src/cpu/x86/vm/cppInterpreter_x86.cpp

Tue, 02 Aug 2011 18:36:40 +0200

author
roland
date
Tue, 02 Aug 2011 18:36:40 +0200
changeset 3047
f1c12354c3f7
parent 2901
3d2ab563047a
child 3391
069ab3f976d3
permissions
-rw-r--r--

7074017: Introduce MemBarAcquireLock/MemBarReleaseLock nodes for monitor enter/exit code paths
Summary: replace MemBarAcquire/MemBarRelease nodes on the monitor enter/exit code paths with new MemBarAcquireLock/MemBarReleaseLock nodes
Reviewed-by: kvn, twisti

duke@435 1 /*
twisti@2552 2 * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "interpreter/bytecodeHistogram.hpp"
stefank@2314 28 #include "interpreter/cppInterpreter.hpp"
stefank@2314 29 #include "interpreter/interpreter.hpp"
stefank@2314 30 #include "interpreter/interpreterGenerator.hpp"
stefank@2314 31 #include "interpreter/interpreterRuntime.hpp"
stefank@2314 32 #include "oops/arrayOop.hpp"
stefank@2314 33 #include "oops/methodDataOop.hpp"
stefank@2314 34 #include "oops/methodOop.hpp"
stefank@2314 35 #include "oops/oop.inline.hpp"
stefank@2314 36 #include "prims/jvmtiExport.hpp"
stefank@2314 37 #include "prims/jvmtiThreadState.hpp"
stefank@2314 38 #include "runtime/arguments.hpp"
stefank@2314 39 #include "runtime/deoptimization.hpp"
stefank@2314 40 #include "runtime/frame.inline.hpp"
stefank@2314 41 #include "runtime/interfaceSupport.hpp"
stefank@2314 42 #include "runtime/sharedRuntime.hpp"
stefank@2314 43 #include "runtime/stubRoutines.hpp"
stefank@2314 44 #include "runtime/synchronizer.hpp"
stefank@2314 45 #include "runtime/timer.hpp"
stefank@2314 46 #include "runtime/vframeArray.hpp"
stefank@2314 47 #include "utilities/debug.hpp"
stefank@2314 48 #ifdef SHARK
stefank@2314 49 #include "shark/shark_globals.hpp"
stefank@2314 50 #endif
duke@435 51
duke@435 52 #ifdef CC_INTERP
duke@435 53
duke@435 54 // Routine exists to make tracebacks look decent in debugger
duke@435 55 // while we are recursed in the frame manager/c++ interpreter.
duke@435 56 // We could use an address in the frame manager but having
duke@435 57 // frames look natural in the debugger is a plus.
duke@435 58 extern "C" void RecursiveInterpreterActivation(interpreterState istate )
duke@435 59 {
duke@435 60 //
duke@435 61 ShouldNotReachHere();
duke@435 62 }
duke@435 63
duke@435 64
duke@435 65 #define __ _masm->
duke@435 66 #define STATE(field_name) (Address(state, byte_offset_of(BytecodeInterpreter, field_name)))
duke@435 67
duke@435 68 Label fast_accessor_slow_entry_path; // fast accessor methods need to be able to jmp to unsynchronized
duke@435 69 // c++ interpreter entry point this holds that entry point label.
duke@435 70
never@739 71 // default registers for state and sender_sp
never@739 72 // state and sender_sp are the same on 32bit because we have no choice.
never@739 73 // state could be rsi on 64bit but it is an arg reg and not callee save
never@739 74 // so r13 is better choice.
never@739 75
never@739 76 const Register state = NOT_LP64(rsi) LP64_ONLY(r13);
never@739 77 const Register sender_sp_on_entry = NOT_LP64(rsi) LP64_ONLY(r13);
never@739 78
duke@435 79 // NEEDED for JVMTI?
duke@435 80 // address AbstractInterpreter::_remove_activation_preserving_args_entry;
duke@435 81
duke@435 82 static address unctrap_frame_manager_entry = NULL;
duke@435 83
duke@435 84 static address deopt_frame_manager_return_atos = NULL;
duke@435 85 static address deopt_frame_manager_return_btos = NULL;
duke@435 86 static address deopt_frame_manager_return_itos = NULL;
duke@435 87 static address deopt_frame_manager_return_ltos = NULL;
duke@435 88 static address deopt_frame_manager_return_ftos = NULL;
duke@435 89 static address deopt_frame_manager_return_dtos = NULL;
duke@435 90 static address deopt_frame_manager_return_vtos = NULL;
duke@435 91
duke@435 92 int AbstractInterpreter::BasicType_as_index(BasicType type) {
duke@435 93 int i = 0;
duke@435 94 switch (type) {
duke@435 95 case T_BOOLEAN: i = 0; break;
duke@435 96 case T_CHAR : i = 1; break;
duke@435 97 case T_BYTE : i = 2; break;
duke@435 98 case T_SHORT : i = 3; break;
duke@435 99 case T_INT : i = 4; break;
duke@435 100 case T_VOID : i = 5; break;
duke@435 101 case T_FLOAT : i = 8; break;
duke@435 102 case T_LONG : i = 9; break;
duke@435 103 case T_DOUBLE : i = 6; break;
duke@435 104 case T_OBJECT : // fall through
duke@435 105 case T_ARRAY : i = 7; break;
duke@435 106 default : ShouldNotReachHere();
duke@435 107 }
duke@435 108 assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
duke@435 109 return i;
duke@435 110 }
duke@435 111
duke@435 112 // Is this pc anywhere within code owned by the interpreter?
duke@435 113 // This only works for pc that might possibly be exposed to frame
duke@435 114 // walkers. It clearly misses all of the actual c++ interpreter
duke@435 115 // implementation
duke@435 116 bool CppInterpreter::contains(address pc) {
duke@435 117 return (_code->contains(pc) ||
duke@435 118 pc == CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
duke@435 119 }
duke@435 120
duke@435 121
duke@435 122 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
duke@435 123 address entry = __ pc();
duke@435 124 switch (type) {
duke@435 125 case T_BOOLEAN: __ c2bool(rax); break;
duke@435 126 case T_CHAR : __ andl(rax, 0xFFFF); break;
duke@435 127 case T_BYTE : __ sign_extend_byte (rax); break;
duke@435 128 case T_SHORT : __ sign_extend_short(rax); break;
duke@435 129 case T_VOID : // fall thru
duke@435 130 case T_LONG : // fall thru
duke@435 131 case T_INT : /* nothing to do */ break;
never@739 132
duke@435 133 case T_DOUBLE :
duke@435 134 case T_FLOAT :
never@739 135 {
never@739 136 const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
never@739 137 __ pop(t); // remove return address first
duke@435 138 // Must return a result for interpreter or compiler. In SSE
duke@435 139 // mode, results are returned in xmm0 and the FPU stack must
duke@435 140 // be empty.
duke@435 141 if (type == T_FLOAT && UseSSE >= 1) {
never@739 142 #ifndef _LP64
duke@435 143 // Load ST0
duke@435 144 __ fld_d(Address(rsp, 0));
duke@435 145 // Store as float and empty fpu stack
duke@435 146 __ fstp_s(Address(rsp, 0));
never@739 147 #endif // !_LP64
duke@435 148 // and reload
duke@435 149 __ movflt(xmm0, Address(rsp, 0));
duke@435 150 } else if (type == T_DOUBLE && UseSSE >= 2 ) {
duke@435 151 __ movdbl(xmm0, Address(rsp, 0));
duke@435 152 } else {
duke@435 153 // restore ST0
duke@435 154 __ fld_d(Address(rsp, 0));
duke@435 155 }
duke@435 156 // and pop the temp
never@739 157 __ addptr(rsp, 2 * wordSize);
never@739 158 __ push(t); // restore return address
duke@435 159 }
duke@435 160 break;
duke@435 161 case T_OBJECT :
duke@435 162 // retrieve result from frame
never@739 163 __ movptr(rax, STATE(_oop_temp));
duke@435 164 // and verify it
duke@435 165 __ verify_oop(rax);
duke@435 166 break;
duke@435 167 default : ShouldNotReachHere();
duke@435 168 }
duke@435 169 __ ret(0); // return from result handler
duke@435 170 return entry;
duke@435 171 }
duke@435 172
duke@435 173 // tosca based result to c++ interpreter stack based result.
duke@435 174 // Result goes to top of native stack.
duke@435 175
duke@435 176 #undef EXTEND // SHOULD NOT BE NEEDED
duke@435 177 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
duke@435 178 // A result is in the tosca (abi result) from either a native method call or compiled
duke@435 179 // code. Place this result on the java expression stack so C++ interpreter can use it.
duke@435 180 address entry = __ pc();
duke@435 181
duke@435 182 const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
never@739 183 __ pop(t); // remove return address first
duke@435 184 switch (type) {
duke@435 185 case T_VOID:
duke@435 186 break;
duke@435 187 case T_BOOLEAN:
duke@435 188 #ifdef EXTEND
duke@435 189 __ c2bool(rax);
duke@435 190 #endif
never@739 191 __ push(rax);
duke@435 192 break;
duke@435 193 case T_CHAR :
duke@435 194 #ifdef EXTEND
duke@435 195 __ andl(rax, 0xFFFF);
duke@435 196 #endif
never@739 197 __ push(rax);
duke@435 198 break;
duke@435 199 case T_BYTE :
duke@435 200 #ifdef EXTEND
duke@435 201 __ sign_extend_byte (rax);
duke@435 202 #endif
never@739 203 __ push(rax);
duke@435 204 break;
duke@435 205 case T_SHORT :
duke@435 206 #ifdef EXTEND
duke@435 207 __ sign_extend_short(rax);
duke@435 208 #endif
never@739 209 __ push(rax);
duke@435 210 break;
duke@435 211 case T_LONG :
never@739 212 __ push(rdx); // pushes useless junk on 64bit
never@739 213 __ push(rax);
duke@435 214 break;
duke@435 215 case T_INT :
never@739 216 __ push(rax);
duke@435 217 break;
duke@435 218 case T_FLOAT :
never@739 219 // Result is in ST(0)/xmm0
never@739 220 __ subptr(rsp, wordSize);
duke@435 221 if ( UseSSE < 1) {
never@739 222 __ fstp_s(Address(rsp, 0));
duke@435 223 } else {
duke@435 224 __ movflt(Address(rsp, 0), xmm0);
duke@435 225 }
duke@435 226 break;
duke@435 227 case T_DOUBLE :
never@739 228 __ subptr(rsp, 2*wordSize);
duke@435 229 if ( UseSSE < 2 ) {
never@739 230 __ fstp_d(Address(rsp, 0));
duke@435 231 } else {
duke@435 232 __ movdbl(Address(rsp, 0), xmm0);
duke@435 233 }
duke@435 234 break;
duke@435 235 case T_OBJECT :
duke@435 236 __ verify_oop(rax); // verify it
never@739 237 __ push(rax);
duke@435 238 break;
duke@435 239 default : ShouldNotReachHere();
duke@435 240 }
duke@435 241 __ jmp(t); // return from result handler
duke@435 242 return entry;
duke@435 243 }
duke@435 244
duke@435 245 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
duke@435 246 // A result is in the java expression stack of the interpreted method that has just
duke@435 247 // returned. Place this result on the java expression stack of the caller.
duke@435 248 //
never@739 249 // The current interpreter activation in rsi/r13 is for the method just returning its
duke@435 250 // result. So we know that the result of this method is on the top of the current
duke@435 251 // execution stack (which is pre-pushed) and will be return to the top of the caller
duke@435 252 // stack. The top of the callers stack is the bottom of the locals of the current
duke@435 253 // activation.
duke@435 254 // Because of the way activation are managed by the frame manager the value of rsp is
duke@435 255 // below both the stack top of the current activation and naturally the stack top
duke@435 256 // of the calling activation. This enable this routine to leave the return address
duke@435 257 // to the frame manager on the stack and do a vanilla return.
duke@435 258 //
never@739 259 // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
never@739 260 // On Return: rsi/r13 - unchanged
duke@435 261 // rax - new stack top for caller activation (i.e. activation in _prev_link)
duke@435 262 //
duke@435 263 // Can destroy rdx, rcx.
duke@435 264 //
duke@435 265
duke@435 266 address entry = __ pc();
duke@435 267 const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
duke@435 268 switch (type) {
duke@435 269 case T_VOID:
never@739 270 __ movptr(rax, STATE(_locals)); // pop parameters get new stack value
never@739 271 __ addptr(rax, wordSize); // account for prepush before we return
duke@435 272 break;
duke@435 273 case T_FLOAT :
duke@435 274 case T_BOOLEAN:
duke@435 275 case T_CHAR :
duke@435 276 case T_BYTE :
duke@435 277 case T_SHORT :
duke@435 278 case T_INT :
duke@435 279 // 1 word result
never@739 280 __ movptr(rdx, STATE(_stack));
never@739 281 __ movptr(rax, STATE(_locals)); // address for result
duke@435 282 __ movl(rdx, Address(rdx, wordSize)); // get result
never@739 283 __ movptr(Address(rax, 0), rdx); // and store it
duke@435 284 break;
duke@435 285 case T_LONG :
duke@435 286 case T_DOUBLE :
duke@435 287 // return top two words on current expression stack to caller's expression stack
duke@435 288 // The caller's expression stack is adjacent to the current frame manager's intepretState
duke@435 289 // except we allocated one extra word for this intepretState so we won't overwrite it
duke@435 290 // when we return a two word result.
duke@435 291
never@739 292 __ movptr(rax, STATE(_locals)); // address for result
never@739 293 __ movptr(rcx, STATE(_stack));
never@739 294 __ subptr(rax, wordSize); // need addition word besides locals[0]
never@739 295 __ movptr(rdx, Address(rcx, 2*wordSize)); // get result word (junk in 64bit)
never@739 296 __ movptr(Address(rax, wordSize), rdx); // and store it
never@739 297 __ movptr(rdx, Address(rcx, wordSize)); // get result word
never@739 298 __ movptr(Address(rax, 0), rdx); // and store it
duke@435 299 break;
duke@435 300 case T_OBJECT :
never@739 301 __ movptr(rdx, STATE(_stack));
never@739 302 __ movptr(rax, STATE(_locals)); // address for result
never@739 303 __ movptr(rdx, Address(rdx, wordSize)); // get result
duke@435 304 __ verify_oop(rdx); // verify it
never@739 305 __ movptr(Address(rax, 0), rdx); // and store it
duke@435 306 break;
duke@435 307 default : ShouldNotReachHere();
duke@435 308 }
duke@435 309 __ ret(0);
duke@435 310 return entry;
duke@435 311 }
duke@435 312
duke@435 313 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
duke@435 314 // A result is in the java expression stack of the interpreted method that has just
duke@435 315 // returned. Place this result in the native abi that the caller expects.
duke@435 316 //
duke@435 317 // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
duke@435 318 // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
duke@435 319 // and so rather than return result onto caller's java expression stack we return the
duke@435 320 // result in the expected location based on the native abi.
