcoomes@810 588 typedef size_t RegionTask; // index for region
jcoomes@810 589 typedef GenericTaskQueue<RegionTask> RegionTaskQueue;
jcoomes@810 590 typedef GenericTaskQueueSet<RegionTask> RegionTaskQueueSet;
duke@435 591
jcoomes@810 592 class RegionTaskQueueWithOverflow: public CHeapObj {
duke@435 593 protected:
jcoomes@810 594 RegionTaskQueue _region_queue;
jcoomes@810 595 GrowableArray<RegionTask>* _overflow_stack;
duke@435 596
duke@435 597 public:
jcoomes@810 598 RegionTaskQueueWithOverflow() : _overflow_stack(NULL) {}
duke@435 599 // Initialize both stealable queue and overflow
duke@435 600 void initialize();
duke@435 601 // Save first to stealable queue and then to overflow
jcoomes@810 602 void save(RegionTask t);
duke@435 603 // Retrieve first from overflow and then from stealable queue
jcoomes@810 604 bool retrieve(RegionTask& region_index);
duke@435 605 // Retrieve from stealable queue
jcoomes@810 606 bool retrieve_from_stealable_queue(RegionTask& region_index);
duke@435 607 // Retrieve from overflow
jcoomes@810 608 bool retrieve_from_overflow(RegionTask& region_index);
duke@435 609 bool is_empty();
duke@435 610 bool stealable_is_empty();
duke@435 611 bool overflow_is_empty();
ysr@976 612 uint stealable_size() { return _region_queue.size(); }
jcoomes@810 613 RegionTaskQueue* task_queue() { return &_region_queue; }
duke@435 614 };
duke@435 615
jcoomes@810 616 #define USE_RegionTaskQueueWithOverflow

mercurial