duke@435: /* coleenp@4037: * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: stefank@2314: #ifndef SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP stefank@2314: #define SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP stefank@2314: stefank@2314: #include "memory/memRegion.hpp" stefank@2314: #include "runtime/virtualspace.hpp" stefank@2314: #include "utilities/globalDefinitions.hpp" stefank@2314: duke@435: // The CollectedHeap type requires subtypes to implement a method duke@435: // "block_start". For some subtypes, notably generational duke@435: // systems using card-table-based write barriers, the efficiency of this duke@435: // operation may be important. Implementations of the "BlockOffsetArray" duke@435: // class may be useful in providing such efficient implementations. duke@435: // duke@435: // BlockOffsetTable (abstract) duke@435: // - BlockOffsetArray (abstract) duke@435: // - BlockOffsetArrayNonContigSpace duke@435: // - BlockOffsetArrayContigSpace duke@435: // duke@435: duke@435: class ContiguousSpace; duke@435: duke@435: ////////////////////////////////////////////////////////////////////////// duke@435: // The BlockOffsetTable "interface" duke@435: ////////////////////////////////////////////////////////////////////////// duke@435: class BlockOffsetTable VALUE_OBJ_CLASS_SPEC { duke@435: friend class VMStructs; duke@435: protected: duke@435: // These members describe the region covered by the table. duke@435: duke@435: // The space this table is covering. duke@435: HeapWord* _bottom; // == reserved.start duke@435: HeapWord* _end; // End of currently allocated region. duke@435: duke@435: public: duke@435: // Initialize the table to cover the given space. duke@435: // The contents of the initial table are undefined. duke@435: BlockOffsetTable(HeapWord* bottom, HeapWord* end): duke@435: _bottom(bottom), _end(end) { duke@435: assert(_bottom <= _end, "arguments out of order"); duke@435: } duke@435: duke@435: // Note that the committed size of the covered space may have changed, duke@435: // so the table size might also wish to change. duke@435: virtual void resize(size_t new_word_size) = 0; duke@435: duke@435: virtual void set_bottom(HeapWord* new_bottom) { duke@435: assert(new_bottom <= _end, "new_bottom > _end"); duke@435: _bottom = new_bottom; duke@435: resize(pointer_delta(_end, _bottom)); duke@435: } duke@435: duke@435: // Requires "addr" to be contained by a block, and returns the address of duke@435: // the start of that block. duke@435: virtual HeapWord* block_start_unsafe(const void* addr) const = 0; duke@435: duke@435: // Returns the address of the start of the block containing "addr", or duke@435: // else "null" if it is covered by no block. duke@435: HeapWord* block_start(const void* addr) const; duke@435: }; duke@435: duke@435: ////////////////////////////////////////////////////////////////////////// duke@435: // One implementation of "BlockOffsetTable," the BlockOffsetArray, duke@435: // divides the covered region into "N"-word subregions (where duke@435: // "N" = 2^"LogN". An array with an entry for each such subregion duke@435: // indicates how far back one must go to find the start of the duke@435: // chunk that includes the first word of the subregion. duke@435: // duke@435: // Each BlockOffsetArray is owned by a Space. However, the actual array duke@435: // may be shared by several BlockOffsetArrays; this is useful duke@435: // when a single resizable area (such as a generation) is divided up into duke@435: // several spaces in which contiguous allocation takes place. (Consider, duke@435: // for example, the garbage-first generation.) duke@435: duke@435: // Here is the shared array type. duke@435: ////////////////////////////////////////////////////////////////////////// duke@435: // BlockOffsetSharedArray duke@435: ////////////////////////////////////////////////////////////////////////// zgu@3900: class BlockOffsetSharedArray: public CHeapObj { duke@435: friend class BlockOffsetArray; duke@435: friend class BlockOffsetArrayNonContigSpace; duke@435: friend class BlockOffsetArrayContigSpace; duke@435: friend class VMStructs; duke@435: duke@435: private: duke@435: enum SomePrivateConstants { duke@435: LogN = 9, duke@435: LogN_words = LogN - LogHeapWordSize, duke@435: N_bytes = 1 << LogN, duke@435: N_words = 1 << LogN_words duke@435: }; duke@435: ysr@2071: bool _init_to_zero; ysr@2071: duke@435: // The reserved region covered by the shared array. duke@435: MemRegion _reserved; duke@435: duke@435: // End of the current committed region. duke@435: HeapWord* _end; duke@435: duke@435: // Array for keeping offsets for retrieving object start fast given an duke@435: // address. duke@435: VirtualSpace _vs; duke@435: u_char* _offset_array; // byte array keeping backwards offsets duke@435: duke@435: protected: duke@435: // Bounds checking accessors: duke@435: // For performance these have to devolve to array accesses in product builds. duke@435: u_char offset_array(size_t index) const { duke@435: assert(index < _vs.committed_size(), "index out of range"); duke@435: return _offset_array[index]; duke@435: } ysr@2071: // An assertion-checking helper method for the set_offset_array() methods below. ysr@2071: void check_reducing_assertion(bool reducing); ysr@2071: ysr@2071: void set_offset_array(size_t index, u_char offset, bool reducing = false) { ysr@2071: check_reducing_assertion(reducing); duke@435: assert(index < _vs.committed_size(), "index out of range"); ysr@2071: assert(!reducing || _offset_array[index] >= offset, "Not reducing"); duke@435: _offset_array[index] = offset; duke@435: } ysr@2071: ysr@2071: void set_offset_array(size_t index, HeapWord* high, HeapWord* low, bool reducing = false) { ysr@2071: check_reducing_assertion(reducing); duke@435: assert(index < _vs.committed_size(), "index out of range"); duke@435: assert(high >= low, "addresses out of order"); duke@435: assert(pointer_delta(high, low) <= N_words, "offset too large"); ysr@2071: assert(!reducing || _offset_array[index] >= (u_char)pointer_delta(high, low), ysr@2071: "Not reducing"); duke@435: _offset_array[index] = (u_char)pointer_delta(high, low); duke@435: } ysr@2071: ysr@2071: void set_offset_array(HeapWord* left, HeapWord* right, u_char offset, bool reducing = false) { ysr@2071: check_reducing_assertion(reducing); duke@435: assert(index_for(right - 1) < _vs.committed_size(), duke@435: "right address out of range"); duke@435: assert(left < right, "Heap addresses out of order"); duke@435: size_t num_cards = pointer_delta(right, left) >> LogN_words; ysr@1873: ysr@1873: // Below, we may use an explicit loop instead of memset() ysr@1873: // because on certain platforms memset() can give concurrent ysr@1873: // readers "out-of-thin-air," phantom zeros; see 6948537. ysr@1873: if (UseMemSetInBOT) { ysr@1873: memset(&_offset_array[index_for(left)], offset, num_cards); ysr@1873: } else { ysr@1873: size_t i = index_for(left); ysr@1873: const size_t end = i + num_cards; ysr@1873: for (; i < end; i++) { ysr@2087: // Elided until CR 6977974 is fixed properly. ysr@2087: // assert(!reducing || _offset_array[i] >= offset, "Not reducing"); ysr@1873: _offset_array[i] = offset; ysr@1873: } ysr@1873: } duke@435: } duke@435: ysr@2071: void set_offset_array(size_t left, size_t right, u_char offset, bool reducing = false) { ysr@2071: check_reducing_assertion(reducing); duke@435: assert(right < _vs.committed_size(), "right address out of range"); duke@435: assert(left <= right, "indexes out of order"); duke@435: size_t num_cards = right - left + 1; ysr@1873: ysr@1873: // Below, we may use an explicit loop instead of memset ysr@1873: // because on certain platforms memset() can give concurrent ysr@1873: // readers "out-of-thin-air," phantom zeros; see 6948537. ysr@1873: if (UseMemSetInBOT) { ysr@1873: memset(&_offset_array[left], offset, num_cards); ysr@1873: } else { ysr@1873: size_t i = left; ysr@1873: const size_t end = i + num_cards; ysr@1873: for (; i < end; i++) { ysr@2087: // Elided until CR 6977974 is fixed properly. ysr@2087: // assert(!reducing || _offset_array[i] >= offset, "Not reducing"); ysr@1873: _offset_array[i] = offset; ysr@1873: } ysr@1873: } duke@435: } duke@435: duke@435: void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const { duke@435: assert(index < _vs.committed_size(), "index out of range"); duke@435: assert(high >= low, "addresses out of order"); duke@435: assert(pointer_delta(high, low) <= N_words, "offset too large"); duke@435: assert(_offset_array[index] == pointer_delta(high, low), duke@435: "Wrong offset"); duke@435: } duke@435: duke@435: bool is_card_boundary(HeapWord* p) const; duke@435: duke@435: // Return the number of slots needed for an offset array duke@435: // that covers mem_region_words words. duke@435: // We always add an extra slot because if an object duke@435: // ends on a card boundary we put a 0 in the next duke@435: // offset array slot, so we want that slot always duke@435: // to be reserved. duke@435: duke@435: size_t compute_size(size_t mem_region_words) { duke@435: size_t number_of_slots = (mem_region_words / N_words) + 1; duke@435: return ReservedSpace::allocation_align_size_up(number_of_slots); duke@435: } duke@435: duke@435: public: duke@435: // Initialize the table to cover from "base" to (at least) duke@435: // "base + init_word_size". In the future, the table may be expanded duke@435: // (see "resize" below) up to the size of "_reserved" (which must be at duke@435: // least "init_word_size".) The contents of the initial table are duke@435: // undefined; it is the responsibility of the constituent duke@435: // BlockOffsetTable(s) to initialize cards. duke@435: BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size); duke@435: duke@435: // Notes a change in the committed size of the region covered by the duke@435: // table. The "new_word_size" may not be larger than the size of the duke@435: // reserved region this table covers. duke@435: void resize(size_t new_word_size); duke@435: duke@435: void set_bottom(HeapWord* new_bottom); duke@435: ysr@2071: // Whether entries should be initialized to zero. Used currently only for ysr@2071: // error checking. ysr@2071: void set_init_to_zero(bool val) { _init_to_zero = val; } ysr@2071: bool init_to_zero() { return _init_to_zero; } ysr@2071: duke@435: // Updates all the BlockOffsetArray's sharing this shared array to duke@435: // reflect the current "top"'s of their spaces. duke@435: void update_offset_arrays(); // Not yet implemented! duke@435: duke@435: // Return the appropriate index into "_offset_array" for "p". duke@435: size_t index_for(const void* p) const; duke@435: duke@435: // Return the address indicating the start of the region corresponding to duke@435: // "index" in "_offset_array". duke@435: HeapWord* address_for_index(size_t index) const; duke@435: jmasa@736: // Return the address "p" incremented by the size of jmasa@736: // a region. This method does not align the address jmasa@736: // returned to the start of a region. It is a simple jmasa@736: // primitive. jmasa@736: HeapWord* inc_by_region_size(HeapWord* p) const { return p + N_words; } duke@435: }; duke@435: duke@435: ////////////////////////////////////////////////////////////////////////// duke@435: // The BlockOffsetArray whose subtypes use the BlockOffsetSharedArray. duke@435: ////////////////////////////////////////////////////////////////////////// duke@435: class BlockOffsetArray: public BlockOffsetTable { duke@435: friend class VMStructs; ysr@777: friend class G1BlockOffsetArray; // temp. until we restructure and cleanup duke@435: protected: duke@435: // The following enums are used by do_block_internal() below duke@435: enum Action { duke@435: Action_single, // BOT records a single block (see single_block()) duke@435: Action_mark, // BOT marks the start of a block (see mark_block()) duke@435: Action_check // Check that BOT records block correctly duke@435: // (see verify_single_block()). duke@435: }; duke@435: duke@435: enum SomePrivateConstants { duke@435: N_words = BlockOffsetSharedArray::N_words, duke@435: LogN = BlockOffsetSharedArray::LogN, duke@435: // entries "e" of at least N_words mean "go back by Base^(e-N_words)." duke@435: // All entries are less than "N_words + N_powers". duke@435: LogBase = 4, duke@435: Base = (1 << LogBase), duke@435: N_powers = 14 duke@435: }; duke@435: duke@435: static size_t power_to_cards_back(uint i) { brutisso@4061: return (size_t)1 << (LogBase * i); duke@435: } duke@435: static size_t power_to_words_back(uint i) { duke@435: return power_to_cards_back(i) * N_words; duke@435: } duke@435: static size_t entry_to_cards_back(u_char entry) { duke@435: assert(entry >= N_words, "Precondition"); duke@435: return power_to_cards_back(entry - N_words); duke@435: } duke@435: static size_t entry_to_words_back(u_char entry) { duke@435: assert(entry >= N_words, "Precondition"); duke@435: return power_to_words_back(entry - N_words); duke@435: } duke@435: duke@435: // The shared