src/share/vm/memory/genCollectedHeap.cpp

Mon, 19 Dec 2011 10:02:05 -0800

author
johnc
date
Mon, 19 Dec 2011 10:02:05 -0800
changeset 3339
e7dead7e90af
parent 3335
3c648b9ad052
child 3357
441e946dc1af
permissions
-rw-r--r--

7117303: VM uses non-monotonic time source and complains that it is non-monotonic
Summary: Replaces calls to os::javaTimeMillis(), which does not (and cannot) guarantee monotonicity, in GC code to an equivalent expression that uses os::javaTimeNanos(). os::javaTimeNanos is guaranteed monotonically non-decreasing if the underlying platform provides a monotonic time source. Changes in OS files are to make use of the newly defined constants in globalDefinitions.hpp.
Reviewed-by: dholmes, ysr

duke@435 1 /*
trims@2708 2 * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/symbolTable.hpp"
stefank@2314 27 #include "classfile/systemDictionary.hpp"
stefank@2314 28 #include "classfile/vmSymbols.hpp"
stefank@2314 29 #include "code/icBuffer.hpp"
stefank@2314 30 #include "gc_implementation/shared/collectorCounters.hpp"
stefank@2314 31 #include "gc_implementation/shared/vmGCOperations.hpp"
stefank@2314 32 #include "gc_interface/collectedHeap.inline.hpp"
stefank@2314 33 #include "memory/compactPermGen.hpp"
stefank@2314 34 #include "memory/filemap.hpp"
stefank@2314 35 #include "memory/gcLocker.inline.hpp"
stefank@2314 36 #include "memory/genCollectedHeap.hpp"
stefank@2314 37 #include "memory/genOopClosures.inline.hpp"
stefank@2314 38 #include "memory/generation.inline.hpp"
stefank@2314 39 #include "memory/generationSpec.hpp"
stefank@2314 40 #include "memory/permGen.hpp"
stefank@2314 41 #include "memory/resourceArea.hpp"
stefank@2314 42 #include "memory/sharedHeap.hpp"
stefank@2314 43 #include "memory/space.hpp"
stefank@2314 44 #include "oops/oop.inline.hpp"
stefank@2314 45 #include "oops/oop.inline2.hpp"
stefank@2314 46 #include "runtime/aprofiler.hpp"
stefank@2314 47 #include "runtime/biasedLocking.hpp"
stefank@2314 48 #include "runtime/fprofiler.hpp"
stefank@2314 49 #include "runtime/handles.hpp"
stefank@2314 50 #include "runtime/handles.inline.hpp"
stefank@2314 51 #include "runtime/java.hpp"
stefank@2314 52 #include "runtime/vmThread.hpp"
stefank@2314 53 #include "services/memoryService.hpp"
stefank@2314 54 #include "utilities/vmError.hpp"
stefank@2314 55 #include "utilities/workgroup.hpp"
stefank@2314 56 #ifndef SERIALGC
stefank@2314 57 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
stefank@2314 58 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
stefank@2314 59 #endif
duke@435 60
duke@435 61 GenCollectedHeap* GenCollectedHeap::_gch;
duke@435 62 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
duke@435 63
duke@435 64 // The set of potentially parallel tasks in strong root scanning.
duke@435 65 enum GCH_process_strong_roots_tasks {
duke@435 66 // We probably want to parallelize both of these internally, but for now...
duke@435 67 GCH_PS_younger_gens,
duke@435 68 // Leave this one last.
duke@435 69 GCH_PS_NumElements
duke@435 70 };
duke@435 71
duke@435 72 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
duke@435 73 SharedHeap(policy),
duke@435 74 _gen_policy(policy),
duke@435 75 _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
duke@435 76 _full_collections_completed(0)
duke@435 77 {
duke@435 78 if (_gen_process_strong_tasks == NULL ||
duke@435 79 !_gen_process_strong_tasks->valid()) {
duke@435 80 vm_exit_during_initialization("Failed necessary allocation.");
duke@435 81 }
duke@435 82 assert(policy != NULL, "Sanity check");
duke@435 83 _preloading_shared_classes = false;
duke@435 84 }
duke@435 85
duke@435 86 jint GenCollectedHeap::initialize() {
ysr@1601 87 CollectedHeap::pre_initialize();
ysr@1601 88
duke@435 89 int i;
duke@435 90 _n_gens = gen_policy()->number_of_generations();
duke@435 91
duke@435 92 // While there are no constraints in the GC code that HeapWordSize
duke@435 93 // be any particular value, there are multiple other areas in the
duke@435 94 // system which believe this to be true (e.g. oop->object_size in some
duke@435 95 // cases incorrectly returns the size in wordSize units rather than
duke@435 96 // HeapWordSize).
duke@435 97 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
duke@435 98
duke@435 99 // The heap must be at least as aligned as generations.
duke@435 100 size_t alignment = Generation::GenGrain;
duke@435 101
duke@435 102 _gen_specs = gen_policy()->generations();
duke@435 103 PermanentGenerationSpec *perm_gen_spec =
duke@435 104 collector_policy()->permanent_generation();
duke@435 105
duke@435 106 // Make sure the sizes are all aligned.
duke@435 107 for (i = 0; i < _n_gens; i++) {
duke@435 108 _gen_specs[i]->align(alignment);
duke@435 109 }
duke@435 110 perm_gen_spec->align(alignment);
duke@435 111
duke@435 112 // If we are dumping the heap, then allocate a wasted block of address
duke@435 113 // space in order to push the heap to a lower address. This extra
duke@435 114 // address range allows for other (or larger) libraries to be loaded
duke@435 115 // without them occupying the space required for the shared spaces.
duke@435 116
duke@435 117 if (DumpSharedSpaces) {
duke@435 118 uintx reserved = 0;
duke@435 119 uintx block_size = 64*1024*1024;
duke@435 120 while (reserved < SharedDummyBlockSize) {
duke@435 121 char* dummy = os::reserve_memory(block_size);
duke@435 122 reserved += block_size;
duke@435 123 }
duke@435 124 }
duke@435 125
duke@435 126 // Allocate space for the heap.
duke@435 127
duke@435 128 char* heap_address;
duke@435 129 size_t total_reserved = 0;
duke@435 130 int n_covered_regions = 0;
duke@435 131 ReservedSpace heap_rs(0);
duke@435 132
duke@435 133 heap_address = allocate(alignment, perm_gen_spec, &total_reserved,
duke@435 134 &n_covered_regions, &heap_rs);
duke@435 135
duke@435 136 if (UseSharedSpaces) {
duke@435 137 if (!heap_rs.is_reserved() || heap_address != heap_rs.base()) {
duke@435 138 if (heap_rs.is_reserved()) {
duke@435 139 heap_rs.release();
duke@435 140 }
duke@435 141 FileMapInfo* mapinfo = FileMapInfo::current_info();
duke@435 142 mapinfo->fail_continue("Unable to reserve shared region.");
duke@435 143 allocate(alignment, perm_gen_spec, &total_reserved, &n_covered_regions,
duke@435 144 &heap_rs);
duke@435 145 }
duke@435 146 }
duke@435 147
duke@435 148 if (!heap_rs.is_reserved()) {
duke@435 149 vm_shutdown_during_initialization(
duke@435 150 "Could not reserve enough space for object heap");
duke@435 151 return JNI_ENOMEM;
duke@435 152 }
duke@435 153
duke@435 154 _reserved = MemRegion((HeapWord*)heap_rs.base(),
duke@435 155 (HeapWord*)(heap_rs.base() + heap_rs.size()));
duke@435 156
duke@435 157 // It is important to do this in a way such that concurrent readers can't
duke@435 158 // temporarily think somethings in the heap. (Seen this happen in asserts.)
duke@435 159 _reserved.set_word_size(0);
duke@435 160 _reserved.set_start((HeapWord*)heap_rs.base());
duke@435 161 size_t actual_heap_size = heap_rs.size() - perm_gen_spec->misc_data_size()
duke@435 162 - perm_gen_spec->misc_code_size();
duke@435 163 _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
duke@435 164
duke@435 165 _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
duke@435 166 set_barrier_set(rem_set()->bs());
ysr@1601 167
duke@435 168 _gch = this;
duke@435 169
duke@435 170 for (i = 0; i < _n_gens; i++) {
duke@435 171 ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(),
duke@435 172 UseSharedSpaces, UseSharedSpaces);
duke@435 173 _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
duke@435 174 heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
duke@435 175 }
duke@435 176 _perm_gen = perm_gen_spec->init(heap_rs, PermSize, rem_set());
duke@435 177
ysr@2243 178 clear_incremental_collection_failed();
duke@435 179
duke@435 180 #ifndef SERIALGC
duke@435 181 // If we are running CMS, create the collector responsible
duke@435 182 // for collecting the CMS generations.
