src/share/vm/memory/blockOffsetTable.hpp

Mon, 29 Apr 2013 16:13:57 -0400

author
hseigel
date
Mon, 29 Apr 2013 16:13:57 -0400
changeset 4987
f258c5828eb8
parent 4061
859cd1a76f8a
child 6876
710a3c8b516e
permissions
-rw-r--r--

8011773: Some tests on Interned String crashed JVM with OOM
Summary: Instead of terminating the VM, throw OutOfMemoryError exceptions.
Reviewed-by: coleenp, dholmes

duke@435 1 /*
coleenp@4037 2 * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP
stefank@2314 26 #define SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP
stefank@2314 27
stefank@2314 28 #include "memory/memRegion.hpp"
stefank@2314 29 #include "runtime/virtualspace.hpp"
stefank@2314 30 #include "utilities/globalDefinitions.hpp"
stefank@2314 31
duke@435 32 // The CollectedHeap type requires subtypes to implement a method
duke@435 33 // "block_start". For some subtypes, notably generational
duke@435 34 // systems using card-table-based write barriers, the efficiency of this
duke@435 35 // operation may be important. Implementations of the "BlockOffsetArray"
duke@435 36 // class may be useful in providing such efficient implementations.
duke@435 37 //
duke@435 38 // BlockOffsetTable (abstract)
duke@435 39 // - BlockOffsetArray (abstract)
duke@435 40 // - BlockOffsetArrayNonContigSpace
duke@435 41 // - BlockOffsetArrayContigSpace
duke@435 42 //
duke@435 43
duke@435 44 class ContiguousSpace;
duke@435 45
duke@435 46 //////////////////////////////////////////////////////////////////////////
duke@435 47 // The BlockOffsetTable "interface"
duke@435 48 //////////////////////////////////////////////////////////////////////////
duke@435 49 class BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
duke@435 50 friend class VMStructs;
duke@435 51 protected:
duke@435 52 // These members describe the region covered by the table.
duke@435 53
duke@435 54 // The space this table is covering.
duke@435 55 HeapWord* _bottom; // == reserved.start
duke@435 56 HeapWord* _end; // End of currently allocated region.
duke@435 57
duke@435 58 public:
duke@435 59 // Initialize the table to cover the given space.
duke@435 60 // The contents of the initial table are undefined.
duke@435 61 BlockOffsetTable(HeapWord* bottom, HeapWord* end):
duke@435 62 _bottom(bottom), _end(end) {
duke@435 63 assert(_bottom <= _end, "arguments out of order");
duke@435 64 }
duke@435 65
duke@435 66 // Note that the committed size of the covered space may have changed,
duke@435 67 // so the table size might also wish to change.
duke@435 68 virtual void resize(size_t new_word_size) = 0;
duke@435 69
duke@435 70 virtual void set_bottom(HeapWord* new_bottom) {
duke@435 71 assert(new_bottom <= _end, "new_bottom > _end");
duke@435 72 _bottom = new_bottom;
duke@435 73 resize(pointer_delta(_end, _bottom));
duke@435 74 }
duke@435 75
duke@435 76 // Requires "addr" to be contained by a block, and returns the address of
duke@435 77 // the start of that block.
duke@435 78 virtual HeapWord* block_start_unsafe(const void* addr) const = 0;
duke@435 79
duke@435 80 // Returns the address of the start of the block containing "addr", or
duke@435 81 // else "null" if it is covered by no block.
duke@435 82 HeapWord* block_start(const void* addr) const;
duke@435 83 };
duke@435 84
duke@435 85 //////////////////////////////////////////////////////////////////////////
duke@435 86 // One implementation of "BlockOffsetTable," the BlockOffsetArray,
duke@435 87 // divides the covered region into "N"-word subregions (where
duke@435 88 // "N" = 2^"LogN". An array with an entry for each such subregion
duke@435 89 // indicates how far back one must go to find the start of the
duke@435 90 // chunk that includes the first word of the subregion.
duke@435 91 //
duke@435 92 // Each BlockOffsetArray is owned by a Space. However, the actual array
duke@435 93 // may be shared by several BlockOffsetArrays; this is useful
duke@435 94 // when a single resizable area (such as a generation) is divided up into
duke@435 95 // several spaces in which contiguous allocation takes place. (Consider,
duke@435 96 // for example, the garbage-first generation.)
