src/cpu/x86/vm/assembler_x86.hpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@0 25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
aoqi@0 26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
aoqi@0 27
aoqi@0 28 #include "asm/register.hpp"
aoqi@0 29
aoqi@0 30 class BiasedLockingCounters;
aoqi@0 31
aoqi@0 32 // Contains all the definitions needed for x86 assembly code generation.
aoqi@0 33
aoqi@0 34 // Calling convention
aoqi@0 35 class Argument VALUE_OBJ_CLASS_SPEC {
aoqi@0 36 public:
aoqi@0 37 enum {
aoqi@0 38 #ifdef _LP64
aoqi@0 39 #ifdef _WIN64
aoqi@0 40 n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
aoqi@0 41 n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... )
aoqi@0 42 #else
aoqi@0 43 n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
aoqi@0 44 n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... )
aoqi@0 45 #endif // _WIN64
aoqi@0 46 n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ...
aoqi@0 47 n_float_register_parameters_j = 8 // j_farg0, j_farg1, ...
aoqi@0 48 #else
aoqi@0 49 n_register_parameters = 0 // 0 registers used to pass arguments
aoqi@0 50 #endif // _LP64
aoqi@0 51 };
aoqi@0 52 };
aoqi@0 53
aoqi@0 54
aoqi@0 55 #ifdef _LP64
aoqi@0 56 // Symbolically name the register arguments used by the c calling convention.
aoqi@0 57 // Windows is different from linux/solaris. So much for standards...
aoqi@0 58
aoqi@0 59 #ifdef _WIN64
aoqi@0 60
aoqi@0 61 REGISTER_DECLARATION(Register, c_rarg0, rcx);
aoqi@0 62 REGISTER_DECLARATION(Register, c_rarg1, rdx);
aoqi@0 63 REGISTER_DECLARATION(Register, c_rarg2, r8);
aoqi@0 64 REGISTER_DECLARATION(Register, c_rarg3, r9);
aoqi@0 65
aoqi@0 66 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
aoqi@0 67 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
aoqi@0 68 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
aoqi@0 69 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
aoqi@0 70
aoqi@0 71 #else
aoqi@0 72
aoqi@0 73 REGISTER_DECLARATION(Register, c_rarg0, rdi);
aoqi@0 74 REGISTER_DECLARATION(Register, c_rarg1, rsi);
aoqi@0 75 REGISTER_DECLARATION(Register, c_rarg2, rdx);
aoqi@0 76 REGISTER_DECLARATION(Register, c_rarg3, rcx);
aoqi@0 77 REGISTER_DECLARATION(Register, c_rarg4, r8);
aoqi@0 78 REGISTER_DECLARATION(Register, c_rarg5, r9);
aoqi@0 79
aoqi@0 80 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
aoqi@0 81 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
aoqi@0 82 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
aoqi@0 83 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
aoqi@0 84 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
aoqi@0 85 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
aoqi@0 86 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
aoqi@0 87 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
aoqi@0 88
aoqi@0 89 #endif // _WIN64
aoqi@0 90
aoqi@0 91 // Symbolically name the register arguments used by the Java calling convention.
aoqi@0 92 // We have control over the convention for java so we can do what we please.
aoqi@0 93 // What pleases us is to offset the java calling convention so that when
aoqi@0 94 // we call a suitable jni method the arguments are lined up and we don't
aoqi@0 95 // have to do little shuffling. A suitable jni method is non-static and a
aoqi@0 96 // small number of arguments (two fewer args on windows)
aoqi@0 97 //
aoqi@0 98 // |-------------------------------------------------------|
aoqi@0 99 // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 |
aoqi@0 100 // |-------------------------------------------------------|
aoqi@0 101 // | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg)
aoqi@0 102 // | rdi rsi rdx rcx r8 r9 | solaris/linux
aoqi@0 103 // |-------------------------------------------------------|
aoqi@0 104 // | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 |
aoqi@0 105 // |-------------------------------------------------------|
aoqi@0 106
aoqi@0 107 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
aoqi@0 108 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
aoqi@0 109 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
aoqi@0 110 // Windows runs out of register args here
aoqi@0 111 #ifdef _WIN64
aoqi@0 112 REGISTER_DECLARATION(Register, j_rarg3, rdi);
aoqi@0 113 REGISTER_DECLARATION(Register, j_rarg4, rsi);
aoqi@0 114 #else
aoqi@0 115 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
aoqi@0 116 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
aoqi@0 117 #endif /* _WIN64 */
aoqi@0 118 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
aoqi@0 119
aoqi@0 120 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
aoqi@0 121 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
aoqi@0 122 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
aoqi@0 123 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
aoqi@0 124 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
aoqi@0 125 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
aoqi@0 126 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
aoqi@0 127 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
aoqi@0 128
aoqi@0 129 REGISTER_DECLARATION(Register, rscratch1, r10); // volatile
aoqi@0 130 REGISTER_DECLARATION(Register, rscratch2, r11); // volatile
aoqi@0 131
aoqi@0 132 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
aoqi@0 133 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
aoqi@0 134
aoqi@0 135 #else
aoqi@0 136 // rscratch1 will apear in 32bit code that is dead but of course must compile
aoqi@0 137 // Using noreg ensures if the dead code is incorrectly live and executed it
aoqi@0 138 // will cause an assertion failure
aoqi@0 139 #define rscratch1 noreg
aoqi@0 140 #define rscratch2 noreg
aoqi@0 141
aoqi@0 142 #endif // _LP64
aoqi@0 143
aoqi@0 144 // JSR 292 fixed register usages:
aoqi@0 145 REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
aoqi@0 146
aoqi@0 147 // Address is an abstraction used to represent a memory location
aoqi@0 148 // using any of the amd64 addressing modes with one object.
aoqi@0 149 //
aoqi@0 150 // Note: A register location is represented via a Register, not
aoqi@0 151 // via an address for efficiency & simplicity reasons.
aoqi@0 152
aoqi@0 153 class ArrayAddress;
aoqi@0 154
aoqi@0 155 class Address VALUE_OBJ_CLASS_SPEC {
aoqi@0 156 public:
aoqi@0 157 enum ScaleFactor {
aoqi@0 158 no_scale = -1,
aoqi@0 159 times_1 = 0,
aoqi@0 160 times_2 = 1,
aoqi@0 161 times_4 = 2,
aoqi@0 162 times_8 = 3,
aoqi@0 163 times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
aoqi@0 164 };
aoqi@0 165 static ScaleFactor times(int size) {
aoqi@0 166 assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
aoqi@0 167 if (size == 8) return times_8;
aoqi@0 168 if (size == 4) return times_4;
aoqi@0 169 if (size == 2) return times_2;
aoqi@0 170 return times_1;
aoqi@0 171 }
aoqi@0 172 static int scale_size(ScaleFactor scale) {
aoqi@0 173 assert(scale != no_scale, "");
aoqi@0 174 assert(((1 << (int)times_1) == 1 &&
aoqi@0 175 (1 << (int)times_2) == 2 &&
aoqi@0 176 (1 << (int)times_4) == 4 &&
aoqi@0 177 (1 << (int)times_8) == 8), "");
aoqi@0 178 return (1 << (int)scale);
aoqi@0 179 }
aoqi@0 180
aoqi@0 181 private:
aoqi@0 182 Register _base;
aoqi@0 183 Register _index;
aoqi@0 184 ScaleFactor _scale;
aoqi@0 185 int _disp;
aoqi@0 186 RelocationHolder _rspec;
aoqi@0 187
aoqi@0 188 // Easily misused constructors make them private
aoqi@0 189 // %%% can we make these go away?
aoqi@0 190 NOT_LP64(Address(address loc, RelocationHolder spec);)
aoqi@0 191 Address(int disp, address loc, relocInfo::relocType rtype);
aoqi@0 192 Address(int disp, address loc, RelocationHolder spec);
aoqi@0 193
aoqi@0 194 public:
aoqi@0 195
aoqi@0 196 int disp() { return _disp; }
aoqi@0 197 // creation
aoqi@0 198 Address()
aoqi@0 199 : _base(noreg),
aoqi@0 200 _index(noreg),
aoqi@0 201 _scale(no_scale),
aoqi@0 202 _disp(0) {
aoqi@0 203 }
aoqi@0 204
aoqi@0 205 // No default displacement otherwise Register can be implicitly
aoqi@0 206 // converted to 0(Register) which is quite a different animal.
aoqi@0 207
aoqi@0 208 Address(Register base, int disp)
aoqi@0 209 : _base(base),
aoqi@0 210 _index(noreg),
aoqi@0 211 _scale(no_scale),
aoqi@0 212 _disp(disp) {
aoqi@0 213 }
aoqi@0 214
aoqi@0 215 Address(Register base, Register index, ScaleFactor scale, int disp = 0)
aoqi@0 216 : _base (base),
aoqi@0 217 _index(index),
aoqi@0 218 _scale(scale),
aoqi@0 219 _disp (disp) {
aoqi@0 220 assert(!index->is_valid() == (scale == Address::no_scale),
aoqi@0 221 "inconsistent address");
aoqi@0 222 }
aoqi@0 223
aoqi@0 224 Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
aoqi@0 225 : _base (base),
aoqi@0 226 _index(index.register_or_noreg()),
aoqi@0 227 _scale(scale),
aoqi@0 228 _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
aoqi@0 229 if (!index.is_register()) scale = Address::no_scale;
aoqi@0 230 assert(!_index->is_valid() == (scale == Address::no_scale),
aoqi@0 231 "inconsistent address");
aoqi@0 232 }
aoqi@0 233
aoqi@0 234 Address plus_disp(int disp) const {
aoqi@0 235 Address a = (*this);
aoqi@0 236 a._disp += disp;
aoqi@0 237 return a;
aoqi@0 238 }
aoqi@0 239 Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
aoqi@0 240 Address a = (*this);
aoqi@0 241 a._disp += disp.constant_or_zero() * scale_size(scale);
aoqi@0 242 if (disp.is_register()) {
aoqi@0 243 assert(!a.index()->is_valid(), "competing indexes");
aoqi@0 244 a._index = disp.as_register();
aoqi@0 245 a._scale = scale;
aoqi@0 246 }
aoqi@0 247 return a;
aoqi@0 248 }
aoqi@0 249 bool is_same_address(Address a) const {
aoqi@0 250 // disregard _rspec
aoqi@0 251 return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
aoqi@0 252 }
aoqi@0 253
aoqi@0 254 // The following two overloads are used in connection with the
aoqi@0 255 // ByteSize type (see sizes.hpp). They simplify the use of
aoqi@0 256 // ByteSize'd arguments in assembly code. Note that their equivalent
aoqi@0 257 // for the optimized build are the member functions with int disp
aoqi@0 258 // argument since ByteSize is mapped to an int type in that case.
aoqi@0 259 //
aoqi@0 260 // Note: DO NOT introduce similar overloaded functions for WordSize
aoqi@0 261 // arguments as in the optimized mode, both ByteSize and WordSize
aoqi@0 262 // are mapped to the same type and thus the compiler cannot make a
aoqi@0 263 // distinction anymore (=> compiler errors).