duke@435 183 if (collector_policy()->is_concurrent_mark_sweep_policy()) {
duke@435 184 bool success = create_cms_collector();
duke@435 185 if (!success) return JNI_ENOMEM;
duke@435 186 }
duke@435 187 #endif // SERIALGC
duke@435 188
duke@435 189 return JNI_OK;
duke@435 190 }
duke@435 191
duke@435 192
duke@435 193 char* GenCollectedHeap::allocate(size_t alignment,
duke@435 194 PermanentGenerationSpec* perm_gen_spec,
duke@435 195 size_t* _total_reserved,
duke@435 196 int* _n_covered_regions,
duke@435 197 ReservedSpace* heap_rs){
duke@435 198 const char overflow_msg[] = "The size of the object heap + VM data exceeds "
duke@435 199 "the maximum representable size";
duke@435 200
duke@435 201 // Now figure out the total size.
duke@435 202 size_t total_reserved = 0;
duke@435 203 int n_covered_regions = 0;
duke@435 204 const size_t pageSize = UseLargePages ?
duke@435 205 os::large_page_size() : os::vm_page_size();
duke@435 206
duke@435 207 for (int i = 0; i < _n_gens; i++) {
duke@435 208 total_reserved += _gen_specs[i]->max_size();
duke@435 209 if (total_reserved < _gen_specs[i]->max_size()) {
duke@435 210 vm_exit_during_initialization(overflow_msg);
duke@435 211 }
duke@435 212 n_covered_regions += _gen_specs[i]->n_covered_regions();
duke@435 213 }
jcoomes@1981 214 assert(total_reserved % pageSize == 0,
jcoomes@1981 215 err_msg("Gen size; total_reserved=" SIZE_FORMAT ", pageSize="
jcoomes@1981 216 SIZE_FORMAT, total_reserved, pageSize));
duke@435 217 total_reserved += perm_gen_spec->max_size();
jcoomes@1981 218 assert(total_reserved % pageSize == 0,
jcoomes@1981 219 err_msg("Perm size; total_reserved=" SIZE_FORMAT ", pageSize="
jcoomes@1981 220 SIZE_FORMAT ", perm gen max=" SIZE_FORMAT, total_reserved,
jcoomes@1981 221 pageSize, perm_gen_spec->max_size()));
duke@435 222
duke@435 223 if (total_reserved < perm_gen_spec->max_size()) {
duke@435 224 vm_exit_during_initialization(overflow_msg);
duke@435 225 }
duke@435 226 n_covered_regions += perm_gen_spec->n_covered_regions();
duke@435 227
duke@435 228 // Add the size of the data area which shares the same reserved area
duke@435 229 // as the heap, but which is not actually part of the heap.
duke@435 230 size_t s = perm_gen_spec->misc_data_size() + perm_gen_spec->misc_code_size();
duke@435 231
duke@435 232 total_reserved += s;
duke@435 233 if (total_reserved < s) {
duke@435 234 vm_exit_during_initialization(overflow_msg);
duke@435 235 }
duke@435 236
duke@435 237 if (UseLargePages) {
duke@435 238 assert(total_reserved != 0, "total_reserved cannot be 0");
duke@435 239 total_reserved = round_to(total_reserved, os::large_page_size());
duke@435 240 if (total_reserved < os::large_page_size()) {
duke@435 241 vm_exit_during_initialization(overflow_msg);
duke@435 242 }
duke@435 243 }
duke@435 244
duke@435 245 // Calculate the address at which the heap must reside in order for
duke@435 246 // the shared data to be at the required address.
duke@435 247
duke@435 248 char* heap_address;
duke@435 249 if (UseSharedSpaces) {
duke@435 250
duke@435 251 // Calculate the address of the first word beyond the heap.
duke@435 252 FileMapInfo* mapinfo = FileMapInfo::current_info();
duke@435 253 int lr = CompactingPermGenGen::n_regions - 1;
duke@435 254 size_t capacity = align_size_up(mapinfo->space_capacity(lr), alignment);
duke@435 255 heap_address = mapinfo->region_base(lr) + capacity;
duke@435 256
duke@435 257 // Calculate the address of the first word of the heap.
duke@435 258 heap_address -= total_reserved;
duke@435 259 } else {
duke@435 260 heap_address = NULL; // any address will do.
kvn@1077 261 if (UseCompressedOops) {
kvn@1077 262 heap_address = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
kvn@1077 263 *_total_reserved = total_reserved;
kvn@1077 264 *_n_covered_regions = n_covered_regions;
kvn@1077 265 *heap_rs = ReservedHeapSpace(total_reserved, alignment,
kvn@1077 266 UseLargePages, heap_address);
kvn@1077 267
kvn@1077 268 if (heap_address != NULL && !heap_rs->is_reserved()) {
kvn@1077 269 // Failed to reserve at specified address - the requested memory
kvn@1077 270 // region is taken already, for example, by 'java' launcher.
kvn@1077 271 // Try again to reserver heap higher.
kvn@1077 272 heap_address = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
kvn@1077 273 *heap_rs = ReservedHeapSpace(total_reserved, alignment,
kvn@1077 274 UseLargePages, heap_address);
kvn@1077 275
kvn@1077 276 if (heap_address != NULL && !heap_rs->is_reserved()) {
kvn@1077 277 // Failed to reserve at specified address again - give up.
kvn@1077 278 heap_address = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
kvn@1077 279 assert(heap_address == NULL, "");
kvn@1077 280 *heap_rs = ReservedHeapSpace(total_reserved, alignment,
kvn@1077 281 UseLargePages, heap_address);
kvn@1077 282 }
kvn@1077 283 }
kvn@1077 284 return heap_address;
kvn@1077 285 }
duke@435 286 }
duke@435 287
duke@435 288 *_total_reserved = total_reserved;
duke@435 289 *_n_covered_regions = n_covered_regions;
coleenp@672 290 *heap_rs = ReservedHeapSpace(total_reserved, alignment,
coleenp@672 291 UseLargePages, heap_address);
duke@435 292
duke@435 293 return heap_address;
duke@435 294 }
duke@435 295
duke@435 296
duke@435 297 void GenCollectedHeap::post_initialize() {
duke@435 298 SharedHeap::post_initialize();
duke@435 299 TwoGenerationCollectorPolicy *policy =
duke@435 300 (TwoGenerationCollectorPolicy *)collector_policy();
duke@435 301 guarantee(policy->is_two_generation_policy(), "Illegal policy type");
duke@435 302 DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
duke@435 303 assert(def_new_gen->kind() == Generation::DefNew ||
duke@435 304 def_new_gen->kind() == Generation::ParNew ||
duke@435 305 def_new_gen->kind() == Generation::ASParNew,
duke@435 306 "Wrong generation kind");
duke@435 307
duke@435 308 Generation* old_gen = get_gen(1);
duke@435 309 assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
duke@435 310 old_gen->kind() == Generation::ASConcurrentMarkSweep ||
duke@435 311 old_gen->kind() == Generation::MarkSweepCompact,
duke@435 312 "Wrong generation kind");
duke@435 313
duke@435 314 policy->initialize_size_policy(def_new_gen->eden()->capacity(),
duke@435 315 old_gen->capacity(),
duke@435 316 def_new_gen->from()->capacity());
duke@435 317 policy->initialize_gc_policy_counters();
duke@435 318 }
duke@435 319
duke@435 320 void GenCollectedHeap::ref_processing_init() {
duke@435 321 SharedHeap::ref_processing_init();
duke@435 322 for (int i = 0; i < _n_gens; i++) {
duke@435 323 _gens[i]->ref_processor_init();
duke@435 324 }
duke@435 325 }
duke@435 326
duke@435 327 size_t GenCollectedHeap::capacity() const {
duke@435 328 size_t res = 0;
duke@435 329 for (int i = 0; i < _n_gens; i++) {
duke@435 330 res += _gens[i]->capacity();
duke@435 331 }
duke@435 332 return res;
duke@435 333 }
duke@435 334
duke@435 335 size_t GenCollectedHeap::used() const {
duke@435 336 size_t res = 0;
duke@435 337 for (int i = 0; i < _n_gens; i++) {
duke@435 338 res += _gens[i]->used();
duke@435 339 }
duke@435 340 return res;
duke@435 341 }
duke@435 342
duke@435 343 // Save the "used_region" for generations level and lower,
duke@435 344 // and, if perm is true, for perm gen.