never@739 321 // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
never@739 322 // On Return: rsi/r13 - unchanged
duke@435 323 // Other registers changed [rax/rdx/ST(0) as needed for the result returned]
duke@435 324
duke@435 325 address entry = __ pc();
duke@435 326 switch (type) {
duke@435 327 case T_VOID:
duke@435 328 break;
duke@435 329 case T_BOOLEAN:
duke@435 330 case T_CHAR :
duke@435 331 case T_BYTE :
duke@435 332 case T_SHORT :
duke@435 333 case T_INT :
never@739 334 __ movptr(rdx, STATE(_stack)); // get top of stack
duke@435 335 __ movl(rax, Address(rdx, wordSize)); // get result word 1
duke@435 336 break;
duke@435 337 case T_LONG :
never@739 338 __ movptr(rdx, STATE(_stack)); // get top of stack
never@739 339 __ movptr(rax, Address(rdx, wordSize)); // get result low word
never@739 340 NOT_LP64(__ movl(rdx, Address(rdx, 2*wordSize));) // get result high word
duke@435 341 break;
duke@435 342 case T_FLOAT :
never@739 343 __ movptr(rdx, STATE(_stack)); // get top of stack
duke@435 344 if ( UseSSE >= 1) {
duke@435 345 __ movflt(xmm0, Address(rdx, wordSize));
duke@435 346 } else {
duke@435 347 __ fld_s(Address(rdx, wordSize)); // pushd float result
duke@435 348 }
duke@435 349 break;
duke@435 350 case T_DOUBLE :
never@739 351 __ movptr(rdx, STATE(_stack)); // get top of stack
duke@435 352 if ( UseSSE > 1) {
duke@435 353 __ movdbl(xmm0, Address(rdx, wordSize));
duke@435 354 } else {
duke@435 355 __ fld_d(Address(rdx, wordSize)); // push double result
duke@435 356 }
duke@435 357 break;
duke@435 358 case T_OBJECT :
never@739 359 __ movptr(rdx, STATE(_stack)); // get top of stack
never@739 360 __ movptr(rax, Address(rdx, wordSize)); // get result word 1
duke@435 361 __ verify_oop(rax); // verify it
duke@435 362 break;
duke@435 363 default : ShouldNotReachHere();
duke@435 364 }
duke@435 365 __ ret(0);
duke@435 366 return entry;
duke@435 367 }
duke@435 368
duke@435 369 address CppInterpreter::return_entry(TosState state, int length) {
duke@435 370 // make it look good in the debugger
duke@435 371 return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation);
duke@435 372 }
duke@435 373
duke@435 374 address CppInterpreter::deopt_entry(TosState state, int length) {
duke@435 375 address ret = NULL;
duke@435 376 if (length != 0) {
duke@435 377 switch (state) {
duke@435 378 case atos: ret = deopt_frame_manager_return_atos; break;
duke@435 379 case btos: ret = deopt_frame_manager_return_btos; break;
duke@435 380 case ctos:
duke@435 381 case stos:
duke@435 382 case itos: ret = deopt_frame_manager_return_itos; break;
duke@435 383 case ltos: ret = deopt_frame_manager_return_ltos; break;
duke@435 384 case ftos: ret = deopt_frame_manager_return_ftos; break;
duke@435 385 case dtos: ret = deopt_frame_manager_return_dtos; break;
duke@435 386 case vtos: ret = deopt_frame_manager_return_vtos; break;
duke@435 387 }
duke@435 388 } else {
duke@435 389 ret = unctrap_frame_manager_entry; // re-execute the bytecode ( e.g. uncommon trap)
duke@435 390 }
duke@435 391 assert(ret != NULL, "Not initialized");
duke@435 392 return ret;
duke@435 393 }
duke@435 394
duke@435 395 // C++ Interpreter
duke@435 396 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
duke@435 397 const Register locals,
duke@435 398 const Register sender_sp,
duke@435 399 bool native) {
duke@435 400
duke@435 401 // On entry the "locals" argument points to locals[0] (or where it would be in case no locals in
duke@435 402 // a static method). "state" contains any previous frame manager state which we must save a link
duke@435 403 // to in the newly generated state object. On return "state" is a pointer to the newly allocated
duke@435 404 // state object. We must allocate and initialize a new interpretState object and the method
duke@435 405 // expression stack. Because the returned result (if any) of the method will be placed on the caller's
duke@435 406 // expression stack and this will overlap with locals[0] (and locals[1] if double/long) we must
duke@435 407 // be sure to leave space on the caller's stack so that this result will not overwrite values when
duke@435 408 // locals[0] and locals[1] do not exist (and in fact are return address and saved rbp). So when
duke@435 409 // we are non-native we in essence ensure that locals[0-1] exist. We play an extra trick in
duke@435 410 // non-product builds and initialize this last local with the previous interpreterState as
duke@435 411 // this makes things look real nice in the debugger.
duke@435 412
duke@435 413 // State on entry
duke@435 414 // Assumes locals == &locals[0]
duke@435 415 // Assumes state == any previous frame manager state (assuming call path from c++ interpreter)
duke@435 416 // Assumes rax = return address
duke@435 417 // rcx == senders_sp
duke@435 418 // rbx == method
duke@435 419 // Modifies rcx, rdx, rax
duke@435 420 // Returns:
duke@435 421 // state == address of new interpreterState
duke@435 422 // rsp == bottom of method's expression stack.
duke@435 423
duke@435 424 const Address const_offset (rbx, methodOopDesc::const_offset());
duke@435 425
duke@435 426
duke@435 427 // On entry sp is the sender's sp. This includes the space for the arguments
duke@435 428 // that the sender pushed. If the sender pushed no args (a static) and the
duke@435 429 // caller returns a long then we need two words on the sender's stack which
duke@435 430 // are not present (although when we return a restore full size stack the
duke@435 431 // space will be present). If we didn't allocate two words here then when
duke@435 432 // we "push" the result of the caller's stack we would overwrite the return
duke@435 433 // address and the saved rbp. Not good. So simply allocate 2 words now
duke@435 434 // just to be safe. This is the "static long no_params() method" issue.
duke@435 435 // See Lo.java for a testcase.
duke@435 436 // We don't need this for native calls because they return result in
duke@435 437 // register and the stack is expanded in the caller before we store
duke@435 438 // the results on the stack.
duke@435 439
duke@435 440 if (!native) {
duke@435 441 #ifdef PRODUCT
never@739 442 __ subptr(rsp, 2*wordSize);
duke@435 443 #else /* PRODUCT */
never@739 444 __ push((int32_t)NULL_WORD);
never@739 445 __ push(state); // make it look like a real argument
duke@435 446 #endif /* PRODUCT */
duke@435 447 }
duke@435 448
duke@435 449 // Now that we are assure of space for stack result, setup typical linkage
duke@435 450
never@739 451 __ push(rax);
duke@435 452 __ enter();
duke@435 453
never@739 454 __ mov(rax, state); // save current state
never@739 455
never@739 456 __ lea(rsp, Address(rsp, -(int)sizeof(BytecodeInterpreter)));
never@739 457 __ mov(state, rsp);
never@739 458
never@739 459 // rsi/r13 == state/locals rax == prevstate
duke@435 460
duke@435 461 // initialize the "shadow" frame so that use since C++ interpreter not directly
duke@435 462 // recursive. Simpler to recurse but we can't trim expression stack as we call
duke@435 463 // new methods.
never@739 464 __ movptr(STATE(_locals), locals); // state->_locals = locals()
never@739 465 __ movptr(STATE(_self_link), state); // point to self
never@739 466 __ movptr(STATE(_prev_link), rax); // state->_link = state on entry (NULL or previous state)
never@739 467 __ movptr(STATE(_sender_sp), sender_sp); // state->_sender_sp = sender_sp
never@739 468 #ifdef _LP64
never@739 469 __ movptr(STATE(_thread), r15_thread); // state->_bcp = codes()
never@739 470 #else
duke@435 471 __ get_thread(rax); // get vm's javathread*
never@739 472 __ movptr(STATE(_thread), rax); // state->_bcp = codes()
never@739 473 #endif // _LP64
never@739 474 __ movptr(rdx, Address(rbx, methodOopDesc::const_offset())); // get constantMethodOop
never@739 475 __ lea(rdx, Address(rdx, constMethodOopDesc::codes_offset())); // get code base
duke@435 476 if (native) {
never@739 477 __ movptr(STATE(_bcp), (int32_t)NULL_WORD); // state->_bcp = NULL
duke@435 478 } else {
never@739 479 __ movptr(STATE(_bcp), rdx); // state->_bcp = codes()
duke@435 480 }
never@739 481 __ xorptr(rdx, rdx);
never@739 482 __ movptr(STATE(_oop_temp), rdx); // state->_oop_temp = NULL (only really needed for native)
never@739 483 __ movptr(STATE(_mdx), rdx); // state->_mdx = NULL
never@739 484 __ movptr(rdx, Address(rbx, methodOopDesc::constants_offset()));
never@739 485 __ movptr(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
never@739 486 __ movptr(STATE(_constants), rdx); // state->_constants = constants()
never@739 487
never@739 488 __ movptr(STATE(_method), rbx); // state->_method = method()
never@739 489 __ movl(STATE(_msg), (int32_t) BytecodeInterpreter::method_entry); // state->_msg = initial method entry
never@739 490 __ movptr(STATE(_result._to_call._callee), (int32_t) NULL_WORD); // state->_result._to_call._callee_callee = NULL
never@739 491
never@739 492
never@739 493 __ movptr(STATE(_monitor_base), rsp); // set monitor block bottom (grows down) this would point to entry [0]
duke@435 494 // entries run from -1..x where &monitor[x] ==
duke@435 495
duke@435 496 {
duke@435 497 // Must not attempt to lock method until we enter interpreter as gc won't be able to find the
duke@435 498 // initial frame. However we allocate a free monitor so we don't have to shuffle the expression stack
duke@435 499 // immediately.
duke@435 500
duke@435 501 // synchronize method
duke@435 502 const Address access_flags (rbx, methodOopDesc::access_flags_offset());
duke@435 503 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 504 Label not_synced;
duke@435 505
duke@435 506 __ movl(rax, access_flags);
duke@435 507 __ testl(rax, JVM_ACC_SYNCHRONIZED);
duke@435 508 __ jcc(Assembler::zero, not_synced);
duke@435 509
duke@435 510 // Allocate initial monitor and pre initialize it
duke@435 511 // get synchronization object
duke@435 512
duke@435 513 Label done;
duke@435 514 const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
duke@435 515 __ movl(rax, access_flags);
duke@435 516 __ testl(rax, JVM_ACC_STATIC);
never@739 517 __ movptr(rax, Address(locals, 0)); // get receiver (assume this is frequent case)
duke@435 518 __ jcc(Assembler::zero, done);
never@739 519 __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
never@739 520 __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
never@739 521 __ movptr(rax, Address(rax, mirror_offset));
duke@435 522 __ bind(done);
duke@435 523 // add space for monitor & lock
never@739 524 __ subptr(rsp, entry_size); // add space for a monitor entry
never@739 525 __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
duke@435 526 __ bind(not_synced);
duke@435 527 }
duke@435 528
never@739 529 __ movptr(STATE(_stack_base), rsp); // set expression stack base ( == &monitors[-count])
duke@435 530 if (native) {
never@739 531 __ movptr(STATE(_stack), rsp); // set current expression stack tos
never@739 532 __ movptr(STATE(_stack_limit), rsp);
duke@435 533 } else {
never@739 534 __ subptr(rsp, wordSize); // pre-push stack
never@739 535 __ movptr(STATE(_stack), rsp); // set current expression stack tos
duke@435 536
duke@435 537 // compute full expression stack limit
duke@435 538
duke@435 539 const Address size_of_stack (rbx, methodOopDesc::max_stack_offset());
jrose@1145 540 const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_words();
jrose@1057 541 __ load_unsigned_short(rdx, size_of_stack); // get size of expression stack in words
never@739 542 __ negptr(rdx); // so we can subtract in next step
duke@435 543 // Allocate expression stack
jrose@1145 544 __ lea(rsp, Address(rsp, rdx, Address::times_ptr, -extra_stack));
never@739 545 __ movptr(STATE(_stack_limit), rsp);
duke@435 546 }
duke@435 547
never@739 548 #ifdef _LP64
never@739 549 // Make sure stack is properly aligned and sized for the abi
never@739 550 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
twisti@1040 551 __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
never@739 552 #endif // _LP64
never@739 553
never@739 554
never@739 555
duke@435 556 }
duke@435 557
duke@435 558 // Helpers for commoning out cases in the various type of method entries.
duke@435 559 //
duke@435 560
duke@435 561 // increment invocation count & check for overflow
duke@435 562 //
duke@435 563 // Note: checking for negative value instead of overflow
duke@435 564 // so we have a 'sticky' overflow test
duke@435 565 //
duke@435 566 // rbx,: method
duke@435 567 // rcx: invocation counter
duke@435 568 //
duke@435 569 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
duke@435 570
duke@435 571 const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
duke@435 572 const Address backedge_counter (rbx, methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset());
duke@435 573
duke@435 574 if (ProfileInterpreter) { // %%% Merge this into methodDataOop
never@739 575 __ incrementl(Address(rbx,methodOopDesc::interpreter_invocation_counter_offset()));
duke@435 576 }
duke@435 577 // Update standard invocation counters
duke@435 578 __ movl(rax, backedge_counter); // load backedge counter
duke@435 579
duke@435 580 __ increment(rcx, InvocationCounter::count_increment);
duke@435 581 __ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
duke@435 582
duke@435 583 __ movl(invocation_counter, rcx); // save invocation count
duke@435 584 __ addl(rcx, rax); // add both counters
duke@435 585
duke@435 586 // profile_method is non-null only for interpreted method so
duke@435 587 // profile_method != NULL == !native_call
duke@435 588 // BytecodeInterpreter only calls for native so code is elided.
duke@435 589
duke@435 590 __ cmp32(rcx,
duke@435 591 ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
duke@435 592 __ jcc(Assembler::aboveEqual, *overflow);
duke@435 593
duke@435 594 }
duke@435 595
duke@435 596 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
duke@435 597
duke@435 598 // C++ interpreter on entry
never@739 599 // rsi/r13 - new interpreter state pointer
duke@435 600 // rbp - interpreter frame pointer
duke@435 601 // rbx - method
duke@435 602
duke@435 603 // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
duke@435 604 // rbx, - method
duke@435 605 // rcx - rcvr (assuming there is one)
duke@435 606 // top of stack return address of interpreter caller
duke@435 607 // rsp - sender_sp
duke@435 608
duke@435 609 // C++ interpreter only
never@739 610 // rsi/r13 - previous interpreter state pointer
duke@435 611
duke@435 612 const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
duke@435 613
duke@435 614 // InterpreterRuntime::frequency_counter_overflow takes one argument
duke@435 615 // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
duke@435 616 // The call returns the address of the verified entry point for the method or NULL
duke@435 617 // if the compilation did not complete (either went background or bailed out).