aoqi@0 264
aoqi@0 265 #ifdef ASSERT
aoqi@0 266 Address(Register base, ByteSize disp)
aoqi@0 267 : _base(base),
aoqi@0 268 _index(noreg),
aoqi@0 269 _scale(no_scale),
aoqi@0 270 _disp(in_bytes(disp)) {
aoqi@0 271 }
aoqi@0 272
aoqi@0 273 Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
aoqi@0 274 : _base(base),
aoqi@0 275 _index(index),
aoqi@0 276 _scale(scale),
aoqi@0 277 _disp(in_bytes(disp)) {
aoqi@0 278 assert(!index->is_valid() == (scale == Address::no_scale),
aoqi@0 279 "inconsistent address");
aoqi@0 280 }
aoqi@0 281
aoqi@0 282 Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
aoqi@0 283 : _base (base),
aoqi@0 284 _index(index.register_or_noreg()),
aoqi@0 285 _scale(scale),
aoqi@0 286 _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
aoqi@0 287 if (!index.is_register()) scale = Address::no_scale;
aoqi@0 288 assert(!_index->is_valid() == (scale == Address::no_scale),
aoqi@0 289 "inconsistent address");
aoqi@0 290 }
aoqi@0 291
aoqi@0 292 #endif // ASSERT
aoqi@0 293
aoqi@0 294 // accessors
aoqi@0 295 bool uses(Register reg) const { return _base == reg || _index == reg; }
aoqi@0 296 Register base() const { return _base; }
aoqi@0 297 Register index() const { return _index; }
aoqi@0 298 ScaleFactor scale() const { return _scale; }
aoqi@0 299 int disp() const { return _disp; }
aoqi@0 300
aoqi@0 301 // Convert the raw encoding form into the form expected by the constructor for
aoqi@0 302 // Address. An index of 4 (rsp) corresponds to having no index, so convert
aoqi@0 303 // that to noreg for the Address constructor.
aoqi@0 304 static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
aoqi@0 305
aoqi@0 306 static Address make_array(ArrayAddress);
aoqi@0 307
aoqi@0 308 private:
aoqi@0 309 bool base_needs_rex() const {
aoqi@0 310 return _base != noreg && _base->encoding() >= 8;
aoqi@0 311 }
aoqi@0 312
aoqi@0 313 bool index_needs_rex() const {
aoqi@0 314 return _index != noreg &&_index->encoding() >= 8;
aoqi@0 315 }
aoqi@0 316
aoqi@0 317 relocInfo::relocType reloc() const { return _rspec.type(); }
aoqi@0 318
aoqi@0 319 friend class Assembler;
aoqi@0 320 friend class MacroAssembler;
aoqi@0 321 friend class LIR_Assembler; // base/index/scale/disp
aoqi@0 322 };
aoqi@0 323
aoqi@0 324 //
aoqi@0 325 // AddressLiteral has been split out from Address because operands of this type
aoqi@0 326 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
aoqi@0 327 // the few instructions that need to deal with address literals are unique and the
aoqi@0 328 // MacroAssembler does not have to implement every instruction in the Assembler
aoqi@0 329 // in order to search for address literals that may need special handling depending
aoqi@0 330 // on the instruction and the platform. As small step on the way to merging i486/amd64
aoqi@0 331 // directories.
aoqi@0 332 //
aoqi@0 333 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
aoqi@0 334 friend class ArrayAddress;
aoqi@0 335 RelocationHolder _rspec;
aoqi@0 336 // Typically we use AddressLiterals we want to use their rval
aoqi@0 337 // However in some situations we want the lval (effect address) of the item.
aoqi@0 338 // We provide a special factory for making those lvals.
aoqi@0 339 bool _is_lval;
aoqi@0 340
aoqi@0 341 // If the target is far we'll need to load the ea of this to
aoqi@0 342 // a register to reach it. Otherwise if near we can do rip
aoqi@0 343 // relative addressing.
aoqi@0 344
aoqi@0 345 address _target;
aoqi@0 346
aoqi@0 347 protected:
aoqi@0 348 // creation
aoqi@0 349 AddressLiteral()
aoqi@0 350 : _is_lval(false),
aoqi@0 351 _target(NULL)
aoqi@0 352 {}
aoqi@0 353
aoqi@0 354 public:
aoqi@0 355
aoqi@0 356
aoqi@0 357 AddressLiteral(address target, relocInfo::relocType rtype);
aoqi@0 358
aoqi@0 359 AddressLiteral(address target, RelocationHolder const& rspec)
aoqi@0 360 : _rspec(rspec),
aoqi@0 361 _is_lval(false),
aoqi@0 362 _target(target)
aoqi@0 363 {}
aoqi@0 364
aoqi@0 365 AddressLiteral addr() {
aoqi@0 366 AddressLiteral ret = *this;
aoqi@0 367 ret._is_lval = true;
aoqi@0 368 return ret;
aoqi@0 369 }
aoqi@0 370
aoqi@0 371
aoqi@0 372 private:
aoqi@0 373
aoqi@0 374 address target() { return _target; }
aoqi@0 375 bool is_lval() { return _is_lval; }
aoqi@0 376
aoqi@0 377 relocInfo::relocType reloc() const { return _rspec.type(); }
aoqi@0 378 const RelocationHolder& rspec() const { return _rspec; }
aoqi@0 379
aoqi@0 380 friend class Assembler;
aoqi@0 381 friend class MacroAssembler;
aoqi@0 382 friend class Address;
aoqi@0 383 friend class LIR_Assembler;
aoqi@0 384 };
aoqi@0 385
aoqi@0 386 // Convience classes
aoqi@0 387 class RuntimeAddress: public AddressLiteral {
aoqi@0 388
aoqi@0 389 public:
aoqi@0 390
aoqi@0 391 RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
aoqi@0 392
aoqi@0 393 };
aoqi@0 394
aoqi@0 395 class ExternalAddress: public AddressLiteral {
aoqi@0 396 private:
aoqi@0 397 static relocInfo::relocType reloc_for_target(address target) {
aoqi@0 398 // Sometimes ExternalAddress is used for values which aren't
aoqi@0 399 // exactly addresses, like the card table base.
aoqi@0 400 // external_word_type can't be used for values in the first page
aoqi@0 401 // so just skip the reloc in that case.
aoqi@0 402 return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
aoqi@0 403 }
aoqi@0 404
aoqi@0 405 public:
aoqi@0 406
aoqi@0 407 ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
aoqi@0 408
aoqi@0 409 };
aoqi@0 410
aoqi@0 411 class InternalAddress: public AddressLiteral {
aoqi@0 412
aoqi@0 413 public:
aoqi@0 414
aoqi@0 415 InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
aoqi@0 416
aoqi@0 417 };
aoqi@0 418
aoqi@0 419 // x86 can do array addressing as a single operation since disp can be an absolute
aoqi@0 420 // address amd64 can't. We create a class that expresses the concept but does extra
aoqi@0 421 // magic on amd64 to get the final result
aoqi@0 422
aoqi@0 423 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
aoqi@0 424 private:
aoqi@0 425
aoqi@0 426 AddressLiteral _base;
aoqi@0 427 Address _index;
aoqi@0 428
aoqi@0 429 public:
aoqi@0 430
aoqi@0 431 ArrayAddress() {};
aoqi@0 432 ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
aoqi@0 433 AddressLiteral base() { return _base; }
aoqi@0 434 Address index() { return _index; }
aoqi@0 435
aoqi@0 436 };
aoqi@0 437
aoqi@0 438 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
aoqi@0 439
aoqi@0 440 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
aoqi@0 441 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
aoqi@0 442 // is what you get. The Assembler is generating code into a CodeBuffer.
aoqi@0 443
aoqi@0 444 class Assembler : public AbstractAssembler {
aoqi@0 445 friend class AbstractAssembler; // for the non-virtual hack
aoqi@0 446 friend class LIR_Assembler; // as_Address()
aoqi@0 447 friend class StubGenerator;
aoqi@0 448
aoqi@0 449 public:
aoqi@0 450 enum Condition { // The x86 condition codes used for conditional jumps/moves.
aoqi@0 451 zero = 0x4,
aoqi@0 452 notZero = 0x5,
aoqi@0 453 equal = 0x4,
aoqi@0 454 notEqual = 0x5,
aoqi@0 455 less = 0xc,
aoqi@0 456 lessEqual = 0xe,
aoqi@0 457 greater = 0xf,
aoqi@0 458 greaterEqual = 0xd,
aoqi@0 459 below = 0x2,
aoqi@0 460 belowEqual = 0x6,
aoqi@0 461 above = 0x7,
aoqi@0 462 aboveEqual = 0x3,
aoqi@0 463 overflow = 0x0,
aoqi@0 464 noOverflow = 0x1,
aoqi@0 465 carrySet = 0x2,
aoqi@0 466 carryClear = 0x3,
aoqi@0 467 negative = 0x8,
aoqi@0 468 positive = 0x9,
aoqi@0 469 parity = 0xa,
aoqi@0 470 noParity = 0xb
aoqi@0 471 };
aoqi@0 472
aoqi@0 473 enum Prefix {
aoqi@0 474 // segment overrides
aoqi@0 475 CS_segment = 0x2e,
aoqi@0 476 SS_segment = 0x36,
aoqi@0 477 DS_segment = 0x3e,
aoqi@0 478 ES_segment = 0x26,
aoqi@0 479 FS_segment = 0x64,
aoqi@0 480 GS_segment = 0x65,
aoqi@0 481
aoqi@0 482 REX = 0x40,
aoqi@0 483
aoqi@0 484 REX_B = 0x41,
aoqi@0 485 REX_X = 0x42,
aoqi@0 486 REX_XB = 0x43,
aoqi@0 487 REX_R = 0x44,
aoqi@0 488 REX_RB = 0x45,
aoqi@0 489 REX_RX = 0x46,
aoqi@0 490 REX_RXB = 0x47,
aoqi@0 491
aoqi@0 492 REX_W = 0x48,
aoqi@0 493
aoqi@0 494 REX_WB = 0x49,
aoqi@0 495 REX_WX = 0x4A,
aoqi@0 496 REX_WXB = 0x4B,
aoqi@0 497 REX_WR = 0x4C,
aoqi@0 498 REX_WRB = 0x4D,
aoqi@0 499 REX_WRX = 0x4E,
aoqi@0 500 REX_WRXB = 0x4F,
aoqi@0 501
aoqi@0 502 VEX_3bytes = 0xC4,
aoqi@0 503 VEX_2bytes = 0xC5
aoqi@0 504 };
aoqi@0 505
aoqi@0 506 enum VexPrefix {
aoqi@0 507 VEX_B = 0x20,
aoqi@0 508 VEX_X = 0x40,
aoqi@0 509 VEX_R = 0x80,
aoqi@0 510 VEX_W = 0x80
aoqi@0 511 };
aoqi@0 512
aoqi@0 513 enum VexSimdPrefix {
aoqi@0 514 VEX_SIMD_NONE = 0x0,
aoqi@0 515 VEX_SIMD_66 = 0x1,
aoqi@0 516 VEX_SIMD_F3 = 0x2,
aoqi@0 517 VEX_SIMD_F2 = 0x3
aoqi@0 518 };
aoqi@0 519
aoqi@0 520 enum VexOpcode {
aoqi@0 521 VEX_OPCODE_NONE = 0x0,
aoqi@0 522 VEX_OPCODE_0F = 0x1,
aoqi@0 523 VEX_OPCODE_0F_38 = 0x2,
aoqi@0 524 VEX_OPCODE_0F_3A = 0x3
aoqi@0 525 };
aoqi@0 526
aoqi@0 527 enum WhichOperand {
aoqi@0 528 // input to locate_operand, and format code for relocations
aoqi@0 529 imm_operand = 0, // embedded 32-bit|64-bit immediate operand
aoqi@0 530 disp32_operand = 1, // embedded 32-bit displacement or address
aoqi@0 531 call32_operand = 2, // embedded 32-bit self-relative displacement
aoqi@0 532 #ifndef _LP64
aoqi@0 533 _WhichOperand_limit = 3
aoqi@0 534 #else
aoqi@0 535 narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop
aoqi@0 536 _WhichOperand_limit = 4
aoqi@0 537 #endif
aoqi@0 538 };
aoqi@0 539
aoqi@0 540
aoqi@0 541
aoqi@0 542 // NOTE: The general philopsophy of the declarations here is that 64bit versions
aoqi@0 543 // of instructions are freely declared without the need for wrapping them an ifdef.