duke@435 97
duke@435 98 // Here is the shared array type.
duke@435 99 //////////////////////////////////////////////////////////////////////////
duke@435 100 // BlockOffsetSharedArray
duke@435 101 //////////////////////////////////////////////////////////////////////////
zgu@3900 102 class BlockOffsetSharedArray: public CHeapObj<mtGC> {
duke@435 103 friend class BlockOffsetArray;
duke@435 104 friend class BlockOffsetArrayNonContigSpace;
duke@435 105 friend class BlockOffsetArrayContigSpace;
duke@435 106 friend class VMStructs;
duke@435 107
duke@435 108 private:
duke@435 109 enum SomePrivateConstants {
duke@435 110 LogN = 9,
duke@435 111 LogN_words = LogN - LogHeapWordSize,
duke@435 112 N_bytes = 1 << LogN,
duke@435 113 N_words = 1 << LogN_words
duke@435 114 };
duke@435 115
ysr@2071 116 bool _init_to_zero;
ysr@2071 117
duke@435 118 // The reserved region covered by the shared array.
duke@435 119 MemRegion _reserved;
duke@435 120
duke@435 121 // End of the current committed region.
duke@435 122 HeapWord* _end;
duke@435 123
duke@435 124 // Array for keeping offsets for retrieving object start fast given an
duke@435 125 // address.
duke@435 126 VirtualSpace _vs;
duke@435 127 u_char* _offset_array; // byte array keeping backwards offsets
duke@435 128
duke@435 129 protected:
duke@435 130 // Bounds checking accessors:
duke@435 131 // For performance these have to devolve to array accesses in product builds.
duke@435 132 u_char offset_array(size_t index) const {
duke@435 133 assert(index < _vs.committed_size(), "index out of range");
duke@435 134 return _offset_array[index];
duke@435 135 }
ysr@2071 136 // An assertion-checking helper method for the set_offset_array() methods below.
ysr@2071 137 void check_reducing_assertion(bool reducing);
ysr@2071 138
ysr@2071 139 void set_offset_array(size_t index, u_char offset, bool reducing = false) {
ysr@2071 140 check_reducing_assertion(reducing);
duke@435 141 assert(index < _vs.committed_size(), "index out of range");
ysr@2071 142 assert(!reducing || _offset_array[index] >= offset, "Not reducing");
duke@435 143 _offset_array[index] = offset;
duke@435 144 }
ysr@2071 145
ysr@2071 146 void set_offset_array(size_t index, HeapWord* high, HeapWord* low, bool reducing = false) {
ysr@2071 147 check_reducing_assertion(reducing);
duke@435 148 assert(index < _vs.committed_size(), "index out of range");
duke@435 149 assert(high >= low, "addresses out of order");
duke@435 150 assert(pointer_delta(high, low) <= N_words, "offset too large");
ysr@2071 151 assert(!reducing || _offset_array[index] >= (u_char)pointer_delta(high, low),
ysr@2071 152 "Not reducing");
duke@435 153 _offset_array[index] = (u_char)pointer_delta(high, low);
duke@435 154 }
ysr@2071 155
ysr@2071 156 void set_offset_array(HeapWord* left, HeapWord* right, u_char offset, bool reducing = false) {
ysr@2071 157 check_reducing_assertion(reducing);
duke@435 158 assert(index_for(right - 1) < _vs.committed_size(),
duke@435 159 "right address out of range");
duke@435 160 assert(left < right, "Heap addresses out of order");
duke@435 161 size_t num_cards = pointer_delta(right, left) >> LogN_words;
ysr@1873 162
ysr@1873 163 // Below, we may use an explicit loop instead of memset()
ysr@1873 164 // because on certain platforms memset() can give concurrent
ysr@1873 165 // readers "out-of-thin-air," phantom zeros; see 6948537.
ysr@1873 166 if (UseMemSetInBOT) {
ysr@1873 167 memset(&_offset_array[index_for(left)], offset, num_cards);
ysr@1873 168 } else {
ysr@1873 169 size_t i = index_for(left);
ysr@1873 170 const size_t end = i + num_cards;
ysr@1873 171 for (; i < end; i++) {
ysr@2087 172 // Elided until CR 6977974 is fixed properly.