array, which is shared with other BlockOffsetArray's duke@435: // corresponding to different spaces within a generation or span of duke@435: // memory. duke@435: BlockOffsetSharedArray* _array; duke@435: duke@435: // The space that owns this subregion. duke@435: Space* _sp; duke@435: duke@435: // If true, array entries are initialized to 0; otherwise, they are duke@435: // initialized to point backwards to the beginning of the covered region. duke@435: bool _init_to_zero; duke@435: ysr@2071: // An assertion-checking helper method for the set_remainder*() methods below. ysr@2071: void check_reducing_assertion(bool reducing) { _array->check_reducing_assertion(reducing); } ysr@2071: duke@435: // Sets the entries duke@435: // corresponding to the cards starting at "start" and ending at "end" duke@435: // to point back to the card before "start": the interval [start, end) ysr@2071: // is right-open. The last parameter, reducing, indicates whether the ysr@2071: // updates to individual entries always reduce the entry from a higher ysr@2071: // to a lower value. (For example this would hold true during a temporal ysr@2071: // regime during which only block splits were updating the BOT. ysr@2071: void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end, bool reducing = false); duke@435: // Same as above, except that the args here are a card _index_ interval duke@435: // that is closed: [start_index, end_index] ysr@2071: void set_remainder_to_point_to_start_incl(size_t start, size_t end, bool reducing = false); duke@435: duke@435: // A helper function for BOT adjustment/verification work ysr@2071: void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action, bool reducing = false); duke@435: duke@435: public: duke@435: // The space may not have its bottom and top set yet, which is why the duke@435: // region is passed as a parameter. If "init_to_zero" is true, the duke@435: // elements of the array are initialized to zero. Otherwise, they are duke@435: // initialized to point backwards to the beginning. duke@435: BlockOffsetArray(BlockOffsetSharedArray* array, MemRegion mr, ysr@2071: bool init_to_zero_); duke@435: duke@435: // Note: this ought to be part of the constructor, but that would require duke@435: // "this" to be passed as a parameter to a member constructor for duke@435: // the containing concrete subtype of Space. duke@435: // This would be legal C++, but MS VC++ doesn't allow it. duke@435: void set_space(Space* sp) { _sp = sp; } duke@435: duke@435: // Resets the covered region to the given "mr". duke@435: void set_region(MemRegion mr) { duke@435: _bottom = mr.start(); duke@435: _end = mr.end(); duke@435: } duke@435: duke@435: // Note that the committed size of the covered space may have changed, duke@435: // so the table size might also wish to change. duke@435: virtual void resize(size_t new_word_size) { duke@435: HeapWord* new_end = _bottom + new_word_size; duke@435: if (_end < new_end && !init_to_zero()) { duke@435: // verify that the old and new boundaries are also card boundaries duke@435: assert(_array->is_card_boundary(_end), duke@435: "_end not a card boundary"); duke@435: assert(_array->is_card_boundary(new_end), duke@435: "new _end would not be a card boundary"); duke@435: // set all the newly added cards duke@435: _array->set_offset_array(_end, new_end, N_words); duke@435: } duke@435: _end = new_end; // update _end duke@435: } duke@435: duke@435: // Adjust the BOT to show that it has a single block in the duke@435: // range [blk_start, blk_start + size). All necessary BOT duke@435: // cards are adjusted, but _unallocated_block isn't. duke@435: void single_block(HeapWord* blk_start, HeapWord* blk_end); duke@435: void single_block(HeapWord* blk, size_t size) { duke@435: single_block(blk, blk + size); duke@435: } duke@435: duke@435: // When the alloc_block() call returns, the block offset table should duke@435: // have enough information such that any subsequent block_start() call duke@435: // with an argument equal to an address that is within the range duke@435: // [blk_start, blk_end) would return the value blk_start, provided duke@435: // there have been no calls in between that reset this information duke@435: // (e.g. see BlockOffsetArrayNonContigSpace::single_block() call duke@435: // for an appropriate range covering the said