src/share/vm/runtime/objectMonitor.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2233
fa83ab460c54
child 2497
3582bf76420e
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

acorn@2233 1 /*
stefank@2314 2 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
acorn@2233 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
acorn@2233 4 *
acorn@2233 5 * This code is free software; you can redistribute it and/or modify it
acorn@2233 6 * under the terms of the GNU General Public License version 2 only, as
acorn@2233 7 * published by the Free Software Foundation.
acorn@2233 8 *
acorn@2233 9 * This code is distributed in the hope that it will be useful, but WITHOUT
acorn@2233 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
acorn@2233 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
acorn@2233 12 * version 2 for more details (a copy is included in the LICENSE file that
acorn@2233 13 * accompanied this code).
acorn@2233 14 *
acorn@2233 15 * You should have received a copy of the GNU General Public License version
acorn@2233 16 * 2 along with this work; if not, write to the Free Software Foundation,
acorn@2233 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
acorn@2233 18 *
acorn@2233 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
acorn@2233 20 * or visit www.oracle.com if you need additional information or have any
acorn@2233 21 * questions.
acorn@2233 22 *
acorn@2233 23 */
acorn@2233 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/vmSymbols.hpp"
stefank@2314 27 #include "memory/resourceArea.hpp"
stefank@2314 28 #include "oops/markOop.hpp"
stefank@2314 29 #include "oops/oop.inline.hpp"
stefank@2314 30 #include "runtime/handles.inline.hpp"
stefank@2314 31 #include "runtime/interfaceSupport.hpp"
stefank@2314 32 #include "runtime/mutexLocker.hpp"
stefank@2314 33 #include "runtime/objectMonitor.hpp"
stefank@2314 34 #include "runtime/objectMonitor.inline.hpp"
stefank@2314 35 #include "runtime/osThread.hpp"
stefank@2314 36 #include "runtime/stubRoutines.hpp"
stefank@2314 37 #include "runtime/thread.hpp"
stefank@2314 38 #include "services/threadService.hpp"
stefank@2314 39 #include "utilities/dtrace.hpp"
stefank@2314 40 #include "utilities/preserveException.hpp"
stefank@2314 41 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 42 # include "os_linux.inline.hpp"
stefank@2314 43 # include "thread_linux.inline.hpp"
stefank@2314 44 #endif
stefank@2314 45 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 46 # include "os_solaris.inline.hpp"
stefank@2314 47 # include "thread_solaris.inline.hpp"
stefank@2314 48 #endif
stefank@2314 49 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 50 # include "os_windows.inline.hpp"
stefank@2314 51 # include "thread_windows.inline.hpp"
stefank@2314 52 #endif
acorn@2233 53
acorn@2233 54 #if defined(__GNUC__) && !defined(IA64)
acorn@2233 55 // Need to inhibit inlining for older versions of GCC to avoid build-time failures
acorn@2233 56 #define ATTR __attribute__((noinline))
acorn@2233 57 #else
acorn@2233 58 #define ATTR
acorn@2233 59 #endif
acorn@2233 60
acorn@2233 61
acorn@2233 62 #ifdef DTRACE_ENABLED
acorn@2233 63
acorn@2233 64 // Only bother with this argument setup if dtrace is available
acorn@2233 65 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly.
acorn@2233 66
acorn@2233 67 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
acorn@2233 68 jlong, uintptr_t, char*, int);
acorn@2233 69 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
acorn@2233 70 jlong, uintptr_t, char*, int);
acorn@2233 71 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
acorn@2233 72 jlong, uintptr_t, char*, int);
acorn@2233 73 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
acorn@2233 74 jlong, uintptr_t, char*, int);
acorn@2233 75 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
acorn@2233 76 jlong, uintptr_t, char*, int);
acorn@2233 77
acorn@2233 78 #define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread) \
acorn@2233 79 char* bytes = NULL; \
acorn@2233 80 int len = 0; \
acorn@2233 81 jlong jtid = SharedRuntime::get_java_tid(thread); \
acorn@2233 82 symbolOop klassname = ((oop)(klassOop))->klass()->klass_part()->name(); \
acorn@2233 83 if (klassname != NULL) { \
acorn@2233 84 bytes = (char*)klassname->bytes(); \
acorn@2233 85 len = klassname->utf8_length(); \
acorn@2233 86 }
acorn@2233 87
acorn@2233 88 #define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis) \
acorn@2233 89 { \
acorn@2233 90 if (DTraceMonitorProbes) { \
acorn@2233 91 DTRACE_MONITOR_PROBE_COMMON(klassOop, thread); \
acorn@2233 92 HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid, \
acorn@2233 93 (monitor), bytes, len, (millis)); \
acorn@2233 94 } \
acorn@2233 95 }
acorn@2233 96
acorn@2233 97 #define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread) \
acorn@2233 98 { \
acorn@2233 99 if (DTraceMonitorProbes) { \
acorn@2233 100 DTRACE_MONITOR_PROBE_COMMON(klassOop, thread); \
acorn@2233 101 HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid, \
acorn@2233 102 (uintptr_t)(monitor), bytes, len); \
acorn@2233 103 } \
acorn@2233 104 }
acorn@2233 105
acorn@2233 106 #else // ndef DTRACE_ENABLED
acorn@2233 107
acorn@2233 108 #define DTRACE_MONITOR_WAIT_PROBE(klassOop, thread, millis, mon) {;}
acorn@2233 109 #define DTRACE_MONITOR_PROBE(probe, klassOop, thread, mon) {;}
acorn@2233 110
acorn@2233 111 #endif // ndef DTRACE_ENABLED
acorn@2233 112
acorn@2233 113 // Tunables ...
acorn@2233 114 // The knob* variables are effectively final. Once set they should
acorn@2233 115 // never be modified hence. Consider using __read_mostly with GCC.
acorn@2233 116
acorn@2233 117 int ObjectMonitor::Knob_Verbose = 0 ;
acorn@2233 118 int ObjectMonitor::Knob_SpinLimit = 5000 ; // derived by an external tool -
acorn@2233 119 static int Knob_LogSpins = 0 ; // enable jvmstat tally for spins
acorn@2233 120 static int Knob_HandOff = 0 ;
acorn@2233 121 static int Knob_ReportSettings = 0 ;
acorn@2233 122
acorn@2233 123 static int Knob_SpinBase = 0 ; // Floor AKA SpinMin
acorn@2233 124 static int Knob_SpinBackOff = 0 ; // spin-loop backoff
acorn@2233 125 static int Knob_CASPenalty = -1 ; // Penalty for failed CAS
acorn@2233 126 static int Knob_OXPenalty = -1 ; // Penalty for observed _owner change
acorn@2233 127 static int Knob_SpinSetSucc = 1 ; // spinners set the _succ field
acorn@2233 128 static int Knob_SpinEarly = 1 ;
acorn@2233 129 static int Knob_SuccEnabled = 1 ; // futile wake throttling
acorn@2233 130 static int Knob_SuccRestrict = 0 ; // Limit successors + spinners to at-most-one
acorn@2233 131 static int Knob_MaxSpinners = -1 ; // Should be a function of # CPUs
acorn@2233 132 static int Knob_Bonus = 100 ; // spin success bonus
acorn@2233 133 static int Knob_BonusB = 100 ; // spin success bonus
acorn@2233 134 static int Knob_Penalty = 200 ; // spin failure penalty
acorn@2233 135 static int Knob_Poverty = 1000 ;
acorn@2233 136 static int Knob_SpinAfterFutile = 1 ; // Spin after returning from park()
acorn@2233 137 static int Knob_FixedSpin = 0 ;
acorn@2233 138 static int Knob_OState = 3 ; // Spinner checks thread state of _owner
acorn@2233 139 static int Knob_UsePause = 1 ;
acorn@2233 140 static int Knob_ExitPolicy = 0 ;
acorn@2233 141 static int Knob_PreSpin = 10 ; // 20-100 likely better
acorn@2233 142 static int Knob_ResetEvent = 0 ;
acorn@2233 143 static int BackOffMask = 0 ;
acorn@2233 144
acorn@2233 145 static int Knob_FastHSSEC = 0 ;
acorn@2233 146 static int Knob_MoveNotifyee = 2 ; // notify() - disposition of notifyee
acorn@2233 147 static int Knob_QMode = 0 ; // EntryList-cxq policy - queue discipline
acorn@2233 148 static volatile int InitDone = 0 ;
acorn@2233 149
acorn@2233 150 #define TrySpin TrySpin_VaryDuration
acorn@2233 151
acorn@2233 152 // -----------------------------------------------------------------------------
acorn@2233 153 // Theory of operations -- Monitors lists, thread residency, etc:
acorn@2233 154 //
acorn@2233 155 // * A thread acquires ownership of a monitor by successfully
acorn@2233 156 // CAS()ing the _owner field from null to non-null.
acorn@2233 157 //
acorn@2233 158 // * Invariant: A thread appears on at most one monitor list --
acorn@2233 159 // cxq, EntryList or WaitSet -- at any one time.
acorn@2233 160 //
acorn@2233 161 // * Contending threads "push" themselves onto the cxq with CAS
acorn@2233 162 // and then spin/park.
acorn@2233 163 //
acorn@2233 164 // * After a contending thread eventually acquires the lock it must
acorn@2233 165 // dequeue itself from either the EntryList or the cxq.
acorn@2233 166 //
acorn@2233 167 // * The exiting thread identifies and unparks an "heir presumptive"
acorn@2233 168 // tentative successor thread on the EntryList. Critically, the
acorn@2233 169 // exiting thread doesn't unlink the successor thread from the EntryList.
acorn@2233 170 // After having been unparked, the wakee will recontend for ownership of
acorn@2233 171 // the monitor. The successor (wakee) will either acquire the lock or
acorn@2233 172 // re-park itself.
acorn@2233 173 //
acorn@2233 174 // Succession is provided for by a policy of competitive handoff.
acorn@2233 175 // The exiting thread does _not_ grant or pass ownership to the
acorn@2233 176 // successor thread. (This is also referred to as "handoff" succession").
acorn@2233 177 // Instead the exiting thread releases ownership and possibly wakes
acorn@2233 178 // a successor, so the successor can (re)compete for ownership of the lock.
acorn@2233 179 // If the EntryList is empty but the cxq is populated the exiting
acorn@2233 180 // thread will drain the cxq into the EntryList. It does so by
acorn@2233 181 // by detaching the cxq (installing null with CAS) and folding
acorn@2233 182 // the threads from the cxq into the EntryList. The EntryList is
acorn@2233 183 // doubly linked, while the cxq is singly linked because of the
acorn@2233 184 // CAS-based "push" used to enqueue recently arrived threads (RATs).
acorn@2233 185 //
acorn@2233 186 // * Concurrency invariants:
acorn@2233 187 //
acorn@2233 188 // -- only the monitor owner may access or mutate the EntryList.
acorn@2233 189 // The mutex property of the monitor itself protects the EntryList
acorn@2233 190 // from concurrent interference.
acorn@2233 191 // -- Only the monitor owner may detach the cxq.
acorn@2233 192 //
acorn@2233 193 // * The monitor entry list operations avoid locks, but strictly speaking
acorn@2233 194 // they're not lock-free. Enter is lock-free, exit is not.
acorn@2233 195 // See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
acorn@2233 196 //
acorn@2233 197 // * The cxq can have multiple concurrent "pushers" but only one concurrent
acorn@2233 198 // detaching thread. This mechanism is immune from the ABA corruption.
acorn@2233 199 // More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
acorn@2233 200 //
acorn@2233 201 // * Taken together, the cxq and the EntryList constitute or form a
acorn@2233 202 // single logical queue of threads stalled trying to acquire the lock.
acorn@2233 203 // We use two distinct lists to improve the odds of a constant-time
acorn@2233 204 // dequeue operation after acquisition (in the ::enter() epilog) and
acorn@2233 205 // to reduce heat on the list ends. (c.f. Michael Scott's "2Q" algorithm).
acorn@2233 206 // A key desideratum is to minimize queue & monitor metadata manipulation
acorn@2233 207 // that occurs while holding the monitor lock -- that is, we want to
acorn@2233 208 // minimize monitor lock holds times. Note that even a small amount of
acorn@2233 209 // fixed spinning will greatly reduce the # of enqueue-dequeue operations
acorn@2233 210 // on EntryList|cxq. That is, spinning relieves contention on the "inner"
acorn@2233 211 // locks and monitor metadata.
acorn@2233 212 //
acorn@2233 213 // Cxq points to the the set of Recently Arrived Threads attempting entry.
acorn@2233 214 // Because we push threads onto _cxq with CAS, the RATs must take the form of
acorn@2233 215 // a singly-linked LIFO. We drain _cxq into EntryList at unlock-time when
acorn@2233 216 // the unlocking thread notices that EntryList is null but _cxq is != null.
acorn@2233 217 //
acorn@2233 218 // The EntryList is ordered by the prevailing queue discipline and
acorn@2233 219 // can be organized in any convenient fashion, such as a doubly-linked list or
acorn@2233 220 // a circular doubly-linked list. Critically, we want insert and delete operations
acorn@2233 221 // to operate in constant-time. If we need a priority queue then something akin
acorn@2233 222 // to Solaris' sleepq would work nicely. Viz.,
acorn@2233 223 // http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
acorn@2233 224 // Queue discipline is enforced at ::exit() time, when the unlocking thread
acorn@2233 225 // drains the cxq into the EntryList, and orders or reorders the threads on the
acorn@2233 226 // EntryList accordingly.
acorn@2233 227 //
acorn@2233 228 // Barring "lock barging", this mechanism provides fair cyclic ordering,
acorn@2233 229 // somewhat similar to an elevator-scan.
acorn@2233 230 //
acorn@2233 231 // * The monitor synchronization subsystem avoids the use of native
acorn@2233 232 // synchronization primitives except for the narrow platform-specific
acorn@2233 233 // park-unpark abstraction. See the comments in os_solaris.cpp regarding
acorn@2233 234 // the semantics of park-unpark. Put another way, this monitor implementation
acorn@2233 235 // depends only on atomic operations and park-unpark. The monitor subsystem
acorn@2233 236 // manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
acorn@2233 237 // underlying OS manages the READY<->RUN transitions.
acorn@2233 238 //
acorn@2233 239 // * Waiting threads reside on the WaitSet list -- wait() puts
acorn@2233 240 // the caller onto the WaitSet.
acorn@2233 241 //
acorn@2233 242 // * notify() or notifyAll() simply transfers threads from the WaitSet to
acorn@2233 243 // either the EntryList or cxq. Subsequent exit() operations will
acorn@2233 244 // unpark the notifyee. Unparking a notifee in notify() is inefficient -
acorn@2233 245 // it's likely the notifyee would simply impale itself on the lock held
acorn@2233 246 // by the notifier.
acorn@2233 247 //
acorn@2233 248 // * An interesting alternative is to encode cxq as (List,LockByte) where
acorn@2233 249 // the LockByte is 0 iff the monitor is owned. _owner is simply an auxiliary
acorn@2233 250 // variable, like _recursions, in the scheme. The threads or Events that form
acorn@2233 251 // the list would have to be aligned in 256-byte addresses. A thread would
acorn@2233 252 // try to acquire the lock or enqueue itself with CAS, but exiting threads
acorn@2233 253 // could use a 1-0 protocol and simply STB to set the LockByte to 0.
acorn@2233 254 // Note that is is *not* word-tearing, but it does presume that full-word
acorn@2233 255 // CAS operations are coherent with intermix with STB operations. That's true
acorn@2233 256 // on most common processors.
acorn@2233 257 //
acorn@2233 258 // * See also http://blogs.sun.com/dave
acorn@2233 259
acorn@2233 260
acorn@2233 261 // -----------------------------------------------------------------------------
acorn@2233 262 // Enter support
acorn@2233 263
acorn@2233 264 bool ObjectMonitor::try_enter(Thread* THREAD) {
acorn@2233 265 if (THREAD != _owner) {
acorn@2233 266 if (THREAD->is_lock_owned ((address)_owner)) {
acorn@2233 267 assert(_recursions == 0, "internal state error");
acorn@2233 268 _owner = THREAD ;
acorn@2233 269 _recursions = 1 ;
acorn@2233 270 OwnerIsThread = 1 ;
acorn@2233 271 return true;
acorn@2233 272 }
acorn@2233 273 if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
acorn@2233 274 return false;
acorn@2233 275 }
acorn@2233 276 return true;
acorn@2233 277 } else {
acorn@2233 278 _recursions++;
acorn@2233 279 return true;
acorn@2233 280 }
acorn@2233 281 }
acorn@2233 282
acorn@2233 283 void ATTR ObjectMonitor::enter(TRAPS) {
acorn@2233 284 // The following code is ordered to check the most common cases first
acorn@2233 285 // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
acorn@2233 286 Thread * const Self = THREAD ;
acorn@2233 287 void * cur ;
acorn@2233 288
acorn@2233 289 cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
acorn@2233 290 if (cur == NULL) {
acorn@2233 291 // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
acorn@2233 292 assert (_recursions == 0 , "invariant") ;
acorn@2233 293 assert (_owner == Self, "invariant") ;
acorn@2233 294 // CONSIDER: set or assert OwnerIsThread == 1
acorn@2233 295 return ;
acorn@2233 296 }
acorn@2233 297
acorn@2233 298 if (cur == Self) {
acorn@2233 299 // TODO-FIXME: check for integer overflow! BUGID 6557169.
