src/share/vm/memory/genCollectedHeap.cpp

Tue, 11 Sep 2012 14:59:23 +0200

author
stefank
date
Tue, 11 Sep 2012 14:59:23 +0200
changeset 4050
ec98e58952b2
parent 4037
da91efe96a93
child 4176
4202510ee0fe
permissions
-rw-r--r--

7197350: NPG: jvmtiHeapReferenceCallback receives incorrect reference_kind for system class roots
Summary: Fix the iteration over the system classes and report the correct reference kind.
Reviewed-by: coleenp, rbackman

duke@435 1 /*
never@3499 2 * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/symbolTable.hpp"
stefank@2314 27 #include "classfile/systemDictionary.hpp"
stefank@2314 28 #include "classfile/vmSymbols.hpp"
stefank@2314 29 #include "code/icBuffer.hpp"
stefank@2314 30 #include "gc_implementation/shared/collectorCounters.hpp"
stefank@2314 31 #include "gc_implementation/shared/vmGCOperations.hpp"
stefank@2314 32 #include "gc_interface/collectedHeap.inline.hpp"
stefank@2314 33 #include "memory/filemap.hpp"
stefank@2314 34 #include "memory/gcLocker.inline.hpp"
stefank@2314 35 #include "memory/genCollectedHeap.hpp"
stefank@2314 36 #include "memory/genOopClosures.inline.hpp"
stefank@2314 37 #include "memory/generation.inline.hpp"
stefank@2314 38 #include "memory/generationSpec.hpp"
stefank@2314 39 #include "memory/resourceArea.hpp"
stefank@2314 40 #include "memory/sharedHeap.hpp"
stefank@2314 41 #include "memory/space.hpp"
stefank@2314 42 #include "oops/oop.inline.hpp"
stefank@2314 43 #include "oops/oop.inline2.hpp"
stefank@2314 44 #include "runtime/aprofiler.hpp"
stefank@2314 45 #include "runtime/biasedLocking.hpp"
stefank@2314 46 #include "runtime/fprofiler.hpp"
stefank@2314 47 #include "runtime/handles.hpp"
stefank@2314 48 #include "runtime/handles.inline.hpp"
stefank@2314 49 #include "runtime/java.hpp"
stefank@2314 50 #include "runtime/vmThread.hpp"
stefank@2314 51 #include "services/memoryService.hpp"
stefank@2314 52 #include "utilities/vmError.hpp"
stefank@2314 53 #include "utilities/workgroup.hpp"
stefank@2314 54 #ifndef SERIALGC
stefank@2314 55 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
stefank@2314 56 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
stefank@2314 57 #endif
duke@435 58
duke@435 59 GenCollectedHeap* GenCollectedHeap::_gch;
duke@435 60 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
duke@435 61
duke@435 62 // The set of potentially parallel tasks in strong root scanning.
duke@435 63 enum GCH_process_strong_roots_tasks {
duke@435 64 // We probably want to parallelize both of these internally, but for now...
duke@435 65 GCH_PS_younger_gens,
duke@435 66 // Leave this one last.
duke@435 67 GCH_PS_NumElements
duke@435 68 };
duke@435 69
duke@435 70 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
duke@435 71 SharedHeap(policy),
duke@435 72 _gen_policy(policy),
duke@435 73 _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
duke@435 74 _full_collections_completed(0)
duke@435 75 {
duke@435 76 if (_gen_process_strong_tasks == NULL ||
duke@435 77 !_gen_process_strong_tasks->valid()) {
duke@435 78 vm_exit_during_initialization("Failed necessary allocation.");
duke@435 79 }
duke@435 80 assert(policy != NULL, "Sanity check");
duke@435 81 }
duke@435 82
duke@435 83 jint GenCollectedHeap::initialize() {
ysr@1601 84 CollectedHeap::pre_initialize();
ysr@1601 85
duke@435 86 int i;
duke@435 87 _n_gens = gen_policy()->number_of_generations();
duke@435 88
duke@435 89 // While there are no constraints in the GC code that HeapWordSize
duke@435 90 // be any particular value, there are multiple other areas in the
duke@435 91 // system which believe this to be true (e.g. oop->object_size in some
duke@435 92 // cases incorrectly returns the size in wordSize units rather than
duke@435 93 // HeapWordSize).
duke@435 94 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
duke@435 95
duke@435 96 // The heap must be at least as aligned as generations.
duke@435 97 size_t alignment = Generation::GenGrain;
duke@435 98
duke@435 99 _gen_specs = gen_policy()->generations();
duke@435 100
duke@435 101 // Make sure the sizes are all aligned.
duke@435 102 for (i = 0; i < _n_gens; i++) {
duke@435 103 _gen_specs[i]->align(alignment);
duke@435 104 }
duke@435 105
duke@435 106 // Allocate space for the heap.
duke@435 107
duke@435 108 char* heap_address;
duke@435 109 size_t total_reserved = 0;
duke@435 110 int n_covered_regions = 0;
duke@435 111 ReservedSpace heap_rs(0);
duke@435 112
coleenp@4037 113 heap_address = allocate(alignment, &total_reserved,
duke@435 114 &n_covered_regions, &heap_rs);
duke@435 115
duke@435 116 if (!heap_rs.is_reserved()) {
duke@435 117 vm_shutdown_during_initialization(
duke@435 118 "Could not reserve enough space for object heap");
duke@435 119 return JNI_ENOMEM;
duke@435 120 }
duke@435 121
duke@435 122 _reserved = MemRegion((HeapWord*)heap_rs.base(),
duke@435 123 (HeapWord*)(heap_rs.base() + heap_rs.size()));
duke@435 124
duke@435 125 // It is important to do this in a way such that concurrent readers can't
duke@435 126 // temporarily think somethings in the heap. (Seen this happen in asserts.)
duke@435 127 _reserved.set_word_size(0);
duke@435 128 _reserved.set_start((HeapWord*)heap_rs.base());
coleenp@4037 129 size_t actual_heap_size = heap_rs.size();
duke@435 130 _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
duke@435 131
duke@435 132 _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
duke@435 133 set_barrier_set(rem_set()->bs());
ysr@1601 134
duke@435 135 _gch = this;
duke@435 136
duke@435 137 for (i = 0; i < _n_gens; i++) {
coleenp@4037 138 ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(), false, false);
duke@435 139 _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
duke@435 140 heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
duke@435 141 }
ysr@2243 142 clear_incremental_collection_failed();
duke@435 143
duke@435 144 #ifndef SERIALGC
duke@435 145 // If we are running CMS, create the collector responsible
duke@435 146 // for collecting the CMS generations.
duke@435 147 if (collector_policy()->is_concurrent_mark_sweep_policy()) {
duke@435 148 bool success = create_cms_collector();
duke@435 149 if (!success) return JNI_ENOMEM;
duke@435 150 }
duke@435 151 #endif // SERIALGC
duke@435 152
duke@435 153 return JNI_OK;
duke@435 154 }
duke@435 155
duke@435 156
duke@435 157 char* GenCollectedHeap::allocate(size_t alignment,
duke@435 158 size_t* _total_reserved,
duke@435 159 int* _n_covered_regions,
duke@435 160 ReservedSpace* heap_rs){
duke@435 161 const char overflow_msg[] = "The size of the object heap + VM data exceeds "
duke@435 162 "the maximum representable size";
duke@435 163
duke@435 164 // Now figure out the total size.
duke@435 165 size_t total_reserved = 0;
duke@435 166 int n_covered_regions = 0;
duke@435 167 const size_t pageSize = UseLargePages ?