ysr@2087 173 // assert(!reducing || _offset_array[i] >= offset, "Not reducing");
ysr@1873 174 _offset_array[i] = offset;
ysr@1873 175 }
ysr@1873 176 }
duke@435 177 }
duke@435 178
ysr@2071 179 void set_offset_array(size_t left, size_t right, u_char offset, bool reducing = false) {
ysr@2071 180 check_reducing_assertion(reducing);
duke@435 181 assert(right < _vs.committed_size(), "right address out of range");
duke@435 182 assert(left <= right, "indexes out of order");
duke@435 183 size_t num_cards = right - left + 1;
ysr@1873 184
ysr@1873 185 // Below, we may use an explicit loop instead of memset
ysr@1873 186 // because on certain platforms memset() can give concurrent
ysr@1873 187 // readers "out-of-thin-air," phantom zeros; see 6948537.
ysr@1873 188 if (UseMemSetInBOT) {
ysr@1873 189 memset(&_offset_array[left], offset, num_cards);
ysr@1873 190 } else {
ysr@1873 191 size_t i = left;
ysr@1873 192 const size_t end = i + num_cards;
ysr@1873 193 for (; i < end; i++) {
ysr@2087 194 // Elided until CR 6977974 is fixed properly.
ysr@2087 195 // assert(!reducing || _offset_array[i] >= offset, "Not reducing");
ysr@1873 196 _offset_array[i] = offset;
ysr@1873 197 }
ysr@1873 198 }
duke@435 199 }
duke@435 200
duke@435 201 void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
duke@435 202 assert(index < _vs.committed_size(), "index out of range");
duke@435 203 assert(high >= low, "addresses out of order");
duke@435 204 assert(pointer_delta(high, low) <= N_words, "offset too large");
duke@435 205 assert(_offset_array[index] == pointer_delta(high, low),
duke@435 206 "Wrong offset");
duke@435 207 }
duke@435 208
duke@435 209 bool is_card_boundary(HeapWord* p) const;
duke@435 210
duke@435 211 // Return the number of slots needed for an offset array
duke@435 212 // that covers mem_region_words words.
duke@435 213 // We always add an extra slot because if an object
duke@435 214 // ends on a card boundary we put a 0 in the next
duke@435 215 // offset array slot, so we want that slot always
duke@435 216 // to be reserved.
duke@435 217
duke@435 218 size_t compute_size(size_t mem_region_words) {
duke@435 219 size_t number_of_slots = (mem_region_words / N_words) + 1;
duke@435 220 return ReservedSpace::allocation_align_size_up(number_of_slots);
duke@435 221 }
duke@435 222
duke@435 223 public:
duke@435 224 // Initialize the table to cover from "base" to (at least)
duke@435 225 // "base + init_word_size". In the future, the table may be expanded
duke@435 226 // (see "resize" below) up to the size of "_reserved" (which must be at
duke@435 227 // least "init_word_size".) The contents of the initial table are
duke@435 228 // undefined; it is the responsibility of the constituent
duke@435 229 // BlockOffsetTable(s) to initialize cards.
duke@435 230 BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
duke@435 231
duke@435 232 // Notes a change in the committed size of the region covered by the
duke@435 233 // table. The "new_word_size" may not be larger than the size of the
duke@435 234 // reserved region this table covers.
duke@435 235 void resize(size_t new_word_size);
duke@435 236
duke@435 237 void set_bottom(HeapWord* new_bottom);
duke@435 238
ysr@2071 239 // Whether entries should be initialized to zero. Used currently only for
ysr@2071 240 // error checking.
ysr@2071 241 void set_init_to_zero(bool val) { _init_to_zero = val; }
ysr@2071 242 bool init_to_zero() { return _init_to_zero; }
ysr@2071 243
duke@435 244 // Updates all the BlockOffsetArray's sharing this shared array to
duke@435 245 // reflect the current "top"'s of their spaces.
duke@435 246 void update_offset_arrays(); // Not yet implemented!
duke@435 247
duke@435 248 // Return the appropriate index into "_offset_array" for "p".
duke@435 249 size_t index_for(const void* p) const;
duke@435 250
duke@435 251 // Return the address indicating the start of the region corresponding to
duke@435 252 // "index" in "_offset_array".