acorn@2233 300 _recursions ++ ;
acorn@2233 301 return ;
acorn@2233 302 }
acorn@2233 303
acorn@2233 304 if (Self->is_lock_owned ((address)cur)) {
acorn@2233 305 assert (_recursions == 0, "internal state error");
acorn@2233 306 _recursions = 1 ;
acorn@2233 307 // Commute owner from a thread-specific on-stack BasicLockObject address to
acorn@2233 308 // a full-fledged "Thread *".
acorn@2233 309 _owner = Self ;
acorn@2233 310 OwnerIsThread = 1 ;
acorn@2233 311 return ;
acorn@2233 312 }
acorn@2233 313
acorn@2233 314 // We've encountered genuine contention.
acorn@2233 315 assert (Self->_Stalled == 0, "invariant") ;
acorn@2233 316 Self->_Stalled = intptr_t(this) ;
acorn@2233 317
acorn@2233 318 // Try one round of spinning *before* enqueueing Self
acorn@2233 319 // and before going through the awkward and expensive state
acorn@2233 320 // transitions. The following spin is strictly optional ...
acorn@2233 321 // Note that if we acquire the monitor from an initial spin
acorn@2233 322 // we forgo posting JVMTI events and firing DTRACE probes.
acorn@2233 323 if (Knob_SpinEarly && TrySpin (Self) > 0) {
acorn@2233 324 assert (_owner == Self , "invariant") ;
acorn@2233 325 assert (_recursions == 0 , "invariant") ;
acorn@2233 326 assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
acorn@2233 327 Self->_Stalled = 0 ;
acorn@2233 328 return ;
acorn@2233 329 }
acorn@2233 330
acorn@2233 331 assert (_owner != Self , "invariant") ;
acorn@2233 332 assert (_succ != Self , "invariant") ;
acorn@2233 333 assert (Self->is_Java_thread() , "invariant") ;
acorn@2233 334 JavaThread * jt = (JavaThread *) Self ;
acorn@2233 335 assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
acorn@2233 336 assert (jt->thread_state() != _thread_blocked , "invariant") ;
acorn@2233 337 assert (this->object() != NULL , "invariant") ;
acorn@2233 338 assert (_count >= 0, "invariant") ;
acorn@2233 339
acorn@2233 340 // Prevent deflation at STW-time. See deflate_idle_monitors() and is_busy().
acorn@2233 341 // Ensure the object-monitor relationship remains stable while there's contention.
acorn@2233 342 Atomic::inc_ptr(&_count);
acorn@2233 343
acorn@2233 344 { // Change java thread status to indicate blocked on monitor enter.
acorn@2233 345 JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
acorn@2233 346
acorn@2233 347 DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
acorn@2233 348 if (JvmtiExport::should_post_monitor_contended_enter()) {
acorn@2233 349 JvmtiExport::post_monitor_contended_enter(jt, this);
acorn@2233 350 }
acorn@2233 351
acorn@2233 352 OSThreadContendState osts(Self->osthread());
acorn@2233 353 ThreadBlockInVM tbivm(jt);
acorn@2233 354
acorn@2233 355 Self->set_current_pending_monitor(this);
acorn@2233 356
acorn@2233 357 // TODO-FIXME: change the following for(;;) loop to straight-line code.
acorn@2233 358 for (;;) {
acorn@2233 359 jt->set_suspend_equivalent();
acorn@2233 360 // cleared by handle_special_suspend_equivalent_condition()
acorn@2233 361 // or java_suspend_self()
acorn@2233 362
acorn@2233 363 EnterI (THREAD) ;
acorn@2233 364
acorn@2233 365 if (!ExitSuspendEquivalent(jt)) break ;
acorn@2233 366
acorn@2233 367 //
acorn@2233 368 // We have acquired the contended monitor, but while we were
acorn@2233 369 // waiting another thread suspended us. We don't want to enter
acorn@2233 370 // the monitor while suspended because that would surprise the
acorn@2233 371 // thread that suspended us.
acorn@2233 372 //
acorn@2233 373 _recursions = 0 ;
acorn@2233 374 _succ = NULL ;
acorn@2233 375 exit (Self) ;
acorn@2233 376
acorn@2233 377 jt->java_suspend_self();
acorn@2233 378 }
acorn@2233 379 Self->set_current_pending_monitor(NULL);
acorn@2233 380 }
acorn@2233 381
acorn@2233 382 Atomic::dec_ptr(&_count);
acorn@2233 383 assert (_count >= 0, "invariant") ;
acorn@2233 384 Self->_Stalled = 0 ;
acorn@2233 385
acorn@2233 386 // Must either set _recursions = 0 or ASSERT _recursions == 0.
acorn@2233 387 assert (_recursions == 0 , "invariant") ;
acorn@2233 388 assert (_owner == Self , "invariant") ;
acorn@2233 389 assert (_succ != Self , "invariant") ;
acorn@2233 390 assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
acorn@2233 391
acorn@2233 392 // The thread -- now the owner -- is back in vm mode.
acorn@2233 393 // Report the glorious news via TI,DTrace and jvmstat.
acorn@2233 394 // The probe effect is non-trivial. All the reportage occurs
acorn@2233 395 // while we hold the monitor, increasing the length of the critical
acorn@2233 396 // section. Amdahl's parallel speedup law comes vividly into play.
acorn@2233 397 //
acorn@2233 398 // Another option might be to aggregate the events (thread local or
acorn@2233 399 // per-monitor aggregation) and defer reporting until a more opportune
acorn@2233 400 // time -- such as next time some thread encounters contention but has
acorn@2233 401 // yet to acquire the lock. While spinning that thread could
acorn@2233 402 // spinning we could increment JVMStat counters, etc.
acorn@2233 403
acorn@2233 404 DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
acorn@2233 405 if (JvmtiExport::should_post_monitor_contended_entered()) {
acorn@2233 406 JvmtiExport::post_monitor_contended_entered(jt, this);
acorn@2233 407 }
acorn@2233 408 if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
acorn@2233 409 ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
acorn@2233 410 }
acorn@2233 411 }
acorn@2233 412
acorn@2233 413
acorn@2233 414 // Caveat: TryLock() is not necessarily serializing if it returns failure.
acorn@2233 415 // Callers must compensate as needed.
acorn@2233 416
acorn@2233 417 int ObjectMonitor::TryLock (Thread * Self) {
acorn@2233 418 for (;;) {
acorn@2233 419 void * own = _owner ;
acorn@2233 420 if (own != NULL) return 0 ;
acorn@2233 421 if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
acorn@2233 422 // Either guarantee _recursions == 0 or set _recursions = 0.
acorn@2233 423 assert (_recursions == 0, "invariant") ;
acorn@2233 424 assert (_owner == Self, "invariant") ;
acorn@2233 425 // CONSIDER: set or assert that OwnerIsThread == 1
acorn@2233 426 return 1 ;
acorn@2233 427 }
acorn@2233 428 // The lock had been free momentarily, but we lost the race to the lock.
acorn@2233 429 // Interference -- the CAS failed.
acorn@2233 430 // We can either return -1 or retry.
acorn@2233 431 // Retry doesn't make as much sense because the lock was just acquired.
acorn@2233 432 if (true) return -1 ;
acorn@2233 433 }
acorn@2233 434 }
acorn@2233 435
acorn@2233 436 void ATTR ObjectMonitor::EnterI (TRAPS) {
acorn@2233 437 Thread * Self = THREAD ;
acorn@2233 438 assert (Self->is_Java_thread(), "invariant") ;
acorn@2233 439 assert (((JavaThread *) Self)->thread_state() == _thread_blocked , "invariant") ;
acorn@2233 440
acorn@2233 441 // Try the lock - TATAS
acorn@2233 442 if (TryLock (Self) > 0) {
acorn@2233 443 assert (_succ != Self , "invariant") ;
acorn@2233 444 assert (_owner == Self , "invariant") ;
acorn@2233 445 assert (_Responsible != Self , "invariant") ;
acorn@2233 446 return ;
acorn@2233 447 }
acorn@2233 448
acorn@2233 449 DeferredInitialize () ;
acorn@2233 450
acorn@2233 451 // We try one round of spinning *before* enqueueing Self.
acorn@2233 452 //
acorn@2233 453 // If the _owner is ready but OFFPROC we could use a YieldTo()
acorn@2233 454 // operation to donate the remainder of this thread's quantum
acorn@2233 455 // to the owner. This has subtle but beneficial affinity
acorn@2233 456 // effects.
acorn@2233 457
acorn@2233 458 if (TrySpin (Self) > 0) {
acorn@2233 459 assert (_owner == Self , "invariant") ;
acorn@2233 460 assert (_succ != Self , "invariant") ;
acorn@2233 461 assert (_Responsible != Self , "invariant") ;
acorn@2233 462 return ;
acorn@2233 463 }
acorn@2233 464
acorn@2233 465 // The Spin failed -- Enqueue and park the thread ...
acorn@2233 466 assert (_succ != Self , "invariant") ;
acorn@2233 467 assert (_owner != Self , "invariant") ;
acorn@2233 468 assert (_Responsible != Self , "invariant") ;
acorn@2233 469
acorn@2233 470 // Enqueue "Self" on ObjectMonitor's _cxq.
acorn@2233 471 //
acorn@2233 472 // Node acts as a proxy for Self.
acorn@2233 473 // As an aside, if were to ever rewrite the synchronization code mostly
acorn@2233 474 // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
acorn@2233 475 // Java objects. This would avoid awkward lifecycle and liveness issues,
acorn@2233 476 // as well as eliminate a subset of ABA issues.
acorn@2233 477 // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
acorn@2233 478 //
acorn@2233 479
acorn@2233 480 ObjectWaiter node(Self) ;
acorn@2233 481 Self->_ParkEvent->reset() ;
acorn@2233 482 node._prev = (ObjectWaiter *) 0xBAD ;
acorn@2233 483 node.TState = ObjectWaiter::TS_CXQ ;
acorn@2233 484
acorn@2233 485 // Push "Self" onto the front of the _cxq.
acorn@2233 486 // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
acorn@2233 487 // Note that spinning tends to reduce the rate at which threads
acorn@2233 488 // enqueue and dequeue on EntryList|cxq.
acorn@2233 489 ObjectWaiter * nxt ;
acorn@2233 490 for (;;) {
acorn@2233 491 node._next = nxt = _cxq ;
acorn@2233 492 if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
acorn@2233 493
acorn@2233 494 // Interference - the CAS failed because _cxq changed. Just retry.
acorn@2233 495 // As an optional optimization we retry the lock.
acorn@2233 496 if (TryLock (Self) > 0) {
acorn@2233 497 assert (_succ != Self , "invariant") ;
acorn@2233 498 assert (_owner == Self , "invariant") ;
acorn@2233 499 assert (_Responsible != Self , "invariant") ;
acorn@2233 500 return ;
acorn@2233 501 }
acorn@2233 502 }
acorn@2233 503
acorn@2233 504 // Check for cxq|EntryList edge transition to non-null. This indicates
acorn@2233 505 // the onset of contention. While contention persists exiting threads
acorn@2233 506 // will use a ST:MEMBAR:LD 1-1 exit protocol. When contention abates exit
acorn@2233 507 // operations revert to the faster 1-0 mode. This enter operation may interleave
acorn@2233 508 // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
acorn@2233 509 // arrange for one of the contending thread to use a timed park() operations
acorn@2233 510 // to detect and recover from the race. (Stranding is form of progress failure
acorn@2233 511 // where the monitor is unlocked but all the contending threads remain parked).
acorn@2233 512 // That is, at least one of the contended threads will periodically poll _owner.
acorn@2233 513 // One of the contending threads will become the designated "Responsible" thread.
acorn@2233 514 // The Responsible thread uses a timed park instead of a normal indefinite park
acorn@2233 515 // operation -- it periodically wakes and checks for and recovers from potential
acorn@2233 516 // strandings admitted by 1-0 exit operations. We need at most one Responsible
acorn@2233 517 // thread per-monitor at any given moment. Only threads on cxq|EntryList may
acorn@2233 518 // be responsible for a monitor.
acorn@2233 519 //
acorn@2233 520 // Currently, one of the contended threads takes on the added role of "Responsible".
acorn@2233 521 // A viable alternative would be to use a dedicated "stranding checker" thread
acorn@2233 522 // that periodically iterated over all the threads (or active monitors) and unparked
acorn@2233 523 // successors where there was risk of stranding. This would help eliminate the
acorn@2233 524 // timer scalability issues we see on some platforms as we'd only have one thread
acorn@2233 525 // -- the checker -- parked on a timer.
acorn@2233 526
acorn@2233 527 if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
acorn@2233 528 // Try to assume the role of responsible thread for the monitor.
acorn@2233 529 // CONSIDER: ST vs CAS vs { if (Responsible==null) Responsible=Self }
acorn@2233 530 Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
acorn@2233 531 }
acorn@2233 532
acorn@2233 533 // The lock have been released while this thread was occupied queueing
acorn@2233 534 // itself onto _cxq. To close the race and avoid "stranding" and
acorn@2233 535 // progress-liveness failure we must resample-retry _owner before parking.
acorn@2233 536 // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
acorn@2233 537 // In this case the ST-MEMBAR is accomplished with CAS().
acorn@2233 538 //
acorn@2233 539 // TODO: Defer all thread state transitions until park-time.
acorn@2233 540 // Since state transitions are heavy and inefficient we'd like
acorn@2233 541 // to defer the state transitions until absolutely necessary,
acorn@2233 542 // and in doing so avoid some transitions ...
acorn@2233 543
acorn@2233 544 TEVENT (Inflated enter - Contention) ;
acorn@2233 545 int nWakeups = 0 ;
acorn@2233 546 int RecheckInterval = 1 ;
acorn@2233 547
acorn@2233 548 for (;;) {
acorn@2233 549
acorn@2233 550 if (TryLock (Self) > 0) break ;
acorn@2233 551 assert (_owner != Self, "invariant") ;
acorn@2233 552
acorn@2233 553 if ((SyncFlags & 2) && _Responsible == NULL) {
acorn@2233 554 Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
acorn@2233 555 }
acorn@2233 556
acorn@2233 557 // park self
acorn@2233 558 if (_Responsible == Self || (SyncFlags & 1)) {
acorn@2233 559 TEVENT (Inflated enter - park TIMED) ;
acorn@2233 560 Self->_ParkEvent->park ((jlong) RecheckInterval) ;
acorn@2233 561 // Increase the RecheckInterval, but clamp the value.
acorn@2233 562 RecheckInterval *= 8 ;
acorn@2233 563 if (RecheckInterval > 1000) RecheckInterval = 1000 ;
acorn@2233 564 } else {
acorn@2233 565 TEVENT (Inflated enter - park UNTIMED) ;
acorn@2233 566 Self->_ParkEvent->park() ;
acorn@2233 567 }
acorn@2233 568
acorn@2233 569 if (TryLock(Self) > 0) break ;
acorn@2233 570
acorn@2233 571 // The lock is still contested.
acorn@2233 572 // Keep a tally of the # of futile wakeups.
acorn@2233 573 // Note that the counter is not protected by a lock or updated by atomics.
acorn@2233 574 // That is by design - we trade "lossy" counters which are exposed to
acorn@2233 575 // races during updates for a lower probe effect.
acorn@2233 576 TEVENT (Inflated enter - Futile wakeup) ;
acorn@2233 577 if (ObjectMonitor::_sync_FutileWakeups != NULL) {
acorn@2233 578 ObjectMonitor::_sync_FutileWakeups->inc() ;
acorn@2233 579 }
acorn@2233 580 ++ nWakeups ;
acorn@2233 581
acorn@2233 582 // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
acorn@2233 583 // We can defer clearing _succ until after the spin completes
acorn@2233 584 // TrySpin() must tolerate being called with _succ == Self.
acorn@2233 585 // Try yet another round of adaptive spinning.
acorn@2233 586 if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
acorn@2233 587
acorn@2233 588 // We can find that we were unpark()ed and redesignated _succ while
acorn@2233 589 // we were spinning. That's harmless. If we iterate and call park(),
acorn@2233 590 // park() will consume the event and return immediately and we'll
acorn@2233 591 // just spin again. This pattern can repeat, leaving _succ to simply
acorn@2233 592 // spin on a CPU. Enable Knob_ResetEvent to clear pending unparks().
acorn@2233 593 // Alternately, we can sample fired() here, and if set, forgo spinning
acorn@2233 594 // in the next iteration.
acorn@2233 595
acorn@2233 596 if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
acorn@2233 597 Self->_ParkEvent->reset() ;
acorn@2233 598 OrderAccess::fence() ;
acorn@2233 599 }
acorn@2233 600 if (_succ == Self) _succ = NULL ;
acorn@2233 601
acorn@2233 602 // Invariant: after clearing _succ a thread *must* retry _owner before parking.
acorn@2233 603 OrderAccess::fence() ;
acorn@2233 604 }
acorn@2233 605
acorn@2233 606 // Egress :
acorn@2233 607 // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
acorn@2233 608 // Normally we'll find Self on the EntryList .
acorn@2233 609 // From the perspective of the lock owner (this thread), the
acorn@2233 610 // EntryList is stable and cxq is prepend-only.