never@739 618 __ movptr(rax, (int32_t)false);
duke@435 619 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
duke@435 620
duke@435 621 // for c++ interpreter can rsi really be munged?
coleenp@955 622 __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter))); // restore state
never@739 623 __ movptr(rbx, Address(state, byte_offset_of(BytecodeInterpreter, _method))); // restore method
never@739 624 __ movptr(rdi, Address(state, byte_offset_of(BytecodeInterpreter, _locals))); // get locals pointer
never@739 625
duke@435 626 __ jmp(*do_continue, relocInfo::none);
duke@435 627
duke@435 628 }
duke@435 629
duke@435 630 void InterpreterGenerator::generate_stack_overflow_check(void) {
duke@435 631 // see if we've got enough room on the stack for locals plus overhead.
duke@435 632 // the expression stack grows down incrementally, so the normal guard
duke@435 633 // page mechanism will work for that.
duke@435 634 //
duke@435 635 // Registers live on entry:
duke@435 636 //
duke@435 637 // Asm interpreter
duke@435 638 // rdx: number of additional locals this frame needs (what we must check)
duke@435 639 // rbx,: methodOop
duke@435 640
duke@435 641 // C++ Interpreter
never@739 642 // rsi/r13: previous interpreter frame state object
duke@435 643 // rdi: &locals[0]
duke@435 644 // rcx: # of locals
duke@435 645 // rdx: number of additional locals this frame needs (what we must check)
duke@435 646 // rbx: methodOop
duke@435 647
duke@435 648 // destroyed on exit
duke@435 649 // rax,
duke@435 650
duke@435 651 // NOTE: since the additional locals are also always pushed (wasn't obvious in
duke@435 652 // generate_method_entry) so the guard should work for them too.
duke@435 653 //
duke@435 654
duke@435 655 // monitor entry size: see picture of stack set (generate_method_entry) and frame_i486.hpp
duke@435 656 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 657
duke@435 658 // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
duke@435 659 // be sure to change this if you add/subtract anything to/from the overhead area
duke@435 660 const int overhead_size = (int)sizeof(BytecodeInterpreter);
duke@435 661
duke@435 662 const int page_size = os::vm_page_size();
duke@435 663
duke@435 664 Label after_frame_check;
duke@435 665
duke@435 666 // compute rsp as if this were going to be the last frame on
duke@435 667 // the stack before the red zone
duke@435 668
duke@435 669 Label after_frame_check_pop;
duke@435 670
duke@435 671 // save rsi == caller's bytecode ptr (c++ previous interp. state)
duke@435 672 // QQQ problem here?? rsi overload????
never@739 673 __ push(state);
never@739 674
never@739 675 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rsi);
never@739 676
never@739 677 NOT_LP64(__ get_thread(thread));
duke@435 678
duke@435 679 const Address stack_base(thread, Thread::stack_base_offset());
duke@435 680 const Address stack_size(thread, Thread::stack_size_offset());
duke@435 681
duke@435 682 // locals + overhead, in bytes
duke@435 683 const Address size_of_stack (rbx, methodOopDesc::max_stack_offset());
duke@435 684 // Always give one monitor to allow us to start interp if sync method.
duke@435 685 // Any additional monitors need a check when moving the expression stack
coleenp@955 686 const int one_monitor = frame::interpreter_frame_monitor_size() * wordSize;
jrose@1145 687 const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
jrose@1057 688 __ load_unsigned_short(rax, size_of_stack); // get size of expression stack in words
jrose@1145 689 __ lea(rax, Address(noreg, rax, Interpreter::stackElementScale(), extra_stack + one_monitor));
never@739 690 __ lea(rax, Address(rax, rdx, Interpreter::stackElementScale(), overhead_size));
duke@435 691
duke@435 692 #ifdef ASSERT
duke@435 693 Label stack_base_okay, stack_size_okay;
duke@435 694 // verify that thread stack base is non-zero
never@739 695 __ cmpptr(stack_base, (int32_t)0);
duke@435 696 __ jcc(Assembler::notEqual, stack_base_okay);
duke@435 697 __ stop("stack base is zero");
duke@435 698 __ bind(stack_base_okay);
duke@435 699 // verify that thread stack size is non-zero
never@739 700 __ cmpptr(stack_size, (int32_t)0);
duke@435 701 __ jcc(Assembler::notEqual, stack_size_okay);
duke@435 702 __ stop("stack size is zero");
duke@435 703 __ bind(stack_size_okay);
duke@435 704 #endif
duke@435 705
duke@435 706 // Add stack base to locals and subtract stack size
never@739 707 __ addptr(rax, stack_base);
never@739 708 __ subptr(rax, stack_size);
duke@435 709
duke@435 710 // We should have a magic number here for the size of the c++ interpreter frame.
duke@435 711 // We can't actually tell this ahead of time. The debug version size is around 3k
duke@435 712 // product is 1k and fastdebug is 4k
duke@435 713 const int slop = 6 * K;
duke@435 714
duke@435 715 // Use the maximum number of pages we might bang.
duke@435 716 const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
duke@435 717 (StackRedPages+StackYellowPages);
duke@435 718 // Only need this if we are stack banging which is temporary while
duke@435 719 // we're debugging.
never@739 720 __ addptr(rax, slop + 2*max_pages * page_size);
duke@435 721
duke@435 722 // check against the current stack bottom
never@739 723 __ cmpptr(rsp, rax);
duke@435 724 __ jcc(Assembler::above, after_frame_check_pop);
duke@435 725
never@739 726 __ pop(state); // get c++ prev state.
duke@435 727
duke@435 728 // throw exception return address becomes throwing pc
duke@435 729 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
duke@435 730
duke@435 731 // all done with frame size check
duke@435 732 __ bind(after_frame_check_pop);
never@739 733 __ pop(state);
duke@435 734
duke@435 735 __ bind(after_frame_check);
duke@435 736 }
duke@435 737
duke@435 738 // Find preallocated monitor and lock method (C++ interpreter)
duke@435 739 // rbx - methodOop
duke@435 740 //
duke@435 741 void InterpreterGenerator::lock_method(void) {
never@739 742 // assumes state == rsi/r13 == pointer to current interpreterState
never@739 743 // minimally destroys rax, rdx|c_rarg1, rdi
duke@435 744 //
duke@435 745 // synchronize method
duke@435 746 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 747 const Address access_flags (rbx, methodOopDesc::access_flags_offset());
duke@435 748
never@739 749 const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
never@739 750
duke@435 751 // find initial monitor i.e. monitors[-1]
never@739 752 __ movptr(monitor, STATE(_monitor_base)); // get monitor bottom limit
never@739 753 __ subptr(monitor, entry_size); // point to initial monitor
duke@435 754
duke@435 755 #ifdef ASSERT
duke@435 756 { Label L;
duke@435 757 __ movl(rax, access_flags);
duke@435 758 __ testl(rax, JVM_ACC_SYNCHRONIZED);
duke@435 759 __ jcc(Assembler::notZero, L);
duke@435 760 __ stop("method doesn't need synchronization");
duke@435 761 __ bind(L);
duke@435 762 }
duke@435 763 #endif // ASSERT
duke@435 764 // get synchronization object
duke@435 765 { Label done;
duke@435 766 const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
duke@435 767 __ movl(rax, access_flags);
never@739 768 __ movptr(rdi, STATE(_locals)); // prepare to get receiver (assume common case)
duke@435 769 __ testl(rax, JVM_ACC_STATIC);
never@739 770 __ movptr(rax, Address(rdi, 0)); // get receiver (assume this is frequent case)
duke@435 771 __ jcc(Assembler::zero, done);
never@739 772 __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
never@739 773 __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
never@739 774 __ movptr(rax, Address(rax, mirror_offset));
duke@435 775 __ bind(done);
duke@435 776 }
duke@435 777 #ifdef ASSERT
duke@435 778 { Label L;
never@739 779 __ cmpptr(rax, Address(monitor, BasicObjectLock::obj_offset_in_bytes())); // correct object?
duke@435 780 __ jcc(Assembler::equal, L);
duke@435 781 __ stop("wrong synchronization lobject");
duke@435 782 __ bind(L);
duke@435 783 }
duke@435 784 #endif // ASSERT
never@739 785 // can destroy rax, rdx|c_rarg1, rcx, and (via call_VM) rdi!
never@739 786 __ lock_object(monitor);
duke@435 787 }
duke@435 788
duke@435 789 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
duke@435 790
duke@435 791 address InterpreterGenerator::generate_accessor_entry(void) {
duke@435 792
never@739 793 // rbx: methodOop
never@739 794
never@739 795 // rsi/r13: senderSP must preserved for slow path, set SP to it on fast path
duke@435 796
duke@435 797 Label xreturn_path;
duke@435 798
duke@435 799 // do fastpath for resolved accessor methods
duke@435 800 if (UseFastAccessorMethods) {
duke@435 801
duke@435 802 address entry_point = __ pc();
duke@435 803
duke@435 804 Label slow_path;
duke@435 805 // If we need a safepoint check, generate full interpreter entry.
duke@435 806 ExternalAddress state(SafepointSynchronize::address_of_state());
duke@435 807 __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
duke@435 808 SafepointSynchronize::_not_synchronized);
duke@435 809
duke@435 810 __ jcc(Assembler::notEqual, slow_path);
duke@435 811 // ASM/C++ Interpreter
duke@435 812 // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
duke@435 813 // Note: We can only use this code if the getfield has been resolved
duke@435 814 // and if we don't have a null-pointer exception => check for
duke@435 815 // these conditions first and use slow path if necessary.
duke@435 816 // rbx,: method
duke@435 817 // rcx: receiver
never@739 818 __ movptr(rax, Address(rsp, wordSize));
duke@435 819
duke@435 820 // check if local 0 != NULL and read field
never@739 821 __ testptr(rax, rax);
duke@435 822 __ jcc(Assembler::zero, slow_path);
duke@435 823
never@739 824 __ movptr(rdi, Address(rbx, methodOopDesc::constants_offset()));
duke@435 825 // read first instruction word and extract bytecode @ 1 and index @ 2
never@739 826 __ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
duke@435 827 __ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
duke@435 828 // Shift codes right to get the index on the right.
duke@435 829 // The bytecode fetched looks like <index><0xb4><0x2a>
duke@435 830 __ shrl(rdx, 2*BitsPerByte);
duke@435 831 __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
never@739 832 __ movptr(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
duke@435 833
duke@435 834 // rax,: local 0
duke@435 835 // rbx,: method
duke@435 836 // rcx: receiver - do not destroy since it is needed for slow path!
duke@435 837 // rcx: scratch
duke@435 838 // rdx: constant pool cache index
duke@435 839 // rdi: constant pool cache
never@739 840 // rsi/r13: sender sp
duke@435 841
duke@435 842 // check if getfield has been resolved and read constant pool cache entry
duke@435 843 // check the validity of the cache entry by testing whether _indices field
duke@435 844 // contains Bytecode::_getfield in b1 byte.
duke@435 845 assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
duke@435 846 __ movl(rcx,
duke@435 847 Address(rdi,
duke@435 848 rdx,
never@739 849 Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
duke@435 850 __ shrl(rcx, 2*BitsPerByte);
duke@435 851 __ andl(rcx, 0xFF);
duke@435 852 __ cmpl(rcx, Bytecodes::_getfield);
duke@435 853 __ jcc(Assembler::notEqual, slow_path);
duke@435 854
duke@435 855 // Note: constant pool entry is not valid before bytecode is resolved
never@739 856 __ movptr(rcx,
duke@435 857 Address(rdi,
duke@435 858 rdx,
never@739 859 Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset()));
duke@435 860 __ movl(rdx,
duke@435 861 Address(rdi,
duke@435 862 rdx,
never@739 863 Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset()));
duke@435 864
duke@435 865 Label notByte, notShort, notChar;
duke@435 866 const Address field_address (rax, rcx, Address::times_1);
duke@435 867
duke@435 868 // Need to differentiate between igetfield, agetfield, bgetfield etc.
duke@435 869 // because they are different sizes.
duke@435 870 // Use the type from the constant pool cache
duke@435 871 __ shrl(rdx, ConstantPoolCacheEntry::tosBits);
duke@435 872 // Make sure we don't need to mask rdx for tosBits after the above shift
duke@435 873 ConstantPoolCacheEntry::verify_tosBits();
never@739 874 #ifdef _LP64
never@739 875 Label notObj;
never@739 876 __ cmpl(rdx, atos);
never@739 877 __ jcc(Assembler::notEqual, notObj);
never@739 878 // atos
never@739 879 __ movptr(rax, field_address);
never@739 880 __ jmp(xreturn_path);
never@739 881
never@739 882 __ bind(notObj);
never@739 883 #endif // _LP64
duke@435 884 __ cmpl(rdx, btos);
duke@435 885 __ jcc(Assembler::notEqual, notByte);
duke@435 886 __ load_signed_byte(rax, field_address);
duke@435 887 __ jmp(xreturn_path);
duke@435 888
duke@435 889 __ bind(notByte);
duke@435 890 __ cmpl(rdx, stos);
duke@435 891 __ jcc(Assembler::notEqual, notShort);
jrose@1057 892 __ load_signed_short(rax, field_address);
duke@435 893 __ jmp(xreturn_path);
duke@435 894
duke@435 895 __ bind(notShort);
duke@435 896 __ cmpl(rdx, ctos);
duke@435 897 __ jcc(Assembler::notEqual, notChar);
jrose@1057 898 __ load_unsigned_short(rax, field_address);
duke@435 899 __ jmp(xreturn_path);
duke@435 900
duke@435 901 __ bind(notChar);
duke@435 902 #ifdef ASSERT
duke@435 903 Label okay;
never@739 904 #ifndef _LP64
duke@435 905 __ cmpl(rdx, atos);
duke@435 906 __ jcc(Assembler::equal, okay);
never@739 907 #endif // _LP64
duke@435 908 __ cmpl(rdx, itos);
duke@435 909 __ jcc(Assembler::equal, okay);
duke@435 910 __ stop("what type is this?");
duke@435 911 __ bind(okay);
duke@435 912 #endif // ASSERT
duke@435 913 // All the rest are a 32 bit wordsize
duke@435 914 __ movl(rax, field_address);
duke@435 915
duke@435 916 __ bind(xreturn_path);
duke@435 917
duke@435 918 // _ireturn/_areturn
never@739 919 __ pop(rdi); // get return address
never@739 920 __ mov(rsp, sender_sp_on_entry); // set sp to sender sp
duke@435 921 __ jmp(rdi);
duke@435 922
duke@435 923 // generate a vanilla interpreter entry as the slow path
duke@435 924 __ bind(slow_path);
duke@435 925 // We will enter c++ interpreter looking like it was
duke@435 926 // called by the call_stub this will cause it to return
duke@435 927 // a tosca result to the invoker which might have been
duke@435 928 // the c++ interpreter itself.