duke@435 345 void GenCollectedHeap::save_used_regions(int level, bool perm) {
duke@435 346 assert(level < _n_gens, "Illegal level parameter");
duke@435 347 for (int i = level; i >= 0; i--) {
duke@435 348 _gens[i]->save_used_region();
duke@435 349 }
duke@435 350 if (perm) {
duke@435 351 perm_gen()->save_used_region();
duke@435 352 }
duke@435 353 }
duke@435 354
duke@435 355 size_t GenCollectedHeap::max_capacity() const {
duke@435 356 size_t res = 0;
duke@435 357 for (int i = 0; i < _n_gens; i++) {
duke@435 358 res += _gens[i]->max_capacity();
duke@435 359 }
duke@435 360 return res;
duke@435 361 }
duke@435 362
duke@435 363 // Update the _full_collections_completed counter
duke@435 364 // at the end of a stop-world full GC.
duke@435 365 unsigned int GenCollectedHeap::update_full_collections_completed() {
duke@435 366 MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
duke@435 367 assert(_full_collections_completed <= _total_full_collections,
duke@435 368 "Can't complete more collections than were started");
duke@435 369 _full_collections_completed = _total_full_collections;
duke@435 370 ml.notify_all();
duke@435 371 return _full_collections_completed;
duke@435 372 }
duke@435 373
duke@435 374 // Update the _full_collections_completed counter, as appropriate,
duke@435 375 // at the end of a concurrent GC cycle. Note the conditional update
duke@435 376 // below to allow this method to be called by a concurrent collector
duke@435 377 // without synchronizing in any manner with the VM thread (which
duke@435 378 // may already have initiated a STW full collection "concurrently").
duke@435 379 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
duke@435 380 MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
duke@435 381 assert((_full_collections_completed <= _total_full_collections) &&
duke@435 382 (count <= _total_full_collections),
duke@435 383 "Can't complete more collections than were started");
duke@435 384 if (count > _full_collections_completed) {
duke@435 385 _full_collections_completed = count;
duke@435 386 ml.notify_all();
duke@435 387 }
duke@435 388 return _full_collections_completed;
duke@435 389 }
duke@435 390
duke@435 391
duke@435 392 #ifndef PRODUCT
duke@435 393 // Override of memory state checking method in CollectedHeap:
duke@435 394 // Some collectors (CMS for example) can't have badHeapWordVal written
duke@435 395 // in the first two words of an object. (For instance , in the case of
duke@435 396 // CMS these words hold state used to synchronize between certain
duke@435 397 // (concurrent) GC steps and direct allocating mutators.)
duke@435 398 // The skip_header_HeapWords() method below, allows us to skip
duke@435 399 // over the requisite number of HeapWord's. Note that (for
duke@435 400 // generational collectors) this means that those many words are
duke@435 401 // skipped in each object, irrespective of the generation in which
duke@435 402 // that object lives. The resultant loss of precision seems to be
duke@435 403 // harmless and the pain of avoiding that imprecision appears somewhat
duke@435 404 // higher than we are prepared to pay for such rudimentary debugging
duke@435 405 // support.
duke@435 406 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
duke@435 407 size_t size) {
duke@435 408 if (CheckMemoryInitialization && ZapUnusedHeapArea) {
duke@435 409 // We are asked to check a size in HeapWords,
duke@435 410 // but the memory is mangled in juint words.
duke@435 411 juint* start = (juint*) (addr + skip_header_HeapWords());
duke@435 412 juint* end = (juint*) (addr + size);
duke@435 413 for (juint* slot = start; slot < end; slot += 1) {
duke@435 414 assert(*slot == badHeapWordVal,
duke@435 415 "Found non badHeapWordValue in pre-allocation check");
duke@435 416 }
duke@435 417 }
duke@435 418 }
duke@435 419 #endif
duke@435 420
duke@435 421 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
duke@435 422 bool is_tlab,
duke@435 423 bool first_only) {
duke@435 424 HeapWord* res;
duke@435 425 for (int i = 0; i < _n_gens; i++) {
duke@435 426 if (_gens[i]->should_allocate(size, is_tlab)) {
duke@435 427 res = _gens[i]->allocate(size, is_tlab);
duke@435 428 if (res != NULL) return res;
duke@435 429 else if (first_only) break;
duke@435 430 }
duke@435 431 }
duke@435 432 // Otherwise...
duke@435 433 return NULL;
duke@435 434 }
duke@435 435
duke@435 436 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
duke@435 437 bool* gc_overhead_limit_was_exceeded) {
duke@435 438 return collector_policy()->mem_allocate_work(size,
tonyp@2971 439 false /* is_tlab */,
duke@435 440 gc_overhead_limit_was_exceeded);
duke@435 441 }
duke@435 442
duke@435 443 bool GenCollectedHeap::must_clear_all_soft_refs() {
duke@435 444 return _gc_cause == GCCause::_last_ditch_collection;
duke@435 445 }
duke@435 446
duke@435 447 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
ysr@1875 448 return UseConcMarkSweepGC &&
ysr@1875 449 ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
ysr@1875 450 (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
duke@435 451 }
duke@435 452
duke@435 453 void GenCollectedHeap::do_collection(bool full,
duke@435 454 bool clear_all_soft_refs,
duke@435 455 size_t size,
duke@435 456 bool is_tlab,
duke@435 457 int max_level) {
duke@435 458 bool prepared_for_verification = false;
duke@435 459 ResourceMark rm;
duke@435 460 DEBUG_ONLY(Thread* my_thread = Thread::current();)
duke@435 461
duke@435 462 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
duke@435 463 assert(my_thread->is_VM_thread() ||
duke@435 464 my_thread->is_ConcurrentGC_thread(),
duke@435 465 "incorrect thread type capability");
jmasa@1822 466 assert(Heap_lock->is_locked(),
jmasa@1822 467 "the requesting thread should have the Heap_lock");
duke@435 468 guarantee(!is_gc_active(), "collection is not reentrant");
duke@435 469 assert(max_level < n_gens(), "sanity check");
duke@435 470
duke@435 471 if (GC_locker::check_active_before_gc()) {
duke@435 472 return; // GC is disabled (e.g. JNI GetXXXCritical operation)
duke@435 473 }
duke@435 474
jmasa@1822 475 const bool do_clear_all_soft_refs = clear_all_soft_refs ||
jmasa@1822 476 collector_policy()->should_clear_all_soft_refs();
jmasa@1822 477
jmasa@1822 478 ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
jmasa@1822 479
duke@435 480 const size_t perm_prev_used = perm_gen()->used();
duke@435 481
duke@435 482 if (PrintHeapAtGC) {
duke@435 483 Universe::print_heap_before_gc();
duke@435 484 if (Verbose) {
duke@435 485 gclog_or_tty->print_cr("GC Cause: %s", GCCause::to_string(gc_cause()));
duke@435 486 }
duke@435 487 }
duke@435 488
duke@435 489 {
duke@435 490 FlagSetting fl(_is_gc_active, true);
duke@435 491
duke@435 492 bool complete = full && (max_level == (n_gens()-1));
duke@435 493 const char* gc_cause_str = "GC ";
duke@435 494 if (complete) {
duke@435 495 GCCause::Cause cause = gc_cause();
duke@435 496 if (cause == GCCause::_java_lang_system_gc) {
duke@435 497 gc_cause_str = "Full GC (System) ";
duke@435 498 } else {
duke@435 499 gc_cause_str = "Full GC ";
duke@435 500 }
duke@435 501 }
duke@435 502 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
duke@435 503 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
duke@435 504 TraceTime t(gc_cause_str, PrintGCDetails, false, gclog_or_tty);
duke@435 505
duke@435 506 gc_prologue(complete);
duke@435 507 increment_total_collections(complete);
duke@435 508
duke@435 509 size_t gch_prev_used = used();
duke@435 510
duke@435 511 int starting_level = 0;
duke@435 512 if (full) {
duke@435 513 // Search for the oldest generation which will collect all younger
duke@435 514 // generations, and start collection loop there.
duke@435 515 for (int i = max_level; i >= 0; i--) {
duke@435 516 if (_gens[i]->full_collects_younger_generations()) {
duke@435 517 starting_level = i;
duke@435 518 break;
duke@435 519 }
duke@435 520 }
duke@435 521 }
duke@435 522
duke@435 523 bool must_restore_marks_for_biased_locking = false;
duke@435 524
duke@435 525 int max_level_collected = starting_level;
duke@435 526 for (int i = starting_level; i <= max_level; i++) {
duke@435 527 if (_gens[i]->should_collect(full, size, is_tlab)) {
dcubed@1315 528 if (i == n_gens() - 1) { // a major collection is to happen
dcubed@1315 529 if (!complete) {
dcubed@1315 530 // The full_collections increment was missed above.
