src/share/vm/runtime/sharedRuntime.cpp

Thu, 27 Jun 2013 13:04:51 -0700

author
kvn
date
Thu, 27 Jun 2013 13:04:51 -0700
changeset 6443
f4f6ae481e1a
parent 6442
b5c8a61d7fa0
parent 5259
ef57c43512d6
child 6446
583211d4b16b
permissions
-rw-r--r--

Merge

duke@435 1 /*
never@3499 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
stefank@2314 28 #include "code/compiledIC.hpp"
stefank@2314 29 #include "code/scopeDesc.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "compiler/abstractCompiler.hpp"
stefank@2314 32 #include "compiler/compileBroker.hpp"
stefank@2314 33 #include "compiler/compilerOracle.hpp"
twisti@4318 34 #include "compiler/disassembler.hpp"
stefank@2314 35 #include "interpreter/interpreter.hpp"
stefank@2314 36 #include "interpreter/interpreterRuntime.hpp"
stefank@2314 37 #include "memory/gcLocker.inline.hpp"
stefank@2314 38 #include "memory/universe.inline.hpp"
stefank@2314 39 #include "oops/oop.inline.hpp"
stefank@2314 40 #include "prims/forte.hpp"
stefank@2314 41 #include "prims/jvmtiExport.hpp"
stefank@2314 42 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 43 #include "prims/methodHandles.hpp"
stefank@2314 44 #include "prims/nativeLookup.hpp"
stefank@2314 45 #include "runtime/arguments.hpp"
stefank@2314 46 #include "runtime/biasedLocking.hpp"
stefank@2314 47 #include "runtime/handles.inline.hpp"
stefank@2314 48 #include "runtime/init.hpp"
stefank@2314 49 #include "runtime/interfaceSupport.hpp"
stefank@2314 50 #include "runtime/javaCalls.hpp"
stefank@2314 51 #include "runtime/sharedRuntime.hpp"
stefank@2314 52 #include "runtime/stubRoutines.hpp"
stefank@2314 53 #include "runtime/vframe.hpp"
stefank@2314 54 #include "runtime/vframeArray.hpp"
stefank@2314 55 #include "utilities/copy.hpp"
stefank@2314 56 #include "utilities/dtrace.hpp"
stefank@2314 57 #include "utilities/events.hpp"
stefank@2314 58 #include "utilities/hashtable.inline.hpp"
jprovino@4542 59 #include "utilities/macros.hpp"
stefank@2314 60 #include "utilities/xmlstream.hpp"
stefank@2314 61 #ifdef TARGET_ARCH_x86
stefank@2314 62 # include "nativeInst_x86.hpp"
stefank@2314 63 # include "vmreg_x86.inline.hpp"
stefank@2314 64 #endif
stefank@2314 65 #ifdef TARGET_ARCH_sparc
stefank@2314 66 # include "nativeInst_sparc.hpp"
stefank@2314 67 # include "vmreg_sparc.inline.hpp"
stefank@2314 68 #endif
stefank@2314 69 #ifdef TARGET_ARCH_zero
stefank@2314 70 # include "nativeInst_zero.hpp"
stefank@2314 71 # include "vmreg_zero.inline.hpp"
stefank@2314 72 #endif
bobv@2508 73 #ifdef TARGET_ARCH_arm
bobv@2508 74 # include "nativeInst_arm.hpp"
bobv@2508 75 # include "vmreg_arm.inline.hpp"
bobv@2508 76 #endif
bobv@2508 77 #ifdef TARGET_ARCH_ppc
bobv@2508 78 # include "nativeInst_ppc.hpp"
bobv@2508 79 # include "vmreg_ppc.inline.hpp"
bobv@2508 80 #endif
stefank@2314 81 #ifdef COMPILER1
stefank@2314 82 #include "c1/c1_Runtime1.hpp"
stefank@2314 83 #endif
stefank@2314 84
never@2950 85 // Shared stub locations
never@2950 86 RuntimeStub* SharedRuntime::_wrong_method_blob;
never@2950 87 RuntimeStub* SharedRuntime::_ic_miss_blob;
never@2950 88 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
never@2950 89 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
never@2950 90 RuntimeStub* SharedRuntime::_resolve_static_call_blob;
never@2950 91
never@2950 92 DeoptimizationBlob* SharedRuntime::_deopt_blob;
kvn@4103 93 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
never@2950 94 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob;
never@2950 95 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob;
never@2950 96
never@2950 97 #ifdef COMPILER2
never@2950 98 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob;
never@2950 99 #endif // COMPILER2
never@2950 100
never@2950 101
never@2950 102 //----------------------------generate_stubs-----------------------------------
never@2950 103 void SharedRuntime::generate_stubs() {
never@2950 104 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub");
never@2950 105 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
never@2950 106 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call");
never@2950 107 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call");
never@2950 108 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call");
never@2950 109
kvn@4103 110 #ifdef COMPILER2
kvn@4103 111 // Vectors are generated only by C2.
kvn@4103 112 if (is_wide_vector(MaxVectorSize)) {
kvn@4103 113 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
kvn@4103 114 }
kvn@4103 115 #endif // COMPILER2
kvn@4103 116 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
kvn@4103 117 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
never@2950 118
never@2950 119 generate_deopt_blob();
never@2950 120
never@2950 121 #ifdef COMPILER2
never@2950 122 generate_uncommon_trap_blob();
never@2950 123 #endif // COMPILER2
never@2950 124 }
never@2950 125
duke@435 126 #include <math.h>
duke@435 127
dcubed@3202 128 #ifndef USDT2
duke@435 129 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
duke@435 130 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
duke@435 131 char*, int, char*, int, char*, int);
duke@435 132 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
duke@435 133 char*, int, char*, int, char*, int);
dcubed@3202 134 #endif /* !USDT2 */
duke@435 135
duke@435 136 // Implementation of SharedRuntime
duke@435 137
duke@435 138 #ifndef PRODUCT
duke@435 139 // For statistics
duke@435 140 int SharedRuntime::_ic_miss_ctr = 0;
duke@435 141 int SharedRuntime::_wrong_method_ctr = 0;
duke@435 142 int SharedRuntime::_resolve_static_ctr = 0;
duke@435 143 int SharedRuntime::_resolve_virtual_ctr = 0;
duke@435 144 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
duke@435 145 int SharedRuntime::_implicit_null_throws = 0;
duke@435 146 int SharedRuntime::_implicit_div0_throws = 0;
duke@435 147 int SharedRuntime::_throw_null_ctr = 0;
duke@435 148
duke@435 149 int SharedRuntime::_nof_normal_calls = 0;
duke@435 150 int SharedRuntime::_nof_optimized_calls = 0;
duke@435 151 int SharedRuntime::_nof_inlined_calls = 0;
duke@435 152 int SharedRuntime::_nof_megamorphic_calls = 0;
duke@435 153 int SharedRuntime::_nof_static_calls = 0;
duke@435 154 int SharedRuntime::_nof_inlined_static_calls = 0;
duke@435 155 int SharedRuntime::_nof_interface_calls = 0;
duke@435 156 int SharedRuntime::_nof_optimized_interface_calls = 0;
duke@435 157 int SharedRuntime::_nof_inlined_interface_calls = 0;
duke@435 158 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
duke@435 159 int SharedRuntime::_nof_removable_exceptions = 0;
duke@435 160
duke@435 161 int SharedRuntime::_new_instance_ctr=0;
duke@435 162 int SharedRuntime::_new_array_ctr=0;
duke@435 163 int SharedRuntime::_multi1_ctr=0;
duke@435 164 int SharedRuntime::_multi2_ctr=0;
duke@435 165 int SharedRuntime::_multi3_ctr=0;
duke@435 166 int SharedRuntime::_multi4_ctr=0;
duke@435 167 int SharedRuntime::_multi5_ctr=0;
duke@435 168 int SharedRuntime::_mon_enter_stub_ctr=0;
duke@435 169 int SharedRuntime::_mon_exit_stub_ctr=0;
duke@435 170 int SharedRuntime::_mon_enter_ctr=0;
duke@435 171 int SharedRuntime::_mon_exit_ctr=0;
duke@435 172 int SharedRuntime::_partial_subtype_ctr=0;
duke@435 173 int SharedRuntime::_jbyte_array_copy_ctr=0;
duke@435 174 int SharedRuntime::_jshort_array_copy_ctr=0;
duke@435 175 int SharedRuntime::_jint_array_copy_ctr=0;
duke@435 176 int SharedRuntime::_jlong_array_copy_ctr=0;
duke@435 177 int SharedRuntime::_oop_array_copy_ctr=0;
duke@435 178 int SharedRuntime::_checkcast_array_copy_ctr=0;
duke@435 179 int SharedRuntime::_unsafe_array_copy_ctr=0;
duke@435 180 int SharedRuntime::_generic_array_copy_ctr=0;
duke@435 181 int SharedRuntime::_slow_array_copy_ctr=0;
duke@435 182 int SharedRuntime::_find_handler_ctr=0;
duke@435 183 int SharedRuntime::_rethrow_ctr=0;
duke@435 184
duke@435 185 int SharedRuntime::_ICmiss_index = 0;
duke@435 186 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
duke@435 187 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
duke@435 188
never@2950 189
duke@435 190 void SharedRuntime::trace_ic_miss(address at) {
duke@435 191 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 192 if (_ICmiss_at[i] == at) {
duke@435 193 _ICmiss_count[i]++;
duke@435 194 return;
duke@435 195 }
duke@435 196 }
duke@435 197 int index = _ICmiss_index++;
duke@435 198 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
duke@435 199 _ICmiss_at[index] = at;
duke@435 200 _ICmiss_count[index] = 1;
duke@435 201 }
duke@435 202
duke@435 203 void SharedRuntime::print_ic_miss_histogram() {
duke@435 204 if (ICMissHistogram) {
duke@435 205 tty->print_cr ("IC Miss Histogram:");
duke@435 206 int tot_misses = 0;
duke@435 207 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 208 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
duke@435 209 tot_misses += _ICmiss_count[i];
duke@435 210 }
duke@435 211 tty->print_cr ("Total IC misses: %7d", tot_misses);
duke@435 212 }
duke@435 213 }
duke@435 214 #endif // PRODUCT
duke@435 215
jprovino@4542 216 #if INCLUDE_ALL_GCS
ysr@777 217
ysr@777 218 // G1 write-barrier pre: executed before a pointer store.
ysr@777 219 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
ysr@777 220 if (orig == NULL) {
ysr@777 221 assert(false, "should be optimized out");
ysr@777 222 return;
ysr@777 223 }
ysr@1280 224 assert(orig->is_oop(true /* ignore mark word */), "Error");
ysr@777 225 // store the original value that was in the field reference
ysr@777 226 thread->satb_mark_queue().enqueue(orig);
ysr@777 227 JRT_END
ysr@777 228
ysr@777 229 // G1 write-barrier post: executed after a pointer store.
ysr@777 230 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
ysr@777 231 thread->dirty_card_queue().enqueue(card_addr);
ysr@777 232 JRT_END
ysr@777 233
jprovino@4542 234 #endif // INCLUDE_ALL_GCS
ysr@777 235
duke@435 236
duke@435 237 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
duke@435 238 return x * y;
duke@435 239 JRT_END
duke@435 240
duke@435 241
duke@435 242 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
duke@435 243 if (x == min_jlong && y == CONST64(-1)) {
duke@435 244 return x;
duke@435 245 } else {
duke@435 246 return x / y;
duke@435 247 }
duke@435 248 JRT_END
duke@435 249
duke@435 250
duke@435 251 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
duke@435 252 if (x == min_jlong && y == CONST64(-1)) {
duke@435 253 return 0;
duke@435 254 } else {
duke@435 255 return x % y;
duke@435 256 }
duke@435 257 JRT_END
duke@435 258
duke@435 259
duke@435 260 const juint float_sign_mask = 0x7FFFFFFF;
duke@435 261 const juint float_infinity = 0x7F800000;
duke@435 262 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
duke@435 263 const julong double_infinity = CONST64(0x7FF0000000000000);
duke@435 264
duke@435 265 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
duke@435 266 #ifdef _WIN64
duke@435 267 // 64-bit Windows on amd64 returns the wrong values for
duke@435 268 // infinity operands.
duke@435 269 union { jfloat f; juint i; } xbits, ybits;
duke@435 270 xbits.f = x;
duke@435 271 ybits.f = y;
duke@435 272 // x Mod Infinity == x unless x is infinity
duke@435 273 if ( ((xbits.i & float_sign_mask) != float_infinity) &&
duke@435 274 ((ybits.i & float_sign_mask) == float_infinity) ) {
duke@435 275 return x;
duke@435 276 }
duke@435 277 #endif
duke@435 278 return ((jfloat)fmod((double)x,(double)y));
duke@435 279 JRT_END
duke@435 280
duke@435 281
duke@435 282 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
duke@435 283 #ifdef _WIN64
duke@435 284 union { jdouble d; julong l; } xbits, ybits;
duke@435 285 xbits.d = x;
duke@435 286 ybits.d = y;
duke@435 287 // x Mod Infinity == x unless x is infinity
duke@435 288 if ( ((xbits.l & double_sign_mask) != double_infinity) &&
duke@435 289 ((ybits.l & double_sign_mask) == double_infinity) ) {
duke@435 290 return x;
duke@435 291 }
duke@435 292 #endif
duke@435 293 return ((jdouble)fmod((double)x,(double)y));
duke@435 294 JRT_END
duke@435 295
bobv@2036 296 #ifdef __SOFTFP__
bobv@2036 297 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
bobv@2036 298 return x + y;
bobv@2036 299 JRT_END
bobv@2036 300
bobv@2036 301 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
bobv@2036 302 return x - y;
bobv@2036 303 JRT_END
bobv@2036 304
bobv@2036 305 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
bobv@2036 306 return x * y;
bobv@2036 307 JRT_END
bobv@2036 308
bobv@2036 309 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
bobv@2036 310 return x / y;
bobv@2036 311 JRT_END
bobv@2036 312
bobv@2036 313 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
bobv@2036 314 return x + y;
bobv@2036 315 JRT_END
bobv@2036 316
bobv@2036 317 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
bobv@2036 318 return x - y;
bobv@2036 319 JRT_END
bobv@2036 320
bobv@2036 321 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
bobv@2036 322 return x * y;
bobv@2036 323 JRT_END
bobv@2036 324
bobv@2036 325 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
bobv@2036 326 return x / y;
bobv@2036 327 JRT_END
bobv@2036 328
bobv@2036 329 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
bobv@2036 330 return (jfloat)x;
bobv@2036 331 JRT_END
bobv@2036 332
bobv@2036 333 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
bobv@2036 334 return (jdouble)x;
bobv@2036 335 JRT_END
bobv@2036 336
bobv@2036 337 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
bobv@2036 338 return (jdouble)x;
bobv@2036 339 JRT_END
bobv@2036 340
bobv@2036 341 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
bobv@2036 342 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
bobv@2036 343 JRT_END
bobv@2036 344
bobv@2036 345 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
bobv@2036 346 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 347 JRT_END
bobv@2036 348
bobv@2036 349 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
bobv@2036 350 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
bobv@2036 351 JRT_END
bobv@2036 352
bobv@2036 353 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
bobv@2036 354 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 355 JRT_END
bobv@2036 356
bobv@2036 357 // Functions to return the opposite of the aeabi functions for nan.
bobv@2036 358 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
bobv@2036 359 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 360 JRT_END
bobv@2036 361
bobv@2036 362 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
bobv@2036 363 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 364 JRT_END
bobv@2036 365
bobv@2036 366 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
bobv@2036 367 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 368 JRT_END
bobv@2036 369
bobv@2036 370 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
bobv@2036 371 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 372 JRT_END
bobv@2036 373
bobv@2036 374 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
bobv@2036 375 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 376 JRT_END
bobv@2036 377
bobv@2036 378 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
bobv@2036 379 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 380 JRT_END
bobv@2036 381
bobv@2036 382 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
bobv@2036 383 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 384 JRT_END
bobv@2036 385
bobv@2036 386 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
bobv@2036 387 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 388 JRT_END
bobv@2036 389
bobv@2036 390 // Intrinsics make gcc generate code for these.