duke@435 929
duke@435 930 __ jmp(fast_accessor_slow_entry_path);
duke@435 931 return entry_point;
duke@435 932
duke@435 933 } else {
duke@435 934 return NULL;
duke@435 935 }
duke@435 936
duke@435 937 }
duke@435 938
johnc@2781 939 address InterpreterGenerator::generate_Reference_get_entry(void) {
johnc@2781 940 #ifndef SERIALGC
johnc@2781 941 if (UseG1GC) {
johnc@2781 942 // We need to generate have a routine that generates code to:
johnc@2781 943 // * load the value in the referent field
johnc@2781 944 // * passes that value to the pre-barrier.
johnc@2781 945 //
johnc@2781 946 // In the case of G1 this will record the value of the
johnc@2781 947 // referent in an SATB buffer if marking is active.
johnc@2781 948 // This will cause concurrent marking to mark the referent
johnc@2781 949 // field as live.
johnc@2781 950 Unimplemented();
johnc@2781 951 }
johnc@2781 952 #endif // SERIALGC
johnc@2781 953
johnc@2781 954 // If G1 is not enabled then attempt to go through the accessor entry point
johnc@2781 955 // Reference.get is an accessor
johnc@2781 956 return generate_accessor_entry();
johnc@2781 957 }
johnc@2781 958
duke@435 959 //
duke@435 960 // C++ Interpreter stub for calling a native method.
duke@435 961 // This sets up a somewhat different looking stack for calling the native method
duke@435 962 // than the typical interpreter frame setup but still has the pointer to
duke@435 963 // an interpreter state.
duke@435 964 //
duke@435 965
duke@435 966 address InterpreterGenerator::generate_native_entry(bool synchronized) {
duke@435 967 // determine code generation flags
duke@435 968 bool inc_counter = UseCompiler || CountCompiledCalls;
duke@435 969
duke@435 970 // rbx: methodOop
duke@435 971 // rcx: receiver (unused)
never@739 972 // rsi/r13: previous interpreter state (if called from C++ interpreter) must preserve
never@739 973 // in any case. If called via c1/c2/call_stub rsi/r13 is junk (to use) but harmless
duke@435 974 // to save/restore.
duke@435 975 address entry_point = __ pc();
duke@435 976
duke@435 977 const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
duke@435 978 const Address size_of_locals (rbx, methodOopDesc::size_of_locals_offset());
duke@435 979 const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
duke@435 980 const Address access_flags (rbx, methodOopDesc::access_flags_offset());
duke@435 981
never@739 982 // rsi/r13 == state/locals rdi == prevstate
duke@435 983 const Register locals = rdi;
duke@435 984
duke@435 985 // get parameter size (always needed)
jrose@1057 986 __ load_unsigned_short(rcx, size_of_parameters);
duke@435 987
duke@435 988 // rbx: methodOop
duke@435 989 // rcx: size of parameters
never@739 990 __ pop(rax); // get return address
duke@435 991 // for natives the size of locals is zero
duke@435 992
duke@435 993 // compute beginning of parameters /locals
never@739 994 __ lea(locals, Address(rsp, rcx, Address::times_ptr, -wordSize));
duke@435 995
duke@435 996 // initialize fixed part of activation frame
duke@435 997
duke@435 998 // Assumes rax = return address
duke@435 999
duke@435 1000 // allocate and initialize new interpreterState and method expression stack
duke@435 1001 // IN(locals) -> locals
duke@435 1002 // IN(state) -> previous frame manager state (NULL from stub/c1/c2)
duke@435 1003 // destroys rax, rcx, rdx
duke@435 1004 // OUT (state) -> new interpreterState
duke@435 1005 // OUT(rsp) -> bottom of methods expression stack
duke@435 1006
duke@435 1007 // save sender_sp
never@739 1008 __ mov(rcx, sender_sp_on_entry);
duke@435 1009 // start with NULL previous state
never@739 1010 __ movptr(state, (int32_t)NULL_WORD);
duke@435 1011 generate_compute_interpreter_state(state, locals, rcx, true);
duke@435 1012
duke@435 1013 #ifdef ASSERT
duke@435 1014 { Label L;
never@739 1015 __ movptr(rax, STATE(_stack_base));
never@739 1016 #ifdef _LP64
never@739 1017 // duplicate the alignment rsp got after setting stack_base
never@739 1018 __ subptr(rax, frame::arg_reg_save_area_bytes); // windows
twisti@1040 1019 __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
never@739 1020 #endif // _LP64
never@739 1021 __ cmpptr(rax, rsp);
duke@435 1022 __ jcc(Assembler::equal, L);
duke@435 1023 __ stop("broken stack frame setup in interpreter");
duke@435 1024 __ bind(L);
duke@435 1025 }
duke@435 1026 #endif
duke@435 1027
duke@435 1028 if (inc_counter) __ movl(rcx, invocation_counter); // (pre-)fetch invocation count
duke@435 1029
never@739 1030 const Register unlock_thread = LP64_ONLY(r15_thread) NOT_LP64(rax);
never@739 1031 NOT_LP64(__ movptr(unlock_thread, STATE(_thread));) // get thread
duke@435 1032 // Since at this point in the method invocation the exception handler
duke@435 1033 // would try to exit the monitor of synchronized methods which hasn't
duke@435 1034 // been entered yet, we set the thread local variable
duke@435 1035 // _do_not_unlock_if_synchronized to true. The remove_activation will
duke@435 1036 // check this flag.
duke@435 1037
never@739 1038 const Address do_not_unlock_if_synchronized(unlock_thread,
duke@435 1039 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
duke@435 1040 __ movbool(do_not_unlock_if_synchronized, true);
duke@435 1041
duke@435 1042 // make sure method is native & not abstract
duke@435 1043 #ifdef ASSERT
duke@435 1044 __ movl(rax, access_flags);
duke@435 1045 {
duke@435 1046 Label L;
duke@435 1047 __ testl(rax, JVM_ACC_NATIVE);
duke@435 1048 __ jcc(Assembler::notZero, L);
duke@435 1049 __ stop("tried to execute non-native method as native");
duke@435 1050 __ bind(L);
duke@435 1051 }
duke@435 1052 { Label L;
duke@435 1053 __ testl(rax, JVM_ACC_ABSTRACT);
duke@435 1054 __ jcc(Assembler::zero, L);
duke@435 1055 __ stop("tried to execute abstract method in interpreter");
duke@435 1056 __ bind(L);
duke@435 1057 }
duke@435 1058 #endif
duke@435 1059
duke@435 1060
duke@435 1061 // increment invocation count & check for overflow
duke@435 1062 Label invocation_counter_overflow;
duke@435 1063 if (inc_counter) {
duke@435 1064 generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
duke@435 1065 }
duke@435 1066
duke@435 1067 Label continue_after_compile;
duke@435 1068
duke@435 1069 __ bind(continue_after_compile);
duke@435 1070
duke@435 1071 bang_stack_shadow_pages(true);
duke@435 1072
duke@435 1073 // reset the _do_not_unlock_if_synchronized flag
never@739 1074 NOT_LP64(__ movl(rax, STATE(_thread));) // get thread
duke@435 1075 __ movbool(do_not_unlock_if_synchronized, false);
duke@435 1076
duke@435 1077
duke@435 1078 // check for synchronized native methods
duke@435 1079 //
duke@435 1080 // Note: This must happen *after* invocation counter check, since
duke@435 1081 // when overflow happens, the method should not be locked.
duke@435 1082 if (synchronized) {
duke@435 1083 // potentially kills rax, rcx, rdx, rdi
duke@435 1084 lock_method();
duke@435 1085 } else {
duke@435 1086 // no synchronization necessary
duke@435 1087 #ifdef ASSERT
duke@435 1088 { Label L;
duke@435 1089 __ movl(rax, access_flags);
duke@435 1090 __ testl(rax, JVM_ACC_SYNCHRONIZED);
duke@435 1091 __ jcc(Assembler::zero, L);
duke@435 1092 __ stop("method needs synchronization");
duke@435 1093 __ bind(L);
duke@435 1094 }
duke@435 1095 #endif
duke@435 1096 }
duke@435 1097
duke@435 1098 // start execution
duke@435 1099
duke@435 1100 // jvmti support
duke@435 1101 __ notify_method_entry();
duke@435 1102
duke@435 1103 // work registers
duke@435 1104 const Register method = rbx;
never@739 1105 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rdi);
never@739 1106 const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp(); // rcx|rscratch1
duke@435 1107
duke@435 1108 // allocate space for parameters
never@739 1109 __ movptr(method, STATE(_method));
duke@435 1110 __ verify_oop(method);
jrose@1057 1111 __ load_unsigned_short(t, Address(method, methodOopDesc::size_of_parameters_offset()));
duke@435 1112 __ shll(t, 2);
never@739 1113 #ifdef _LP64
never@739 1114 __ subptr(rsp, t);
never@739 1115 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
twisti@1040 1116 __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
never@739 1117 #else
never@739 1118 __ addptr(t, 2*wordSize); // allocate two more slots for JNIEnv and possible mirror
never@739 1119 __ subptr(rsp, t);
never@739 1120 __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
never@739 1121 #endif // _LP64
duke@435 1122
duke@435 1123 // get signature handler
duke@435 1124 Label pending_exception_present;
duke@435 1125
duke@435 1126 { Label L;
never@739 1127 __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
never@739 1128 __ testptr(t, t);
duke@435 1129 __ jcc(Assembler::notZero, L);
duke@435 1130 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method, false);
never@739 1131 __ movptr(method, STATE(_method));
never@739 1132 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 1133 __ jcc(Assembler::notEqual, pending_exception_present);
duke@435 1134 __ verify_oop(method);
never@739 1135 __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
duke@435 1136 __ bind(L);
duke@435 1137 }
duke@435 1138 #ifdef ASSERT
duke@435 1139 {
duke@435 1140 Label L;
never@739 1141 __ push(t);
duke@435 1142 __ get_thread(t); // get vm's javathread*
never@739 1143 __ cmpptr(t, STATE(_thread));
duke@435 1144 __ jcc(Assembler::equal, L);
duke@435 1145 __ int3();
duke@435 1146 __ bind(L);
never@739 1147 __ pop(t);
duke@435 1148 }
duke@435 1149 #endif //
duke@435 1150
never@739 1151 const Register from_ptr = InterpreterRuntime::SignatureHandlerGenerator::from();
duke@435 1152 // call signature handler
duke@435 1153 assert(InterpreterRuntime::SignatureHandlerGenerator::to () == rsp, "adjust this code");
never@739 1154
duke@435 1155 // The generated handlers do not touch RBX (the method oop).
duke@435 1156 // However, large signatures cannot be cached and are generated
duke@435 1157 // each time here. The slow-path generator will blow RBX
duke@435 1158 // sometime, so we must reload it after the call.
never@739 1159 __ movptr(from_ptr, STATE(_locals)); // get the from pointer
duke@435 1160 __ call(t);
never@739 1161 __ movptr(method, STATE(_method));
duke@435 1162 __ verify_oop(method);
duke@435 1163
duke@435 1164 // result handler is in rax
duke@435 1165 // set result handler
never@739 1166 __ movptr(STATE(_result_handler), rax);
never@739 1167
never@739 1168
never@739 1169 // get native function entry point
never@739 1170 { Label L;
never@739 1171 __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
never@739 1172 __ testptr(rax, rax);
never@739 1173 __ jcc(Assembler::notZero, L);
never@739 1174 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
never@739 1175 __ movptr(method, STATE(_method));
never@739 1176 __ verify_oop(method);
never@739 1177 __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
never@739 1178 __ bind(L);
never@739 1179 }
duke@435 1180
duke@435 1181 // pass mirror handle if static call
duke@435 1182 { Label L;
duke@435 1183 const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
duke@435 1184 __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
duke@435 1185 __ testl(t, JVM_ACC_STATIC);
duke@435 1186 __ jcc(Assembler::zero, L);
duke@435 1187 // get mirror
never@739 1188 __ movptr(t, Address(method, methodOopDesc:: constants_offset()));
never@739 1189 __ movptr(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
never@739 1190 __ movptr(t, Address(t, mirror_offset));
duke@435 1191 // copy mirror into activation object
never@739 1192 __ movptr(STATE(_oop_temp), t);
duke@435 1193 // pass handle to mirror
never@739 1194 #ifdef _LP64
never@739 1195 __ lea(c_rarg1, STATE(_oop_temp));
never@739 1196 #else
never@739 1197 __ lea(t, STATE(_oop_temp));
never@739 1198 __ movptr(Address(rsp, wordSize), t);
never@739 1199 #endif // _LP64
duke@435 1200 __ bind(L);
duke@435 1201 }
duke@435 1202 #ifdef ASSERT
duke@435 1203 {
duke@435 1204 Label L;
never@739 1205 __ push(t);
duke@435 1206 __ get_thread(t); // get vm's javathread*
never@739 1207 __ cmpptr(t, STATE(_thread));
duke@435 1208 __ jcc(Assembler::equal, L);
duke@435 1209 __ int3();
duke@435 1210 __ bind(L);
never@739 1211 __ pop(t);
duke@435 1212 }
duke@435 1213 #endif //
duke@435 1214
duke@435 1215 // pass JNIEnv
never@739 1216 #ifdef _LP64
never@739 1217 __ lea(c_rarg0, Address(thread, JavaThread::jni_environment_offset()));
never@739 1218 #else
never@739 1219 __ movptr(thread, STATE(_thread)); // get thread
never@739 1220 __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
never@739 1221
never@739 1222 __ movptr(Address(rsp, 0), t);
never@739 1223 #endif // _LP64
never@739 1224
duke@435 1225 #ifdef ASSERT
duke@435 1226 {
duke@435 1227 Label L;
never@739 1228 __ push(t);
duke@435 1229 __ get_thread(t); // get vm's javathread*
never@739 1230 __ cmpptr(t, STATE(_thread));
duke@435 1231 __ jcc(Assembler::equal, L);
duke@435 1232 __ int3();
duke@435 1233 __ bind(L);
never@739 1234 __ pop(t);
duke@435 1235 }
duke@435 1236 #endif //
duke@435 1237
duke@435 1238 #ifdef ASSERT
duke@435 1239 { Label L;
duke@435 1240 __ movl(t, Address(thread, JavaThread::thread_state_offset()));
duke@435 1241 __ cmpl(t, _thread_in_Java);
duke@435 1242 __ jcc(Assembler::equal, L);
duke@435 1243 __ stop("Wrong thread state in native stub");
duke@435 1244 __ bind(L);
duke@435 1245 }
duke@435 1246 #endif
duke@435 1247
duke@435 1248 // Change state to native (we save the return address in the thread, since it might not
duke@435 1249 // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
duke@435 1250 // points into the right code segment. It does not have to be the correct return pc.