dcubed@1315 531 increment_total_full_collections();
dcubed@1315 532 }
ysr@1050 533 pre_full_gc_dump(); // do any pre full gc dumps
dcubed@1315 534 }
duke@435 535 // Timer for individual generations. Last argument is false: no CR
duke@435 536 TraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, gclog_or_tty);
duke@435 537 TraceCollectorStats tcs(_gens[i]->counters());
fparain@2888 538 TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
duke@435 539
duke@435 540 size_t prev_used = _gens[i]->used();
duke@435 541 _gens[i]->stat_record()->invocations++;
duke@435 542 _gens[i]->stat_record()->accumulated_time.start();
duke@435 543
jmasa@698 544 // Must be done anew before each collection because
jmasa@698 545 // a previous collection will do mangling and will
jmasa@698 546 // change top of some spaces.
jmasa@698 547 record_gen_tops_before_GC();
jmasa@698 548
duke@435 549 if (PrintGC && Verbose) {
duke@435 550 gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
duke@435 551 i,
duke@435 552 _gens[i]->stat_record()->invocations,
duke@435 553 size*HeapWordSize);
duke@435 554 }
duke@435 555
duke@435 556 if (VerifyBeforeGC && i >= VerifyGCLevel &&
duke@435 557 total_collections() >= VerifyGCStartAt) {
duke@435 558 HandleMark hm; // Discard invalid handles created during verification
duke@435 559 if (!prepared_for_verification) {
duke@435 560 prepare_for_verify();
duke@435 561 prepared_for_verification = true;
duke@435 562 }
duke@435 563 gclog_or_tty->print(" VerifyBeforeGC:");
duke@435 564 Universe::verify(true);
duke@435 565 }
duke@435 566 COMPILER2_PRESENT(DerivedPointerTable::clear());
duke@435 567
duke@435 568 if (!must_restore_marks_for_biased_locking &&
duke@435 569 _gens[i]->performs_in_place_marking()) {
duke@435 570 // We perform this mark word preservation work lazily
duke@435 571 // because it's only at this point that we know whether we
duke@435 572 // absolutely have to do it; we want to avoid doing it for
duke@435 573 // scavenge-only collections where it's unnecessary
duke@435 574 must_restore_marks_for_biased_locking = true;
duke@435 575 BiasedLocking::preserve_marks();
duke@435 576 }
duke@435 577
duke@435 578 // Do collection work
duke@435 579 {
duke@435 580 // Note on ref discovery: For what appear to be historical reasons,
duke@435 581 // GCH enables and disabled (by enqueing) refs discovery.
duke@435 582 // In the future this should be moved into the generation's
duke@435 583 // collect method so that ref discovery and enqueueing concerns
duke@435 584 // are local to a generation. The collect method could return
duke@435 585 // an appropriate indication in the case that notification on
duke@435 586 // the ref lock was needed. This will make the treatment of
duke@435 587 // weak refs more uniform (and indeed remove such concerns
duke@435 588 // from GCH). XXX
duke@435 589
duke@435 590 HandleMark hm; // Discard invalid handles created during gc
duke@435 591 save_marks(); // save marks for all gens
duke@435 592 // We want to discover references, but not process them yet.
duke@435 593 // This mode is disabled in process_discovered_references if the
duke@435 594 // generation does some collection work, or in
duke@435 595 // enqueue_discovered_references if the generation returns
duke@435 596 // without doing any work.
duke@435 597 ReferenceProcessor* rp = _gens[i]->ref_processor();
duke@435 598 // If the discovery of ("weak") refs in this generation is
duke@435 599 // atomic wrt other collectors in this configuration, we
duke@435 600 // are guaranteed to have empty discovered ref lists.
duke@435 601 if (rp->discovery_is_atomic()) {
johnc@3175 602 rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
jmasa@1822 603 rp->setup_policy(do_clear_all_soft_refs);
duke@435 604 } else {
ysr@888 605 // collect() below will enable discovery as appropriate
duke@435 606 }
jmasa@1822 607 _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
duke@435 608 if (!rp->enqueuing_is_done()) {
duke@435 609 rp->enqueue_discovered_references();
duke@435 610 } else {
duke@435 611 rp->set_enqueuing_is_done(false);
duke@435 612 }
duke@435 613 rp->verify_no_references_recorded();
duke@435 614 }
duke@435 615 max_level_collected = i;
duke@435 616
duke@435 617 // Determine if allocation request was met.
duke@435 618 if (size > 0) {
duke@435 619 if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
duke@435 620 if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
duke@435 621 size = 0;
duke@435 622 }
duke@435 623 }
duke@435 624 }
duke@435 625
duke@435 626 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
duke@435 627
duke@435 628 _gens[i]->stat_record()->accumulated_time.stop();
duke@435 629
duke@435 630 update_gc_stats(i, full);
duke@435 631
duke@435 632 if (VerifyAfterGC && i >= VerifyGCLevel &&
duke@435 633 total_collections() >= VerifyGCStartAt) {
duke@435 634 HandleMark hm; // Discard invalid handles created during verification
duke@435 635 gclog_or_tty->print(" VerifyAfterGC:");
duke@435 636 Universe::verify(false);
duke@435 637 }
duke@435 638
duke@435 639 if (PrintGCDetails) {
duke@435 640 gclog_or_tty->print(":");
duke@435 641 _gens[i]->print_heap_change(prev_used);
duke@435 642 }
duke@435 643 }
duke@435 644 }
duke@435 645
duke@435 646 // Update "complete" boolean wrt what actually transpired --
duke@435 647 // for instance, a promotion failure could have led to
duke@435 648 // a whole heap collection.
duke@435 649 complete = complete || (max_level_collected == n_gens() - 1);
duke@435 650
ysr@1050 651 if (complete) { // We did a "major" collection
ysr@1050 652 post_full_gc_dump(); // do any post full gc dumps
ysr@1050 653 }
ysr@1050 654
duke@435 655 if (PrintGCDetails) {
duke@435 656 print_heap_change(gch_prev_used);
duke@435 657
duke@435 658 // Print perm gen info for full GC with PrintGCDetails flag.
duke@435 659 if (complete) {
duke@435 660 print_perm_heap_change(perm_prev_used);
duke@435 661 }
duke@435 662 }
duke@435 663
duke@435 664 for (int j = max_level_collected; j >= 0; j -= 1) {
duke@435 665 // Adjust generation sizes.
duke@435 666 _gens[j]->compute_new_size();
duke@435 667 }
duke@435 668
duke@435 669 if (complete) {
duke@435 670 // Ask the permanent generation to adjust size for full collections
duke@435 671 perm()->compute_new_size();
duke@435 672 update_full_collections_completed();
duke@435 673 }
duke@435 674
duke@435 675 // Track memory usage and detect low memory after GC finishes
duke@435 676 MemoryService::track_memory_usage();
duke@435 677
duke@435 678 gc_epilogue(complete);
duke@435 679
duke@435 680 if (must_restore_marks_for_biased_locking) {
duke@435 681 BiasedLocking::restore_marks();
duke@435 682 }
duke@435 683 }
duke@435 684
duke@435 685 AdaptiveSizePolicy* sp = gen_policy()->size_policy();
duke@435 686 AdaptiveSizePolicyOutput(sp, total_collections());
duke@435 687
duke@435 688 if (PrintHeapAtGC) {
duke@435 689 Universe::print_heap_after_gc();
duke@435 690 }
duke@435 691
jmasa@981 692 #ifdef TRACESPINNING
jmasa@981 693 ParallelTaskTerminator::print_termination_counts();
jmasa@981 694 #endif
jmasa@981 695
duke@435 696 if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
duke@435 697 tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
duke@435 698 vm_exit(-1);
duke@435 699 }
duke@435 700 }
duke@435 701
duke@435 702 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
duke@435 703 return collector_policy()->satisfy_failed_allocation(size, is_tlab);
duke@435 704 }
duke@435 705
duke@435 706 void GenCollectedHeap::set_par_threads(int t) {
duke@435 707 SharedHeap::set_par_threads(t);
jmasa@2188 708 _gen_process_strong_tasks->set_n_threads(t);
duke@435 709 }
duke@435 710
duke@435 711 void GenCollectedHeap::
duke@435 712 gen_process_strong_roots(int level,
duke@435 713 bool younger_gens_as_roots,
jrose@1424 714 bool activate_scope,
duke@435 715 bool collecting_perm_gen,
duke@435 716 SharedHeap::ScanningOption so,
jrose@1424 717 OopsInGenClosure* not_older_gens,
jrose@1424 718 bool do_code_roots,
jrose@1424 719 OopsInGenClosure* older_gens) {
duke@435 720 // General strong roots.