bobv@2036 391 float SharedRuntime::fneg(float f) {
bobv@2036 392 return -f;
bobv@2036 393 }
bobv@2036 394
bobv@2036 395 double SharedRuntime::dneg(double f) {
bobv@2036 396 return -f;
bobv@2036 397 }
bobv@2036 398
bobv@2036 399 #endif // __SOFTFP__
bobv@2036 400
bobv@2036 401 #if defined(__SOFTFP__) || defined(E500V2)
bobv@2036 402 // Intrinsics make gcc generate code for these.
bobv@2036 403 double SharedRuntime::dabs(double f) {
bobv@2036 404 return (f <= (double)0.0) ? (double)0.0 - f : f;
bobv@2036 405 }
bobv@2036 406
bobv@2223 407 #endif
bobv@2223 408
goetz@6440 409 #if defined(__SOFTFP__) || defined(PPC32)
bobv@2036 410 double SharedRuntime::dsqrt(double f) {
bobv@2036 411 return sqrt(f);
bobv@2036 412 }
bobv@2036 413 #endif
duke@435 414
duke@435 415 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
kvn@943 416 if (g_isnan(x))
kvn@943 417 return 0;
kvn@943 418 if (x >= (jfloat) max_jint)
kvn@943 419 return max_jint;
kvn@943 420 if (x <= (jfloat) min_jint)
kvn@943 421 return min_jint;
kvn@943 422 return (jint) x;
duke@435 423 JRT_END
duke@435 424
duke@435 425
duke@435 426 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
kvn@943 427 if (g_isnan(x))
kvn@943 428 return 0;
kvn@943 429 if (x >= (jfloat) max_jlong)
kvn@943 430 return max_jlong;
kvn@943 431 if (x <= (jfloat) min_jlong)
kvn@943 432 return min_jlong;
kvn@943 433 return (jlong) x;
duke@435 434 JRT_END
duke@435 435
duke@435 436
duke@435 437 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
kvn@943 438 if (g_isnan(x))
kvn@943 439 return 0;
kvn@943 440 if (x >= (jdouble) max_jint)
kvn@943 441 return max_jint;
kvn@943 442 if (x <= (jdouble) min_jint)
kvn@943 443 return min_jint;
kvn@943 444 return (jint) x;
duke@435 445 JRT_END
duke@435 446
duke@435 447
duke@435 448 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
kvn@943 449 if (g_isnan(x))
kvn@943 450 return 0;
kvn@943 451 if (x >= (jdouble) max_jlong)
kvn@943 452 return max_jlong;
kvn@943 453 if (x <= (jdouble) min_jlong)
kvn@943 454 return min_jlong;
kvn@943 455 return (jlong) x;
duke@435 456 JRT_END
duke@435 457
duke@435 458
duke@435 459 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
duke@435 460 return (jfloat)x;
duke@435 461 JRT_END
duke@435 462
duke@435 463
duke@435 464 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
duke@435 465 return (jfloat)x;
duke@435 466 JRT_END
duke@435 467
duke@435 468
duke@435 469 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
duke@435 470 return (jdouble)x;
duke@435 471 JRT_END
duke@435 472
duke@435 473 // Exception handling accross interpreter/compiler boundaries
duke@435 474 //
duke@435 475 // exception_handler_for_return_address(...) returns the continuation address.
duke@435 476 // The continuation address is the entry point of the exception handler of the
duke@435 477 // previous frame depending on the return address.
duke@435 478
twisti@1730 479 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
twisti@2603 480 assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
twisti@2603 481
twisti@2603 482 // Reset method handle flag.
twisti@1803 483 thread->set_is_method_handle_return(false);
twisti@1803 484
twisti@2603 485 // The fastest case first
duke@435 486 CodeBlob* blob = CodeCache::find_blob(return_address);
twisti@2603 487 nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
twisti@2603 488 if (nm != NULL) {
twisti@2603 489 // Set flag if return address is a method handle call site.
twisti@2603 490 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
duke@435 491 // native nmethods don't have exception handlers
twisti@2603 492 assert(!nm->is_native_method(), "no exception handler");
twisti@2603 493 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
twisti@2603 494 if (nm->is_deopt_pc(return_address)) {
duke@435 495 return SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 496 } else {
twisti@2603 497 return nm->exception_begin();
duke@435 498 }
duke@435 499 }
duke@435 500
duke@435 501 // Entry code
duke@435 502 if (StubRoutines::returns_to_call_stub(return_address)) {
duke@435 503 return StubRoutines::catch_exception_entry();
duke@435 504 }
duke@435 505 // Interpreted code
duke@435 506 if (Interpreter::contains(return_address)) {
duke@435 507 return Interpreter::rethrow_exception_entry();
duke@435 508 }
duke@435 509
twisti@2603 510 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
duke@435 511 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
twisti@2603 512
duke@435 513 #ifndef PRODUCT
duke@435 514 { ResourceMark rm;
duke@435 515 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
duke@435 516 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
duke@435 517 tty->print_cr("b) other problem");
duke@435 518 }
duke@435 519 #endif // PRODUCT
twisti@2603 520
duke@435 521 ShouldNotReachHere();
duke@435 522 return NULL;
duke@435 523 }
duke@435 524
duke@435 525
twisti@1730 526 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
twisti@1730 527 return raw_exception_handler_for_return_address(thread, return_address);
duke@435 528 JRT_END
duke@435 529
twisti@1730 530
duke@435 531 address SharedRuntime::get_poll_stub(address pc) {
duke@435 532 address stub;
duke@435 533 // Look up the code blob
duke@435 534 CodeBlob *cb = CodeCache::find_blob(pc);
duke@435 535
duke@435 536 // Should be an nmethod
duke@435 537 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
duke@435 538
duke@435 539 // Look up the relocation information
duke@435 540 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
duke@435 541 "safepoint polling: type must be poll" );
duke@435 542
duke@435 543 assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
duke@435 544 "Only polling locations are used for safepoint");
duke@435 545
duke@435 546 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
kvn@4103 547 bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
duke@435 548 if (at_poll_return) {
duke@435 549 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
duke@435 550 "polling page return stub not created yet");
twisti@2103 551 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
kvn@4103 552 } else if (has_wide_vectors) {
kvn@4103 553 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
kvn@4103 554 "polling page vectors safepoint stub not created yet");
kvn@4103 555 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
duke@435 556 } else {
duke@435 557 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
duke@435 558 "polling page safepoint stub not created yet");
twisti@2103 559 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
duke@435 560 }
duke@435 561 #ifndef PRODUCT
duke@435 562 if( TraceSafepoint ) {
duke@435 563 char buf[256];
duke@435 564 jio_snprintf(buf, sizeof(buf),
duke@435 565 "... found polling page %s exception at pc = "
duke@435 566 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
duke@435 567 at_poll_return ? "return" : "loop",
duke@435 568 (intptr_t)pc, (intptr_t)stub);
duke@435 569 tty->print_raw_cr(buf);
duke@435 570 }
duke@435 571 #endif // PRODUCT
duke@435 572 return stub;
duke@435 573 }
duke@435 574
duke@435 575
coleenp@2497 576 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
duke@435 577 assert(caller.is_interpreted_frame(), "");
duke@435 578 int args_size = ArgumentSizeComputer(sig).size() + 1;
duke@435 579 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
duke@435 580 oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
duke@435 581 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
duke@435 582 return result;
duke@435 583 }
duke@435 584
duke@435 585
duke@435 586 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
dcubed@1648 587 if (JvmtiExport::can_post_on_exceptions()) {
duke@435 588 vframeStream vfst(thread, true);
duke@435 589 methodHandle method = methodHandle(thread, vfst.method());
duke@435 590 address bcp = method()->bcp_from(vfst.bci());
duke@435 591 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
duke@435 592 }
duke@435 593 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
duke@435 594 }
duke@435 595
coleenp@2497 596 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
duke@435 597 Handle h_exception = Exceptions::new_exception(thread, name, message);
duke@435 598 throw_and_post_jvmti_exception(thread, h_exception);
duke@435 599 }
duke@435 600
dcubed@1045 601 // The interpreter code to call this tracing function is only
dcubed@1045 602 // called/generated when TraceRedefineClasses has the right bits
dcubed@1045 603 // set. Since obsolete methods are never compiled, we don't have
dcubed@1045 604 // to modify the compilers to generate calls to this function.
dcubed@1045 605 //
dcubed@1045 606 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
coleenp@4037 607 JavaThread* thread, Method* method))
dcubed@1045 608 assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
dcubed@1045 609
dcubed@1045 610 if (method->is_obsolete()) {
dcubed@1045 611 // We are calling an obsolete method, but this is not necessarily
dcubed@1045 612 // an error. Our method could have been redefined just after we
coleenp@4037 613 // fetched the Method* from the constant pool.
dcubed@1045 614
dcubed@1045 615 // RC_TRACE macro has an embedded ResourceMark
dcubed@1045 616 RC_TRACE_WITH_THREAD(0x00001000, thread,
dcubed@1045 617 ("calling obsolete method '%s'",
dcubed@1045 618 method->name_and_sig_as_C_string()));
dcubed@1045 619 if (RC_TRACE_ENABLED(0x00002000)) {
dcubed@1045 620 // this option is provided to debug calls to obsolete methods
dcubed@1045 621 guarantee(false, "faulting at call to an obsolete method.");
dcubed@1045 622 }
dcubed@1045 623 }
dcubed@1045 624 return 0;
dcubed@1045 625 JRT_END
dcubed@1045 626
duke@435 627 // ret_pc points into caller; we are returning caller's exception handler
duke@435 628 // for given exception
duke@435 629 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
duke@435 630 bool force_unwind, bool top_frame_only) {
duke@435 631 assert(nm != NULL, "must exist");
duke@435 632 ResourceMark rm;
duke@435 633
duke@435 634 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
duke@435 635 // determine handler bci, if any
duke@435 636 EXCEPTION_MARK;
duke@435 637
duke@435 638 int handler_bci = -1;
duke@435 639 int scope_depth = 0;
duke@435 640 if (!force_unwind) {
duke@435 641 int bci = sd->bci();
kvn@3194 642 bool recursive_exception = false;
duke@435 643 do {
duke@435 644 bool skip_scope_increment = false;
duke@435 645 // exception handler lookup
duke@435 646 KlassHandle ek (THREAD, exception->klass());
jiangli@4405 647 methodHandle mh(THREAD, sd->method());
jiangli@4405 648 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
duke@435 649 if (HAS_PENDING_EXCEPTION) {
kvn@3194 650 recursive_exception = true;
duke@435 651 // We threw an exception while trying to find the exception handler.
duke@435 652 // Transfer the new exception to the exception handle which will
duke@435 653 // be set into thread local storage, and do another lookup for an
duke@435 654 // exception handler for this exception, this time starting at the
duke@435 655 // BCI of the exception handler which caused the exception to be
duke@435 656 // thrown (bugs 4307310 and 4546590). Set "exception" reference
duke@435 657 // argument to ensure that the correct exception is thrown (4870175).
duke@435 658 exception = Handle(THREAD, PENDING_EXCEPTION);
duke@435 659 CLEAR_PENDING_EXCEPTION;
duke@435 660 if (handler_bci >= 0) {
duke@435 661 bci = handler_bci;
duke@435 662 handler_bci = -1;
duke@435 663 skip_scope_increment = true;
duke@435 664 }
duke@435 665 }
kvn@3194 666 else {
kvn@3194 667 recursive_exception = false;
kvn@3194 668 }
duke@435 669 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
duke@435 670 sd = sd->sender();
duke@435 671 if (sd != NULL) {
duke@435 672 bci = sd->bci();
duke@435 673 }
duke@435 674 ++scope_depth;
duke@435 675 }
kvn@3194 676 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
duke@435 677 }
duke@435 678
duke@435 679 // found handling method => lookup exception handler
twisti@2103 680 int catch_pco = ret_pc - nm->code_begin();
duke@435 681
duke@435 682 ExceptionHandlerTable table(nm);
duke@435 683 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
duke@435 684 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
duke@435 685 // Allow abbreviated catch tables. The idea is to allow a method
duke@435 686 // to materialize its exceptions without committing to the exact
duke@435 687 // routing of exceptions. In particular this is needed for adding
duke@435 688 // a synthethic handler to unlock monitors when inlining
duke@435 689 // synchonized methods since the unlock path isn't represented in
duke@435 690 // the bytecodes.
duke@435 691 t = table.entry_for(catch_pco, -1, 0);
duke@435 692 }
duke@435 693
never@1813 694 #ifdef COMPILER1
never@1813 695 if (t == NULL && nm->is_compiled_by_c1()) {
never@1813 696 assert(nm->unwind_handler_begin() != NULL, "");
never@1813 697 return nm->unwind_handler_begin();
never@1813 698 }
never@1813 699 #endif
never@1813 700
duke@435 701 if (t == NULL) {
duke@435 702 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
duke@435 703 tty->print_cr(" Exception:");
duke@435 704 exception->print();
duke@435 705 tty->cr();
duke@435 706 tty->print_cr(" Compiled exception table :");
duke@435 707 table.print();
duke@435 708 nm->print_code();
duke@435 709 guarantee(false, "missing exception handler");
duke@435 710 return NULL;
duke@435 711 }
duke@435 712
twisti@2103 713 return nm->code_begin() + t->pco();
duke@435 714 }
duke@435 715
duke@435 716 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
duke@435 717 // These errors occur only at call sites
duke@435 718 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
duke@435 719 JRT_END
duke@435 720
dcubed@451 721 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
dcubed@451 722 // These errors occur only at call sites
dcubed@451 723 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
dcubed@451 724 JRT_END
dcubed@451 725
duke@435 726 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
duke@435 727 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
duke@435 728 JRT_END
duke@435 729
duke@435 730 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
duke@435 731 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 732 JRT_END
duke@435 733
duke@435 734 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
duke@435 735 // This entry point is effectively only used for NullPointerExceptions which occur at inline
duke@435 736 // cache sites (when the callee activation is not yet set up) so we are at a call site
duke@435 737 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 738 JRT_END
duke@435 739
duke@435 740 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
duke@435 741 // We avoid using the normal exception construction in this case because
duke@435 742 // it performs an upcall to Java, and we're already out of stack space.
coleenp@4037 743 Klass* k = SystemDictionary::StackOverflowError_klass();
coleenp@4037 744 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
duke@435 745 Handle exception (thread, exception_oop);
duke@435 746 if (StackTraceInThrowable) {
duke@435 747 java_lang_Throwable::fill_in_stack_trace(exception);
duke@435 748 }
duke@435 749 throw_and_post_jvmti_exception(thread, exception);
duke@435 750 JRT_END
duke@435 751
duke@435 752 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
duke@435 753 address pc,
duke@435 754 SharedRuntime::ImplicitExceptionKind exception_kind)
duke@435 755 {
duke@435 756 address target_pc = NULL;
duke@435 757
duke@435 758 if (Interpreter::contains(pc)) {
duke@435 759 #ifdef CC_INTERP
duke@435 760 // C++ interpreter doesn't throw implicit exceptions
duke@435 761 ShouldNotReachHere();
duke@435 762 #else
duke@435 763 switch (exception_kind) {
duke@435 764 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
duke@435 765 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
duke@435 766 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
duke@435 767 default: ShouldNotReachHere();
duke@435 768 }
duke@435 769 #endif // !CC_INTERP
duke@435 770 } else {
duke@435 771 switch (exception_kind) {
duke@435 772 case STACK_OVERFLOW: {
duke@435 773 // Stack overflow only occurs upon frame setup; the callee is
duke@435 774 // going to be unwound. Dispatch to a shared runtime stub
duke@435 775 // which will cause the StackOverflowError to be fabricated
duke@435 776 // and processed.
duke@435 777 // For stack overflow in deoptimization blob, cleanup thread.
