src/share/vm/opto/block.cpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@0 25 #include "precompiled.hpp"
aoqi@0 26 #include "libadt/vectset.hpp"
aoqi@0 27 #include "memory/allocation.inline.hpp"
aoqi@0 28 #include "opto/block.hpp"
aoqi@0 29 #include "opto/cfgnode.hpp"
aoqi@0 30 #include "opto/chaitin.hpp"
aoqi@0 31 #include "opto/loopnode.hpp"
aoqi@0 32 #include "opto/machnode.hpp"
aoqi@0 33 #include "opto/matcher.hpp"
aoqi@0 34 #include "opto/opcodes.hpp"
aoqi@0 35 #include "opto/rootnode.hpp"
aoqi@0 36 #include "utilities/copy.hpp"
aoqi@0 37
aoqi@0 38 void Block_Array::grow( uint i ) {
aoqi@0 39 assert(i >= Max(), "must be an overflow");
aoqi@0 40 debug_only(_limit = i+1);
aoqi@0 41 if( i < _size ) return;
aoqi@0 42 if( !_size ) {
aoqi@0 43 _size = 1;
aoqi@0 44 _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
aoqi@0 45 _blocks[0] = NULL;
aoqi@0 46 }
aoqi@0 47 uint old = _size;
aoqi@0 48 while( i >= _size ) _size <<= 1; // Double to fit
aoqi@0 49 _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
aoqi@0 50 Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
aoqi@0 51 }
aoqi@0 52
aoqi@0 53 void Block_List::remove(uint i) {
aoqi@0 54 assert(i < _cnt, "index out of bounds");
aoqi@0 55 Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
aoqi@0 56 pop(); // shrink list by one block
aoqi@0 57 }
aoqi@0 58
aoqi@0 59 void Block_List::insert(uint i, Block *b) {
aoqi@0 60 push(b); // grow list by one block
aoqi@0 61 Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
aoqi@0 62 _blocks[i] = b;
aoqi@0 63 }
aoqi@0 64
aoqi@0 65 #ifndef PRODUCT
aoqi@0 66 void Block_List::print() {
aoqi@0 67 for (uint i=0; i < size(); i++) {
aoqi@0 68 tty->print("B%d ", _blocks[i]->_pre_order);
aoqi@0 69 }
aoqi@0 70 tty->print("size = %d\n", size());
aoqi@0 71 }
aoqi@0 72 #endif
aoqi@0 73
aoqi@0 74 uint Block::code_alignment() {
aoqi@0 75 // Check for Root block
aoqi@0 76 if (_pre_order == 0) return CodeEntryAlignment;
aoqi@0 77 // Check for Start block
aoqi@0 78 if (_pre_order == 1) return InteriorEntryAlignment;
aoqi@0 79 // Check for loop alignment
aoqi@0 80 if (has_loop_alignment()) return loop_alignment();
aoqi@0 81
aoqi@0 82 return relocInfo::addr_unit(); // no particular alignment
aoqi@0 83 }
aoqi@0 84
aoqi@0 85 uint Block::compute_loop_alignment() {
aoqi@0 86 Node *h = head();
aoqi@0 87 int unit_sz = relocInfo::addr_unit();
aoqi@0 88 if (h->is_Loop() && h->as_Loop()->is_inner_loop()) {
aoqi@0 89 // Pre- and post-loops have low trip count so do not bother with
aoqi@0 90 // NOPs for align loop head. The constants are hidden from tuning
aoqi@0 91 // but only because my "divide by 4" heuristic surely gets nearly
aoqi@0 92 // all possible gain (a "do not align at all" heuristic has a
aoqi@0 93 // chance of getting a really tiny gain).
aoqi@0 94 if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
aoqi@0 95 h->as_CountedLoop()->is_post_loop())) {
aoqi@0 96 return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
aoqi@0 97 }
aoqi@0 98 // Loops with low backedge frequency should not be aligned.
aoqi@0 99 Node *n = h->in(LoopNode::LoopBackControl)->in(0);
aoqi@0 100 if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
aoqi@0 101 return unit_sz; // Loop does not loop, more often than not!
aoqi@0 102 }
aoqi@0 103 return OptoLoopAlignment; // Otherwise align loop head
aoqi@0 104 }
aoqi@0 105
aoqi@0 106 return unit_sz; // no particular alignment
aoqi@0 107 }
aoqi@0 108
aoqi@0 109 // Compute the size of first 'inst_cnt' instructions in this block.
aoqi@0 110 // Return the number of instructions left to compute if the block has
aoqi@0 111 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
aoqi@0 112 // exceeds OptoLoopAlignment.
aoqi@0 113 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
aoqi@0 114 PhaseRegAlloc* ra) {
aoqi@0 115 uint last_inst = number_of_nodes();
aoqi@0 116 for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
aoqi@0 117 uint inst_size = get_node(j)->size(ra);
aoqi@0 118 if( inst_size > 0 ) {
aoqi@0 119 inst_cnt--;
aoqi@0 120 uint sz = sum_size + inst_size;
aoqi@0 121 if( sz <= (uint)OptoLoopAlignment ) {
aoqi@0 122 // Compute size of instructions which fit into fetch buffer only
aoqi@0 123 // since all inst_cnt instructions will not fit even if we align them.
aoqi@0 124 sum_size = sz;
aoqi@0 125 } else {
aoqi@0 126 return 0;
aoqi@0 127 }
aoqi@0 128 }
aoqi@0 129 }
aoqi@0 130 return inst_cnt;
aoqi@0 131 }
aoqi@0 132
aoqi@0 133 uint Block::find_node( const Node *n ) const {
aoqi@0 134 for( uint i = 0; i < number_of_nodes(); i++ ) {
aoqi@0 135 if( get_node(i) == n )
aoqi@0 136 return i;
aoqi@0 137 }
aoqi@0 138 ShouldNotReachHere();
aoqi@0 139 return 0;
aoqi@0 140 }
aoqi@0 141
aoqi@0 142 // Find and remove n from block list
aoqi@0 143 void Block::find_remove( const Node *n ) {
aoqi@0 144 remove_node(find_node(n));
aoqi@0 145 }
aoqi@0 146
aoqi@0 147 bool Block::contains(const Node *n) const {
aoqi@0 148 return _nodes.contains(n);
aoqi@0 149 }
aoqi@0 150
aoqi@0 151 // Return empty status of a block. Empty blocks contain only the head, other
aoqi@0 152 // ideal nodes, and an optional trailing goto.
aoqi@0 153 int Block::is_Empty() const {
aoqi@0 154
aoqi@0 155 // Root or start block is not considered empty
aoqi@0 156 if (head()->is_Root() || head()->is_Start()) {
aoqi@0 157 return not_empty;
aoqi@0 158 }
aoqi@0 159
aoqi@0 160 int success_result = completely_empty;
aoqi@0 161 int end_idx = number_of_nodes() - 1;
aoqi@0 162
aoqi@0 163 // Check for ending goto
aoqi@0 164 if ((end_idx > 0) && (get_node(end_idx)->is_MachGoto())) {
aoqi@0 165 success_result = empty_with_goto;
aoqi@0 166 end_idx--;
aoqi@0 167 }
aoqi@0 168
aoqi@0 169 // Unreachable blocks are considered empty
aoqi@0 170 if (num_preds() <= 1) {
aoqi@0 171 return success_result;
aoqi@0 172 }
aoqi@0 173
aoqi@0 174 // Ideal nodes are allowable in empty blocks: skip them Only MachNodes
aoqi@0 175 // turn directly into code, because only MachNodes have non-trivial
aoqi@0 176 // emit() functions.
aoqi@0 177 while ((end_idx > 0) && !get_node(end_idx)->is_Mach()) {
aoqi@0 178 end_idx--;
aoqi@0 179 }
aoqi@0 180
aoqi@0 181 // No room for any interesting instructions?
aoqi@0 182 if (end_idx == 0) {
aoqi@0 183 return success_result;
aoqi@0 184 }
aoqi@0 185
aoqi@0 186 return not_empty;
aoqi@0 187 }
aoqi@0 188
aoqi@0 189 // Return true if the block's code implies that it is likely to be
aoqi@0 190 // executed infrequently. Check to see if the block ends in a Halt or
aoqi@0 191 // a low probability call.
aoqi@0 192 bool Block::has_uncommon_code() const {
aoqi@0 193 Node* en = end();
aoqi@0 194
aoqi@0 195 if (en->is_MachGoto())
aoqi@0 196 en = en->in(0);
aoqi@0 197 if (en->is_Catch())
aoqi@0 198 en = en->in(0);
aoqi@0 199 if (en->is_MachProj() && en->in(0)->is_MachCall()) {
aoqi@0 200 MachCallNode* call = en->in(0)->as_MachCall();
aoqi@0 201 if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
aoqi@0 202 // This is true for slow-path stubs like new_{instance,array},
aoqi@0 203 // slow_arraycopy, complete_monitor_locking, uncommon_trap.
aoqi@0 204 // The magic number corresponds to the probability of an uncommon_trap,
aoqi@0 205 // even though it is a count not a probability.
aoqi@0 206 return true;
aoqi@0 207 }
aoqi@0 208 }
aoqi@0 209
aoqi@0 210 int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
aoqi@0 211 return op == Op_Halt;
aoqi@0 212 }
aoqi@0 213
aoqi@0 214 // True if block is low enough frequency or guarded by a test which
aoqi@0 215 // mostly does not go here.
aoqi@0 216 bool PhaseCFG::is_uncommon(const Block* block) {
aoqi@0 217 // Initial blocks must never be moved, so are never uncommon.
aoqi@0 218 if (block->head()->is_Root() || block->head()->is_Start()) return false;
aoqi@0 219
aoqi@0 220 // Check for way-low freq
aoqi@0 221 if(block->_freq < BLOCK_FREQUENCY(0.00001f) ) return true;
aoqi@0 222
aoqi@0 223 // Look for code shape indicating uncommon_trap or slow path
aoqi@0 224 if (block->has_uncommon_code()) return true;
aoqi@0 225
aoqi@0 226 const float epsilon = 0.05f;
aoqi@0 227 const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
aoqi@0 228 uint uncommon_preds = 0;
aoqi@0 229 uint freq_preds = 0;
aoqi@0 230 uint uncommon_for_freq_preds = 0;
aoqi@0 231
aoqi@0 232 for( uint i=1; i< block->num_preds(); i++ ) {
aoqi@0 233 Block* guard = get_block_for_node(block->pred(i));
aoqi@0 234 // Check to see if this block follows its guard 1 time out of 10000
aoqi@0 235 // or less.
aoqi@0 236 //
aoqi@0 237 // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
aoqi@0 238 // we intend to be "uncommon", such as slow-path TLE allocation,
aoqi@0 239 // predicted call failure, and uncommon trap triggers.
aoqi@0 240 //
aoqi@0 241 // Use an epsilon value of 5% to allow for variability in frequency
aoqi@0 242 // predictions and floating point calculations. The net effect is
aoqi@0 243 // that guard_factor is set to 9500.
aoqi@0 244 //
aoqi@0 245 // Ignore low-frequency blocks.
aoqi@0 246 // The next check is (guard->_freq < 1.e-5 * 9500.).
aoqi@0 247 if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
aoqi@0 248 uncommon_preds++;
aoqi@0 249 } else {
aoqi@0 250 freq_preds++;
aoqi@0 251 if(block->_freq < guard->_freq * guard_factor ) {
aoqi@0 252 uncommon_for_freq_preds++;
aoqi@0 253 }
aoqi@0 254 }
aoqi@0 255 }
aoqi@0 256 if( block->num_preds() > 1 &&
aoqi@0 257 // The block is uncommon if all preds are uncommon or
aoqi@0 258 (uncommon_preds == (block->num_preds()-1) ||
aoqi@0 259 // it is uncommon for all frequent preds.