duke@435 168 os::large_page_size() : os::vm_page_size();
duke@435 169
duke@435 170 for (int i = 0; i < _n_gens; i++) {
duke@435 171 total_reserved += _gen_specs[i]->max_size();
duke@435 172 if (total_reserved < _gen_specs[i]->max_size()) {
duke@435 173 vm_exit_during_initialization(overflow_msg);
duke@435 174 }
duke@435 175 n_covered_regions += _gen_specs[i]->n_covered_regions();
duke@435 176 }
jcoomes@1981 177 assert(total_reserved % pageSize == 0,
jcoomes@1981 178 err_msg("Gen size; total_reserved=" SIZE_FORMAT ", pageSize="
jcoomes@1981 179 SIZE_FORMAT, total_reserved, pageSize));
duke@435 180
coleenp@4037 181 // Needed until the cardtable is fixed to have the right number
coleenp@4037 182 // of covered regions.
coleenp@4037 183 n_covered_regions += 2;
duke@435 184
duke@435 185 if (UseLargePages) {
duke@435 186 assert(total_reserved != 0, "total_reserved cannot be 0");
duke@435 187 total_reserved = round_to(total_reserved, os::large_page_size());
duke@435 188 if (total_reserved < os::large_page_size()) {
duke@435 189 vm_exit_during_initialization(overflow_msg);
duke@435 190 }
duke@435 191 }
duke@435 192
kvn@1077 193 *_total_reserved = total_reserved;
kvn@1077 194 *_n_covered_regions = n_covered_regions;
coleenp@4037 195 *heap_rs = Universe::reserve_heap(total_reserved, alignment);
coleenp@4037 196 return heap_rs->base();
duke@435 197 }
duke@435 198
duke@435 199
duke@435 200 void GenCollectedHeap::post_initialize() {
duke@435 201 SharedHeap::post_initialize();
duke@435 202 TwoGenerationCollectorPolicy *policy =
duke@435 203 (TwoGenerationCollectorPolicy *)collector_policy();
duke@435 204 guarantee(policy->is_two_generation_policy(), "Illegal policy type");
duke@435 205 DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
duke@435 206 assert(def_new_gen->kind() == Generation::DefNew ||
duke@435 207 def_new_gen->kind() == Generation::ParNew ||
duke@435 208 def_new_gen->kind() == Generation::ASParNew,
duke@435 209 "Wrong generation kind");
duke@435 210
duke@435 211 Generation* old_gen = get_gen(1);
duke@435 212 assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
duke@435 213 old_gen->kind() == Generation::ASConcurrentMarkSweep ||
duke@435 214 old_gen->kind() == Generation::MarkSweepCompact,
duke@435 215 "Wrong generation kind");
duke@435 216
duke@435 217 policy->initialize_size_policy(def_new_gen->eden()->capacity(),
duke@435 218 old_gen->capacity(),
duke@435 219 def_new_gen->from()->capacity());
duke@435 220 policy->initialize_gc_policy_counters();
duke@435 221 }
duke@435 222
duke@435 223 void GenCollectedHeap::ref_processing_init() {
duke@435 224 SharedHeap::ref_processing_init();
duke@435 225 for (int i = 0; i < _n_gens; i++) {
duke@435 226 _gens[i]->ref_processor_init();
duke@435 227 }
duke@435 228 }
duke@435 229
duke@435 230 size_t GenCollectedHeap::capacity() const {
duke@435 231 size_t res = 0;
duke@435 232 for (int i = 0; i < _n_gens; i++) {
duke@435 233 res += _gens[i]->capacity();
duke@435 234 }
duke@435 235 return res;
duke@435 236 }
duke@435 237
duke@435 238 size_t GenCollectedHeap::used() const {
duke@435 239 size_t res = 0;
duke@435 240 for (int i = 0; i < _n_gens; i++) {
duke@435 241 res += _gens[i]->used();
duke@435 242 }
duke@435 243 return res;
duke@435 244 }
duke@435 245
coleenp@4037 246 // Save the "used_region" for generations level and lower.
coleenp@4037 247 void GenCollectedHeap::save_used_regions(int level) {
duke@435 248 assert(level < _n_gens, "Illegal level parameter");
duke@435 249 for (int i = level; i >= 0; i--) {
duke@435 250 _gens[i]->save_used_region();
duke@435 251 }
duke@435 252 }
duke@435 253
duke@435 254 size_t GenCollectedHeap::max_capacity() const {
duke@435 255 size_t res = 0;
duke@435 256 for (int i = 0; i < _n_gens; i++) {
duke@435 257 res += _gens[i]->max_capacity();
duke@435 258 }
duke@435 259 return res;
duke@435 260 }
duke@435 261
duke@435 262 // Update the _full_collections_completed counter
duke@435 263 // at the end of a stop-world full GC.
duke@435 264 unsigned int GenCollectedHeap::update_full_collections_completed() {
duke@435 265 MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
duke@435 266 assert(_full_collections_completed <= _total_full_collections,
duke@435 267 "Can't complete more collections than were started");
duke@435 268 _full_collections_completed = _total_full_collections;
duke@435 269 ml.notify_all();
duke@435 270 return _full_collections_completed;
duke@435 271 }
duke@435 272
duke@435 273 // Update the _full_collections_completed counter, as appropriate,
duke@435 274 // at the end of a concurrent GC cycle. Note the conditional update
duke@435 275 // below to allow this method to be called by a concurrent collector
duke@435 276 // without synchronizing in any manner with the VM thread (which
duke@435 277 // may already have initiated a STW full collection "concurrently").
duke@435 278 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
duke@435 279 MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
duke@435 280 assert((_full_collections_completed <= _total_full_collections) &&
duke@435 281 (count <= _total_full_collections),
duke@435 282 "Can't complete more collections than were started");
duke@435 283 if (count > _full_collections_completed) {
duke@435 284 _full_collections_completed = count;
duke@435 285 ml.notify_all();
duke@435 286 }
duke@435 287 return _full_collections_completed;
duke@435 288 }
duke@435 289
duke@435 290
duke@435 291 #ifndef PRODUCT
duke@435 292 // Override of memory state checking method in CollectedHeap:
duke@435 293 // Some collectors (CMS for example) can't have badHeapWordVal written
duke@435 294 // in the first two words of an object. (For instance , in the case of
duke@435 295 // CMS these words hold state used to synchronize between certain
duke@435 296 // (concurrent) GC steps and direct allocating mutators.)
duke@435 297 // The skip_header_HeapWords() method below, allows us to skip
duke@435 298 // over the requisite number of HeapWord's. Note that (for
duke@435 299 // generational collectors) this means that those many words are
duke@435 300 // skipped in each object, irrespective of the generation in which
duke@435 301 // that object lives. The resultant loss of precision seems to be
duke@435 302 // harmless and the pain of avoiding that imprecision appears somewhat
duke@435 303 // higher than we are prepared to pay for such rudimentary debugging
duke@435 304 // support.
duke@435 305 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
duke@435 306 size_t size) {
duke@435 307 if (CheckMemoryInitialization && ZapUnusedHeapArea) {
duke@435 308 // We are asked to check a size in HeapWords,
duke@435 309 // but the memory is mangled in juint words.