aoqi@0 544 // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
aoqi@0 545 // In the .cpp file the implementations are wrapped so that they are dropped out
aoqi@0 546 // of the resulting jvm. This is done mostly to keep the footprint of MINIMAL
aoqi@0 547 // to the size it was prior to merging up the 32bit and 64bit assemblers.
aoqi@0 548 //
aoqi@0 549 // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
aoqi@0 550 // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
aoqi@0 551
aoqi@0 552 private:
aoqi@0 553
aoqi@0 554
aoqi@0 555 // 64bit prefixes
aoqi@0 556 int prefix_and_encode(int reg_enc, bool byteinst = false);
aoqi@0 557 int prefixq_and_encode(int reg_enc);
aoqi@0 558
aoqi@0 559 int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
aoqi@0 560 int prefixq_and_encode(int dst_enc, int src_enc);
aoqi@0 561
aoqi@0 562 void prefix(Register reg);
aoqi@0 563 void prefix(Address adr);
aoqi@0 564 void prefixq(Address adr);
aoqi@0 565
aoqi@0 566 void prefix(Address adr, Register reg, bool byteinst = false);
aoqi@0 567 void prefix(Address adr, XMMRegister reg);
aoqi@0 568 void prefixq(Address adr, Register reg);
aoqi@0 569 void prefixq(Address adr, XMMRegister reg);
aoqi@0 570
aoqi@0 571 void prefetch_prefix(Address src);
aoqi@0 572
aoqi@0 573 void rex_prefix(Address adr, XMMRegister xreg,
aoqi@0 574 VexSimdPrefix pre, VexOpcode opc, bool rex_w);
aoqi@0 575 int rex_prefix_and_encode(int dst_enc, int src_enc,
aoqi@0 576 VexSimdPrefix pre, VexOpcode opc, bool rex_w);
aoqi@0 577
aoqi@0 578 void vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w,
aoqi@0 579 int nds_enc, VexSimdPrefix pre, VexOpcode opc,
aoqi@0 580 bool vector256);
aoqi@0 581
aoqi@0 582 void vex_prefix(Address adr, int nds_enc, int xreg_enc,
aoqi@0 583 VexSimdPrefix pre, VexOpcode opc,
aoqi@0 584 bool vex_w, bool vector256);
aoqi@0 585
aoqi@0 586 void vex_prefix(XMMRegister dst, XMMRegister nds, Address src,
aoqi@0 587 VexSimdPrefix pre, bool vector256 = false) {
aoqi@0 588 int dst_enc = dst->encoding();
aoqi@0 589 int nds_enc = nds->is_valid() ? nds->encoding() : 0;
aoqi@0 590 vex_prefix(src, nds_enc, dst_enc, pre, VEX_OPCODE_0F, false, vector256);
aoqi@0 591 }
aoqi@0 592
aoqi@0 593 void vex_prefix_0F38(Register dst, Register nds, Address src) {
aoqi@0 594 bool vex_w = false;
aoqi@0 595 bool vector256 = false;
aoqi@0 596 vex_prefix(src, nds->encoding(), dst->encoding(),
aoqi@0 597 VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector256);
aoqi@0 598 }
aoqi@0 599
aoqi@0 600 void vex_prefix_0F38_q(Register dst, Register nds, Address src) {
aoqi@0 601 bool vex_w = true;
aoqi@0 602 bool vector256 = false;
aoqi@0 603 vex_prefix(src, nds->encoding(), dst->encoding(),
aoqi@0 604 VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector256);
aoqi@0 605 }
aoqi@0 606 int vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
aoqi@0 607 VexSimdPrefix pre, VexOpcode opc,
aoqi@0 608 bool vex_w, bool vector256);
aoqi@0 609
aoqi@0 610 int vex_prefix_0F38_and_encode(Register dst, Register nds, Register src) {
aoqi@0 611 bool vex_w = false;
aoqi@0 612 bool vector256 = false;
aoqi@0 613 return vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(),
aoqi@0 614 VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector256);
aoqi@0 615 }
aoqi@0 616 int vex_prefix_0F38_and_encode_q(Register dst, Register nds, Register src) {
aoqi@0 617 bool vex_w = true;
aoqi@0 618 bool vector256 = false;
aoqi@0 619 return vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(),
aoqi@0 620 VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector256);
aoqi@0 621 }
aoqi@0 622 int vex_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
aoqi@0 623 VexSimdPrefix pre, bool vector256 = false,
aoqi@0 624 VexOpcode opc = VEX_OPCODE_0F) {
aoqi@0 625 int src_enc = src->encoding();
aoqi@0 626 int dst_enc = dst->encoding();
aoqi@0 627 int nds_enc = nds->is_valid() ? nds->encoding() : 0;
aoqi@0 628 return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, false, vector256);
aoqi@0 629 }
aoqi@0 630
aoqi@0 631 void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr,
aoqi@0 632 VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
aoqi@0 633 bool rex_w = false, bool vector256 = false);
aoqi@0 634
aoqi@0 635 void simd_prefix(XMMRegister dst, Address src,
aoqi@0 636 VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
aoqi@0 637 simd_prefix(dst, xnoreg, src, pre, opc);
aoqi@0 638 }
aoqi@0 639
aoqi@0 640 void simd_prefix(Address dst, XMMRegister src, VexSimdPrefix pre) {
aoqi@0 641 simd_prefix(src, dst, pre);
aoqi@0 642 }
aoqi@0 643 void simd_prefix_q(XMMRegister dst, XMMRegister nds, Address src,
aoqi@0 644 VexSimdPrefix pre) {
aoqi@0 645 bool rex_w = true;
aoqi@0 646 simd_prefix(dst, nds, src, pre, VEX_OPCODE_0F, rex_w);
aoqi@0 647 }
aoqi@0 648
aoqi@0 649 int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
aoqi@0 650 VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
aoqi@0 651 bool rex_w = false, bool vector256 = false);
aoqi@0 652
aoqi@0 653 // Move/convert 32-bit integer value.
aoqi@0 654 int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, Register src,
aoqi@0 655 VexSimdPrefix pre) {
aoqi@0 656 // It is OK to cast from Register to XMMRegister to pass argument here
aoqi@0 657 // since only encoding is used in simd_prefix_and_encode() and number of
aoqi@0 658 // Gen and Xmm registers are the same.
aoqi@0 659 return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre);
aoqi@0 660 }
aoqi@0 661 int simd_prefix_and_encode(XMMRegister dst, Register src, VexSimdPrefix pre) {
aoqi@0 662 return simd_prefix_and_encode(dst, xnoreg, src, pre);
aoqi@0 663 }
aoqi@0 664 int simd_prefix_and_encode(Register dst, XMMRegister src,
aoqi@0 665 VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
aoqi@0 666 return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc);
aoqi@0 667 }
aoqi@0 668
aoqi@0 669 // Move/convert 64-bit integer value.
aoqi@0 670 int simd_prefix_and_encode_q(XMMRegister dst, XMMRegister nds, Register src,
aoqi@0 671 VexSimdPrefix pre) {
aoqi@0 672 bool rex_w = true;
aoqi@0 673 return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre, VEX_OPCODE_0F, rex_w);
aoqi@0 674 }
aoqi@0 675 int simd_prefix_and_encode_q(XMMRegister dst, Register src, VexSimdPrefix pre) {
aoqi@0 676 return simd_prefix_and_encode_q(dst, xnoreg, src, pre);
aoqi@0 677 }
aoqi@0 678 int simd_prefix_and_encode_q(Register dst, XMMRegister src,
aoqi@0 679 VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
aoqi@0 680 bool rex_w = true;
aoqi@0 681 return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc, rex_w);
aoqi@0 682 }
aoqi@0 683
aoqi@0 684 // Helper functions for groups of instructions
aoqi@0 685 void emit_arith_b(int op1, int op2, Register dst, int imm8);
aoqi@0 686
aoqi@0 687 void emit_arith(int op1, int op2, Register dst, int32_t imm32);
aoqi@0 688 // Force generation of a 4 byte immediate value even if it fits into 8bit
aoqi@0 689 void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
aoqi@0 690 void emit_arith(int op1, int op2, Register dst, Register src);
aoqi@0 691
aoqi@0 692 void emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
aoqi@0 693 void emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
aoqi@0 694 void emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
aoqi@0 695 void emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
aoqi@0 696 void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
aoqi@0 697 Address src, VexSimdPrefix pre, bool vector256);
aoqi@0 698 void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
aoqi@0 699 XMMRegister src, VexSimdPrefix pre, bool vector256);
aoqi@0 700
aoqi@0 701 void emit_operand(Register reg,
aoqi@0 702 Register base, Register index, Address::ScaleFactor scale,
aoqi@0 703 int disp,
aoqi@0 704 RelocationHolder const& rspec,
aoqi@0 705 int rip_relative_correction = 0);
aoqi@0 706
aoqi@0 707 void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
aoqi@0 708
aoqi@0 709 // operands that only take the original 32bit registers
aoqi@0 710 void emit_operand32(Register reg, Address adr);
aoqi@0 711
aoqi@0 712 void emit_operand(XMMRegister reg,
aoqi@0 713 Register base, Register index, Address::ScaleFactor scale,
aoqi@0 714 int disp,
aoqi@0 715 RelocationHolder const& rspec);
aoqi@0 716
aoqi@0 717 void emit_operand(XMMRegister reg, Address adr);
aoqi@0 718
aoqi@0 719 void emit_operand(MMXRegister reg, Address adr);
aoqi@0 720
aoqi@0 721 // workaround gcc (3.2.1-7) bug
aoqi@0 722 void emit_operand(Address adr, MMXRegister reg);
aoqi@0 723
aoqi@0 724
aoqi@0 725 // Immediate-to-memory forms
aoqi@0 726 void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
aoqi@0 727
aoqi@0 728 void emit_farith(int b1, int b2, int i);
aoqi@0 729
aoqi@0 730
aoqi@0 731 protected:
aoqi@0 732 #ifdef ASSERT
aoqi@0 733 void check_relocation(RelocationHolder const& rspec, int format);
aoqi@0 734 #endif
aoqi@0 735
aoqi@0 736 void emit_data(jint data, relocInfo::relocType rtype, int format);
aoqi@0 737 void emit_data(jint data, RelocationHolder const& rspec, int format);
aoqi@0 738 void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
aoqi@0 739 void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
aoqi@0 740
aoqi@0 741 bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
aoqi@0 742
aoqi@0 743 // These are all easily abused and hence protected
aoqi@0 744
aoqi@0 745 // 32BIT ONLY SECTION
aoqi@0 746 #ifndef _LP64
aoqi@0 747 // Make these disappear in 64bit mode since they would never be correct
aoqi@0 748 void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
aoqi@0 749 void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
aoqi@0 750
aoqi@0 751 void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
aoqi@0 752 void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
aoqi@0 753
aoqi@0 754 void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
aoqi@0 755 #else
aoqi@0 756 // 64BIT ONLY SECTION
aoqi@0 757 void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY
aoqi@0 758
aoqi@0 759 void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
aoqi@0 760 void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
aoqi@0 761
aoqi@0 762 void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
aoqi@0 763 void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
aoqi@0 764 #endif // _LP64
aoqi@0 765
aoqi@0 766 // These are unique in that we are ensured by the caller that the 32bit
aoqi@0 767 // relative in these instructions will always be able to reach the potentially
aoqi@0 768 // 64bit address described by entry. Since they can take a 64bit address they
aoqi@0 769 // don't have the 32 suffix like the other instructions in this class.
