src/share/vm/opto/output.cpp

Sat, 24 Oct 2020 16:43:47 +0800

author
aoqi
date
Sat, 24 Oct 2020 16:43:47 +0800
changeset 10015
eb7ce841ccec
parent 9462
dd0bb28d3161
parent 9996
7b3ade0882f4
permissions
-rw-r--r--

Merge

duke@435 1 /*
kevinw@9325 2 * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
aoqi@1 25 /*
aoqi@8863 26 * This file has been modified by Loongson Technology in 2018. These
aoqi@8863 27 * modifications are Copyright (c) 2018 Loongson Technology, and are made
aoqi@1 28 * available on the same license terms set forth above.
aoqi@1 29 */
aoqi@1 30
stefank@2314 31 #include "precompiled.hpp"
stefank@2314 32 #include "asm/assembler.inline.hpp"
dlong@5000 33 #include "code/compiledIC.hpp"
stefank@2314 34 #include "code/debugInfo.hpp"
stefank@2314 35 #include "code/debugInfoRec.hpp"
stefank@2314 36 #include "compiler/compileBroker.hpp"
stefank@2314 37 #include "compiler/oopMap.hpp"
stefank@2314 38 #include "memory/allocation.inline.hpp"
stefank@2314 39 #include "opto/callnode.hpp"
stefank@2314 40 #include "opto/cfgnode.hpp"
stefank@2314 41 #include "opto/locknode.hpp"
stefank@2314 42 #include "opto/machnode.hpp"
stefank@2314 43 #include "opto/output.hpp"
stefank@2314 44 #include "opto/regalloc.hpp"
stefank@2314 45 #include "opto/runtime.hpp"
stefank@2314 46 #include "opto/subnode.hpp"
stefank@2314 47 #include "opto/type.hpp"
stefank@2314 48 #include "runtime/handles.inline.hpp"
stefank@2314 49 #include "utilities/xmlstream.hpp"
duke@435 50
duke@435 51 #ifndef PRODUCT
duke@435 52 #define DEBUG_ARG(x) , x
duke@435 53 #else
duke@435 54 #define DEBUG_ARG(x)
duke@435 55 #endif
duke@435 56
duke@435 57 // Convert Nodes to instruction bits and pass off to the VM
duke@435 58 void Compile::Output() {
duke@435 59 // RootNode goes
adlertz@5635 60 assert( _cfg->get_root_block()->number_of_nodes() == 0, "" );
duke@435 61
kvn@1294 62 // The number of new nodes (mostly MachNop) is proportional to
kvn@1294 63 // the number of java calls and inner loops which are aligned.
kvn@1294 64 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
kvn@1294 65 C->inner_loops()*(OptoLoopAlignment-1)),
kvn@1294 66 "out of nodes before code generation" ) ) {
kvn@1294 67 return;
kvn@1294 68 }
duke@435 69 // Make sure I can find the Start Node
adlertz@5539 70 Block *entry = _cfg->get_block(1);
adlertz@5539 71 Block *broot = _cfg->get_root_block();
duke@435 72
adlertz@5635 73 const StartNode *start = entry->head()->as_Start();
duke@435 74
duke@435 75 // Replace StartNode with prolog
duke@435 76 MachPrologNode *prolog = new (this) MachPrologNode();
adlertz@5635 77 entry->map_node(prolog, 0);
adlertz@5509 78 _cfg->map_node_to_block(prolog, entry);
adlertz@5509 79 _cfg->unmap_node_from_block(start); // start is no longer in any block
duke@435 80
duke@435 81 // Virtual methods need an unverified entry point
duke@435 82
duke@435 83 if( is_osr_compilation() ) {
duke@435 84 if( PoisonOSREntry ) {
duke@435 85 // TODO: Should use a ShouldNotReachHereNode...