duke@435 310 juint* start = (juint*) (addr + skip_header_HeapWords());
duke@435 311 juint* end = (juint*) (addr + size);
duke@435 312 for (juint* slot = start; slot < end; slot += 1) {
duke@435 313 assert(*slot == badHeapWordVal,
duke@435 314 "Found non badHeapWordValue in pre-allocation check");
duke@435 315 }
duke@435 316 }
duke@435 317 }
duke@435 318 #endif
duke@435 319
duke@435 320 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
duke@435 321 bool is_tlab,
duke@435 322 bool first_only) {
duke@435 323 HeapWord* res;
duke@435 324 for (int i = 0; i < _n_gens; i++) {
duke@435 325 if (_gens[i]->should_allocate(size, is_tlab)) {
duke@435 326 res = _gens[i]->allocate(size, is_tlab);
duke@435 327 if (res != NULL) return res;
duke@435 328 else if (first_only) break;
duke@435 329 }
duke@435 330 }
duke@435 331 // Otherwise...
duke@435 332 return NULL;
duke@435 333 }
duke@435 334
duke@435 335 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
duke@435 336 bool* gc_overhead_limit_was_exceeded) {
duke@435 337 return collector_policy()->mem_allocate_work(size,
tonyp@2971 338 false /* is_tlab */,
duke@435 339 gc_overhead_limit_was_exceeded);
duke@435 340 }
duke@435 341
duke@435 342 bool GenCollectedHeap::must_clear_all_soft_refs() {
duke@435 343 return _gc_cause == GCCause::_last_ditch_collection;
duke@435 344 }
duke@435 345
duke@435 346 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
ysr@1875 347 return UseConcMarkSweepGC &&
ysr@1875 348 ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
ysr@1875 349 (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
duke@435 350 }
duke@435 351
duke@435 352 void GenCollectedHeap::do_collection(bool full,
duke@435 353 bool clear_all_soft_refs,
duke@435 354 size_t size,
duke@435 355 bool is_tlab,
duke@435 356 int max_level) {
duke@435 357 bool prepared_for_verification = false;
duke@435 358 ResourceMark rm;
duke@435 359 DEBUG_ONLY(Thread* my_thread = Thread::current();)
duke@435 360
duke@435 361 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
duke@435 362 assert(my_thread->is_VM_thread() ||
duke@435 363 my_thread->is_ConcurrentGC_thread(),
duke@435 364 "incorrect thread type capability");
jmasa@1822 365 assert(Heap_lock->is_locked(),
jmasa@1822 366 "the requesting thread should have the Heap_lock");
duke@435 367 guarantee(!is_gc_active(), "collection is not reentrant");
duke@435 368 assert(max_level < n_gens(), "sanity check");
duke@435 369
duke@435 370 if (GC_locker::check_active_before_gc()) {
duke@435 371 return; // GC is disabled (e.g. JNI GetXXXCritical operation)
duke@435 372 }
duke@435 373
jmasa@1822 374 const bool do_clear_all_soft_refs = clear_all_soft_refs ||
jmasa@1822 375 collector_policy()->should_clear_all_soft_refs();
jmasa@1822 376
jmasa@1822 377 ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
jmasa@1822 378
coleenp@4037 379 const size_t metadata_prev_used = MetaspaceAux::used_in_bytes();
duke@435 380
never@3499 381 print_heap_before_gc();
duke@435 382
duke@435 383 {
duke@435 384 FlagSetting fl(_is_gc_active, true);
duke@435 385
duke@435 386 bool complete = full && (max_level == (n_gens()-1));
brutisso@3767 387 const char* gc_cause_prefix = complete ? "Full GC" : "GC";
duke@435 388 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
duke@435 389 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
brutisso@3767 390 TraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, gclog_or_tty);
duke@435 391
duke@435 392 gc_prologue(complete);
duke@435 393 increment_total_collections(complete);
duke@435 394
duke@435 395 size_t gch_prev_used = used();
duke@435 396
duke@435 397 int starting_level = 0;
duke@435 398 if (full) {
duke@435 399 // Search for the oldest generation which will collect all younger
duke@435 400 // generations, and start collection loop there.
duke@435 401 for (int i = max_level; i >= 0; i--) {
duke@435 402 if (_gens[i]->full_collects_younger_generations()) {
duke@435 403 starting_level = i;
duke@435 404 break;
duke@435 405 }
duke@435 406 }
duke@435 407 }
duke@435 408
duke@435 409 bool must_restore_marks_for_biased_locking = false;
duke@435 410
duke@435 411 int max_level_collected = starting_level;
duke@435 412 for (int i = starting_level; i <= max_level; i++) {
duke@435 413 if (_gens[i]->should_collect(full, size, is_tlab)) {
dcubed@1315 414 if (i == n_gens() - 1) { // a major collection is to happen
dcubed@1315 415 if (!complete) {
dcubed@1315 416 // The full_collections increment was missed above.
dcubed@1315 417 increment_total_full_collections();
dcubed@1315 418 }
ysr@1050 419 pre_full_gc_dump(); // do any pre full gc dumps
dcubed@1315 420 }
duke@435 421 // Timer for individual generations. Last argument is false: no CR
duke@435 422 TraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, gclog_or_tty);
duke@435 423 TraceCollectorStats tcs(_gens[i]->counters());
fparain@2888 424 TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
duke@435 425
duke@435 426 size_t prev_used = _gens[i]->used();
duke@435 427 _gens[i]->stat_record()->invocations++;
duke@435 428 _gens[i]->stat_record()->accumulated_time.start();
duke@435 429
jmasa@698 430 // Must be done anew before each collection because
jmasa@698 431 // a previous collection will do mangling and will
jmasa@698 432 // change top of some spaces.
jmasa@698 433 record_gen_tops_before_GC();
jmasa@698 434
duke@435 435 if (PrintGC && Verbose) {
duke@435 436 gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
duke@435 437 i,
duke@435 438 _gens[i]->stat_record()->invocations,
duke@435 439 size*HeapWordSize);
duke@435 440 }
duke@435 441
duke@435 442 if (VerifyBeforeGC && i >= VerifyGCLevel &&
duke@435 443 total_collections() >= VerifyGCStartAt) {
duke@435 444 HandleMark hm; // Discard invalid handles created during verification
duke@435 445 if (!prepared_for_verification) {
duke@435 446 prepare_for_verify();
duke@435 447 prepared_for_verification = true;
duke@435 448 }
duke@435 449 gclog_or_tty->print(" VerifyBeforeGC:");
duke@435 450 Universe::verify(true);
duke@435 451 }
duke@435 452 COMPILER2_PRESENT(DerivedPointerTable::clear());
duke@435 453
duke@435 454 if (!must_restore_marks_for_biased_locking &&
duke@435 455 _gens[i]->performs_in_place_marking()) {
duke@435 456 // We perform this mark word preservation work lazily
duke@435 457 // because it's only at this point that we know whether we
duke@435 458 // absolutely have to do it; we want to avoid doing it for
duke@435 459 // scavenge-only collections where it's unnecessary
duke@435 460 must_restore_marks_for_biased_locking = true;
duke@435 461 BiasedLocking::preserve_marks();
duke@435 462 }
duke@435 463
duke@435 464 // Do collection work
duke@435 465 {
duke@435 466 // Note on ref discovery: For what appear to be historical reasons,
duke@435 467 // GCH enables and disabled (by enqueing) refs discovery.
duke@435 468 // In the future this should be moved into the generation's
duke@435 469 // collect method so that ref discovery and enqueueing concerns
duke@435 470 // are local to a generation. The collect method could return
duke@435 471 // an appropriate indication in the case that notification on
duke@435 472 // the ref lock was needed. This will make the treatment of
duke@435 473 // weak refs more uniform (and indeed remove such concerns
duke@435 474 // from GCH). XXX
duke@435 475
duke@435 476 HandleMark hm; // Discard invalid handles created during gc
duke@435 477 save_marks(); // save marks for all gens
duke@435 478 // We want to discover references, but not process them yet.