jrose@1424 721
jrose@1424 722 if (!do_code_roots) {
jrose@1424 723 SharedHeap::process_strong_roots(activate_scope, collecting_perm_gen, so,
jrose@1424 724 not_older_gens, NULL, older_gens);
jrose@1424 725 } else {
jrose@1424 726 bool do_code_marking = (activate_scope || nmethod::oops_do_marking_is_active());
jrose@1424 727 CodeBlobToOopClosure code_roots(not_older_gens, /*do_marking=*/ do_code_marking);
jrose@1424 728 SharedHeap::process_strong_roots(activate_scope, collecting_perm_gen, so,
jrose@1424 729 not_older_gens, &code_roots, older_gens);
jrose@1424 730 }
duke@435 731
duke@435 732 if (younger_gens_as_roots) {
duke@435 733 if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
duke@435 734 for (int i = 0; i < level; i++) {
duke@435 735 not_older_gens->set_generation(_gens[i]);
duke@435 736 _gens[i]->oop_iterate(not_older_gens);
duke@435 737 }
duke@435 738 not_older_gens->reset_generation();
duke@435 739 }
duke@435 740 }
duke@435 741 // When collection is parallel, all threads get to cooperate to do
duke@435 742 // older-gen scanning.
duke@435 743 for (int i = level+1; i < _n_gens; i++) {
duke@435 744 older_gens->set_generation(_gens[i]);
duke@435 745 rem_set()->younger_refs_iterate(_gens[i], older_gens);
duke@435 746 older_gens->reset_generation();
duke@435 747 }
duke@435 748
duke@435 749 _gen_process_strong_tasks->all_tasks_completed();
duke@435 750 }
duke@435 751
duke@435 752 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
jrose@1424 753 CodeBlobClosure* code_roots,
duke@435 754 OopClosure* non_root_closure) {
jrose@1424 755 SharedHeap::process_weak_roots(root_closure, code_roots, non_root_closure);
duke@435 756 // "Local" "weak" refs
duke@435 757 for (int i = 0; i < _n_gens; i++) {
duke@435 758 _gens[i]->ref_processor()->weak_oops_do(root_closure);
duke@435 759 }
duke@435 760 }
duke@435 761
duke@435 762 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix) \
duke@435 763 void GenCollectedHeap:: \
duke@435 764 oop_since_save_marks_iterate(int level, \
duke@435 765 OopClosureType* cur, \
duke@435 766 OopClosureType* older) { \
duke@435 767 _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur); \
duke@435 768 for (int i = level+1; i < n_gens(); i++) { \
duke@435 769 _gens[i]->oop_since_save_marks_iterate##nv_suffix(older); \
duke@435 770 } \
duke@435 771 perm_gen()->oop_since_save_marks_iterate##nv_suffix(older); \
duke@435 772 }
duke@435 773
duke@435 774 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
duke@435 775
duke@435 776 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
duke@435 777
duke@435 778 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
duke@435 779 for (int i = level; i < _n_gens; i++) {
duke@435 780 if (!_gens[i]->no_allocs_since_save_marks()) return false;
duke@435 781 }
duke@435 782 return perm_gen()->no_allocs_since_save_marks();
duke@435 783 }
duke@435 784
duke@435 785 bool GenCollectedHeap::supports_inline_contig_alloc() const {
duke@435 786 return _gens[0]->supports_inline_contig_alloc();
duke@435 787 }
duke@435 788
duke@435 789 HeapWord** GenCollectedHeap::top_addr() const {
duke@435 790 return _gens[0]->top_addr();
duke@435 791 }
duke@435 792
duke@435 793 HeapWord** GenCollectedHeap::end_addr() const {
duke@435 794 return _gens[0]->end_addr();
duke@435 795 }
duke@435 796
duke@435 797 size_t GenCollectedHeap::unsafe_max_alloc() {
duke@435 798 return _gens[0]->unsafe_max_alloc_nogc();
duke@435 799 }
duke@435 800
duke@435 801 // public collection interfaces
duke@435 802
duke@435 803 void GenCollectedHeap::collect(GCCause::Cause cause) {
duke@435 804 if (should_do_concurrent_full_gc(cause)) {
duke@435 805 #ifndef SERIALGC
duke@435 806 // mostly concurrent full collection
duke@435 807 collect_mostly_concurrent(cause);
duke@435 808 #else // SERIALGC
duke@435 809 ShouldNotReachHere();
duke@435 810 #endif // SERIALGC
duke@435 811 } else {
duke@435 812 #ifdef ASSERT
duke@435 813 if (cause == GCCause::_scavenge_alot) {
duke@435 814 // minor collection only
duke@435 815 collect(cause, 0);
duke@435 816 } else {
duke@435 817 // Stop-the-world full collection
duke@435 818 collect(cause, n_gens() - 1);
duke@435 819 }
duke@435 820 #else
duke@435 821 // Stop-the-world full collection
duke@435 822 collect(cause, n_gens() - 1);
duke@435 823 #endif
duke@435 824 }
duke@435 825 }
duke@435 826
duke@435 827 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
duke@435 828 // The caller doesn't have the Heap_lock
duke@435 829 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
duke@435 830 MutexLocker ml(Heap_lock);
duke@435 831 collect_locked(cause, max_level);
duke@435 832 }
duke@435 833
duke@435 834 // This interface assumes that it's being called by the
duke@435 835 // vm thread. It collects the heap assuming that the
duke@435 836 // heap lock is already held and that we are executing in
duke@435 837 // the context of the vm thread.
duke@435 838 void GenCollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
duke@435 839 assert(Thread::current()->is_VM_thread(), "Precondition#1");
duke@435 840 assert(Heap_lock->is_locked(), "Precondition#2");
duke@435 841 GCCauseSetter gcs(this, cause);
duke@435 842 switch (cause) {
duke@435 843 case GCCause::_heap_inspection:
duke@435 844 case GCCause::_heap_dump: {
duke@435 845 HandleMark hm;
duke@435 846 do_full_collection(false, // don't clear all soft refs
duke@435 847 n_gens() - 1);
duke@435 848 break;
duke@435 849 }
duke@435 850 default: // XXX FIX ME
duke@435 851 ShouldNotReachHere(); // Unexpected use of this function
duke@435 852 }
duke@435 853 }
duke@435 854
duke@435 855 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
duke@435 856 // The caller has the Heap_lock
duke@435 857 assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
duke@435 858 collect_locked(cause, n_gens() - 1);
duke@435 859 }
duke@435 860
duke@435 861 // this is the private collection interface
duke@435 862 // The Heap_lock is expected to be held on entry.
duke@435 863
duke@435 864 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
duke@435 865 if (_preloading_shared_classes) {
coleenp@2497 866 report_out_of_shared_space(SharedPermGen);
duke@435 867 }
duke@435 868 // Read the GC count while holding the Heap_lock
duke@435 869 unsigned int gc_count_before = total_collections();
duke@435 870 unsigned int full_gc_count_before = total_full_collections();
duke@435 871 {
duke@435 872 MutexUnlocker mu(Heap_lock); // give up heap lock, execute gets it back
duke@435 873 VM_GenCollectFull op(gc_count_before, full_gc_count_before,
duke@435 874 cause, max_level);
duke@435 875 VMThread::execute(&op);
duke@435 876 }
duke@435 877 }
duke@435 878
duke@435 879 #ifndef SERIALGC
duke@435 880 bool GenCollectedHeap::create_cms_collector() {
duke@435 881
duke@435 882 assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
duke@435 883 (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)) &&
duke@435 884 _perm_gen->as_gen()->kind() == Generation::ConcurrentMarkSweep,
duke@435 885 "Unexpected generation kinds");
duke@435 886 // Skip two header words in the block content verification
duke@435 887 NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
duke@435 888 CMSCollector* collector = new CMSCollector(
duke@435 889 (ConcurrentMarkSweepGeneration*)_gens[1],
duke@435 890 (ConcurrentMarkSweepGeneration*)_perm_gen->as_gen(),
duke@435 891 _rem_set->as_CardTableRS(),
duke@435 892 (ConcurrentMarkSweepPolicy*) collector_policy());
duke@435 893
duke@435 894 if (collector == NULL || !collector->completed_initialization()) {
duke@435 895 if (collector) {
duke@435 896 delete collector; // Be nice in embedded situation
duke@435 897 }
duke@435 898 vm_shutdown_during_initialization("Could not create CMS collector");
duke@435 899 return false;
duke@435 900 }
duke@435 901 return true; // success
duke@435 902 }
duke@435 903
duke@435 904 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
duke@435 905 assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
duke@435 906
duke@435 907 MutexLocker ml(Heap_lock);
duke@435 908 // Read the GC counts while holding the Heap_lock
duke@435 909 unsigned int full_gc_count_before = total_full_collections();
duke@435 910 unsigned int gc_count_before = total_collections();
duke@435 911 {
duke@435 912 MutexUnlocker mu(Heap_lock);
duke@435 913 VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
duke@435 914 VMThread::execute(&op);
duke@435 915 }
duke@435 916 }
duke@435 917 #endif // SERIALGC
duke@435 918
duke@435 919
duke@435 920 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
duke@435 921 int max_level) {
duke@435 922 int local_max_level;
ysr@2336 923 if (!incremental_collection_will_fail(false /* don't consult_young */) &&
duke@435 924 gc_cause() == GCCause::_gc_locker) {
duke@435 925 local_max_level = 0;
duke@435 926 } else {
duke@435 927 local_max_level = max_level;
duke@435 928 }
duke@435 929
duke@435 930 do_collection(true /* full */,
duke@435 931 clear_all_soft_refs /* clear_all_soft_refs */,
duke@435 932 0 /* size */,
duke@435 933 false /* is_tlab */,
duke@435 934 local_max_level /* max_level */);
duke@435 935 // Hack XXX FIX ME !!!