duke@435 1251
duke@435 1252 __ set_last_Java_frame(thread, noreg, rbp, __ pc());
duke@435 1253
duke@435 1254 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
duke@435 1255
duke@435 1256 __ call(rax);
duke@435 1257
duke@435 1258 // result potentially in rdx:rax or ST0
never@739 1259 __ movptr(method, STATE(_method));
never@739 1260 NOT_LP64(__ movptr(thread, STATE(_thread));) // get thread
duke@435 1261
duke@435 1262 // The potential result is in ST(0) & rdx:rax
duke@435 1263 // With C++ interpreter we leave any possible result in ST(0) until we are in result handler and then
duke@435 1264 // we do the appropriate stuff for returning the result. rdx:rax must always be saved because just about
duke@435 1265 // anything we do here will destroy it, st(0) is only saved if we re-enter the vm where it would
duke@435 1266 // be destroyed.
duke@435 1267 // It is safe to do these pushes because state is _thread_in_native and return address will be found
duke@435 1268 // via _last_native_pc and not via _last_jave_sp
duke@435 1269
never@739 1270 // Must save the value of ST(0)/xmm0 since it could be destroyed before we get to result handler
duke@435 1271 { Label Lpush, Lskip;
duke@435 1272 ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
duke@435 1273 ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
duke@435 1274 __ cmpptr(STATE(_result_handler), float_handler.addr());
duke@435 1275 __ jcc(Assembler::equal, Lpush);
duke@435 1276 __ cmpptr(STATE(_result_handler), double_handler.addr());
duke@435 1277 __ jcc(Assembler::notEqual, Lskip);
duke@435 1278 __ bind(Lpush);
never@739 1279 __ subptr(rsp, 2*wordSize);
never@739 1280 if ( UseSSE < 2 ) {
never@739 1281 __ fstp_d(Address(rsp, 0));
never@739 1282 } else {
never@739 1283 __ movdbl(Address(rsp, 0), xmm0);
never@739 1284 }
duke@435 1285 __ bind(Lskip);
duke@435 1286 }
duke@435 1287
never@739 1288 // save rax:rdx for potential use by result handler.
never@739 1289 __ push(rax);
never@739 1290 #ifndef _LP64
never@739 1291 __ push(rdx);
never@739 1292 #endif // _LP64
duke@435 1293
duke@435 1294 // Either restore the MXCSR register after returning from the JNI Call
duke@435 1295 // or verify that it wasn't changed.
duke@435 1296 if (VM_Version::supports_sse()) {
duke@435 1297 if (RestoreMXCSROnJNICalls) {
duke@435 1298 __ ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
duke@435 1299 }
duke@435 1300 else if (CheckJNICalls ) {
never@739 1301 __ call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
duke@435 1302 }
duke@435 1303 }
duke@435 1304
never@739 1305 #ifndef _LP64
duke@435 1306 // Either restore the x87 floating pointer control word after returning
duke@435 1307 // from the JNI call or verify that it wasn't changed.
duke@435 1308 if (CheckJNICalls) {
never@739 1309 __ call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
duke@435 1310 }
never@739 1311 #endif // _LP64
duke@435 1312
duke@435 1313
duke@435 1314 // change thread state
duke@435 1315 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
duke@435 1316 if(os::is_MP()) {
duke@435 1317 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 1318 // We use the current thread pointer to calculate a thread specific
duke@435 1319 // offset to write to within the page. This minimizes bus traffic
duke@435 1320 // due to cache line collision.
duke@435 1321 __ serialize_memory(thread, rcx);
duke@435 1322 }
duke@435 1323
duke@435 1324 // check for safepoint operation in progress and/or pending suspend requests
duke@435 1325 { Label Continue;
duke@435 1326
duke@435 1327 __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
duke@435 1328 SafepointSynchronize::_not_synchronized);
duke@435 1329
duke@435 1330 // threads running native code and they are expected to self-suspend
duke@435 1331 // when leaving the _thread_in_native state. We need to check for
duke@435 1332 // pending suspend requests here.
duke@435 1333 Label L;
duke@435 1334 __ jcc(Assembler::notEqual, L);
duke@435 1335 __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
duke@435 1336 __ jcc(Assembler::equal, Continue);
duke@435 1337 __ bind(L);
duke@435 1338
duke@435 1339 // Don't use call_VM as it will see a possible pending exception and forward it
duke@435 1340 // and never return here preventing us from clearing _last_native_pc down below.
duke@435 1341 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
never@739 1342 // preserved and correspond to the bcp/locals pointers.
duke@435 1343 //
never@739 1344
never@739 1345 ((MacroAssembler*)_masm)->call_VM_leaf(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
never@739 1346 thread);
duke@435 1347 __ increment(rsp, wordSize);
duke@435 1348
never@739 1349 __ movptr(method, STATE(_method));
duke@435 1350 __ verify_oop(method);
never@739 1351 __ movptr(thread, STATE(_thread)); // get thread
duke@435 1352
duke@435 1353 __ bind(Continue);
duke@435 1354 }
duke@435 1355
duke@435 1356 // change thread state
duke@435 1357 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
duke@435 1358
duke@435 1359 __ reset_last_Java_frame(thread, true, true);
duke@435 1360
duke@435 1361 // reset handle block
never@739 1362 __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
never@739 1363 __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
duke@435 1364
duke@435 1365 // If result was an oop then unbox and save it in the frame
duke@435 1366 { Label L;
duke@435 1367 Label no_oop, store_result;
duke@435 1368 ExternalAddress oop_handler(AbstractInterpreter::result_handler(T_OBJECT));
duke@435 1369 __ cmpptr(STATE(_result_handler), oop_handler.addr());
duke@435 1370 __ jcc(Assembler::notEqual, no_oop);
never@739 1371 #ifndef _LP64
never@739 1372 __ pop(rdx);
never@739 1373 #endif // _LP64
never@739 1374 __ pop(rax);
never@739 1375 __ testptr(rax, rax);
duke@435 1376 __ jcc(Assembler::zero, store_result);
duke@435 1377 // unbox
never@739 1378 __ movptr(rax, Address(rax, 0));
duke@435 1379 __ bind(store_result);
never@739 1380 __ movptr(STATE(_oop_temp), rax);
duke@435 1381 // keep stack depth as expected by pushing oop which will eventually be discarded
never@739 1382 __ push(rax);
never@739 1383 #ifndef _LP64
never@739 1384 __ push(rdx);
never@739 1385 #endif // _LP64
duke@435 1386 __ bind(no_oop);
duke@435 1387 }
duke@435 1388
duke@435 1389 {
duke@435 1390 Label no_reguard;
duke@435 1391 __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
duke@435 1392 __ jcc(Assembler::notEqual, no_reguard);
duke@435 1393
never@739 1394 __ pusha();
duke@435 1395 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
never@739 1396 __ popa();
duke@435 1397
duke@435 1398 __ bind(no_reguard);
duke@435 1399 }
duke@435 1400
duke@435 1401
duke@435 1402 // QQQ Seems like for native methods we simply return and the caller will see the pending
duke@435 1403 // exception and do the right thing. Certainly the interpreter will, don't know about
duke@435 1404 // compiled methods.
duke@435 1405 // Seems that the answer to above is no this is wrong. The old code would see the exception
duke@435 1406 // and forward it before doing the unlocking and notifying jvmdi that method has exited.
duke@435 1407 // This seems wrong need to investigate the spec.
duke@435 1408
duke@435 1409 // handle exceptions (exception handling will handle unlocking!)
duke@435 1410 { Label L;
never@739 1411 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 1412 __ jcc(Assembler::zero, L);
duke@435 1413 __ bind(pending_exception_present);
duke@435 1414
duke@435 1415 // There are potential results on the stack (rax/rdx, ST(0)) we ignore these and simply
duke@435 1416 // return and let caller deal with exception. This skips the unlocking here which
duke@435 1417 // seems wrong but seems to be what asm interpreter did. Can't find this in the spec.
duke@435 1418 // Note: must preverve method in rbx
duke@435 1419 //
duke@435 1420
duke@435 1421 // remove activation
duke@435 1422
never@739 1423 __ movptr(t, STATE(_sender_sp));
duke@435 1424 __ leave(); // remove frame anchor
never@739 1425 __ pop(rdi); // get return address
never@739 1426 __ movptr(state, STATE(_prev_link)); // get previous state for return
never@739 1427 __ mov(rsp, t); // set sp to sender sp
never@739 1428 __ push(rdi); // push throwing pc
duke@435 1429 // The skips unlocking!! This seems to be what asm interpreter does but seems
duke@435 1430 // very wrong. Not clear if this violates the spec.
duke@435 1431 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 1432 __ bind(L);
duke@435 1433 }
duke@435 1434
duke@435 1435 // do unlocking if necessary
duke@435 1436 { Label L;
duke@435 1437 __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
duke@435 1438 __ testl(t, JVM_ACC_SYNCHRONIZED);
duke@435 1439 __ jcc(Assembler::zero, L);
duke@435 1440 // the code below should be shared with interpreter macro assembler implementation
duke@435 1441 { Label unlock;
never@739 1442 const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
duke@435 1443 // BasicObjectLock will be first in list, since this is a synchronized method. However, need
duke@435 1444 // to check that the object has not been unlocked by an explicit monitorexit bytecode.
never@739 1445 __ movptr(monitor, STATE(_monitor_base));
never@739 1446 __ subptr(monitor, frame::interpreter_frame_monitor_size() * wordSize); // address of initial monitor
never@739 1447
never@739 1448 __ movptr(t, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));
never@739 1449 __ testptr(t, t);
duke@435 1450 __ jcc(Assembler::notZero, unlock);
duke@435 1451
duke@435 1452 // Entry already unlocked, need to throw exception
duke@435 1453 __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1454 __ should_not_reach_here();
duke@435 1455
duke@435 1456 __ bind(unlock);
never@739 1457 __ unlock_object(monitor);
duke@435 1458 // unlock can blow rbx so restore it for path that needs it below
never@739 1459 __ movptr(method, STATE(_method));
duke@435 1460 }
duke@435 1461 __ bind(L);
duke@435 1462 }
duke@435 1463
duke@435 1464 // jvmti support
duke@435 1465 // Note: This must happen _after_ handling/throwing any exceptions since
duke@435 1466 // the exception handler code notifies the runtime of method exits
duke@435 1467 // too. If this happens before, method entry/exit notifications are
duke@435 1468 // not properly paired (was bug - gri 11/22/99).
duke@435 1469 __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
duke@435 1470
duke@435 1471 // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
never@739 1472 #ifndef _LP64
never@739 1473 __ pop(rdx);
never@739 1474 #endif // _LP64
never@739 1475 __ pop(rax);
never@739 1476 __ movptr(t, STATE(_result_handler)); // get result handler
duke@435 1477 __ call(t); // call result handler to convert to tosca form
duke@435 1478
duke@435 1479 // remove activation
duke@435 1480
never@739 1481 __ movptr(t, STATE(_sender_sp));
duke@435 1482
duke@435 1483 __ leave(); // remove frame anchor
never@739 1484 __ pop(rdi); // get return address
never@739 1485 __ movptr(state, STATE(_prev_link)); // get previous state for return (if c++ interpreter was caller)
never@739 1486 __ mov(rsp, t); // set sp to sender sp
duke@435 1487 __ jmp(rdi);
duke@435 1488
duke@435 1489 // invocation counter overflow
duke@435 1490 if (inc_counter) {
duke@435 1491 // Handle overflow of counter and compile method
duke@435 1492 __ bind(invocation_counter_overflow);
duke@435 1493 generate_counter_overflow(&continue_after_compile);
duke@435 1494 }
duke@435 1495
duke@435 1496 return entry_point;
duke@435 1497 }
duke@435 1498
duke@435 1499 // Generate entries that will put a result type index into rcx
duke@435 1500 void CppInterpreterGenerator::generate_deopt_handling() {
duke@435 1501
duke@435 1502 Label return_from_deopt_common;
duke@435 1503
duke@435 1504 // Generate entries that will put a result type index into rcx
duke@435 1505 // deopt needs to jump to here to enter the interpreter (return a result)
duke@435 1506 deopt_frame_manager_return_atos = __ pc();
duke@435 1507
duke@435 1508 // rax is live here
duke@435 1509 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_OBJECT)); // Result stub address array index
duke@435 1510 __ jmp(return_from_deopt_common);
duke@435 1511
duke@435 1512
duke@435 1513 // deopt needs to jump to here to enter the interpreter (return a result)
duke@435 1514 deopt_frame_manager_return_btos = __ pc();
duke@435 1515
duke@435 1516 // rax is live here
duke@435 1517 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_BOOLEAN)); // Result stub address array index
duke@435 1518 __ jmp(return_from_deopt_common);
duke@435 1519
duke@435 1520 // deopt needs to jump to here to enter the interpreter (return a result)
duke@435 1521 deopt_frame_manager_return_itos = __ pc();
duke@435 1522
duke@435 1523 // rax is live here
duke@435 1524 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_INT)); // Result stub address array index
duke@435 1525 __ jmp(return_from_deopt_common);
duke@435 1526
duke@435 1527 // deopt needs to jump to here to enter the interpreter (return a result)
duke@435 1528
duke@435 1529 deopt_frame_manager_return_ltos = __ pc();
duke@435 1530 // rax,rdx are live here
duke@435 1531 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_LONG)); // Result stub address array index
duke@435 1532 __ jmp(return_from_deopt_common);
duke@435 1533
duke@435 1534 // deopt needs to jump to here to enter the interpreter (return a result)
duke@435 1535
duke@435 1536 deopt_frame_manager_return_ftos = __ pc();
duke@435 1537 // st(0) is live here
duke@435 1538 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT)); // Result stub address array index
duke@435 1539 __ jmp(return_from_deopt_common);
duke@435 1540
duke@435 1541 // deopt needs to jump to here to enter the interpreter (return a result)
duke@435 1542 deopt_frame_manager_return_dtos = __ pc();
duke@435 1543
duke@435 1544 // st(0) is live here
duke@435 1545 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE)); // Result stub address array index
duke@435 1546 __ jmp(return_from_deopt_common);
duke@435 1547
duke@435 1548 // deopt needs to jump to here to enter the interpreter (return a result)
duke@435 1549 deopt_frame_manager_return_vtos = __ pc();
duke@435 1550
duke@435 1551 __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_VOID));
duke@435 1552
duke@435 1553 // Deopt return common
duke@435 1554 // an index is present in rcx that lets us move any possible result being
duke@435 1555 // return to the interpreter's stack
duke@435 1556 //
duke@435 1557 // Because we have a full sized interpreter frame on the youngest
duke@435 1558 // activation the stack is pushed too deep to share the tosca to
duke@435 1559 // stack converters directly. We shrink the stack to the desired
duke@435 1560 // amount and then push result and then re-extend the stack.