aoqi@0 770
aoqi@0 771 void call_literal(address entry, RelocationHolder const& rspec);
aoqi@0 772 void jmp_literal(address entry, RelocationHolder const& rspec);
aoqi@0 773
aoqi@0 774 // Avoid using directly section
aoqi@0 775 // Instructions in this section are actually usable by anyone without danger
aoqi@0 776 // of failure but have performance issues that are addressed my enhanced
aoqi@0 777 // instructions which will do the proper thing base on the particular cpu.
aoqi@0 778 // We protect them because we don't trust you...
aoqi@0 779
aoqi@0 780 // Don't use next inc() and dec() methods directly. INC & DEC instructions
aoqi@0 781 // could cause a partial flag stall since they don't set CF flag.
aoqi@0 782 // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
aoqi@0 783 // which call inc() & dec() or add() & sub() in accordance with
aoqi@0 784 // the product flag UseIncDec value.
aoqi@0 785
aoqi@0 786 void decl(Register dst);
aoqi@0 787 void decl(Address dst);
aoqi@0 788 void decq(Register dst);
aoqi@0 789 void decq(Address dst);
aoqi@0 790
aoqi@0 791 void incl(Register dst);
aoqi@0 792 void incl(Address dst);
aoqi@0 793 void incq(Register dst);
aoqi@0 794 void incq(Address dst);
aoqi@0 795
aoqi@0 796 // New cpus require use of movsd and movss to avoid partial register stall
aoqi@0 797 // when loading from memory. But for old Opteron use movlpd instead of movsd.
aoqi@0 798 // The selection is done in MacroAssembler::movdbl() and movflt().
aoqi@0 799
aoqi@0 800 // Move Scalar Single-Precision Floating-Point Values
aoqi@0 801 void movss(XMMRegister dst, Address src);
aoqi@0 802 void movss(XMMRegister dst, XMMRegister src);
aoqi@0 803 void movss(Address dst, XMMRegister src);
aoqi@0 804
aoqi@0 805 // Move Scalar Double-Precision Floating-Point Values
aoqi@0 806 void movsd(XMMRegister dst, Address src);
aoqi@0 807 void movsd(XMMRegister dst, XMMRegister src);
aoqi@0 808 void movsd(Address dst, XMMRegister src);
aoqi@0 809 void movlpd(XMMRegister dst, Address src);
aoqi@0 810
aoqi@0 811 // New cpus require use of movaps and movapd to avoid partial register stall
aoqi@0 812 // when moving between registers.
aoqi@0 813 void movaps(XMMRegister dst, XMMRegister src);
aoqi@0 814 void movapd(XMMRegister dst, XMMRegister src);
aoqi@0 815
aoqi@0 816 // End avoid using directly
aoqi@0 817
aoqi@0 818
aoqi@0 819 // Instruction prefixes
aoqi@0 820 void prefix(Prefix p);
aoqi@0 821
aoqi@0 822 public:
aoqi@0 823
aoqi@0 824 // Creation
aoqi@0 825 Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
aoqi@0 826
aoqi@0 827 // Decoding
aoqi@0 828 static address locate_operand(address inst, WhichOperand which);
aoqi@0 829 static address locate_next_instruction(address inst);
aoqi@0 830
aoqi@0 831 // Utilities
aoqi@0 832 static bool is_polling_page_far() NOT_LP64({ return false;});
aoqi@0 833
aoqi@0 834 // Generic instructions
aoqi@0 835 // Does 32bit or 64bit as needed for the platform. In some sense these
aoqi@0 836 // belong in macro assembler but there is no need for both varieties to exist
aoqi@0 837
aoqi@0 838 void lea(Register dst, Address src);
aoqi@0 839
aoqi@0 840 void mov(Register dst, Register src);
aoqi@0 841
aoqi@0 842 void pusha();
aoqi@0 843 void popa();
aoqi@0 844
aoqi@0 845 void pushf();
aoqi@0 846 void popf();
aoqi@0 847
aoqi@0 848 void push(int32_t imm32);
aoqi@0 849
aoqi@0 850 void push(Register src);
aoqi@0 851
aoqi@0 852 void pop(Register dst);
aoqi@0 853
aoqi@0 854 // These are dummies to prevent surprise implicit conversions to Register
aoqi@0 855 void push(void* v);
aoqi@0 856 void pop(void* v);
aoqi@0 857
aoqi@0 858 // These do register sized moves/scans
aoqi@0 859 void rep_mov();
aoqi@0 860 void rep_stos();
aoqi@0 861 void rep_stosb();
aoqi@0 862 void repne_scan();
aoqi@0 863 #ifdef _LP64
aoqi@0 864 void repne_scanl();
aoqi@0 865 #endif
aoqi@0 866
aoqi@0 867 // Vanilla instructions in lexical order
aoqi@0 868
aoqi@0 869 void adcl(Address dst, int32_t imm32);
aoqi@0 870 void adcl(Address dst, Register src);
aoqi@0 871 void adcl(Register dst, int32_t imm32);
aoqi@0 872 void adcl(Register dst, Address src);
aoqi@0 873 void adcl(Register dst, Register src);
aoqi@0 874
aoqi@0 875 void adcq(Register dst, int32_t imm32);
aoqi@0 876 void adcq(Register dst, Address src);
aoqi@0 877 void adcq(Register dst, Register src);
aoqi@0 878
aoqi@0 879 void addl(Address dst, int32_t imm32);
aoqi@0 880 void addl(Address dst, Register src);
aoqi@0 881 void addl(Register dst, int32_t imm32);
aoqi@0 882 void addl(Register dst, Address src);
aoqi@0 883 void addl(Register dst, Register src);
aoqi@0 884
aoqi@0 885 void addq(Address dst, int32_t imm32);
aoqi@0 886 void addq(Address dst, Register src);
aoqi@0 887 void addq(Register dst, int32_t imm32);
aoqi@0 888 void addq(Register dst, Address src);
aoqi@0 889 void addq(Register dst, Register src);
aoqi@0 890
aoqi@0 891 void addr_nop_4();
aoqi@0 892 void addr_nop_5();
aoqi@0 893 void addr_nop_7();
aoqi@0 894 void addr_nop_8();
aoqi@0 895
aoqi@0 896 // Add Scalar Double-Precision Floating-Point Values
aoqi@0 897 void addsd(XMMRegister dst, Address src);
aoqi@0 898 void addsd(XMMRegister dst, XMMRegister src);
aoqi@0 899
aoqi@0 900 // Add Scalar Single-Precision Floating-Point Values
aoqi@0 901 void addss(XMMRegister dst, Address src);
aoqi@0 902 void addss(XMMRegister dst, XMMRegister src);
aoqi@0 903
aoqi@0 904 // AES instructions
aoqi@0 905 void aesdec(XMMRegister dst, Address src);
aoqi@0 906 void aesdec(XMMRegister dst, XMMRegister src);
aoqi@0 907 void aesdeclast(XMMRegister dst, Address src);
aoqi@0 908 void aesdeclast(XMMRegister dst, XMMRegister src);
aoqi@0 909 void aesenc(XMMRegister dst, Address src);
aoqi@0 910 void aesenc(XMMRegister dst, XMMRegister src);
aoqi@0 911 void aesenclast(XMMRegister dst, Address src);
aoqi@0 912 void aesenclast(XMMRegister dst, XMMRegister src);
aoqi@0 913
aoqi@0 914
aoqi@0 915 void andl(Address dst, int32_t imm32);
aoqi@0 916 void andl(Register dst, int32_t imm32);
aoqi@0 917 void andl(Register dst, Address src);
aoqi@0 918 void andl(Register dst, Register src);
aoqi@0 919
aoqi@0 920 void andq(Address dst, int32_t imm32);
aoqi@0 921 void andq(Register dst, int32_t imm32);
aoqi@0 922 void andq(Register dst, Address src);
aoqi@0 923 void andq(Register dst, Register src);
aoqi@0 924
aoqi@0 925 // BMI instructions
aoqi@0 926 void andnl(Register dst, Register src1, Register src2);
aoqi@0 927 void andnl(Register dst, Register src1, Address src2);
aoqi@0 928 void andnq(Register dst, Register src1, Register src2);
aoqi@0 929 void andnq(Register dst, Register src1, Address src2);
aoqi@0 930
aoqi@0 931 void blsil(Register dst, Register src);
aoqi@0 932 void blsil(Register dst, Address src);
aoqi@0 933 void blsiq(Register dst, Register src);
aoqi@0 934 void blsiq(Register dst, Address src);
aoqi@0 935
aoqi@0 936 void blsmskl(Register dst, Register src);
aoqi@0 937 void blsmskl(Register dst, Address src);
aoqi@0 938 void blsmskq(Register dst, Register src);
aoqi@0 939 void blsmskq(Register dst, Address src);
aoqi@0 940
aoqi@0 941 void blsrl(Register dst, Register src);
aoqi@0 942 void blsrl(Register dst, Address src);
aoqi@0 943 void blsrq(Register dst, Register src);
aoqi@0 944 void blsrq(Register dst, Address src);
aoqi@0 945
aoqi@0 946 void bsfl(Register dst, Register src);
aoqi@0 947 void bsrl(Register dst, Register src);
aoqi@0 948
aoqi@0 949 #ifdef _LP64
aoqi@0 950 void bsfq(Register dst, Register src);
aoqi@0 951 void bsrq(Register dst, Register src);
aoqi@0 952 #endif
aoqi@0 953
aoqi@0 954 void bswapl(Register reg);
aoqi@0 955
aoqi@0 956 void bswapq(Register reg);
aoqi@0 957
aoqi@0 958 void call(Label& L, relocInfo::relocType rtype);
aoqi@0 959 void call(Register reg); // push pc; pc <- reg
aoqi@0 960 void call(Address adr); // push pc; pc <- adr
aoqi@0 961
aoqi@0 962 void cdql();
aoqi@0 963
aoqi@0 964 void cdqq();
aoqi@0 965
aoqi@0 966 void cld();
aoqi@0 967
aoqi@0 968 void clflush(Address adr);
aoqi@0 969
aoqi@0 970 void cmovl(Condition cc, Register dst, Register src);
aoqi@0 971 void cmovl(Condition cc, Register dst, Address src);
aoqi@0 972
aoqi@0 973 void cmovq(Condition cc, Register dst, Register src);
aoqi@0 974 void cmovq(Condition cc, Register dst, Address src);
aoqi@0 975
aoqi@0 976
aoqi@0 977 void cmpb(Address dst, int imm8);
aoqi@0 978
aoqi@0 979 void cmpl(Address dst, int32_t imm32);
aoqi@0 980
aoqi@0 981 void cmpl(Register dst, int32_t imm32);
aoqi@0 982 void cmpl(Register dst, Register src);
aoqi@0 983 void cmpl(Register dst, Address src);
aoqi@0 984
aoqi@0 985 void cmpq(Address dst, int32_t imm32);