duke@435 936 // A scavenge may not have been attempted, or may have
duke@435 937 // been attempted and failed, because the old gen was too full
duke@435 938 if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
ysr@2336 939 incremental_collection_will_fail(false /* don't consult_young */)) {
duke@435 940 if (PrintGCDetails) {
duke@435 941 gclog_or_tty->print_cr("GC locker: Trying a full collection "
duke@435 942 "because scavenge failed");
duke@435 943 }
duke@435 944 // This time allow the old gen to be collected as well
duke@435 945 do_collection(true /* full */,
duke@435 946 clear_all_soft_refs /* clear_all_soft_refs */,
duke@435 947 0 /* size */,
duke@435 948 false /* is_tlab */,
duke@435 949 n_gens() - 1 /* max_level */);
duke@435 950 }
duke@435 951 }
duke@435 952
jmasa@2909 953 bool GenCollectedHeap::is_in_young(oop p) {
jmasa@2909 954 bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
jmasa@2909 955 assert(result == _gens[0]->is_in_reserved(p),
jmasa@2909 956 err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, (void*)p));
jmasa@2909 957 return result;
jmasa@2909 958 }
jmasa@2909 959
stefank@3335 960 // Returns "TRUE" iff "p" points into the committed areas of the heap.
duke@435 961 bool GenCollectedHeap::is_in(const void* p) const {
duke@435 962 #ifndef ASSERT
duke@435 963 guarantee(VerifyBeforeGC ||
duke@435 964 VerifyDuringGC ||
duke@435 965 VerifyBeforeExit ||
jrose@1590 966 PrintAssembly ||
jrose@1590 967 tty->count() != 0 || // already printing
bobv@2036 968 VerifyAfterGC ||
bobv@2036 969 VMError::fatal_error_in_progress(), "too expensive");
bobv@2036 970
duke@435 971 #endif
duke@435 972 // This might be sped up with a cache of the last generation that
duke@435 973 // answered yes.
duke@435 974 for (int i = 0; i < _n_gens; i++) {
duke@435 975 if (_gens[i]->is_in(p)) return true;
duke@435 976 }
duke@435 977 if (_perm_gen->as_gen()->is_in(p)) return true;
duke@435 978 // Otherwise...
duke@435 979 return false;
duke@435 980 }
duke@435 981
jmasa@2909 982 #ifdef ASSERT
jmasa@2909 983 // Don't implement this by using is_in_young(). This method is used
jmasa@2909 984 // in some cases to check that is_in_young() is correct.
jmasa@2909 985 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
jmasa@2909 986 assert(is_in_reserved(p) || p == NULL,
jmasa@2909 987 "Does not work if address is non-null and outside of the heap");
jmasa@2909 988 // The order of the generations is young (low addr), old, perm (high addr)
jmasa@2909 989 return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
duke@435 990 }
jmasa@2909 991 #endif
duke@435 992
duke@435 993 void GenCollectedHeap::oop_iterate(OopClosure* cl) {
duke@435 994 for (int i = 0; i < _n_gens; i++) {
duke@435 995 _gens[i]->oop_iterate(cl);
duke@435 996 }
duke@435 997 }
duke@435 998
duke@435 999 void GenCollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) {
duke@435 1000 for (int i = 0; i < _n_gens; i++) {
duke@435 1001 _gens[i]->oop_iterate(mr, cl);
duke@435 1002 }
duke@435 1003 }
duke@435 1004
duke@435 1005 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
duke@435 1006 for (int i = 0; i < _n_gens; i++) {
duke@435 1007 _gens[i]->object_iterate(cl);
duke@435 1008 }
duke@435 1009 perm_gen()->object_iterate(cl);
duke@435 1010 }
duke@435 1011
jmasa@952 1012 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
jmasa@952 1013 for (int i = 0; i < _n_gens; i++) {
jmasa@952 1014 _gens[i]->safe_object_iterate(cl);
jmasa@952 1015 }
jmasa@952 1016 perm_gen()->safe_object_iterate(cl);
jmasa@952 1017 }
jmasa@952 1018
duke@435 1019 void GenCollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
duke@435 1020 for (int i = 0; i < _n_gens; i++) {
duke@435 1021 _gens[i]->object_iterate_since_last_GC(cl);
duke@435 1022 }
duke@435 1023 }
duke@435 1024
duke@435 1025 Space* GenCollectedHeap::space_containing(const void* addr) const {
duke@435 1026 for (int i = 0; i < _n_gens; i++) {
duke@435 1027 Space* res = _gens[i]->space_containing(addr);
duke@435 1028 if (res != NULL) return res;
duke@435 1029 }
duke@435 1030 Space* res = perm_gen()->space_containing(addr);
duke@435 1031 if (res != NULL) return res;
duke@435 1032 // Otherwise...
duke@435 1033 assert(false, "Could not find containing space");
duke@435 1034 return NULL;
duke@435 1035 }
duke@435 1036
duke@435 1037
duke@435 1038 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
duke@435 1039 assert(is_in_reserved(addr), "block_start of address outside of heap");
duke@435 1040 for (int i = 0; i < _n_gens; i++) {
duke@435 1041 if (_gens[i]->is_in_reserved(addr)) {
duke@435 1042 assert(_gens[i]->is_in(addr),
duke@435 1043 "addr should be in allocated part of generation");
duke@435 1044 return _gens[i]->block_start(addr);
duke@435 1045 }
duke@435 1046 }
duke@435 1047 if (perm_gen()->is_in_reserved(addr)) {
duke@435 1048 assert(perm_gen()->is_in(addr),
duke@435 1049 "addr should be in allocated part of perm gen");
duke@435 1050 return perm_gen()->block_start(addr);
duke@435 1051 }
duke@435 1052 assert(false, "Some generation should contain the address");
duke@435 1053 return NULL;
duke@435 1054 }
duke@435 1055
duke@435 1056 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
duke@435 1057 assert(is_in_reserved(addr), "block_size of address outside of heap");
duke@435 1058 for (int i = 0; i < _n_gens; i++) {
duke@435 1059 if (_gens[i]->is_in_reserved(addr)) {
duke@435 1060 assert(_gens[i]->is_in(addr),
duke@435 1061 "addr should be in allocated part of generation");
duke@435 1062 return _gens[i]->block_size(addr);
duke@435 1063 }
duke@435 1064 }
duke@435 1065 if (perm_gen()->is_in_reserved(addr)) {
duke@435 1066 assert(perm_gen()->is_in(addr),
duke@435 1067 "addr should be in allocated part of perm gen");
duke@435 1068 return perm_gen()->block_size(addr);
duke@435 1069 }
duke@435 1070 assert(false, "Some generation should contain the address");
duke@435 1071 return 0;
duke@435 1072 }
duke@435 1073
duke@435 1074 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
duke@435 1075 assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
duke@435 1076 assert(block_start(addr) == addr, "addr must be a block start");
duke@435 1077 for (int i = 0; i < _n_gens; i++) {
duke@435 1078 if (_gens[i]->is_in_reserved(addr)) {
duke@435 1079 return _gens[i]->block_is_obj(addr);
duke@435 1080 }
duke@435 1081 }
duke@435 1082 if (perm_gen()->is_in_reserved(addr)) {
duke@435 1083 return perm_gen()->block_is_obj(addr);
duke@435 1084 }
duke@435 1085 assert(false, "Some generation should contain the address");
duke@435 1086 return false;
duke@435 1087 }
duke@435 1088
duke@435 1089 bool GenCollectedHeap::supports_tlab_allocation() const {
duke@435 1090 for (int i = 0; i < _n_gens; i += 1) {
duke@435 1091 if (_gens[i]->supports_tlab_allocation()) {
duke@435 1092 return true;
duke@435 1093 }
duke@435 1094 }
duke@435 1095 return false;
duke@435 1096 }
duke@435 1097
duke@435 1098 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
duke@435 1099 size_t result = 0;
duke@435 1100 for (int i = 0; i < _n_gens; i += 1) {
duke@435 1101 if (_gens[i]->supports_tlab_allocation()) {
duke@435 1102 result += _gens[i]->tlab_capacity();
duke@435 1103 }
duke@435 1104 }
duke@435 1105 return result;
duke@435 1106 }
duke@435 1107
duke@435 1108 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
duke@435 1109 size_t result = 0;
duke@435 1110 for (int i = 0; i < _n_gens; i += 1) {
duke@435 1111 if (_gens[i]->supports_tlab_allocation()) {
duke@435 1112 result += _gens[i]->unsafe_max_tlab_alloc();
duke@435 1113 }
duke@435 1114 }
duke@435 1115 return result;
duke@435 1116 }
duke@435 1117
duke@435 1118 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
duke@435 1119 bool gc_overhead_limit_was_exceeded;
tonyp@2971 1120 return collector_policy()->mem_allocate_work(size /* size */,
tonyp@2971 1121 true /* is_tlab */,
tonyp@2971 1122 &gc_overhead_limit_was_exceeded);
duke@435 1123 }
duke@435 1124
duke@435 1125 // Requires "*prev_ptr" to be non-NULL. Deletes and a block of minimal size
duke@435 1126 // from the list headed by "*prev_ptr".