aoqi@0 260 uncommon_for_freq_preds == freq_preds) ) {
aoqi@0 261 return true;
aoqi@0 262 }
aoqi@0 263 return false;
aoqi@0 264 }
aoqi@0 265
aoqi@0 266 #ifndef PRODUCT
aoqi@0 267 void Block::dump_bidx(const Block* orig, outputStream* st) const {
aoqi@0 268 if (_pre_order) st->print("B%d",_pre_order);
aoqi@0 269 else st->print("N%d", head()->_idx);
aoqi@0 270
aoqi@0 271 if (Verbose && orig != this) {
aoqi@0 272 // Dump the original block's idx
aoqi@0 273 st->print(" (");
aoqi@0 274 orig->dump_bidx(orig, st);
aoqi@0 275 st->print(")");
aoqi@0 276 }
aoqi@0 277 }
aoqi@0 278
aoqi@0 279 void Block::dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st) const {
aoqi@0 280 if (is_connector()) {
aoqi@0 281 for (uint i=1; i<num_preds(); i++) {
aoqi@0 282 Block *p = cfg->get_block_for_node(pred(i));
aoqi@0 283 p->dump_pred(cfg, orig, st);
aoqi@0 284 }
aoqi@0 285 } else {
aoqi@0 286 dump_bidx(orig, st);
aoqi@0 287 st->print(" ");
aoqi@0 288 }
aoqi@0 289 }
aoqi@0 290
aoqi@0 291 void Block::dump_head(const PhaseCFG* cfg, outputStream* st) const {
aoqi@0 292 // Print the basic block
aoqi@0 293 dump_bidx(this, st);
aoqi@0 294 st->print(": #\t");
aoqi@0 295
aoqi@0 296 // Print the incoming CFG edges and the outgoing CFG edges
aoqi@0 297 for( uint i=0; i<_num_succs; i++ ) {
aoqi@0 298 non_connector_successor(i)->dump_bidx(_succs[i], st);
aoqi@0 299 st->print(" ");
aoqi@0 300 }
aoqi@0 301 st->print("<- ");
aoqi@0 302 if( head()->is_block_start() ) {
aoqi@0 303 for (uint i=1; i<num_preds(); i++) {
aoqi@0 304 Node *s = pred(i);
aoqi@0 305 if (cfg != NULL) {
aoqi@0 306 Block *p = cfg->get_block_for_node(s);
aoqi@0 307 p->dump_pred(cfg, p, st);
aoqi@0 308 } else {
aoqi@0 309 while (!s->is_block_start())
aoqi@0 310 s = s->in(0);
aoqi@0 311 st->print("N%d ", s->_idx );
aoqi@0 312 }
aoqi@0 313 }
aoqi@0 314 } else {
aoqi@0 315 st->print("BLOCK HEAD IS JUNK ");
aoqi@0 316 }
aoqi@0 317
aoqi@0 318 // Print loop, if any
aoqi@0 319 const Block *bhead = this; // Head of self-loop
aoqi@0 320 Node *bh = bhead->head();
aoqi@0 321
aoqi@0 322 if ((cfg != NULL) && bh->is_Loop() && !head()->is_Root()) {
aoqi@0 323 LoopNode *loop = bh->as_Loop();
aoqi@0 324 const Block *bx = cfg->get_block_for_node(loop->in(LoopNode::LoopBackControl));
aoqi@0 325 while (bx->is_connector()) {
aoqi@0 326 bx = cfg->get_block_for_node(bx->pred(1));
aoqi@0 327 }
aoqi@0 328 st->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
aoqi@0 329 // Dump any loop-specific bits, especially for CountedLoops.
aoqi@0 330 loop->dump_spec(st);
aoqi@0 331 } else if (has_loop_alignment()) {
aoqi@0 332 st->print(" top-of-loop");
aoqi@0 333 }
aoqi@0 334 st->print(" Freq: %g",_freq);
aoqi@0 335 if( Verbose || WizardMode ) {
aoqi@0 336 st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
aoqi@0 337 st->print(" RegPressure: %d",_reg_pressure);
aoqi@0 338 st->print(" IHRP Index: %d",_ihrp_index);
aoqi@0 339 st->print(" FRegPressure: %d",_freg_pressure);
aoqi@0 340 st->print(" FHRP Index: %d",_fhrp_index);
aoqi@0 341 }
aoqi@0 342 st->cr();
aoqi@0 343 }
aoqi@0 344
aoqi@0 345 void Block::dump() const {
aoqi@0 346 dump(NULL);
aoqi@0 347 }
aoqi@0 348
aoqi@0 349 void Block::dump(const PhaseCFG* cfg) const {
aoqi@0 350 dump_head(cfg);
aoqi@0 351 for (uint i=0; i< number_of_nodes(); i++) {
aoqi@0 352 get_node(i)->dump();
aoqi@0 353 }
aoqi@0 354 tty->print("\n");
aoqi@0 355 }
aoqi@0 356 #endif
aoqi@0 357
aoqi@0 358 PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
aoqi@0 359 : Phase(CFG)
aoqi@0 360 , _block_arena(arena)
aoqi@0 361 , _root(root)
aoqi@0 362 , _matcher(matcher)
aoqi@0 363 , _node_to_block_mapping(arena)
aoqi@0 364 , _node_latency(NULL)
aoqi@0 365 #ifndef PRODUCT
aoqi@0 366 , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
aoqi@0 367 #endif
aoqi@0 368 #ifdef ASSERT
aoqi@0 369 , _raw_oops(arena)
aoqi@0 370 #endif
aoqi@0 371 {
aoqi@0 372 ResourceMark rm;
aoqi@0 373 // I'll need a few machine-specific GotoNodes. Make an Ideal GotoNode,
aoqi@0 374 // then Match it into a machine-specific Node. Then clone the machine
aoqi@0 375 // Node on demand.
aoqi@0 376 Node *x = new (C) GotoNode(NULL);
aoqi@0 377 x->init_req(0, x);
aoqi@0 378 _goto = matcher.match_tree(x);
aoqi@0 379 assert(_goto != NULL, "");
aoqi@0 380 _goto->set_req(0,_goto);
aoqi@0 381
aoqi@0 382 // Build the CFG in Reverse Post Order
aoqi@0 383 _number_of_blocks = build_cfg();
aoqi@0 384 _root_block = get_block_for_node(_root);
aoqi@0 385 }
aoqi@0 386
aoqi@0 387 // Build a proper looking CFG. Make every block begin with either a StartNode
aoqi@0 388 // or a RegionNode. Make every block end with either a Goto, If or Return.
aoqi@0 389 // The RootNode both starts and ends it's own block. Do this with a recursive
aoqi@0 390 // backwards walk over the control edges.
aoqi@0 391 uint PhaseCFG::build_cfg() {
aoqi@0 392 Arena *a = Thread::current()->resource_area();
aoqi@0 393 VectorSet visited(a);
aoqi@0 394
aoqi@0 395 // Allocate stack with enough space to avoid frequent realloc
aoqi@0 396 Node_Stack nstack(a, C->unique() >> 1);
aoqi@0 397 nstack.push(_root, 0);
aoqi@0 398 uint sum = 0; // Counter for blocks
aoqi@0 399
aoqi@0 400 while (nstack.is_nonempty()) {
aoqi@0 401 // node and in's index from stack's top
aoqi@0 402 // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
aoqi@0 403 // only nodes which point to the start of basic block (see below).
aoqi@0 404 Node *np = nstack.node();
aoqi@0 405 // idx > 0, except for the first node (_root) pushed on stack
aoqi@0 406 // at the beginning when idx == 0.
aoqi@0 407 // We will use the condition (idx == 0) later to end the build.
aoqi@0 408 uint idx = nstack.index();
aoqi@0 409 Node *proj = np->in(idx);
aoqi@0 410 const Node *x = proj->is_block_proj();
aoqi@0 411 // Does the block end with a proper block-ending Node? One of Return,
aoqi@0 412 // If or Goto? (This check should be done for visited nodes also).
aoqi@0 413 if (x == NULL) { // Does not end right...
aoqi@0 414 Node *g = _goto->clone(); // Force it to end in a Goto
aoqi@0 415 g->set_req(0, proj);
aoqi@0 416 np->set_req(idx, g);
aoqi@0 417 x = proj = g;
aoqi@0 418 }
aoqi@0 419 if (!visited.test_set(x->_idx)) { // Visit this block once
aoqi@0 420 // Skip any control-pinned middle'in stuff
aoqi@0 421 Node *p = proj;
aoqi@0 422 do {
aoqi@0 423 proj = p; // Update pointer to last Control
aoqi@0 424 p = p->in(0); // Move control forward
aoqi@0 425 } while( !p->is_block_proj() &&
aoqi@0 426 !p->is_block_start() );
aoqi@0 427 // Make the block begin with one of Region or StartNode.
aoqi@0 428 if( !p->is_block_start() ) {
aoqi@0 429 RegionNode *r = new (C) RegionNode( 2 );
aoqi@0 430 r->init_req(1, p); // Insert RegionNode in the way
aoqi@0 431 proj->set_req(0, r); // Insert RegionNode in the way
aoqi@0 432 p = r;
aoqi@0 433 }
aoqi@0 434 // 'p' now points to the start of this basic block
aoqi@0 435
aoqi@0 436 // Put self in array of basic blocks
aoqi@0 437 Block *bb = new (_block_arena) Block(_block_arena, p);
aoqi@0 438 map_node_to_block(p, bb);
aoqi@0 439 map_node_to_block(x, bb);
aoqi@0 440 if( x != p ) { // Only for root is x == p
aoqi@0 441 bb->push_node((Node*)x);
aoqi@0 442 }
aoqi@0 443 // Now handle predecessors
aoqi@0 444 ++sum; // Count 1 for self block
aoqi@0 445 uint cnt = bb->num_preds();
aoqi@0 446 for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
aoqi@0 447 Node *prevproj = p->in(i); // Get prior input
aoqi@0 448 assert( !prevproj->is_Con(), "dead input not removed" );
aoqi@0 449 // Check to see if p->in(i) is a "control-dependent" CFG edge -
aoqi@0 450 // i.e., it splits at the source (via an IF or SWITCH) and merges
aoqi@0 451 // at the destination (via a many-input Region).
aoqi@0 452 // This breaks critical edges. The RegionNode to start the block
aoqi@0 453 // will be added when <p,i> is pulled off the node stack
aoqi@0 454 if ( cnt > 2 ) { // Merging many things?
aoqi@0 455 assert( prevproj== bb->pred(i),"");
aoqi@0 456 if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
aoqi@0 457 // Force a block on the control-dependent edge
aoqi@0 458 Node *g = _goto->clone(); // Force it to end in a Goto
aoqi@0 459 g->set_req(0,prevproj);
aoqi@0 460 p->set_req(i,g);
aoqi@0 461 }
aoqi@0 462 }
aoqi@0 463 nstack.push(p, i); // 'p' is RegionNode or StartNode
aoqi@0 464 }
aoqi@0 465 } else { // Post-processing visited nodes
aoqi@0 466 nstack.pop(); // remove node from stack
aoqi@0 467 // Check if it the fist node pushed on stack at the beginning.