duke@435 479 // This mode is disabled in process_discovered_references if the
duke@435 480 // generation does some collection work, or in
duke@435 481 // enqueue_discovered_references if the generation returns
duke@435 482 // without doing any work.
duke@435 483 ReferenceProcessor* rp = _gens[i]->ref_processor();
duke@435 484 // If the discovery of ("weak") refs in this generation is
duke@435 485 // atomic wrt other collectors in this configuration, we
duke@435 486 // are guaranteed to have empty discovered ref lists.
duke@435 487 if (rp->discovery_is_atomic()) {
johnc@3175 488 rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
jmasa@1822 489 rp->setup_policy(do_clear_all_soft_refs);
duke@435 490 } else {
ysr@888 491 // collect() below will enable discovery as appropriate
duke@435 492 }
jmasa@1822 493 _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
duke@435 494 if (!rp->enqueuing_is_done()) {
duke@435 495 rp->enqueue_discovered_references();
duke@435 496 } else {
duke@435 497 rp->set_enqueuing_is_done(false);
duke@435 498 }
duke@435 499 rp->verify_no_references_recorded();
duke@435 500 }
duke@435 501 max_level_collected = i;
duke@435 502
duke@435 503 // Determine if allocation request was met.
duke@435 504 if (size > 0) {
duke@435 505 if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
duke@435 506 if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
duke@435 507 size = 0;
duke@435 508 }
duke@435 509 }
duke@435 510 }
duke@435 511
duke@435 512 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
duke@435 513
duke@435 514 _gens[i]->stat_record()->accumulated_time.stop();
duke@435 515
duke@435 516 update_gc_stats(i, full);
duke@435 517
duke@435 518 if (VerifyAfterGC && i >= VerifyGCLevel &&
duke@435 519 total_collections() >= VerifyGCStartAt) {
duke@435 520 HandleMark hm; // Discard invalid handles created during verification
duke@435 521 gclog_or_tty->print(" VerifyAfterGC:");
duke@435 522 Universe::verify(false);
duke@435 523 }
duke@435 524
duke@435 525 if (PrintGCDetails) {
duke@435 526 gclog_or_tty->print(":");
duke@435 527 _gens[i]->print_heap_change(prev_used);
duke@435 528 }
duke@435 529 }
duke@435 530 }
duke@435 531
duke@435 532 // Update "complete" boolean wrt what actually transpired --
duke@435 533 // for instance, a promotion failure could have led to
duke@435 534 // a whole heap collection.
duke@435 535 complete = complete || (max_level_collected == n_gens() - 1);
duke@435 536
ysr@1050 537 if (complete) { // We did a "major" collection
ysr@1050 538 post_full_gc_dump(); // do any post full gc dumps
ysr@1050 539 }
ysr@1050 540
duke@435 541 if (PrintGCDetails) {
duke@435 542 print_heap_change(gch_prev_used);
duke@435 543
coleenp@4037 544 // Print metaspace info for full GC with PrintGCDetails flag.
duke@435 545 if (complete) {
coleenp@4037 546 MetaspaceAux::print_metaspace_change(metadata_prev_used);
duke@435 547 }
duke@435 548 }
duke@435 549
duke@435 550 for (int j = max_level_collected; j >= 0; j -= 1) {
duke@435 551 // Adjust generation sizes.
duke@435 552 _gens[j]->compute_new_size();
duke@435 553 }
duke@435 554
duke@435 555 if (complete) {
coleenp@4037 556 // Resize the metaspace capacity after full collections
coleenp@4037 557 MetaspaceGC::compute_new_size();
duke@435 558 update_full_collections_completed();
duke@435 559 }
duke@435 560
duke@435 561 // Track memory usage and detect low memory after GC finishes
duke@435 562 MemoryService::track_memory_usage();
duke@435 563
duke@435 564 gc_epilogue(complete);
duke@435 565
coleenp@4037 566 // Delete metaspaces for unloaded class loaders and clean up loader_data graph
coleenp@4037 567 if (complete) {
coleenp@4037 568 ClassLoaderDataGraph::purge();
coleenp@4037 569 }
coleenp@4037 570
duke@435 571 if (must_restore_marks_for_biased_locking) {
duke@435 572 BiasedLocking::restore_marks();
duke@435 573 }
duke@435 574 }
duke@435 575
duke@435 576 AdaptiveSizePolicy* sp = gen_policy()->size_policy();
duke@435 577 AdaptiveSizePolicyOutput(sp, total_collections());
duke@435 578
never@3499 579 print_heap_after_gc();
duke@435 580
jmasa@981 581 #ifdef TRACESPINNING
jmasa@981 582 ParallelTaskTerminator::print_termination_counts();
jmasa@981 583 #endif
duke@435 584 }
duke@435 585
duke@435 586 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
duke@435 587 return collector_policy()->satisfy_failed_allocation(size, is_tlab);
duke@435 588 }
duke@435 589
jmasa@3357 590 void GenCollectedHeap::set_par_threads(uint t) {
duke@435 591 SharedHeap::set_par_threads(t);
jmasa@2188 592 _gen_process_strong_tasks->set_n_threads(t);
duke@435 593 }
duke@435 594
duke@435 595 void GenCollectedHeap::
duke@435 596 gen_process_strong_roots(int level,
duke@435 597 bool younger_gens_as_roots,
jrose@1424 598 bool activate_scope,
coleenp@4037 599 bool is_scavenging,
duke@435 600 SharedHeap::ScanningOption so,
jrose@1424 601 OopsInGenClosure* not_older_gens,
jrose@1424 602 bool do_code_roots,
coleenp@4037 603 OopsInGenClosure* older_gens,
coleenp@4037 604 KlassClosure* klass_closure) {
duke@435 605 // General strong roots.
jrose@1424 606
jrose@1424 607 if (!do_code_roots) {
coleenp@4037 608 SharedHeap::process_strong_roots(activate_scope, is_scavenging, so,
coleenp@4037 609 not_older_gens, NULL, klass_closure);
jrose@1424 610 } else {
jrose@1424 611 bool do_code_marking = (activate_scope || nmethod::oops_do_marking_is_active());
jrose@1424 612 CodeBlobToOopClosure code_roots(not_older_gens, /*do_marking=*/ do_code_marking);
coleenp@4037 613 SharedHeap::process_strong_roots(activate_scope, is_scavenging, so,
coleenp@4037 614 not_older_gens, &code_roots, klass_closure);
jrose@1424 615 }
duke@435 616
duke@435 617 if (younger_gens_as_roots) {
duke@435 618 if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
duke@435 619 for (int i = 0; i < level; i++) {
duke@435 620 not_older_gens->set_generation(_gens[i]);
duke@435 621 _gens[i]->oop_iterate(not_older_gens);
duke@435 622 }
duke@435 623 not_older_gens->reset_generation();
duke@435 624 }
duke@435 625 }
duke@435 626 // When collection is parallel, all threads get to cooperate to do
duke@435 627 // older-gen scanning.