duke@435 1127 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
duke@435 1128 bool first = true;
duke@435 1129 size_t min_size = 0; // "first" makes this conceptually infinite.
duke@435 1130 ScratchBlock **smallest_ptr, *smallest;
duke@435 1131 ScratchBlock *cur = *prev_ptr;
duke@435 1132 while (cur) {
duke@435 1133 assert(*prev_ptr == cur, "just checking");
duke@435 1134 if (first || cur->num_words < min_size) {
duke@435 1135 smallest_ptr = prev_ptr;
duke@435 1136 smallest = cur;
duke@435 1137 min_size = smallest->num_words;
duke@435 1138 first = false;
duke@435 1139 }
duke@435 1140 prev_ptr = &cur->next;
duke@435 1141 cur = cur->next;
duke@435 1142 }
duke@435 1143 smallest = *smallest_ptr;
duke@435 1144 *smallest_ptr = smallest->next;
duke@435 1145 return smallest;
duke@435 1146 }
duke@435 1147
duke@435 1148 // Sort the scratch block list headed by res into decreasing size order,
duke@435 1149 // and set "res" to the result.
duke@435 1150 static void sort_scratch_list(ScratchBlock*& list) {
duke@435 1151 ScratchBlock* sorted = NULL;
duke@435 1152 ScratchBlock* unsorted = list;
duke@435 1153 while (unsorted) {
duke@435 1154 ScratchBlock *smallest = removeSmallestScratch(&unsorted);
duke@435 1155 smallest->next = sorted;
duke@435 1156 sorted = smallest;
duke@435 1157 }
duke@435 1158 list = sorted;
duke@435 1159 }
duke@435 1160
duke@435 1161 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
duke@435 1162 size_t max_alloc_words) {
duke@435 1163 ScratchBlock* res = NULL;
duke@435 1164 for (int i = 0; i < _n_gens; i++) {
duke@435 1165 _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
duke@435 1166 }
duke@435 1167 sort_scratch_list(res);
duke@435 1168 return res;
duke@435 1169 }
duke@435 1170
jmasa@698 1171 void GenCollectedHeap::release_scratch() {
jmasa@698 1172 for (int i = 0; i < _n_gens; i++) {
jmasa@698 1173 _gens[i]->reset_scratch();
jmasa@698 1174 }
jmasa@698 1175 }
jmasa@698 1176
duke@435 1177 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
duke@435 1178 void do_generation(Generation* gen) {
duke@435 1179 gen->prepare_for_verify();
duke@435 1180 }
duke@435 1181 };
duke@435 1182
duke@435 1183 void GenCollectedHeap::prepare_for_verify() {
duke@435 1184 ensure_parsability(false); // no need to retire TLABs
duke@435 1185 GenPrepareForVerifyClosure blk;
duke@435 1186 generation_iterate(&blk, false);
duke@435 1187 perm_gen()->prepare_for_verify();
duke@435 1188 }
duke@435 1189
duke@435 1190
duke@435 1191 void GenCollectedHeap::generation_iterate(GenClosure* cl,
duke@435 1192 bool old_to_young) {
duke@435 1193 if (old_to_young) {
duke@435 1194 for (int i = _n_gens-1; i >= 0; i--) {
duke@435 1195 cl->do_generation(_gens[i]);
duke@435 1196 }
duke@435 1197 } else {
duke@435 1198 for (int i = 0; i < _n_gens; i++) {
duke@435 1199 cl->do_generation(_gens[i]);
duke@435 1200 }
duke@435 1201 }
duke@435 1202 }
duke@435 1203
duke@435 1204 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
duke@435 1205 for (int i = 0; i < _n_gens; i++) {
duke@435 1206 _gens[i]->space_iterate(cl, true);
duke@435 1207 }
duke@435 1208 perm_gen()->space_iterate(cl, true);
duke@435 1209 }
duke@435 1210
duke@435 1211 bool GenCollectedHeap::is_maximal_no_gc() const {
duke@435 1212 for (int i = 0; i < _n_gens; i++) { // skip perm gen
duke@435 1213 if (!_gens[i]->is_maximal_no_gc()) {
duke@435 1214 return false;
duke@435 1215 }
duke@435 1216 }
duke@435 1217 return true;
duke@435 1218 }
duke@435 1219
duke@435 1220 void GenCollectedHeap::save_marks() {
duke@435 1221 for (int i = 0; i < _n_gens; i++) {
duke@435 1222 _gens[i]->save_marks();
duke@435 1223 }
duke@435 1224 perm_gen()->save_marks();
duke@435 1225 }
duke@435 1226
duke@435 1227 void GenCollectedHeap::compute_new_generation_sizes(int collectedGen) {
duke@435 1228 for (int i = 0; i <= collectedGen; i++) {
duke@435 1229 _gens[i]->compute_new_size();
duke@435 1230 }
duke@435 1231 }
duke@435 1232
duke@435 1233 GenCollectedHeap* GenCollectedHeap::heap() {
duke@435 1234 assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
duke@435 1235 assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
duke@435 1236 return _gch;
duke@435 1237 }
duke@435 1238
duke@435 1239
duke@435 1240 void GenCollectedHeap::prepare_for_compaction() {
duke@435 1241 Generation* scanning_gen = _gens[_n_gens-1];
duke@435 1242 // Start by compacting into same gen.