aoqi@0 468 if (idx == 0) break; // end of the build
aoqi@0 469 // Find predecessor basic block
aoqi@0 470 Block *pb = get_block_for_node(x);
aoqi@0 471 // Insert into nodes array, if not already there
aoqi@0 472 if (!has_block(proj)) {
aoqi@0 473 assert( x != proj, "" );
aoqi@0 474 // Map basic block of projection
aoqi@0 475 map_node_to_block(proj, pb);
aoqi@0 476 pb->push_node(proj);
aoqi@0 477 }
aoqi@0 478 // Insert self as a child of my predecessor block
aoqi@0 479 pb->_succs.map(pb->_num_succs++, get_block_for_node(np));
aoqi@0 480 assert( pb->get_node(pb->number_of_nodes() - pb->_num_succs)->is_block_proj(),
aoqi@0 481 "too many control users, not a CFG?" );
aoqi@0 482 }
aoqi@0 483 }
aoqi@0 484 // Return number of basic blocks for all children and self
aoqi@0 485 return sum;
aoqi@0 486 }
aoqi@0 487
aoqi@0 488 // Inserts a goto & corresponding basic block between
aoqi@0 489 // block[block_no] and its succ_no'th successor block
aoqi@0 490 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
aoqi@0 491 // get block with block_no
aoqi@0 492 assert(block_no < number_of_blocks(), "illegal block number");
aoqi@0 493 Block* in = get_block(block_no);
aoqi@0 494 // get successor block succ_no
aoqi@0 495 assert(succ_no < in->_num_succs, "illegal successor number");
aoqi@0 496 Block* out = in->_succs[succ_no];
aoqi@0 497 // Compute frequency of the new block. Do this before inserting
aoqi@0 498 // new block in case succ_prob() needs to infer the probability from
aoqi@0 499 // surrounding blocks.
aoqi@0 500 float freq = in->_freq * in->succ_prob(succ_no);
aoqi@0 501 // get ProjNode corresponding to the succ_no'th successor of the in block
aoqi@0 502 ProjNode* proj = in->get_node(in->number_of_nodes() - in->_num_succs + succ_no)->as_Proj();
aoqi@0 503 // create region for basic block
aoqi@0 504 RegionNode* region = new (C) RegionNode(2);
aoqi@0 505 region->init_req(1, proj);
aoqi@0 506 // setup corresponding basic block
aoqi@0 507 Block* block = new (_block_arena) Block(_block_arena, region);
aoqi@0 508 map_node_to_block(region, block);
aoqi@0 509 C->regalloc()->set_bad(region->_idx);
aoqi@0 510 // add a goto node
aoqi@0 511 Node* gto = _goto->clone(); // get a new goto node
aoqi@0 512 gto->set_req(0, region);
aoqi@0 513 // add it to the basic block
aoqi@0 514 block->push_node(gto);
aoqi@0 515 map_node_to_block(gto, block);
aoqi@0 516 C->regalloc()->set_bad(gto->_idx);
aoqi@0 517 // hook up successor block
aoqi@0 518 block->_succs.map(block->_num_succs++, out);
aoqi@0 519 // remap successor's predecessors if necessary
aoqi@0 520 for (uint i = 1; i < out->num_preds(); i++) {
aoqi@0 521 if (out->pred(i) == proj) out->head()->set_req(i, gto);
aoqi@0 522 }
aoqi@0 523 // remap predecessor's successor to new block
aoqi@0 524 in->_succs.map(succ_no, block);
aoqi@0 525 // Set the frequency of the new block
aoqi@0 526 block->_freq = freq;
aoqi@0 527 // add new basic block to basic block list
aoqi@0 528 add_block_at(block_no + 1, block);
aoqi@0 529 }
aoqi@0 530
aoqi@0 531 // Does this block end in a multiway branch that cannot have the default case
aoqi@0 532 // flipped for another case?
aoqi@0 533 static bool no_flip_branch(Block *b) {
aoqi@0 534 int branch_idx = b->number_of_nodes() - b->_num_succs-1;
aoqi@0 535 if (branch_idx < 1) {
aoqi@0 536 return false;
aoqi@0 537 }
aoqi@0 538 Node *branch = b->get_node(branch_idx);
aoqi@0 539 if (branch->is_Catch()) {
aoqi@0 540 return true;
aoqi@0 541 }
aoqi@0 542 if (branch->is_Mach()) {
aoqi@0 543 if (branch->is_MachNullCheck()) {
aoqi@0 544 return true;
aoqi@0 545 }
aoqi@0 546 int iop = branch->as_Mach()->ideal_Opcode();
aoqi@0 547 if (iop == Op_FastLock || iop == Op_FastUnlock) {
aoqi@0 548 return true;
aoqi@0 549 }
aoqi@0 550 // Don't flip if branch has an implicit check.
aoqi@0 551 if (branch->as_Mach()->is_TrapBasedCheckNode()) {
aoqi@0 552 return true;
aoqi@0 553 }
aoqi@0 554 }
aoqi@0 555 return false;
aoqi@0 556 }
aoqi@0 557
aoqi@0 558 // Check for NeverBranch at block end. This needs to become a GOTO to the
aoqi@0 559 // true target. NeverBranch are treated as a conditional branch that always
aoqi@0 560 // goes the same direction for most of the optimizer and are used to give a
aoqi@0 561 // fake exit path to infinite loops. At this late stage they need to turn
aoqi@0 562 // into Goto's so that when you enter the infinite loop you indeed hang.
aoqi@0 563 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
aoqi@0 564 // Find true target
aoqi@0 565 int end_idx = b->end_idx();
aoqi@0 566 int idx = b->get_node(end_idx+1)->as_Proj()->_con;
aoqi@0 567 Block *succ = b->_succs[idx];
aoqi@0 568 Node* gto = _goto->clone(); // get a new goto node
aoqi@0 569 gto->set_req(0, b->head());
aoqi@0 570 Node *bp = b->get_node(end_idx);
aoqi@0 571 b->map_node(gto, end_idx); // Slam over NeverBranch
aoqi@0 572 map_node_to_block(gto, b);
aoqi@0 573 C->regalloc()->set_bad(gto->_idx);
aoqi@0 574 b->pop_node(); // Yank projections
aoqi@0 575 b->pop_node(); // Yank projections
aoqi@0 576 b->_succs.map(0,succ); // Map only successor
aoqi@0 577 b->_num_succs = 1;
aoqi@0 578 // remap successor's predecessors if necessary
aoqi@0 579 uint j;
aoqi@0 580 for( j = 1; j < succ->num_preds(); j++)
aoqi@0 581 if( succ->pred(j)->in(0) == bp )
aoqi@0 582 succ->head()->set_req(j, gto);
aoqi@0 583 // Kill alternate exit path
aoqi@0 584 Block *dead = b->_succs[1-idx];
aoqi@0 585 for( j = 1; j < dead->num_preds(); j++)
aoqi@0 586 if( dead->pred(j)->in(0) == bp )
aoqi@0 587 break;
aoqi@0 588 // Scan through block, yanking dead path from
aoqi@0 589 // all regions and phis.
aoqi@0 590 dead->head()->del_req(j);
aoqi@0 591 for( int k = 1; dead->get_node(k)->is_Phi(); k++ )
aoqi@0 592 dead->get_node(k)->del_req(j);
aoqi@0 593 }
aoqi@0 594
aoqi@0 595 // Helper function to move block bx to the slot following b_index. Return
aoqi@0 596 // true if the move is successful, otherwise false
aoqi@0 597 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
aoqi@0 598 if (bx == NULL) return false;
aoqi@0 599
aoqi@0 600 // Return false if bx is already scheduled.
aoqi@0 601 uint bx_index = bx->_pre_order;
aoqi@0 602 if ((bx_index <= b_index) && (get_block(bx_index) == bx)) {
aoqi@0 603 return false;
aoqi@0 604 }
aoqi@0 605
aoqi@0 606 // Find the current index of block bx on the block list
aoqi@0 607 bx_index = b_index + 1;
aoqi@0 608 while (bx_index < number_of_blocks() && get_block(bx_index) != bx) {
aoqi@0 609 bx_index++;
aoqi@0 610 }
aoqi@0 611 assert(get_block(bx_index) == bx, "block not found");
aoqi@0 612
aoqi@0 613 // If the previous block conditionally falls into bx, return false,
aoqi@0 614 // because moving bx will create an extra jump.
aoqi@0 615 for(uint k = 1; k < bx->num_preds(); k++ ) {
aoqi@0 616 Block* pred = get_block_for_node(bx->pred(k));
aoqi@0 617 if (pred == get_block(bx_index - 1)) {
aoqi@0 618 if (pred->_num_succs != 1) {
aoqi@0 619 return false;
aoqi@0 620 }
aoqi@0 621 }
aoqi@0 622 }
aoqi@0 623
aoqi@0 624 // Reinsert bx just past block 'b'
aoqi@0 625 _blocks.remove(bx_index);
aoqi@0 626 _blocks.insert(b_index + 1, bx);
aoqi@0 627 return true;
aoqi@0 628 }
aoqi@0 629
aoqi@0 630 // Move empty and uncommon blocks to the end.
aoqi@0 631 void PhaseCFG::move_to_end(Block *b, uint i) {
aoqi@0 632 int e = b->is_Empty();
aoqi@0 633 if (e != Block::not_empty) {
aoqi@0 634 if (e == Block::empty_with_goto) {
aoqi@0 635 // Remove the goto, but leave the block.
aoqi@0 636 b->pop_node();
aoqi@0 637 }
aoqi@0 638 // Mark this block as a connector block, which will cause it to be
aoqi@0 639 // ignored in certain functions such as non_connector_successor().
aoqi@0 640 b->set_connector();
aoqi@0 641 }
aoqi@0 642 // Move the empty block to the end, and don't recheck.
aoqi@0 643 _blocks.remove(i);
aoqi@0 644 _blocks.push(b);
aoqi@0 645 }
aoqi@0 646
aoqi@0 647 // Set loop alignment for every block
aoqi@0 648 void PhaseCFG::set_loop_alignment() {
aoqi@0 649 uint last = number_of_blocks();
aoqi@0 650 assert(get_block(0) == get_root_block(), "");
aoqi@0 651
aoqi@0 652 for (uint i = 1; i < last; i++) {
aoqi@0 653 Block* block = get_block(i);
aoqi@0 654 if (block->head()->is_Loop()) {
aoqi@0 655 block->set_loop_alignment(block);
aoqi@0 656 }
aoqi@0 657 }
aoqi@0 658 }
aoqi@0 659
aoqi@0 660 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
aoqi@0 661 // to the end.
aoqi@0 662 void PhaseCFG::remove_empty_blocks() {
aoqi@0 663 // Move uncommon blocks to the end
aoqi@0 664 uint last = number_of_blocks();
aoqi@0 665 assert(get_block(0) == get_root_block(), "");
aoqi@0 666
aoqi@0 667 for (uint i = 1; i < last; i++) {
aoqi@0 668 Block* block = get_block(i);
aoqi@0 669 if (block->is_connector()) {
aoqi@0 670 break;
aoqi@0 671 }
aoqi@0 672
aoqi@0 673 // Check for NeverBranch at block end. This needs to become a GOTO to the
aoqi@0 674 // true target. NeverBranch are treated as a conditional branch that
aoqi@0 675 // always goes the same direction for most of the optimizer and are used
aoqi@0 676 // to give a fake exit path to infinite loops. At this late stage they
aoqi@0 677 // need to turn into Goto's so that when you enter the infinite loop you
aoqi@0 678 // indeed hang.
aoqi@0 679 if (block->get_node(block->end_idx())->Opcode() == Op_NeverBranch) {
aoqi@0 680 convert_NeverBranch_to_Goto(block);
aoqi@0 681 }
aoqi@0 682
aoqi@0 683 // Look for uncommon blocks and move to end.
aoqi@0 684 if (!C->do_freq_based_layout()) {
aoqi@0 685 if (is_uncommon(block)) {
aoqi@0 686 move_to_end(block, i);
aoqi@0 687 last--; // No longer check for being uncommon!
aoqi@0 688 if (no_flip_branch(block)) { // Fall-thru case must follow?