duke@435 778 if (thread->deopt_mark() != NULL) {
duke@435 779 Deoptimization::cleanup_deopt_info(thread, NULL);
duke@435 780 }
never@3571 781 Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
duke@435 782 return StubRoutines::throw_StackOverflowError_entry();
duke@435 783 }
duke@435 784
duke@435 785 case IMPLICIT_NULL: {
duke@435 786 if (VtableStubs::contains(pc)) {
duke@435 787 // We haven't yet entered the callee frame. Fabricate an
duke@435 788 // exception and begin dispatching it in the caller. Since
duke@435 789 // the caller was at a call site, it's safe to destroy all
duke@435 790 // caller-saved registers, as these entry points do.
duke@435 791 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
poonam@900 792
poonam@900 793 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 794 if (vt_stub == NULL) return NULL;
poonam@900 795
duke@435 796 if (vt_stub->is_abstract_method_error(pc)) {
duke@435 797 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
never@3571 798 Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
duke@435 799 return StubRoutines::throw_AbstractMethodError_entry();
duke@435 800 } else {
never@3571 801 Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
duke@435 802 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 803 }
duke@435 804 } else {
duke@435 805 CodeBlob* cb = CodeCache::find_blob(pc);
poonam@900 806
poonam@900 807 // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 808 if (cb == NULL) return NULL;
duke@435 809
duke@435 810 // Exception happened in CodeCache. Must be either:
duke@435 811 // 1. Inline-cache check in C2I handler blob,
duke@435 812 // 2. Inline-cache check in nmethod, or
duke@435 813 // 3. Implict null exception in nmethod
duke@435 814
duke@435 815 if (!cb->is_nmethod()) {
twisti@1734 816 guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
poonam@900 817 "exception happened outside interpreter, nmethods and vtable stubs (1)");
never@3571 818 Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
duke@435 819 // There is no handler here, so we will simply unwind.
duke@435 820 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 821 }
duke@435 822
duke@435 823 // Otherwise, it's an nmethod. Consult its exception handlers.
duke@435 824 nmethod* nm = (nmethod*)cb;
duke@435 825 if (nm->inlinecache_check_contains(pc)) {
duke@435 826 // exception happened inside inline-cache check code
duke@435 827 // => the nmethod is not yet active (i.e., the frame
duke@435 828 // is not set up yet) => use return address pushed by
duke@435 829 // caller => don't push another return address
never@3571 830 Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
duke@435 831 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 832 }
duke@435 833
twisti@3969 834 if (nm->method()->is_method_handle_intrinsic()) {
twisti@3969 835 // exception happened inside MH dispatch code, similar to a vtable stub
twisti@3969 836 Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
twisti@3969 837 return StubRoutines::throw_NullPointerException_at_call_entry();
twisti@3969 838 }
twisti@3969 839
duke@435 840 #ifndef PRODUCT
duke@435 841 _implicit_null_throws++;
duke@435 842 #endif
duke@435 843 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 844 // If there's an unexpected fault, target_pc might be NULL,
never@1685 845 // in which case we want to fall through into the normal
never@1685 846 // error handling code.
duke@435 847 }
duke@435 848
duke@435 849 break; // fall through
duke@435 850 }
duke@435 851
duke@435 852
duke@435 853 case IMPLICIT_DIVIDE_BY_ZERO: {
duke@435 854 nmethod* nm = CodeCache::find_nmethod(pc);
duke@435 855 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
duke@435 856 #ifndef PRODUCT
duke@435 857 _implicit_div0_throws++;
duke@435 858 #endif
duke@435 859 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 860 // If there's an unexpected fault, target_pc might be NULL,
never@1685 861 // in which case we want to fall through into the normal
never@1685 862 // error handling code.
duke@435 863 break; // fall through
duke@435 864 }
duke@435 865
duke@435 866 default: ShouldNotReachHere();
duke@435 867 }
duke@435 868
duke@435 869 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
duke@435 870
duke@435 871 // for AbortVMOnException flag
duke@435 872 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
duke@435 873 if (exception_kind == IMPLICIT_NULL) {
never@3499 874 Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 875 } else {
never@3499 876 Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 877 }
duke@435 878 return target_pc;
duke@435 879 }
duke@435 880
duke@435 881 ShouldNotReachHere();
duke@435 882 return NULL;
duke@435 883 }
duke@435 884
duke@435 885
twisti@5108 886 /**
twisti@5108 887 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is
twisti@5108 888 * installed in the native function entry of all native Java methods before
twisti@5108 889 * they get linked to their actual native methods.
twisti@5108 890 *
twisti@5108 891 * \note
twisti@5108 892 * This method actually never gets called! The reason is because
twisti@5108 893 * the interpreter's native entries call NativeLookup::lookup() which
twisti@5108 894 * throws the exception when the lookup fails. The exception is then
twisti@5108 895 * caught and forwarded on the return from NativeLookup::lookup() call
twisti@5108 896 * before the call to the native function. This might change in the future.
twisti@5108 897 */
twisti@5108 898 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
duke@435 899 {
twisti@5108 900 // We return a bad value here to make sure that the exception is
twisti@5108 901 // forwarded before we look at the return value.
twisti@5108 902 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
duke@435 903 }
duke@435 904 JNI_END
duke@435 905
duke@435 906 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
duke@435 907 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
duke@435 908 }
duke@435 909
duke@435 910
duke@435 911 #ifndef PRODUCT
duke@435 912 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
duke@435 913 const frame f = thread->last_frame();
duke@435 914 assert(f.is_interpreted_frame(), "must be an interpreted frame");
duke@435 915 #ifndef PRODUCT
duke@435 916 methodHandle mh(THREAD, f.interpreter_frame_method());
duke@435 917 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
duke@435 918 #endif // !PRODUCT
duke@435 919 return preserve_this_value;
duke@435 920 JRT_END
duke@435 921 #endif // !PRODUCT
duke@435 922
duke@435 923
duke@435 924 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
duke@435 925 os::yield_all(attempts);
duke@435 926 JRT_END
duke@435 927
duke@435 928
duke@435 929 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
duke@435 930 assert(obj->is_oop(), "must be a valid oop");
coleenp@4037 931 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
coleenp@4037 932 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 933 JRT_END
duke@435 934
duke@435 935
duke@435 936 jlong SharedRuntime::get_java_tid(Thread* thread) {
duke@435 937 if (thread != NULL) {
duke@435 938 if (thread->is_Java_thread()) {
duke@435 939 oop obj = ((JavaThread*)thread)->threadObj();
duke@435 940 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
duke@435 941 }
duke@435 942 }
duke@435 943 return 0;
duke@435 944 }
duke@435 945
duke@435 946 /**
duke@435 947 * This function ought to be a void function, but cannot be because
duke@435 948 * it gets turned into a tail-call on sparc, which runs into dtrace bug
duke@435 949 * 6254741. Once that is fixed we can remove the dummy return value.
duke@435 950 */
duke@435 951 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
duke@435 952 return dtrace_object_alloc_base(Thread::current(), o);
duke@435 953 }
duke@435 954
duke@435 955 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
duke@435 956 assert(DTraceAllocProbes, "wrong call");
coleenp@4037 957 Klass* klass = o->klass();
duke@435 958 int size = o->size();
coleenp@2497 959 Symbol* name = klass->name();
dcubed@3202 960 #ifndef USDT2
duke@435 961 HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
duke@435 962 name->bytes(), name->utf8_length(), size * HeapWordSize);
dcubed@3202 963 #else /* USDT2 */
dcubed@3202 964 HOTSPOT_OBJECT_ALLOC(
dcubed@3202 965 get_java_tid(thread),
dcubed@3202 966 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
dcubed@3202 967 #endif /* USDT2 */
duke@435 968 return 0;
duke@435 969 }
duke@435 970
duke@435 971 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
coleenp@4037 972 JavaThread* thread, Method* method))
duke@435 973 assert(DTraceMethodProbes, "wrong call");
coleenp@2497 974 Symbol* kname = method->klass_name();
coleenp@2497 975 Symbol* name = method->name();
coleenp@2497 976 Symbol* sig = method->signature();
dcubed@3202 977 #ifndef USDT2
duke@435 978 HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
duke@435 979 kname->bytes(), kname->utf8_length(),
duke@435 980 name->bytes(), name->utf8_length(),
duke@435 981 sig->bytes(), sig->utf8_length());
dcubed@3202 982 #else /* USDT2 */
dcubed@3202 983 HOTSPOT_METHOD_ENTRY(
dcubed@3202 984 get_java_tid(thread),
dcubed@3202 985 (char *) kname->bytes(), kname->utf8_length(),
dcubed@3202 986 (char *) name->bytes(), name->utf8_length(),
dcubed@3202 987 (char *) sig->bytes(), sig->utf8_length());
dcubed@3202 988 #endif /* USDT2 */
duke@435 989 return 0;
duke@435 990 JRT_END
duke@435 991
duke@435 992 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
coleenp@4037 993 JavaThread* thread, Method* method))
duke@435 994 assert(DTraceMethodProbes, "wrong call");
coleenp@2497 995 Symbol* kname = method->klass_name();
coleenp@2497 996 Symbol* name = method->name();
coleenp@2497 997 Symbol* sig = method->signature();
dcubed@3202 998 #ifndef USDT2
duke@435 999 HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
duke@435 1000 kname->bytes(), kname->utf8_length(),
duke@435 1001 name->bytes(), name->utf8_length(),
duke@435 1002 sig->bytes(), sig->utf8_length());
dcubed@3202 1003 #else /* USDT2 */
dcubed@3202 1004 HOTSPOT_METHOD_RETURN(
dcubed@3202 1005 get_java_tid(thread),
dcubed@3202 1006 (char *) kname->bytes(), kname->utf8_length(),
dcubed@3202 1007 (char *) name->bytes(), name->utf8_length(),
dcubed@3202 1008 (char *) sig->bytes(), sig->utf8_length());
dcubed@3202 1009 #endif /* USDT2 */
duke@435 1010 return 0;
duke@435 1011 JRT_END
duke@435 1012
duke@435 1013
duke@435 1014 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
duke@435 1015 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 1016 // put callee has not been invoked yet. Used by: resolve virtual/static,
duke@435 1017 // vtable updates, etc. Caller frame must be compiled.
duke@435 1018 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
duke@435 1019 ResourceMark rm(THREAD);
duke@435 1020
duke@435 1021 // last java frame on stack (which includes native call frames)
duke@435 1022 vframeStream vfst(thread, true); // Do not skip and javaCalls
duke@435 1023
duke@435 1024 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
duke@435 1025 }
duke@435 1026
duke@435 1027
duke@435 1028 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
duke@435 1029 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 1030 // but callee has not been invoked yet. Caller frame must be compiled.
duke@435 1031 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
duke@435 1032 vframeStream& vfst,
duke@435 1033 Bytecodes::Code& bc,
duke@435 1034 CallInfo& callinfo, TRAPS) {
duke@435 1035 Handle receiver;
duke@435 1036 Handle nullHandle; //create a handy null handle for exception returns
duke@435 1037
duke@435 1038 assert(!vfst.at_end(), "Java frame must exist");
duke@435 1039
duke@435 1040 // Find caller and bci from vframe
twisti@3969 1041 methodHandle caller(THREAD, vfst.method());
twisti@3969 1042 int bci = vfst.bci();
duke@435 1043
duke@435 1044 // Find bytecode
never@2462 1045 Bytecode_invoke bytecode(caller, bci);
twisti@3969 1046 bc = bytecode.invoke_code();
never@2462 1047 int bytecode_index = bytecode.index();
duke@435 1048
duke@435 1049 // Find receiver for non-static call
twisti@3969 1050 if (bc != Bytecodes::_invokestatic &&
twisti@3969 1051 bc != Bytecodes::_invokedynamic) {
duke@435 1052 // This register map must be update since we need to find the receiver for
duke@435 1053 // compiled frames. The receiver might be in a register.
duke@435 1054 RegisterMap reg_map2(thread);
duke@435 1055 frame stubFrame = thread->last_frame();
duke@435 1056 // Caller-frame is a compiled frame
duke@435 1057 frame callerFrame = stubFrame.sender(&reg_map2);
duke@435 1058
never@2462 1059 methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
duke@435 1060 if (callee.is_null()) {
duke@435 1061 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
duke@435 1062 }
duke@435 1063 // Retrieve from a compiled argument list
duke@435 1064 receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
duke@435 1065
duke@435 1066 if (receiver.is_null()) {
duke@435 1067 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
duke@435 1068 }
duke@435 1069 }
duke@435 1070
duke@435 1071 // Resolve method. This is parameterized by bytecode.
twisti@3969 1072 constantPoolHandle constants(THREAD, caller->constants());
twisti@3969 1073 assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
duke@435 1074 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
duke@435 1075
duke@435 1076 #ifdef ASSERT
duke@435 1077 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
twisti@1570 1078 if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
duke@435 1079 assert(receiver.not_null(), "should have thrown exception");
twisti@3969 1080 KlassHandle receiver_klass(THREAD, receiver->klass());
coleenp@4037 1081 Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
duke@435 1082 // klass is already loaded
twisti@3969 1083 KlassHandle static_receiver_klass(THREAD, rk);
twisti@3969 1084 // Method handle invokes might have been optimized to a direct call
twisti@3969 1085 // so don't check for the receiver class.
twisti@3969 1086 // FIXME this weakens the assert too much
twisti@3969 1087 methodHandle callee = callinfo.selected_method();
twisti@3969 1088 assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
twisti@3969 1089 callee->is_method_handle_intrinsic() ||
twisti@3969 1090 callee->is_compiled_lambda_form(),
twisti@3969 1091 "actual receiver must be subclass of static receiver klass");
duke@435 1092 if (receiver_klass->oop_is_instance()) {
coleenp@4037 1093 if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
duke@435 1094 tty->print_cr("ERROR: Klass not yet initialized!!");
coleenp@4037 1095 receiver_klass()->print();
duke@435 1096 }
coleenp@4037 1097 assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
duke@435 1098 }
duke@435 1099 }
duke@435 1100 #endif
duke@435 1101
duke@435 1102 return receiver;
duke@435 1103 }
duke@435 1104
duke@435 1105 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
duke@435 1106 ResourceMark rm(THREAD);
duke@435 1107 // We need first to check if any Java activations (compiled, interpreted)
duke@435 1108 // exist on the stack since last JavaCall. If not, we need
duke@435 1109 // to get the target method from the JavaCall wrapper.
duke@435 1110 vframeStream vfst(thread, true); // Do not skip any javaCalls
duke@435 1111 methodHandle callee_method;
duke@435 1112 if (vfst.at_end()) {
duke@435 1113 // No Java frames were found on stack since we did the JavaCall.
duke@435 1114 // Hence the stack can only contain an entry_frame. We need to
duke@435 1115 // find the target method from the stub frame.
duke@435 1116 RegisterMap reg_map(thread, false);
duke@435 1117 frame fr = thread->last_frame();
duke@435 1118 assert(fr.is_runtime_frame(), "must be a runtimeStub");
duke@435 1119 fr = fr.sender(&reg_map);
duke@435 1120 assert(fr.is_entry_frame(), "must be");
duke@435 1121 // fr is now pointing to the entry frame.
duke@435 1122 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
duke@435 1123 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
duke@435 1124 } else {
duke@435 1125 Bytecodes::Code bc;
duke@435 1126 CallInfo callinfo;
duke@435 1127 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
duke@435 1128 callee_method = callinfo.selected_method();
duke@435 1129 }
duke@435 1130 assert(callee_method()->is_method(), "must be");
duke@435 1131 return callee_method;
duke@435 1132 }
duke@435 1133
duke@435 1134 // Resolves a call.
duke@435 1135 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
duke@435 1136 bool is_virtual,
duke@435 1137 bool is_optimized, TRAPS) {
duke@435 1138 methodHandle callee_method;
duke@435 1139 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1140 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
duke@435 1141 int retry_count = 0;
duke@435 1142 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
never@1577 1143 callee_method->method_holder() != SystemDictionary::Object_klass()) {
duke@435 1144 // If has a pending exception then there is no need to re-try to
duke@435 1145 // resolve this method.