duke@435 628 for (int i = level+1; i < _n_gens; i++) {
duke@435 629 older_gens->set_generation(_gens[i]);
duke@435 630 rem_set()->younger_refs_iterate(_gens[i], older_gens);
duke@435 631 older_gens->reset_generation();
duke@435 632 }
duke@435 633
duke@435 634 _gen_process_strong_tasks->all_tasks_completed();
duke@435 635 }
duke@435 636
duke@435 637 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
jrose@1424 638 CodeBlobClosure* code_roots,
duke@435 639 OopClosure* non_root_closure) {
jrose@1424 640 SharedHeap::process_weak_roots(root_closure, code_roots, non_root_closure);
duke@435 641 // "Local" "weak" refs
duke@435 642 for (int i = 0; i < _n_gens; i++) {
duke@435 643 _gens[i]->ref_processor()->weak_oops_do(root_closure);
duke@435 644 }
duke@435 645 }
duke@435 646
duke@435 647 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix) \
duke@435 648 void GenCollectedHeap:: \
duke@435 649 oop_since_save_marks_iterate(int level, \
duke@435 650 OopClosureType* cur, \
duke@435 651 OopClosureType* older) { \
duke@435 652 _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur); \
duke@435 653 for (int i = level+1; i < n_gens(); i++) { \
duke@435 654 _gens[i]->oop_since_save_marks_iterate##nv_suffix(older); \
duke@435 655 } \
duke@435 656 }
duke@435 657
duke@435 658 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
duke@435 659
duke@435 660 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
duke@435 661
duke@435 662 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
duke@435 663 for (int i = level; i < _n_gens; i++) {
duke@435 664 if (!_gens[i]->no_allocs_since_save_marks()) return false;
duke@435 665 }
coleenp@4037 666 return true;
duke@435 667 }
duke@435 668
duke@435 669 bool GenCollectedHeap::supports_inline_contig_alloc() const {
duke@435 670 return _gens[0]->supports_inline_contig_alloc();
duke@435 671 }
duke@435 672
duke@435 673 HeapWord** GenCollectedHeap::top_addr() const {
duke@435 674 return _gens[0]->top_addr();
duke@435 675 }
duke@435 676
duke@435 677 HeapWord** GenCollectedHeap::end_addr() const {
duke@435 678 return _gens[0]->end_addr();
duke@435 679 }
duke@435 680
duke@435 681 size_t GenCollectedHeap::unsafe_max_alloc() {
duke@435 682 return _gens[0]->unsafe_max_alloc_nogc();
duke@435 683 }
duke@435 684
duke@435 685 // public collection interfaces
duke@435 686
duke@435 687 void GenCollectedHeap::collect(GCCause::Cause cause) {
duke@435 688 if (should_do_concurrent_full_gc(cause)) {
duke@435 689 #ifndef SERIALGC
duke@435 690 // mostly concurrent full collection
duke@435 691 collect_mostly_concurrent(cause);
duke@435 692 #else // SERIALGC
duke@435 693 ShouldNotReachHere();
duke@435 694 #endif // SERIALGC
duke@435 695 } else {
duke@435 696 #ifdef ASSERT
duke@435 697 if (cause == GCCause::_scavenge_alot) {
duke@435 698 // minor collection only
duke@435 699 collect(cause, 0);
duke@435 700 } else {
duke@435 701 // Stop-the-world full collection
duke@435 702 collect(cause, n_gens() - 1);
duke@435 703 }
duke@435 704 #else
duke@435 705 // Stop-the-world full collection
duke@435 706 collect(cause, n_gens() - 1);
duke@435 707 #endif
duke@435 708 }
duke@435 709 }
duke@435 710
duke@435 711 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
duke@435 712 // The caller doesn't have the Heap_lock
duke@435 713 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
duke@435 714 MutexLocker ml(Heap_lock);
duke@435 715 collect_locked(cause, max_level);
duke@435 716 }
duke@435 717
duke@435 718 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
duke@435 719 // The caller has the Heap_lock
duke@435 720 assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
duke@435 721 collect_locked(cause, n_gens() - 1);
duke@435 722 }
duke@435 723
duke@435 724 // this is the private collection interface
duke@435 725 // The Heap_lock is expected to be held on entry.
duke@435 726
duke@435 727 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
duke@435 728 // Read the GC count while holding the Heap_lock
duke@435 729 unsigned int gc_count_before = total_collections();
duke@435 730 unsigned int full_gc_count_before = total_full_collections();
duke@435 731 {
duke@435 732 MutexUnlocker mu(Heap_lock); // give up heap lock, execute gets it back
duke@435 733 VM_GenCollectFull op(gc_count_before, full_gc_count_before,
duke@435 734 cause, max_level);
duke@435 735 VMThread::execute(&op);
duke@435 736 }
duke@435 737 }
duke@435 738
duke@435 739 #ifndef SERIALGC
duke@435 740 bool GenCollectedHeap::create_cms_collector() {
duke@435 741
duke@435 742 assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
coleenp@4037 743 (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)),
duke@435 744 "Unexpected generation kinds");
duke@435 745 // Skip two header words in the block content verification
duke@435 746 NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
duke@435 747 CMSCollector* collector = new CMSCollector(
duke@435 748 (ConcurrentMarkSweepGeneration*)_gens[1],
duke@435 749 _rem_set->as_CardTableRS(),
duke@435 750 (ConcurrentMarkSweepPolicy*) collector_policy());
duke@435 751
duke@435 752 if (collector == NULL || !collector->completed_initialization()) {
duke@435 753 if (collector) {
duke@435 754 delete collector; // Be nice in embedded situation
duke@435 755 }
duke@435 756 vm_shutdown_during_initialization("Could not create CMS collector");
duke@435 757 return false;
duke@435 758 }
duke@435 759 return true; // success
duke@435 760 }
duke@435 761
duke@435 762 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
duke@435 763 assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
duke@435 764
duke@435 765 MutexLocker ml(Heap_lock);
duke@435 766 // Read the GC counts while holding the Heap_lock
duke@435 767 unsigned int full_gc_count_before = total_full_collections();
duke@435 768 unsigned int gc_count_before = total_collections();
duke@435 769 {
duke@435 770 MutexUnlocker mu(Heap_lock);
duke@435 771 VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
duke@435 772 VMThread::execute(&op);
duke@435 773 }
duke@435 774 }
duke@435 775 #endif // SERIALGC
duke@435 776
coleenp@4037 777 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
coleenp@4037 778 do_full_collection(clear_all_soft_refs, _n_gens - 1);
coleenp@4037 779 }
duke@435 780
duke@435 781 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
duke@435 782 int max_level) {
duke@435 783 int local_max_level;
ysr@2336 784 if (!incremental_collection_will_fail(false /* don't consult_young */) &&
duke@435 785 gc_cause() == GCCause::_gc_locker) {
duke@435 786 local_max_level = 0;
duke@435 787 } else {
duke@435 788 local_max_level = max_level;
duke@435 789 }
duke@435 790
duke@435 791 do_collection(true /* full */,
duke@435 792 clear_all_soft_refs /* clear_all_soft_refs */,
duke@435 793 0 /* size */,
duke@435 794 false /* is_tlab */,
duke@435 795 local_max_level /* max_level */);
duke@435 796 // Hack XXX FIX ME !!!