acorn@2233 611 // The head of cxq is volatile but the interior is stable.
acorn@2233 612 // In addition, Self.TState is stable.
acorn@2233 613
acorn@2233 614 assert (_owner == Self , "invariant") ;
acorn@2233 615 assert (object() != NULL , "invariant") ;
acorn@2233 616 // I'd like to write:
acorn@2233 617 // guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
acorn@2233 618 // but as we're at a safepoint that's not safe.
acorn@2233 619
acorn@2233 620 UnlinkAfterAcquire (Self, &node) ;
acorn@2233 621 if (_succ == Self) _succ = NULL ;
acorn@2233 622
acorn@2233 623 assert (_succ != Self, "invariant") ;
acorn@2233 624 if (_Responsible == Self) {
acorn@2233 625 _Responsible = NULL ;
acorn@2233 626 // Dekker pivot-point.
acorn@2233 627 // Consider OrderAccess::storeload() here
acorn@2233 628
acorn@2233 629 // We may leave threads on cxq|EntryList without a designated
acorn@2233 630 // "Responsible" thread. This is benign. When this thread subsequently
acorn@2233 631 // exits the monitor it can "see" such preexisting "old" threads --
acorn@2233 632 // threads that arrived on the cxq|EntryList before the fence, above --
acorn@2233 633 // by LDing cxq|EntryList. Newly arrived threads -- that is, threads
acorn@2233 634 // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
acorn@2233 635 // non-null and elect a new "Responsible" timer thread.
acorn@2233 636 //
acorn@2233 637 // This thread executes:
acorn@2233 638 // ST Responsible=null; MEMBAR (in enter epilog - here)
acorn@2233 639 // LD cxq|EntryList (in subsequent exit)
acorn@2233 640 //
acorn@2233 641 // Entering threads in the slow/contended path execute:
acorn@2233 642 // ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
acorn@2233 643 // The (ST cxq; MEMBAR) is accomplished with CAS().
acorn@2233 644 //
acorn@2233 645 // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
acorn@2233 646 // exit operation from floating above the ST Responsible=null.
acorn@2233 647 //
acorn@2233 648 // In *practice* however, EnterI() is always followed by some atomic
acorn@2233 649 // operation such as the decrement of _count in ::enter(). Those atomics
acorn@2233 650 // obviate the need for the explicit MEMBAR, above.
acorn@2233 651 }
acorn@2233 652
acorn@2233 653 // We've acquired ownership with CAS().
acorn@2233 654 // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
acorn@2233 655 // But since the CAS() this thread may have also stored into _succ,
acorn@2233 656 // EntryList, cxq or Responsible. These meta-data updates must be
acorn@2233 657 // visible __before this thread subsequently drops the lock.
acorn@2233 658 // Consider what could occur if we didn't enforce this constraint --
acorn@2233 659 // STs to monitor meta-data and user-data could reorder with (become
acorn@2233 660 // visible after) the ST in exit that drops ownership of the lock.
acorn@2233 661 // Some other thread could then acquire the lock, but observe inconsistent
acorn@2233 662 // or old monitor meta-data and heap data. That violates the JMM.
acorn@2233 663 // To that end, the 1-0 exit() operation must have at least STST|LDST
acorn@2233 664 // "release" barrier semantics. Specifically, there must be at least a
acorn@2233 665 // STST|LDST barrier in exit() before the ST of null into _owner that drops
acorn@2233 666 // the lock. The barrier ensures that changes to monitor meta-data and data
acorn@2233 667 // protected by the lock will be visible before we release the lock, and
acorn@2233 668 // therefore before some other thread (CPU) has a chance to acquire the lock.
acorn@2233 669 // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
acorn@2233 670 //
acorn@2233 671 // Critically, any prior STs to _succ or EntryList must be visible before
acorn@2233 672 // the ST of null into _owner in the *subsequent* (following) corresponding
acorn@2233 673 // monitorexit. Recall too, that in 1-0 mode monitorexit does not necessarily
acorn@2233 674 // execute a serializing instruction.
acorn@2233 675
acorn@2233 676 if (SyncFlags & 8) {
acorn@2233 677 OrderAccess::fence() ;
acorn@2233 678 }
acorn@2233 679 return ;
acorn@2233 680 }
acorn@2233 681
acorn@2233 682 // ReenterI() is a specialized inline form of the latter half of the
acorn@2233 683 // contended slow-path from EnterI(). We use ReenterI() only for
acorn@2233 684 // monitor reentry in wait().
acorn@2233 685 //
acorn@2233 686 // In the future we should reconcile EnterI() and ReenterI(), adding
acorn@2233 687 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
acorn@2233 688 // loop accordingly.
acorn@2233 689
acorn@2233 690 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
acorn@2233 691 assert (Self != NULL , "invariant") ;
acorn@2233 692 assert (SelfNode != NULL , "invariant") ;
acorn@2233 693 assert (SelfNode->_thread == Self , "invariant") ;
acorn@2233 694 assert (_waiters > 0 , "invariant") ;
acorn@2233 695 assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
acorn@2233 696 assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
acorn@2233 697 JavaThread * jt = (JavaThread *) Self ;
acorn@2233 698
acorn@2233 699 int nWakeups = 0 ;
acorn@2233 700 for (;;) {
acorn@2233 701 ObjectWaiter::TStates v = SelfNode->TState ;
acorn@2233 702 guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
acorn@2233 703 assert (_owner != Self, "invariant") ;
acorn@2233 704
acorn@2233 705 if (TryLock (Self) > 0) break ;
acorn@2233 706 if (TrySpin (Self) > 0) break ;
acorn@2233 707
acorn@2233 708 TEVENT (Wait Reentry - parking) ;
acorn@2233 709
acorn@2233 710 // State transition wrappers around park() ...
acorn@2233 711 // ReenterI() wisely defers state transitions until
acorn@2233 712 // it's clear we must park the thread.
acorn@2233 713 {
acorn@2233 714 OSThreadContendState osts(Self->osthread());
acorn@2233 715 ThreadBlockInVM tbivm(jt);
acorn@2233 716
acorn@2233 717 // cleared by handle_special_suspend_equivalent_condition()
acorn@2233 718 // or java_suspend_self()
acorn@2233 719 jt->set_suspend_equivalent();
acorn@2233 720 if (SyncFlags & 1) {
acorn@2233 721 Self->_ParkEvent->park ((jlong)1000) ;
acorn@2233 722 } else {
acorn@2233 723 Self->_ParkEvent->park () ;
acorn@2233 724 }
acorn@2233 725
acorn@2233 726 // were we externally suspended while we were waiting?
acorn@2233 727 for (;;) {
acorn@2233 728 if (!ExitSuspendEquivalent (jt)) break ;
acorn@2233 729 if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
acorn@2233 730 jt->java_suspend_self();
acorn@2233 731 jt->set_suspend_equivalent();
acorn@2233 732 }
acorn@2233 733 }
acorn@2233 734
acorn@2233 735 // Try again, but just so we distinguish between futile wakeups and
acorn@2233 736 // successful wakeups. The following test isn't algorithmically
acorn@2233 737 // necessary, but it helps us maintain sensible statistics.
acorn@2233 738 if (TryLock(Self) > 0) break ;
acorn@2233 739
acorn@2233 740 // The lock is still contested.
acorn@2233 741 // Keep a tally of the # of futile wakeups.
acorn@2233 742 // Note that the counter is not protected by a lock or updated by atomics.
acorn@2233 743 // That is by design - we trade "lossy" counters which are exposed to
acorn@2233 744 // races during updates for a lower probe effect.
acorn@2233 745 TEVENT (Wait Reentry - futile wakeup) ;
acorn@2233 746 ++ nWakeups ;
acorn@2233 747
acorn@2233 748 // Assuming this is not a spurious wakeup we'll normally
acorn@2233 749 // find that _succ == Self.
acorn@2233 750 if (_succ == Self) _succ = NULL ;
acorn@2233 751
acorn@2233 752 // Invariant: after clearing _succ a contending thread
acorn@2233 753 // *must* retry _owner before parking.
acorn@2233 754 OrderAccess::fence() ;
acorn@2233 755
acorn@2233 756 if (ObjectMonitor::_sync_FutileWakeups != NULL) {
acorn@2233 757 ObjectMonitor::_sync_FutileWakeups->inc() ;
acorn@2233 758 }
acorn@2233 759 }
acorn@2233 760
acorn@2233 761 // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
acorn@2233 762 // Normally we'll find Self on the EntryList.
acorn@2233 763 // Unlinking from the EntryList is constant-time and atomic-free.
acorn@2233 764 // From the perspective of the lock owner (this thread), the
acorn@2233 765 // EntryList is stable and cxq is prepend-only.
acorn@2233 766 // The head of cxq is volatile but the interior is stable.
acorn@2233 767 // In addition, Self.TState is stable.
acorn@2233 768
acorn@2233 769 assert (_owner == Self, "invariant") ;
acorn@2233 770 assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
acorn@2233 771 UnlinkAfterAcquire (Self, SelfNode) ;
acorn@2233 772 if (_succ == Self) _succ = NULL ;
acorn@2233 773 assert (_succ != Self, "invariant") ;
acorn@2233 774 SelfNode->TState = ObjectWaiter::TS_RUN ;
acorn@2233 775 OrderAccess::fence() ; // see comments at the end of EnterI()
acorn@2233 776 }
acorn@2233 777
acorn@2233 778 // after the thread acquires the lock in ::enter(). Equally, we could defer
acorn@2233 779 // unlinking the thread until ::exit()-time.
acorn@2233 780
acorn@2233 781 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
acorn@2233 782 {
acorn@2233 783 assert (_owner == Self, "invariant") ;
acorn@2233 784 assert (SelfNode->_thread == Self, "invariant") ;
acorn@2233 785
acorn@2233 786 if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
acorn@2233 787 // Normal case: remove Self from the DLL EntryList .
acorn@2233 788 // This is a constant-time operation.
acorn@2233 789 ObjectWaiter * nxt = SelfNode->_next ;
acorn@2233 790 ObjectWaiter * prv = SelfNode->_prev ;
acorn@2233 791 if (nxt != NULL) nxt->_prev = prv ;
acorn@2233 792 if (prv != NULL) prv->_next = nxt ;
acorn@2233 793 if (SelfNode == _EntryList ) _EntryList = nxt ;
acorn@2233 794 assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
acorn@2233 795 assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
acorn@2233 796 TEVENT (Unlink from EntryList) ;
acorn@2233 797 } else {
acorn@2233 798 guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
acorn@2233 799 // Inopportune interleaving -- Self is still on the cxq.
acorn@2233 800 // This usually means the enqueue of self raced an exiting thread.
acorn@2233 801 // Normally we'll find Self near the front of the cxq, so
acorn@2233 802 // dequeueing is typically fast. If needbe we can accelerate
acorn@2233 803 // this with some MCS/CHL-like bidirectional list hints and advisory
acorn@2233 804 // back-links so dequeueing from the interior will normally operate
acorn@2233 805 // in constant-time.
acorn@2233 806 // Dequeue Self from either the head (with CAS) or from the interior
acorn@2233 807 // with a linear-time scan and normal non-atomic memory operations.
acorn@2233 808 // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
acorn@2233 809 // and then unlink Self from EntryList. We have to drain eventually,
acorn@2233 810 // so it might as well be now.
acorn@2233 811
acorn@2233 812 ObjectWaiter * v = _cxq ;
acorn@2233 813 assert (v != NULL, "invariant") ;
acorn@2233 814 if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
acorn@2233 815 // The CAS above can fail from interference IFF a "RAT" arrived.
acorn@2233 816 // In that case Self must be in the interior and can no longer be
acorn@2233 817 // at the head of cxq.
acorn@2233 818 if (v == SelfNode) {
acorn@2233 819 assert (_cxq != v, "invariant") ;
acorn@2233 820 v = _cxq ; // CAS above failed - start scan at head of list
acorn@2233 821 }
acorn@2233 822 ObjectWaiter * p ;
acorn@2233 823 ObjectWaiter * q = NULL ;
acorn@2233 824 for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
acorn@2233 825 q = p ;
acorn@2233 826 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
acorn@2233 827 }
acorn@2233 828 assert (v != SelfNode, "invariant") ;
acorn@2233 829 assert (p == SelfNode, "Node not found on cxq") ;
acorn@2233 830 assert (p != _cxq, "invariant") ;
acorn@2233 831 assert (q != NULL, "invariant") ;
acorn@2233 832 assert (q->_next == p, "invariant") ;
acorn@2233 833 q->_next = p->_next ;
acorn@2233 834 }
acorn@2233 835 TEVENT (Unlink from cxq) ;
acorn@2233 836 }
acorn@2233 837
acorn@2233 838 // Diagnostic hygiene ...
acorn@2233 839 SelfNode->_prev = (ObjectWaiter *) 0xBAD ;
acorn@2233 840 SelfNode->_next = (ObjectWaiter *) 0xBAD ;
acorn@2233 841 SelfNode->TState = ObjectWaiter::TS_RUN ;
acorn@2233 842 }
acorn@2233 843
acorn@2233 844 // -----------------------------------------------------------------------------
acorn@2233 845 // Exit support
acorn@2233 846 //
acorn@2233 847 // exit()
acorn@2233 848 // ~~~~~~
acorn@2233 849 // Note that the collector can't reclaim the objectMonitor or deflate
acorn@2233 850 // the object out from underneath the thread calling ::exit() as the
acorn@2233 851 // thread calling ::exit() never transitions to a stable state.
acorn@2233 852 // This inhibits GC, which in turn inhibits asynchronous (and
acorn@2233 853 // inopportune) reclamation of "this".
acorn@2233 854 //
acorn@2233 855 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
acorn@2233 856 // There's one exception to the claim above, however. EnterI() can call
acorn@2233 857 // exit() to drop a lock if the acquirer has been externally suspended.
acorn@2233 858 // In that case exit() is called with _thread_state as _thread_blocked,
acorn@2233 859 // but the monitor's _count field is > 0, which inhibits reclamation.
acorn@2233 860 //
acorn@2233 861 // 1-0 exit
acorn@2233 862 // ~~~~~~~~
acorn@2233 863 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
acorn@2233 864 // the fast-path operators have been optimized so the common ::exit()
acorn@2233 865 // operation is 1-0. See i486.ad fast_unlock(), for instance.
acorn@2233 866 // The code emitted by fast_unlock() elides the usual MEMBAR. This
acorn@2233 867 // greatly improves latency -- MEMBAR and CAS having considerable local
acorn@2233 868 // latency on modern processors -- but at the cost of "stranding". Absent the
acorn@2233 869 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
acorn@2233 870 // ::enter() path, resulting in the entering thread being stranding
acorn@2233 871 // and a progress-liveness failure. Stranding is extremely rare.
acorn@2233 872 // We use timers (timed park operations) & periodic polling to detect
acorn@2233 873 // and recover from stranding. Potentially stranded threads periodically
acorn@2233 874 // wake up and poll the lock. See the usage of the _Responsible variable.
acorn@2233 875 //
acorn@2233 876 // The CAS() in enter provides for safety and exclusion, while the CAS or
acorn@2233 877 // MEMBAR in exit provides for progress and avoids stranding. 1-0 locking
acorn@2233 878 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
acorn@2233 879 // We detect and recover from stranding with timers.
acorn@2233 880 //
acorn@2233 881 // If a thread transiently strands it'll park until (a) another
acorn@2233 882 // thread acquires the lock and then drops the lock, at which time the
acorn@2233 883 // exiting thread will notice and unpark the stranded thread, or, (b)
acorn@2233 884 // the timer expires. If the lock is high traffic then the stranding latency
acorn@2233 885 // will be low due to (a). If the lock is low traffic then the odds of
acorn@2233 886 // stranding are lower, although the worst-case stranding latency
acorn@2233 887 // is longer. Critically, we don't want to put excessive load in the
acorn@2233 888 // platform's timer subsystem. We want to minimize both the timer injection
acorn@2233 889 // rate (timers created/sec) as well as the number of timers active at
acorn@2233 890 // any one time. (more precisely, we want to minimize timer-seconds, which is
acorn@2233 891 // the integral of the # of active timers at any instant over time).
acorn@2233 892 // Both impinge on OS scalability. Given that, at most one thread parked on
acorn@2233 893 // a monitor will use a timer.
acorn@2233 894
acorn@2233 895 void ATTR ObjectMonitor::exit(TRAPS) {
acorn@2233 896 Thread * Self = THREAD ;
acorn@2233 897 if (THREAD != _owner) {
acorn@2233 898 if (THREAD->is_lock_owned((address) _owner)) {
acorn@2233 899 // Transmute _owner from a BasicLock pointer to a Thread address.
acorn@2233 900 // We don't need to hold _mutex for this transition.
acorn@2233 901 // Non-null to Non-null is safe as long as all readers can
acorn@2233 902 // tolerate either flavor.
acorn@2233 903 assert (_recursions == 0, "invariant") ;
acorn@2233 904 _owner = THREAD ;
acorn@2233 905 _recursions = 0 ;
acorn@2233 906 OwnerIsThread = 1 ;
acorn@2233 907 } else {
acorn@2233 908 // NOTE: we need to handle unbalanced monitor enter/exit
acorn@2233 909 // in native code by throwing an exception.