duke@435 1146 // If the method has been redefined, we need to try again.
duke@435 1147 // Hack: we have no way to update the vtables of arrays, so don't
duke@435 1148 // require that java.lang.Object has been updated.
duke@435 1149
duke@435 1150 // It is very unlikely that method is redefined more than 100 times
duke@435 1151 // in the middle of resolve. If it is looping here more than 100 times
duke@435 1152 // means then there could be a bug here.
duke@435 1153 guarantee((retry_count++ < 100),
duke@435 1154 "Could not resolve to latest version of redefined method");
duke@435 1155 // method is redefined in the middle of resolve so re-try.
duke@435 1156 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1157 }
duke@435 1158 }
duke@435 1159 return callee_method;
duke@435 1160 }
duke@435 1161
duke@435 1162 // Resolves a call. The compilers generate code for calls that go here
duke@435 1163 // and are patched with the real destination of the call.
duke@435 1164 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
duke@435 1165 bool is_virtual,
duke@435 1166 bool is_optimized, TRAPS) {
duke@435 1167
duke@435 1168 ResourceMark rm(thread);
duke@435 1169 RegisterMap cbl_map(thread, false);
duke@435 1170 frame caller_frame = thread->last_frame().sender(&cbl_map);
duke@435 1171
twisti@1730 1172 CodeBlob* caller_cb = caller_frame.cb();
twisti@1730 1173 guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
twisti@1730 1174 nmethod* caller_nm = caller_cb->as_nmethod_or_null();
duke@435 1175 // make sure caller is not getting deoptimized
duke@435 1176 // and removed before we are done with it.
duke@435 1177 // CLEANUP - with lazy deopt shouldn't need this lock
twisti@1730 1178 nmethodLocker caller_lock(caller_nm);
duke@435 1179
duke@435 1180
duke@435 1181 // determine call info & receiver
duke@435 1182 // note: a) receiver is NULL for static calls
duke@435 1183 // b) an exception is thrown if receiver is NULL for non-static calls
duke@435 1184 CallInfo call_info;
duke@435 1185 Bytecodes::Code invoke_code = Bytecodes::_illegal;
duke@435 1186 Handle receiver = find_callee_info(thread, invoke_code,
duke@435 1187 call_info, CHECK_(methodHandle()));
duke@435 1188 methodHandle callee_method = call_info.selected_method();
duke@435 1189
twisti@3969 1190 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
twisti@3969 1191 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
twisti@3969 1192 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
twisti@3969 1193 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
duke@435 1194
duke@435 1195 #ifndef PRODUCT
duke@435 1196 // tracing/debugging/statistics
duke@435 1197 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
duke@435 1198 (is_virtual) ? (&_resolve_virtual_ctr) :
duke@435 1199 (&_resolve_static_ctr);
duke@435 1200 Atomic::inc(addr);
duke@435 1201
duke@435 1202 if (TraceCallFixup) {
duke@435 1203 ResourceMark rm(thread);
duke@435 1204 tty->print("resolving %s%s (%s) call to",
duke@435 1205 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
duke@435 1206 Bytecodes::name(invoke_code));
duke@435 1207 callee_method->print_short_name(tty);
twisti@3969 1208 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
duke@435 1209 }
duke@435 1210 #endif
duke@435 1211
twisti@3969 1212 // JSR 292 key invariant:
twisti@1730 1213 // If the resolved method is a MethodHandle invoke target the call
twisti@3969 1214 // site must be a MethodHandle call site, because the lambda form might tail-call
twisti@3969 1215 // leaving the stack in a state unknown to either caller or callee
twisti@3969 1216 // TODO detune for now but we might need it again
twisti@3969 1217 // assert(!callee_method->is_compiled_lambda_form() ||
twisti@3969 1218 // caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
twisti@1730 1219
duke@435 1220 // Compute entry points. This might require generation of C2I converter
duke@435 1221 // frames, so we cannot be holding any locks here. Furthermore, the
duke@435 1222 // computation of the entry points is independent of patching the call. We
duke@435 1223 // always return the entry-point, but we only patch the stub if the call has
duke@435 1224 // not been deoptimized. Return values: For a virtual call this is an
duke@435 1225 // (cached_oop, destination address) pair. For a static call/optimized
duke@435 1226 // virtual this is just a destination address.
duke@435 1227
duke@435 1228 StaticCallInfo static_call_info;
duke@435 1229 CompiledICInfo virtual_call_info;
duke@435 1230
duke@435 1231 // Make sure the callee nmethod does not get deoptimized and removed before
duke@435 1232 // we are done patching the code.
twisti@1730 1233 nmethod* callee_nm = callee_method->code();
twisti@1730 1234 nmethodLocker nl_callee(callee_nm);
duke@435 1235 #ifdef ASSERT
twisti@1730 1236 address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
duke@435 1237 #endif
duke@435 1238
duke@435 1239 if (is_virtual) {
duke@435 1240 assert(receiver.not_null(), "sanity check");
duke@435 1241 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
duke@435 1242 KlassHandle h_klass(THREAD, receiver->klass());
duke@435 1243 CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
duke@435 1244 is_optimized, static_bound, virtual_call_info,
duke@435 1245 CHECK_(methodHandle()));
duke@435 1246 } else {
duke@435 1247 // static call
duke@435 1248 CompiledStaticCall::compute_entry(callee_method, static_call_info);
duke@435 1249 }
duke@435 1250
duke@435 1251 // grab lock, check for deoptimization and potentially patch caller
duke@435 1252 {
duke@435 1253 MutexLocker ml_patch(CompiledIC_lock);
duke@435 1254
coleenp@4037 1255 // Now that we are ready to patch if the Method* was redefined then
duke@435 1256 // don't update call site and let the caller retry.
duke@435 1257
duke@435 1258 if (!callee_method->is_old()) {
duke@435 1259 #ifdef ASSERT
duke@435 1260 // We must not try to patch to jump to an already unloaded method.
duke@435 1261 if (dest_entry_point != 0) {
duke@435 1262 assert(CodeCache::find_blob(dest_entry_point) != NULL,
duke@435 1263 "should not unload nmethod while locked");
duke@435 1264 }
duke@435 1265 #endif
duke@435 1266 if (is_virtual) {
coleenp@4037 1267 nmethod* nm = callee_nm;
coleenp@4037 1268 if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
coleenp@4037 1269 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
duke@435 1270 if (inline_cache->is_clean()) {
duke@435 1271 inline_cache->set_to_monomorphic(virtual_call_info);
duke@435 1272 }
duke@435 1273 } else {
duke@435 1274 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
duke@435 1275 if (ssc->is_clean()) ssc->set(static_call_info);
duke@435 1276 }
duke@435 1277 }
duke@435 1278
duke@435 1279 } // unlock CompiledIC_lock
duke@435 1280
duke@435 1281 return callee_method;
duke@435 1282 }
duke@435 1283
duke@435 1284
duke@435 1285 // Inline caches exist only in compiled code
duke@435 1286 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
duke@435 1287 #ifdef ASSERT
duke@435 1288 RegisterMap reg_map(thread, false);
duke@435 1289 frame stub_frame = thread->last_frame();
duke@435 1290 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1291 frame caller_frame = stub_frame.sender(&reg_map);
duke@435 1292 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
duke@435 1293 #endif /* ASSERT */
duke@435 1294
duke@435 1295 methodHandle callee_method;
duke@435 1296 JRT_BLOCK
duke@435 1297 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
coleenp@4037 1298 // Return Method* through TLS
coleenp@4037 1299 thread->set_vm_result_2(callee_method());
duke@435 1300 JRT_BLOCK_END
duke@435 1301 // return compiled code entry point after potential safepoints
duke@435 1302 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1303 return callee_method->verified_code_entry();
duke@435 1304 JRT_END
duke@435 1305
duke@435 1306
duke@435 1307 // Handle call site that has been made non-entrant
duke@435 1308 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
duke@435 1309 // 6243940 We might end up in here if the callee is deoptimized
duke@435 1310 // as we race to call it. We don't want to take a safepoint if
duke@435 1311 // the caller was interpreted because the caller frame will look
duke@435 1312 // interpreted to the stack walkers and arguments are now
duke@435 1313 // "compiled" so it is much better to make this transition
duke@435 1314 // invisible to the stack walking code. The i2c path will
duke@435 1315 // place the callee method in the callee_target. It is stashed
duke@435 1316 // there because if we try and find the callee by normal means a
duke@435 1317 // safepoint is possible and have trouble gc'ing the compiled args.
duke@435 1318 RegisterMap reg_map(thread, false);
duke@435 1319 frame stub_frame = thread->last_frame();
duke@435 1320 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1321 frame caller_frame = stub_frame.sender(&reg_map);
twisti@1570 1322
twisti@1570 1323 if (caller_frame.is_interpreted_frame() ||
twisti@3969 1324 caller_frame.is_entry_frame()) {
coleenp@4037 1325 Method* callee = thread->callee_target();
duke@435 1326 guarantee(callee != NULL && callee->is_method(), "bad handshake");
coleenp@4037 1327 thread->set_vm_result_2(callee);
duke@435 1328 thread->set_callee_target(NULL);
duke@435 1329 return callee->get_c2i_entry();
duke@435 1330 }
duke@435 1331
duke@435 1332 // Must be compiled to compiled path which is safe to stackwalk
duke@435 1333 methodHandle callee_method;
duke@435 1334 JRT_BLOCK
duke@435 1335 // Force resolving of caller (if we called from compiled frame)
duke@435 1336 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
coleenp@4037 1337 thread->set_vm_result_2(callee_method());
duke@435 1338 JRT_BLOCK_END
duke@435 1339 // return compiled code entry point after potential safepoints
duke@435 1340 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1341 return callee_method->verified_code_entry();
duke@435 1342 JRT_END
duke@435 1343
duke@435 1344
duke@435 1345 // resolve a static call and patch code
duke@435 1346 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
duke@435 1347 methodHandle callee_method;
duke@435 1348 JRT_BLOCK
duke@435 1349 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
coleenp@4037 1350 thread->set_vm_result_2(callee_method());
duke@435 1351 JRT_BLOCK_END
duke@435 1352 // return compiled code entry point after potential safepoints
duke@435 1353 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1354 return callee_method->verified_code_entry();
duke@435 1355 JRT_END
duke@435 1356
duke@435 1357
duke@435 1358 // resolve virtual call and update inline cache to monomorphic
duke@435 1359 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
duke@435 1360 methodHandle callee_method;
duke@435 1361 JRT_BLOCK
duke@435 1362 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
coleenp@4037 1363 thread->set_vm_result_2(callee_method());
duke@435 1364 JRT_BLOCK_END
duke@435 1365 // return compiled code entry point after potential safepoints
duke@435 1366 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1367 return callee_method->verified_code_entry();
duke@435 1368 JRT_END
duke@435 1369
duke@435 1370
duke@435 1371 // Resolve a virtual call that can be statically bound (e.g., always
duke@435 1372 // monomorphic, so it has no inline cache). Patch code to resolved target.
duke@435 1373 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
duke@435 1374 methodHandle callee_method;
duke@435 1375 JRT_BLOCK
duke@435 1376 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
coleenp@4037 1377 thread->set_vm_result_2(callee_method());
duke@435 1378 JRT_BLOCK_END
duke@435 1379 // return compiled code entry point after potential safepoints
duke@435 1380 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1381 return callee_method->verified_code_entry();
duke@435 1382 JRT_END
duke@435 1383
duke@435 1384
duke@435 1385
duke@435 1386
duke@435 1387
duke@435 1388 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
duke@435 1389 ResourceMark rm(thread);
duke@435 1390 CallInfo call_info;
duke@435 1391 Bytecodes::Code bc;
duke@435 1392
duke@435 1393 // receiver is NULL for static calls. An exception is thrown for NULL
duke@435 1394 // receivers for non-static calls
duke@435 1395 Handle receiver = find_callee_info(thread, bc, call_info,
duke@435 1396 CHECK_(methodHandle()));
duke@435 1397 // Compiler1 can produce virtual call sites that can actually be statically bound
duke@435 1398 // If we fell thru to below we would think that the site was going megamorphic
duke@435 1399 // when in fact the site can never miss. Worse because we'd think it was megamorphic
duke@435 1400 // we'd try and do a vtable dispatch however methods that can be statically bound
duke@435 1401 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
duke@435 1402 // reresolution of the call site (as if we did a handle_wrong_method and not an
duke@435 1403 // plain ic_miss) and the site will be converted to an optimized virtual call site
duke@435 1404 // never to miss again. I don't believe C2 will produce code like this but if it
duke@435 1405 // did this would still be the correct thing to do for it too, hence no ifdef.
duke@435 1406 //
duke@435 1407 if (call_info.resolved_method()->can_be_statically_bound()) {
duke@435 1408 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
duke@435 1409 if (TraceCallFixup) {
duke@435 1410 RegisterMap reg_map(thread, false);
duke@435 1411 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1412 ResourceMark rm(thread);
duke@435 1413 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
duke@435 1414 callee_method->print_short_name(tty);
duke@435 1415 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
duke@435 1416 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1417 }
duke@435 1418 return callee_method;
duke@435 1419 }
duke@435 1420
duke@435 1421 methodHandle callee_method = call_info.selected_method();
duke@435 1422
duke@435 1423 bool should_be_mono = false;
duke@435 1424
duke@435 1425 #ifndef PRODUCT
duke@435 1426 Atomic::inc(&_ic_miss_ctr);
duke@435 1427
duke@435 1428 // Statistics & Tracing
duke@435 1429 if (TraceCallFixup) {
duke@435 1430 ResourceMark rm(thread);
duke@435 1431 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1432 callee_method->print_short_name(tty);
duke@435 1433 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1434 }
duke@435 1435
duke@435 1436 if (ICMissHistogram) {
duke@435 1437 MutexLocker m(VMStatistic_lock);
duke@435 1438 RegisterMap reg_map(thread, false);
duke@435 1439 frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
duke@435 1440 // produce statistics under the lock
duke@435 1441 trace_ic_miss(f.pc());
duke@435 1442 }
duke@435 1443 #endif
duke@435 1444
duke@435 1445 // install an event collector so that when a vtable stub is created the
duke@435 1446 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
duke@435 1447 // event can't be posted when the stub is created as locks are held
duke@435 1448 // - instead the event will be deferred until the event collector goes
duke@435 1449 // out of scope.
duke@435 1450 JvmtiDynamicCodeEventCollector event_collector;
duke@435 1451
duke@435 1452 // Update inline cache to megamorphic. Skip update if caller has been
duke@435 1453 // made non-entrant or we are called from interpreted.
duke@435 1454 { MutexLocker ml_patch (CompiledIC_lock);
duke@435 1455 RegisterMap reg_map(thread, false);
duke@435 1456 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1457 CodeBlob* cb = caller_frame.cb();
duke@435 1458 if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
duke@435 1459 // Not a non-entrant nmethod, so find inline_cache
coleenp@4037 1460 CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
duke@435 1461 bool should_be_mono = false;
duke@435 1462 if (inline_cache->is_optimized()) {
duke@435 1463 if (TraceCallFixup) {
duke@435 1464 ResourceMark rm(thread);
duke@435 1465 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1466 callee_method->print_short_name(tty);
duke@435 1467 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1468 }
duke@435 1469 should_be_mono = true;
coleenp@4037 1470 } else if (inline_cache->is_icholder_call()) {
coleenp@4037 1471 CompiledICHolder* ic_oop = inline_cache->cached_icholder();
coleenp@4037 1472 if ( ic_oop != NULL) {
duke@435 1473
duke@435 1474 if (receiver()->klass() == ic_oop->holder_klass()) {
duke@435 1475 // This isn't a real miss. We must have seen that compiled code
duke@435 1476 // is now available and we want the call site converted to a
duke@435 1477 // monomorphic compiled call site.