aoqi@0 986 void cmpq(Address dst, Register src);
aoqi@0 987
aoqi@0 988 void cmpq(Register dst, int32_t imm32);
aoqi@0 989 void cmpq(Register dst, Register src);
aoqi@0 990 void cmpq(Register dst, Address src);
aoqi@0 991
aoqi@0 992 // these are dummies used to catch attempting to convert NULL to Register
aoqi@0 993 void cmpl(Register dst, void* junk); // dummy
aoqi@0 994 void cmpq(Register dst, void* junk); // dummy
aoqi@0 995
aoqi@0 996 void cmpw(Address dst, int imm16);
aoqi@0 997
aoqi@0 998 void cmpxchg8 (Address adr);
aoqi@0 999
aoqi@0 1000 void cmpxchgl(Register reg, Address adr);
aoqi@0 1001
aoqi@0 1002 void cmpxchgq(Register reg, Address adr);
aoqi@0 1003
aoqi@0 1004 // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
aoqi@0 1005 void comisd(XMMRegister dst, Address src);
aoqi@0 1006 void comisd(XMMRegister dst, XMMRegister src);
aoqi@0 1007
aoqi@0 1008 // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
aoqi@0 1009 void comiss(XMMRegister dst, Address src);
aoqi@0 1010 void comiss(XMMRegister dst, XMMRegister src);
aoqi@0 1011
aoqi@0 1012 // Identify processor type and features
aoqi@0 1013 void cpuid();
aoqi@0 1014
aoqi@0 1015 // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
aoqi@0 1016 void cvtsd2ss(XMMRegister dst, XMMRegister src);
aoqi@0 1017 void cvtsd2ss(XMMRegister dst, Address src);
aoqi@0 1018
aoqi@0 1019 // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
aoqi@0 1020 void cvtsi2sdl(XMMRegister dst, Register src);
aoqi@0 1021 void cvtsi2sdl(XMMRegister dst, Address src);
aoqi@0 1022 void cvtsi2sdq(XMMRegister dst, Register src);
aoqi@0 1023 void cvtsi2sdq(XMMRegister dst, Address src);
aoqi@0 1024
aoqi@0 1025 // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
aoqi@0 1026 void cvtsi2ssl(XMMRegister dst, Register src);
aoqi@0 1027 void cvtsi2ssl(XMMRegister dst, Address src);
aoqi@0 1028 void cvtsi2ssq(XMMRegister dst, Register src);
aoqi@0 1029 void cvtsi2ssq(XMMRegister dst, Address src);
aoqi@0 1030
aoqi@0 1031 // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
aoqi@0 1032 void cvtdq2pd(XMMRegister dst, XMMRegister src);
aoqi@0 1033
aoqi@0 1034 // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
aoqi@0 1035 void cvtdq2ps(XMMRegister dst, XMMRegister src);
aoqi@0 1036
aoqi@0 1037 // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
aoqi@0 1038 void cvtss2sd(XMMRegister dst, XMMRegister src);
aoqi@0 1039 void cvtss2sd(XMMRegister dst, Address src);
aoqi@0 1040
aoqi@0 1041 // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
aoqi@0 1042 void cvttsd2sil(Register dst, Address src);
aoqi@0 1043 void cvttsd2sil(Register dst, XMMRegister src);
aoqi@0 1044 void cvttsd2siq(Register dst, XMMRegister src);
aoqi@0 1045
aoqi@0 1046 // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
aoqi@0 1047 void cvttss2sil(Register dst, XMMRegister src);
aoqi@0 1048 void cvttss2siq(Register dst, XMMRegister src);
aoqi@0 1049
aoqi@0 1050 // Divide Scalar Double-Precision Floating-Point Values
aoqi@0 1051 void divsd(XMMRegister dst, Address src);
aoqi@0 1052 void divsd(XMMRegister dst, XMMRegister src);
aoqi@0 1053
aoqi@0 1054 // Divide Scalar Single-Precision Floating-Point Values
aoqi@0 1055 void divss(XMMRegister dst, Address src);
aoqi@0 1056 void divss(XMMRegister dst, XMMRegister src);
aoqi@0 1057
aoqi@0 1058 void emms();
aoqi@0 1059
aoqi@0 1060 void fabs();
aoqi@0 1061
aoqi@0 1062 void fadd(int i);
aoqi@0 1063
aoqi@0 1064 void fadd_d(Address src);
aoqi@0 1065 void fadd_s(Address src);
aoqi@0 1066
aoqi@0 1067 // "Alternate" versions of x87 instructions place result down in FPU
aoqi@0 1068 // stack instead of on TOS
aoqi@0 1069
aoqi@0 1070 void fadda(int i); // "alternate" fadd
aoqi@0 1071 void faddp(int i = 1);
aoqi@0 1072
aoqi@0 1073 void fchs();
aoqi@0 1074
aoqi@0 1075 void fcom(int i);
aoqi@0 1076
aoqi@0 1077 void fcomp(int i = 1);
aoqi@0 1078 void fcomp_d(Address src);
aoqi@0 1079 void fcomp_s(Address src);
aoqi@0 1080
aoqi@0 1081 void fcompp();
aoqi@0 1082
aoqi@0 1083 void fcos();
aoqi@0 1084
aoqi@0 1085 void fdecstp();
aoqi@0 1086
aoqi@0 1087 void fdiv(int i);
aoqi@0 1088 void fdiv_d(Address src);
aoqi@0 1089 void fdivr_s(Address src);
aoqi@0 1090 void fdiva(int i); // "alternate" fdiv
aoqi@0 1091 void fdivp(int i = 1);
aoqi@0 1092
aoqi@0 1093 void fdivr(int i);
aoqi@0 1094 void fdivr_d(Address src);
aoqi@0 1095 void fdiv_s(Address src);
aoqi@0 1096
aoqi@0 1097 void fdivra(int i); // "alternate" reversed fdiv
aoqi@0 1098
aoqi@0 1099 void fdivrp(int i = 1);
aoqi@0 1100
aoqi@0 1101 void ffree(int i = 0);
aoqi@0 1102
aoqi@0 1103 void fild_d(Address adr);
aoqi@0 1104 void fild_s(Address adr);
aoqi@0 1105
aoqi@0 1106 void fincstp();
aoqi@0 1107
aoqi@0 1108 void finit();
aoqi@0 1109
aoqi@0 1110 void fist_s (Address adr);
aoqi@0 1111 void fistp_d(Address adr);
aoqi@0 1112 void fistp_s(Address adr);
aoqi@0 1113
aoqi@0 1114 void fld1();
aoqi@0 1115
aoqi@0 1116 void fld_d(Address adr);
aoqi@0 1117 void fld_s(Address adr);
aoqi@0 1118 void fld_s(int index);
aoqi@0 1119 void fld_x(Address adr); // extended-precision (80-bit) format
aoqi@0 1120
aoqi@0 1121 void fldcw(Address src);
aoqi@0 1122
aoqi@0 1123 void fldenv(Address src);
aoqi@0 1124
aoqi@0 1125 void fldlg2();
aoqi@0 1126
aoqi@0 1127 void fldln2();
aoqi@0 1128
aoqi@0 1129 void fldz();
aoqi@0 1130
aoqi@0 1131 void flog();
aoqi@0 1132 void flog10();
aoqi@0 1133
aoqi@0 1134 void fmul(int i);
aoqi@0 1135
aoqi@0 1136 void fmul_d(Address src);
aoqi@0 1137 void fmul_s(Address src);
aoqi@0 1138
aoqi@0 1139 void fmula(int i); // "alternate" fmul
aoqi@0 1140
aoqi@0 1141 void fmulp(int i = 1);
aoqi@0 1142
aoqi@0 1143 void fnsave(Address dst);
aoqi@0 1144
aoqi@0 1145 void fnstcw(Address src);
aoqi@0 1146
aoqi@0 1147 void fnstsw_ax();
aoqi@0 1148
aoqi@0 1149 void fprem();
aoqi@0 1150 void fprem1();
aoqi@0 1151
aoqi@0 1152 void frstor(Address src);
aoqi@0 1153
aoqi@0 1154 void fsin();
aoqi@0 1155
aoqi@0 1156 void fsqrt();
aoqi@0 1157
aoqi@0 1158 void fst_d(Address adr);
aoqi@0 1159 void fst_s(Address adr);
aoqi@0 1160
aoqi@0 1161 void fstp_d(Address adr);
aoqi@0 1162 void fstp_d(int index);
aoqi@0 1163 void fstp_s(Address adr);
aoqi@0 1164 void fstp_x(Address adr); // extended-precision (80-bit) format
aoqi@0 1165
aoqi@0 1166 void fsub(int i);
aoqi@0 1167 void fsub_d(Address src);
aoqi@0 1168 void fsub_s(Address src);
aoqi@0 1169
aoqi@0 1170 void fsuba(int i); // "alternate" fsub
aoqi@0 1171
aoqi@0 1172 void fsubp(int i = 1);
aoqi@0 1173
aoqi@0 1174 void fsubr(int i);
aoqi@0 1175 void fsubr_d(Address src);
aoqi@0 1176 void fsubr_s(Address src);
aoqi@0 1177
aoqi@0 1178 void fsubra(int i); // "alternate" reversed fsub
aoqi@0 1179
aoqi@0 1180 void fsubrp(int i = 1);
aoqi@0 1181
aoqi@0 1182 void ftan();
aoqi@0 1183
aoqi@0 1184 void ftst();
aoqi@0 1185
aoqi@0 1186 void fucomi(int i = 1);
aoqi@0 1187 void fucomip(int i = 1);
aoqi@0 1188
aoqi@0 1189 void fwait();
aoqi@0 1190
aoqi@0 1191 void fxch(int i = 1);
aoqi@0 1192
aoqi@0 1193 void fxrstor(Address src);
aoqi@0 1194
aoqi@0 1195 void fxsave(Address dst);
aoqi@0 1196
aoqi@0 1197 void fyl2x();
aoqi@0 1198 void frndint();
aoqi@0 1199 void f2xm1();
aoqi@0 1200 void fldl2e();
aoqi@0 1201
aoqi@0 1202 void hlt();
aoqi@0 1203
aoqi@0 1204 void idivl(Register src);
aoqi@0 1205 void divl(Register src); // Unsigned division
aoqi@0 1206
aoqi@0 1207 void idivq(Register src);
aoqi@0 1208
aoqi@0 1209 void imull(Register dst, Register src);
aoqi@0 1210 void imull(Register dst, Register src, int value);
aoqi@0 1211 void imull(Register dst, Address src);
aoqi@0 1212
aoqi@0 1213 void imulq(Register dst, Register src);
aoqi@0 1214 void imulq(Register dst, Register src, int value);
aoqi@0 1215 #ifdef _LP64
aoqi@0 1216 void imulq(Register dst, Address src);
aoqi@0 1217 #endif
aoqi@0 1218
aoqi@0 1219
aoqi@0 1220 // jcc is the generic conditional branch generator to run-
aoqi@0 1221 // time routines, jcc is used for branches to labels. jcc
aoqi@0 1222 // takes a branch opcode (cc) and a label (L) and generates
aoqi@0 1223 // either a backward branch or a forward branch and links it
aoqi@0 1224 // to the label fixup chain. Usage:
aoqi@0 1225 //
aoqi@0 1226 // Label L; // unbound label
aoqi@0 1227 // jcc(cc, L); // forward branch to unbound label
aoqi@0 1228 // bind(L); // bind label to the current pc
aoqi@0 1229 // jcc(cc, L); // backward branch to bound label
aoqi@0 1230 // bind(L); // illegal: a label may be bound only once
aoqi@0 1231 //
aoqi@0 1232 // Note: The same Label can be used for forward and backward branches
aoqi@0 1233 // but it may be bound only once.