duke@435 253 HeapWord* address_for_index(size_t index) const;
duke@435 254
jmasa@736 255 // Return the address "p" incremented by the size of
jmasa@736 256 // a region. This method does not align the address
jmasa@736 257 // returned to the start of a region. It is a simple
jmasa@736 258 // primitive.
jmasa@736 259 HeapWord* inc_by_region_size(HeapWord* p) const { return p + N_words; }
duke@435 260 };
duke@435 261
duke@435 262 //////////////////////////////////////////////////////////////////////////
duke@435 263 // The BlockOffsetArray whose subtypes use the BlockOffsetSharedArray.
duke@435 264 //////////////////////////////////////////////////////////////////////////
duke@435 265 class BlockOffsetArray: public BlockOffsetTable {
duke@435 266 friend class VMStructs;
ysr@777 267 friend class G1BlockOffsetArray; // temp. until we restructure and cleanup
duke@435 268 protected:
duke@435 269 // The following enums are used by do_block_internal() below
duke@435 270 enum Action {
duke@435 271 Action_single, // BOT records a single block (see single_block())
duke@435 272 Action_mark, // BOT marks the start of a block (see mark_block())
duke@435 273 Action_check // Check that BOT records block correctly
duke@435 274 // (see verify_single_block()).
duke@435 275 };
duke@435 276
duke@435 277 enum SomePrivateConstants {
duke@435 278 N_words = BlockOffsetSharedArray::N_words,
duke@435 279 LogN = BlockOffsetSharedArray::LogN,
duke@435 280 // entries "e" of at least N_words mean "go back by Base^(e-N_words)."
duke@435 281 // All entries are less than "N_words + N_powers".
duke@435 282 LogBase = 4,
duke@435 283 Base = (1 << LogBase),
duke@435 284 N_powers = 14
duke@435 285 };
duke@435 286
duke@435 287 static size_t power_to_cards_back(uint i) {
brutisso@4061 288 return (size_t)1 << (LogBase * i);
duke@435 289 }
duke@435 290 static size_t power_to_words_back(uint i) {
duke@435 291 return power_to_cards_back(i) * N_words;
duke@435 292 }
duke@435 293 static size_t entry_to_cards_back(u_char entry) {
duke@435 294 assert(entry >= N_words, "Precondition");
duke@435 295 return power_to_cards_back(entry - N_words);
duke@435 296 }
duke@435 297 static size_t entry_to_words_back(u_char entry) {
duke@435 298 assert(entry >= N_words, "Precondition");
duke@435 299 return power_to_words_back(entry - N_words);
duke@435 300 }
duke@435 301
duke@435 302 // The shared array, which is shared with other BlockOffsetArray's
duke@435 303 // corresponding to different spaces within a generation or span of
duke@435 304 // memory.
duke@435 305 BlockOffsetSharedArray* _array;
duke@435 306
duke@435 307 // The space that owns this subregion.
duke@435 308 Space* _sp;
duke@435 309
duke@435 310 // If true, array entries are initialized to 0; otherwise, they are
duke@435 311 // initialized to point backwards to the beginning of the covered region.
duke@435 312 bool _init_to_zero;
duke@435 313
ysr@2071 314 // An assertion-checking helper method for the set_remainder*() methods below.
ysr@2071 315 void check_reducing_assertion(bool reducing) { _array->check_reducing_assertion(reducing); }
ysr@2071 316
duke@435 317 // Sets the entries
duke@435 318 // corresponding to the cards starting at "start" and ending at "end"
duke@435 319 // to point back to the card before "start": the interval [start, end)
ysr@2071 320 // is right-open. The last parameter, reducing, indicates whether the
ysr@2071 321 // updates to individual entries always reduce the entry from a higher
ysr@2071 322 // to a lower value. (For example this would hold true during a temporal
ysr@2071 323 // regime during which only block splits were updating the BOT.