duke@435 797 // A scavenge may not have been attempted, or may have
duke@435 798 // been attempted and failed, because the old gen was too full
duke@435 799 if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
ysr@2336 800 incremental_collection_will_fail(false /* don't consult_young */)) {
duke@435 801 if (PrintGCDetails) {
duke@435 802 gclog_or_tty->print_cr("GC locker: Trying a full collection "
duke@435 803 "because scavenge failed");
duke@435 804 }
duke@435 805 // This time allow the old gen to be collected as well
duke@435 806 do_collection(true /* full */,
duke@435 807 clear_all_soft_refs /* clear_all_soft_refs */,
duke@435 808 0 /* size */,
duke@435 809 false /* is_tlab */,
duke@435 810 n_gens() - 1 /* max_level */);
duke@435 811 }
duke@435 812 }
duke@435 813
jmasa@2909 814 bool GenCollectedHeap::is_in_young(oop p) {
jmasa@2909 815 bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
jmasa@2909 816 assert(result == _gens[0]->is_in_reserved(p),
jmasa@2909 817 err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, (void*)p));
jmasa@2909 818 return result;
jmasa@2909 819 }
jmasa@2909 820
stefank@3335 821 // Returns "TRUE" iff "p" points into the committed areas of the heap.
duke@435 822 bool GenCollectedHeap::is_in(const void* p) const {
duke@435 823 #ifndef ASSERT
duke@435 824 guarantee(VerifyBeforeGC ||
duke@435 825 VerifyDuringGC ||
duke@435 826 VerifyBeforeExit ||
jrose@1590 827 PrintAssembly ||
jrose@1590 828 tty->count() != 0 || // already printing
bobv@2036 829 VerifyAfterGC ||
bobv@2036 830 VMError::fatal_error_in_progress(), "too expensive");
bobv@2036 831
duke@435 832 #endif
duke@435 833 // This might be sped up with a cache of the last generation that
duke@435 834 // answered yes.
duke@435 835 for (int i = 0; i < _n_gens; i++) {
duke@435 836 if (_gens[i]->is_in(p)) return true;
duke@435 837 }
duke@435 838 // Otherwise...
duke@435 839 return false;
duke@435 840 }
duke@435 841
jmasa@2909 842 #ifdef ASSERT
jmasa@2909 843 // Don't implement this by using is_in_young(). This method is used
jmasa@2909 844 // in some cases to check that is_in_young() is correct.
jmasa@2909 845 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
jmasa@2909 846 assert(is_in_reserved(p) || p == NULL,
jmasa@2909 847 "Does not work if address is non-null and outside of the heap");
jmasa@2909 848 return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
duke@435 849 }
jmasa@2909 850 #endif
duke@435 851
coleenp@4037 852 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
duke@435 853 for (int i = 0; i < _n_gens; i++) {
duke@435 854 _gens[i]->oop_iterate(cl);
duke@435 855 }
duke@435 856 }
duke@435 857
coleenp@4037 858 void GenCollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
duke@435 859 for (int i = 0; i < _n_gens; i++) {
duke@435 860 _gens[i]->oop_iterate(mr, cl);
duke@435 861 }
duke@435 862 }
duke@435 863
duke@435 864 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
duke@435 865 for (int i = 0; i < _n_gens; i++) {
duke@435 866 _gens[i]->object_iterate(cl);
duke@435 867 }
duke@435 868 }
duke@435 869
jmasa@952 870 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
jmasa@952 871 for (int i = 0; i < _n_gens; i++) {
jmasa@952 872 _gens[i]->safe_object_iterate(cl);
jmasa@952 873 }
jmasa@952 874 }
jmasa@952 875
duke@435 876 void GenCollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
duke@435 877 for (int i = 0; i < _n_gens; i++) {
duke@435 878 _gens[i]->object_iterate_since_last_GC(cl);
duke@435 879 }
duke@435 880 }
duke@435 881
duke@435 882 Space* GenCollectedHeap::space_containing(const void* addr) const {
duke@435 883 for (int i = 0; i < _n_gens; i++) {
duke@435 884 Space* res = _gens[i]->space_containing(addr);
duke@435 885 if (res != NULL) return res;
duke@435 886 }
duke@435 887 // Otherwise...
duke@435 888 assert(false, "Could not find containing space");
duke@435 889 return NULL;
duke@435 890 }
duke@435 891
duke@435 892
duke@435 893 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
duke@435 894 assert(is_in_reserved(addr), "block_start of address outside of heap");
duke@435 895 for (int i = 0; i < _n_gens; i++) {
duke@435 896 if (_gens[i]->is_in_reserved(addr)) {
duke@435 897 assert(_gens[i]->is_in(addr),
duke@435 898 "addr should be in allocated part of generation");
duke@435 899 return _gens[i]->block_start(addr);
duke@435 900 }
duke@435 901 }
duke@435 902 assert(false, "Some generation should contain the address");
duke@435 903 return NULL;
duke@435 904 }
duke@435 905
duke@435 906 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
duke@435 907 assert(is_in_reserved(addr), "block_size of address outside of heap");
duke@435 908 for (int i = 0; i < _n_gens; i++) {
duke@435 909 if (_gens[i]->is_in_reserved(addr)) {
duke@435 910 assert(_gens[i]->is_in(addr),
duke@435 911 "addr should be in allocated part of generation");
duke@435 912 return _gens[i]->block_size(addr);
duke@435 913 }
duke@435 914 }
duke@435 915 assert(false, "Some generation should contain the address");
duke@435 916 return 0;
duke@435 917 }
duke@435 918
duke@435 919 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
duke@435 920 assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
duke@435 921 assert(block_start(addr) == addr, "addr must be a block start");
duke@435 922 for (int i = 0; i < _n_gens; i++) {
duke@435 923 if (_gens[i]->is_in_reserved(addr)) {
duke@435 924 return _gens[i]->block_is_obj(addr);
duke@435 925 }
duke@435 926 }
duke@435 927 assert(false, "Some generation should contain the address");
duke@435 928 return false;
duke@435 929 }
duke@435 930
duke@435 931 bool GenCollectedHeap::supports_tlab_allocation() const {
duke@435 932 for (int i = 0; i < _n_gens; i += 1) {
duke@435 933 if (_gens[i]->supports_tlab_allocation()) {
duke@435 934 return true;
duke@435 935 }
duke@435 936 }
duke@435 937 return false;
duke@435 938 }
duke@435 939
duke@435 940 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
duke@435 941 size_t result = 0;
duke@435 942 for (int i = 0; i < _n_gens; i += 1) {
duke@435 943 if (_gens[i]->supports_tlab_allocation()) {
duke@435 944 result += _gens[i]->tlab_capacity();
duke@435 945 }
duke@435 946 }
duke@435 947 return result;
duke@435 948 }
duke@435 949
duke@435 950 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
duke@435 951 size_t result = 0;
duke@435 952 for (int i = 0; i < _n_gens; i += 1) {
duke@435 953 if (_gens[i]->supports_tlab_allocation()) {
duke@435 954 result += _gens[i]->unsafe_max_tlab_alloc();
duke@435 955 }
duke@435 956 }
duke@435 957 return result;
duke@435 958 }
duke@435 959
duke@435 960 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
duke@435 961 bool gc_overhead_limit_was_exceeded;
tonyp@2971 962 return collector_policy()->mem_allocate_work(size /* size */,
tonyp@2971 963 true /* is_tlab */,
tonyp@2971 964 &gc_overhead_limit_was_exceeded);
duke@435 965 }
duke@435 966
duke@435 967 // Requires "*prev_ptr" to be non-NULL. Deletes and a block of minimal size
duke@435 968 // from the list headed by "*prev_ptr".
duke@435 969 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
duke@435 970 bool first = true;
duke@435 971 size_t min_size = 0; // "first" makes this conceptually infinite.