duke@435 1478 // We can't assert for callee_method->code() != NULL because it
duke@435 1479 // could have been deoptimized in the meantime
duke@435 1480 if (TraceCallFixup) {
duke@435 1481 ResourceMark rm(thread);
duke@435 1482 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
duke@435 1483 callee_method->print_short_name(tty);
duke@435 1484 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1485 }
duke@435 1486 should_be_mono = true;
duke@435 1487 }
duke@435 1488 }
duke@435 1489 }
duke@435 1490
duke@435 1491 if (should_be_mono) {
duke@435 1492
duke@435 1493 // We have a path that was monomorphic but was going interpreted
duke@435 1494 // and now we have (or had) a compiled entry. We correct the IC
duke@435 1495 // by using a new icBuffer.
duke@435 1496 CompiledICInfo info;
duke@435 1497 KlassHandle receiver_klass(THREAD, receiver()->klass());
duke@435 1498 inline_cache->compute_monomorphic_entry(callee_method,
duke@435 1499 receiver_klass,
duke@435 1500 inline_cache->is_optimized(),
duke@435 1501 false,
duke@435 1502 info, CHECK_(methodHandle()));
duke@435 1503 inline_cache->set_to_monomorphic(info);
duke@435 1504 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
duke@435 1505 // Change to megamorphic
duke@435 1506 inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
duke@435 1507 } else {
duke@435 1508 // Either clean or megamorphic
duke@435 1509 }
duke@435 1510 }
duke@435 1511 } // Release CompiledIC_lock
duke@435 1512
duke@435 1513 return callee_method;
duke@435 1514 }
duke@435 1515
duke@435 1516 //
duke@435 1517 // Resets a call-site in compiled code so it will get resolved again.
duke@435 1518 // This routines handles both virtual call sites, optimized virtual call
duke@435 1519 // sites, and static call sites. Typically used to change a call sites
duke@435 1520 // destination from compiled to interpreted.
duke@435 1521 //
duke@435 1522 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
duke@435 1523 ResourceMark rm(thread);
duke@435 1524 RegisterMap reg_map(thread, false);
duke@435 1525 frame stub_frame = thread->last_frame();
duke@435 1526 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
duke@435 1527 frame caller = stub_frame.sender(&reg_map);
duke@435 1528
duke@435 1529 // Do nothing if the frame isn't a live compiled frame.
duke@435 1530 // nmethod could be deoptimized by the time we get here
duke@435 1531 // so no update to the caller is needed.
duke@435 1532
duke@435 1533 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
duke@435 1534
duke@435 1535 address pc = caller.pc();
duke@435 1536
duke@435 1537 // Default call_addr is the location of the "basic" call.
duke@435 1538 // Determine the address of the call we a reresolving. With
duke@435 1539 // Inline Caches we will always find a recognizable call.
duke@435 1540 // With Inline Caches disabled we may or may not find a
duke@435 1541 // recognizable call. We will always find a call for static
duke@435 1542 // calls and for optimized virtual calls. For vanilla virtual
duke@435 1543 // calls it depends on the state of the UseInlineCaches switch.
duke@435 1544 //
duke@435 1545 // With Inline Caches disabled we can get here for a virtual call
duke@435 1546 // for two reasons:
duke@435 1547 // 1 - calling an abstract method. The vtable for abstract methods
duke@435 1548 // will run us thru handle_wrong_method and we will eventually
duke@435 1549 // end up in the interpreter to throw the ame.
duke@435 1550 // 2 - a racing deoptimization. We could be doing a vanilla vtable
duke@435 1551 // call and between the time we fetch the entry address and
duke@435 1552 // we jump to it the target gets deoptimized. Similar to 1
duke@435 1553 // we will wind up in the interprter (thru a c2i with c2).
duke@435 1554 //
duke@435 1555 address call_addr = NULL;
duke@435 1556 {
duke@435 1557 // Get call instruction under lock because another thread may be
duke@435 1558 // busy patching it.
duke@435 1559 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1560 // Location of call instruction
duke@435 1561 if (NativeCall::is_call_before(pc)) {
duke@435 1562 NativeCall *ncall = nativeCall_before(pc);
duke@435 1563 call_addr = ncall->instruction_address();
duke@435 1564 }
duke@435 1565 }
duke@435 1566
duke@435 1567 // Check for static or virtual call
duke@435 1568 bool is_static_call = false;
duke@435 1569 nmethod* caller_nm = CodeCache::find_nmethod(pc);
duke@435 1570 // Make sure nmethod doesn't get deoptimized and removed until
duke@435 1571 // this is done with it.
duke@435 1572 // CLEANUP - with lazy deopt shouldn't need this lock
duke@435 1573 nmethodLocker nmlock(caller_nm);
duke@435 1574
duke@435 1575 if (call_addr != NULL) {
duke@435 1576 RelocIterator iter(caller_nm, call_addr, call_addr+1);
duke@435 1577 int ret = iter.next(); // Get item
duke@435 1578 if (ret) {
duke@435 1579 assert(iter.addr() == call_addr, "must find call");
duke@435 1580 if (iter.type() == relocInfo::static_call_type) {
duke@435 1581 is_static_call = true;
duke@435 1582 } else {
duke@435 1583 assert(iter.type() == relocInfo::virtual_call_type ||
duke@435 1584 iter.type() == relocInfo::opt_virtual_call_type
duke@435 1585 , "unexpected relocInfo. type");
duke@435 1586 }
duke@435 1587 } else {
duke@435 1588 assert(!UseInlineCaches, "relocation info. must exist for this address");
duke@435 1589 }
duke@435 1590
duke@435 1591 // Cleaning the inline cache will force a new resolve. This is more robust
duke@435 1592 // than directly setting it to the new destination, since resolving of calls
duke@435 1593 // is always done through the same code path. (experience shows that it
duke@435 1594 // leads to very hard to track down bugs, if an inline cache gets updated
duke@435 1595 // to a wrong method). It should not be performance critical, since the
duke@435 1596 // resolve is only done once.
duke@435 1597
duke@435 1598 MutexLocker ml(CompiledIC_lock);
duke@435 1599 //
duke@435 1600 // We do not patch the call site if the nmethod has been made non-entrant
duke@435 1601 // as it is a waste of time
duke@435 1602 //
duke@435 1603 if (caller_nm->is_in_use()) {
duke@435 1604 if (is_static_call) {
duke@435 1605 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
duke@435 1606 ssc->set_to_clean();
duke@435 1607 } else {
duke@435 1608 // compiled, dispatched call (which used to call an interpreted method)
coleenp@4037 1609 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
duke@435 1610 inline_cache->set_to_clean();
duke@435 1611 }
duke@435 1612 }
duke@435 1613 }
duke@435 1614
duke@435 1615 }
duke@435 1616
duke@435 1617 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
duke@435 1618
duke@435 1619
duke@435 1620 #ifndef PRODUCT
duke@435 1621 Atomic::inc(&_wrong_method_ctr);
duke@435 1622
duke@435 1623 if (TraceCallFixup) {
duke@435 1624 ResourceMark rm(thread);
duke@435 1625 tty->print("handle_wrong_method reresolving call to");
duke@435 1626 callee_method->print_short_name(tty);
duke@435 1627 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1628 }
duke@435 1629 #endif
duke@435 1630
duke@435 1631 return callee_method;
duke@435 1632 }
duke@435 1633
twisti@4101 1634 #ifdef ASSERT
twisti@4101 1635 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
twisti@4101 1636 const BasicType* sig_bt,
twisti@4101 1637 const VMRegPair* regs) {
twisti@4101 1638 ResourceMark rm;
twisti@4101 1639 const int total_args_passed = method->size_of_parameters();
twisti@4101 1640 const VMRegPair* regs_with_member_name = regs;
twisti@4101 1641 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
twisti@4101 1642
twisti@4101 1643 const int member_arg_pos = total_args_passed - 1;
twisti@4101 1644 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
twisti@4101 1645 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
twisti@4101 1646
twisti@4101 1647 const bool is_outgoing = method->is_method_handle_intrinsic();
twisti@4101 1648 int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
twisti@4101 1649
twisti@4101 1650 for (int i = 0; i < member_arg_pos; i++) {
twisti@4101 1651 VMReg a = regs_with_member_name[i].first();
twisti@4101 1652 VMReg b = regs_without_member_name[i].first();
twisti@4101 1653 assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
twisti@4101 1654 }
twisti@4101 1655 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
twisti@4101 1656 }
twisti@4101 1657 #endif
twisti@4101 1658
duke@435 1659 // ---------------------------------------------------------------------------
duke@435 1660 // We are calling the interpreter via a c2i. Normally this would mean that
duke@435 1661 // we were called by a compiled method. However we could have lost a race
duke@435 1662 // where we went int -> i2c -> c2i and so the caller could in fact be
twisti@1640 1663 // interpreted. If the caller is compiled we attempt to patch the caller
duke@435 1664 // so he no longer calls into the interpreter.
coleenp@4037 1665 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
coleenp@4037 1666 Method* moop(method);
duke@435 1667
duke@435 1668 address entry_point = moop->from_compiled_entry();
duke@435 1669
duke@435 1670 // It's possible that deoptimization can occur at a call site which hasn't
duke@435 1671 // been resolved yet, in which case this function will be called from
duke@435 1672 // an nmethod that has been patched for deopt and we can ignore the
duke@435 1673 // request for a fixup.
duke@435 1674 // Also it is possible that we lost a race in that from_compiled_entry
duke@435 1675 // is now back to the i2c in that case we don't need to patch and if
duke@435 1676 // we did we'd leap into space because the callsite needs to use
coleenp@4037 1677 // "to interpreter" stub in order to load up the Method*. Don't
duke@435 1678 // ask me how I know this...
duke@435 1679
duke@435 1680 CodeBlob* cb = CodeCache::find_blob(caller_pc);
twisti@1640 1681 if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
twisti@1640 1682 return;
twisti@1640 1683 }
twisti@1640 1684
twisti@1640 1685 // The check above makes sure this is a nmethod.
twisti@1640 1686 nmethod* nm = cb->as_nmethod_or_null();
twisti@1640 1687 assert(nm, "must be");
twisti@1640 1688
twisti@3240 1689 // Get the return PC for the passed caller PC.
twisti@3240 1690 address return_pc = caller_pc + frame::pc_return_offset;
twisti@3240 1691
duke@435 1692 // There is a benign race here. We could be attempting to patch to a compiled
duke@435 1693 // entry point at the same time the callee is being deoptimized. If that is
duke@435 1694 // the case then entry_point may in fact point to a c2i and we'd patch the
duke@435 1695 // call site with the same old data. clear_code will set code() to NULL
duke@435 1696 // at the end of it. If we happen to see that NULL then we can skip trying
duke@435 1697 // to patch. If we hit the window where the callee has a c2i in the
duke@435 1698 // from_compiled_entry and the NULL isn't present yet then we lose the race
duke@435 1699 // and patch the code with the same old data. Asi es la vida.
duke@435 1700
duke@435 1701 if (moop->code() == NULL) return;
duke@435 1702
twisti@1640 1703 if (nm->is_in_use()) {
duke@435 1704
duke@435 1705 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
duke@435 1706 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
twisti@3240 1707 if (NativeCall::is_call_before(return_pc)) {
twisti@3240 1708 NativeCall *call = nativeCall_before(return_pc);
duke@435 1709 //
duke@435 1710 // bug 6281185. We might get here after resolving a call site to a vanilla
duke@435 1711 // virtual call. Because the resolvee uses the verified entry it may then
duke@435 1712 // see compiled code and attempt to patch the site by calling us. This would
duke@435 1713 // then incorrectly convert the call site to optimized and its downhill from
duke@435 1714 // there. If you're lucky you'll get the assert in the bugid, if not you've
duke@435 1715 // just made a call site that could be megamorphic into a monomorphic site
duke@435 1716 // for the rest of its life! Just another racing bug in the life of
duke@435 1717 // fixup_callers_callsite ...
duke@435 1718 //
twisti@1918 1719 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
duke@435 1720 iter.next();
duke@435 1721 assert(iter.has_current(), "must have a reloc at java call site");
duke@435 1722 relocInfo::relocType typ = iter.reloc()->type();
duke@435 1723 if ( typ != relocInfo::static_call_type &&
duke@435 1724 typ != relocInfo::opt_virtual_call_type &&
duke@435 1725 typ != relocInfo::static_stub_type) {
duke@435 1726 return;
duke@435 1727 }
duke@435 1728 address destination = call->destination();
duke@435 1729 if (destination != entry_point) {
duke@435 1730 CodeBlob* callee = CodeCache::find_blob(destination);
duke@435 1731 // callee == cb seems weird. It means calling interpreter thru stub.
duke@435 1732 if (callee == cb || callee->is_adapter_blob()) {
duke@435 1733 // static call or optimized virtual
duke@435 1734 if (TraceCallFixup) {
twisti@1639 1735 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1736 moop->print_short_name(tty);
duke@435 1737 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1738 }
duke@435 1739 call->set_destination_mt_safe(entry_point);
duke@435 1740 } else {
duke@435 1741 if (TraceCallFixup) {
duke@435 1742 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1743 moop->print_short_name(tty);
duke@435 1744 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1745 }
duke@435 1746 // assert is too strong could also be resolve destinations.
duke@435 1747 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
duke@435 1748 }
duke@435 1749 } else {
duke@435 1750 if (TraceCallFixup) {
twisti@1639 1751 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1752 moop->print_short_name(tty);
duke@435 1753 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1754 }
duke@435 1755 }
duke@435 1756 }
duke@435 1757 }
duke@435 1758 IRT_END
duke@435 1759
duke@435 1760
duke@435 1761 // same as JVM_Arraycopy, but called directly from compiled code
duke@435 1762 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
duke@435 1763 oopDesc* dest, jint dest_pos,
duke@435 1764 jint length,
duke@435 1765 JavaThread* thread)) {
duke@435 1766 #ifndef PRODUCT
duke@435 1767 _slow_array_copy_ctr++;
duke@435 1768 #endif
duke@435 1769 // Check if we have null pointers
duke@435 1770 if (src == NULL || dest == NULL) {
duke@435 1771 THROW(vmSymbols::java_lang_NullPointerException());
duke@435 1772 }
duke@435 1773 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
duke@435 1774 // even though the copy_array API also performs dynamic checks to ensure
duke@435 1775 // that src and dest are truly arrays (and are conformable).
duke@435 1776 // The copy_array mechanism is awkward and could be removed, but
duke@435 1777 // the compilers don't call this function except as a last resort,
duke@435 1778 // so it probably doesn't matter.
hseigel@4278 1779 src->klass()->copy_array((arrayOopDesc*)src, src_pos,
duke@435 1780 (arrayOopDesc*)dest, dest_pos,
duke@435 1781 length, thread);
duke@435 1782 }
duke@435 1783 JRT_END
duke@435 1784
duke@435 1785 char* SharedRuntime::generate_class_cast_message(
duke@435 1786 JavaThread* thread, const char* objName) {
duke@435 1787
duke@435 1788 // Get target class name from the checkcast instruction
duke@435 1789 vframeStream vfst(thread, true);
duke@435 1790 assert(!vfst.at_end(), "Java frame must exist");
never@2462 1791 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
hseigel@4278 1792 Klass* targetKlass = vfst.method()->constants()->klass_at(
hseigel@4278 1793 cc.index(), thread);
duke@435 1794 return generate_class_cast_message(objName, targetKlass->external_name());
duke@435 1795 }
duke@435 1796
duke@435 1797 char* SharedRuntime::generate_class_cast_message(
jrose@1145 1798 const char* objName, const char* targetKlassName, const char* desc) {
duke@435 1799 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
duke@435 1800
kamg@488 1801 char* message = NEW_RESOURCE_ARRAY(char, msglen);
duke@435 1802 if (NULL == message) {
kamg@488 1803 // Shouldn't happen, but don't cause even more problems if it does
duke@435 1804 message = const_cast<char*>(objName);
duke@435 1805 } else {
duke@435 1806 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
duke@435 1807 }
duke@435 1808 return message;
duke@435 1809 }
duke@435 1810
duke@435 1811 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
duke@435 1812 (void) JavaThread::current()->reguard_stack();
duke@435 1813 JRT_END
duke@435 1814
duke@435 1815
duke@435 1816 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
duke@435 1817 #ifndef PRODUCT
duke@435 1818 int SharedRuntime::_monitor_enter_ctr=0;
duke@435 1819 #endif
duke@435 1820 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
duke@435 1821 oop obj(_obj);
duke@435 1822 #ifndef PRODUCT
duke@435 1823 _monitor_enter_ctr++; // monitor enter slow
duke@435 1824 #endif
duke@435 1825 if (PrintBiasedLockingStatistics) {
duke@435 1826 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
duke@435 1827 }
duke@435 1828 Handle h_obj(THREAD, obj);
duke@435 1829 if (UseBiasedLocking) {
duke@435 1830 // Retry fast entry if bias is revoked to avoid unnecessary inflation
duke@435 1831 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
duke@435 1832 } else {
duke@435 1833 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
duke@435 1834 }
duke@435 1835 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
duke@435 1836 JRT_END
duke@435 1837
duke@435 1838 #ifndef PRODUCT
duke@435 1839 int SharedRuntime::_monitor_exit_ctr=0;
duke@435 1840 #endif
duke@435 1841 // Handles the uncommon cases of monitor unlocking in compiled code
duke@435 1842 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
duke@435 1843 oop obj(_obj);
duke@435 1844 #ifndef PRODUCT
duke@435 1845 _monitor_exit_ctr++; // monitor exit slow
duke@435 1846 #endif
duke@435 1847 Thread* THREAD = JavaThread::current();
duke@435 1848 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
duke@435 1849 // testing was unable to ever fire the assert that guarded it so I have removed it.