duke@435 1561 // We could have the code in size_activation layout a short
duke@435 1562 // frame for the top activation but that would look different
duke@435 1563 // than say sparc (which needs a full size activation because
duke@435 1564 // the windows are in the way. Really it could be short? QQQ
duke@435 1565 //
duke@435 1566 __ bind(return_from_deopt_common);
duke@435 1567
never@739 1568 __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
duke@435 1569
duke@435 1570 // setup rsp so we can push the "result" as needed.
never@739 1571 __ movptr(rsp, STATE(_stack)); // trim stack (is prepushed)
never@739 1572 __ addptr(rsp, wordSize); // undo prepush
duke@435 1573
duke@435 1574 ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
never@739 1575 // Address index(noreg, rcx, Address::times_ptr);
never@739 1576 __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
never@739 1577 // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
duke@435 1578 __ call(rcx); // call result converter
duke@435 1579
duke@435 1580 __ movl(STATE(_msg), (int)BytecodeInterpreter::deopt_resume);
never@739 1581 __ lea(rsp, Address(rsp, -wordSize)); // prepush stack (result if any already present)
never@739 1582 __ movptr(STATE(_stack), rsp); // inform interpreter of new stack depth (parameters removed,
duke@435 1583 // result if any on stack already )
never@739 1584 __ movptr(rsp, STATE(_stack_limit)); // restore expression stack to full depth
duke@435 1585 }
duke@435 1586
duke@435 1587 // Generate the code to handle a more_monitors message from the c++ interpreter
duke@435 1588 void CppInterpreterGenerator::generate_more_monitors() {
duke@435 1589
duke@435 1590
duke@435 1591 Label entry, loop;
duke@435 1592 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
never@739 1593 // 1. compute new pointers // rsp: old expression stack top
never@739 1594 __ movptr(rdx, STATE(_stack_base)); // rdx: old expression stack bottom
never@739 1595 __ subptr(rsp, entry_size); // move expression stack top limit
never@739 1596 __ subptr(STATE(_stack), entry_size); // update interpreter stack top
never@739 1597 __ subptr(STATE(_stack_limit), entry_size); // inform interpreter
never@739 1598 __ subptr(rdx, entry_size); // move expression stack bottom
never@739 1599 __ movptr(STATE(_stack_base), rdx); // inform interpreter
never@739 1600 __ movptr(rcx, STATE(_stack)); // set start value for copy loop
duke@435 1601 __ jmp(entry);
duke@435 1602 // 2. move expression stack contents
duke@435 1603 __ bind(loop);
never@739 1604 __ movptr(rbx, Address(rcx, entry_size)); // load expression stack word from old location
never@739 1605 __ movptr(Address(rcx, 0), rbx); // and store it at new location
never@739 1606 __ addptr(rcx, wordSize); // advance to next word
duke@435 1607 __ bind(entry);
never@739 1608 __ cmpptr(rcx, rdx); // check if bottom reached
never@739 1609 __ jcc(Assembler::notEqual, loop); // if not at bottom then copy next word
duke@435 1610 // now zero the slot so we can find it.
never@739 1611 __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
duke@435 1612 __ movl(STATE(_msg), (int)BytecodeInterpreter::got_monitors);
duke@435 1613 }
duke@435 1614
duke@435 1615
duke@435 1616 // Initial entry to C++ interpreter from the call_stub.
duke@435 1617 // This entry point is called the frame manager since it handles the generation
duke@435 1618 // of interpreter activation frames via requests directly from the vm (via call_stub)
duke@435 1619 // and via requests from the interpreter. The requests from the call_stub happen
duke@435 1620 // directly thru the entry point. Requests from the interpreter happen via returning
duke@435 1621 // from the interpreter and examining the message the interpreter has returned to
duke@435 1622 // the frame manager. The frame manager can take the following requests:
duke@435 1623
duke@435 1624 // NO_REQUEST - error, should never happen.
duke@435 1625 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
duke@435 1626 // allocate a new monitor.
duke@435 1627 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
duke@435 1628 // happens during entry during the entry via the call stub.
duke@435 1629 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
duke@435 1630 //
duke@435 1631 // Arguments:
duke@435 1632 //
duke@435 1633 // rbx: methodOop
duke@435 1634 // rcx: receiver - unused (retrieved from stack as needed)
never@739 1635 // rsi/r13: previous frame manager state (NULL from the call_stub/c1/c2)
duke@435 1636 //
duke@435 1637 //
duke@435 1638 // Stack layout at entry
duke@435 1639 //
duke@435 1640 // [ return address ] <--- rsp
duke@435 1641 // [ parameter n ]
duke@435 1642 // ...
duke@435 1643 // [ parameter 1 ]
duke@435 1644 // [ expression stack ]
duke@435 1645 //
duke@435 1646 //
duke@435 1647 // We are free to blow any registers we like because the call_stub which brought us here
duke@435 1648 // initially has preserved the callee save registers already.
duke@435 1649 //
duke@435 1650 //
duke@435 1651
duke@435 1652 static address interpreter_frame_manager = NULL;
duke@435 1653
duke@435 1654 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
duke@435 1655
duke@435 1656 // rbx: methodOop
never@739 1657 // rsi/r13: sender sp
duke@435 1658
duke@435 1659 // Because we redispatch "recursive" interpreter entries thru this same entry point
duke@435 1660 // the "input" register usage is a little strange and not what you expect coming
duke@435 1661 // from the call_stub. From the call stub rsi/rdi (current/previous) interpreter
duke@435 1662 // state are NULL but on "recursive" dispatches they are what you'd expect.
duke@435 1663 // rsi: current interpreter state (C++ interpreter) must preserve (null from call_stub/c1/c2)
duke@435 1664
duke@435 1665
duke@435 1666 // A single frame manager is plenty as we don't specialize for synchronized. We could and
duke@435 1667 // the code is pretty much ready. Would need to change the test below and for good measure
duke@435 1668 // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
duke@435 1669 // routines. Not clear this is worth it yet.
duke@435 1670
duke@435 1671 if (interpreter_frame_manager) return interpreter_frame_manager;
duke@435 1672
duke@435 1673 address entry_point = __ pc();
duke@435 1674
duke@435 1675 // Fast accessor methods share this entry point.
duke@435 1676 // This works because frame manager is in the same codelet
duke@435 1677 if (UseFastAccessorMethods && !synchronized) __ bind(fast_accessor_slow_entry_path);
duke@435 1678
duke@435 1679 Label dispatch_entry_2;
never@739 1680 __ movptr(rcx, sender_sp_on_entry);
never@739 1681 __ movptr(state, (int32_t)NULL_WORD); // no current activation
duke@435 1682
duke@435 1683 __ jmp(dispatch_entry_2);
duke@435 1684
duke@435 1685 const Register locals = rdi;
duke@435 1686
duke@435 1687 Label re_dispatch;
duke@435 1688
duke@435 1689 __ bind(re_dispatch);
duke@435 1690
duke@435 1691 // save sender sp (doesn't include return address
never@739 1692 __ lea(rcx, Address(rsp, wordSize));
duke@435 1693
duke@435 1694 __ bind(dispatch_entry_2);
duke@435 1695
duke@435 1696 // save sender sp
never@739 1697 __ push(rcx);
duke@435 1698
duke@435 1699 const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
duke@435 1700 const Address size_of_locals (rbx, methodOopDesc::size_of_locals_offset());
duke@435 1701 const Address access_flags (rbx, methodOopDesc::access_flags_offset());
duke@435 1702
duke@435 1703 // const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
duke@435 1704 // const Address monitor_block_bot (rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
duke@435 1705 // const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
duke@435 1706
duke@435 1707 // get parameter size (always needed)
jrose@1057 1708 __ load_unsigned_short(rcx, size_of_parameters);
duke@435 1709
duke@435 1710 // rbx: methodOop
duke@435 1711 // rcx: size of parameters
jrose@1057 1712 __ load_unsigned_short(rdx, size_of_locals); // get size of locals in words
duke@435 1713
never@739 1714 __ subptr(rdx, rcx); // rdx = no. of additional locals
duke@435 1715
duke@435 1716 // see if we've got enough room on the stack for locals plus overhead.
duke@435 1717 generate_stack_overflow_check(); // C++
duke@435 1718
duke@435 1719 // c++ interpreter does not use stack banging or any implicit exceptions
duke@435 1720 // leave for now to verify that check is proper.
duke@435 1721 bang_stack_shadow_pages(false);
duke@435 1722
duke@435 1723
duke@435 1724
duke@435 1725 // compute beginning of parameters (rdi)
never@739 1726 __ lea(locals, Address(rsp, rcx, Address::times_ptr, wordSize));
duke@435 1727
duke@435 1728 // save sender's sp
duke@435 1729 // __ movl(rcx, rsp);
duke@435 1730
duke@435 1731 // get sender's sp
never@739 1732 __ pop(rcx);
duke@435 1733
duke@435 1734 // get return address
never@739 1735 __ pop(rax);
duke@435 1736
duke@435 1737 // rdx - # of additional locals
duke@435 1738 // allocate space for locals
duke@435 1739 // explicitly initialize locals
duke@435 1740 {
duke@435 1741 Label exit, loop;
never@739 1742 __ testl(rdx, rdx); // (32bit ok)
duke@435 1743 __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
duke@435 1744 __ bind(loop);
never@739 1745 __ push((int32_t)NULL_WORD); // initialize local variables
duke@435 1746 __ decrement(rdx); // until everything initialized
duke@435 1747 __ jcc(Assembler::greater, loop);
duke@435 1748 __ bind(exit);
duke@435 1749 }
duke@435 1750
duke@435 1751
duke@435 1752 // Assumes rax = return address
duke@435 1753
duke@435 1754 // allocate and initialize new interpreterState and method expression stack
duke@435 1755 // IN(locals) -> locals
duke@435 1756 // IN(state) -> any current interpreter activation
duke@435 1757 // destroys rax, rcx, rdx, rdi
duke@435 1758 // OUT (state) -> new interpreterState
duke@435 1759 // OUT(rsp) -> bottom of methods expression stack
duke@435 1760
duke@435 1761 generate_compute_interpreter_state(state, locals, rcx, false);
duke@435 1762
duke@435 1763 // Call interpreter
duke@435 1764
duke@435 1765 Label call_interpreter;
duke@435 1766 __ bind(call_interpreter);
duke@435 1767
duke@435 1768 // c++ interpreter does not use stack banging or any implicit exceptions
duke@435 1769 // leave for now to verify that check is proper.
duke@435 1770 bang_stack_shadow_pages(false);
duke@435 1771
duke@435 1772
duke@435 1773 // Call interpreter enter here if message is
duke@435 1774 // set and we know stack size is valid
duke@435 1775
duke@435 1776 Label call_interpreter_2;
duke@435 1777
duke@435 1778 __ bind(call_interpreter_2);
duke@435 1779
duke@435 1780 {
never@739 1781 const Register thread = NOT_LP64(rcx) LP64_ONLY(r15_thread);
never@739 1782
never@739 1783 #ifdef _LP64
never@739 1784 __ mov(c_rarg0, state);
never@739 1785 #else
never@739 1786 __ push(state); // push arg to interpreter
never@739 1787 __ movptr(thread, STATE(_thread));
never@739 1788 #endif // _LP64
duke@435 1789
duke@435 1790 // We can setup the frame anchor with everything we want at this point
duke@435 1791 // as we are thread_in_Java and no safepoints can occur until we go to
duke@435 1792 // vm mode. We do have to clear flags on return from vm but that is it
duke@435 1793 //
never@739 1794 __ movptr(Address(thread, JavaThread::last_Java_fp_offset()), rbp);
never@739 1795 __ movptr(Address(thread, JavaThread::last_Java_sp_offset()), rsp);
duke@435 1796
duke@435 1797 // Call the interpreter
duke@435 1798
duke@435 1799 RuntimeAddress normal(CAST_FROM_FN_PTR(address, BytecodeInterpreter::run));
duke@435 1800 RuntimeAddress checking(CAST_FROM_FN_PTR(address, BytecodeInterpreter::runWithChecks));
duke@435 1801
duke@435 1802 __ call(JvmtiExport::can_post_interpreter_events() ? checking : normal);
never@739 1803 NOT_LP64(__ pop(rax);) // discard parameter to run
duke@435 1804 //
duke@435 1805 // state is preserved since it is callee saved
duke@435 1806 //
duke@435 1807
duke@435 1808 // reset_last_Java_frame
duke@435 1809
never@739 1810 NOT_LP64(__ movl(thread, STATE(_thread));)
duke@435 1811 __ reset_last_Java_frame(thread, true, true);
duke@435 1812 }
duke@435 1813
duke@435 1814 // examine msg from interpreter to determine next action
duke@435 1815
duke@435 1816 __ movl(rdx, STATE(_msg)); // Get new message
duke@435 1817
duke@435 1818 Label call_method;
duke@435 1819 Label return_from_interpreted_method;
duke@435 1820 Label throw_exception;
duke@435 1821 Label bad_msg;
duke@435 1822 Label do_OSR;
duke@435 1823
never@739 1824 __ cmpl(rdx, (int32_t)BytecodeInterpreter::call_method);
duke@435 1825 __ jcc(Assembler::equal, call_method);
never@739 1826 __ cmpl(rdx, (int32_t)BytecodeInterpreter::return_from_method);
duke@435 1827 __ jcc(Assembler::equal, return_from_interpreted_method);
never@739 1828 __ cmpl(rdx, (int32_t)BytecodeInterpreter::do_osr);
duke@435 1829 __ jcc(Assembler::equal, do_OSR);
never@739 1830 __ cmpl(rdx, (int32_t)BytecodeInterpreter::throwing_exception);
duke@435 1831 __ jcc(Assembler::equal, throw_exception);
never@739 1832 __ cmpl(rdx, (int32_t)BytecodeInterpreter::more_monitors);
duke@435 1833 __ jcc(Assembler::notEqual, bad_msg);
duke@435 1834
duke@435 1835 // Allocate more monitor space, shuffle expression stack....
duke@435 1836
duke@435 1837 generate_more_monitors();
duke@435 1838
duke@435 1839 __ jmp(call_interpreter);
duke@435 1840
duke@435 1841 // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
duke@435 1842 unctrap_frame_manager_entry = __ pc();
duke@435 1843 //
duke@435 1844 // Load the registers we need.
never@739 1845 __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
never@739 1846 __ movptr(rsp, STATE(_stack_limit)); // restore expression stack to full depth
duke@435 1847 __ jmp(call_interpreter_2);
duke@435 1848
duke@435 1849
duke@435 1850
duke@435 1851 //=============================================================================
duke@435 1852 // Returning from a compiled method into a deopted method. The bytecode at the
duke@435 1853 // bcp has completed. The result of the bytecode is in the native abi (the tosca
duke@435 1854 // for the template based interpreter). Any stack space that was used by the
duke@435 1855 // bytecode that has completed has been removed (e.g. parameters for an invoke)
duke@435 1856 // so all that we have to do is place any pending result on the expression stack
duke@435 1857 // and resume execution on the next bytecode.