ysr@2071 324 void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end, bool reducing = false);
duke@435 325 // Same as above, except that the args here are a card _index_ interval
duke@435 326 // that is closed: [start_index, end_index]
ysr@2071 327 void set_remainder_to_point_to_start_incl(size_t start, size_t end, bool reducing = false);
duke@435 328
duke@435 329 // A helper function for BOT adjustment/verification work
ysr@2071 330 void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action, bool reducing = false);
duke@435 331
duke@435 332 public:
duke@435 333 // The space may not have its bottom and top set yet, which is why the
duke@435 334 // region is passed as a parameter. If "init_to_zero" is true, the
duke@435 335 // elements of the array are initialized to zero. Otherwise, they are
duke@435 336 // initialized to point backwards to the beginning.
duke@435 337 BlockOffsetArray(BlockOffsetSharedArray* array, MemRegion mr,
ysr@2071 338 bool init_to_zero_);
duke@435 339
duke@435 340 // Note: this ought to be part of the constructor, but that would require
duke@435 341 // "this" to be passed as a parameter to a member constructor for
duke@435 342 // the containing concrete subtype of Space.
duke@435 343 // This would be legal C++, but MS VC++ doesn't allow it.
duke@435 344 void set_space(Space* sp) { _sp = sp; }
duke@435 345
duke@435 346 // Resets the covered region to the given "mr".
duke@435 347 void set_region(MemRegion mr) {
duke@435 348 _bottom = mr.start();
duke@435 349 _end = mr.end();
duke@435 350 }
duke@435 351
duke@435 352 // Note that the committed size of the covered space may have changed,
duke@435 353 // so the table size might also wish to change.
duke@435 354 virtual void resize(size_t new_word_size) {
duke@435 355 HeapWord* new_end = _bottom + new_word_size;
duke@435 356 if (_end < new_end && !init_to_zero()) {
duke@435 357 // verify that the old and new boundaries are also card boundaries
duke@435 358 assert(_array->is_card_boundary(_end),
duke@435 359 "_end not a card boundary");
duke@435 360 assert(_array->is_card_boundary(new_end),
duke@435 361 "new _end would not be a card boundary");
duke@435 362 // set all the newly added cards
duke@435 363 _array->set_offset_array(_end, new_end, N_words);
duke@435 364 }
duke@435 365 _end = new_end; // update _end
duke@435 366 }
duke@435 367
duke@435 368 // Adjust the BOT to show that it has a single block in the
duke@435 369 // range [blk_start, blk_start + size). All necessary BOT
duke@435 370 // cards are adjusted, but _unallocated_block isn't.
duke@435 371 void single_block(HeapWord* blk_start, HeapWord* blk_end);
duke@435 372 void single_block(HeapWord* blk, size_t size) {
duke@435 373 single_block(blk, blk + size);
duke@435 374 }
duke@435 375
duke@435 376 // When the alloc_block() call returns, the block offset table should
duke@435 377 // have enough information such that any subsequent block_start() call
duke@435 378 // with an argument equal to an address that is within the range
duke@435 379 // [blk_start, blk_end) would return the value blk_start, provided
duke@435 380 // there have been no calls in between that reset this information
duke@435 381 // (e.g. see BlockOffsetArrayNonContigSpace::single_block() call
duke@435 382 // for an appropriate range covering the said interval).
duke@435 383 // These methods expect to be called with [blk_start, blk_end)
duke@435 384 // representing a block of memory in the heap.
duke@435 385 virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
duke@435 386 void alloc_block(HeapWord* blk, size_t size) {
duke@435 387 alloc_block(blk, blk + size);
duke@435 388 }
duke@435 389
duke@435 390 // If true, initialize array slots with no allocated blocks to zero.
duke@435 391 // Otherwise, make them point back to the front.
duke@435 392 bool init_to_zero() { return _init_to_zero; }
ysr@2071 393 // Corresponding setter
ysr@2071 394 void set_init_to_zero(bool val) {
ysr@2071 395 _init_to_zero = val;
ysr@2071 396 assert(_array != NULL, "_array should be non-NULL");
ysr@2071 397 _array->set_init_to_zero(val);
ysr@2071 398 }
duke@435 399
duke@435 400 // Debugging
duke@435 401 // Return the index of the last entry in the "active" region.