acorn@2233 910 // TODO: Throw an IllegalMonitorStateException ?
acorn@2233 911 TEVENT (Exit - Throw IMSX) ;
acorn@2233 912 assert(false, "Non-balanced monitor enter/exit!");
acorn@2233 913 if (false) {
acorn@2233 914 THROW(vmSymbols::java_lang_IllegalMonitorStateException());
acorn@2233 915 }
acorn@2233 916 return;
acorn@2233 917 }
acorn@2233 918 }
acorn@2233 919
acorn@2233 920 if (_recursions != 0) {
acorn@2233 921 _recursions--; // this is simple recursive enter
acorn@2233 922 TEVENT (Inflated exit - recursive) ;
acorn@2233 923 return ;
acorn@2233 924 }
acorn@2233 925
acorn@2233 926 // Invariant: after setting Responsible=null an thread must execute
acorn@2233 927 // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
acorn@2233 928 if ((SyncFlags & 4) == 0) {
acorn@2233 929 _Responsible = NULL ;
acorn@2233 930 }
acorn@2233 931
acorn@2233 932 for (;;) {
acorn@2233 933 assert (THREAD == _owner, "invariant") ;
acorn@2233 934
acorn@2233 935
acorn@2233 936 if (Knob_ExitPolicy == 0) {
acorn@2233 937 // release semantics: prior loads and stores from within the critical section
acorn@2233 938 // must not float (reorder) past the following store that drops the lock.
acorn@2233 939 // On SPARC that requires MEMBAR #loadstore|#storestore.
acorn@2233 940 // But of course in TSO #loadstore|#storestore is not required.
acorn@2233 941 // I'd like to write one of the following:
acorn@2233 942 // A. OrderAccess::release() ; _owner = NULL
acorn@2233 943 // B. OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
acorn@2233 944 // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
acorn@2233 945 // store into a _dummy variable. That store is not needed, but can result
acorn@2233 946 // in massive wasteful coherency traffic on classic SMP systems.
acorn@2233 947 // Instead, I use release_store(), which is implemented as just a simple
acorn@2233 948 // ST on x64, x86 and SPARC.
acorn@2233 949 OrderAccess::release_store_ptr (&_owner, NULL) ; // drop the lock
acorn@2233 950 OrderAccess::storeload() ; // See if we need to wake a successor
acorn@2233 951 if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
acorn@2233 952 TEVENT (Inflated exit - simple egress) ;
acorn@2233 953 return ;
acorn@2233 954 }
acorn@2233 955 TEVENT (Inflated exit - complex egress) ;
acorn@2233 956
acorn@2233 957 // Normally the exiting thread is responsible for ensuring succession,
acorn@2233 958 // but if other successors are ready or other entering threads are spinning
acorn@2233 959 // then this thread can simply store NULL into _owner and exit without
acorn@2233 960 // waking a successor. The existence of spinners or ready successors
acorn@2233 961 // guarantees proper succession (liveness). Responsibility passes to the
acorn@2233 962 // ready or running successors. The exiting thread delegates the duty.
acorn@2233 963 // More precisely, if a successor already exists this thread is absolved
acorn@2233 964 // of the responsibility of waking (unparking) one.
acorn@2233 965 //
acorn@2233 966 // The _succ variable is critical to reducing futile wakeup frequency.
acorn@2233 967 // _succ identifies the "heir presumptive" thread that has been made
acorn@2233 968 // ready (unparked) but that has not yet run. We need only one such
acorn@2233 969 // successor thread to guarantee progress.
acorn@2233 970 // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
acorn@2233 971 // section 3.3 "Futile Wakeup Throttling" for details.
acorn@2233 972 //
acorn@2233 973 // Note that spinners in Enter() also set _succ non-null.
acorn@2233 974 // In the current implementation spinners opportunistically set
acorn@2233 975 // _succ so that exiting threads might avoid waking a successor.
acorn@2233 976 // Another less appealing alternative would be for the exiting thread
acorn@2233 977 // to drop the lock and then spin briefly to see if a spinner managed
acorn@2233 978 // to acquire the lock. If so, the exiting thread could exit
acorn@2233 979 // immediately without waking a successor, otherwise the exiting
acorn@2233 980 // thread would need to dequeue and wake a successor.
acorn@2233 981 // (Note that we'd need to make the post-drop spin short, but no
acorn@2233 982 // shorter than the worst-case round-trip cache-line migration time.
acorn@2233 983 // The dropped lock needs to become visible to the spinner, and then
acorn@2233 984 // the acquisition of the lock by the spinner must become visible to
acorn@2233 985 // the exiting thread).
acorn@2233 986 //
acorn@2233 987
acorn@2233 988 // It appears that an heir-presumptive (successor) must be made ready.
acorn@2233 989 // Only the current lock owner can manipulate the EntryList or
acorn@2233 990 // drain _cxq, so we need to reacquire the lock. If we fail
acorn@2233 991 // to reacquire the lock the responsibility for ensuring succession
acorn@2233 992 // falls to the new owner.
acorn@2233 993 //
acorn@2233 994 if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
acorn@2233 995 return ;
acorn@2233 996 }
acorn@2233 997 TEVENT (Exit - Reacquired) ;
acorn@2233 998 } else {
acorn@2233 999 if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
acorn@2233 1000 OrderAccess::release_store_ptr (&_owner, NULL) ; // drop the lock
acorn@2233 1001 OrderAccess::storeload() ;
acorn@2233 1002 // Ratify the previously observed values.
acorn@2233 1003 if (_cxq == NULL || _succ != NULL) {
acorn@2233 1004 TEVENT (Inflated exit - simple egress) ;
acorn@2233 1005 return ;
acorn@2233 1006 }
acorn@2233 1007
acorn@2233 1008 // inopportune interleaving -- the exiting thread (this thread)
acorn@2233 1009 // in the fast-exit path raced an entering thread in the slow-enter
acorn@2233 1010 // path.
acorn@2233 1011 // We have two choices:
acorn@2233 1012 // A. Try to reacquire the lock.
acorn@2233 1013 // If the CAS() fails return immediately, otherwise
acorn@2233 1014 // we either restart/rerun the exit operation, or simply
acorn@2233 1015 // fall-through into the code below which wakes a successor.
acorn@2233 1016 // B. If the elements forming the EntryList|cxq are TSM
acorn@2233 1017 // we could simply unpark() the lead thread and return
acorn@2233 1018 // without having set _succ.
acorn@2233 1019 if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
acorn@2233 1020 TEVENT (Inflated exit - reacquired succeeded) ;
acorn@2233 1021 return ;
acorn@2233 1022 }
acorn@2233 1023 TEVENT (Inflated exit - reacquired failed) ;
acorn@2233 1024 } else {
acorn@2233 1025 TEVENT (Inflated exit - complex egress) ;
acorn@2233 1026 }
acorn@2233 1027 }
acorn@2233 1028
acorn@2233 1029 guarantee (_owner == THREAD, "invariant") ;
acorn@2233 1030
acorn@2233 1031 ObjectWaiter * w = NULL ;
acorn@2233 1032 int QMode = Knob_QMode ;
acorn@2233 1033
acorn@2233 1034 if (QMode == 2 && _cxq != NULL) {
acorn@2233 1035 // QMode == 2 : cxq has precedence over EntryList.
acorn@2233 1036 // Try to directly wake a successor from the cxq.
acorn@2233 1037 // If successful, the successor will need to unlink itself from cxq.
acorn@2233 1038 w = _cxq ;
acorn@2233 1039 assert (w != NULL, "invariant") ;
acorn@2233 1040 assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
acorn@2233 1041 ExitEpilog (Self, w) ;
acorn@2233 1042 return ;
acorn@2233 1043 }
acorn@2233 1044
acorn@2233 1045 if (QMode == 3 && _cxq != NULL) {
acorn@2233 1046 // Aggressively drain cxq into EntryList at the first opportunity.
acorn@2233 1047 // This policy ensure that recently-run threads live at the head of EntryList.
acorn@2233 1048 // Drain _cxq into EntryList - bulk transfer.
acorn@2233 1049 // First, detach _cxq.
acorn@2233 1050 // The following loop is tantamount to: w = swap (&cxq, NULL)
acorn@2233 1051 w = _cxq ;
acorn@2233 1052 for (;;) {
acorn@2233 1053 assert (w != NULL, "Invariant") ;
acorn@2233 1054 ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
acorn@2233 1055 if (u == w) break ;
acorn@2233 1056 w = u ;
acorn@2233 1057 }
acorn@2233 1058 assert (w != NULL , "invariant") ;
acorn@2233 1059
acorn@2233 1060 ObjectWaiter * q = NULL ;
acorn@2233 1061 ObjectWaiter * p ;
acorn@2233 1062 for (p = w ; p != NULL ; p = p->_next) {
acorn@2233 1063 guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
acorn@2233 1064 p->TState = ObjectWaiter::TS_ENTER ;
acorn@2233 1065 p->_prev = q ;
acorn@2233 1066 q = p ;
acorn@2233 1067 }
acorn@2233 1068
acorn@2233 1069 // Append the RATs to the EntryList
acorn@2233 1070 // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
acorn@2233 1071 ObjectWaiter * Tail ;
acorn@2233 1072 for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
acorn@2233 1073 if (Tail == NULL) {
acorn@2233 1074 _EntryList = w ;
acorn@2233 1075 } else {
acorn@2233 1076 Tail->_next = w ;
acorn@2233 1077 w->_prev = Tail ;
acorn@2233 1078 }
acorn@2233 1079
acorn@2233 1080 // Fall thru into code that tries to wake a successor from EntryList
acorn@2233 1081 }
acorn@2233 1082
acorn@2233 1083 if (QMode == 4 && _cxq != NULL) {
acorn@2233 1084 // Aggressively drain cxq into EntryList at the first opportunity.
acorn@2233 1085 // This policy ensure that recently-run threads live at the head of EntryList.
acorn@2233 1086
acorn@2233 1087 // Drain _cxq into EntryList - bulk transfer.
acorn@2233 1088 // First, detach _cxq.
acorn@2233 1089 // The following loop is tantamount to: w = swap (&cxq, NULL)
acorn@2233 1090 w = _cxq ;
acorn@2233 1091 for (;;) {
acorn@2233 1092 assert (w != NULL, "Invariant") ;
acorn@2233 1093 ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
acorn@2233 1094 if (u == w) break ;
acorn@2233 1095 w = u ;
acorn@2233 1096 }
acorn@2233 1097 assert (w != NULL , "invariant") ;
acorn@2233 1098
acorn@2233 1099 ObjectWaiter * q = NULL ;
acorn@2233 1100 ObjectWaiter * p ;
acorn@2233 1101 for (p = w ; p != NULL ; p = p->_next) {
acorn@2233 1102 guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
acorn@2233 1103 p->TState = ObjectWaiter::TS_ENTER ;
acorn@2233 1104 p->_prev = q ;
acorn@2233 1105 q = p ;
acorn@2233 1106 }
acorn@2233 1107
acorn@2233 1108 // Prepend the RATs to the EntryList
acorn@2233 1109 if (_EntryList != NULL) {
acorn@2233 1110 q->_next = _EntryList ;
acorn@2233 1111 _EntryList->_prev = q ;
acorn@2233 1112 }
acorn@2233 1113 _EntryList = w ;
acorn@2233 1114
acorn@2233 1115 // Fall thru into code that tries to wake a successor from EntryList
acorn@2233 1116 }
acorn@2233 1117
acorn@2233 1118 w = _EntryList ;
acorn@2233 1119 if (w != NULL) {
acorn@2233 1120 // I'd like to write: guarantee (w->_thread != Self).
acorn@2233 1121 // But in practice an exiting thread may find itself on the EntryList.
acorn@2233 1122 // Lets say thread T1 calls O.wait(). Wait() enqueues T1 on O's waitset and
acorn@2233 1123 // then calls exit(). Exit release the lock by setting O._owner to NULL.
acorn@2233 1124 // Lets say T1 then stalls. T2 acquires O and calls O.notify(). The
acorn@2233 1125 // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
acorn@2233 1126 // release the lock "O". T2 resumes immediately after the ST of null into
acorn@2233 1127 // _owner, above. T2 notices that the EntryList is populated, so it
acorn@2233 1128 // reacquires the lock and then finds itself on the EntryList.
acorn@2233 1129 // Given all that, we have to tolerate the circumstance where "w" is
acorn@2233 1130 // associated with Self.
acorn@2233 1131 assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
acorn@2233 1132 ExitEpilog (Self, w) ;
acorn@2233 1133 return ;
acorn@2233 1134 }
acorn@2233 1135
acorn@2233 1136 // If we find that both _cxq and EntryList are null then just
acorn@2233 1137 // re-run the exit protocol from the top.
acorn@2233 1138 w = _cxq ;
acorn@2233 1139 if (w == NULL) continue ;
acorn@2233 1140
acorn@2233 1141 // Drain _cxq into EntryList - bulk transfer.
acorn@2233 1142 // First, detach _cxq.
acorn@2233 1143 // The following loop is tantamount to: w = swap (&cxq, NULL)
acorn@2233 1144 for (;;) {
acorn@2233 1145 assert (w != NULL, "Invariant") ;
acorn@2233 1146 ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
acorn@2233 1147 if (u == w) break ;
acorn@2233 1148 w = u ;
acorn@2233 1149 }
acorn@2233 1150 TEVENT (Inflated exit - drain cxq into EntryList) ;
acorn@2233 1151
acorn@2233 1152 assert (w != NULL , "invariant") ;
acorn@2233 1153 assert (_EntryList == NULL , "invariant") ;
acorn@2233 1154
acorn@2233 1155 // Convert the LIFO SLL anchored by _cxq into a DLL.
acorn@2233 1156 // The list reorganization step operates in O(LENGTH(w)) time.
acorn@2233 1157 // It's critical that this step operate quickly as
acorn@2233 1158 // "Self" still holds the outer-lock, restricting parallelism
acorn@2233 1159 // and effectively lengthening the critical section.
acorn@2233 1160 // Invariant: s chases t chases u.
acorn@2233 1161 // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
acorn@2233 1162 // we have faster access to the tail.
acorn@2233 1163
acorn@2233 1164 if (QMode == 1) {
acorn@2233 1165 // QMode == 1 : drain cxq to EntryList, reversing order
acorn@2233 1166 // We also reverse the order of the list.
acorn@2233 1167 ObjectWaiter * s = NULL ;
acorn@2233 1168 ObjectWaiter * t = w ;
acorn@2233 1169 ObjectWaiter * u = NULL ;
acorn@2233 1170 while (t != NULL) {
acorn@2233 1171 guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
acorn@2233 1172 t->TState = ObjectWaiter::TS_ENTER ;
acorn@2233 1173 u = t->_next ;
acorn@2233 1174 t->_prev = u ;
acorn@2233 1175 t->_next = s ;
acorn@2233 1176 s = t;
acorn@2233 1177 t = u ;
acorn@2233 1178 }
acorn@2233 1179 _EntryList = s ;
acorn@2233 1180 assert (s != NULL, "invariant") ;
acorn@2233 1181 } else {
acorn@2233 1182 // QMode == 0 or QMode == 2
acorn@2233 1183 _EntryList = w ;
acorn@2233 1184 ObjectWaiter * q = NULL ;
acorn@2233 1185 ObjectWaiter * p ;
acorn@2233 1186 for (p = w ; p != NULL ; p = p->_next) {
acorn@2233 1187 guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
acorn@2233 1188 p->TState = ObjectWaiter::TS_ENTER ;
acorn@2233 1189 p->_prev = q ;
acorn@2233 1190 q = p ;
acorn@2233 1191 }
acorn@2233 1192 }
acorn@2233 1193
acorn@2233 1194 // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
acorn@2233 1195 // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
acorn@2233 1196
acorn@2233 1197 // See if we can abdicate to a spinner instead of waking a thread.
acorn@2233 1198 // A primary goal of the implementation is to reduce the
acorn@2233 1199 // context-switch rate.
acorn@2233 1200 if (_succ != NULL) continue;
acorn@2233 1201
acorn@2233 1202 w = _EntryList ;
acorn@2233 1203 if (w != NULL) {
acorn@2233 1204 guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
acorn@2233 1205 ExitEpilog (Self, w) ;
acorn@2233 1206 return ;
acorn@2233 1207 }
acorn@2233 1208 }
acorn@2233 1209 }
acorn@2233 1210
acorn@2233 1211 // ExitSuspendEquivalent:
acorn@2233 1212 // A faster alternate to handle_special_suspend_equivalent_condition()
acorn@2233 1213 //
acorn@2233 1214 // handle_special_suspend_equivalent_condition() unconditionally
acorn@2233 1215 // acquires the SR_lock. On some platforms uncontended MutexLocker()
acorn@2233 1216 // operations have high latency. Note that in ::enter() we call HSSEC
acorn@2233 1217 // while holding the monitor, so we effectively lengthen the critical sections.
acorn@2233 1218 //
acorn@2233 1219 // There are a number of possible solutions:
acorn@2233 1220 //
acorn@2233 1221 // A. To ameliorate the problem we might also defer state transitions
acorn@2233 1222 // to as late as possible -- just prior to parking.