duke@435 86 _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
duke@435 87 }
duke@435 88 } else {
duke@435 89 if( _method && !_method->flags().is_static() ) {
duke@435 90 // Insert unvalidated entry point
duke@435 91 _cfg->insert( broot, 0, new (this) MachUEPNode() );
duke@435 92 }
duke@435 93
duke@435 94 }
duke@435 95
duke@435 96
duke@435 97 // Break before main entry point
duke@435 98 if( (_method && _method->break_at_execute())
duke@435 99 #ifndef PRODUCT
duke@435 100 ||(OptoBreakpoint && is_method_compilation())
duke@435 101 ||(OptoBreakpointOSR && is_osr_compilation())
duke@435 102 ||(OptoBreakpointC2R && !_method)
duke@435 103 #endif
duke@435 104 ) {
duke@435 105 // checking for _method means that OptoBreakpoint does not apply to
duke@435 106 // runtime stubs or frame converters
duke@435 107 _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
duke@435 108 }
duke@435 109
duke@435 110 // Insert epilogs before every return
adlertz@5539 111 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
adlertz@5539 112 Block* block = _cfg->get_block(i);
adlertz@5539 113 if (!block->is_connector() && block->non_connector_successor(0) == _cfg->get_root_block()) { // Found a program exit point?
adlertz@5539 114 Node* m = block->end();
adlertz@5539 115 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
adlertz@5539 116 MachEpilogNode* epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
adlertz@5539 117 block->add_inst(epilog);
adlertz@5539 118 _cfg->map_node_to_block(epilog, block);
duke@435 119 }
duke@435 120 }
duke@435 121 }
duke@435 122
duke@435 123 # ifdef ENABLE_ZAP_DEAD_LOCALS
adlertz@5539 124 if (ZapDeadCompiledLocals) {
adlertz@5539 125 Insert_zap_nodes();
adlertz@5539 126 }
duke@435 127 # endif
duke@435 128
adlertz@5539 129 uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1);
adlertz@5539 130 blk_starts[0] = 0;
kvn@3049 131
kvn@3049 132 // Initialize code buffer and process short branches.
kvn@3049 133 CodeBuffer* cb = init_buffer(blk_starts);
kvn@3049 134
adlertz@5539 135 if (cb == NULL || failing()) {
adlertz@5539 136 return;
adlertz@5539 137 }
kvn@3049 138
duke@435 139 ScheduleAndBundle();
duke@435 140
duke@435 141 #ifndef PRODUCT
duke@435 142 if (trace_opto_output()) {
duke@435 143 tty->print("\n---- After ScheduleAndBundle ----\n");
adlertz@5539 144 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
duke@435 145 tty->print("\nBB#%03d:\n", i);
adlertz@5539 146 Block* block = _cfg->get_block(i);
adlertz@5635 147 for (uint j = 0; j < block->number_of_nodes(); j++) {
adlertz@5635 148 Node* n = block->get_node(j);
duke@435 149 OptoReg::Name reg = _regalloc->get_reg_first(n);
duke@435 150 tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
duke@435 151 n->dump();
duke@435 152 }
duke@435 153 }
duke@435 154 }
duke@435 155 #endif
duke@435 156
adlertz@5539 157 if (failing()) {
adlertz@5539 158 return;
adlertz@5539 159 }
duke@435 160
duke@435 161 BuildOopMaps();
duke@435 162
adlertz@5539 163 if (failing()) {
adlertz@5539 164 return;
adlertz@5539 165 }
duke@435 166
kvn@3049 167 fill_buffer(cb, blk_starts);
duke@435 168 }
duke@435 169
duke@435 170 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
duke@435 171 // Determine if we need to generate a stack overflow check.
duke@435 172 // Do it if the method is not a stub function and
duke@435 173 // has java calls or has frame size > vm_page_size/8.
roland@6723 174 // The debug VM checks that deoptimization doesn't trigger an
roland@6723 175 // unexpected stack overflow (compiled method stack banging should
roland@6723 176 // guarantee it doesn't happen) so we always need the stack bang in
roland@6723 177 // a debug VM.
kvn@3574 178 return (UseStackBanging && stub_function() == NULL &&
roland@6723 179 (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3
roland@6723 180 DEBUG_ONLY(|| true)));
duke@435 181 }
duke@435 182
duke@435 183 bool Compile::need_register_stack_bang() const {
duke@435 184 // Determine if we need to generate a register stack overflow check.
duke@435 185 // This is only used on architectures which have split register
duke@435 186 // and memory stacks (ie. IA64).
duke@435 187 // Bang if the method is not a stub function and has java calls
duke@435 188 return (stub_function() == NULL && has_java_calls());
duke@435 189 }
duke@435 190
duke@435 191 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 192
duke@435 193
duke@435 194 // In order to catch compiler oop-map bugs, we have implemented
duke@435 195 // a debugging mode called ZapDeadCompilerLocals.