duke@435 1858
duke@435 1859
duke@435 1860 generate_deopt_handling();
duke@435 1861 __ jmp(call_interpreter);
duke@435 1862
duke@435 1863
duke@435 1864 // Current frame has caught an exception we need to dispatch to the
duke@435 1865 // handler. We can get here because a native interpreter frame caught
duke@435 1866 // an exception in which case there is no handler and we must rethrow
duke@435 1867 // If it is a vanilla interpreted frame the we simply drop into the
duke@435 1868 // interpreter and let it do the lookup.
duke@435 1869
duke@435 1870 Interpreter::_rethrow_exception_entry = __ pc();
duke@435 1871 // rax: exception
duke@435 1872 // rdx: return address/pc that threw exception
duke@435 1873
duke@435 1874 Label return_with_exception;
duke@435 1875 Label unwind_and_forward;
duke@435 1876
duke@435 1877 // restore state pointer.
coleenp@955 1878 __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
never@739 1879
never@739 1880 __ movptr(rbx, STATE(_method)); // get method
never@739 1881 #ifdef _LP64
never@739 1882 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
never@739 1883 #else
duke@435 1884 __ movl(rcx, STATE(_thread)); // get thread
duke@435 1885
duke@435 1886 // Store exception with interpreter will expect it
never@739 1887 __ movptr(Address(rcx, Thread::pending_exception_offset()), rax);
never@739 1888 #endif // _LP64
duke@435 1889
duke@435 1890 // is current frame vanilla or native?
duke@435 1891
duke@435 1892 __ movl(rdx, access_flags);
duke@435 1893 __ testl(rdx, JVM_ACC_NATIVE);
duke@435 1894 __ jcc(Assembler::zero, return_with_exception); // vanilla interpreted frame, handle directly
duke@435 1895
duke@435 1896 // We drop thru to unwind a native interpreted frame with a pending exception
duke@435 1897 // We jump here for the initial interpreter frame with exception pending
duke@435 1898 // We unwind the current acivation and forward it to our caller.
duke@435 1899
duke@435 1900 __ bind(unwind_and_forward);
duke@435 1901
duke@435 1902 // unwind rbp, return stack to unextended value and re-push return address
duke@435 1903
never@739 1904 __ movptr(rcx, STATE(_sender_sp));
duke@435 1905 __ leave();
never@739 1906 __ pop(rdx);
never@739 1907 __ mov(rsp, rcx);
never@739 1908 __ push(rdx);
duke@435 1909 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 1910
duke@435 1911 // Return point from a call which returns a result in the native abi
duke@435 1912 // (c1/c2/jni-native). This result must be processed onto the java
duke@435 1913 // expression stack.
duke@435 1914 //
duke@435 1915 // A pending exception may be present in which case there is no result present
duke@435 1916
duke@435 1917 Label resume_interpreter;
duke@435 1918 Label do_float;
duke@435 1919 Label do_double;
duke@435 1920 Label done_conv;
duke@435 1921
duke@435 1922 // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
duke@435 1923 if (UseSSE < 2) {
coleenp@955 1924 __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
never@739 1925 __ movptr(rbx, STATE(_result._to_call._callee)); // get method just executed
duke@435 1926 __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
duke@435 1927 __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT)); // Result stub address array index
duke@435 1928 __ jcc(Assembler::equal, do_float);
duke@435 1929 __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE)); // Result stub address array index
duke@435 1930 __ jcc(Assembler::equal, do_double);
coleenp@955 1931 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
duke@435 1932 __ empty_FPU_stack();
duke@435 1933 #endif // COMPILER2
duke@435 1934 __ jmp(done_conv);
duke@435 1935
duke@435 1936 __ bind(do_float);
duke@435 1937 #ifdef COMPILER2
duke@435 1938 for (int i = 1; i < 8; i++) {
duke@435 1939 __ ffree(i);
duke@435 1940 }
duke@435 1941 #endif // COMPILER2
duke@435 1942 __ jmp(done_conv);
duke@435 1943 __ bind(do_double);
duke@435 1944 #ifdef COMPILER2
duke@435 1945 for (int i = 1; i < 8; i++) {
duke@435 1946 __ ffree(i);
duke@435 1947 }
duke@435 1948 #endif // COMPILER2
duke@435 1949 __ jmp(done_conv);
duke@435 1950 } else {
duke@435 1951 __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
duke@435 1952 __ jmp(done_conv);
duke@435 1953 }
duke@435 1954
duke@435 1955 // Return point to interpreter from compiled/native method
duke@435 1956 InternalAddress return_from_native_method(__ pc());
duke@435 1957
duke@435 1958 __ bind(done_conv);
duke@435 1959
duke@435 1960
duke@435 1961 // Result if any is in tosca. The java expression stack is in the state that the
duke@435 1962 // calling convention left it (i.e. params may or may not be present)
duke@435 1963 // Copy the result from tosca and place it on java expression stack.
duke@435 1964
never@739 1965 // Restore rsi/r13 as compiled code may not preserve it
never@739 1966
coleenp@955 1967 __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
duke@435 1968
duke@435 1969 // restore stack to what we had when we left (in case i2c extended it)
duke@435 1970
never@739 1971 __ movptr(rsp, STATE(_stack));
never@739 1972 __ lea(rsp, Address(rsp, wordSize));
duke@435 1973
duke@435 1974 // If there is a pending exception then we don't really have a result to process
duke@435 1975
never@739 1976 #ifdef _LP64
never@739 1977 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
never@739 1978 #else
never@739 1979 __ movptr(rcx, STATE(_thread)); // get thread
never@739 1980 __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
coleenp@955 1981 #endif // _LP64
duke@435 1982 __ jcc(Assembler::notZero, return_with_exception);
duke@435 1983
duke@435 1984 // get method just executed
never@739 1985 __ movptr(rbx, STATE(_result._to_call._callee));
duke@435 1986
duke@435 1987 // callee left args on top of expression stack, remove them
jrose@1057 1988 __ load_unsigned_short(rcx, Address(rbx, methodOopDesc::size_of_parameters_offset()));
never@739 1989 __ lea(rsp, Address(rsp, rcx, Address::times_ptr));
duke@435 1990
duke@435 1991 __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
duke@435 1992 ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
never@739 1993 // Address index(noreg, rax, Address::times_ptr);
never@739 1994 __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
never@739 1995 // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
duke@435 1996 __ call(rcx); // call result converter
duke@435 1997 __ jmp(resume_interpreter);
duke@435 1998
duke@435 1999 // An exception is being caught on return to a vanilla interpreter frame.
duke@435 2000 // Empty the stack and resume interpreter
duke@435 2001
duke@435 2002 __ bind(return_with_exception);
duke@435 2003
duke@435 2004 // Exception present, empty stack
never@739 2005 __ movptr(rsp, STATE(_stack_base));
duke@435 2006 __ jmp(resume_interpreter);
duke@435 2007
duke@435 2008 // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
duke@435 2009 // interpreter call, or native) and unwind this interpreter activation.
duke@435 2010 // All monitors should be unlocked.
duke@435 2011
duke@435 2012 __ bind(return_from_interpreted_method);
duke@435 2013
duke@435 2014 Label return_to_initial_caller;
duke@435 2015
never@739 2016 __ movptr(rbx, STATE(_method)); // get method just executed
never@739 2017 __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD); // returning from "recursive" interpreter call?
duke@435 2018 __ movl(rax, Address(rbx, methodOopDesc::result_index_offset())); // get result type index
duke@435 2019 __ jcc(Assembler::equal, return_to_initial_caller); // back to native code (call_stub/c1/c2)
duke@435 2020
duke@435 2021 // Copy result to callers java stack
duke@435 2022 ExternalAddress stack_to_stack((address)CppInterpreter::_stack_to_stack);
never@739 2023 // Address index(noreg, rax, Address::times_ptr);
never@739 2024
never@739 2025 __ movptr(rax, ArrayAddress(stack_to_stack, Address(noreg, rax, Address::times_ptr)));
never@739 2026 // __ movl(rax, Address(noreg, rax, Address::times_ptr, int(AbstractInterpreter::_stack_to_stack)));
duke@435 2027 __ call(rax); // call result converter
duke@435 2028
duke@435 2029 Label unwind_recursive_activation;
duke@435 2030 __ bind(unwind_recursive_activation);
duke@435 2031
duke@435 2032 // returning to interpreter method from "recursive" interpreter call
duke@435 2033 // result converter left rax pointing to top of the java stack for method we are returning
duke@435 2034 // to. Now all we must do is unwind the state from the completed call
duke@435 2035
never@739 2036 __ movptr(state, STATE(_prev_link)); // unwind state
duke@435 2037 __ leave(); // pop the frame
never@739 2038 __ mov(rsp, rax); // unwind stack to remove args
duke@435 2039
duke@435 2040 // Resume the interpreter. The current frame contains the current interpreter
duke@435 2041 // state object.
duke@435 2042 //
duke@435 2043
duke@435 2044 __ bind(resume_interpreter);
duke@435 2045
duke@435 2046 // state == interpreterState object for method we are resuming
duke@435 2047
duke@435 2048 __ movl(STATE(_msg), (int)BytecodeInterpreter::method_resume);
never@739 2049 __ lea(rsp, Address(rsp, -wordSize)); // prepush stack (result if any already present)
never@739 2050 __ movptr(STATE(_stack), rsp); // inform interpreter of new stack depth (parameters removed,
duke@435 2051 // result if any on stack already )
never@739 2052 __ movptr(rsp, STATE(_stack_limit)); // restore expression stack to full depth
duke@435 2053 __ jmp(call_interpreter_2); // No need to bang
duke@435 2054
duke@435 2055 // interpreter returning to native code (call_stub/c1/c2)
duke@435 2056 // convert result and unwind initial activation
duke@435 2057 // rax - result index
duke@435 2058
duke@435 2059 __ bind(return_to_initial_caller);
duke@435 2060 ExternalAddress stack_to_native((address)CppInterpreter::_stack_to_native_abi);
never@739 2061 // Address index(noreg, rax, Address::times_ptr);
never@739 2062
never@739 2063 __ movptr(rax, ArrayAddress(stack_to_native, Address(noreg, rax, Address::times_ptr)));
duke@435 2064 __ call(rax); // call result converter
duke@435 2065
duke@435 2066 Label unwind_initial_activation;
duke@435 2067 __ bind(unwind_initial_activation);
duke@435 2068
duke@435 2069 // RETURN TO CALL_STUB/C1/C2 code (result if any in rax/rdx ST(0))
duke@435 2070
duke@435 2071 /* Current stack picture
duke@435 2072
duke@435 2073 [ incoming parameters ]
duke@435 2074 [ extra locals ]
duke@435 2075 [ return address to CALL_STUB/C1/C2]
duke@435 2076 fp -> [ CALL_STUB/C1/C2 fp ]
duke@435 2077 BytecodeInterpreter object
duke@435 2078 expression stack
duke@435 2079 sp ->
duke@435 2080
duke@435 2081 */
duke@435 2082
duke@435 2083 // return restoring the stack to the original sender_sp value
duke@435 2084
never@739 2085 __ movptr(rcx, STATE(_sender_sp));
duke@435 2086 __ leave();
never@739 2087 __ pop(rdi); // get return address
duke@435 2088 // set stack to sender's sp
never@739 2089 __ mov(rsp, rcx);
duke@435 2090 __ jmp(rdi); // return to call_stub
duke@435 2091
duke@435 2092 // OSR request, adjust return address to make current frame into adapter frame
duke@435 2093 // and enter OSR nmethod
duke@435 2094
duke@435 2095 __ bind(do_OSR);
duke@435 2096
duke@435 2097 Label remove_initial_frame;
duke@435 2098
duke@435 2099 // We are going to pop this frame. Is there another interpreter frame underneath
duke@435 2100 // it or is it callstub/compiled?
duke@435 2101
duke@435 2102 // Move buffer to the expected parameter location
never@739 2103 __ movptr(rcx, STATE(_result._osr._osr_buf));
never@739 2104
never@739 2105 __ movptr(rax, STATE(_result._osr._osr_entry));
never@739 2106
never@739 2107 __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD); // returning from "recursive" interpreter call?
duke@435 2108 __ jcc(Assembler::equal, remove_initial_frame); // back to native code (call_stub/c1/c2)
duke@435 2109
never@739 2110 __ movptr(sender_sp_on_entry, STATE(_sender_sp)); // get sender's sp in expected register
duke@435 2111 __ leave(); // pop the frame
never@739 2112 __ mov(rsp, sender_sp_on_entry); // trim any stack expansion
duke@435 2113
duke@435 2114
duke@435 2115 // We know we are calling compiled so push specialized return
duke@435 2116 // method uses specialized entry, push a return so we look like call stub setup
duke@435 2117 // this path will handle fact that result is returned in registers and not
duke@435 2118 // on the java stack.
duke@435 2119
duke@435 2120 __ pushptr(return_from_native_method.addr());
duke@435 2121
duke@435 2122 __ jmp(rax);
duke@435 2123
duke@435 2124 __ bind(remove_initial_frame);
duke@435 2125
never@739 2126 __ movptr(rdx, STATE(_sender_sp));
duke@435 2127 __ leave();
duke@435 2128 // get real return
never@739 2129 __ pop(rsi);
duke@435 2130 // set stack to sender's sp
never@739 2131 __ mov(rsp, rdx);
duke@435 2132 // repush real return
never@739 2133 __ push(rsi);
duke@435 2134 // Enter OSR nmethod
duke@435 2135 __ jmp(rax);
duke@435 2136
duke@435 2137
duke@435 2138
duke@435 2139
duke@435 2140 // Call a new method. All we do is (temporarily) trim the expression stack
duke@435 2141 // push a return address to bring us back to here and leap to the new entry.
duke@435 2142
duke@435 2143 __ bind(call_method);
duke@435 2144
duke@435 2145 // stack points to next free location and not top element on expression stack
duke@435 2146 // method expects sp to be pointing to topmost element
duke@435 2147
never@739 2148 __ movptr(rsp, STATE(_stack)); // pop args to c++ interpreter, set sp to java stack top
never@739 2149 __ lea(rsp, Address(rsp, wordSize));
never@739 2150
never@739 2151 __ movptr(rbx, STATE(_result._to_call._callee)); // get method to execute
duke@435 2152
duke@435 2153 // don't need a return address if reinvoking interpreter
duke@435 2154
duke@435 2155 // Make it look like call_stub calling conventions
duke@435 2156
duke@435 2157 // Get (potential) receiver
jrose@1057 2158 __ load_unsigned_short(rcx, size_of_parameters); // get size of parameters in words
duke@435 2159
duke@435 2160 ExternalAddress recursive(CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
duke@435 2161 __ pushptr(recursive.addr()); // make it look good in the debugger
duke@435 2162
duke@435 2163 InternalAddress entry(entry_point);
duke@435 2164 __ cmpptr(STATE(_result._to_call._callee_entry_point), entry.addr()); // returning to interpreter?