duke@435 1243 CompactPoint cp(scanning_gen, NULL, NULL);
duke@435 1244 while (scanning_gen != NULL) {
duke@435 1245 scanning_gen->prepare_for_compaction(&cp);
duke@435 1246 scanning_gen = prev_gen(scanning_gen);
duke@435 1247 }
duke@435 1248 }
duke@435 1249
duke@435 1250 GCStats* GenCollectedHeap::gc_stats(int level) const {
duke@435 1251 return _gens[level]->gc_stats();
duke@435 1252 }
duke@435 1253
johnc@2969 1254 void GenCollectedHeap::verify(bool allow_dirty, bool silent, VerifyOption option /* ignored */) {
duke@435 1255 if (!silent) {
duke@435 1256 gclog_or_tty->print("permgen ");
duke@435 1257 }
duke@435 1258 perm_gen()->verify(allow_dirty);
duke@435 1259 for (int i = _n_gens-1; i >= 0; i--) {
duke@435 1260 Generation* g = _gens[i];
duke@435 1261 if (!silent) {
duke@435 1262 gclog_or_tty->print(g->name());
duke@435 1263 gclog_or_tty->print(" ");
duke@435 1264 }
duke@435 1265 g->verify(allow_dirty);
duke@435 1266 }
duke@435 1267 if (!silent) {
duke@435 1268 gclog_or_tty->print("remset ");
duke@435 1269 }
duke@435 1270 rem_set()->verify();
duke@435 1271 }
duke@435 1272
duke@435 1273 void GenCollectedHeap::print_on(outputStream* st) const {
duke@435 1274 for (int i = 0; i < _n_gens; i++) {
duke@435 1275 _gens[i]->print_on(st);
duke@435 1276 }
duke@435 1277 perm_gen()->print_on(st);
duke@435 1278 }
duke@435 1279
duke@435 1280 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
duke@435 1281 if (workers() != NULL) {
duke@435 1282 workers()->threads_do(tc);
duke@435 1283 }
duke@435 1284 #ifndef SERIALGC
duke@435 1285 if (UseConcMarkSweepGC) {
duke@435 1286 ConcurrentMarkSweepThread::threads_do(tc);
duke@435 1287 }
duke@435 1288 #endif // SERIALGC
duke@435 1289 }
duke@435 1290
duke@435 1291 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
duke@435 1292 #ifndef SERIALGC
duke@435 1293 if (UseParNewGC) {
duke@435 1294 workers()->print_worker_threads_on(st);
duke@435 1295 }
duke@435 1296 if (UseConcMarkSweepGC) {
duke@435 1297 ConcurrentMarkSweepThread::print_all_on(st);
duke@435 1298 }
duke@435 1299 #endif // SERIALGC
duke@435 1300 }
duke@435 1301
duke@435 1302 void GenCollectedHeap::print_tracing_info() const {
duke@435 1303 if (TraceGen0Time) {
duke@435 1304 get_gen(0)->print_summary_info();
duke@435 1305 }
duke@435 1306 if (TraceGen1Time) {
duke@435 1307 get_gen(1)->print_summary_info();
duke@435 1308 }
duke@435 1309 }
duke@435 1310
duke@435 1311 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
duke@435 1312 if (PrintGCDetails && Verbose) {
duke@435 1313 gclog_or_tty->print(" " SIZE_FORMAT
duke@435 1314 "->" SIZE_FORMAT
duke@435 1315 "(" SIZE_FORMAT ")",
duke@435 1316 prev_used, used(), capacity());
duke@435 1317 } else {
duke@435 1318 gclog_or_tty->print(" " SIZE_FORMAT "K"
duke@435 1319 "->" SIZE_FORMAT "K"
duke@435 1320 "(" SIZE_FORMAT "K)",
duke@435 1321 prev_used / K, used() / K, capacity() / K);
duke@435 1322 }
duke@435 1323 }
duke@435 1324
duke@435 1325 //New method to print perm gen info with PrintGCDetails flag
duke@435 1326 void GenCollectedHeap::print_perm_heap_change(size_t perm_prev_used) const {
duke@435 1327 gclog_or_tty->print(", [%s :", perm_gen()->short_name());
duke@435 1328 perm_gen()->print_heap_change(perm_prev_used);
duke@435 1329 gclog_or_tty->print("]");
duke@435 1330 }
duke@435 1331
duke@435 1332 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
duke@435 1333 private:
duke@435 1334 bool _full;
duke@435 1335 public:
duke@435 1336 void do_generation(Generation* gen) {
duke@435 1337 gen->gc_prologue(_full);
duke@435 1338 }
duke@435 1339 GenGCPrologueClosure(bool full) : _full(full) {};
duke@435 1340 };
duke@435 1341
duke@435 1342 void GenCollectedHeap::gc_prologue(bool full) {
duke@435 1343 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
duke@435 1344
duke@435 1345 always_do_update_barrier = false;
duke@435 1346 // Fill TLAB's and such
duke@435 1347 CollectedHeap::accumulate_statistics_all_tlabs();
duke@435 1348 ensure_parsability(true); // retire TLABs
duke@435 1349
duke@435 1350 // Call allocation profiler
duke@435 1351 AllocationProfiler::iterate_since_last_gc();
duke@435 1352 // Walk generations
duke@435 1353 GenGCPrologueClosure blk(full);
duke@435 1354 generation_iterate(&blk, false); // not old-to-young.
duke@435 1355 perm_gen()->gc_prologue(full);
duke@435 1356 };
duke@435 1357
duke@435 1358 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
duke@435 1359 private:
duke@435 1360 bool _full;
duke@435 1361 public:
duke@435 1362 void do_generation(Generation* gen) {
duke@435 1363 gen->gc_epilogue(_full);
duke@435 1364 }
duke@435 1365 GenGCEpilogueClosure(bool full) : _full(full) {};
duke@435 1366 };
duke@435 1367
duke@435 1368 void GenCollectedHeap::gc_epilogue(bool full) {
duke@435 1369 #ifdef COMPILER2
duke@435 1370 assert(DerivedPointerTable::is_empty(), "derived pointer present");
duke@435 1371 size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
duke@435 1372 guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
duke@435 1373 #endif /* COMPILER2 */
duke@435 1374
duke@435 1375 resize_all_tlabs();
duke@435 1376
duke@435 1377 GenGCEpilogueClosure blk(full);
duke@435 1378 generation_iterate(&blk, false); // not old-to-young.
duke@435 1379 perm_gen()->gc_epilogue(full);
duke@435 1380
jcoomes@2996 1381 if (!CleanChunkPoolAsync) {
jcoomes@2996 1382 Chunk::clean_chunk_pool();
jcoomes@2996 1383 }
jcoomes@2996 1384
duke@435 1385 always_do_update_barrier = UseConcMarkSweepGC;
duke@435 1386 };
duke@435 1387
jmasa@698 1388 #ifndef PRODUCT
jmasa@698 1389 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
jmasa@698 1390 private:
jmasa@698 1391 public:
jmasa@698 1392 void do_generation(Generation* gen) {
jmasa@698 1393 gen->record_spaces_top();
jmasa@698 1394 }
jmasa@698 1395 };
jmasa@698 1396
jmasa@698 1397 void GenCollectedHeap::record_gen_tops_before_GC() {
jmasa@698 1398 if (ZapUnusedHeapArea) {
jmasa@698 1399 GenGCSaveTopsBeforeGCClosure blk;
jmasa@698 1400 generation_iterate(&blk, false); // not old-to-young.
jmasa@698 1401 perm_gen()->record_spaces_top();
jmasa@698 1402 }
jmasa@698 1403 }
jmasa@698 1404 #endif // not PRODUCT
jmasa@698 1405
duke@435 1406 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
duke@435 1407 public:
duke@435 1408 void do_generation(Generation* gen) {
duke@435 1409 gen->ensure_parsability();
duke@435 1410 }
duke@435 1411 };
duke@435 1412
duke@435 1413 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
duke@435 1414 CollectedHeap::ensure_parsability(retire_tlabs);
duke@435 1415 GenEnsureParsabilityClosure ep_cl;
duke@435 1416 generation_iterate(&ep_cl, false);
duke@435 1417 perm_gen()->ensure_parsability();
duke@435 1418 }
duke@435 1419
duke@435 1420 oop GenCollectedHeap::handle_failed_promotion(Generation* gen,
duke@435 1421 oop obj,
coleenp@548 1422 size_t obj_size) {
duke@435 1423 assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
duke@435 1424 HeapWord* result = NULL;
duke@435 1425
duke@435 1426 // First give each higher generation a chance to allocate the promoted object.
duke@435 1427 Generation* allocator = next_gen(gen);
duke@435 1428 if (allocator != NULL) {
duke@435 1429 do {
duke@435 1430 result = allocator->allocate(obj_size, false);
duke@435 1431 } while (result == NULL && (allocator = next_gen(allocator)) != NULL);
duke@435 1432 }
duke@435 1433
duke@435 1434 if (result == NULL) {
duke@435 1435 // Then give gen and higher generations a chance to expand and allocate the
duke@435 1436 // object.
duke@435 1437 do {
duke@435 1438 result = gen->expand_and_allocate(obj_size, false);
duke@435 1439 } while (result == NULL && (gen = next_gen(gen)) != NULL);
duke@435 1440 }
duke@435 1441
duke@435 1442 if (result != NULL) {
duke@435 1443 Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
duke@435 1444 }
duke@435 1445 return oop(result);
duke@435 1446 }
duke@435 1447
duke@435 1448 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
duke@435 1449 jlong _time; // in ms
duke@435 1450 jlong _now; // in ms
duke@435 1451
duke@435 1452 public:
duke@435 1453 GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
duke@435 1454
duke@435 1455 jlong time() { return _time; }
duke@435 1456
duke@435 1457 void do_generation(Generation* gen) {
duke@435 1458 _time = MIN2(_time, gen->time_of_last_gc(_now));
duke@435 1459 }
duke@435 1460 };
duke@435 1461
duke@435 1462 jlong GenCollectedHeap::millis_since_last_gc() {
johnc@3339 1463 // We need a monotonically non-deccreasing time in ms but
johnc@3339 1464 // os::javaTimeMillis() does not guarantee monotonicity.
johnc@3339 1465 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
duke@435 1466 GenTimeOfLastGCClosure tolgc_cl(now);
duke@435 1467 // iterate over generations getting the oldest
duke@435 1468 // time that a generation was collected
duke@435 1469 generation_iterate(&tolgc_cl, false);
duke@435 1470 tolgc_cl.do_generation(perm_gen());
johnc@3339 1471
johnc@3339 1472 // javaTimeNanos() is guaranteed to be monotonically non-decreasing
johnc@3339 1473 // provided the underlying platform provides such a time source
johnc@3339 1474 // (and it is bug free). So we still have to guard against getting
johnc@3339 1475 // back a time later than 'now'.
duke@435 1476 jlong retVal = now - tolgc_cl.time();
duke@435 1477 if (retVal < 0) {
johnc@3339 1478 NOT_PRODUCT(warning("time warp: "INT64_FORMAT, retVal);)
duke@435 1479 return 0;
duke@435 1480 }
duke@435 1481 return retVal;
duke@435 1482 }

mercurial