duke@435 1850 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
duke@435 1851 #undef MIGHT_HAVE_PENDING
duke@435 1852 #ifdef MIGHT_HAVE_PENDING
duke@435 1853 // Save and restore any pending_exception around the exception mark.
duke@435 1854 // While the slow_exit must not throw an exception, we could come into
duke@435 1855 // this routine with one set.
duke@435 1856 oop pending_excep = NULL;
duke@435 1857 const char* pending_file;
duke@435 1858 int pending_line;
duke@435 1859 if (HAS_PENDING_EXCEPTION) {
duke@435 1860 pending_excep = PENDING_EXCEPTION;
duke@435 1861 pending_file = THREAD->exception_file();
duke@435 1862 pending_line = THREAD->exception_line();
duke@435 1863 CLEAR_PENDING_EXCEPTION;
duke@435 1864 }
duke@435 1865 #endif /* MIGHT_HAVE_PENDING */
duke@435 1866
duke@435 1867 {
duke@435 1868 // Exit must be non-blocking, and therefore no exceptions can be thrown.
duke@435 1869 EXCEPTION_MARK;
duke@435 1870 ObjectSynchronizer::slow_exit(obj, lock, THREAD);
duke@435 1871 }
duke@435 1872
duke@435 1873 #ifdef MIGHT_HAVE_PENDING
duke@435 1874 if (pending_excep != NULL) {
duke@435 1875 THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
duke@435 1876 }
duke@435 1877 #endif /* MIGHT_HAVE_PENDING */
duke@435 1878 JRT_END
duke@435 1879
duke@435 1880 #ifndef PRODUCT
duke@435 1881
duke@435 1882 void SharedRuntime::print_statistics() {
duke@435 1883 ttyLocker ttyl;
duke@435 1884 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
duke@435 1885
duke@435 1886 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr);
duke@435 1887 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr);
duke@435 1888 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
duke@435 1889
duke@435 1890 SharedRuntime::print_ic_miss_histogram();
duke@435 1891
duke@435 1892 if (CountRemovableExceptions) {
duke@435 1893 if (_nof_removable_exceptions > 0) {
duke@435 1894 Unimplemented(); // this counter is not yet incremented
duke@435 1895 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
duke@435 1896 }
duke@435 1897 }
duke@435 1898
duke@435 1899 // Dump the JRT_ENTRY counters
duke@435 1900 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
duke@435 1901 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
duke@435 1902 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
duke@435 1903 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
duke@435 1904 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
duke@435 1905 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
duke@435 1906 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
duke@435 1907
duke@435 1908 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
duke@435 1909 tty->print_cr("%5d wrong method", _wrong_method_ctr );
duke@435 1910 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
duke@435 1911 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
duke@435 1912 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
duke@435 1913
duke@435 1914 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
duke@435 1915 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
duke@435 1916 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
duke@435 1917 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
duke@435 1918 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
duke@435 1919 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
duke@435 1920 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
duke@435 1921 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
duke@435 1922 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
duke@435 1923 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
duke@435 1924 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
duke@435 1925 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
duke@435 1926 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
duke@435 1927 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
duke@435 1928 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
duke@435 1929 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
duke@435 1930
never@1622 1931 AdapterHandlerLibrary::print_statistics();
never@1622 1932
duke@435 1933 if (xtty != NULL) xtty->tail("statistics");
duke@435 1934 }
duke@435 1935
duke@435 1936 inline double percent(int x, int y) {
duke@435 1937 return 100.0 * x / MAX2(y, 1);
duke@435 1938 }
duke@435 1939
duke@435 1940 class MethodArityHistogram {
duke@435 1941 public:
duke@435 1942 enum { MAX_ARITY = 256 };
duke@435 1943 private:
duke@435 1944 static int _arity_histogram[MAX_ARITY]; // histogram of #args
duke@435 1945 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words
duke@435 1946 static int _max_arity; // max. arity seen
duke@435 1947 static int _max_size; // max. arg size seen
duke@435 1948
duke@435 1949 static void add_method_to_histogram(nmethod* nm) {
coleenp@4037 1950 Method* m = nm->method();
duke@435 1951 ArgumentCount args(m->signature());
duke@435 1952 int arity = args.size() + (m->is_static() ? 0 : 1);
duke@435 1953 int argsize = m->size_of_parameters();
duke@435 1954 arity = MIN2(arity, MAX_ARITY-1);
duke@435 1955 argsize = MIN2(argsize, MAX_ARITY-1);
duke@435 1956 int count = nm->method()->compiled_invocation_count();
duke@435 1957 _arity_histogram[arity] += count;
duke@435 1958 _size_histogram[argsize] += count;
duke@435 1959 _max_arity = MAX2(_max_arity, arity);
duke@435 1960 _max_size = MAX2(_max_size, argsize);
duke@435 1961 }
duke@435 1962
duke@435 1963 void print_histogram_helper(int n, int* histo, const char* name) {
duke@435 1964 const int N = MIN2(5, n);
duke@435 1965 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1966 double sum = 0;
duke@435 1967 double weighted_sum = 0;
duke@435 1968 int i;
duke@435 1969 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
duke@435 1970 double rest = sum;
duke@435 1971 double percent = sum / 100;
duke@435 1972 for (i = 0; i <= N; i++) {
duke@435 1973 rest -= histo[i];
duke@435 1974 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
duke@435 1975 }
duke@435 1976 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
duke@435 1977 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
duke@435 1978 }
duke@435 1979
duke@435 1980 void print_histogram() {
duke@435 1981 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1982 print_histogram_helper(_max_arity, _arity_histogram, "arity");
duke@435 1983 tty->print_cr("\nSame for parameter size (in words):");
duke@435 1984 print_histogram_helper(_max_size, _size_histogram, "size");
duke@435 1985 tty->cr();
duke@435 1986 }
duke@435 1987
duke@435 1988 public:
duke@435 1989 MethodArityHistogram() {
duke@435 1990 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
duke@435 1991 _max_arity = _max_size = 0;
duke@435 1992 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
duke@435 1993 CodeCache::nmethods_do(add_method_to_histogram);
duke@435 1994 print_histogram();
duke@435 1995 }
duke@435 1996 };
duke@435 1997
duke@435 1998 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 1999 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 2000 int MethodArityHistogram::_max_arity;
duke@435 2001 int MethodArityHistogram::_max_size;
duke@435 2002
duke@435 2003 void SharedRuntime::print_call_statistics(int comp_total) {
duke@435 2004 tty->print_cr("Calls from compiled code:");
duke@435 2005 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
duke@435 2006 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
duke@435 2007 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
duke@435 2008 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total));
duke@435 2009 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
duke@435 2010 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
duke@435 2011 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
duke@435 2012 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
duke@435 2013 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
duke@435 2014 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
duke@435 2015 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
duke@435 2016 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
duke@435 2017 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
duke@435 2018 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
duke@435 2019 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
duke@435 2020 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
duke@435 2021 tty->cr();
duke@435 2022 tty->print_cr("Note 1: counter updates are not MT-safe.");
duke@435 2023 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
duke@435 2024 tty->print_cr(" %% in nested categories are relative to their category");
duke@435 2025 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
duke@435 2026 tty->cr();
duke@435 2027
duke@435 2028 MethodArityHistogram h;
duke@435 2029 }
duke@435 2030 #endif
duke@435 2031
duke@435 2032
never@1622 2033 // A simple wrapper class around the calling convention information
never@1622 2034 // that allows sharing of adapters for the same calling convention.
zgu@3900 2035 class AdapterFingerPrint : public CHeapObj<mtCode> {
never@1622 2036 private:
twisti@3969 2037 enum {
twisti@3969 2038 _basic_type_bits = 4,
twisti@3969 2039 _basic_type_mask = right_n_bits(_basic_type_bits),
twisti@3969 2040 _basic_types_per_int = BitsPerInt / _basic_type_bits,
twisti@3969 2041 _compact_int_count = 3
twisti@3969 2042 };
twisti@3969 2043 // TO DO: Consider integrating this with a more global scheme for compressing signatures.
twisti@3969 2044 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
twisti@3969 2045
never@1622 2046 union {
twisti@3969 2047 int _compact[_compact_int_count];
never@1642 2048 int* _fingerprint;
never@1622 2049 } _value;
never@1642 2050 int _length; // A negative length indicates the fingerprint is in the compact form,
never@1642 2051 // Otherwise _value._fingerprint is the array.
never@1622 2052
never@1642 2053 // Remap BasicTypes that are handled equivalently by the adapters.
never@1642 2054 // These are correct for the current system but someday it might be
never@1642 2055 // necessary to make this mapping platform dependent.
twisti@3969 2056 static int adapter_encoding(BasicType in) {
never@1642 2057 switch(in) {
never@1642 2058 case T_BOOLEAN:
never@1642 2059 case T_BYTE:
never@1642 2060 case T_SHORT:
never@1642 2061 case T_CHAR:
never@1642 2062 // There are all promoted to T_INT in the calling convention
never@1642 2063 return T_INT;
never@1642 2064
never@1642 2065 case T_OBJECT:
never@1642 2066 case T_ARRAY:
twisti@3969 2067 // In other words, we assume that any register good enough for
twisti@3969 2068 // an int or long is good enough for a managed pointer.
never@1642 2069 #ifdef _LP64
twisti@1861 2070 return T_LONG;
never@1642 2071 #else
twisti@1861 2072 return T_INT;
never@1642 2073 #endif
never@1642 2074
never@1642 2075 case T_INT:
never@1642 2076 case T_LONG:
never@1642 2077 case T_FLOAT:
never@1642 2078 case T_DOUBLE:
never@1642 2079 case T_VOID:
never@1642 2080 return in;
never@1642 2081
never@1642 2082 default:
never@1642 2083 ShouldNotReachHere();
never@1642 2084 return T_CONFLICT;
never@1622 2085 }
never@1622 2086 }
never@1622 2087
never@1642 2088 public:
never@1642 2089 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
never@1642 2090 // The fingerprint is based on the BasicType signature encoded
never@3039 2091 // into an array of ints with eight entries per int.
never@1642 2092 int* ptr;
twisti@3969 2093 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
twisti@3969 2094 if (len <= _compact_int_count) {
twisti@3969 2095 assert(_compact_int_count == 3, "else change next line");
never@1642 2096 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
never@1642 2097 // Storing the signature encoded as signed chars hits about 98%
never@1642 2098 // of the time.