acorn@2233 1223 // Given that, we'd call HSSEC after having returned from park(),
acorn@2233 1224 // but before attempting to acquire the monitor. This is only a
acorn@2233 1225 // partial solution. It avoids calling HSSEC while holding the
acorn@2233 1226 // monitor (good), but it still increases successor reacquisition latency --
acorn@2233 1227 // the interval between unparking a successor and the time the successor
acorn@2233 1228 // resumes and retries the lock. See ReenterI(), which defers state transitions.
acorn@2233 1229 // If we use this technique we can also avoid EnterI()-exit() loop
acorn@2233 1230 // in ::enter() where we iteratively drop the lock and then attempt
acorn@2233 1231 // to reacquire it after suspending.
acorn@2233 1232 //
acorn@2233 1233 // B. In the future we might fold all the suspend bits into a
acorn@2233 1234 // composite per-thread suspend flag and then update it with CAS().
acorn@2233 1235 // Alternately, a Dekker-like mechanism with multiple variables
acorn@2233 1236 // would suffice:
acorn@2233 1237 // ST Self->_suspend_equivalent = false
acorn@2233 1238 // MEMBAR
acorn@2233 1239 // LD Self_>_suspend_flags
acorn@2233 1240 //
acorn@2233 1241
acorn@2233 1242
acorn@2233 1243 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
acorn@2233 1244 int Mode = Knob_FastHSSEC ;
acorn@2233 1245 if (Mode && !jSelf->is_external_suspend()) {
acorn@2233 1246 assert (jSelf->is_suspend_equivalent(), "invariant") ;
acorn@2233 1247 jSelf->clear_suspend_equivalent() ;
acorn@2233 1248 if (2 == Mode) OrderAccess::storeload() ;
acorn@2233 1249 if (!jSelf->is_external_suspend()) return false ;
acorn@2233 1250 // We raced a suspension -- fall thru into the slow path
acorn@2233 1251 TEVENT (ExitSuspendEquivalent - raced) ;
acorn@2233 1252 jSelf->set_suspend_equivalent() ;
acorn@2233 1253 }
acorn@2233 1254 return jSelf->handle_special_suspend_equivalent_condition() ;
acorn@2233 1255 }
acorn@2233 1256
acorn@2233 1257
acorn@2233 1258 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
acorn@2233 1259 assert (_owner == Self, "invariant") ;
acorn@2233 1260
acorn@2233 1261 // Exit protocol:
acorn@2233 1262 // 1. ST _succ = wakee
acorn@2233 1263 // 2. membar #loadstore|#storestore;
acorn@2233 1264 // 2. ST _owner = NULL
acorn@2233 1265 // 3. unpark(wakee)
acorn@2233 1266
acorn@2233 1267 _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
acorn@2233 1268 ParkEvent * Trigger = Wakee->_event ;
acorn@2233 1269
acorn@2233 1270 // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
acorn@2233 1271 // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
acorn@2233 1272 // out-of-scope (non-extant).
acorn@2233 1273 Wakee = NULL ;
acorn@2233 1274
acorn@2233 1275 // Drop the lock
acorn@2233 1276 OrderAccess::release_store_ptr (&_owner, NULL) ;
acorn@2233 1277 OrderAccess::fence() ; // ST _owner vs LD in unpark()
acorn@2233 1278
acorn@2233 1279 if (SafepointSynchronize::do_call_back()) {
acorn@2233 1280 TEVENT (unpark before SAFEPOINT) ;
acorn@2233 1281 }
acorn@2233 1282
acorn@2233 1283 DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
acorn@2233 1284 Trigger->unpark() ;
acorn@2233 1285
acorn@2233 1286 // Maintain stats and report events to JVMTI
acorn@2233 1287 if (ObjectMonitor::_sync_Parks != NULL) {
acorn@2233 1288 ObjectMonitor::_sync_Parks->inc() ;
acorn@2233 1289 }
acorn@2233 1290 }
acorn@2233 1291
acorn@2233 1292
acorn@2233 1293 // -----------------------------------------------------------------------------
acorn@2233 1294 // Class Loader deadlock handling.
acorn@2233 1295 //
acorn@2233 1296 // complete_exit exits a lock returning recursion count
acorn@2233 1297 // complete_exit/reenter operate as a wait without waiting
acorn@2233 1298 // complete_exit requires an inflated monitor
acorn@2233 1299 // The _owner field is not always the Thread addr even with an
acorn@2233 1300 // inflated monitor, e.g. the monitor can be inflated by a non-owning
acorn@2233 1301 // thread due to contention.
acorn@2233 1302 intptr_t ObjectMonitor::complete_exit(TRAPS) {
acorn@2233 1303 Thread * const Self = THREAD;
acorn@2233 1304 assert(Self->is_Java_thread(), "Must be Java thread!");
acorn@2233 1305 JavaThread *jt = (JavaThread *)THREAD;
acorn@2233 1306
acorn@2233 1307 DeferredInitialize();
acorn@2233 1308
acorn@2233 1309 if (THREAD != _owner) {
acorn@2233 1310 if (THREAD->is_lock_owned ((address)_owner)) {
acorn@2233 1311 assert(_recursions == 0, "internal state error");
acorn@2233 1312 _owner = THREAD ; /* Convert from basiclock addr to Thread addr */
acorn@2233 1313 _recursions = 0 ;
acorn@2233 1314 OwnerIsThread = 1 ;
acorn@2233 1315 }
acorn@2233 1316 }
acorn@2233 1317
acorn@2233 1318 guarantee(Self == _owner, "complete_exit not owner");
acorn@2233 1319 intptr_t save = _recursions; // record the old recursion count
acorn@2233 1320 _recursions = 0; // set the recursion level to be 0
acorn@2233 1321 exit (Self) ; // exit the monitor
acorn@2233 1322 guarantee (_owner != Self, "invariant");
acorn@2233 1323 return save;
acorn@2233 1324 }
acorn@2233 1325
acorn@2233 1326 // reenter() enters a lock and sets recursion count
acorn@2233 1327 // complete_exit/reenter operate as a wait without waiting
acorn@2233 1328 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
acorn@2233 1329 Thread * const Self = THREAD;
acorn@2233 1330 assert(Self->is_Java_thread(), "Must be Java thread!");
acorn@2233 1331 JavaThread *jt = (JavaThread *)THREAD;
acorn@2233 1332
acorn@2233 1333 guarantee(_owner != Self, "reenter already owner");
acorn@2233 1334 enter (THREAD); // enter the monitor
acorn@2233 1335 guarantee (_recursions == 0, "reenter recursion");
acorn@2233 1336 _recursions = recursions;
acorn@2233 1337 return;
acorn@2233 1338 }
acorn@2233 1339
acorn@2233 1340
acorn@2233 1341 // -----------------------------------------------------------------------------
acorn@2233 1342 // A macro is used below because there may already be a pending
acorn@2233 1343 // exception which should not abort the execution of the routines
acorn@2233 1344 // which use this (which is why we don't put this into check_slow and
acorn@2233 1345 // call it with a CHECK argument).
acorn@2233 1346
acorn@2233 1347 #define CHECK_OWNER() \
acorn@2233 1348 do { \
acorn@2233 1349 if (THREAD != _owner) { \
acorn@2233 1350 if (THREAD->is_lock_owned((address) _owner)) { \
acorn@2233 1351 _owner = THREAD ; /* Convert from basiclock addr to Thread addr */ \
acorn@2233 1352 _recursions = 0; \
acorn@2233 1353 OwnerIsThread = 1 ; \
acorn@2233 1354 } else { \
acorn@2233 1355 TEVENT (Throw IMSX) ; \
acorn@2233 1356 THROW(vmSymbols::java_lang_IllegalMonitorStateException()); \
acorn@2233 1357 } \
acorn@2233 1358 } \
acorn@2233 1359 } while (false)
acorn@2233 1360
acorn@2233 1361 // check_slow() is a misnomer. It's called to simply to throw an IMSX exception.
acorn@2233 1362 // TODO-FIXME: remove check_slow() -- it's likely dead.
acorn@2233 1363
acorn@2233 1364 void ObjectMonitor::check_slow(TRAPS) {
acorn@2233 1365 TEVENT (check_slow - throw IMSX) ;
acorn@2233 1366 assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
acorn@2233 1367 THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
acorn@2233 1368 }
acorn@2233 1369
acorn@2233 1370 static int Adjust (volatile int * adr, int dx) {
acorn@2233 1371 int v ;
acorn@2233 1372 for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
acorn@2233 1373 return v ;
acorn@2233 1374 }
acorn@2233 1375 // -----------------------------------------------------------------------------
acorn@2233 1376 // Wait/Notify/NotifyAll
acorn@2233 1377 //
acorn@2233 1378 // Note: a subset of changes to ObjectMonitor::wait()
acorn@2233 1379 // will need to be replicated in complete_exit above
acorn@2233 1380 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
acorn@2233 1381 Thread * const Self = THREAD ;
acorn@2233 1382 assert(Self->is_Java_thread(), "Must be Java thread!");
acorn@2233 1383 JavaThread *jt = (JavaThread *)THREAD;
acorn@2233 1384
acorn@2233 1385 DeferredInitialize () ;
acorn@2233 1386
acorn@2233 1387 // Throw IMSX or IEX.
acorn@2233 1388 CHECK_OWNER();
acorn@2233 1389
acorn@2233 1390 // check for a pending interrupt
acorn@2233 1391 if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
acorn@2233 1392 // post monitor waited event. Note that this is past-tense, we are done waiting.
acorn@2233 1393 if (JvmtiExport::should_post_monitor_waited()) {
acorn@2233 1394 // Note: 'false' parameter is passed here because the
acorn@2233 1395 // wait was not timed out due to thread interrupt.
acorn@2233 1396 JvmtiExport::post_monitor_waited(jt, this, false);
acorn@2233 1397 }
acorn@2233 1398 TEVENT (Wait - Throw IEX) ;
acorn@2233 1399 THROW(vmSymbols::java_lang_InterruptedException());
acorn@2233 1400 return ;
acorn@2233 1401 }
acorn@2233 1402 TEVENT (Wait) ;
acorn@2233 1403
acorn@2233 1404 assert (Self->_Stalled == 0, "invariant") ;
acorn@2233 1405 Self->_Stalled = intptr_t(this) ;
acorn@2233 1406 jt->set_current_waiting_monitor(this);
acorn@2233 1407
acorn@2233 1408 // create a node to be put into the queue
acorn@2233 1409 // Critically, after we reset() the event but prior to park(), we must check
acorn@2233 1410 // for a pending interrupt.
acorn@2233 1411 ObjectWaiter node(Self);
acorn@2233 1412 node.TState = ObjectWaiter::TS_WAIT ;
acorn@2233 1413 Self->_ParkEvent->reset() ;
acorn@2233 1414 OrderAccess::fence(); // ST into Event; membar ; LD interrupted-flag
acorn@2233 1415
acorn@2233 1416 // Enter the waiting queue, which is a circular doubly linked list in this case
acorn@2233 1417 // but it could be a priority queue or any data structure.
acorn@2233 1418 // _WaitSetLock protects the wait queue. Normally the wait queue is accessed only
acorn@2233 1419 // by the the owner of the monitor *except* in the case where park()
acorn@2233 1420 // returns because of a timeout of interrupt. Contention is exceptionally rare
acorn@2233 1421 // so we use a simple spin-lock instead of a heavier-weight blocking lock.
acorn@2233 1422
acorn@2233 1423 Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
acorn@2233 1424 AddWaiter (&node) ;
acorn@2233 1425 Thread::SpinRelease (&_WaitSetLock) ;
acorn@2233 1426
acorn@2233 1427 if ((SyncFlags & 4) == 0) {
acorn@2233 1428 _Responsible = NULL ;
acorn@2233 1429 }
acorn@2233 1430 intptr_t save = _recursions; // record the old recursion count
acorn@2233 1431 _waiters++; // increment the number of waiters
acorn@2233 1432 _recursions = 0; // set the recursion level to be 1
acorn@2233 1433 exit (Self) ; // exit the monitor
acorn@2233 1434 guarantee (_owner != Self, "invariant") ;
acorn@2233 1435
acorn@2233 1436 // As soon as the ObjectMonitor's ownership is dropped in the exit()
acorn@2233 1437 // call above, another thread can enter() the ObjectMonitor, do the
acorn@2233 1438 // notify(), and exit() the ObjectMonitor. If the other thread's
acorn@2233 1439 // exit() call chooses this thread as the successor and the unpark()
acorn@2233 1440 // call happens to occur while this thread is posting a
acorn@2233 1441 // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
acorn@2233 1442 // handler using RawMonitors and consuming the unpark().
acorn@2233 1443 //
acorn@2233 1444 // To avoid the problem, we re-post the event. This does no harm
acorn@2233 1445 // even if the original unpark() was not consumed because we are the
acorn@2233 1446 // chosen successor for this monitor.
acorn@2233 1447 if (node._notified != 0 && _succ == Self) {
acorn@2233 1448 node._event->unpark();
acorn@2233 1449 }
acorn@2233 1450
acorn@2233 1451 // The thread is on the WaitSet list - now park() it.
acorn@2233 1452 // On MP systems it's conceivable that a brief spin before we park
acorn@2233 1453 // could be profitable.
acorn@2233 1454 //
acorn@2233 1455 // TODO-FIXME: change the following logic to a loop of the form
acorn@2233 1456 // while (!timeout && !interrupted && _notified == 0) park()
acorn@2233 1457
acorn@2233 1458 int ret = OS_OK ;
acorn@2233 1459 int WasNotified = 0 ;
acorn@2233 1460 { // State transition wrappers
acorn@2233 1461 OSThread* osthread = Self->osthread();
acorn@2233 1462 OSThreadWaitState osts(osthread, true);
acorn@2233 1463 {
acorn@2233 1464 ThreadBlockInVM tbivm(jt);
acorn@2233 1465 // Thread is in thread_blocked state and oop access is unsafe.
acorn@2233 1466 jt->set_suspend_equivalent();
acorn@2233 1467
acorn@2233 1468 if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
acorn@2233 1469 // Intentionally empty
acorn@2233 1470 } else
acorn@2233 1471 if (node._notified == 0) {
acorn@2233 1472 if (millis <= 0) {
acorn@2233 1473 Self->_ParkEvent->park () ;
acorn@2233 1474 } else {
acorn@2233 1475 ret = Self->_ParkEvent->park (millis) ;
acorn@2233 1476 }
acorn@2233 1477 }
acorn@2233 1478
acorn@2233 1479 // were we externally suspended while we were waiting?
acorn@2233 1480 if (ExitSuspendEquivalent (jt)) {
acorn@2233 1481 // TODO-FIXME: add -- if succ == Self then succ = null.
acorn@2233 1482 jt->java_suspend_self();
acorn@2233 1483 }
acorn@2233 1484
acorn@2233 1485 } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
acorn@2233 1486
acorn@2233 1487
acorn@2233 1488 // Node may be on the WaitSet, the EntryList (or cxq), or in transition
acorn@2233 1489 // from the WaitSet to the EntryList.
acorn@2233 1490 // See if we need to remove Node from the WaitSet.
acorn@2233 1491 // We use double-checked locking to avoid grabbing _WaitSetLock
acorn@2233 1492 // if the thread is not on the wait queue.
acorn@2233 1493 //
acorn@2233 1494 // Note that we don't need a fence before the fetch of TState.
acorn@2233 1495 // In the worst case we'll fetch a old-stale value of TS_WAIT previously
acorn@2233 1496 // written by the is thread. (perhaps the fetch might even be satisfied
acorn@2233 1497 // by a look-aside into the processor's own store buffer, although given
acorn@2233 1498 // the length of the code path between the prior ST and this load that's
acorn@2233 1499 // highly unlikely). If the following LD fetches a stale TS_WAIT value
acorn@2233 1500 // then we'll acquire the lock and then re-fetch a fresh TState value.
acorn@2233 1501 // That is, we fail toward safety.
acorn@2233 1502
acorn@2233 1503 if (node.TState == ObjectWaiter::TS_WAIT) {
acorn@2233 1504 Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
acorn@2233 1505 if (node.TState == ObjectWaiter::TS_WAIT) {
acorn@2233 1506 DequeueSpecificWaiter (&node) ; // unlink from WaitSet
acorn@2233 1507 assert(node._notified == 0, "invariant");
acorn@2233 1508 node.TState = ObjectWaiter::TS_RUN ;
acorn@2233 1509 }
acorn@2233 1510 Thread::SpinRelease (&_WaitSetLock) ;
acorn@2233 1511 }
acorn@2233 1512
acorn@2233 1513 // The thread is now either on off-list (TS_RUN),
acorn@2233 1514 // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
acorn@2233 1515 // The Node's TState variable is stable from the perspective of this thread.
acorn@2233 1516 // No other threads will asynchronously modify TState.
acorn@2233 1517 guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
acorn@2233 1518 OrderAccess::loadload() ;
acorn@2233 1519 if (_succ == Self) _succ = NULL ;
acorn@2233 1520 WasNotified = node._notified ;
acorn@2233 1521
acorn@2233 1522 // Reentry phase -- reacquire the monitor.
acorn@2233 1523 // re-enter contended monitor after object.wait().
acorn@2233 1524 // retain OBJECT_WAIT state until re-enter successfully completes
acorn@2233 1525 // Thread state is thread_in_vm and oop access is again safe,
acorn@2233 1526 // although the raw address of the object may have changed.