aoqi@0 689 // Find the fall-thru block
aoqi@0 690 block = get_block(i);
aoqi@0 691 move_to_end(block, i);
aoqi@0 692 last--;
aoqi@0 693 }
aoqi@0 694 // backup block counter post-increment
aoqi@0 695 i--;
aoqi@0 696 }
aoqi@0 697 }
aoqi@0 698 }
aoqi@0 699
aoqi@0 700 // Move empty blocks to the end
aoqi@0 701 last = number_of_blocks();
aoqi@0 702 for (uint i = 1; i < last; i++) {
aoqi@0 703 Block* block = get_block(i);
aoqi@0 704 if (block->is_Empty() != Block::not_empty) {
aoqi@0 705 move_to_end(block, i);
aoqi@0 706 last--;
aoqi@0 707 i--;
aoqi@0 708 }
aoqi@0 709 } // End of for all blocks
aoqi@0 710 }
aoqi@0 711
aoqi@0 712 Block *PhaseCFG::fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext) {
aoqi@0 713 // Trap based checks must fall through to the successor with
aoqi@0 714 // PROB_ALWAYS.
aoqi@0 715 // They should be an If with 2 successors.
aoqi@0 716 assert(branch->is_MachIf(), "must be If");
aoqi@0 717 assert(block->_num_succs == 2, "must have 2 successors");
aoqi@0 718
aoqi@0 719 // Get the If node and the projection for the first successor.
aoqi@0 720 MachIfNode *iff = block->get_node(block->number_of_nodes()-3)->as_MachIf();
aoqi@0 721 ProjNode *proj0 = block->get_node(block->number_of_nodes()-2)->as_Proj();
aoqi@0 722 ProjNode *proj1 = block->get_node(block->number_of_nodes()-1)->as_Proj();
aoqi@0 723 ProjNode *projt = (proj0->Opcode() == Op_IfTrue) ? proj0 : proj1;
aoqi@0 724 ProjNode *projf = (proj0->Opcode() == Op_IfFalse) ? proj0 : proj1;
aoqi@0 725
aoqi@0 726 // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
aoqi@0 727 assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
aoqi@0 728 assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
aoqi@0 729
aoqi@0 730 ProjNode *proj_always;
aoqi@0 731 ProjNode *proj_never;
aoqi@0 732 // We must negate the branch if the implicit check doesn't follow
aoqi@0 733 // the branch's TRUE path. Then, the new TRUE branch target will
aoqi@0 734 // be the old FALSE branch target.
aoqi@0 735 if (iff->_prob <= 2*PROB_NEVER) { // There are small rounding errors.
aoqi@0 736 proj_never = projt;
aoqi@0 737 proj_always = projf;
aoqi@0 738 } else {
aoqi@0 739 // We must negate the branch if the trap doesn't follow the
aoqi@0 740 // branch's TRUE path. Then, the new TRUE branch target will
aoqi@0 741 // be the old FALSE branch target.
aoqi@0 742 proj_never = projf;
aoqi@0 743 proj_always = projt;
aoqi@0 744 iff->negate();
aoqi@0 745 }
aoqi@0 746 assert(iff->_prob <= 2*PROB_NEVER, "Trap based checks are expected to trap never!");
aoqi@0 747 // Map the successors properly
aoqi@0 748 block->_succs.map(0, get_block_for_node(proj_never ->raw_out(0))); // The target of the trap.
aoqi@0 749 block->_succs.map(1, get_block_for_node(proj_always->raw_out(0))); // The fall through target.
aoqi@0 750
aoqi@0 751 if (block->get_node(block->number_of_nodes() - block->_num_succs + 1) != proj_always) {
aoqi@0 752 block->map_node(proj_never, block->number_of_nodes() - block->_num_succs + 0);
aoqi@0 753 block->map_node(proj_always, block->number_of_nodes() - block->_num_succs + 1);
aoqi@0 754 }
aoqi@0 755
aoqi@0 756 // Place the fall through block after this block.
aoqi@0 757 Block *bs1 = block->non_connector_successor(1);
aoqi@0 758 if (bs1 != bnext && move_to_next(bs1, block_pos)) {
aoqi@0 759 bnext = bs1;
aoqi@0 760 }
aoqi@0 761 // If the fall through block still is not the next block, insert a goto.
aoqi@0 762 if (bs1 != bnext) {
aoqi@0 763 insert_goto_at(block_pos, 1);
aoqi@0 764 }
aoqi@0 765 return bnext;
aoqi@0 766 }
aoqi@0 767
aoqi@0 768 // Fix up the final control flow for basic blocks.
aoqi@0 769 void PhaseCFG::fixup_flow() {
aoqi@0 770 // Fixup final control flow for the blocks. Remove jump-to-next
aoqi@0 771 // block. If neither arm of an IF follows the conditional branch, we
aoqi@0 772 // have to add a second jump after the conditional. We place the
aoqi@0 773 // TRUE branch target in succs[0] for both GOTOs and IFs.
aoqi@0 774 for (uint i = 0; i < number_of_blocks(); i++) {
aoqi@0 775 Block* block = get_block(i);
aoqi@0 776 block->_pre_order = i; // turn pre-order into block-index
aoqi@0 777
aoqi@0 778 // Connector blocks need no further processing.
aoqi@0 779 if (block->is_connector()) {
aoqi@0 780 assert((i+1) == number_of_blocks() || get_block(i + 1)->is_connector(), "All connector blocks should sink to the end");
aoqi@0 781 continue;
aoqi@0 782 }
aoqi@0 783 assert(block->is_Empty() != Block::completely_empty, "Empty blocks should be connectors");
aoqi@0 784
aoqi@0 785 Block* bnext = (i < number_of_blocks() - 1) ? get_block(i + 1) : NULL;
aoqi@0 786 Block* bs0 = block->non_connector_successor(0);
aoqi@0 787
aoqi@0 788 // Check for multi-way branches where I cannot negate the test to
aoqi@0 789 // exchange the true and false targets.
aoqi@0 790 if (no_flip_branch(block)) {
aoqi@0 791 // Find fall through case - if must fall into its target.
aoqi@0 792 // Get the index of the branch's first successor.
aoqi@0 793 int branch_idx = block->number_of_nodes() - block->_num_succs;
aoqi@0 794
aoqi@0 795 // The branch is 1 before the branch's first successor.
aoqi@0 796 Node *branch = block->get_node(branch_idx-1);
aoqi@0 797
aoqi@0 798 // Handle no-flip branches which have implicit checks and which require
aoqi@0 799 // special block ordering and individual semantics of the 'fall through
aoqi@0 800 // case'.
aoqi@0 801 if ((TrapBasedNullChecks || TrapBasedRangeChecks) &&
aoqi@0 802 branch->is_Mach() && branch->as_Mach()->is_TrapBasedCheckNode()) {
aoqi@0 803 bnext = fixup_trap_based_check(branch, block, i, bnext);
aoqi@0 804 } else {
aoqi@0 805 // Else, default handling for no-flip branches
aoqi@0 806 for (uint j2 = 0; j2 < block->_num_succs; j2++) {
aoqi@0 807 const ProjNode* p = block->get_node(branch_idx + j2)->as_Proj();
aoqi@0 808 if (p->_con == 0) {
aoqi@0 809 // successor j2 is fall through case
aoqi@0 810 if (block->non_connector_successor(j2) != bnext) {
aoqi@0 811 // but it is not the next block => insert a goto
aoqi@0 812 insert_goto_at(i, j2);
aoqi@0 813 }
aoqi@0 814 // Put taken branch in slot 0
aoqi@0 815 if (j2 == 0 && block->_num_succs == 2) {
aoqi@0 816 // Flip targets in succs map
aoqi@0 817 Block *tbs0 = block->_succs[0];
aoqi@0 818 Block *tbs1 = block->_succs[1];
aoqi@0 819 block->_succs.map(0, tbs1);
aoqi@0 820 block->_succs.map(1, tbs0);
aoqi@0 821 }
aoqi@0 822 break;
aoqi@0 823 }
aoqi@0 824 }
aoqi@0 825 }
aoqi@0 826
aoqi@0 827 // Remove all CatchProjs
aoqi@0 828 for (uint j = 0; j < block->_num_succs; j++) {
aoqi@0 829 block->pop_node();
aoqi@0 830 }
aoqi@0 831
aoqi@0 832 } else if (block->_num_succs == 1) {
aoqi@0 833 // Block ends in a Goto?
aoqi@0 834 if (bnext == bs0) {
aoqi@0 835 // We fall into next block; remove the Goto
aoqi@0 836 block->pop_node();
aoqi@0 837 }
aoqi@0 838
aoqi@0 839 } else if(block->_num_succs == 2) { // Block ends in a If?
aoqi@0 840 // Get opcode of 1st projection (matches _succs[0])
aoqi@0 841 // Note: Since this basic block has 2 exits, the last 2 nodes must
aoqi@0 842 // be projections (in any order), the 3rd last node must be
aoqi@0 843 // the IfNode (we have excluded other 2-way exits such as
aoqi@0 844 // CatchNodes already).
aoqi@0 845 MachNode* iff = block->get_node(block->number_of_nodes() - 3)->as_Mach();
aoqi@0 846 ProjNode* proj0 = block->get_node(block->number_of_nodes() - 2)->as_Proj();
aoqi@0 847 ProjNode* proj1 = block->get_node(block->number_of_nodes() - 1)->as_Proj();
aoqi@0 848
aoqi@0 849 // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
aoqi@0 850 assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
aoqi@0 851 assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
aoqi@0 852
aoqi@0 853 Block* bs1 = block->non_connector_successor(1);
aoqi@0 854
aoqi@0 855 // Check for neither successor block following the current
aoqi@0 856 // block ending in a conditional. If so, move one of the
aoqi@0 857 // successors after the current one, provided that the
aoqi@0 858 // successor was previously unscheduled, but moveable
aoqi@0 859 // (i.e., all paths to it involve a branch).
aoqi@0 860 if (!C->do_freq_based_layout() && bnext != bs0 && bnext != bs1) {
aoqi@0 861 // Choose the more common successor based on the probability
aoqi@0 862 // of the conditional branch.
aoqi@0 863 Block* bx = bs0;
aoqi@0 864 Block* by = bs1;
aoqi@0 865
aoqi@0 866 // _prob is the probability of taking the true path. Make
aoqi@0 867 // p the probability of taking successor #1.
aoqi@0 868 float p = iff->as_MachIf()->_prob;
aoqi@0 869 if (proj0->Opcode() == Op_IfTrue) {
aoqi@0 870 p = 1.0 - p;
aoqi@0 871 }
aoqi@0 872
aoqi@0 873 // Prefer successor #1 if p > 0.5
aoqi@0 874 if (p > PROB_FAIR) {
aoqi@0 875 bx = bs1;
aoqi@0 876 by = bs0;
aoqi@0 877 }
aoqi@0 878
aoqi@0 879 // Attempt the more common successor first
aoqi@0 880 if (move_to_next(bx, i)) {
aoqi@0 881 bnext = bx;
aoqi@0 882 } else if (move_to_next(by, i)) {
aoqi@0 883 bnext = by;
aoqi@0 884 }
aoqi@0 885 }
aoqi@0 886
aoqi@0 887 // Check for conditional branching the wrong way. Negate
aoqi@0 888 // conditional, if needed, so it falls into the following block
aoqi@0 889 // and branches to the not-following block.
aoqi@0 890
aoqi@0 891 // Check for the next block being in succs[0]. We are going to branch
aoqi@0 892 // to succs[0], so we want the fall-thru case as the next block in
aoqi@0 893 // succs[1].
aoqi@0 894 if (bnext == bs0) {
aoqi@0 895 // Fall-thru case in succs[0], so flip targets in succs map
aoqi@0 896 Block* tbs0 = block->_succs[0];
aoqi@0 897 Block* tbs1 = block->_succs[1];
aoqi@0 898 block->_succs.map(0, tbs1);
aoqi@0 899 block->_succs.map(1, tbs0);
aoqi@0 900 // Flip projection for each target
aoqi@0 901 ProjNode* tmp = proj0;
aoqi@0 902 proj0 = proj1;
aoqi@0 903 proj1 = tmp;
aoqi@0 904
aoqi@0 905 } else if(bnext != bs1) {
aoqi@0 906 // Need a double-branch
aoqi@0 907 // The existing conditional branch need not change.