interval). duke@435: // These methods expect to be called with [blk_start, blk_end) duke@435: // representing a block of memory in the heap. duke@435: virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end); duke@435: void alloc_block(HeapWord* blk, size_t size) { duke@435: alloc_block(blk, blk + size); duke@435: } duke@435: duke@435: // If true, initialize array slots with no allocated blocks to zero. duke@435: // Otherwise, make them point back to the front. duke@435: bool init_to_zero() { return _init_to_zero; } ysr@2071: // Corresponding setter ysr@2071: void set_init_to_zero(bool val) { ysr@2071: _init_to_zero = val; ysr@2071: assert(_array != NULL, "_array should be non-NULL"); ysr@2071: _array->set_init_to_zero(val); ysr@2071: } duke@435: duke@435: // Debugging duke@435: // Return the index of the last entry in the "active" region. duke@435: virtual size_t last_active_index() const = 0; duke@435: // Verify the block offset table duke@435: void verify() const; duke@435: void check_all_cards(size_t left_card, size_t right_card) const; duke@435: }; duke@435: duke@435: //////////////////////////////////////////////////////////////////////////// duke@435: // A subtype of BlockOffsetArray that takes advantage of the fact duke@435: // that its underlying space is a NonContiguousSpace, so that some duke@435: // specialized interfaces can be made available for spaces that duke@435: // manipulate the table. duke@435: //////////////////////////////////////////////////////////////////////////// duke@435: class BlockOffsetArrayNonContigSpace: public BlockOffsetArray { duke@435: friend class VMStructs; duke@435: private: duke@435: // The portion [_unallocated_block, _sp.end()) of the space that duke@435: // is a single block known not to contain any objects. duke@435: // NOTE: See BlockOffsetArrayUseUnallocatedBlock flag. duke@435: HeapWord* _unallocated_block; duke@435: duke@435: public: duke@435: BlockOffsetArrayNonContigSpace(BlockOffsetSharedArray* array, MemRegion mr): duke@435: BlockOffsetArray(array, mr, false), duke@435: _unallocated_block(_bottom) { } duke@435: duke@435: // accessor duke@435: HeapWord* unallocated_block() const { duke@435: assert(BlockOffsetArrayUseUnallocatedBlock, duke@435: "_unallocated_block is not being maintained"); duke@435: return _unallocated_block; duke@435: } duke@435: duke@435: void set_unallocated_block(HeapWord* block) { duke@435: assert(BlockOffsetArrayUseUnallocatedBlock, duke@435: "_unallocated_block is not being maintained"); duke@435: assert(block >= _bottom && block <= _end, "out of range"); duke@435: _unallocated_block = block; duke@435: } duke@435: duke@435: // These methods expect to be called with [blk_start, blk_end) duke@435: // representing a block of memory in the heap. duke@435: void alloc_block(HeapWord* blk_start, HeapWord* blk_end); duke@435: void alloc_block(HeapWord* blk, size_t size) { duke@435: alloc_block(blk, blk + size); duke@435: } duke@435: duke@435: // The following methods are useful and optimized for a duke@435: // non-contiguous space. duke@435: duke@435: // Given a block [blk_start, blk_start + full_blk_size), and duke@435: // a left_blk_size < full_blk_size, adjust the BOT to show two duke@435: // blocks [blk_start, blk_start + left_blk_size) and duke@435: // [blk_start + left_blk_size, blk_start + full_blk_size). duke@435: // It is assumed (and verified in the non-product VM) that the duke@435: // BOT was correct for the original block. duke@435: void split_block(HeapWord* blk_start, size_t full_blk_size, duke@435: size_t left_blk_size); duke@435: duke@435: // Adjust BOT to show that it has a block in the range duke@435: // [blk_start, blk_start + size). Only the first card duke@435: // of BOT is touched. It is assumed (and verified in the duke@435: // non-product VM) that the remaining cards of the block duke@435: // are correct. ysr@2071: void mark_block(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false); ysr@2071: void mark_block(HeapWord* blk, size_t size, bool reducing = false) { ysr@2071: mark_block(blk, blk + size, reducing); duke@435: } duke@435: duke@435: // Adjust _unallocated_block to indicate that a particular duke@435: // block has been newly allocated or freed. It is assumed (and duke@435: // verified in the non-product VM) that the BOT is correct for duke@435: // the given