duke@435 196 // This mode causes the compiler to insert a call to a runtime routine,
duke@435 197 // "zap_dead_locals", right before each place in compiled code
duke@435 198 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
duke@435 199 // The runtime routine checks that locations mapped as oops are really
duke@435 200 // oops, that locations mapped as values do not look like oops,
duke@435 201 // and that locations mapped as dead are not used later
duke@435 202 // (by zapping them to an invalid address).
duke@435 203
duke@435 204 int Compile::_CompiledZap_count = 0;
duke@435 205
duke@435 206 void Compile::Insert_zap_nodes() {
duke@435 207 bool skip = false;
duke@435 208
duke@435 209
duke@435 210 // Dink with static counts because code code without the extra
duke@435 211 // runtime calls is MUCH faster for debugging purposes
duke@435 212
duke@435 213 if ( CompileZapFirst == 0 ) ; // nothing special
duke@435 214 else if ( CompileZapFirst > CompiledZap_count() ) skip = true;
duke@435 215 else if ( CompileZapFirst == CompiledZap_count() )
duke@435 216 warning("starting zap compilation after skipping");
duke@435 217
duke@435 218 if ( CompileZapLast == -1 ) ; // nothing special
duke@435 219 else if ( CompileZapLast < CompiledZap_count() ) skip = true;
duke@435 220 else if ( CompileZapLast == CompiledZap_count() )
duke@435 221 warning("about to compile last zap");
duke@435 222
duke@435 223 ++_CompiledZap_count; // counts skipped zaps, too
duke@435 224
duke@435 225 if ( skip ) return;
duke@435 226
duke@435 227
duke@435 228 if ( _method == NULL )
duke@435 229 return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
duke@435 230
duke@435 231 // Insert call to zap runtime stub before every node with an oop map
adlertz@5539 232 for( uint i=0; i<_cfg->number_of_blocks(); i++ ) {
adlertz@5539 233 Block *b = _cfg->get_block(i);
adlertz@5635 234 for ( uint j = 0; j < b->number_of_nodes(); ++j ) {
adlertz@5635 235 Node *n = b->get_node(j);
duke@435 236
duke@435 237 // Determining if we should insert a zap-a-lot node in output.
duke@435 238 // We do that for all nodes that has oopmap info, except for calls
duke@435 239 // to allocation. Calls to allocation passes in the old top-of-eden pointer
duke@435 240 // and expect the C code to reset it. Hence, there can be no safepoints between
duke@435 241 // the inlined-allocation and the call to new_Java, etc.
duke@435 242 // We also cannot zap monitor calls, as they must hold the microlock
duke@435 243 // during the call to Zap, which also wants to grab the microlock.
duke@435 244 bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
duke@435 245 if ( insert ) { // it is MachSafePoint
duke@435 246 if ( !n->is_MachCall() ) {
duke@435 247 insert = false;
duke@435 248 } else if ( n->is_MachCall() ) {
duke@435 249 MachCallNode* call = n->as_MachCall();
duke@435 250 if (call->entry_point() == OptoRuntime::new_instance_Java() ||
duke@435 251 call->entry_point() == OptoRuntime::new_array_Java() ||
duke@435 252 call->entry_point() == OptoRuntime::multianewarray2_Java() ||
duke@435 253 call->entry_point() == OptoRuntime::multianewarray3_Java() ||
duke@435 254 call->entry_point() == OptoRuntime::multianewarray4_Java() ||
duke@435 255 call->entry_point() == OptoRuntime::multianewarray5_Java() ||
duke@435 256 call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
duke@435 257 call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
duke@435 258 ) {
duke@435 259 insert = false;
duke@435 260 }
duke@435 261 }
duke@435 262 if (insert) {
duke@435 263 Node *zap = call_zap_node(n->as_MachSafePoint(), i);
adlertz@5635 264 b->insert_node(zap, j);
adlertz@5509 265 _cfg->map_node_to_block(zap, b);
duke@435 266 ++j;
duke@435 267 }
duke@435 268 }
duke@435 269 }
duke@435 270 }
duke@435 271 }
duke@435 272
duke@435 273
duke@435 274 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
duke@435 275 const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
duke@435 276 CallStaticJavaNode* ideal_node =
kvn@4115 277 new (this) CallStaticJavaNode( tf,
duke@435 278 OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
kvn@4115 279 "call zap dead locals stub", 0, TypePtr::BOTTOM);
duke@435 280 // We need to copy the OopMap from the site we're zapping at.