duke@435 402 virtual size_t last_active_index() const = 0;
duke@435 403 // Verify the block offset table
duke@435 404 void verify() const;
duke@435 405 void check_all_cards(size_t left_card, size_t right_card) const;
duke@435 406 };
duke@435 407
duke@435 408 ////////////////////////////////////////////////////////////////////////////
duke@435 409 // A subtype of BlockOffsetArray that takes advantage of the fact
duke@435 410 // that its underlying space is a NonContiguousSpace, so that some
duke@435 411 // specialized interfaces can be made available for spaces that
duke@435 412 // manipulate the table.
duke@435 413 ////////////////////////////////////////////////////////////////////////////
duke@435 414 class BlockOffsetArrayNonContigSpace: public BlockOffsetArray {
duke@435 415 friend class VMStructs;
duke@435 416 private:
duke@435 417 // The portion [_unallocated_block, _sp.end()) of the space that
duke@435 418 // is a single block known not to contain any objects.
duke@435 419 // NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
duke@435 420 HeapWord* _unallocated_block;
duke@435 421
duke@435 422 public:
duke@435 423 BlockOffsetArrayNonContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
duke@435 424 BlockOffsetArray(array, mr, false),
duke@435 425 _unallocated_block(_bottom) { }
duke@435 426
duke@435 427 // accessor
duke@435 428 HeapWord* unallocated_block() const {
duke@435 429 assert(BlockOffsetArrayUseUnallocatedBlock,
duke@435 430 "_unallocated_block is not being maintained");
duke@435 431 return _unallocated_block;
duke@435 432 }
duke@435 433
duke@435 434 void set_unallocated_block(HeapWord* block) {
duke@435 435 assert(BlockOffsetArrayUseUnallocatedBlock,
duke@435 436 "_unallocated_block is not being maintained");
duke@435 437 assert(block >= _bottom && block <= _end, "out of range");
duke@435 438 _unallocated_block = block;
duke@435 439 }
duke@435 440
duke@435 441 // These methods expect to be called with [blk_start, blk_end)
duke@435 442 // representing a block of memory in the heap.
duke@435 443 void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
duke@435 444 void alloc_block(HeapWord* blk, size_t size) {
duke@435 445 alloc_block(blk, blk + size);
duke@435 446 }
duke@435 447
duke@435 448 // The following methods are useful and optimized for a
duke@435 449 // non-contiguous space.
duke@435 450
duke@435 451 // Given a block [blk_start, blk_start + full_blk_size), and
duke@435 452 // a left_blk_size < full_blk_size, adjust the BOT to show two
duke@435 453 // blocks [blk_start, blk_start + left_blk_size) and
duke@435 454 // [blk_start + left_blk_size, blk_start + full_blk_size).
duke@435 455 // It is assumed (and verified in the non-product VM) that the
duke@435 456 // BOT was correct for the original block.
duke@435 457 void split_block(HeapWord* blk_start, size_t full_blk_size,
duke@435 458 size_t left_blk_size);
duke@435 459
duke@435 460 // Adjust BOT to show that it has a block in the range
duke@435 461 // [blk_start, blk_start + size). Only the first card
duke@435 462 // of BOT is touched. It is assumed (and verified in the
duke@435 463 // non-product VM) that the remaining cards of the block
duke@435 464 // are correct.
ysr@2071 465 void mark_block(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false);
ysr@2071 466 void mark_block(HeapWord* blk, size_t size, bool reducing = false) {
ysr@2071 467 mark_block(blk, blk + size, reducing);
duke@435 468 }
duke@435 469
duke@435 470 // Adjust _unallocated_block to indicate that a particular
duke@435 471 // block has been newly allocated or freed. It is assumed (and
duke@435 472 // verified in the non-product VM) that the BOT is correct for
duke@435 473 // the given block.
ysr@2071 474 void allocated(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false) {
duke@435 475 // Verify that the BOT shows [blk, blk + blk_size) to be one block.
duke@435 476 verify_single_block(blk_start, blk_end);
duke@435 477 if (BlockOffsetArrayUseUnallocatedBlock) {
duke@435 478 _unallocated_block = MAX2(_unallocated_block, blk_end);
duke@435 479 }
duke@435 480 }
duke@435 481
ysr@2071 482 void allocated(HeapWord* blk, size_t size, bool reducing = false) {
ysr@2071 483 allocated(blk, blk + size, reducing);
duke@435 484 }
duke@435 485
duke@435 486 void freed(HeapWord* blk_start, HeapWord* blk_end);
ysr@2071 487 void freed(HeapWord* blk, size_t size);
duke@435 488
duke@435 489 HeapWord* block_start_unsafe(const void* addr) const;
duke@435 490
duke@435 491 // Requires "addr" to be the start of a card and returns the
duke@435 492 // start of the block that contains the given address.