acorn@2233 1527 // (Don't cache naked oops over safepoints, of course).
acorn@2233 1528
acorn@2233 1529 // post monitor waited event. Note that this is past-tense, we are done waiting.
acorn@2233 1530 if (JvmtiExport::should_post_monitor_waited()) {
acorn@2233 1531 JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
acorn@2233 1532 }
acorn@2233 1533 OrderAccess::fence() ;
acorn@2233 1534
acorn@2233 1535 assert (Self->_Stalled != 0, "invariant") ;
acorn@2233 1536 Self->_Stalled = 0 ;
acorn@2233 1537
acorn@2233 1538 assert (_owner != Self, "invariant") ;
acorn@2233 1539 ObjectWaiter::TStates v = node.TState ;
acorn@2233 1540 if (v == ObjectWaiter::TS_RUN) {
acorn@2233 1541 enter (Self) ;
acorn@2233 1542 } else {
acorn@2233 1543 guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
acorn@2233 1544 ReenterI (Self, &node) ;
acorn@2233 1545 node.wait_reenter_end(this);
acorn@2233 1546 }
acorn@2233 1547
acorn@2233 1548 // Self has reacquired the lock.
acorn@2233 1549 // Lifecycle - the node representing Self must not appear on any queues.
acorn@2233 1550 // Node is about to go out-of-scope, but even if it were immortal we wouldn't
acorn@2233 1551 // want residual elements associated with this thread left on any lists.
acorn@2233 1552 guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
acorn@2233 1553 assert (_owner == Self, "invariant") ;
acorn@2233 1554 assert (_succ != Self , "invariant") ;
acorn@2233 1555 } // OSThreadWaitState()
acorn@2233 1556
acorn@2233 1557 jt->set_current_waiting_monitor(NULL);
acorn@2233 1558
acorn@2233 1559 guarantee (_recursions == 0, "invariant") ;
acorn@2233 1560 _recursions = save; // restore the old recursion count
acorn@2233 1561 _waiters--; // decrement the number of waiters
acorn@2233 1562
acorn@2233 1563 // Verify a few postconditions
acorn@2233 1564 assert (_owner == Self , "invariant") ;
acorn@2233 1565 assert (_succ != Self , "invariant") ;
acorn@2233 1566 assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
acorn@2233 1567
acorn@2233 1568 if (SyncFlags & 32) {
acorn@2233 1569 OrderAccess::fence() ;
acorn@2233 1570 }
acorn@2233 1571
acorn@2233 1572 // check if the notification happened
acorn@2233 1573 if (!WasNotified) {
acorn@2233 1574 // no, it could be timeout or Thread.interrupt() or both
acorn@2233 1575 // check for interrupt event, otherwise it is timeout
acorn@2233 1576 if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
acorn@2233 1577 TEVENT (Wait - throw IEX from epilog) ;
acorn@2233 1578 THROW(vmSymbols::java_lang_InterruptedException());
acorn@2233 1579 }
acorn@2233 1580 }
acorn@2233 1581
acorn@2233 1582 // NOTE: Spurious wake up will be consider as timeout.
acorn@2233 1583 // Monitor notify has precedence over thread interrupt.
acorn@2233 1584 }
acorn@2233 1585
acorn@2233 1586
acorn@2233 1587 // Consider:
acorn@2233 1588 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
acorn@2233 1589 // then instead of transferring a thread from the WaitSet to the EntryList
acorn@2233 1590 // we might just dequeue a thread from the WaitSet and directly unpark() it.
acorn@2233 1591
acorn@2233 1592 void ObjectMonitor::notify(TRAPS) {
acorn@2233 1593 CHECK_OWNER();
acorn@2233 1594 if (_WaitSet == NULL) {
acorn@2233 1595 TEVENT (Empty-Notify) ;
acorn@2233 1596 return ;
acorn@2233 1597 }
acorn@2233 1598 DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
acorn@2233 1599
acorn@2233 1600 int Policy = Knob_MoveNotifyee ;
acorn@2233 1601
acorn@2233 1602 Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
acorn@2233 1603 ObjectWaiter * iterator = DequeueWaiter() ;
acorn@2233 1604 if (iterator != NULL) {
acorn@2233 1605 TEVENT (Notify1 - Transfer) ;
acorn@2233 1606 guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
acorn@2233 1607 guarantee (iterator->_notified == 0, "invariant") ;
acorn@2233 1608 if (Policy != 4) {
acorn@2233 1609 iterator->TState = ObjectWaiter::TS_ENTER ;
acorn@2233 1610 }
acorn@2233 1611 iterator->_notified = 1 ;
acorn@2233 1612
acorn@2233 1613 ObjectWaiter * List = _EntryList ;
acorn@2233 1614 if (List != NULL) {
acorn@2233 1615 assert (List->_prev == NULL, "invariant") ;
acorn@2233 1616 assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
acorn@2233 1617 assert (List != iterator, "invariant") ;
acorn@2233 1618 }
acorn@2233 1619
acorn@2233 1620 if (Policy == 0) { // prepend to EntryList
acorn@2233 1621 if (List == NULL) {
acorn@2233 1622 iterator->_next = iterator->_prev = NULL ;
acorn@2233 1623 _EntryList = iterator ;
acorn@2233 1624 } else {
acorn@2233 1625 List->_prev = iterator ;
acorn@2233 1626 iterator->_next = List ;
acorn@2233 1627 iterator->_prev = NULL ;
acorn@2233 1628 _EntryList = iterator ;
acorn@2233 1629 }
acorn@2233 1630 } else
acorn@2233 1631 if (Policy == 1) { // append to EntryList
acorn@2233 1632 if (List == NULL) {
acorn@2233 1633 iterator->_next = iterator->_prev = NULL ;
acorn@2233 1634 _EntryList = iterator ;
acorn@2233 1635 } else {
acorn@2233 1636 // CONSIDER: finding the tail currently requires a linear-time walk of
acorn@2233 1637 // the EntryList. We can make tail access constant-time by converting to
acorn@2233 1638 // a CDLL instead of using our current DLL.
acorn@2233 1639 ObjectWaiter * Tail ;
acorn@2233 1640 for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
acorn@2233 1641 assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
acorn@2233 1642 Tail->_next = iterator ;
acorn@2233 1643 iterator->_prev = Tail ;
acorn@2233 1644 iterator->_next = NULL ;
acorn@2233 1645 }
acorn@2233 1646 } else
acorn@2233 1647 if (Policy == 2) { // prepend to cxq
acorn@2233 1648 // prepend to cxq
acorn@2233 1649 if (List == NULL) {
acorn@2233 1650 iterator->_next = iterator->_prev = NULL ;
acorn@2233 1651 _EntryList = iterator ;
acorn@2233 1652 } else {
acorn@2233 1653 iterator->TState = ObjectWaiter::TS_CXQ ;
acorn@2233 1654 for (;;) {
acorn@2233 1655 ObjectWaiter * Front = _cxq ;
acorn@2233 1656 iterator->_next = Front ;
acorn@2233 1657 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
acorn@2233 1658 break ;
acorn@2233 1659 }
acorn@2233 1660 }
acorn@2233 1661 }
acorn@2233 1662 } else
acorn@2233 1663 if (Policy == 3) { // append to cxq
acorn@2233 1664 iterator->TState = ObjectWaiter::TS_CXQ ;
acorn@2233 1665 for (;;) {
acorn@2233 1666 ObjectWaiter * Tail ;
acorn@2233 1667 Tail = _cxq ;
acorn@2233 1668 if (Tail == NULL) {
acorn@2233 1669 iterator->_next = NULL ;
acorn@2233 1670 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
acorn@2233 1671 break ;
acorn@2233 1672 }
acorn@2233 1673 } else {
acorn@2233 1674 while (Tail->_next != NULL) Tail = Tail->_next ;
acorn@2233 1675 Tail->_next = iterator ;
acorn@2233 1676 iterator->_prev = Tail ;
acorn@2233 1677 iterator->_next = NULL ;
acorn@2233 1678 break ;
acorn@2233 1679 }
acorn@2233 1680 }
acorn@2233 1681 } else {
acorn@2233 1682 ParkEvent * ev = iterator->_event ;
acorn@2233 1683 iterator->TState = ObjectWaiter::TS_RUN ;
acorn@2233 1684 OrderAccess::fence() ;
acorn@2233 1685 ev->unpark() ;
acorn@2233 1686 }
acorn@2233 1687
acorn@2233 1688 if (Policy < 4) {
acorn@2233 1689 iterator->wait_reenter_begin(this);
acorn@2233 1690 }
acorn@2233 1691
acorn@2233 1692 // _WaitSetLock protects the wait queue, not the EntryList. We could
acorn@2233 1693 // move the add-to-EntryList operation, above, outside the critical section
acorn@2233 1694 // protected by _WaitSetLock. In practice that's not useful. With the
acorn@2233 1695 // exception of wait() timeouts and interrupts the monitor owner
acorn@2233 1696 // is the only thread that grabs _WaitSetLock. There's almost no contention
acorn@2233 1697 // on _WaitSetLock so it's not profitable to reduce the length of the
acorn@2233 1698 // critical section.
acorn@2233 1699 }
acorn@2233 1700
acorn@2233 1701 Thread::SpinRelease (&_WaitSetLock) ;
acorn@2233 1702
acorn@2233 1703 if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
acorn@2233 1704 ObjectMonitor::_sync_Notifications->inc() ;
acorn@2233 1705 }
acorn@2233 1706 }
acorn@2233 1707
acorn@2233 1708
acorn@2233 1709 void ObjectMonitor::notifyAll(TRAPS) {
acorn@2233 1710 CHECK_OWNER();
acorn@2233 1711 ObjectWaiter* iterator;
acorn@2233 1712 if (_WaitSet == NULL) {
acorn@2233 1713 TEVENT (Empty-NotifyAll) ;
acorn@2233 1714 return ;
acorn@2233 1715 }
acorn@2233 1716 DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
acorn@2233 1717
acorn@2233 1718 int Policy = Knob_MoveNotifyee ;
acorn@2233 1719 int Tally = 0 ;
acorn@2233 1720 Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
acorn@2233 1721
acorn@2233 1722 for (;;) {
acorn@2233 1723 iterator = DequeueWaiter () ;
acorn@2233 1724 if (iterator == NULL) break ;
acorn@2233 1725 TEVENT (NotifyAll - Transfer1) ;
acorn@2233 1726 ++Tally ;
acorn@2233 1727
acorn@2233 1728 // Disposition - what might we do with iterator ?
acorn@2233 1729 // a. add it directly to the EntryList - either tail or head.
acorn@2233 1730 // b. push it onto the front of the _cxq.
acorn@2233 1731 // For now we use (a).
acorn@2233 1732
acorn@2233 1733 guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
acorn@2233 1734 guarantee (iterator->_notified == 0, "invariant") ;
acorn@2233 1735 iterator->_notified = 1 ;
acorn@2233 1736 if (Policy != 4) {
acorn@2233 1737 iterator->TState = ObjectWaiter::TS_ENTER ;
acorn@2233 1738 }
acorn@2233 1739
acorn@2233 1740 ObjectWaiter * List = _EntryList ;
acorn@2233 1741 if (List != NULL) {
acorn@2233 1742 assert (List->_prev == NULL, "invariant") ;
acorn@2233 1743 assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
acorn@2233 1744 assert (List != iterator, "invariant") ;
acorn@2233 1745 }
acorn@2233 1746
acorn@2233 1747 if (Policy == 0) { // prepend to EntryList
acorn@2233 1748 if (List == NULL) {
acorn@2233 1749 iterator->_next = iterator->_prev = NULL ;
acorn@2233 1750 _EntryList = iterator ;
acorn@2233 1751 } else {
acorn@2233 1752 List->_prev = iterator ;
acorn@2233 1753 iterator->_next = List ;
acorn@2233 1754 iterator->_prev = NULL ;
acorn@2233 1755 _EntryList = iterator ;
acorn@2233 1756 }
acorn@2233 1757 } else
acorn@2233 1758 if (Policy == 1) { // append to EntryList
acorn@2233 1759 if (List == NULL) {
acorn@2233 1760 iterator->_next = iterator->_prev = NULL ;
acorn@2233 1761 _EntryList = iterator ;
acorn@2233 1762 } else {
acorn@2233 1763 // CONSIDER: finding the tail currently requires a linear-time walk of
acorn@2233 1764 // the EntryList. We can make tail access constant-time by converting to
acorn@2233 1765 // a CDLL instead of using our current DLL.
acorn@2233 1766 ObjectWaiter * Tail ;
acorn@2233 1767 for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
acorn@2233 1768 assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
acorn@2233 1769 Tail->_next = iterator ;
acorn@2233 1770 iterator->_prev = Tail ;
acorn@2233 1771 iterator->_next = NULL ;
acorn@2233 1772 }
acorn@2233 1773 } else
acorn@2233 1774 if (Policy == 2) { // prepend to cxq
acorn@2233 1775 // prepend to cxq
acorn@2233 1776 iterator->TState = ObjectWaiter::TS_CXQ ;
acorn@2233 1777 for (;;) {
acorn@2233 1778 ObjectWaiter * Front = _cxq ;
acorn@2233 1779 iterator->_next = Front ;
acorn@2233 1780 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
acorn@2233 1781 break ;
acorn@2233 1782 }
acorn@2233 1783 }
acorn@2233 1784 } else
acorn@2233 1785 if (Policy == 3) { // append to cxq
acorn@2233 1786 iterator->TState = ObjectWaiter::TS_CXQ ;
acorn@2233 1787 for (;;) {
acorn@2233 1788 ObjectWaiter * Tail ;
acorn@2233 1789 Tail = _cxq ;
acorn@2233 1790 if (Tail == NULL) {
acorn@2233 1791 iterator->_next = NULL ;
acorn@2233 1792 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
acorn@2233 1793 break ;
acorn@2233 1794 }
acorn@2233 1795 } else {
acorn@2233 1796 while (Tail->_next != NULL) Tail = Tail->_next ;
acorn@2233 1797 Tail->_next = iterator ;
acorn@2233 1798 iterator->_prev = Tail ;
acorn@2233 1799 iterator->_next = NULL ;
acorn@2233 1800 break ;
acorn@2233 1801 }
acorn@2233 1802 }
acorn@2233 1803 } else {
acorn@2233 1804 ParkEvent * ev = iterator->_event ;
acorn@2233 1805 iterator->TState = ObjectWaiter::TS_RUN ;
acorn@2233 1806 OrderAccess::fence() ;
acorn@2233 1807 ev->unpark() ;
acorn@2233 1808 }
acorn@2233 1809
acorn@2233 1810 if (Policy < 4) {
acorn@2233 1811 iterator->wait_reenter_begin(this);
acorn@2233 1812 }
acorn@2233 1813
acorn@2233 1814 // _WaitSetLock protects the wait queue, not the EntryList. We could
acorn@2233 1815 // move the add-to-EntryList operation, above, outside the critical section
acorn@2233 1816 // protected by _WaitSetLock. In practice that's not useful. With the
acorn@2233 1817 // exception of wait() timeouts and interrupts the monitor owner
acorn@2233 1818 // is the only thread that grabs _WaitSetLock. There's almost no contention
acorn@2233 1819 // on _WaitSetLock so it's not profitable to reduce the length of the
acorn@2233 1820 // critical section.
acorn@2233 1821 }
acorn@2233 1822
acorn@2233 1823 Thread::SpinRelease (&_WaitSetLock) ;
acorn@2233 1824
acorn@2233 1825 if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
acorn@2233 1826 ObjectMonitor::_sync_Notifications->inc(Tally) ;
acorn@2233 1827 }
acorn@2233 1828 }
acorn@2233 1829
acorn@2233 1830 // -----------------------------------------------------------------------------
acorn@2233 1831 // Adaptive Spinning Support
acorn@2233 1832 //
acorn@2233 1833 // Adaptive spin-then-block - rational spinning
acorn@2233 1834 //
acorn@2233 1835 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
acorn@2233 1836 // algorithm. On high order SMP systems it would be better to start with
acorn@2233 1837 // a brief global spin and then revert to spinning locally. In the spirit of MCS/CLH,
acorn@2233 1838 // a contending thread could enqueue itself on the cxq and then spin locally
acorn@2233 1839 // on a thread-specific variable such as its ParkEvent._Event flag.
acorn@2233 1840 // That's left as an exercise for the reader. Note that global spinning is
acorn@2233 1841 // not problematic on Niagara, as the L2$ serves the interconnect and has both
acorn@2233 1842 // low latency and massive bandwidth.
acorn@2233 1843 //
acorn@2233 1844 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
acorn@2233 1845 // acquisition attempts where we opt to spin -- at 100% and vary the spin count
acorn@2233 1846 // (duration) or we can fix the count at approximately the duration of
acorn@2233 1847 // a context switch and vary the frequency. Of course we could also
acorn@2233 1848 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
acorn@2233 1849 // See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
acorn@2233 1850 //
acorn@2233 1851 // This implementation varies the duration "D", where D varies with
acorn@2233 1852 // the success rate of recent spin attempts. (D is capped at approximately
acorn@2233 1853 // length of a round-trip context switch). The success rate for recent
acorn@2233 1854 // spin attempts is a good predictor of the success rate of future spin
acorn@2233 1855 // attempts. The mechanism adapts automatically to varying critical
acorn@2233 1856 // section length (lock modality), system load and degree of parallelism.