aoqi@0 1234
aoqi@0 1235 void jcc(Condition cc, Label& L, bool maybe_short = true);
aoqi@0 1236
aoqi@0 1237 // Conditional jump to a 8-bit offset to L.
aoqi@0 1238 // WARNING: be very careful using this for forward jumps. If the label is
aoqi@0 1239 // not bound within an 8-bit offset of this instruction, a run-time error
aoqi@0 1240 // will occur.
aoqi@0 1241 void jccb(Condition cc, Label& L);
aoqi@0 1242
aoqi@0 1243 void jmp(Address entry); // pc <- entry
aoqi@0 1244
aoqi@0 1245 // Label operations & relative jumps (PPUM Appendix D)
aoqi@0 1246 void jmp(Label& L, bool maybe_short = true); // unconditional jump to L
aoqi@0 1247
aoqi@0 1248 void jmp(Register entry); // pc <- entry
aoqi@0 1249
aoqi@0 1250 // Unconditional 8-bit offset jump to L.
aoqi@0 1251 // WARNING: be very careful using this for forward jumps. If the label is
aoqi@0 1252 // not bound within an 8-bit offset of this instruction, a run-time error
aoqi@0 1253 // will occur.
aoqi@0 1254 void jmpb(Label& L);
aoqi@0 1255
aoqi@0 1256 void ldmxcsr( Address src );
aoqi@0 1257
aoqi@0 1258 void leal(Register dst, Address src);
aoqi@0 1259
aoqi@0 1260 void leaq(Register dst, Address src);
aoqi@0 1261
aoqi@0 1262 void lfence();
aoqi@0 1263
aoqi@0 1264 void lock();
aoqi@0 1265
aoqi@0 1266 void lzcntl(Register dst, Register src);
aoqi@0 1267
aoqi@0 1268 #ifdef _LP64
aoqi@0 1269 void lzcntq(Register dst, Register src);
aoqi@0 1270 #endif
aoqi@0 1271
aoqi@0 1272 enum Membar_mask_bits {
aoqi@0 1273 StoreStore = 1 << 3,
aoqi@0 1274 LoadStore = 1 << 2,
aoqi@0 1275 StoreLoad = 1 << 1,
aoqi@0 1276 LoadLoad = 1 << 0
aoqi@0 1277 };
aoqi@0 1278
aoqi@0 1279 // Serializes memory and blows flags
aoqi@0 1280 void membar(Membar_mask_bits order_constraint) {
aoqi@0 1281 if (os::is_MP()) {
aoqi@0 1282 // We only have to handle StoreLoad
aoqi@0 1283 if (order_constraint & StoreLoad) {
aoqi@0 1284 // All usable chips support "locked" instructions which suffice
aoqi@0 1285 // as barriers, and are much faster than the alternative of
aoqi@0 1286 // using cpuid instruction. We use here a locked add [esp],0.
aoqi@0 1287 // This is conveniently otherwise a no-op except for blowing
aoqi@0 1288 // flags.
aoqi@0 1289 // Any change to this code may need to revisit other places in
aoqi@0 1290 // the code where this idiom is used, in particular the
aoqi@0 1291 // orderAccess code.
aoqi@0 1292 lock();
aoqi@0 1293 addl(Address(rsp, 0), 0);// Assert the lock# signal here
aoqi@0 1294 }
aoqi@0 1295 }
aoqi@0 1296 }
aoqi@0 1297
aoqi@0 1298 void mfence();
aoqi@0 1299
aoqi@0 1300 // Moves
aoqi@0 1301
aoqi@0 1302 void mov64(Register dst, int64_t imm64);
aoqi@0 1303
aoqi@0 1304 void movb(Address dst, Register src);
aoqi@0 1305 void movb(Address dst, int imm8);
aoqi@0 1306 void movb(Register dst, Address src);
aoqi@0 1307
aoqi@0 1308 void movdl(XMMRegister dst, Register src);
aoqi@0 1309 void movdl(Register dst, XMMRegister src);
aoqi@0 1310 void movdl(XMMRegister dst, Address src);
aoqi@0 1311 void movdl(Address dst, XMMRegister src);
aoqi@0 1312
aoqi@0 1313 // Move Double Quadword
aoqi@0 1314 void movdq(XMMRegister dst, Register src);
aoqi@0 1315 void movdq(Register dst, XMMRegister src);
aoqi@0 1316
aoqi@0 1317 // Move Aligned Double Quadword
aoqi@0 1318 void movdqa(XMMRegister dst, XMMRegister src);
aoqi@0 1319 void movdqa(XMMRegister dst, Address src);
aoqi@0 1320
aoqi@0 1321 // Move Unaligned Double Quadword
aoqi@0 1322 void movdqu(Address dst, XMMRegister src);
aoqi@0 1323 void movdqu(XMMRegister dst, Address src);
aoqi@0 1324 void movdqu(XMMRegister dst, XMMRegister src);
aoqi@0 1325
aoqi@0 1326 // Move Unaligned 256bit Vector
aoqi@0 1327 void vmovdqu(Address dst, XMMRegister src);
aoqi@0 1328 void vmovdqu(XMMRegister dst, Address src);
aoqi@0 1329 void vmovdqu(XMMRegister dst, XMMRegister src);
aoqi@0 1330
aoqi@0 1331 // Move lower 64bit to high 64bit in 128bit register
aoqi@0 1332 void movlhps(XMMRegister dst, XMMRegister src);
aoqi@0 1333
aoqi@0 1334 void movl(Register dst, int32_t imm32);
aoqi@0 1335 void movl(Address dst, int32_t imm32);
aoqi@0 1336 void movl(Register dst, Register src);
aoqi@0 1337 void movl(Register dst, Address src);
aoqi@0 1338 void movl(Address dst, Register src);
aoqi@0 1339
aoqi@0 1340 // These dummies prevent using movl from converting a zero (like NULL) into Register
aoqi@0 1341 // by giving the compiler two choices it can't resolve
aoqi@0 1342
aoqi@0 1343 void movl(Address dst, void* junk);
aoqi@0 1344 void movl(Register dst, void* junk);
aoqi@0 1345
aoqi@0 1346 #ifdef _LP64
aoqi@0 1347 void movq(Register dst, Register src);
aoqi@0 1348 void movq(Register dst, Address src);
aoqi@0 1349 void movq(Address dst, Register src);
aoqi@0 1350 #endif
aoqi@0 1351
aoqi@0 1352 void movq(Address dst, MMXRegister src );
aoqi@0 1353 void movq(MMXRegister dst, Address src );
aoqi@0 1354
aoqi@0 1355 #ifdef _LP64
aoqi@0 1356 // These dummies prevent using movq from converting a zero (like NULL) into Register
aoqi@0 1357 // by giving the compiler two choices it can't resolve
aoqi@0 1358
aoqi@0 1359 void movq(Address dst, void* dummy);
aoqi@0 1360 void movq(Register dst, void* dummy);
aoqi@0 1361 #endif
aoqi@0 1362
aoqi@0 1363 // Move Quadword
aoqi@0 1364 void movq(Address dst, XMMRegister src);
aoqi@0 1365 void movq(XMMRegister dst, Address src);
aoqi@0 1366
aoqi@0 1367 void movsbl(Register dst, Address src);
aoqi@0 1368 void movsbl(Register dst, Register src);
aoqi@0 1369
aoqi@0 1370 #ifdef _LP64
aoqi@0 1371 void movsbq(Register dst, Address src);
aoqi@0 1372 void movsbq(Register dst, Register src);
aoqi@0 1373
aoqi@0 1374 // Move signed 32bit immediate to 64bit extending sign
aoqi@0 1375 void movslq(Address dst, int32_t imm64);
aoqi@0 1376 void movslq(Register dst, int32_t imm64);
aoqi@0 1377
aoqi@0 1378 void movslq(Register dst, Address src);
aoqi@0 1379 void movslq(Register dst, Register src);
aoqi@0 1380 void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
aoqi@0 1381 #endif
aoqi@0 1382
aoqi@0 1383 void movswl(Register dst, Address src);
aoqi@0 1384 void movswl(Register dst, Register src);
aoqi@0 1385
aoqi@0 1386 #ifdef _LP64
aoqi@0 1387 void movswq(Register dst, Address src);
aoqi@0 1388 void movswq(Register dst, Register src);
aoqi@0 1389 #endif
aoqi@0 1390
aoqi@0 1391 void movw(Address dst, int imm16);
aoqi@0 1392 void movw(Register dst, Address src);
aoqi@0 1393 void movw(Address dst, Register src);
aoqi@0 1394
aoqi@0 1395 void movzbl(Register dst, Address src);
aoqi@0 1396 void movzbl(Register dst, Register src);
aoqi@0 1397
aoqi@0 1398 #ifdef _LP64
aoqi@0 1399 void movzbq(Register dst, Address src);