duke@435 493 HeapWord* block_start_careful(const void* addr) const;
duke@435 494
duke@435 495 // Verification & debugging: ensure that the offset table reflects
duke@435 496 // the fact that the block [blk_start, blk_end) or [blk, blk + size)
duke@435 497 // is a single block of storage. NOTE: can't const this because of
duke@435 498 // call to non-const do_block_internal() below.
duke@435 499 void verify_single_block(HeapWord* blk_start, HeapWord* blk_end)
duke@435 500 PRODUCT_RETURN;
duke@435 501 void verify_single_block(HeapWord* blk, size_t size) PRODUCT_RETURN;
duke@435 502
duke@435 503 // Verify that the given block is before _unallocated_block
duke@435 504 void verify_not_unallocated(HeapWord* blk_start, HeapWord* blk_end)
duke@435 505 const PRODUCT_RETURN;
duke@435 506 void verify_not_unallocated(HeapWord* blk, size_t size)
duke@435 507 const PRODUCT_RETURN;
duke@435 508
duke@435 509 // Debugging support
duke@435 510 virtual size_t last_active_index() const;
duke@435 511 };
duke@435 512
duke@435 513 ////////////////////////////////////////////////////////////////////////////
duke@435 514 // A subtype of BlockOffsetArray that takes advantage of the fact
duke@435 515 // that its underlying space is a ContiguousSpace, so that its "active"
duke@435 516 // region can be more efficiently tracked (than for a non-contiguous space).
duke@435 517 ////////////////////////////////////////////////////////////////////////////
duke@435 518 class BlockOffsetArrayContigSpace: public BlockOffsetArray {
duke@435 519 friend class VMStructs;
duke@435 520 private:
duke@435 521 // allocation boundary at which offset array must be updated
duke@435 522 HeapWord* _next_offset_threshold;
duke@435 523 size_t _next_offset_index; // index corresponding to that boundary
duke@435 524
duke@435 525 // Work function when allocation start crosses threshold.
duke@435 526 void alloc_block_work(HeapWord* blk_start, HeapWord* blk_end);
duke@435 527
duke@435 528 public:
duke@435 529 BlockOffsetArrayContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
duke@435 530 BlockOffsetArray(array, mr, true) {
duke@435 531 _next_offset_threshold = NULL;
duke@435 532 _next_offset_index = 0;
duke@435 533 }
duke@435 534
duke@435 535 void set_contig_space(ContiguousSpace* sp) { set_space((Space*)sp); }
duke@435 536
duke@435 537 // Initialize the threshold for an empty heap.
duke@435 538 HeapWord* initialize_threshold();
duke@435 539 // Zero out the entry for _bottom (offset will be zero)
duke@435 540 void zero_bottom_entry();
duke@435 541
duke@435 542 // Return the next threshold, the point at which the table should be
duke@435 543 // updated.
duke@435 544 HeapWord* threshold() const { return _next_offset_threshold; }
duke@435 545
duke@435 546 // In general, these methods expect to be called with
duke@435 547 // [blk_start, blk_end) representing a block of memory in the heap.
duke@435 548 // In this implementation, however, we are OK even if blk_start and/or
duke@435 549 // blk_end are NULL because NULL is represented as 0, and thus
duke@435 550 // never exceeds the "_next_offset_threshold".
duke@435 551 void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
duke@435 552 if (blk_end > _next_offset_threshold) {
duke@435 553 alloc_block_work(blk_start, blk_end);
duke@435 554 }
duke@435 555 }
duke@435 556 void alloc_block(HeapWord* blk, size_t size) {
duke@435 557 alloc_block(blk, blk + size);
duke@435 558 }
duke@435 559
duke@435 560 HeapWord* block_start_unsafe(const void* addr) const;
duke@435 561
duke@435 562 // Debugging support
duke@435 563 virtual size_t last_active_index() const;
duke@435 564 };
stefank@2314 565
stefank@2314 566 #endif // SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP

mercurial