aoqi@0 908 // Add a unconditional branch to the false target.
aoqi@0 909 // Alas, it must appear in its own block and adding a
aoqi@0 910 // block this late in the game is complicated. Sigh.
aoqi@0 911 insert_goto_at(i, 1);
aoqi@0 912 }
aoqi@0 913
aoqi@0 914 // Make sure we TRUE branch to the target
aoqi@0 915 if (proj0->Opcode() == Op_IfFalse) {
aoqi@0 916 iff->as_MachIf()->negate();
aoqi@0 917 }
aoqi@0 918
aoqi@0 919 block->pop_node(); // Remove IfFalse & IfTrue projections
aoqi@0 920 block->pop_node();
aoqi@0 921
aoqi@0 922 } else {
aoqi@0 923 // Multi-exit block, e.g. a switch statement
aoqi@0 924 // But we don't need to do anything here
aoqi@0 925 }
aoqi@0 926 } // End of for all blocks
aoqi@0 927 }
aoqi@0 928
aoqi@0 929
aoqi@0 930 // postalloc_expand: Expand nodes after register allocation.
aoqi@0 931 //
aoqi@0 932 // postalloc_expand has to be called after register allocation, just
aoqi@0 933 // before output (i.e. scheduling). It only gets called if
aoqi@0 934 // Matcher::require_postalloc_expand is true.
aoqi@0 935 //
aoqi@0 936 // Background:
aoqi@0 937 //
aoqi@0 938 // Nodes that are expandend (one compound node requiring several
aoqi@0 939 // assembler instructions to be implemented split into two or more
aoqi@0 940 // non-compound nodes) after register allocation are not as nice as
aoqi@0 941 // the ones expanded before register allocation - they don't
aoqi@0 942 // participate in optimizations as global code motion. But after
aoqi@0 943 // register allocation we can expand nodes that use registers which
aoqi@0 944 // are not spillable or registers that are not allocated, because the
aoqi@0 945 // old compound node is simply replaced (in its location in the basic
aoqi@0 946 // block) by a new subgraph which does not contain compound nodes any
aoqi@0 947 // more. The scheduler called during output can later on process these
aoqi@0 948 // non-compound nodes.
aoqi@0 949 //
aoqi@0 950 // Implementation:
aoqi@0 951 //
aoqi@0 952 // Nodes requiring postalloc expand are specified in the ad file by using
aoqi@0 953 // a postalloc_expand statement instead of ins_encode. A postalloc_expand
aoqi@0 954 // contains a single call to an encoding, as does an ins_encode
aoqi@0 955 // statement. Instead of an emit() function a postalloc_expand() function
aoqi@0 956 // is generated that doesn't emit assembler but creates a new
aoqi@0 957 // subgraph. The code below calls this postalloc_expand function for each
aoqi@0 958 // node with the appropriate attribute. This function returns the new
aoqi@0 959 // nodes generated in an array passed in the call. The old node,
aoqi@0 960 // potential MachTemps before and potential Projs after it then get
aoqi@0 961 // disconnected and replaced by the new nodes. The instruction
aoqi@0 962 // generating the result has to be the last one in the array. In
aoqi@0 963 // general it is assumed that Projs after the node expanded are
aoqi@0 964 // kills. These kills are not required any more after expanding as
aoqi@0 965 // there are now explicitly visible def-use chains and the Projs are
aoqi@0 966 // removed. This does not hold for calls: They do not only have
aoqi@0 967 // kill-Projs but also Projs defining values. Therefore Projs after
aoqi@0 968 // the node expanded are removed for all but for calls. If a node is
aoqi@0 969 // to be reused, it must be added to the nodes list returned, and it
aoqi@0 970 // will be added again.
aoqi@0 971 //
aoqi@0 972 // Implementing the postalloc_expand function for a node in an enc_class
aoqi@0 973 // is rather tedious. It requires knowledge about many node details, as
aoqi@0 974 // the nodes and the subgraph must be hand crafted. To simplify this,
aoqi@0 975 // adlc generates some utility variables into the postalloc_expand function,
aoqi@0 976 // e.g., holding the operands as specified by the postalloc_expand encoding
aoqi@0 977 // specification, e.g.:
aoqi@0 978 // * unsigned idx_<par_name> holding the index of the node in the ins
aoqi@0 979 // * Node *n_<par_name> holding the node loaded from the ins
aoqi@0 980 // * MachOpnd *op_<par_name> holding the corresponding operand
aoqi@0 981 //
aoqi@0 982 // The ordering of operands can not be determined by looking at a
aoqi@0 983 // rule. Especially if a match rule matches several different trees,
aoqi@0 984 // several nodes are generated from one instruct specification with
aoqi@0 985 // different operand orderings. In this case the adlc generated
aoqi@0 986 // variables are the only way to access the ins and operands
aoqi@0 987 // deterministically.
aoqi@0 988 //
aoqi@0 989 // If assigning a register to a node that contains an oop, don't
aoqi@0 990 // forget to call ra_->set_oop() for the node.
aoqi@0 991 void PhaseCFG::postalloc_expand(PhaseRegAlloc* _ra) {
aoqi@0 992 GrowableArray <Node *> new_nodes(32); // Array with new nodes filled by postalloc_expand function of node.
aoqi@0 993 GrowableArray <Node *> remove(32);
aoqi@0 994 GrowableArray <Node *> succs(32);
aoqi@0 995 unsigned int max_idx = C->unique(); // Remember to distinguish new from old nodes.
aoqi@0 996 DEBUG_ONLY(bool foundNode = false);
aoqi@0 997
aoqi@0 998 // for all blocks
aoqi@0 999 for (uint i = 0; i < number_of_blocks(); i++) {
aoqi@0 1000 Block *b = _blocks[i];
aoqi@0 1001 // For all instructions in the current block.
aoqi@0 1002 for (uint j = 0; j < b->number_of_nodes(); j++) {
aoqi@0 1003 Node *n = b->get_node(j);
aoqi@0 1004 if (n->is_Mach() && n->as_Mach()->requires_postalloc_expand()) {
aoqi@0 1005 #ifdef ASSERT
aoqi@0 1006 if (TracePostallocExpand) {
aoqi@0 1007 if (!foundNode) {
aoqi@0 1008 foundNode = true;
aoqi@0 1009 tty->print("POSTALLOC EXPANDING %d %s\n", C->compile_id(),
aoqi@0 1010 C->method() ? C->method()->name()->as_utf8() : C->stub_name());
aoqi@0 1011 }
aoqi@0 1012 tty->print(" postalloc expanding "); n->dump();
aoqi@0 1013 if (Verbose) {
aoqi@0 1014 tty->print(" with ins:\n");
aoqi@0 1015 for (uint k = 0; k < n->len(); ++k) {
aoqi@0 1016 if (n->in(k)) { tty->print(" "); n->in(k)->dump(); }
aoqi@0 1017 }
aoqi@0 1018 }
aoqi@0 1019 }
aoqi@0 1020 #endif
aoqi@0 1021 new_nodes.clear();
aoqi@0 1022 // Collect nodes that have to be removed from the block later on.
aoqi@0 1023 uint req = n->req();
aoqi@0 1024 remove.clear();
aoqi@0 1025 for (uint k = 0; k < req; ++k) {
aoqi@0 1026 if (n->in(k) && n->in(k)->is_MachTemp()) {
aoqi@0 1027 remove.push(n->in(k)); // MachTemps which are inputs to the old node have to be removed.
aoqi@0 1028 n->in(k)->del_req(0);
aoqi@0 1029 j--;
aoqi@0 1030 }
aoqi@0 1031 }
aoqi@0 1032
aoqi@0 1033 // Check whether we can allocate enough nodes. We set a fix limit for
aoqi@0 1034 // the size of postalloc expands with this.
aoqi@0 1035 uint unique_limit = C->unique() + 40;
aoqi@0 1036 if (unique_limit >= _ra->node_regs_max_index()) {
aoqi@0 1037 Compile::current()->record_failure("out of nodes in postalloc expand");
aoqi@0 1038 return;
aoqi@0 1039 }
aoqi@0 1040
aoqi@0 1041 // Emit (i.e. generate new nodes).
aoqi@0 1042 n->as_Mach()->postalloc_expand(&new_nodes, _ra);
aoqi@0 1043
aoqi@0 1044 assert(C->unique() < unique_limit, "You allocated too many nodes in your postalloc expand.");
aoqi@0 1045
aoqi@0 1046 // Disconnect the inputs of the old node.
aoqi@0 1047 //
aoqi@0 1048 // We reuse MachSpillCopy nodes. If we need to expand them, there
aoqi@0 1049 // are many, so reusing pays off. If reused, the node already
aoqi@0 1050 // has the new ins. n must be the last node on new_nodes list.
aoqi@0 1051 if (!n->is_MachSpillCopy()) {
aoqi@0 1052 for (int k = req - 1; k >= 0; --k) {
aoqi@0 1053 n->del_req(k);
aoqi@0 1054 }
aoqi@0 1055 }
aoqi@0 1056
aoqi@0 1057 #ifdef ASSERT
aoqi@0 1058 // Check that all nodes have proper operands.
aoqi@0 1059 for (int k = 0; k < new_nodes.length(); ++k) {
aoqi@0 1060 if (new_nodes.at(k)->_idx < max_idx || !new_nodes.at(k)->is_Mach()) continue; // old node, Proj ...
aoqi@0 1061 MachNode *m = new_nodes.at(k)->as_Mach();
aoqi@0 1062 for (unsigned int l = 0; l < m->num_opnds(); ++l) {
aoqi@0 1063 if (MachOper::notAnOper(m->_opnds[l])) {
aoqi@0 1064 outputStream *os = tty;
aoqi@0 1065 os->print("Node %s ", m->Name());
aoqi@0 1066 os->print("has invalid opnd %d: %p\n", l, m->_opnds[l]);
aoqi@0 1067 assert(0, "Invalid operands, see inline trace in hs_err_pid file.");
aoqi@0 1068 }
aoqi@0 1069 }
aoqi@0 1070 }
aoqi@0 1071 #endif
aoqi@0 1072
aoqi@0 1073 // Collect succs of old node in remove (for projections) and in succs (for
aoqi@0 1074 // all other nodes) do _not_ collect projections in remove (but in succs)
aoqi@0 1075 // in case the node is a call. We need the projections for calls as they are
aoqi@0 1076 // associated with registes (i.e. they are defs).
aoqi@0 1077 succs.clear();
aoqi@0 1078 for (DUIterator k = n->outs(); n->has_out(k); k++) {
aoqi@0 1079 if (n->out(k)->is_Proj() && !n->is_MachCall() && !n->is_MachBranch()) {
aoqi@0 1080 remove.push(n->out(k));
aoqi@0 1081 } else {
aoqi@0 1082 succs.push(n->out(k));
aoqi@0 1083 }
aoqi@0 1084 }
aoqi@0 1085 // Replace old node n as input of its succs by last of the new nodes.
aoqi@0 1086 for (int k = 0; k < succs.length(); ++k) {
aoqi@0 1087 Node *succ = succs.at(k);
aoqi@0 1088 for (uint l = 0; l < succ->req(); ++l) {
aoqi@0 1089 if (succ->in(l) == n) {
aoqi@0 1090 succ->set_req(l, new_nodes.at(new_nodes.length() - 1));
aoqi@0 1091 }
aoqi@0 1092 }
aoqi@0 1093 for (uint l = succ->req(); l < succ->len(); ++l) {
aoqi@0 1094 if (succ->in(l) == n) {
aoqi@0 1095 succ->set_prec(l, new_nodes.at(new_nodes.length() - 1));
aoqi@0 1096 }
aoqi@0 1097 }
aoqi@0 1098 }
aoqi@0 1099
aoqi@0 1100 // Index of old node in block.