acorn@2233 1857 // D is maintained per-monitor in _SpinDuration and is initialized
acorn@2233 1858 // optimistically. Spin frequency is fixed at 100%.
acorn@2233 1859 //
acorn@2233 1860 // Note that _SpinDuration is volatile, but we update it without locks
acorn@2233 1861 // or atomics. The code is designed so that _SpinDuration stays within
acorn@2233 1862 // a reasonable range even in the presence of races. The arithmetic
acorn@2233 1863 // operations on _SpinDuration are closed over the domain of legal values,
acorn@2233 1864 // so at worst a race will install and older but still legal value.
acorn@2233 1865 // At the very worst this introduces some apparent non-determinism.
acorn@2233 1866 // We might spin when we shouldn't or vice-versa, but since the spin
acorn@2233 1867 // count are relatively short, even in the worst case, the effect is harmless.
acorn@2233 1868 //
acorn@2233 1869 // Care must be taken that a low "D" value does not become an
acorn@2233 1870 // an absorbing state. Transient spinning failures -- when spinning
acorn@2233 1871 // is overall profitable -- should not cause the system to converge
acorn@2233 1872 // on low "D" values. We want spinning to be stable and predictable
acorn@2233 1873 // and fairly responsive to change and at the same time we don't want
acorn@2233 1874 // it to oscillate, become metastable, be "too" non-deterministic,
acorn@2233 1875 // or converge on or enter undesirable stable absorbing states.
acorn@2233 1876 //
acorn@2233 1877 // We implement a feedback-based control system -- using past behavior
acorn@2233 1878 // to predict future behavior. We face two issues: (a) if the
acorn@2233 1879 // input signal is random then the spin predictor won't provide optimal
acorn@2233 1880 // results, and (b) if the signal frequency is too high then the control
acorn@2233 1881 // system, which has some natural response lag, will "chase" the signal.
acorn@2233 1882 // (b) can arise from multimodal lock hold times. Transient preemption
acorn@2233 1883 // can also result in apparent bimodal lock hold times.
acorn@2233 1884 // Although sub-optimal, neither condition is particularly harmful, as
acorn@2233 1885 // in the worst-case we'll spin when we shouldn't or vice-versa.
acorn@2233 1886 // The maximum spin duration is rather short so the failure modes aren't bad.
acorn@2233 1887 // To be conservative, I've tuned the gain in system to bias toward
acorn@2233 1888 // _not spinning. Relatedly, the system can sometimes enter a mode where it
acorn@2233 1889 // "rings" or oscillates between spinning and not spinning. This happens
acorn@2233 1890 // when spinning is just on the cusp of profitability, however, so the
acorn@2233 1891 // situation is not dire. The state is benign -- there's no need to add
acorn@2233 1892 // hysteresis control to damp the transition rate between spinning and
acorn@2233 1893 // not spinning.
acorn@2233 1894 //
acorn@2233 1895
acorn@2233 1896 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
acorn@2233 1897 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
acorn@2233 1898
acorn@2233 1899 // Spinning: Fixed frequency (100%), vary duration
acorn@2233 1900
acorn@2233 1901
acorn@2233 1902 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
acorn@2233 1903
acorn@2233 1904 // Dumb, brutal spin. Good for comparative measurements against adaptive spinning.
acorn@2233 1905 int ctr = Knob_FixedSpin ;
acorn@2233 1906 if (ctr != 0) {
acorn@2233 1907 while (--ctr >= 0) {
acorn@2233 1908 if (TryLock (Self) > 0) return 1 ;
acorn@2233 1909 SpinPause () ;
acorn@2233 1910 }
acorn@2233 1911 return 0 ;
acorn@2233 1912 }
acorn@2233 1913
acorn@2233 1914 for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
acorn@2233 1915 if (TryLock(Self) > 0) {
acorn@2233 1916 // Increase _SpinDuration ...
acorn@2233 1917 // Note that we don't clamp SpinDuration precisely at SpinLimit.
acorn@2233 1918 // Raising _SpurDuration to the poverty line is key.
acorn@2233 1919 int x = _SpinDuration ;
acorn@2233 1920 if (x < Knob_SpinLimit) {
acorn@2233 1921 if (x < Knob_Poverty) x = Knob_Poverty ;
acorn@2233 1922 _SpinDuration = x + Knob_BonusB ;
acorn@2233 1923 }
acorn@2233 1924 return 1 ;
acorn@2233 1925 }
acorn@2233 1926 SpinPause () ;
acorn@2233 1927 }
acorn@2233 1928
acorn@2233 1929 // Admission control - verify preconditions for spinning
acorn@2233 1930 //
acorn@2233 1931 // We always spin a little bit, just to prevent _SpinDuration == 0 from
acorn@2233 1932 // becoming an absorbing state. Put another way, we spin briefly to
acorn@2233 1933 // sample, just in case the system load, parallelism, contention, or lock
acorn@2233 1934 // modality changed.
acorn@2233 1935 //
acorn@2233 1936 // Consider the following alternative:
acorn@2233 1937 // Periodically set _SpinDuration = _SpinLimit and try a long/full
acorn@2233 1938 // spin attempt. "Periodically" might mean after a tally of
acorn@2233 1939 // the # of failed spin attempts (or iterations) reaches some threshold.
acorn@2233 1940 // This takes us into the realm of 1-out-of-N spinning, where we
acorn@2233 1941 // hold the duration constant but vary the frequency.
acorn@2233 1942
acorn@2233 1943 ctr = _SpinDuration ;
acorn@2233 1944 if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
acorn@2233 1945 if (ctr <= 0) return 0 ;
acorn@2233 1946
acorn@2233 1947 if (Knob_SuccRestrict && _succ != NULL) return 0 ;
acorn@2233 1948 if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
acorn@2233 1949 TEVENT (Spin abort - notrunnable [TOP]);
acorn@2233 1950 return 0 ;
acorn@2233 1951 }
acorn@2233 1952
acorn@2233 1953 int MaxSpin = Knob_MaxSpinners ;
acorn@2233 1954 if (MaxSpin >= 0) {
acorn@2233 1955 if (_Spinner > MaxSpin) {
acorn@2233 1956 TEVENT (Spin abort -- too many spinners) ;
acorn@2233 1957 return 0 ;
acorn@2233 1958 }
acorn@2233 1959 // Slighty racy, but benign ...
acorn@2233 1960 Adjust (&_Spinner, 1) ;
acorn@2233 1961 }
acorn@2233 1962
acorn@2233 1963 // We're good to spin ... spin ingress.
acorn@2233 1964 // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
acorn@2233 1965 // when preparing to LD...CAS _owner, etc and the CAS is likely
acorn@2233 1966 // to succeed.
acorn@2233 1967 int hits = 0 ;
acorn@2233 1968 int msk = 0 ;
acorn@2233 1969 int caspty = Knob_CASPenalty ;
acorn@2233 1970 int oxpty = Knob_OXPenalty ;
acorn@2233 1971 int sss = Knob_SpinSetSucc ;
acorn@2233 1972 if (sss && _succ == NULL ) _succ = Self ;
acorn@2233 1973 Thread * prv = NULL ;
acorn@2233 1974
acorn@2233 1975 // There are three ways to exit the following loop:
acorn@2233 1976 // 1. A successful spin where this thread has acquired the lock.
acorn@2233 1977 // 2. Spin failure with prejudice
acorn@2233 1978 // 3. Spin failure without prejudice
acorn@2233 1979
acorn@2233 1980 while (--ctr >= 0) {
acorn@2233 1981
acorn@2233 1982 // Periodic polling -- Check for pending GC
acorn@2233 1983 // Threads may spin while they're unsafe.
acorn@2233 1984 // We don't want spinning threads to delay the JVM from reaching
acorn@2233 1985 // a stop-the-world safepoint or to steal cycles from GC.
acorn@2233 1986 // If we detect a pending safepoint we abort in order that
acorn@2233 1987 // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
acorn@2233 1988 // this thread, if safe, doesn't steal cycles from GC.
acorn@2233 1989 // This is in keeping with the "no loitering in runtime" rule.
acorn@2233 1990 // We periodically check to see if there's a safepoint pending.
acorn@2233 1991 if ((ctr & 0xFF) == 0) {
acorn@2233 1992 if (SafepointSynchronize::do_call_back()) {
acorn@2233 1993 TEVENT (Spin: safepoint) ;
acorn@2233 1994 goto Abort ; // abrupt spin egress
acorn@2233 1995 }
acorn@2233 1996 if (Knob_UsePause & 1) SpinPause () ;
acorn@2233 1997
acorn@2233 1998 int (*scb)(intptr_t,int) = SpinCallbackFunction ;
acorn@2233 1999 if (hits > 50 && scb != NULL) {
acorn@2233 2000 int abend = (*scb)(SpinCallbackArgument, 0) ;
acorn@2233 2001 }
acorn@2233 2002 }
acorn@2233 2003
acorn@2233 2004 if (Knob_UsePause & 2) SpinPause() ;
acorn@2233 2005
acorn@2233 2006 // Exponential back-off ... Stay off the bus to reduce coherency traffic.
acorn@2233 2007 // This is useful on classic SMP systems, but is of less utility on
acorn@2233 2008 // N1-style CMT platforms.
acorn@2233 2009 //
acorn@2233 2010 // Trade-off: lock acquisition latency vs coherency bandwidth.
acorn@2233 2011 // Lock hold times are typically short. A histogram
acorn@2233 2012 // of successful spin attempts shows that we usually acquire
acorn@2233 2013 // the lock early in the spin. That suggests we want to
acorn@2233 2014 // sample _owner frequently in the early phase of the spin,
acorn@2233 2015 // but then back-off and sample less frequently as the spin
acorn@2233 2016 // progresses. The back-off makes a good citizen on SMP big
acorn@2233 2017 // SMP systems. Oversampling _owner can consume excessive
acorn@2233 2018 // coherency bandwidth. Relatedly, if we _oversample _owner we
acorn@2233 2019 // can inadvertently interfere with the the ST m->owner=null.
acorn@2233 2020 // executed by the lock owner.
acorn@2233 2021 if (ctr & msk) continue ;
acorn@2233 2022 ++hits ;
acorn@2233 2023 if ((hits & 0xF) == 0) {
acorn@2233 2024 // The 0xF, above, corresponds to the exponent.
acorn@2233 2025 // Consider: (msk+1)|msk
acorn@2233 2026 msk = ((msk << 2)|3) & BackOffMask ;
acorn@2233 2027 }
acorn@2233 2028
acorn@2233 2029 // Probe _owner with TATAS
acorn@2233 2030 // If this thread observes the monitor transition or flicker
acorn@2233 2031 // from locked to unlocked to locked, then the odds that this
acorn@2233 2032 // thread will acquire the lock in this spin attempt go down
acorn@2233 2033 // considerably. The same argument applies if the CAS fails
acorn@2233 2034 // or if we observe _owner change from one non-null value to
acorn@2233 2035 // another non-null value. In such cases we might abort
acorn@2233 2036 // the spin without prejudice or apply a "penalty" to the
acorn@2233 2037 // spin count-down variable "ctr", reducing it by 100, say.
acorn@2233 2038
acorn@2233 2039 Thread * ox = (Thread *) _owner ;
acorn@2233 2040 if (ox == NULL) {
acorn@2233 2041 ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
acorn@2233 2042 if (ox == NULL) {
acorn@2233 2043 // The CAS succeeded -- this thread acquired ownership
acorn@2233 2044 // Take care of some bookkeeping to exit spin state.
acorn@2233 2045 if (sss && _succ == Self) {
acorn@2233 2046 _succ = NULL ;
acorn@2233 2047 }
acorn@2233 2048 if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
acorn@2233 2049
acorn@2233 2050 // Increase _SpinDuration :
acorn@2233 2051 // The spin was successful (profitable) so we tend toward
acorn@2233 2052 // longer spin attempts in the future.
acorn@2233 2053 // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
acorn@2233 2054 // If we acquired the lock early in the spin cycle it
acorn@2233 2055 // makes sense to increase _SpinDuration proportionally.
acorn@2233 2056 // Note that we don't clamp SpinDuration precisely at SpinLimit.
acorn@2233 2057 int x = _SpinDuration ;
acorn@2233 2058 if (x < Knob_SpinLimit) {
acorn@2233 2059 if (x < Knob_Poverty) x = Knob_Poverty ;
acorn@2233 2060 _SpinDuration = x + Knob_Bonus ;
acorn@2233 2061 }
acorn@2233 2062 return 1 ;
acorn@2233 2063 }
acorn@2233 2064
acorn@2233 2065 // The CAS failed ... we can take any of the following actions:
acorn@2233 2066 // * penalize: ctr -= Knob_CASPenalty
acorn@2233 2067 // * exit spin with prejudice -- goto Abort;
acorn@2233 2068 // * exit spin without prejudice.
acorn@2233 2069 // * Since CAS is high-latency, retry again immediately.
acorn@2233 2070 prv = ox ;
acorn@2233 2071 TEVENT (Spin: cas failed) ;
acorn@2233 2072 if (caspty == -2) break ;
acorn@2233 2073 if (caspty == -1) goto Abort ;
acorn@2233 2074 ctr -= caspty ;
acorn@2233 2075 continue ;
acorn@2233 2076 }
acorn@2233 2077
acorn@2233 2078 // Did lock ownership change hands ?
acorn@2233 2079 if (ox != prv && prv != NULL ) {
acorn@2233 2080 TEVENT (spin: Owner changed)
acorn@2233 2081 if (oxpty == -2) break ;
acorn@2233 2082 if (oxpty == -1) goto Abort ;
acorn@2233 2083 ctr -= oxpty ;
acorn@2233 2084 }
acorn@2233 2085 prv = ox ;
acorn@2233 2086
acorn@2233 2087 // Abort the spin if the owner is not executing.
acorn@2233 2088 // The owner must be executing in order to drop the lock.
acorn@2233 2089 // Spinning while the owner is OFFPROC is idiocy.
acorn@2233 2090 // Consider: ctr -= RunnablePenalty ;
acorn@2233 2091 if (Knob_OState && NotRunnable (Self, ox)) {
acorn@2233 2092 TEVENT (Spin abort - notrunnable);
acorn@2233 2093 goto Abort ;
acorn@2233 2094 }
acorn@2233 2095 if (sss && _succ == NULL ) _succ = Self ;
acorn@2233 2096 }
acorn@2233 2097
acorn@2233 2098 // Spin failed with prejudice -- reduce _SpinDuration.
acorn@2233 2099 // TODO: Use an AIMD-like policy to adjust _SpinDuration.
acorn@2233 2100 // AIMD is globally stable.
acorn@2233 2101 TEVENT (Spin failure) ;
acorn@2233 2102 {
acorn@2233 2103 int x = _SpinDuration ;
acorn@2233 2104 if (x > 0) {
acorn@2233 2105 // Consider an AIMD scheme like: x -= (x >> 3) + 100
acorn@2233 2106 // This is globally sample and tends to damp the response.
acorn@2233 2107 x -= Knob_Penalty ;
acorn@2233 2108 if (x < 0) x = 0 ;
acorn@2233 2109 _SpinDuration = x ;
acorn@2233 2110 }
acorn@2233 2111 }
acorn@2233 2112
acorn@2233 2113 Abort:
acorn@2233 2114 if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
acorn@2233 2115 if (sss && _succ == Self) {
acorn@2233 2116 _succ = NULL ;
acorn@2233 2117 // Invariant: after setting succ=null a contending thread
acorn@2233 2118 // must recheck-retry _owner before parking. This usually happens
acorn@2233 2119 // in the normal usage of TrySpin(), but it's safest
acorn@2233 2120 // to make TrySpin() as foolproof as possible.
acorn@2233 2121 OrderAccess::fence() ;
acorn@2233 2122 if (TryLock(Self) > 0) return 1 ;
acorn@2233 2123 }
acorn@2233 2124 return 0 ;
acorn@2233 2125 }
acorn@2233 2126
acorn@2233 2127 // NotRunnable() -- informed spinning
acorn@2233 2128 //
acorn@2233 2129 // Don't bother spinning if the owner is not eligible to drop the lock.
acorn@2233 2130 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
acorn@2233 2131 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
acorn@2233 2132 // The thread must be runnable in order to drop the lock in timely fashion.
acorn@2233 2133 // If the _owner is not runnable then spinning will not likely be
acorn@2233 2134 // successful (profitable).
acorn@2233 2135 //
acorn@2233 2136 // Beware -- the thread referenced by _owner could have died
acorn@2233 2137 // so a simply fetch from _owner->_thread_state might trap.
acorn@2233 2138 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
acorn@2233 2139 // Because of the lifecycle issues the schedctl and _thread_state values
acorn@2233 2140 // observed by NotRunnable() might be garbage. NotRunnable must
acorn@2233 2141 // tolerate this and consider the observed _thread_state value
acorn@2233 2142 // as advisory.
acorn@2233 2143 //
acorn@2233 2144 // Beware too, that _owner is sometimes a BasicLock address and sometimes
acorn@2233 2145 // a thread pointer. We differentiate the two cases with OwnerIsThread.