never@1642 2099 _length = -len;
never@1642 2100 ptr = _value._compact;
never@1642 2101 } else {
never@1642 2102 _length = len;
zgu@3900 2103 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
never@1642 2104 ptr = _value._fingerprint;
never@1642 2105 }
never@1642 2106
never@3039 2107 // Now pack the BasicTypes with 8 per int
never@1642 2108 int sig_index = 0;
never@1642 2109 for (int index = 0; index < len; index++) {
never@1642 2110 int value = 0;
twisti@3969 2111 for (int byte = 0; byte < _basic_types_per_int; byte++) {
twisti@3969 2112 int bt = ((sig_index < total_args_passed)
twisti@3969 2113 ? adapter_encoding(sig_bt[sig_index++])
twisti@3969 2114 : 0);
twisti@3969 2115 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
twisti@3969 2116 value = (value << _basic_type_bits) | bt;
never@1642 2117 }
never@1642 2118 ptr[index] = value;
never@1642 2119 }
never@1622 2120 }
never@1622 2121
never@1622 2122 ~AdapterFingerPrint() {
never@1622 2123 if (_length > 0) {
zgu@3900 2124 FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
never@1622 2125 }
never@1622 2126 }
never@1622 2127
never@1642 2128 int value(int index) {
never@1622 2129 if (_length < 0) {
never@1622 2130 return _value._compact[index];
never@1622 2131 }
never@1622 2132 return _value._fingerprint[index];
never@1622 2133 }
never@1622 2134 int length() {
never@1622 2135 if (_length < 0) return -_length;
never@1622 2136 return _length;
never@1622 2137 }
never@1622 2138
never@1622 2139 bool is_compact() {
never@1622 2140 return _length <= 0;
never@1622 2141 }
never@1622 2142
never@1622 2143 unsigned int compute_hash() {
never@1642 2144 int hash = 0;
never@1622 2145 for (int i = 0; i < length(); i++) {
never@1642 2146 int v = value(i);
never@1622 2147 hash = (hash << 8) ^ v ^ (hash >> 5);
never@1622 2148 }
never@1622 2149 return (unsigned int)hash;
never@1622 2150 }
never@1622 2151
never@1622 2152 const char* as_string() {
never@1622 2153 stringStream st;
never@3039 2154 st.print("0x");
never@1622 2155 for (int i = 0; i < length(); i++) {
never@3039 2156 st.print("%08x", value(i));
never@1622 2157 }
never@1622 2158 return st.as_string();
never@1622 2159 }
never@1622 2160
never@1622 2161 bool equals(AdapterFingerPrint* other) {
never@1622 2162 if (other->_length != _length) {
never@1622 2163 return false;
never@1622 2164 }
never@1622 2165 if (_length < 0) {
twisti@3969 2166 assert(_compact_int_count == 3, "else change next line");
never@1642 2167 return _value._compact[0] == other->_value._compact[0] &&
never@1642 2168 _value._compact[1] == other->_value._compact[1] &&
never@1642 2169 _value._compact[2] == other->_value._compact[2];
never@1622 2170 } else {
never@1622 2171 for (int i = 0; i < _length; i++) {
never@1622 2172 if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
never@1622 2173 return false;
never@1622 2174 }
never@1622 2175 }
never@1622 2176 }
never@1622 2177 return true;
never@1622 2178 }
never@1622 2179 };
never@1622 2180
never@1622 2181
never@1622 2182 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
zgu@3900 2183 class AdapterHandlerTable : public BasicHashtable<mtCode> {
never@1622 2184 friend class AdapterHandlerTableIterator;
never@1622 2185
never@1622 2186 private:
never@1622 2187
kvn@1698 2188 #ifndef PRODUCT
never@1622 2189 static int _lookups; // number of calls to lookup
never@1622 2190 static int _buckets; // number of buckets checked
never@1622 2191 static int _equals; // number of buckets checked with matching hash
never@1622 2192 static int _hits; // number of successful lookups
never@1622 2193 static int _compact; // number of equals calls with compact signature
never@1622 2194 #endif
never@1622 2195
never@1622 2196 AdapterHandlerEntry* bucket(int i) {
zgu@3900 2197 return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
never@1622 2198 }
never@1622 2199
never@1622 2200 public:
never@1622 2201 AdapterHandlerTable()
zgu@3900 2202 : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
never@1622 2203
never@1622 2204 // Create a new entry suitable for insertion in the table
never@1622 2205 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
zgu@3900 2206 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
never@1622 2207 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2208 return entry;
never@1622 2209 }
never@1622 2210
never@1622 2211 // Insert an entry into the table
never@1622 2212 void add(AdapterHandlerEntry* entry) {
never@1622 2213 int index = hash_to_index(entry->hash());
never@1622 2214 add_entry(index, entry);
never@1622 2215 }
never@1622 2216
never@1642 2217 void free_entry(AdapterHandlerEntry* entry) {
never@1642 2218 entry->deallocate();
zgu@3900 2219 BasicHashtable<mtCode>::free_entry(entry);
never@1642 2220 }
never@1642 2221
never@1622 2222 // Find a entry with the same fingerprint if it exists
never@1642 2223 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
kvn@1698 2224 NOT_PRODUCT(_lookups++);
never@1642 2225 AdapterFingerPrint fp(total_args_passed, sig_bt);
never@1622 2226 unsigned int hash = fp.compute_hash();
never@1622 2227 int index = hash_to_index(hash);
never@1622 2228 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
kvn@1698 2229 NOT_PRODUCT(_buckets++);
never@1622 2230 if (e->hash() == hash) {
kvn@1698 2231 NOT_PRODUCT(_equals++);
never@1622 2232 if (fp.equals(e->fingerprint())) {
kvn@1698 2233 #ifndef PRODUCT
never@1622 2234 if (fp.is_compact()) _compact++;
never@1622 2235 _hits++;
never@1622 2236 #endif
never@1622 2237 return e;
never@1622 2238 }
never@1622 2239 }
never@1622 2240 }
never@1622 2241 return NULL;
never@1622 2242 }
never@1622 2243
kvn@1698 2244 #ifndef PRODUCT
never@1622 2245 void print_statistics() {
never@1622 2246 ResourceMark rm;
never@1622 2247 int longest = 0;
never@1622 2248 int empty = 0;
never@1622 2249 int total = 0;
never@1622 2250 int nonempty = 0;
never@1622 2251 for (int index = 0; index < table_size(); index++) {
never@1622 2252 int count = 0;
never@1622 2253 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
never@1622 2254 count++;
never@1622 2255 }
never@1622 2256 if (count != 0) nonempty++;
never@1622 2257 if (count == 0) empty++;
never@1622 2258 if (count > longest) longest = count;
never@1622 2259 total += count;
never@1622 2260 }
never@1622 2261 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
never@1622 2262 empty, longest, total, total / (double)nonempty);
never@1622 2263 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
never@1622 2264 _lookups, _buckets, _equals, _hits, _compact);
kvn@1698 2265 }
never@1622 2266 #endif
never@1622 2267 };
never@1622 2268
never@1622 2269
kvn@1698 2270 #ifndef PRODUCT
never@1622 2271
never@1622 2272 int AdapterHandlerTable::_lookups;
never@1622 2273 int AdapterHandlerTable::_buckets;
never@1622 2274 int AdapterHandlerTable::_equals;
never@1622 2275 int AdapterHandlerTable::_hits;
never@1622 2276 int AdapterHandlerTable::_compact;
never@1622 2277
bobv@2036 2278 #endif
bobv@2036 2279
never@1622 2280 class AdapterHandlerTableIterator : public StackObj {
never@1622 2281 private:
never@1622 2282 AdapterHandlerTable* _table;
never@1622 2283 int _index;
never@1622 2284 AdapterHandlerEntry* _current;
never@1622 2285
never@1622 2286 void scan() {
never@1622 2287 while (_index < _table->table_size()) {
never@1622 2288 AdapterHandlerEntry* a = _table->bucket(_index);
twisti@1919 2289 _index++;
never@1622 2290 if (a != NULL) {
never@1622 2291 _current = a;
never@1622 2292 return;
never@1622 2293 }
never@1622 2294 }
never@1622 2295 }
never@1622 2296
never@1622 2297 public:
never@1622 2298 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
never@1622 2299 scan();
never@1622 2300 }
never@1622 2301 bool has_next() {
never@1622 2302 return _current != NULL;
never@1622 2303 }
never@1622 2304 AdapterHandlerEntry* next() {
never@1622 2305 if (_current != NULL) {
never@1622 2306 AdapterHandlerEntry* result = _current;
never@1622 2307 _current = _current->next();
never@1622 2308 if (_current == NULL) scan();
never@1622 2309 return result;
never@1622 2310 } else {
never@1622 2311 return NULL;
never@1622 2312 }
never@1622 2313 }
never@1622 2314 };
never@1622 2315
never@1622 2316
duke@435 2317 // ---------------------------------------------------------------------------
duke@435 2318 // Implementation of AdapterHandlerLibrary
never@1622 2319 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
never@1622 2320 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
duke@435 2321 const int AdapterHandlerLibrary_size = 16*K;
kvn@1177 2322 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
kvn@1177 2323
kvn@1177 2324 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
kvn@1177 2325 // Should be called only when AdapterHandlerLibrary_lock is active.
kvn@1177 2326 if (_buffer == NULL) // Initialize lazily
kvn@1177 2327 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
kvn@1177 2328 return _buffer;
kvn@1177 2329 }
duke@435 2330
duke@435 2331 void AdapterHandlerLibrary::initialize() {
never@1622 2332 if (_adapters != NULL) return;
never@1622 2333 _adapters = new AdapterHandlerTable();
duke@435 2334
duke@435 2335 // Create a special handler for abstract methods. Abstract methods
duke@435 2336 // are never compiled so an i2c entry is somewhat meaningless, but
duke@435 2337 // fill it in with something appropriate just in case. Pass handle
duke@435 2338 // wrong method for the c2i transitions.
duke@435 2339 address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
never@1622 2340 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
never@1622 2341 StubRoutines::throw_AbstractMethodError_entry(),
never@1622 2342 wrong_method, wrong_method);
duke@435 2343 }
duke@435 2344
never@1622 2345 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
never@1622 2346 address i2c_entry,
never@1622 2347 address c2i_entry,
never@1622 2348 address c2i_unverified_entry) {
never@1622 2349 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2350 }
never@1622 2351
never@1622 2352 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
never@1622 2353 // Use customized signature handler. Need to lock around updates to
never@1622 2354 // the AdapterHandlerTable (it is not safe for concurrent readers
never@1622 2355 // and a single writer: this could be fixed if it becomes a
never@1622 2356 // problem).
duke@435 2357
duke@435 2358 // Get the address of the ic_miss handlers before we grab the
duke@435 2359 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
duke@435 2360 // was caused by the initialization of the stubs happening
duke@435 2361 // while we held the lock and then notifying jvmti while
duke@435 2362 // holding it. This just forces the initialization to be a little
duke@435 2363 // earlier.
duke@435 2364 address ic_miss = SharedRuntime::get_ic_miss_stub();
duke@435 2365 assert(ic_miss != NULL, "must have handler");
duke@435 2366
never@1622 2367 ResourceMark rm;
never@1622 2368
twisti@2103 2369 NOT_PRODUCT(int insts_size);
twisti@1734 2370 AdapterBlob* B = NULL;
kvn@1177 2371 AdapterHandlerEntry* entry = NULL;
never@1622 2372 AdapterFingerPrint* fingerprint = NULL;
duke@435 2373 {
duke@435 2374 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2375 // make sure data structure is initialized
duke@435 2376 initialize();
duke@435 2377
duke@435 2378 if (method->is_abstract()) {
never@1622 2379 return _abstract_method_handler;
duke@435 2380 }
duke@435 2381
never@1622 2382 // Fill in the signature array, for the calling-convention call.
never@1622 2383 int total_args_passed = method->size_of_parameters(); // All args on stack
never@1622 2384
never@1622 2385 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
never@1622 2386 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
never@1622 2387 int i = 0;
never@1622 2388 if (!method->is_static()) // Pass in receiver first
never@1622 2389 sig_bt[i++] = T_OBJECT;
never@1622 2390 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
never@1622 2391 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
never@1622 2392 if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
never@1622 2393 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
never@1622 2394 }
never@1622 2395 assert(i == total_args_passed, "");
never@1622 2396
never@1642 2397 // Lookup method signature's fingerprint
never@1642 2398 entry = _adapters->lookup(total_args_passed, sig_bt);
never@1622 2399
never@1642 2400 #ifdef ASSERT
never@1642 2401 AdapterHandlerEntry* shared_entry = NULL;
never@1642 2402 if (VerifyAdapterSharing && entry != NULL) {
never@1642 2403 shared_entry = entry;
never@1642 2404 entry = NULL;
never@1642 2405 }
never@1642 2406 #endif
never@1642 2407
never@1622 2408 if (entry != NULL) {
never@1622 2409 return entry;
duke@435 2410 }
duke@435 2411
never@1642 2412 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
never@1642 2413 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
never@1642 2414
never@1622 2415 // Make a C heap allocated version of the fingerprint to store in the adapter
never@1642 2416 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
never@1622 2417
duke@435 2418 // Create I2C & C2I handlers
duke@435 2419
twisti@1734 2420 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2421 if (buf != NULL) {
twisti@2103 2422 CodeBuffer buffer(buf);
kvn@1177 2423 short buffer_locs[20];
kvn@1177 2424 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
kvn@1177 2425 sizeof(buffer_locs)/sizeof(relocInfo));
kvn@1177 2426 MacroAssembler _masm(&buffer);
duke@435 2427
kvn@1177 2428 entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
kvn@1177 2429 total_args_passed,
kvn@1177 2430 comp_args_on_stack,
kvn@1177 2431 sig_bt,
never@1622 2432 regs,
never@1622 2433 fingerprint);
kvn@1177 2434
never@1642 2435 #ifdef ASSERT
never@1642 2436 if (VerifyAdapterSharing) {
never@1642 2437 if (shared_entry != NULL) {
twisti@2103 2438 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
never@1642 2439 "code must match");
never@1642 2440 // Release the one just created and return the original
never@1642 2441 _adapters->free_entry(entry);
never@1642 2442 return shared_entry;
never@1642 2443 } else {
twisti@2103 2444 entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
never@1642 2445 }
never@1642 2446 }
never@1642 2447 #endif
never@1642 2448
twisti@1734 2449 B = AdapterBlob::create(&buffer);
twisti@2103 2450 NOT_PRODUCT(insts_size = buffer.insts_size());
duke@435 2451 }
kvn@463 2452 if (B == NULL) {
kvn@463 2453 // CodeCache is full, disable compilation
kvn@463 2454 // Ought to log this but compile log is only per compile thread
kvn@463 2455 // and we're some non descript Java thread.
kvn@1637 2456 MutexUnlocker mu(AdapterHandlerLibrary_lock);
kvn@1637 2457 CompileBroker::handle_full_code_cache();
never@1622 2458 return NULL; // Out of CodeCache space
kvn@463 2459 }
twisti@2103 2460 entry->relocate(B->content_begin());
duke@435 2461 #ifndef PRODUCT
duke@435 2462 // debugging suppport
twisti@3969 2463 if (PrintAdapterHandlers || PrintStubCode) {
kvn@4107 2464 ttyLocker ttyl;
twisti@3969 2465 entry->print_adapter_on(tty);
twisti@3969 2466 tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
never@1622 2467 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
twisti@3969 2468 method->signature()->as_C_string(), insts_size);
duke@435 2469 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
twisti@3969 2470 if (Verbose || PrintStubCode) {
twisti@3969 2471 address first_pc = entry->base_address();
kvn@4107 2472 if (first_pc != NULL) {
twisti@3969 2473 Disassembler::decode(first_pc, first_pc + insts_size);
kvn@4107 2474 tty->cr();
kvn@4107 2475 }
twisti@3969 2476 }
duke@435 2477 }
duke@435 2478 #endif
duke@435 2479
never@1622 2480 _adapters->add(entry);
duke@435 2481 }
duke@435 2482 // Outside of the lock
duke@435 2483 if (B != NULL) {
duke@435 2484 char blob_id[256];
duke@435 2485 jio_snprintf(blob_id,
duke@435 2486 sizeof(blob_id),
never@1622 2487 "%s(%s)@" PTR_FORMAT,
twisti@1734 2488 B->name(),
never@1622 2489 fingerprint->as_string(),
twisti@2103 2490 B->content_begin());
twisti@2103 2491 Forte::register_stub(blob_id, B->content_begin(), B->content_end());
duke@435 2492
duke@435 2493 if (JvmtiExport::should_post_dynamic_code_generated()) {
twisti@2103 2494 JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
duke@435 2495 }
duke@435 2496 }
never@1622 2497 return entry;
duke@435 2498 }
duke@435 2499
twisti@3969 2500 address AdapterHandlerEntry::base_address() {
twisti@3969 2501 address base = _i2c_entry;
twisti@3969 2502 if (base == NULL) base = _c2i_entry;
twisti@3969 2503 assert(base <= _c2i_entry || _c2i_entry == NULL, "");
twisti@3969 2504 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
twisti@3969 2505 return base;
twisti@3969 2506 }
twisti@3969 2507
duke@435 2508 void AdapterHandlerEntry::relocate(address new_base) {
twisti@3969 2509 address old_base = base_address();
twisti@3969 2510 assert(old_base != NULL, "");
twisti@3969 2511 ptrdiff_t delta = new_base - old_base;
twisti@3969 2512 if (_i2c_entry != NULL)
duke@435 2513 _i2c_entry += delta;
twisti@3969 2514 if (_c2i_entry != NULL)
duke@435 2515 _c2i_entry += delta;
twisti@3969 2516 if (_c2i_unverified_entry != NULL)
duke@435 2517 _c2i_unverified_entry += delta;
twisti@3969 2518 assert(base_address() == new_base, "");
duke@435 2519 }
duke@435 2520
never@1642 2521
never@1642 2522 void AdapterHandlerEntry::deallocate() {
never@1642 2523 delete _fingerprint;
never@1642 2524 #ifdef ASSERT
zgu@3900 2525 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
zgu@3900 2526 if (_saved_sig) FREE_C_HEAP_ARRAY(Basictype, _saved_sig, mtCode);
never@1642 2527 #endif
never@1642 2528 }
never@1642 2529
never@1642 2530
never@1642 2531 #ifdef ASSERT
never@1642 2532 // Capture the code before relocation so that it can be compared
never@1642 2533 // against other versions. If the code is captured after relocation
never@1642 2534 // then relative instructions won't be equivalent.
never@1642 2535 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
zgu@3900 2536 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
never@1642 2537 _code_length = length;
never@1642 2538 memcpy(_saved_code, buffer, length);
never@1642 2539 _total_args_passed = total_args_passed;
zgu@3900 2540 _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed, mtCode);
never@1642 2541 memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
never@1642 2542 }
never@1642 2543
never@1642 2544
never@1642 2545 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
never@1642 2546 if (length != _code_length) {
never@1642 2547 return false;
never@1642 2548 }
never@1642 2549 for (int i = 0; i < length; i++) {
never@1642 2550 if (buffer[i] != _saved_code[i]) {
never@1642 2551 return false;
never@1642 2552 }
never@1642 2553 }
never@1642 2554 return true;
never@1642 2555 }
never@1642 2556 #endif
never@1642 2557
never@1642 2558
duke@435 2559 // Create a native wrapper for this native method. The wrapper converts the
duke@435 2560 // java compiled calling convention to the native convention, handlizes
duke@435 2561 // arguments, and transitions to native. On return from the native we transition
duke@435 2562 // back to java blocking if a safepoint is in progress.