aoqi@0 1101 uint index = b->find_node(n);
aoqi@0 1102 // Insert new nodes into block and map them in nodes->blocks array
aoqi@0 1103 // and remember last node in n2.
aoqi@0 1104 Node *n2 = NULL;
aoqi@0 1105 for (int k = 0; k < new_nodes.length(); ++k) {
aoqi@0 1106 n2 = new_nodes.at(k);
aoqi@0 1107 b->insert_node(n2, ++index);
aoqi@0 1108 map_node_to_block(n2, b);
aoqi@0 1109 }
aoqi@0 1110
aoqi@0 1111 // Add old node n to remove and remove them all from block.
aoqi@0 1112 remove.push(n);
aoqi@0 1113 j--;
aoqi@0 1114 #ifdef ASSERT
aoqi@0 1115 if (TracePostallocExpand && Verbose) {
aoqi@0 1116 tty->print(" removing:\n");
aoqi@0 1117 for (int k = 0; k < remove.length(); ++k) {
aoqi@0 1118 tty->print(" "); remove.at(k)->dump();
aoqi@0 1119 }
aoqi@0 1120 tty->print(" inserting:\n");
aoqi@0 1121 for (int k = 0; k < new_nodes.length(); ++k) {
aoqi@0 1122 tty->print(" "); new_nodes.at(k)->dump();
aoqi@0 1123 }
aoqi@0 1124 }
aoqi@0 1125 #endif
aoqi@0 1126 for (int k = 0; k < remove.length(); ++k) {
aoqi@0 1127 if (b->contains(remove.at(k))) {
aoqi@0 1128 b->find_remove(remove.at(k));
aoqi@0 1129 } else {
aoqi@0 1130 assert(remove.at(k)->is_Proj() && (remove.at(k)->in(0)->is_MachBranch()), "");
aoqi@0 1131 }
aoqi@0 1132 }
aoqi@0 1133 // If anything has been inserted (n2 != NULL), continue after last node inserted.
aoqi@0 1134 // This does not always work. Some postalloc expands don't insert any nodes, if they
aoqi@0 1135 // do optimizations (e.g., max(x,x)). In this case we decrement j accordingly.
aoqi@0 1136 j = n2 ? b->find_node(n2) : j;
aoqi@0 1137 }
aoqi@0 1138 }
aoqi@0 1139 }
aoqi@0 1140
aoqi@0 1141 #ifdef ASSERT
aoqi@0 1142 if (foundNode) {
aoqi@0 1143 tty->print("FINISHED %d %s\n", C->compile_id(),
aoqi@0 1144 C->method() ? C->method()->name()->as_utf8() : C->stub_name());
aoqi@0 1145 tty->flush();
aoqi@0 1146 }
aoqi@0 1147 #endif
aoqi@0 1148 }
aoqi@0 1149
aoqi@0 1150
aoqi@0 1151 //------------------------------dump-------------------------------------------
aoqi@0 1152 #ifndef PRODUCT
aoqi@0 1153 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited ) const {
aoqi@0 1154 const Node *x = end->is_block_proj();
aoqi@0 1155 assert( x, "not a CFG" );
aoqi@0 1156
aoqi@0 1157 // Do not visit this block again
aoqi@0 1158 if( visited.test_set(x->_idx) ) return;
aoqi@0 1159
aoqi@0 1160 // Skip through this block
aoqi@0 1161 const Node *p = x;
aoqi@0 1162 do {
aoqi@0 1163 p = p->in(0); // Move control forward
aoqi@0 1164 assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
aoqi@0 1165 } while( !p->is_block_start() );
aoqi@0 1166
aoqi@0 1167 // Recursively visit
aoqi@0 1168 for (uint i = 1; i < p->req(); i++) {
aoqi@0 1169 _dump_cfg(p->in(i), visited);
aoqi@0 1170 }
aoqi@0 1171
aoqi@0 1172 // Dump the block
aoqi@0 1173 get_block_for_node(p)->dump(this);
aoqi@0 1174 }
aoqi@0 1175
aoqi@0 1176 void PhaseCFG::dump( ) const {
aoqi@0 1177 tty->print("\n--- CFG --- %d BBs\n", number_of_blocks());
aoqi@0 1178 if (_blocks.size()) { // Did we do basic-block layout?
aoqi@0 1179 for (uint i = 0; i < number_of_blocks(); i++) {
aoqi@0 1180 const Block* block = get_block(i);
aoqi@0 1181 block->dump(this);
aoqi@0 1182 }
aoqi@0 1183 } else { // Else do it with a DFS
aoqi@0 1184 VectorSet visited(_block_arena);
aoqi@0 1185 _dump_cfg(_root,visited);
aoqi@0 1186 }
aoqi@0 1187 }
aoqi@0 1188
aoqi@0 1189 void PhaseCFG::dump_headers() {
aoqi@0 1190 for (uint i = 0; i < number_of_blocks(); i++) {
aoqi@0 1191 Block* block = get_block(i);
aoqi@0 1192 if (block != NULL) {
aoqi@0 1193 block->dump_head(this);
aoqi@0 1194 }
aoqi@0 1195 }
aoqi@0 1196 }
aoqi@0 1197
aoqi@0 1198 void PhaseCFG::verify() const {
aoqi@0 1199 #ifdef ASSERT
aoqi@0 1200 // Verify sane CFG
aoqi@0 1201 for (uint i = 0; i < number_of_blocks(); i++) {
aoqi@0 1202 Block* block = get_block(i);
aoqi@0 1203 uint cnt = block->number_of_nodes();
aoqi@0 1204 uint j;
aoqi@0 1205 for (j = 0; j < cnt; j++) {
aoqi@0 1206 Node *n = block->get_node(j);
aoqi@0 1207 assert(get_block_for_node(n) == block, "");
aoqi@0 1208 if (j >= 1 && n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
aoqi@0 1209 assert(j == 1 || block->get_node(j-1)->is_Phi(), "CreateEx must be first instruction in block");
aoqi@0 1210 }
aoqi@0 1211 for (uint k = 0; k < n->req(); k++) {
aoqi@0 1212 Node *def = n->in(k);
aoqi@0 1213 if (def && def != n) {
aoqi@0 1214 assert(get_block_for_node(def) || def->is_Con(), "must have block; constants for debug info ok");
aoqi@0 1215 // Verify that instructions in the block is in correct order.
aoqi@0 1216 // Uses must follow their definition if they are at the same block.
aoqi@0 1217 // Mostly done to check that MachSpillCopy nodes are placed correctly
aoqi@0 1218 // when CreateEx node is moved in build_ifg_physical().
aoqi@0 1219 if (get_block_for_node(def) == block && !(block->head()->is_Loop() && n->is_Phi()) &&
aoqi@0 1220 // See (+++) comment in reg_split.cpp
aoqi@0 1221 !(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
aoqi@0 1222 bool is_loop = false;
aoqi@0 1223 if (n->is_Phi()) {
aoqi@0 1224 for (uint l = 1; l < def->req(); l++) {
aoqi@0 1225 if (n == def->in(l)) {
aoqi@0 1226 is_loop = true;
aoqi@0 1227 break; // Some kind of loop
aoqi@0 1228 }
aoqi@0 1229 }
aoqi@0 1230 }
aoqi@0 1231 assert(is_loop || block->find_node(def) < j, "uses must follow definitions");
aoqi@0 1232 }
aoqi@0 1233 }
aoqi@0 1234 }
aoqi@0 1235 }
aoqi@0 1236
aoqi@0 1237 j = block->end_idx();
aoqi@0 1238 Node* bp = (Node*)block->get_node(block->number_of_nodes() - 1)->is_block_proj();
aoqi@0 1239 assert(bp, "last instruction must be a block proj");
aoqi@0 1240 assert(bp == block->get_node(j), "wrong number of successors for this block");
aoqi@0 1241 if (bp->is_Catch()) {
aoqi@0 1242 while (block->get_node(--j)->is_MachProj()) {
aoqi@0 1243 ;
aoqi@0 1244 }
aoqi@0 1245 assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
aoqi@0 1246 } else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
aoqi@0 1247 assert(block->_num_succs == 2, "Conditional branch must have two targets");
aoqi@0 1248 }
aoqi@0 1249 }
aoqi@0 1250 #endif
aoqi@0 1251 }
aoqi@0 1252 #endif
aoqi@0 1253
aoqi@0 1254 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
aoqi@0 1255 Copy::zero_to_bytes( _indices, sizeof(uint)*max );
aoqi@0 1256 }
aoqi@0 1257
aoqi@0 1258 void UnionFind::extend( uint from_idx, uint to_idx ) {
aoqi@0 1259 _nesting.check();
aoqi@0 1260 if( from_idx >= _max ) {
aoqi@0 1261 uint size = 16;
aoqi@0 1262 while( size <= from_idx ) size <<=1;
aoqi@0 1263 _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
aoqi@0 1264 _max = size;
aoqi@0 1265 }
aoqi@0 1266 while( _cnt <= from_idx ) _indices[_cnt++] = 0;
aoqi@0 1267 _indices[from_idx] = to_idx;
aoqi@0 1268 }
aoqi@0 1269
aoqi@0 1270 void UnionFind::reset( uint max ) {
aoqi@0 1271 assert( max <= max_uint, "Must fit within uint" );
aoqi@0 1272 // Force the Union-Find mapping to be at least this large
aoqi@0 1273 extend(max,0);
aoqi@0 1274 // Initialize to be the ID mapping.
aoqi@0 1275 for( uint i=0; i<max; i++ ) map(i,i);
aoqi@0 1276 }
aoqi@0 1277
aoqi@0 1278 // Straight out of Tarjan's union-find algorithm
aoqi@0 1279 uint UnionFind::Find_compress( uint idx ) {
aoqi@0 1280 uint cur = idx;
aoqi@0 1281 uint next = lookup(cur);
aoqi@0 1282 while( next != cur ) { // Scan chain of equivalences
aoqi@0 1283 assert( next < cur, "always union smaller" );
aoqi@0 1284 cur = next; // until find a fixed-point
aoqi@0 1285 next = lookup(cur);
aoqi@0 1286 }
aoqi@0 1287 // Core of union-find algorithm: update chain of
aoqi@0 1288 // equivalences to be equal to the root.
aoqi@0 1289 while( idx != next ) {
aoqi@0 1290 uint tmp = lookup(idx);
aoqi@0 1291 map(idx, next);
aoqi@0 1292 idx = tmp;
aoqi@0 1293 }
aoqi@0 1294 return idx;
aoqi@0 1295 }
aoqi@0 1296
aoqi@0 1297 // Like Find above, but no path compress, so bad asymptotic behavior
aoqi@0 1298 uint UnionFind::Find_const( uint idx ) const {
aoqi@0 1299 if( idx == 0 ) return idx; // Ignore the zero idx
aoqi@0 1300 // Off the end? This can happen during debugging dumps
aoqi@0 1301 // when data structures have not finished being updated.
aoqi@0 1302 if( idx >= _max ) return idx;
aoqi@0 1303 uint next = lookup(idx);
aoqi@0 1304 while( next != idx ) { // Scan chain of equivalences
aoqi@0 1305 idx = next; // until find a fixed-point
aoqi@0 1306 next = lookup(idx);
aoqi@0 1307 }
aoqi@0 1308 return next;
aoqi@0 1309 }
aoqi@0 1310
aoqi@0 1311 // union 2 sets together.