aoqi@0 1400 void movzbq(Register dst, Register src);
aoqi@0 1401 #endif
aoqi@0 1402
aoqi@0 1403 void movzwl(Register dst, Address src);
aoqi@0 1404 void movzwl(Register dst, Register src);
aoqi@0 1405
aoqi@0 1406 #ifdef _LP64
aoqi@0 1407 void movzwq(Register dst, Address src);
aoqi@0 1408 void movzwq(Register dst, Register src);
aoqi@0 1409 #endif
aoqi@0 1410
aoqi@0 1411 void mull(Address src);
aoqi@0 1412 void mull(Register src);
aoqi@0 1413
aoqi@0 1414 // Multiply Scalar Double-Precision Floating-Point Values
aoqi@0 1415 void mulsd(XMMRegister dst, Address src);
aoqi@0 1416 void mulsd(XMMRegister dst, XMMRegister src);
aoqi@0 1417
aoqi@0 1418 // Multiply Scalar Single-Precision Floating-Point Values
aoqi@0 1419 void mulss(XMMRegister dst, Address src);
aoqi@0 1420 void mulss(XMMRegister dst, XMMRegister src);
aoqi@0 1421
aoqi@0 1422 void negl(Register dst);
aoqi@0 1423
aoqi@0 1424 #ifdef _LP64
aoqi@0 1425 void negq(Register dst);
aoqi@0 1426 #endif
aoqi@0 1427
aoqi@0 1428 void nop(int i = 1);
aoqi@0 1429
aoqi@0 1430 void notl(Register dst);
aoqi@0 1431
aoqi@0 1432 #ifdef _LP64
aoqi@0 1433 void notq(Register dst);
aoqi@0 1434 #endif
aoqi@0 1435
aoqi@0 1436 void orl(Address dst, int32_t imm32);
aoqi@0 1437 void orl(Register dst, int32_t imm32);
aoqi@0 1438 void orl(Register dst, Address src);
aoqi@0 1439 void orl(Register dst, Register src);
aoqi@0 1440
aoqi@0 1441 void orq(Address dst, int32_t imm32);
aoqi@0 1442 void orq(Register dst, int32_t imm32);
aoqi@0 1443 void orq(Register dst, Address src);
aoqi@0 1444 void orq(Register dst, Register src);
aoqi@0 1445
aoqi@0 1446 // Pack with unsigned saturation
aoqi@0 1447 void packuswb(XMMRegister dst, XMMRegister src);
aoqi@0 1448 void packuswb(XMMRegister dst, Address src);
aoqi@0 1449 void vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1450
aoqi@0 1451 // Pemutation of 64bit words
aoqi@0 1452 void vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256);
aoqi@0 1453
aoqi@0 1454 void pause();
aoqi@0 1455
aoqi@0 1456 // SSE4.2 string instructions
aoqi@0 1457 void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
aoqi@0 1458 void pcmpestri(XMMRegister xmm1, Address src, int imm8);
aoqi@0 1459
aoqi@0 1460 // SSE 4.1 extract
aoqi@0 1461 void pextrd(Register dst, XMMRegister src, int imm8);
aoqi@0 1462 void pextrq(Register dst, XMMRegister src, int imm8);
aoqi@0 1463
aoqi@0 1464 // SSE 4.1 insert
aoqi@0 1465 void pinsrd(XMMRegister dst, Register src, int imm8);
aoqi@0 1466 void pinsrq(XMMRegister dst, Register src, int imm8);
aoqi@0 1467
aoqi@0 1468 // SSE4.1 packed move
aoqi@0 1469 void pmovzxbw(XMMRegister dst, XMMRegister src);
aoqi@0 1470 void pmovzxbw(XMMRegister dst, Address src);
aoqi@0 1471
aoqi@0 1472 #ifndef _LP64 // no 32bit push/pop on amd64
aoqi@0 1473 void popl(Address dst);
aoqi@0 1474 #endif
aoqi@0 1475
aoqi@0 1476 #ifdef _LP64
aoqi@0 1477 void popq(Address dst);
aoqi@0 1478 #endif
aoqi@0 1479
aoqi@0 1480 void popcntl(Register dst, Address src);
aoqi@0 1481 void popcntl(Register dst, Register src);
aoqi@0 1482
aoqi@0 1483 #ifdef _LP64
aoqi@0 1484 void popcntq(Register dst, Address src);
aoqi@0 1485 void popcntq(Register dst, Register src);
aoqi@0 1486 #endif
aoqi@0 1487
aoqi@0 1488 // Prefetches (SSE, SSE2, 3DNOW only)
aoqi@0 1489
aoqi@0 1490 void prefetchnta(Address src);
aoqi@0 1491 void prefetchr(Address src);
aoqi@0 1492 void prefetcht0(Address src);
aoqi@0 1493 void prefetcht1(Address src);
aoqi@0 1494 void prefetcht2(Address src);
aoqi@0 1495 void prefetchw(Address src);
aoqi@0 1496
aoqi@0 1497 // Shuffle Bytes
aoqi@0 1498 void pshufb(XMMRegister dst, XMMRegister src);
aoqi@0 1499 void pshufb(XMMRegister dst, Address src);
aoqi@0 1500
aoqi@0 1501 // Shuffle Packed Doublewords
aoqi@0 1502 void pshufd(XMMRegister dst, XMMRegister src, int mode);
aoqi@0 1503 void pshufd(XMMRegister dst, Address src, int mode);
aoqi@0 1504
aoqi@0 1505 // Shuffle Packed Low Words
aoqi@0 1506 void pshuflw(XMMRegister dst, XMMRegister src, int mode);
aoqi@0 1507 void pshuflw(XMMRegister dst, Address src, int mode);
aoqi@0 1508
aoqi@0 1509 // Shift Right by bytes Logical DoubleQuadword Immediate
aoqi@0 1510 void psrldq(XMMRegister dst, int shift);
aoqi@0 1511
aoqi@0 1512 // Logical Compare 128bit
aoqi@0 1513 void ptest(XMMRegister dst, XMMRegister src);
aoqi@0 1514 void ptest(XMMRegister dst, Address src);
aoqi@0 1515 // Logical Compare 256bit
aoqi@0 1516 void vptest(XMMRegister dst, XMMRegister src);
aoqi@0 1517 void vptest(XMMRegister dst, Address src);
aoqi@0 1518
aoqi@0 1519 // Interleave Low Bytes
aoqi@0 1520 void punpcklbw(XMMRegister dst, XMMRegister src);
aoqi@0 1521 void punpcklbw(XMMRegister dst, Address src);
aoqi@0 1522
aoqi@0 1523 // Interleave Low Doublewords
aoqi@0 1524 void punpckldq(XMMRegister dst, XMMRegister src);
aoqi@0 1525 void punpckldq(XMMRegister dst, Address src);
aoqi@0 1526
aoqi@0 1527 // Interleave Low Quadwords
aoqi@0 1528 void punpcklqdq(XMMRegister dst, XMMRegister src);
aoqi@0 1529
aoqi@0 1530 #ifndef _LP64 // no 32bit push/pop on amd64
aoqi@0 1531 void pushl(Address src);
aoqi@0 1532 #endif
aoqi@0 1533
aoqi@0 1534 void pushq(Address src);
aoqi@0 1535
aoqi@0 1536 void rcll(Register dst, int imm8);
aoqi@0 1537
aoqi@0 1538 void rclq(Register dst, int imm8);
aoqi@0 1539
aoqi@0 1540 void rdtsc();
aoqi@0 1541
aoqi@0 1542 void ret(int imm16);
aoqi@0 1543
aoqi@0 1544 void sahf();
aoqi@0 1545
aoqi@0 1546 void sarl(Register dst, int imm8);
aoqi@0 1547 void sarl(Register dst);
aoqi@0 1548
aoqi@0 1549 void sarq(Register dst, int imm8);
aoqi@0 1550 void sarq(Register dst);
aoqi@0 1551
aoqi@0 1552 void sbbl(Address dst, int32_t imm32);
aoqi@0 1553 void sbbl(Register dst, int32_t imm32);
aoqi@0 1554 void sbbl(Register dst, Address src);
aoqi@0 1555 void sbbl(Register dst, Register src);
aoqi@0 1556
aoqi@0 1557 void sbbq(Address dst, int32_t imm32);
aoqi@0 1558 void sbbq(Register dst, int32_t imm32);
aoqi@0 1559 void sbbq(Register dst, Address src);
aoqi@0 1560 void sbbq(Register dst, Register src);
aoqi@0 1561
aoqi@0 1562 void setb(Condition cc, Register dst);
aoqi@0 1563
aoqi@0 1564 void shldl(Register dst, Register src);
aoqi@0 1565
aoqi@0 1566 void shll(Register dst, int imm8);
aoqi@0 1567 void shll(Register dst);
aoqi@0 1568
aoqi@0 1569 void shlq(Register dst, int imm8);
aoqi@0 1570 void shlq(Register dst);
aoqi@0 1571
aoqi@0 1572 void shrdl(Register dst, Register src);
aoqi@0 1573
aoqi@0 1574 void shrl(Register dst, int imm8);
aoqi@0 1575 void shrl(Register dst);
aoqi@0 1576
aoqi@0 1577 void shrq(Register dst, int imm8);
aoqi@0 1578 void shrq(Register dst);
aoqi@0 1579
aoqi@0 1580 void smovl(); // QQQ generic?