twisti@2687 2563 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
duke@435 2564 ResourceMark rm;
duke@435 2565 nmethod* nm = NULL;
duke@435 2566
twisti@3969 2567 assert(method->is_native(), "must be native");
twisti@3969 2568 assert(method->is_method_handle_intrinsic() ||
twisti@3969 2569 method->has_native_function(), "must have something valid to call!");
duke@435 2570
duke@435 2571 {
duke@435 2572 // perform the work while holding the lock, but perform any printing outside the lock
duke@435 2573 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2574 // See if somebody beat us to it
duke@435 2575 nm = method->code();
duke@435 2576 if (nm) {
duke@435 2577 return nm;
duke@435 2578 }
duke@435 2579
kvn@1177 2580 ResourceMark rm;
duke@435 2581
kvn@1177 2582 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2583 if (buf != NULL) {
twisti@2103 2584 CodeBuffer buffer(buf);
kvn@1177 2585 double locs_buf[20];
kvn@1177 2586 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2587 MacroAssembler _masm(&buffer);
duke@435 2588
kvn@1177 2589 // Fill in the signature array, for the calling-convention call.
twisti@4101 2590 const int total_args_passed = method->size_of_parameters();
twisti@4101 2591
twisti@4101 2592 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
twisti@4101 2593 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
kvn@1177 2594 int i=0;
kvn@1177 2595 if( !method->is_static() ) // Pass in receiver first
kvn@1177 2596 sig_bt[i++] = T_OBJECT;
kvn@1177 2597 SignatureStream ss(method->signature());
kvn@1177 2598 for( ; !ss.at_return_type(); ss.next()) {
kvn@1177 2599 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
kvn@1177 2600 if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
kvn@1177 2601 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kvn@1177 2602 }
twisti@4101 2603 assert(i == total_args_passed, "");
kvn@1177 2604 BasicType ret_type = ss.type();
kvn@1177 2605
twisti@3969 2606 // Now get the compiled-Java layout as input (or output) arguments.
twisti@3969 2607 // NOTE: Stubs for compiled entry points of method handle intrinsics
twisti@3969 2608 // are just trampolines so the argument registers must be outgoing ones.
twisti@3969 2609 const bool is_outgoing = method->is_method_handle_intrinsic();
twisti@3969 2610 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
kvn@1177 2611
kvn@1177 2612 // Generate the compiled-to-native wrapper code
kvn@1177 2613 nm = SharedRuntime::generate_native_wrapper(&_masm,
kvn@1177 2614 method,
twisti@2687 2615 compile_id,
twisti@4101 2616 sig_bt,
twisti@4101 2617 regs,
kvn@1177 2618 ret_type);
duke@435 2619 }
duke@435 2620 }
duke@435 2621
duke@435 2622 // Must unlock before calling set_code
never@2083 2623
duke@435 2624 // Install the generated code.
duke@435 2625 if (nm != NULL) {
twisti@2687 2626 if (PrintCompilation) {
twisti@2687 2627 ttyLocker ttyl;
twisti@2687 2628 CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
twisti@2687 2629 }
duke@435 2630 method->set_code(method, nm);
duke@435 2631 nm->post_compiled_method_load_event();
duke@435 2632 } else {
duke@435 2633 // CodeCache is full, disable compilation
kvn@1637 2634 CompileBroker::handle_full_code_cache();
duke@435 2635 }
duke@435 2636 return nm;
duke@435 2637 }
duke@435 2638
never@3500 2639 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
never@3500 2640 assert(thread == JavaThread::current(), "must be");
never@3500 2641 // The code is about to enter a JNI lazy critical native method and
never@3500 2642 // _needs_gc is true, so if this thread is already in a critical
never@3500 2643 // section then just return, otherwise this thread should block
never@3500 2644 // until needs_gc has been cleared.
never@3500 2645 if (thread->in_critical()) {
never@3500 2646 return;
never@3500 2647 }
never@3500 2648 // Lock and unlock a critical section to give the system a chance to block
never@3500 2649 GC_locker::lock_critical(thread);
never@3500 2650 GC_locker::unlock_critical(thread);
never@3500 2651 JRT_END
never@3500 2652
kamg@551 2653 #ifdef HAVE_DTRACE_H
kamg@551 2654 // Create a dtrace nmethod for this method. The wrapper converts the
kamg@551 2655 // java compiled calling convention to the native convention, makes a dummy call
kamg@551 2656 // (actually nops for the size of the call instruction, which become a trap if
kamg@551 2657 // probe is enabled). The returns to the caller. Since this all looks like a
kamg@551 2658 // leaf no thread transition is needed.
kamg@551 2659
kamg@551 2660 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
kamg@551 2661 ResourceMark rm;
kamg@551 2662 nmethod* nm = NULL;
kamg@551 2663
kamg@551 2664 if (PrintCompilation) {
kamg@551 2665 ttyLocker ttyl;
kamg@551 2666 tty->print("--- n%s ");
kamg@551 2667 method->print_short_name(tty);
kamg@551 2668 if (method->is_static()) {
kamg@551 2669 tty->print(" (static)");
kamg@551 2670 }
kamg@551 2671 tty->cr();
kamg@551 2672 }
kamg@551 2673
kamg@551 2674 {
kamg@551 2675 // perform the work while holding the lock, but perform any printing
kamg@551 2676 // outside the lock
kamg@551 2677 MutexLocker mu(AdapterHandlerLibrary_lock);
kamg@551 2678 // See if somebody beat us to it
kamg@551 2679 nm = method->code();
kamg@551 2680 if (nm) {
kamg@551 2681 return nm;
kamg@551 2682 }
kamg@551 2683
kvn@1177 2684 ResourceMark rm;
kvn@1177 2685
kvn@1177 2686 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2687 if (buf != NULL) {
twisti@2103 2688 CodeBuffer buffer(buf);
kvn@1177 2689 // Need a few relocation entries
kvn@1177 2690 double locs_buf[20];
kvn@1177 2691 buffer.insts()->initialize_shared_locs(
kamg@551 2692 (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2693 MacroAssembler _masm(&buffer);
kamg@551 2694
kvn@1177 2695 // Generate the compiled-to-native wrapper code
kvn@1177 2696 nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
kvn@1177 2697 }
kamg@551 2698 }
kamg@551 2699 return nm;
kamg@551 2700 }
kamg@551 2701
kamg@551 2702 // the dtrace method needs to convert java lang string to utf8 string.
kamg@551 2703 void SharedRuntime::get_utf(oopDesc* src, address dst) {
kamg@551 2704 typeArrayOop jlsValue = java_lang_String::value(src);
kamg@551 2705 int jlsOffset = java_lang_String::offset(src);
kamg@551 2706 int jlsLen = java_lang_String::length(src);
kamg@551 2707 jchar* jlsPos = (jlsLen == 0) ? NULL :
kamg@551 2708 jlsValue->char_at_addr(jlsOffset);
coleenp@4142 2709 assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
kamg@551 2710 (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
kamg@551 2711 }
kamg@551 2712 #endif // ndef HAVE_DTRACE_H
kamg@551 2713
duke@435 2714 // -------------------------------------------------------------------------
duke@435 2715 // Java-Java calling convention
duke@435 2716 // (what you use when Java calls Java)
duke@435 2717
duke@435 2718 //------------------------------name_for_receiver----------------------------------
duke@435 2719 // For a given signature, return the VMReg for parameter 0.
duke@435 2720 VMReg SharedRuntime::name_for_receiver() {
duke@435 2721 VMRegPair regs;
duke@435 2722 BasicType sig_bt = T_OBJECT;
duke@435 2723 (void) java_calling_convention(&sig_bt, &regs, 1, true);
duke@435 2724 // Return argument 0 register. In the LP64 build pointers
duke@435 2725 // take 2 registers, but the VM wants only the 'main' name.
duke@435 2726 return regs.first();
duke@435 2727 }
duke@435 2728
roland@5222 2729 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
duke@435 2730 // This method is returning a data structure allocating as a
duke@435 2731 // ResourceObject, so do not put any ResourceMarks in here.
duke@435 2732 char *s = sig->as_C_string();
duke@435 2733 int len = (int)strlen(s);
ccheung@5259 2734 s++; len--; // Skip opening paren
duke@435 2735 char *t = s+len;
duke@435 2736 while( *(--t) != ')' ) ; // Find close paren
duke@435 2737
duke@435 2738 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
duke@435 2739 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
duke@435 2740 int cnt = 0;
twisti@1573 2741 if (has_receiver) {
duke@435 2742 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
duke@435 2743 }
duke@435 2744
duke@435 2745 while( s < t ) {
duke@435 2746 switch( *s++ ) { // Switch on signature character
duke@435 2747 case 'B': sig_bt[cnt++] = T_BYTE; break;
duke@435 2748 case 'C': sig_bt[cnt++] = T_CHAR; break;
duke@435 2749 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break;
duke@435 2750 case 'F': sig_bt[cnt++] = T_FLOAT; break;
duke@435 2751 case 'I': sig_bt[cnt++] = T_INT; break;
duke@435 2752 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break;
duke@435 2753 case 'S': sig_bt[cnt++] = T_SHORT; break;
duke@435 2754 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
duke@435 2755 case 'V': sig_bt[cnt++] = T_VOID; break;
duke@435 2756 case 'L': // Oop
duke@435 2757 while( *s++ != ';' ) ; // Skip signature
duke@435 2758 sig_bt[cnt++] = T_OBJECT;
duke@435 2759 break;
duke@435 2760 case '[': { // Array
duke@435 2761 do { // Skip optional size
duke@435 2762 while( *s >= '0' && *s <= '9' ) s++;
duke@435 2763 } while( *s++ == '[' ); // Nested arrays?
duke@435 2764 // Skip element type
duke@435 2765 if( s[-1] == 'L' )
duke@435 2766 while( *s++ != ';' ) ; // Skip signature
duke@435 2767 sig_bt[cnt++] = T_ARRAY;
duke@435 2768 break;
duke@435 2769 }
duke@435 2770 default : ShouldNotReachHere();
duke@435 2771 }
duke@435 2772 }
roland@5222 2773
roland@5222 2774 if (has_appendix) {
roland@5222 2775 sig_bt[cnt++] = T_OBJECT;
roland@5222 2776 }
roland@5222 2777
duke@435 2778 assert( cnt < 256, "grow table size" );
duke@435 2779
duke@435 2780 int comp_args_on_stack;
duke@435 2781 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
duke@435 2782
duke@435 2783 // the calling convention doesn't count out_preserve_stack_slots so
duke@435 2784 // we must add that in to get "true" stack offsets.
duke@435 2785
duke@435 2786 if (comp_args_on_stack) {
duke@435 2787 for (int i = 0; i < cnt; i++) {
duke@435 2788 VMReg reg1 = regs[i].first();
duke@435 2789 if( reg1->is_stack()) {
duke@435 2790 // Yuck
duke@435 2791 reg1 = reg1->bias(out_preserve_stack_slots());
duke@435 2792 }
duke@435 2793 VMReg reg2 = regs[i].second();
duke@435 2794 if( reg2->is_stack()) {
duke@435 2795 // Yuck
duke@435 2796 reg2 = reg2->bias(out_preserve_stack_slots());
duke@435 2797 }
duke@435 2798 regs[i].set_pair(reg2, reg1);
duke@435 2799 }
duke@435 2800 }
duke@435 2801
duke@435 2802 // results
duke@435 2803 *arg_size = cnt;
duke@435 2804 return regs;
duke@435 2805 }
duke@435 2806
duke@435 2807 // OSR Migration Code
duke@435 2808 //
duke@435 2809 // This code is used convert interpreter frames into compiled frames. It is
duke@435 2810 // called from very start of a compiled OSR nmethod. A temp array is
duke@435 2811 // allocated to hold the interesting bits of the interpreter frame. All
duke@435 2812 // active locks are inflated to allow them to move. The displaced headers and
duke@435 2813 // active interpeter locals are copied into the temp buffer. Then we return
duke@435 2814 // back to the compiled code. The compiled code then pops the current
duke@435 2815 // interpreter frame off the stack and pushes a new compiled frame. Then it
duke@435 2816 // copies the interpreter locals and displaced headers where it wants.
duke@435 2817 // Finally it calls back to free the temp buffer.
duke@435 2818 //
duke@435 2819 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
duke@435 2820
duke@435 2821 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
duke@435 2822
duke@435 2823 //
duke@435 2824 // This code is dependent on the memory layout of the interpreter local
duke@435 2825 // array and the monitors. On all of our platforms the layout is identical
duke@435 2826 // so this code is shared. If some platform lays the their arrays out
duke@435 2827 // differently then this code could move to platform specific code or
duke@435 2828 // the code here could be modified to copy items one at a time using
duke@435 2829 // frame accessor methods and be platform independent.
duke@435 2830
duke@435 2831 frame fr = thread->last_frame();
duke@435 2832 assert( fr.is_interpreted_frame(), "" );
duke@435 2833 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
duke@435 2834
duke@435 2835 // Figure out how many monitors are active.
duke@435 2836 int active_monitor_count = 0;
duke@435 2837 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
duke@435 2838 kptr < fr.interpreter_frame_monitor_begin();
duke@435 2839 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
duke@435 2840 if( kptr->obj() != NULL ) active_monitor_count++;
duke@435 2841 }
duke@435 2842
duke@435 2843 // QQQ we could place number of active monitors in the array so that compiled code
duke@435 2844 // could double check it.
duke@435 2845
coleenp@4037 2846 Method* moop = fr.interpreter_frame_method();
duke@435 2847 int max_locals = moop->max_locals();
duke@435 2848 // Allocate temp buffer, 1 word per local & 2 per active monitor
duke@435 2849 int buf_size_words = max_locals + active_monitor_count*2;
zgu@3900 2850 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
duke@435 2851
duke@435 2852 // Copy the locals. Order is preserved so that loading of longs works.
duke@435 2853 // Since there's no GC I can copy the oops blindly.
duke@435 2854 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
twisti@1861 2855 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
duke@435 2856 (HeapWord*)&buf[0],
duke@435 2857 max_locals);
duke@435 2858
duke@435 2859 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
duke@435 2860 int i = max_locals;
duke@435 2861 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
duke@435 2862 kptr2 < fr.interpreter_frame_monitor_begin();
duke@435 2863 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
duke@435 2864 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
duke@435 2865 BasicLock *lock = kptr2->lock();
duke@435 2866 // Inflate so the displaced header becomes position-independent
duke@435 2867 if (lock->displaced_header()->is_unlocked())
duke@435 2868 ObjectSynchronizer::inflate_helper(kptr2->obj());
duke@435 2869 // Now the displaced header is free to move
duke@435 2870 buf[i++] = (intptr_t)lock->displaced_header();
duke@435 2871 buf[i++] = (intptr_t)kptr2->obj();
duke@435 2872 }
duke@435 2873 }
duke@435 2874 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
duke@435 2875
duke@435 2876 return buf;
duke@435 2877 JRT_END
duke@435 2878
duke@435 2879 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
zgu@3900 2880 FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
duke@435 2881 JRT_END
duke@435 2882
duke@435 2883 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
never@1622 2884 AdapterHandlerTableIterator iter(_adapters);
never@1622 2885 while (iter.has_next()) {
never@1622 2886 AdapterHandlerEntry* a = iter.next();
never@1622 2887 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
duke@435 2888 }
duke@435 2889 return false;
duke@435 2890 }
duke@435 2891
bobv@2036 2892 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
never@1622 2893 AdapterHandlerTableIterator iter(_adapters);
never@1622 2894 while (iter.has_next()) {
never@1622 2895 AdapterHandlerEntry* a = iter.next();
twisti@3969 2896 if (b == CodeCache::find_blob(a->get_i2c_entry())) {
bobv@2036 2897 st->print("Adapter for signature: ");
twisti@3969 2898 a->print_adapter_on(tty);
duke@435 2899 return;
duke@435 2900 }
duke@435 2901 }
duke@435 2902 assert(false, "Should have found handler");
duke@435 2903 }
never@1622 2904
twisti@3969 2905 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
twisti@3969 2906 st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
twisti@3969 2907 (intptr_t) this, fingerprint()->as_string(),
twisti@3969 2908 get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
twisti@3969 2909
twisti@3969 2910 }
twisti@3969 2911
bobv@2036 2912 #ifndef PRODUCT
bobv@2036 2913
never@1622 2914 void AdapterHandlerLibrary::print_statistics() {
never@1622 2915 _adapters->print_statistics();
never@1622 2916 }
never@1622 2917
duke@435 2918 #endif /* PRODUCT */

mercurial