aoqi@0 1312 void UnionFind::Union( uint idx1, uint idx2 ) {
aoqi@0 1313 uint src = Find(idx1);
aoqi@0 1314 uint dst = Find(idx2);
aoqi@0 1315 assert( src, "" );
aoqi@0 1316 assert( dst, "" );
aoqi@0 1317 assert( src < _max, "oob" );
aoqi@0 1318 assert( dst < _max, "oob" );
aoqi@0 1319 assert( src < dst, "always union smaller" );
aoqi@0 1320 map(dst,src);
aoqi@0 1321 }
aoqi@0 1322
aoqi@0 1323 #ifndef PRODUCT
aoqi@0 1324 void Trace::dump( ) const {
aoqi@0 1325 tty->print_cr("Trace (freq %f)", first_block()->_freq);
aoqi@0 1326 for (Block *b = first_block(); b != NULL; b = next(b)) {
aoqi@0 1327 tty->print(" B%d", b->_pre_order);
aoqi@0 1328 if (b->head()->is_Loop()) {
aoqi@0 1329 tty->print(" (L%d)", b->compute_loop_alignment());
aoqi@0 1330 }
aoqi@0 1331 if (b->has_loop_alignment()) {
aoqi@0 1332 tty->print(" (T%d)", b->code_alignment());
aoqi@0 1333 }
aoqi@0 1334 }
aoqi@0 1335 tty->cr();
aoqi@0 1336 }
aoqi@0 1337
aoqi@0 1338 void CFGEdge::dump( ) const {
aoqi@0 1339 tty->print(" B%d --> B%d Freq: %f out:%3d%% in:%3d%% State: ",
aoqi@0 1340 from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
aoqi@0 1341 switch(state()) {
aoqi@0 1342 case connected:
aoqi@0 1343 tty->print("connected");
aoqi@0 1344 break;
aoqi@0 1345 case open:
aoqi@0 1346 tty->print("open");
aoqi@0 1347 break;
aoqi@0 1348 case interior:
aoqi@0 1349 tty->print("interior");
aoqi@0 1350 break;
aoqi@0 1351 }
aoqi@0 1352 if (infrequent()) {
aoqi@0 1353 tty->print(" infrequent");
aoqi@0 1354 }
aoqi@0 1355 tty->cr();
aoqi@0 1356 }
aoqi@0 1357 #endif
aoqi@0 1358
aoqi@0 1359 // Comparison function for edges
aoqi@0 1360 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
aoqi@0 1361 float freq0 = (*e0)->freq();
aoqi@0 1362 float freq1 = (*e1)->freq();
aoqi@0 1363 if (freq0 != freq1) {
aoqi@0 1364 return freq0 > freq1 ? -1 : 1;
aoqi@0 1365 }
aoqi@0 1366
aoqi@0 1367 int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
aoqi@0 1368 int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
aoqi@0 1369
aoqi@0 1370 return dist1 - dist0;
aoqi@0 1371 }
aoqi@0 1372
aoqi@0 1373 // Comparison function for edges
aoqi@0 1374 extern "C" int trace_frequency_order(const void *p0, const void *p1) {
aoqi@0 1375 Trace *tr0 = *(Trace **) p0;
aoqi@0 1376 Trace *tr1 = *(Trace **) p1;
aoqi@0 1377 Block *b0 = tr0->first_block();
aoqi@0 1378 Block *b1 = tr1->first_block();
aoqi@0 1379
aoqi@0 1380 // The trace of connector blocks goes at the end;
aoqi@0 1381 // we only expect one such trace
aoqi@0 1382 if (b0->is_connector() != b1->is_connector()) {
aoqi@0 1383 return b1->is_connector() ? -1 : 1;
aoqi@0 1384 }
aoqi@0 1385
aoqi@0 1386 // Pull more frequently executed blocks to the beginning
aoqi@0 1387 float freq0 = b0->_freq;
aoqi@0 1388 float freq1 = b1->_freq;
aoqi@0 1389 if (freq0 != freq1) {
aoqi@0 1390 return freq0 > freq1 ? -1 : 1;
aoqi@0 1391 }
aoqi@0 1392
aoqi@0 1393 int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
aoqi@0 1394
aoqi@0 1395 return diff;
aoqi@0 1396 }
aoqi@0 1397
aoqi@0 1398 // Find edges of interest, i.e, those which can fall through. Presumes that
aoqi@0 1399 // edges which don't fall through are of low frequency and can be generally
aoqi@0 1400 // ignored. Initialize the list of traces.
aoqi@0 1401 void PhaseBlockLayout::find_edges() {
aoqi@0 1402 // Walk the blocks, creating edges and Traces
aoqi@0 1403 uint i;
aoqi@0 1404 Trace *tr = NULL;
aoqi@0 1405 for (i = 0; i < _cfg.number_of_blocks(); i++) {
aoqi@0 1406 Block* b = _cfg.get_block(i);
aoqi@0 1407 tr = new Trace(b, next, prev);
aoqi@0 1408 traces[tr->id()] = tr;
aoqi@0 1409
aoqi@0 1410 // All connector blocks should be at the end of the list
aoqi@0 1411 if (b->is_connector()) break;
aoqi@0 1412
aoqi@0 1413 // If this block and the next one have a one-to-one successor
aoqi@0 1414 // predecessor relationship, simply append the next block
aoqi@0 1415 int nfallthru = b->num_fall_throughs();
aoqi@0 1416 while (nfallthru == 1 &&
aoqi@0 1417 b->succ_fall_through(0)) {
aoqi@0 1418 Block *n = b->_succs[0];
aoqi@0 1419
aoqi@0 1420 // Skip over single-entry connector blocks, we don't want to
aoqi@0 1421 // add them to the trace.
aoqi@0 1422 while (n->is_connector() && n->num_preds() == 1) {
aoqi@0 1423 n = n->_succs[0];
aoqi@0 1424 }
aoqi@0 1425
aoqi@0 1426 // We see a merge point, so stop search for the next block
aoqi@0 1427 if (n->num_preds() != 1) break;
aoqi@0 1428
aoqi@0 1429 i++;
aoqi@0 1430 assert(n = _cfg.get_block(i), "expecting next block");
aoqi@0 1431 tr->append(n);
aoqi@0 1432 uf->map(n->_pre_order, tr->id());
aoqi@0 1433 traces[n->_pre_order] = NULL;
aoqi@0 1434 nfallthru = b->num_fall_throughs();
aoqi@0 1435 b = n;
aoqi@0 1436 }
aoqi@0 1437
aoqi@0 1438 if (nfallthru > 0) {
aoqi@0 1439 // Create a CFGEdge for each outgoing
aoqi@0 1440 // edge that could be a fall-through.
aoqi@0 1441 for (uint j = 0; j < b->_num_succs; j++ ) {
aoqi@0 1442 if (b->succ_fall_through(j)) {
aoqi@0 1443 Block *target = b->non_connector_successor(j);
aoqi@0 1444 float freq = b->_freq * b->succ_prob(j);
aoqi@0 1445 int from_pct = (int) ((100 * freq) / b->_freq);
aoqi@0 1446 int to_pct = (int) ((100 * freq) / target->_freq);
aoqi@0 1447 edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
aoqi@0 1448 }
aoqi@0 1449 }
aoqi@0 1450 }
aoqi@0 1451 }
aoqi@0 1452
aoqi@0 1453 // Group connector blocks into one trace
aoqi@0 1454 for (i++; i < _cfg.number_of_blocks(); i++) {
aoqi@0 1455 Block *b = _cfg.get_block(i);
aoqi@0 1456 assert(b->is_connector(), "connector blocks at the end");
aoqi@0 1457 tr->append(b);
aoqi@0 1458 uf->map(b->_pre_order, tr->id());
aoqi@0 1459 traces[b->_pre_order] = NULL;
aoqi@0 1460 }
aoqi@0 1461 }
aoqi@0 1462
aoqi@0 1463 // Union two traces together in uf, and null out the trace in the list
aoqi@0 1464 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) {
aoqi@0 1465 uint old_id = old_trace->id();
aoqi@0 1466 uint updated_id = updated_trace->id();
aoqi@0 1467
aoqi@0 1468 uint lo_id = updated_id;
aoqi@0 1469 uint hi_id = old_id;
aoqi@0 1470
aoqi@0 1471 // If from is greater than to, swap values to meet
aoqi@0 1472 // UnionFind guarantee.
aoqi@0 1473 if (updated_id > old_id) {
aoqi@0 1474 lo_id = old_id;
aoqi@0 1475 hi_id = updated_id;
aoqi@0 1476
aoqi@0 1477 // Fix up the trace ids
aoqi@0 1478 traces[lo_id] = traces[updated_id];
aoqi@0 1479 updated_trace->set_id(lo_id);
aoqi@0 1480 }
aoqi@0 1481
aoqi@0 1482 // Union the lower with the higher and remove the pointer
aoqi@0 1483 // to the higher.
aoqi@0 1484 uf->Union(lo_id, hi_id);
aoqi@0 1485 traces[hi_id] = NULL;
aoqi@0 1486 }
aoqi@0 1487
aoqi@0 1488 // Append traces together via the most frequently executed edges
aoqi@0 1489 void PhaseBlockLayout::grow_traces() {
aoqi@0 1490 // Order the edges, and drive the growth of Traces via the most
aoqi@0 1491 // frequently executed edges.
aoqi@0 1492 edges->sort(edge_order);
aoqi@0 1493 for (int i = 0; i < edges->length(); i++) {
aoqi@0 1494 CFGEdge *e = edges->at(i);
aoqi@0 1495
aoqi@0 1496 if (e->state() != CFGEdge::open) continue;
aoqi@0 1497
aoqi@0 1498 Block *src_block = e->from();
aoqi@0 1499 Block *targ_block = e->to();
aoqi@0 1500
aoqi@0 1501 // Don't grow traces along backedges?
aoqi@0 1502 if (!BlockLayoutRotateLoops) {
aoqi@0 1503 if (targ_block->_rpo <= src_block->_rpo) {
aoqi@0 1504 targ_block->set_loop_alignment(targ_block);
aoqi@0 1505 continue;
aoqi@0 1506 }
aoqi@0 1507 }
aoqi@0 1508
aoqi@0 1509 Trace *src_trace = trace(src_block);
aoqi@0 1510 Trace *targ_trace = trace(targ_block);
aoqi@0 1511
aoqi@0 1512 // If the edge in question can join two traces at their ends,
aoqi@0 1513 // append one trace to the other.
aoqi@0 1514 if (src_trace->last_block() == src_block) {
aoqi@0 1515 if (src_trace == targ_trace) {
aoqi@0 1516 e->set_state(CFGEdge::interior);
aoqi@0 1517 if (targ_trace->backedge(e)) {
aoqi@0 1518 // Reset i to catch any newly eligible edge
aoqi@0 1519 // (Or we could remember the first "open" edge, and reset there)
aoqi@0 1520 i = 0;
aoqi@0 1521 }
aoqi@0 1522 } else if (targ_trace->first_block() == targ_block) {
aoqi@0 1523 e->set_state(CFGEdge::connected);
aoqi@0 1524 src_trace->append(targ_trace);
aoqi@0 1525 union_traces(src_trace, targ_trace);
aoqi@0 1526 }
aoqi@0 1527 }
aoqi@0 1528 }
aoqi@0 1529 }
aoqi@0 1530
aoqi@0 1531 // Embed one trace into another, if the fork or join points are sufficiently
aoqi@0 1532 // balanced.
aoqi@0 1533 void PhaseBlockLayout::merge_traces(bool fall_thru_only) {
aoqi@0 1534 // Walk the edge list a another time, looking at unprocessed edges.
aoqi@0 1535 // Fold in diamonds
aoqi@0 1536 for (int i = 0; i < edges->length(); i++) {
aoqi@0 1537 CFGEdge *e = edges->at(i);
aoqi@0 1538
aoqi@0 1539 if (e->state() != CFGEdge::open) continue;
aoqi@0 1540 if (fall_thru_only) {
aoqi@0 1541 if (e->infrequent()) continue;
aoqi@0 1542 }
aoqi@0 1543
aoqi@0 1544 Block *src_block = e->from();
aoqi@0 1545 Trace *src_trace = trace(src_block);
aoqi@0 1546 bool src_at_tail = src_trace->last_block() == src_block;
aoqi@0 1547
aoqi@0 1548 Block *targ_block = e->to();
aoqi@0 1549 Trace *targ_trace = trace(targ_block);
aoqi@0 1550 bool targ_at_start = targ_trace->first_block() == targ_block;
aoqi@0 1551
aoqi@0 1552 if (src_trace == targ_trace) {
aoqi@0 1553 // This may be a loop, but we can't do much about it.