duke@435 972 ScratchBlock **smallest_ptr, *smallest;
duke@435 973 ScratchBlock *cur = *prev_ptr;
duke@435 974 while (cur) {
duke@435 975 assert(*prev_ptr == cur, "just checking");
duke@435 976 if (first || cur->num_words < min_size) {
duke@435 977 smallest_ptr = prev_ptr;
duke@435 978 smallest = cur;
duke@435 979 min_size = smallest->num_words;
duke@435 980 first = false;
duke@435 981 }
duke@435 982 prev_ptr = &cur->next;
duke@435 983 cur = cur->next;
duke@435 984 }
duke@435 985 smallest = *smallest_ptr;
duke@435 986 *smallest_ptr = smallest->next;
duke@435 987 return smallest;
duke@435 988 }
duke@435 989
duke@435 990 // Sort the scratch block list headed by res into decreasing size order,
duke@435 991 // and set "res" to the result.
duke@435 992 static void sort_scratch_list(ScratchBlock*& list) {
duke@435 993 ScratchBlock* sorted = NULL;
duke@435 994 ScratchBlock* unsorted = list;
duke@435 995 while (unsorted) {
duke@435 996 ScratchBlock *smallest = removeSmallestScratch(&unsorted);
duke@435 997 smallest->next = sorted;
duke@435 998 sorted = smallest;
duke@435 999 }
duke@435 1000 list = sorted;
duke@435 1001 }
duke@435 1002
duke@435 1003 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
duke@435 1004 size_t max_alloc_words) {
duke@435 1005 ScratchBlock* res = NULL;
duke@435 1006 for (int i = 0; i < _n_gens; i++) {
duke@435 1007 _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
duke@435 1008 }
duke@435 1009 sort_scratch_list(res);
duke@435 1010 return res;
duke@435 1011 }
duke@435 1012
jmasa@698 1013 void GenCollectedHeap::release_scratch() {
jmasa@698 1014 for (int i = 0; i < _n_gens; i++) {
jmasa@698 1015 _gens[i]->reset_scratch();
jmasa@698 1016 }
jmasa@698 1017 }
jmasa@698 1018
duke@435 1019 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
duke@435 1020 void do_generation(Generation* gen) {
duke@435 1021 gen->prepare_for_verify();
duke@435 1022 }
duke@435 1023 };
duke@435 1024
duke@435 1025 void GenCollectedHeap::prepare_for_verify() {
duke@435 1026 ensure_parsability(false); // no need to retire TLABs
duke@435 1027 GenPrepareForVerifyClosure blk;
duke@435 1028 generation_iterate(&blk, false);
duke@435 1029 }
duke@435 1030
duke@435 1031
duke@435 1032 void GenCollectedHeap::generation_iterate(GenClosure* cl,
duke@435 1033 bool old_to_young) {
duke@435 1034 if (old_to_young) {
duke@435 1035 for (int i = _n_gens-1; i >= 0; i--) {
duke@435 1036 cl->do_generation(_gens[i]);
duke@435 1037 }
duke@435 1038 } else {
duke@435 1039 for (int i = 0; i < _n_gens; i++) {
duke@435 1040 cl->do_generation(_gens[i]);
duke@435 1041 }
duke@435 1042 }
duke@435 1043 }
duke@435 1044
duke@435 1045 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
duke@435 1046 for (int i = 0; i < _n_gens; i++) {
duke@435 1047 _gens[i]->space_iterate(cl, true);
duke@435 1048 }
duke@435 1049 }
duke@435 1050
duke@435 1051 bool GenCollectedHeap::is_maximal_no_gc() const {
coleenp@4037 1052 for (int i = 0; i < _n_gens; i++) {
duke@435 1053 if (!_gens[i]->is_maximal_no_gc()) {
duke@435 1054 return false;
duke@435 1055 }
duke@435 1056 }
duke@435 1057 return true;
duke@435 1058 }
duke@435 1059
duke@435 1060 void GenCollectedHeap::save_marks() {
duke@435 1061 for (int i = 0; i < _n_gens; i++) {
duke@435 1062 _gens[i]->save_marks();
duke@435 1063 }
duke@435 1064 }
duke@435 1065
duke@435 1066 void GenCollectedHeap::compute_new_generation_sizes(int collectedGen) {
duke@435 1067 for (int i = 0; i <= collectedGen; i++) {
duke@435 1068 _gens[i]->compute_new_size();
duke@435 1069 }
duke@435 1070 }
duke@435 1071
duke@435 1072 GenCollectedHeap* GenCollectedHeap::heap() {
duke@435 1073 assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
duke@435 1074 assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
duke@435 1075 return _gch;
duke@435 1076 }
duke@435 1077
duke@435 1078
duke@435 1079 void GenCollectedHeap::prepare_for_compaction() {
duke@435 1080 Generation* scanning_gen = _gens[_n_gens-1];
duke@435 1081 // Start by compacting into same gen.
duke@435 1082 CompactPoint cp(scanning_gen, NULL, NULL);
duke@435 1083 while (scanning_gen != NULL) {
duke@435 1084 scanning_gen->prepare_for_compaction(&cp);
duke@435 1085 scanning_gen = prev_gen(scanning_gen);
duke@435 1086 }
duke@435 1087 }
duke@435 1088
duke@435 1089 GCStats* GenCollectedHeap::gc_stats(int level) const {
duke@435 1090 return _gens[level]->gc_stats();
duke@435 1091 }
duke@435 1092
brutisso@3711 1093 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
duke@435 1094 for (int i = _n_gens-1; i >= 0; i--) {
duke@435 1095 Generation* g = _gens[i];
duke@435 1096 if (!silent) {
duke@435 1097 gclog_or_tty->print(g->name());
duke@435 1098 gclog_or_tty->print(" ");
duke@435 1099 }
brutisso@3711 1100 g->verify();
duke@435 1101 }
duke@435 1102 if (!silent) {
duke@435 1103 gclog_or_tty->print("remset ");
duke@435 1104 }
duke@435 1105 rem_set()->verify();
duke@435 1106 }
duke@435 1107
duke@435 1108 void GenCollectedHeap::print_on(outputStream* st) const {
duke@435 1109 for (int i = 0; i < _n_gens; i++) {
duke@435 1110 _gens[i]->print_on(st);
duke@435 1111 }
coleenp@4037 1112 MetaspaceAux::print_on(st);
duke@435 1113 }
duke@435 1114
duke@435 1115 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
duke@435 1116 if (workers() != NULL) {
duke@435 1117 workers()->threads_do(tc);
duke@435 1118 }
duke@435 1119 #ifndef SERIALGC
duke@435 1120 if (UseConcMarkSweepGC) {
duke@435 1121 ConcurrentMarkSweepThread::threads_do(tc);
duke@435 1122 }
duke@435 1123 #endif // SERIALGC
duke@435 1124 }
duke@435 1125
duke@435 1126 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
duke@435 1127 #ifndef SERIALGC
duke@435 1128 if (UseParNewGC) {
duke@435 1129 workers()->print_worker_threads_on(st);
duke@435 1130 }
duke@435 1131 if (UseConcMarkSweepGC) {
duke@435 1132 ConcurrentMarkSweepThread::print_all_on(st);
duke@435 1133 }
duke@435 1134 #endif // SERIALGC
duke@435 1135 }
duke@435 1136
duke@435 1137 void GenCollectedHeap::print_tracing_info() const {
duke@435 1138 if (TraceGen0Time) {
duke@435 1139 get_gen(0)->print_summary_info();
duke@435 1140 }
duke@435 1141 if (TraceGen1Time) {
duke@435 1142 get_gen(1)->print_summary_info();
duke@435 1143 }
duke@435 1144 }
duke@435 1145
duke@435 1146 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
duke@435 1147 if (PrintGCDetails && Verbose) {
duke@435 1148 gclog_or_tty->print(" " SIZE_FORMAT
duke@435 1149 "->" SIZE_FORMAT
duke@435 1150 "(" SIZE_FORMAT ")",
duke@435 1151 prev_used, used(), capacity());
duke@435 1152 } else {
duke@435 1153 gclog_or_tty->print(" " SIZE_FORMAT "K"
duke@435 1154 "->" SIZE_FORMAT "K"
duke@435 1155 "(" SIZE_FORMAT "K)",
duke@435 1156 prev_used / K, used() / K, capacity() / K);
duke@435 1157 }
duke@435 1158 }
duke@435 1159
duke@435 1160 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
duke@435 1161 private:
duke@435 1162 bool _full;
duke@435 1163 public:
duke@435 1164 void do_generation(Generation* gen) {
duke@435 1165 gen->gc_prologue(_full);
duke@435 1166 }
duke@435 1167 GenGCPrologueClosure(bool full) : _full(full) {};
duke@435 1168 };
duke@435 1169
duke@435 1170 void GenCollectedHeap::gc_prologue(bool full) {
duke@435 1171 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
duke@435 1172
duke@435 1173 always_do_update_barrier = false;
duke@435 1174 // Fill TLAB's and such
duke@435 1175 CollectedHeap::accumulate_statistics_all_tlabs();
duke@435 1176 ensure_parsability(true); // retire TLABs
duke@435 1177
duke@435 1178 // Call allocation profiler
duke@435 1179 AllocationProfiler::iterate_since_last_gc();
duke@435 1180 // Walk generations
duke@435 1181 GenGCPrologueClosure blk(full);
duke@435 1182 generation_iterate(&blk, false); // not old-to-young.