block. ysr@2071: void allocated(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false) { duke@435: // Verify that the BOT shows [blk, blk + blk_size) to be one block. duke@435: verify_single_block(blk_start, blk_end); duke@435: if (BlockOffsetArrayUseUnallocatedBlock) { duke@435: _unallocated_block = MAX2(_unallocated_block, blk_end); duke@435: } duke@435: } duke@435: ysr@2071: void allocated(HeapWord* blk, size_t size, bool reducing = false) { ysr@2071: allocated(blk, blk + size, reducing); duke@435: } duke@435: duke@435: void freed(HeapWord* blk_start, HeapWord* blk_end); ysr@2071: void freed(HeapWord* blk, size_t size); duke@435: duke@435: HeapWord* block_start_unsafe(const void* addr) const; duke@435: duke@435: // Requires "addr" to be the start of a card and returns the duke@435: // start of the block that contains the given address. duke@435: HeapWord* block_start_careful(const void* addr) const; duke@435: duke@435: // Verification & debugging: ensure that the offset table reflects duke@435: // the fact that the block [blk_start, blk_end) or [blk, blk + size) duke@435: // is a single block of storage. NOTE: can't const this because of duke@435: // call to non-const do_block_internal() below. duke@435: void verify_single_block(HeapWord* blk_start, HeapWord* blk_end) duke@435: PRODUCT_RETURN; duke@435: void verify_single_block(HeapWord* blk, size_t size) PRODUCT_RETURN; duke@435: duke@435: // Verify that the given block is before _unallocated_block duke@435: void verify_not_unallocated(HeapWord* blk_start, HeapWord* blk_end) duke@435: const PRODUCT_RETURN; duke@435: void verify_not_unallocated(HeapWord* blk, size_t size) duke@435: const PRODUCT_RETURN; duke@435: duke@435: // Debugging support duke@435: virtual size_t last_active_index() const; duke@435: }; duke@435: duke@435: //////////////////////////////////////////////////////////////////////////// duke@435: // A subtype of BlockOffsetArray that takes advantage of the fact duke@435: // that its underlying space is a ContiguousSpace, so that its "active" duke@435: // region can be more efficiently tracked (than for a non-contiguous space). duke@435: //////////////////////////////////////////////////////////////////////////// duke@435: class BlockOffsetArrayContigSpace: public BlockOffsetArray { duke@435: friend class VMStructs; duke@435: private: duke@435: // allocation boundary at which offset array must be updated duke@435: HeapWord* _next_offset_threshold; duke@435: size_t _next_offset_index; // index corresponding to that boundary duke@435: duke@435: // Work function when allocation start crosses threshold. duke@435: void alloc_block_work(HeapWord* blk_start, HeapWord* blk_end); duke@435: duke@435: public: duke@435: BlockOffsetArrayContigSpace(BlockOffsetSharedArray* array, MemRegion mr): duke@435: BlockOffsetArray(array, mr, true) { duke@435: _next_offset_threshold = NULL; duke@435: _next_offset_index = 0; duke@435: } duke@435: duke@435: void set_contig_space(ContiguousSpace* sp) { set_space((Space*)sp); } duke@435: duke@435: // Initialize the threshold for an empty heap. duke@435: HeapWord* initialize_threshold(); duke@435: // Zero out the entry for _bottom (offset will be zero) duke@435: void zero_bottom_entry(); duke@435: duke@435: // Return the next threshold, the point at which the table should be duke@435: // updated. duke@435: HeapWord* threshold() const { return _next_offset_threshold; } duke@435: duke@435: // In general, these methods expect to be called with duke@435: // [blk_start, blk_end) representing a block of memory in the heap. duke@435: // In this implementation, however, we are OK even if blk_start and/or duke@435: // blk_end are NULL because NULL is represented as 0, and thus duke@435: // never exceeds the "_next_offset_threshold". duke@435: void alloc_block(HeapWord* blk_start, HeapWord* blk_end) { duke@435: if (blk_end > _next_offset_threshold) { duke@435: alloc_block_work(blk_start, blk_end); duke@435: } duke@435: } duke@435: void alloc_block(HeapWord* blk, size_t size) { duke@435: alloc_block(blk, blk + size); duke@435: } duke@435: duke@435: HeapWord* block_start_unsafe(const void* addr) const; duke@435: duke@435: // Debugging support duke@435: virtual size_t last_active_index() const; duke@435: }; stefank@2314: stefank@2314: #endif // SHARE_VM_MEMORY_BLOCKOFFSETTABLE_HPP