aoqi@0 1581
aoqi@0 1582 // Compute Square Root of Scalar Double-Precision Floating-Point Value
aoqi@0 1583 void sqrtsd(XMMRegister dst, Address src);
aoqi@0 1584 void sqrtsd(XMMRegister dst, XMMRegister src);
aoqi@0 1585
aoqi@0 1586 // Compute Square Root of Scalar Single-Precision Floating-Point Value
aoqi@0 1587 void sqrtss(XMMRegister dst, Address src);
aoqi@0 1588 void sqrtss(XMMRegister dst, XMMRegister src);
aoqi@0 1589
aoqi@0 1590 void std();
aoqi@0 1591
aoqi@0 1592 void stmxcsr( Address dst );
aoqi@0 1593
aoqi@0 1594 void subl(Address dst, int32_t imm32);
aoqi@0 1595 void subl(Address dst, Register src);
aoqi@0 1596 void subl(Register dst, int32_t imm32);
aoqi@0 1597 void subl(Register dst, Address src);
aoqi@0 1598 void subl(Register dst, Register src);
aoqi@0 1599
aoqi@0 1600 void subq(Address dst, int32_t imm32);
aoqi@0 1601 void subq(Address dst, Register src);
aoqi@0 1602 void subq(Register dst, int32_t imm32);
aoqi@0 1603 void subq(Register dst, Address src);
aoqi@0 1604 void subq(Register dst, Register src);
aoqi@0 1605
aoqi@0 1606 // Force generation of a 4 byte immediate value even if it fits into 8bit
aoqi@0 1607 void subl_imm32(Register dst, int32_t imm32);
aoqi@0 1608 void subq_imm32(Register dst, int32_t imm32);
aoqi@0 1609
aoqi@0 1610 // Subtract Scalar Double-Precision Floating-Point Values
aoqi@0 1611 void subsd(XMMRegister dst, Address src);
aoqi@0 1612 void subsd(XMMRegister dst, XMMRegister src);
aoqi@0 1613
aoqi@0 1614 // Subtract Scalar Single-Precision Floating-Point Values
aoqi@0 1615 void subss(XMMRegister dst, Address src);
aoqi@0 1616 void subss(XMMRegister dst, XMMRegister src);
aoqi@0 1617
aoqi@0 1618 void testb(Register dst, int imm8);
aoqi@0 1619
aoqi@0 1620 void testl(Register dst, int32_t imm32);
aoqi@0 1621 void testl(Register dst, Register src);
aoqi@0 1622 void testl(Register dst, Address src);
aoqi@0 1623
aoqi@0 1624 void testq(Register dst, int32_t imm32);
aoqi@0 1625 void testq(Register dst, Register src);
aoqi@0 1626
aoqi@0 1627 // BMI - count trailing zeros
aoqi@0 1628 void tzcntl(Register dst, Register src);
aoqi@0 1629 void tzcntq(Register dst, Register src);
aoqi@0 1630
aoqi@0 1631 // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
aoqi@0 1632 void ucomisd(XMMRegister dst, Address src);
aoqi@0 1633 void ucomisd(XMMRegister dst, XMMRegister src);
aoqi@0 1634
aoqi@0 1635 // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
aoqi@0 1636 void ucomiss(XMMRegister dst, Address src);
aoqi@0 1637 void ucomiss(XMMRegister dst, XMMRegister src);
aoqi@0 1638
aoqi@0 1639 void xabort(int8_t imm8);
aoqi@0 1640
aoqi@0 1641 void xaddl(Address dst, Register src);
aoqi@0 1642
aoqi@0 1643 void xaddq(Address dst, Register src);
aoqi@0 1644
aoqi@0 1645 void xbegin(Label& abort, relocInfo::relocType rtype = relocInfo::none);
aoqi@0 1646
aoqi@0 1647 void xchgl(Register reg, Address adr);
aoqi@0 1648 void xchgl(Register dst, Register src);
aoqi@0 1649
aoqi@0 1650 void xchgq(Register reg, Address adr);
aoqi@0 1651 void xchgq(Register dst, Register src);
aoqi@0 1652
aoqi@0 1653 void xend();
aoqi@0 1654
aoqi@0 1655 // Get Value of Extended Control Register
aoqi@0 1656 void xgetbv();
aoqi@0 1657
aoqi@0 1658 void xorl(Register dst, int32_t imm32);
aoqi@0 1659 void xorl(Register dst, Address src);
aoqi@0 1660 void xorl(Register dst, Register src);
aoqi@0 1661
aoqi@0 1662 void xorq(Register dst, Address src);
aoqi@0 1663 void xorq(Register dst, Register src);
aoqi@0 1664
aoqi@0 1665 void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
aoqi@0 1666
aoqi@0 1667 // AVX 3-operands scalar instructions (encoded with VEX prefix)
aoqi@0 1668
aoqi@0 1669 void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
aoqi@0 1670 void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
aoqi@0 1671 void vaddss(XMMRegister dst, XMMRegister nds, Address src);
aoqi@0 1672 void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
aoqi@0 1673 void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
aoqi@0 1674 void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
aoqi@0 1675 void vdivss(XMMRegister dst, XMMRegister nds, Address src);
aoqi@0 1676 void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
aoqi@0 1677 void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
aoqi@0 1678 void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
aoqi@0 1679 void vmulss(XMMRegister dst, XMMRegister nds, Address src);
aoqi@0 1680 void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
aoqi@0 1681 void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
aoqi@0 1682 void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
aoqi@0 1683 void vsubss(XMMRegister dst, XMMRegister nds, Address src);
aoqi@0 1684 void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);
aoqi@0 1685
aoqi@0 1686
aoqi@0 1687 //====================VECTOR ARITHMETIC=====================================
aoqi@0 1688
aoqi@0 1689 // Add Packed Floating-Point Values
aoqi@0 1690 void addpd(XMMRegister dst, XMMRegister src);
aoqi@0 1691 void addps(XMMRegister dst, XMMRegister src);
aoqi@0 1692 void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1693 void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1694 void vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1695 void vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1696
aoqi@0 1697 // Subtract Packed Floating-Point Values
aoqi@0 1698 void subpd(XMMRegister dst, XMMRegister src);
aoqi@0 1699 void subps(XMMRegister dst, XMMRegister src);
aoqi@0 1700 void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1701 void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1702 void vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1703 void vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1704
aoqi@0 1705 // Multiply Packed Floating-Point Values
aoqi@0 1706 void mulpd(XMMRegister dst, XMMRegister src);
aoqi@0 1707 void mulps(XMMRegister dst, XMMRegister src);
aoqi@0 1708 void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1709 void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1710 void vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1711 void vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1712
aoqi@0 1713 // Divide Packed Floating-Point Values
aoqi@0 1714 void divpd(XMMRegister dst, XMMRegister src);
aoqi@0 1715 void divps(XMMRegister dst, XMMRegister src);
aoqi@0 1716 void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1717 void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1718 void vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1719 void vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1720
aoqi@0 1721 // Bitwise Logical AND of Packed Floating-Point Values
aoqi@0 1722 void andpd(XMMRegister dst, XMMRegister src);
aoqi@0 1723 void andps(XMMRegister dst, XMMRegister src);
aoqi@0 1724 void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1725 void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1726 void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1727 void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1728
aoqi@0 1729 // Bitwise Logical XOR of Packed Floating-Point Values
aoqi@0 1730 void xorpd(XMMRegister dst, XMMRegister src);
aoqi@0 1731 void xorps(XMMRegister dst, XMMRegister src);
aoqi@0 1732 void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1733 void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1734 void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1735 void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1736
aoqi@0 1737 // Add packed integers
aoqi@0 1738 void paddb(XMMRegister dst, XMMRegister src);
aoqi@0 1739 void paddw(XMMRegister dst, XMMRegister src);
aoqi@0 1740 void paddd(XMMRegister dst, XMMRegister src);
aoqi@0 1741 void paddq(XMMRegister dst, XMMRegister src);
aoqi@0 1742 void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1743 void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1744 void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1745 void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1746 void vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1747 void vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1748 void vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1749 void vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1750
aoqi@0 1751 // Sub packed integers
aoqi@0 1752 void psubb(XMMRegister dst, XMMRegister src);
aoqi@0 1753 void psubw(XMMRegister dst, XMMRegister src);
aoqi@0 1754 void psubd(XMMRegister dst, XMMRegister src);
aoqi@0 1755 void psubq(XMMRegister dst, XMMRegister src);
aoqi@0 1756 void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1757 void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1758 void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1759 void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1760 void vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1761 void vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1762 void vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1763 void vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1764
aoqi@0 1765 // Multiply packed integers (only shorts and ints)
aoqi@0 1766 void pmullw(XMMRegister dst, XMMRegister src);
aoqi@0 1767 void pmulld(XMMRegister dst, XMMRegister src);
aoqi@0 1768 void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1769 void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1770 void vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1771 void vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1772
aoqi@0 1773 // Shift left packed integers
aoqi@0 1774 void psllw(XMMRegister dst, int shift);
aoqi@0 1775 void pslld(XMMRegister dst, int shift);
aoqi@0 1776 void psllq(XMMRegister dst, int shift);
aoqi@0 1777 void psllw(XMMRegister dst, XMMRegister shift);
aoqi@0 1778 void pslld(XMMRegister dst, XMMRegister shift);
aoqi@0 1779 void psllq(XMMRegister dst, XMMRegister shift);
aoqi@0 1780 void vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
aoqi@0 1781 void vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
aoqi@0 1782 void vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
aoqi@0 1783 void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
aoqi@0 1784 void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
aoqi@0 1785 void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
aoqi@0 1786
aoqi@0 1787 // Logical shift right packed integers
aoqi@0 1788 void psrlw(XMMRegister dst, int shift);
aoqi@0 1789 void psrld(XMMRegister dst, int shift);
aoqi@0 1790 void psrlq(XMMRegister dst, int shift);
aoqi@0 1791 void psrlw(XMMRegister dst, XMMRegister shift);
aoqi@0 1792 void psrld(XMMRegister dst, XMMRegister shift);
aoqi@0 1793 void psrlq(XMMRegister dst, XMMRegister shift);
aoqi@0 1794 void vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
aoqi@0 1795 void vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
aoqi@0 1796 void vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
aoqi@0 1797 void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
aoqi@0 1798 void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
aoqi@0 1799 void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
aoqi@0 1800
aoqi@0 1801 // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs)
aoqi@0 1802 void psraw(XMMRegister dst, int shift);
aoqi@0 1803 void psrad(XMMRegister dst, int shift);
aoqi@0 1804 void psraw(XMMRegister dst, XMMRegister shift);
aoqi@0 1805 void psrad(XMMRegister dst, XMMRegister shift);
aoqi@0 1806 void vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
aoqi@0 1807 void vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256);
aoqi@0 1808 void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
aoqi@0 1809 void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
aoqi@0 1810
aoqi@0 1811 // And packed integers
aoqi@0 1812 void pand(XMMRegister dst, XMMRegister src);
aoqi@0 1813 void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1814 void vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1815
aoqi@0 1816 // Or packed integers
aoqi@0 1817 void por(XMMRegister dst, XMMRegister src);
aoqi@0 1818 void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1819 void vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1820
aoqi@0 1821 // Xor packed integers
aoqi@0 1822 void pxor(XMMRegister dst, XMMRegister src);
aoqi@0 1823 void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
aoqi@0 1824 void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
aoqi@0 1825
aoqi@0 1826 // Copy low 128bit into high 128bit of YMM registers.
aoqi@0 1827 void vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
aoqi@0 1828 void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
aoqi@0 1829
aoqi@0 1830 // Load/store high 128bit of YMM registers which does not destroy other half.
aoqi@0 1831 void vinsertf128h(XMMRegister dst, Address src);
aoqi@0 1832 void vinserti128h(XMMRegister dst, Address src);
aoqi@0 1833 void vextractf128h(Address dst, XMMRegister src);
aoqi@0 1834 void vextracti128h(Address dst, XMMRegister src);
aoqi@0 1835
aoqi@0 1836 // duplicate 4-bytes integer data from src into 8 locations in dest
aoqi@0 1837 void vpbroadcastd(XMMRegister dst, XMMRegister src);
aoqi@0 1838
aoqi@0 1839 // Carry-Less Multiplication Quadword
aoqi@0 1840 void vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask);
aoqi@0 1841
aoqi@0 1842 // AVX instruction which is used to clear upper 128 bits of YMM registers and
aoqi@0 1843 // to avoid transaction penalty between AVX and SSE states. There is no
aoqi@0 1844 // penalty if legacy SSE instructions are encoded using VEX prefix because
aoqi@0 1845 // they always clear upper 128 bits. It should be used before calling
aoqi@0 1846 // runtime code and native libraries.
aoqi@0 1847 void vzeroupper();
aoqi@0 1848
aoqi@0 1849 protected:
aoqi@0 1850 // Next instructions require address alignment 16 bytes SSE mode.
aoqi@0 1851 // They should be called only from corresponding MacroAssembler instructions.
aoqi@0 1852 void andpd(XMMRegister dst, Address src);
aoqi@0 1853 void andps(XMMRegister dst, Address src);
aoqi@0 1854 void xorpd(XMMRegister dst, Address src);
aoqi@0 1855 void xorps(XMMRegister dst, Address src);
aoqi@0 1856
aoqi@0 1857 };
aoqi@0 1858
aoqi@0 1859 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP

mercurial