aoqi@0 1554 e->set_state(CFGEdge::interior);
aoqi@0 1555 continue;
aoqi@0 1556 }
aoqi@0 1557
aoqi@0 1558 if (fall_thru_only) {
aoqi@0 1559 // If the edge links the middle of two traces, we can't do anything.
aoqi@0 1560 // Mark the edge and continue.
aoqi@0 1561 if (!src_at_tail & !targ_at_start) {
aoqi@0 1562 continue;
aoqi@0 1563 }
aoqi@0 1564
aoqi@0 1565 // Don't grow traces along backedges?
aoqi@0 1566 if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
aoqi@0 1567 continue;
aoqi@0 1568 }
aoqi@0 1569
aoqi@0 1570 // If both ends of the edge are available, why didn't we handle it earlier?
aoqi@0 1571 assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
aoqi@0 1572
aoqi@0 1573 if (targ_at_start) {
aoqi@0 1574 // Insert the "targ" trace in the "src" trace if the insertion point
aoqi@0 1575 // is a two way branch.
aoqi@0 1576 // Better profitability check possible, but may not be worth it.
aoqi@0 1577 // Someday, see if the this "fork" has an associated "join";
aoqi@0 1578 // then make a policy on merging this trace at the fork or join.
aoqi@0 1579 // For example, other things being equal, it may be better to place this
aoqi@0 1580 // trace at the join point if the "src" trace ends in a two-way, but
aoqi@0 1581 // the insertion point is one-way.
aoqi@0 1582 assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
aoqi@0 1583 e->set_state(CFGEdge::connected);
aoqi@0 1584 src_trace->insert_after(src_block, targ_trace);
aoqi@0 1585 union_traces(src_trace, targ_trace);
aoqi@0 1586 } else if (src_at_tail) {
aoqi@0 1587 if (src_trace != trace(_cfg.get_root_block())) {
aoqi@0 1588 e->set_state(CFGEdge::connected);
aoqi@0 1589 targ_trace->insert_before(targ_block, src_trace);
aoqi@0 1590 union_traces(targ_trace, src_trace);
aoqi@0 1591 }
aoqi@0 1592 }
aoqi@0 1593 } else if (e->state() == CFGEdge::open) {
aoqi@0 1594 // Append traces, even without a fall-thru connection.
aoqi@0 1595 // But leave root entry at the beginning of the block list.
aoqi@0 1596 if (targ_trace != trace(_cfg.get_root_block())) {
aoqi@0 1597 e->set_state(CFGEdge::connected);
aoqi@0 1598 src_trace->append(targ_trace);
aoqi@0 1599 union_traces(src_trace, targ_trace);
aoqi@0 1600 }
aoqi@0 1601 }
aoqi@0 1602 }
aoqi@0 1603 }
aoqi@0 1604
aoqi@0 1605 // Order the sequence of the traces in some desirable way, and fixup the
aoqi@0 1606 // jumps at the end of each block.
aoqi@0 1607 void PhaseBlockLayout::reorder_traces(int count) {
aoqi@0 1608 ResourceArea *area = Thread::current()->resource_area();
aoqi@0 1609 Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
aoqi@0 1610 Block_List worklist;
aoqi@0 1611 int new_count = 0;
aoqi@0 1612
aoqi@0 1613 // Compact the traces.
aoqi@0 1614 for (int i = 0; i < count; i++) {
aoqi@0 1615 Trace *tr = traces[i];
aoqi@0 1616 if (tr != NULL) {
aoqi@0 1617 new_traces[new_count++] = tr;
aoqi@0 1618 }
aoqi@0 1619 }
aoqi@0 1620
aoqi@0 1621 // The entry block should be first on the new trace list.
aoqi@0 1622 Trace *tr = trace(_cfg.get_root_block());
aoqi@0 1623 assert(tr == new_traces[0], "entry trace misplaced");
aoqi@0 1624
aoqi@0 1625 // Sort the new trace list by frequency
aoqi@0 1626 qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
aoqi@0 1627
aoqi@0 1628 // Patch up the successor blocks
aoqi@0 1629 _cfg.clear_blocks();
aoqi@0 1630 for (int i = 0; i < new_count; i++) {
aoqi@0 1631 Trace *tr = new_traces[i];
aoqi@0 1632 if (tr != NULL) {
aoqi@0 1633 tr->fixup_blocks(_cfg);
aoqi@0 1634 }
aoqi@0 1635 }
aoqi@0 1636 }
aoqi@0 1637
aoqi@0 1638 // Order basic blocks based on frequency
aoqi@0 1639 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg)
aoqi@0 1640 : Phase(BlockLayout)
aoqi@0 1641 , _cfg(cfg) {
aoqi@0 1642 ResourceMark rm;
aoqi@0 1643 ResourceArea *area = Thread::current()->resource_area();
aoqi@0 1644
aoqi@0 1645 // List of traces
aoqi@0 1646 int size = _cfg.number_of_blocks() + 1;
aoqi@0 1647 traces = NEW_ARENA_ARRAY(area, Trace *, size);
aoqi@0 1648 memset(traces, 0, size*sizeof(Trace*));
aoqi@0 1649 next = NEW_ARENA_ARRAY(area, Block *, size);
aoqi@0 1650 memset(next, 0, size*sizeof(Block *));
aoqi@0 1651 prev = NEW_ARENA_ARRAY(area, Block *, size);
aoqi@0 1652 memset(prev , 0, size*sizeof(Block *));
aoqi@0 1653
aoqi@0 1654 // List of edges
aoqi@0 1655 edges = new GrowableArray<CFGEdge*>;
aoqi@0 1656
aoqi@0 1657 // Mapping block index --> block_trace
aoqi@0 1658 uf = new UnionFind(size);
aoqi@0 1659 uf->reset(size);
aoqi@0 1660
aoqi@0 1661 // Find edges and create traces.
aoqi@0 1662 find_edges();
aoqi@0 1663
aoqi@0 1664 // Grow traces at their ends via most frequent edges.
aoqi@0 1665 grow_traces();
aoqi@0 1666
aoqi@0 1667 // Merge one trace into another, but only at fall-through points.
aoqi@0 1668 // This may make diamonds and other related shapes in a trace.
aoqi@0 1669 merge_traces(true);
aoqi@0 1670
aoqi@0 1671 // Run merge again, allowing two traces to be catenated, even if
aoqi@0 1672 // one does not fall through into the other. This appends loosely
aoqi@0 1673 // related traces to be near each other.
aoqi@0 1674 merge_traces(false);
aoqi@0 1675
aoqi@0 1676 // Re-order all the remaining traces by frequency
aoqi@0 1677 reorder_traces(size);
aoqi@0 1678
aoqi@0 1679 assert(_cfg.number_of_blocks() >= (uint) (size - 1), "number of blocks can not shrink");
aoqi@0 1680 }
aoqi@0 1681
aoqi@0 1682
aoqi@0 1683 // Edge e completes a loop in a trace. If the target block is head of the
aoqi@0 1684 // loop, rotate the loop block so that the loop ends in a conditional branch.
aoqi@0 1685 bool Trace::backedge(CFGEdge *e) {
aoqi@0 1686 bool loop_rotated = false;
aoqi@0 1687 Block *src_block = e->from();
aoqi@0 1688 Block *targ_block = e->to();
aoqi@0 1689
aoqi@0 1690 assert(last_block() == src_block, "loop discovery at back branch");
aoqi@0 1691 if (first_block() == targ_block) {
aoqi@0 1692 if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
aoqi@0 1693 // Find the last block in the trace that has a conditional
aoqi@0 1694 // branch.
aoqi@0 1695 Block *b;
aoqi@0 1696 for (b = last_block(); b != NULL; b = prev(b)) {
aoqi@0 1697 if (b->num_fall_throughs() == 2) {
aoqi@0 1698 break;
aoqi@0 1699 }
aoqi@0 1700 }
aoqi@0 1701
aoqi@0 1702 if (b != last_block() && b != NULL) {
aoqi@0 1703 loop_rotated = true;
aoqi@0 1704
aoqi@0 1705 // Rotate the loop by doing two-part linked-list surgery.
aoqi@0 1706 append(first_block());
aoqi@0 1707 break_loop_after(b);
aoqi@0 1708 }
aoqi@0 1709 }
aoqi@0 1710
aoqi@0 1711 // Backbranch to the top of a trace
aoqi@0 1712 // Scroll forward through the trace from the targ_block. If we find
aoqi@0 1713 // a loop head before another loop top, use the the loop head alignment.
aoqi@0 1714 for (Block *b = targ_block; b != NULL; b = next(b)) {
aoqi@0 1715 if (b->has_loop_alignment()) {
aoqi@0 1716 break;
aoqi@0 1717 }
aoqi@0 1718 if (b->head()->is_Loop()) {
aoqi@0 1719 targ_block = b;
aoqi@0 1720 break;
aoqi@0 1721 }
aoqi@0 1722 }
aoqi@0 1723
aoqi@0 1724 first_block()->set_loop_alignment(targ_block);
aoqi@0 1725
aoqi@0 1726 } else {
aoqi@0 1727 // Backbranch into the middle of a trace
aoqi@0 1728 targ_block->set_loop_alignment(targ_block);
aoqi@0 1729 }
aoqi@0 1730
aoqi@0 1731 return loop_rotated;
aoqi@0 1732 }
aoqi@0 1733
aoqi@0 1734 // push blocks onto the CFG list
aoqi@0 1735 // ensure that blocks have the correct two-way branch sense
aoqi@0 1736 void Trace::fixup_blocks(PhaseCFG &cfg) {
aoqi@0 1737 Block *last = last_block();
aoqi@0 1738 for (Block *b = first_block(); b != NULL; b = next(b)) {
aoqi@0 1739 cfg.add_block(b);
aoqi@0 1740 if (!b->is_connector()) {
aoqi@0 1741 int nfallthru = b->num_fall_throughs();
aoqi@0 1742 if (b != last) {
aoqi@0 1743 if (nfallthru == 2) {
aoqi@0 1744 // Ensure that the sense of the branch is correct
aoqi@0 1745 Block *bnext = next(b);
aoqi@0 1746 Block *bs0 = b->non_connector_successor(0);
aoqi@0 1747
aoqi@0 1748 MachNode *iff = b->get_node(b->number_of_nodes() - 3)->as_Mach();
aoqi@0 1749 ProjNode *proj0 = b->get_node(b->number_of_nodes() - 2)->as_Proj();
aoqi@0 1750 ProjNode *proj1 = b->get_node(b->number_of_nodes() - 1)->as_Proj();
aoqi@0 1751
aoqi@0 1752 if (bnext == bs0) {
aoqi@0 1753 // Fall-thru case in succs[0], should be in succs[1]
aoqi@0 1754
aoqi@0 1755 // Flip targets in _succs map
aoqi@0 1756 Block *tbs0 = b->_succs[0];
aoqi@0 1757 Block *tbs1 = b->_succs[1];
aoqi@0 1758 b->_succs.map( 0, tbs1 );
aoqi@0 1759 b->_succs.map( 1, tbs0 );
aoqi@0 1760
aoqi@0 1761 // Flip projections to match targets
aoqi@0 1762 b->map_node(proj1, b->number_of_nodes() - 2);
aoqi@0 1763 b->map_node(proj0, b->number_of_nodes() - 1);
aoqi@0 1764 }
aoqi@0 1765 }
aoqi@0 1766 }
aoqi@0 1767 }
aoqi@0 1768 }
aoqi@0 1769 }

mercurial