duke@435 2165 __ jcc(Assembler::equal, re_dispatch); // yes
duke@435 2166
never@739 2167 __ pop(rax); // pop dummy address
duke@435 2168
duke@435 2169
duke@435 2170 // get specialized entry
never@739 2171 __ movptr(rax, STATE(_result._to_call._callee_entry_point));
duke@435 2172 // set sender SP
never@739 2173 __ mov(sender_sp_on_entry, rsp);
duke@435 2174
duke@435 2175 // method uses specialized entry, push a return so we look like call stub setup
duke@435 2176 // this path will handle fact that result is returned in registers and not
duke@435 2177 // on the java stack.
duke@435 2178
duke@435 2179 __ pushptr(return_from_native_method.addr());
duke@435 2180
duke@435 2181 __ jmp(rax);
duke@435 2182
duke@435 2183 __ bind(bad_msg);
duke@435 2184 __ stop("Bad message from interpreter");
duke@435 2185
duke@435 2186 // Interpreted method "returned" with an exception pass it on...
duke@435 2187 // Pass result, unwind activation and continue/return to interpreter/call_stub
duke@435 2188 // We handle result (if any) differently based on return to interpreter or call_stub
duke@435 2189
duke@435 2190 Label unwind_initial_with_pending_exception;
duke@435 2191
duke@435 2192 __ bind(throw_exception);
never@739 2193 __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD); // returning from recursive interpreter call?
duke@435 2194 __ jcc(Assembler::equal, unwind_initial_with_pending_exception); // no, back to native code (call_stub/c1/c2)
never@739 2195 __ movptr(rax, STATE(_locals)); // pop parameters get new stack value
never@739 2196 __ addptr(rax, wordSize); // account for prepush before we return
duke@435 2197 __ jmp(unwind_recursive_activation);
duke@435 2198
duke@435 2199 __ bind(unwind_initial_with_pending_exception);
duke@435 2200
duke@435 2201 // We will unwind the current (initial) interpreter frame and forward
duke@435 2202 // the exception to the caller. We must put the exception in the
duke@435 2203 // expected register and clear pending exception and then forward.
duke@435 2204
duke@435 2205 __ jmp(unwind_and_forward);
duke@435 2206
duke@435 2207 interpreter_frame_manager = entry_point;
duke@435 2208 return entry_point;
duke@435 2209 }
duke@435 2210
duke@435 2211 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
duke@435 2212 // determine code generation flags
duke@435 2213 bool synchronized = false;
duke@435 2214 address entry_point = NULL;
duke@435 2215
duke@435 2216 switch (kind) {
duke@435 2217 case Interpreter::zerolocals : break;
duke@435 2218 case Interpreter::zerolocals_synchronized: synchronized = true; break;
duke@435 2219 case Interpreter::native : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false); break;
duke@435 2220 case Interpreter::native_synchronized : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true); break;
duke@435 2221 case Interpreter::empty : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry(); break;
duke@435 2222 case Interpreter::accessor : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry(); break;
duke@435 2223 case Interpreter::abstract : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry(); break;
jrose@1145 2224 case Interpreter::method_handle : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
duke@435 2225
duke@435 2226 case Interpreter::java_lang_math_sin : // fall thru
duke@435 2227 case Interpreter::java_lang_math_cos : // fall thru
duke@435 2228 case Interpreter::java_lang_math_tan : // fall thru
duke@435 2229 case Interpreter::java_lang_math_abs : // fall thru
duke@435 2230 case Interpreter::java_lang_math_log : // fall thru
duke@435 2231 case Interpreter::java_lang_math_log10 : // fall thru
duke@435 2232 case Interpreter::java_lang_math_sqrt : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind); break;
johnc@2781 2233 case Interpreter::java_lang_ref_reference_get
johnc@2781 2234 : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
duke@435 2235 default : ShouldNotReachHere(); break;
duke@435 2236 }
duke@435 2237
duke@435 2238 if (entry_point) return entry_point;
duke@435 2239
duke@435 2240 return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
duke@435 2241
duke@435 2242 }
duke@435 2243
duke@435 2244 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
duke@435 2245 : CppInterpreterGenerator(code) {
duke@435 2246 generate_all(); // down here so it can be "virtual"
duke@435 2247 }
duke@435 2248
duke@435 2249 // Deoptimization helpers for C++ interpreter
duke@435 2250
duke@435 2251 // How much stack a method activation needs in words.
duke@435 2252 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
duke@435 2253
duke@435 2254 const int stub_code = 4; // see generate_call_stub
duke@435 2255 // Save space for one monitor to get into the interpreted method in case
duke@435 2256 // the method is synchronized
duke@435 2257 int monitor_size = method->is_synchronized() ?
duke@435 2258 1*frame::interpreter_frame_monitor_size() : 0;
duke@435 2259
duke@435 2260 // total static overhead size. Account for interpreter state object, return
duke@435 2261 // address, saved rbp and 2 words for a "static long no_params() method" issue.
duke@435 2262
duke@435 2263 const int overhead_size = sizeof(BytecodeInterpreter)/wordSize +
duke@435 2264 ( frame::sender_sp_offset - frame::link_offset) + 2;
duke@435 2265
jrose@1145 2266 const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
jrose@1145 2267 const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
duke@435 2268 Interpreter::stackElementWords();
duke@435 2269 return overhead_size + method_stack + stub_code;
duke@435 2270 }
duke@435 2271
duke@435 2272 // returns the activation size.
duke@435 2273 static int size_activation_helper(int extra_locals_size, int monitor_size) {
duke@435 2274 return (extra_locals_size + // the addition space for locals
duke@435 2275 2*BytesPerWord + // return address and saved rbp
duke@435 2276 2*BytesPerWord + // "static long no_params() method" issue
duke@435 2277 sizeof(BytecodeInterpreter) + // interpreterState
duke@435 2278 monitor_size); // monitors
duke@435 2279 }
duke@435 2280
duke@435 2281 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
duke@435 2282 frame* caller,
duke@435 2283 frame* current,
duke@435 2284 methodOop method,
duke@435 2285 intptr_t* locals,
duke@435 2286 intptr_t* stack,
duke@435 2287 intptr_t* stack_base,
duke@435 2288 intptr_t* monitor_base,
duke@435 2289 intptr_t* frame_bottom,
duke@435 2290 bool is_top_frame
duke@435 2291 )
duke@435 2292 {
duke@435 2293 // What about any vtable?
duke@435 2294 //
duke@435 2295 to_fill->_thread = JavaThread::current();
duke@435 2296 // This gets filled in later but make it something recognizable for now
duke@435 2297 to_fill->_bcp = method->code_base();
duke@435 2298 to_fill->_locals = locals;
duke@435 2299 to_fill->_constants = method->constants()->cache();
duke@435 2300 to_fill->_method = method;
duke@435 2301 to_fill->_mdx = NULL;
duke@435 2302 to_fill->_stack = stack;
duke@435 2303 if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
duke@435 2304 to_fill->_msg = deopt_resume2;
duke@435 2305 } else {
duke@435 2306 to_fill->_msg = method_resume;
duke@435 2307 }
duke@435 2308 to_fill->_result._to_call._bcp_advance = 0;
duke@435 2309 to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
duke@435 2310 to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
duke@435 2311 to_fill->_prev_link = NULL;
duke@435 2312
duke@435 2313 to_fill->_sender_sp = caller->unextended_sp();
duke@435 2314
duke@435 2315 if (caller->is_interpreted_frame()) {
duke@435 2316 interpreterState prev = caller->get_interpreterState();
duke@435 2317 to_fill->_prev_link = prev;
duke@435 2318 // *current->register_addr(GR_Iprev_state) = (intptr_t) prev;
duke@435 2319 // Make the prev callee look proper
duke@435 2320 prev->_result._to_call._callee = method;
duke@435 2321 if (*prev->_bcp == Bytecodes::_invokeinterface) {
duke@435 2322 prev->_result._to_call._bcp_advance = 5;
duke@435 2323 } else {
duke@435 2324 prev->_result._to_call._bcp_advance = 3;
duke@435 2325 }
duke@435 2326 }
duke@435 2327 to_fill->_oop_temp = NULL;
duke@435 2328 to_fill->_stack_base = stack_base;
duke@435 2329 // Need +1 here because stack_base points to the word just above the first expr stack entry
duke@435 2330 // and stack_limit is supposed to point to the word just below the last expr stack entry.
duke@435 2331 // See generate_compute_interpreter_state.
jrose@1145 2332 int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
jrose@1145 2333 to_fill->_stack_limit = stack_base - (method->max_stack() + extra_stack + 1);
duke@435 2334 to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
duke@435 2335
duke@435 2336 to_fill->_self_link = to_fill;
duke@435 2337 assert(stack >= to_fill->_stack_limit && stack < to_fill->_stack_base,
duke@435 2338 "Stack top out of range");
duke@435 2339 }
duke@435 2340
duke@435 2341 int AbstractInterpreter::layout_activation(methodOop method,
never@2901 2342 int tempcount, //
never@2901 2343 int popframe_extra_args,
never@2901 2344 int moncount,
never@2901 2345 int caller_actual_parameters,
never@2901 2346 int callee_param_count,
never@2901 2347 int callee_locals,
never@2901 2348 frame* caller,
never@2901 2349 frame* interpreter_frame,
never@2901 2350 bool is_top_frame) {
duke@435 2351
duke@435 2352 assert(popframe_extra_args == 0, "FIX ME");
duke@435 2353 // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
duke@435 2354 // does as far as allocating an interpreter frame.
duke@435 2355 // If interpreter_frame!=NULL, set up the method, locals, and monitors.
duke@435 2356 // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
duke@435 2357 // as determined by a previous call to this method.
duke@435 2358 // It is also guaranteed to be walkable even though it is in a skeletal state
duke@435 2359 // NOTE: return size is in words not bytes
duke@435 2360 // NOTE: tempcount is the current size of the java expression stack. For top most
duke@435 2361 // frames we will allocate a full sized expression stack and not the curback
duke@435 2362 // version that non-top frames have.
duke@435 2363
duke@435 2364 // Calculate the amount our frame will be adjust by the callee. For top frame
duke@435 2365 // this is zero.
duke@435 2366
duke@435 2367 // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
duke@435 2368 // calculates the extra locals based on itself. Not what the callee does
duke@435 2369 // to it. So it ignores last_frame_adjust value. Seems suspicious as far
duke@435 2370 // as getting sender_sp correct.
duke@435 2371
duke@435 2372 int extra_locals_size = (callee_locals - callee_param_count) * BytesPerWord;
duke@435 2373 int monitor_size = sizeof(BasicObjectLock) * moncount;
duke@435 2374
duke@435 2375 // First calculate the frame size without any java expression stack
duke@435 2376 int short_frame_size = size_activation_helper(extra_locals_size,
duke@435 2377 monitor_size);
duke@435 2378
duke@435 2379 // Now with full size expression stack
jrose@1145 2380 int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
jrose@1145 2381 int full_frame_size = short_frame_size + (method->max_stack() + extra_stack) * BytesPerWord;
duke@435 2382
duke@435 2383 // and now with only live portion of the expression stack
duke@435 2384 short_frame_size = short_frame_size + tempcount * BytesPerWord;
duke@435 2385
duke@435 2386 // the size the activation is right now. Only top frame is full size
duke@435 2387 int frame_size = (is_top_frame ? full_frame_size : short_frame_size);
duke@435 2388
duke@435 2389 if (interpreter_frame != NULL) {
duke@435 2390 #ifdef ASSERT
duke@435 2391 assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
duke@435 2392 #endif
duke@435 2393
duke@435 2394 // MUCHO HACK
duke@435 2395
duke@435 2396 intptr_t* frame_bottom = (intptr_t*) ((intptr_t)interpreter_frame->sp() - (full_frame_size - frame_size));
duke@435 2397
duke@435 2398 /* Now fillin the interpreterState object */
duke@435 2399
duke@435 2400 // The state object is the first thing on the frame and easily located
duke@435 2401
duke@435 2402 interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter));
duke@435 2403
duke@435 2404
duke@435 2405 // Find the locals pointer. This is rather simple on x86 because there is no
duke@435 2406 // confusing rounding at the callee to account for. We can trivially locate
duke@435 2407 // our locals based on the current fp().
duke@435 2408 // Note: the + 2 is for handling the "static long no_params() method" issue.
duke@435 2409 // (too bad I don't really remember that issue well...)
duke@435 2410
duke@435 2411 intptr_t* locals;
duke@435 2412 // If the caller is interpreted we need to make sure that locals points to the first
duke@435 2413 // argument that the caller passed and not in an area where the stack might have been extended.
duke@435 2414 // because the stack to stack to converter needs a proper locals value in order to remove the
duke@435 2415 // arguments from the caller and place the result in the proper location. Hmm maybe it'd be
duke@435 2416 // simpler if we simply stored the result in the BytecodeInterpreter object and let the c++ code
duke@435 2417 // adjust the stack?? HMMM QQQ
duke@435 2418 //
duke@435 2419 if (caller->is_interpreted_frame()) {
duke@435 2420 // locals must agree with the caller because it will be used to set the
duke@435 2421 // caller's tos when we return.
duke@435 2422 interpreterState prev = caller->get_interpreterState();
duke@435 2423 // stack() is prepushed.
duke@435 2424 locals = prev->stack() + method->size_of_parameters();
duke@435 2425 // locals = caller->unextended_sp() + (method->size_of_parameters() - 1);
duke@435 2426 if (locals != interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2) {
duke@435 2427 // os::breakpoint();
duke@435 2428 }
duke@435 2429 } else {
duke@435 2430 // this is where a c2i would have placed locals (except for the +2)
duke@435 2431 locals = interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2;
duke@435 2432 }
duke@435 2433
duke@435 2434 intptr_t* monitor_base = (intptr_t*) cur_state;
duke@435 2435 intptr_t* stack_base = (intptr_t*) ((intptr_t) monitor_base - monitor_size);
duke@435 2436 /* +1 because stack is always prepushed */
duke@435 2437 intptr_t* stack = (intptr_t*) ((intptr_t) stack_base - (tempcount + 1) * BytesPerWord);
duke@435 2438
duke@435 2439
duke@435 2440 BytecodeInterpreter::layout_interpreterState(cur_state,
duke@435 2441 caller,
duke@435 2442 interpreter_frame,
duke@435 2443 method,
duke@435 2444 locals,
duke@435 2445 stack,
duke@435 2446 stack_base,
duke@435 2447 monitor_base,
duke@435 2448 frame_bottom,
duke@435 2449 is_top_frame);
duke@435 2450
duke@435 2451 // BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
duke@435 2452 }
duke@435 2453 return frame_size/BytesPerWord;
duke@435 2454 }
duke@435 2455
duke@435 2456 #endif // CC_INTERP (all)

mercurial