acorn@2233 2146 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
acorn@2233 2147 // with the LSB of _owner. Another option would be to probablistically probe
acorn@2233 2148 // the putative _owner->TypeTag value.
acorn@2233 2149 //
acorn@2233 2150 // Checking _thread_state isn't perfect. Even if the thread is
acorn@2233 2151 // in_java it might be blocked on a page-fault or have been preempted
acorn@2233 2152 // and sitting on a ready/dispatch queue. _thread state in conjunction
acorn@2233 2153 // with schedctl.sc_state gives us a good picture of what the
acorn@2233 2154 // thread is doing, however.
acorn@2233 2155 //
acorn@2233 2156 // TODO: check schedctl.sc_state.
acorn@2233 2157 // We'll need to use SafeFetch32() to read from the schedctl block.
acorn@2233 2158 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
acorn@2233 2159 //
acorn@2233 2160 // The return value from NotRunnable() is *advisory* -- the
acorn@2233 2161 // result is based on sampling and is not necessarily coherent.
acorn@2233 2162 // The caller must tolerate false-negative and false-positive errors.
acorn@2233 2163 // Spinning, in general, is probabilistic anyway.
acorn@2233 2164
acorn@2233 2165
acorn@2233 2166 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
acorn@2233 2167 // Check either OwnerIsThread or ox->TypeTag == 2BAD.
acorn@2233 2168 if (!OwnerIsThread) return 0 ;
acorn@2233 2169
acorn@2233 2170 if (ox == NULL) return 0 ;
acorn@2233 2171
acorn@2233 2172 // Avoid transitive spinning ...
acorn@2233 2173 // Say T1 spins or blocks trying to acquire L. T1._Stalled is set to L.
acorn@2233 2174 // Immediately after T1 acquires L it's possible that T2, also
acorn@2233 2175 // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
acorn@2233 2176 // This occurs transiently after T1 acquired L but before
acorn@2233 2177 // T1 managed to clear T1.Stalled. T2 does not need to abort
acorn@2233 2178 // its spin in this circumstance.
acorn@2233 2179 intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
acorn@2233 2180
acorn@2233 2181 if (BlockedOn == 1) return 1 ;
acorn@2233 2182 if (BlockedOn != 0) {
acorn@2233 2183 return BlockedOn != intptr_t(this) && _owner == ox ;
acorn@2233 2184 }
acorn@2233 2185
acorn@2233 2186 assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
acorn@2233 2187 int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
acorn@2233 2188 // consider also: jst != _thread_in_Java -- but that's overspecific.
acorn@2233 2189 return jst == _thread_blocked || jst == _thread_in_native ;
acorn@2233 2190 }
acorn@2233 2191
acorn@2233 2192
acorn@2233 2193 // -----------------------------------------------------------------------------
acorn@2233 2194 // WaitSet management ...
acorn@2233 2195
acorn@2233 2196 ObjectWaiter::ObjectWaiter(Thread* thread) {
acorn@2233 2197 _next = NULL;
acorn@2233 2198 _prev = NULL;
acorn@2233 2199 _notified = 0;
acorn@2233 2200 TState = TS_RUN ;
acorn@2233 2201 _thread = thread;
acorn@2233 2202 _event = thread->_ParkEvent ;
acorn@2233 2203 _active = false;
acorn@2233 2204 assert (_event != NULL, "invariant") ;
acorn@2233 2205 }
acorn@2233 2206
acorn@2233 2207 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
acorn@2233 2208 JavaThread *jt = (JavaThread *)this->_thread;
acorn@2233 2209 _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
acorn@2233 2210 }
acorn@2233 2211
acorn@2233 2212 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
acorn@2233 2213 JavaThread *jt = (JavaThread *)this->_thread;
acorn@2233 2214 JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
acorn@2233 2215 }
acorn@2233 2216
acorn@2233 2217 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
acorn@2233 2218 assert(node != NULL, "should not dequeue NULL node");
acorn@2233 2219 assert(node->_prev == NULL, "node already in list");
acorn@2233 2220 assert(node->_next == NULL, "node already in list");
acorn@2233 2221 // put node at end of queue (circular doubly linked list)
acorn@2233 2222 if (_WaitSet == NULL) {
acorn@2233 2223 _WaitSet = node;
acorn@2233 2224 node->_prev = node;
acorn@2233 2225 node->_next = node;
acorn@2233 2226 } else {
acorn@2233 2227 ObjectWaiter* head = _WaitSet ;
acorn@2233 2228 ObjectWaiter* tail = head->_prev;
acorn@2233 2229 assert(tail->_next == head, "invariant check");
acorn@2233 2230 tail->_next = node;
acorn@2233 2231 head->_prev = node;
acorn@2233 2232 node->_next = head;
acorn@2233 2233 node->_prev = tail;
acorn@2233 2234 }
acorn@2233 2235 }
acorn@2233 2236
acorn@2233 2237 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
acorn@2233 2238 // dequeue the very first waiter
acorn@2233 2239 ObjectWaiter* waiter = _WaitSet;
acorn@2233 2240 if (waiter) {
acorn@2233 2241 DequeueSpecificWaiter(waiter);
acorn@2233 2242 }
acorn@2233 2243 return waiter;
acorn@2233 2244 }
acorn@2233 2245
acorn@2233 2246 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
acorn@2233 2247 assert(node != NULL, "should not dequeue NULL node");
acorn@2233 2248 assert(node->_prev != NULL, "node already removed from list");
acorn@2233 2249 assert(node->_next != NULL, "node already removed from list");
acorn@2233 2250 // when the waiter has woken up because of interrupt,
acorn@2233 2251 // timeout or other spurious wake-up, dequeue the
acorn@2233 2252 // waiter from waiting list
acorn@2233 2253 ObjectWaiter* next = node->_next;
acorn@2233 2254 if (next == node) {
acorn@2233 2255 assert(node->_prev == node, "invariant check");
acorn@2233 2256 _WaitSet = NULL;
acorn@2233 2257 } else {
acorn@2233 2258 ObjectWaiter* prev = node->_prev;
acorn@2233 2259 assert(prev->_next == node, "invariant check");
acorn@2233 2260 assert(next->_prev == node, "invariant check");
acorn@2233 2261 next->_prev = prev;
acorn@2233 2262 prev->_next = next;
acorn@2233 2263 if (_WaitSet == node) {
acorn@2233 2264 _WaitSet = next;
acorn@2233 2265 }
acorn@2233 2266 }
acorn@2233 2267 node->_next = NULL;
acorn@2233 2268 node->_prev = NULL;
acorn@2233 2269 }
acorn@2233 2270
acorn@2233 2271 // -----------------------------------------------------------------------------
acorn@2233 2272 // PerfData support
acorn@2233 2273 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts = NULL ;
acorn@2233 2274 PerfCounter * ObjectMonitor::_sync_FutileWakeups = NULL ;
acorn@2233 2275 PerfCounter * ObjectMonitor::_sync_Parks = NULL ;
acorn@2233 2276 PerfCounter * ObjectMonitor::_sync_EmptyNotifications = NULL ;
acorn@2233 2277 PerfCounter * ObjectMonitor::_sync_Notifications = NULL ;
acorn@2233 2278 PerfCounter * ObjectMonitor::_sync_PrivateA = NULL ;
acorn@2233 2279 PerfCounter * ObjectMonitor::_sync_PrivateB = NULL ;
acorn@2233 2280 PerfCounter * ObjectMonitor::_sync_SlowExit = NULL ;
acorn@2233 2281 PerfCounter * ObjectMonitor::_sync_SlowEnter = NULL ;
acorn@2233 2282 PerfCounter * ObjectMonitor::_sync_SlowNotify = NULL ;
acorn@2233 2283 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll = NULL ;
acorn@2233 2284 PerfCounter * ObjectMonitor::_sync_FailedSpins = NULL ;
acorn@2233 2285 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins = NULL ;
acorn@2233 2286 PerfCounter * ObjectMonitor::_sync_MonInCirculation = NULL ;
acorn@2233 2287 PerfCounter * ObjectMonitor::_sync_MonScavenged = NULL ;
acorn@2233 2288 PerfCounter * ObjectMonitor::_sync_Inflations = NULL ;
acorn@2233 2289 PerfCounter * ObjectMonitor::_sync_Deflations = NULL ;
acorn@2233 2290 PerfLongVariable * ObjectMonitor::_sync_MonExtant = NULL ;
acorn@2233 2291
acorn@2233 2292 // One-shot global initialization for the sync subsystem.
acorn@2233 2293 // We could also defer initialization and initialize on-demand
acorn@2233 2294 // the first time we call inflate(). Initialization would
acorn@2233 2295 // be protected - like so many things - by the MonitorCache_lock.
acorn@2233 2296
acorn@2233 2297 void ObjectMonitor::Initialize () {
acorn@2233 2298 static int InitializationCompleted = 0 ;
acorn@2233 2299 assert (InitializationCompleted == 0, "invariant") ;
acorn@2233 2300 InitializationCompleted = 1 ;
acorn@2233 2301 if (UsePerfData) {
acorn@2233 2302 EXCEPTION_MARK ;
acorn@2233 2303 #define NEWPERFCOUNTER(n) {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
acorn@2233 2304 #define NEWPERFVARIABLE(n) {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
acorn@2233 2305 NEWPERFCOUNTER(_sync_Inflations) ;
acorn@2233 2306 NEWPERFCOUNTER(_sync_Deflations) ;
acorn@2233 2307 NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
acorn@2233 2308 NEWPERFCOUNTER(_sync_FutileWakeups) ;
acorn@2233 2309 NEWPERFCOUNTER(_sync_Parks) ;
acorn@2233 2310 NEWPERFCOUNTER(_sync_EmptyNotifications) ;
acorn@2233 2311 NEWPERFCOUNTER(_sync_Notifications) ;
acorn@2233 2312 NEWPERFCOUNTER(_sync_SlowEnter) ;
acorn@2233 2313 NEWPERFCOUNTER(_sync_SlowExit) ;
acorn@2233 2314 NEWPERFCOUNTER(_sync_SlowNotify) ;
acorn@2233 2315 NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
acorn@2233 2316 NEWPERFCOUNTER(_sync_FailedSpins) ;
acorn@2233 2317 NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
acorn@2233 2318 NEWPERFCOUNTER(_sync_PrivateA) ;
acorn@2233 2319 NEWPERFCOUNTER(_sync_PrivateB) ;
acorn@2233 2320 NEWPERFCOUNTER(_sync_MonInCirculation) ;
acorn@2233 2321 NEWPERFCOUNTER(_sync_MonScavenged) ;
acorn@2233 2322 NEWPERFVARIABLE(_sync_MonExtant) ;
acorn@2233 2323 #undef NEWPERFCOUNTER
acorn@2233 2324 }
acorn@2233 2325 }
acorn@2233 2326
acorn@2233 2327
acorn@2233 2328 // Compile-time asserts
acorn@2233 2329 // When possible, it's better to catch errors deterministically at
acorn@2233 2330 // compile-time than at runtime. The down-side to using compile-time
acorn@2233 2331 // asserts is that error message -- often something about negative array
acorn@2233 2332 // indices -- is opaque.
acorn@2233 2333
acorn@2233 2334 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
acorn@2233 2335
acorn@2233 2336 void ObjectMonitor::ctAsserts() {
acorn@2233 2337 CTASSERT(offset_of (ObjectMonitor, _header) == 0);
acorn@2233 2338 }
acorn@2233 2339
acorn@2233 2340
acorn@2233 2341 static char * kvGet (char * kvList, const char * Key) {
acorn@2233 2342 if (kvList == NULL) return NULL ;
acorn@2233 2343 size_t n = strlen (Key) ;
acorn@2233 2344 char * Search ;
acorn@2233 2345 for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
acorn@2233 2346 if (strncmp (Search, Key, n) == 0) {
acorn@2233 2347 if (Search[n] == '=') return Search + n + 1 ;
acorn@2233 2348 if (Search[n] == 0) return (char *) "1" ;
acorn@2233 2349 }
acorn@2233 2350 }
acorn@2233 2351 return NULL ;
acorn@2233 2352 }
acorn@2233 2353
acorn@2233 2354 static int kvGetInt (char * kvList, const char * Key, int Default) {
acorn@2233 2355 char * v = kvGet (kvList, Key) ;
acorn@2233 2356 int rslt = v ? ::strtol (v, NULL, 0) : Default ;
acorn@2233 2357 if (Knob_ReportSettings && v != NULL) {
acorn@2233 2358 ::printf (" SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
acorn@2233 2359 ::fflush (stdout) ;
acorn@2233 2360 }
acorn@2233 2361 return rslt ;
acorn@2233 2362 }
acorn@2233 2363
acorn@2233 2364 void ObjectMonitor::DeferredInitialize () {
acorn@2233 2365 if (InitDone > 0) return ;
acorn@2233 2366 if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
acorn@2233 2367 while (InitDone != 1) ;
acorn@2233 2368 return ;
acorn@2233 2369 }
acorn@2233 2370
acorn@2233 2371 // One-shot global initialization ...
acorn@2233 2372 // The initialization is idempotent, so we don't need locks.
acorn@2233 2373 // In the future consider doing this via os::init_2().
acorn@2233 2374 // SyncKnobs consist of <Key>=<Value> pairs in the style
acorn@2233 2375 // of environment variables. Start by converting ':' to NUL.
acorn@2233 2376
acorn@2233 2377 if (SyncKnobs == NULL) SyncKnobs = "" ;
acorn@2233 2378
acorn@2233 2379 size_t sz = strlen (SyncKnobs) ;
acorn@2233 2380 char * knobs = (char *) malloc (sz + 2) ;
acorn@2233 2381 if (knobs == NULL) {
acorn@2233 2382 vm_exit_out_of_memory (sz + 2, "Parse SyncKnobs") ;
acorn@2233 2383 guarantee (0, "invariant") ;
acorn@2233 2384 }
acorn@2233 2385 strcpy (knobs, SyncKnobs) ;
acorn@2233 2386 knobs[sz+1] = 0 ;
acorn@2233 2387 for (char * p = knobs ; *p ; p++) {
acorn@2233 2388 if (*p == ':') *p = 0 ;
acorn@2233 2389 }
acorn@2233 2390
acorn@2233 2391 #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
acorn@2233 2392 SETKNOB(ReportSettings) ;
acorn@2233 2393 SETKNOB(Verbose) ;
acorn@2233 2394 SETKNOB(FixedSpin) ;
acorn@2233 2395 SETKNOB(SpinLimit) ;
acorn@2233 2396 SETKNOB(SpinBase) ;
acorn@2233 2397 SETKNOB(SpinBackOff);
acorn@2233 2398 SETKNOB(CASPenalty) ;
acorn@2233 2399 SETKNOB(OXPenalty) ;
acorn@2233 2400 SETKNOB(LogSpins) ;
acorn@2233 2401 SETKNOB(SpinSetSucc) ;
acorn@2233 2402 SETKNOB(SuccEnabled) ;
acorn@2233 2403 SETKNOB(SuccRestrict) ;
acorn@2233 2404 SETKNOB(Penalty) ;
acorn@2233 2405 SETKNOB(Bonus) ;
acorn@2233 2406 SETKNOB(BonusB) ;
acorn@2233 2407 SETKNOB(Poverty) ;
acorn@2233 2408 SETKNOB(SpinAfterFutile) ;
acorn@2233 2409 SETKNOB(UsePause) ;
acorn@2233 2410 SETKNOB(SpinEarly) ;
acorn@2233 2411 SETKNOB(OState) ;
acorn@2233 2412 SETKNOB(MaxSpinners) ;
acorn@2233 2413 SETKNOB(PreSpin) ;
acorn@2233 2414 SETKNOB(ExitPolicy) ;
acorn@2233 2415 SETKNOB(QMode);
acorn@2233 2416 SETKNOB(ResetEvent) ;
acorn@2233 2417 SETKNOB(MoveNotifyee) ;
acorn@2233 2418 SETKNOB(FastHSSEC) ;
acorn@2233 2419 #undef SETKNOB
acorn@2233 2420
acorn@2233 2421 if (os::is_MP()) {
acorn@2233 2422 BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
acorn@2233 2423 if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
acorn@2233 2424 // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
acorn@2233 2425 } else {
acorn@2233 2426 Knob_SpinLimit = 0 ;
acorn@2233 2427 Knob_SpinBase = 0 ;
acorn@2233 2428 Knob_PreSpin = 0 ;
acorn@2233 2429 Knob_FixedSpin = -1 ;
acorn@2233 2430 }
acorn@2233 2431
acorn@2233 2432 if (Knob_LogSpins == 0) {
acorn@2233 2433 ObjectMonitor::_sync_FailedSpins = NULL ;
acorn@2233 2434 }
acorn@2233 2435
acorn@2233 2436 free (knobs) ;
acorn@2233 2437 OrderAccess::fence() ;
acorn@2233 2438 InitDone = 1 ;
acorn@2233 2439 }
acorn@2233 2440
acorn@2233 2441 #ifndef PRODUCT
acorn@2233 2442 void ObjectMonitor::verify() {
acorn@2233 2443 }
acorn@2233 2444
acorn@2233 2445 void ObjectMonitor::print() {
acorn@2233 2446 }
acorn@2233 2447 #endif

mercurial