duke@435 1183 };
duke@435 1184
duke@435 1185 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
duke@435 1186 private:
duke@435 1187 bool _full;
duke@435 1188 public:
duke@435 1189 void do_generation(Generation* gen) {
duke@435 1190 gen->gc_epilogue(_full);
duke@435 1191 }
duke@435 1192 GenGCEpilogueClosure(bool full) : _full(full) {};
duke@435 1193 };
duke@435 1194
duke@435 1195 void GenCollectedHeap::gc_epilogue(bool full) {
duke@435 1196 #ifdef COMPILER2
duke@435 1197 assert(DerivedPointerTable::is_empty(), "derived pointer present");
duke@435 1198 size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
duke@435 1199 guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
duke@435 1200 #endif /* COMPILER2 */
duke@435 1201
duke@435 1202 resize_all_tlabs();
duke@435 1203
duke@435 1204 GenGCEpilogueClosure blk(full);
duke@435 1205 generation_iterate(&blk, false); // not old-to-young.
duke@435 1206
jcoomes@2996 1207 if (!CleanChunkPoolAsync) {
jcoomes@2996 1208 Chunk::clean_chunk_pool();
jcoomes@2996 1209 }
jcoomes@2996 1210
coleenp@4037 1211 MetaspaceCounters::update_performance_counters();
coleenp@4037 1212
duke@435 1213 always_do_update_barrier = UseConcMarkSweepGC;
duke@435 1214 };
duke@435 1215
jmasa@698 1216 #ifndef PRODUCT
jmasa@698 1217 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
jmasa@698 1218 private:
jmasa@698 1219 public:
jmasa@698 1220 void do_generation(Generation* gen) {
jmasa@698 1221 gen->record_spaces_top();
jmasa@698 1222 }
jmasa@698 1223 };
jmasa@698 1224
jmasa@698 1225 void GenCollectedHeap::record_gen_tops_before_GC() {
jmasa@698 1226 if (ZapUnusedHeapArea) {
jmasa@698 1227 GenGCSaveTopsBeforeGCClosure blk;
jmasa@698 1228 generation_iterate(&blk, false); // not old-to-young.
jmasa@698 1229 }
jmasa@698 1230 }
jmasa@698 1231 #endif // not PRODUCT
jmasa@698 1232
duke@435 1233 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
duke@435 1234 public:
duke@435 1235 void do_generation(Generation* gen) {
duke@435 1236 gen->ensure_parsability();
duke@435 1237 }
duke@435 1238 };
duke@435 1239
duke@435 1240 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
duke@435 1241 CollectedHeap::ensure_parsability(retire_tlabs);
duke@435 1242 GenEnsureParsabilityClosure ep_cl;
duke@435 1243 generation_iterate(&ep_cl, false);
duke@435 1244 }
duke@435 1245
duke@435 1246 oop GenCollectedHeap::handle_failed_promotion(Generation* gen,
duke@435 1247 oop obj,
coleenp@548 1248 size_t obj_size) {
duke@435 1249 assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
duke@435 1250 HeapWord* result = NULL;
duke@435 1251
duke@435 1252 // First give each higher generation a chance to allocate the promoted object.
duke@435 1253 Generation* allocator = next_gen(gen);
duke@435 1254 if (allocator != NULL) {
duke@435 1255 do {
duke@435 1256 result = allocator->allocate(obj_size, false);
duke@435 1257 } while (result == NULL && (allocator = next_gen(allocator)) != NULL);
duke@435 1258 }
duke@435 1259
duke@435 1260 if (result == NULL) {
duke@435 1261 // Then give gen and higher generations a chance to expand and allocate the
duke@435 1262 // object.
duke@435 1263 do {
duke@435 1264 result = gen->expand_and_allocate(obj_size, false);
duke@435 1265 } while (result == NULL && (gen = next_gen(gen)) != NULL);
duke@435 1266 }
duke@435 1267
duke@435 1268 if (result != NULL) {
duke@435 1269 Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
duke@435 1270 }
duke@435 1271 return oop(result);
duke@435 1272 }
duke@435 1273
duke@435 1274 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
duke@435 1275 jlong _time; // in ms
duke@435 1276 jlong _now; // in ms
duke@435 1277
duke@435 1278 public:
duke@435 1279 GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
duke@435 1280
duke@435 1281 jlong time() { return _time; }
duke@435 1282
duke@435 1283 void do_generation(Generation* gen) {
duke@435 1284 _time = MIN2(_time, gen->time_of_last_gc(_now));
duke@435 1285 }
duke@435 1286 };
duke@435 1287
duke@435 1288 jlong GenCollectedHeap::millis_since_last_gc() {
johnc@3339 1289 // We need a monotonically non-deccreasing time in ms but
johnc@3339 1290 // os::javaTimeMillis() does not guarantee monotonicity.
johnc@3339 1291 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
duke@435 1292 GenTimeOfLastGCClosure tolgc_cl(now);
duke@435 1293 // iterate over generations getting the oldest
duke@435 1294 // time that a generation was collected
duke@435 1295 generation_iterate(&tolgc_cl, false);
johnc@3339 1296
johnc@3339 1297 // javaTimeNanos() is guaranteed to be monotonically non-decreasing
johnc@3339 1298 // provided the underlying platform provides such a time source
johnc@3339 1299 // (and it is bug free). So we still have to guard against getting
johnc@3339 1300 // back a time later than 'now'.
duke@435 1301 jlong retVal = now - tolgc_cl.time();
duke@435 1302 if (retVal < 0) {
johnc@3339 1303 NOT_PRODUCT(warning("time warp: "INT64_FORMAT, retVal);)
duke@435 1304 return 0;
duke@435 1305 }
duke@435 1306 return retVal;
duke@435 1307 }

mercurial