duke@435 281 // We have to make a copy, because the zap site might not be
duke@435 282 // a call site, and zap_dead is a call site.
duke@435 283 OopMap* clone = node_to_check->oop_map()->deep_copy();
duke@435 284
duke@435 285 // Add the cloned OopMap to the zap node
duke@435 286 ideal_node->set_oop_map(clone);
duke@435 287 return _matcher->match_sfpt(ideal_node);
duke@435 288 }
duke@435 289
duke@435 290 bool Compile::is_node_getting_a_safepoint( Node* n) {
duke@435 291 // This code duplicates the logic prior to the call of add_safepoint
duke@435 292 // below in this file.
duke@435 293 if( n->is_MachSafePoint() ) return true;
duke@435 294 return false;
duke@435 295 }
duke@435 296
duke@435 297 # endif // ENABLE_ZAP_DEAD_LOCALS
duke@435 298
rasbold@853 299 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
duke@435 300 // of a loop. When aligning a loop we need to provide enough instructions
duke@435 301 // in cpu's fetch buffer to feed decoders. The loop alignment could be
duke@435 302 // avoided if we have enough instructions in fetch buffer at the head of a loop.
duke@435 303 // By default, the size is set to 999999 by Block's constructor so that
duke@435 304 // a loop will be aligned if the size is not reset here.
duke@435 305 //
duke@435 306 // Note: Mach instructions could contain several HW instructions
duke@435 307 // so the size is estimated only.
duke@435 308 //
duke@435 309 void Compile::compute_loop_first_inst_sizes() {
duke@435 310 // The next condition is used to gate the loop alignment optimization.
duke@435 311 // Don't aligned a loop if there are enough instructions at the head of a loop
duke@435 312 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
duke@435 313 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
duke@435 314 // equal to 11 bytes which is the largest address NOP instruction.
adlertz@5539 315 if (MaxLoopPad < OptoLoopAlignment - 1) {
adlertz@5539 316 uint last_block = _cfg->number_of_blocks() - 1;
adlertz@5539 317 for (uint i = 1; i <= last_block; i++) {
adlertz@5539 318 Block* block = _cfg->get_block(i);
duke@435 319 // Check the first loop's block which requires an alignment.
adlertz@5539 320 if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
duke@435 321 uint sum_size = 0;
duke@435 322 uint inst_cnt = NumberOfLoopInstrToAlign;
adlertz@5539 323 inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
rasbold@853 324
rasbold@853 325 // Check subsequent fallthrough blocks if the loop's first
rasbold@853 326 // block(s) does not have enough instructions.
adlertz@5539 327 Block *nb = block;
adlertz@5539 328 while(inst_cnt > 0 &&
adlertz@5539 329 i < last_block &&
adlertz@5539 330 !_cfg->get_block(i + 1)->has_loop_alignment() &&
adlertz@5539 331 !nb->has_successor(block)) {
rasbold@853 332 i++;
adlertz@5539 333 nb = _cfg->get_block(i);
rasbold@853 334 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
rasbold@853 335 } // while( inst_cnt > 0 && i < last_block )
rasbold@853 336
adlertz@5539 337 block->set_first_inst_size(sum_size);
duke@435 338 } // f( b->head()->is_Loop() )
duke@435 339 } // for( i <= last_block )
duke@435 340 } // if( MaxLoopPad < OptoLoopAlignment-1 )
duke@435 341 }
duke@435 342
duke@435 343 // The architecture description provides short branch variants for some long
duke@435 344 // branch instructions. Replace eligible long branches with short branches.
kvn@3049 345 void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
duke@435 346 // Compute size of each block, method size, and relocation information size
adlertz@5539 347 uint nblocks = _cfg->number_of_blocks();
kvn@3049 348
kvn@3049 349 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
kvn@3049 350 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks);
kvn@3049 351 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks);
poonam@6339 352
poonam@6339 353 // Collect worst case block paddings
poonam@6339 354 int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
poonam@6339 355 memset(block_worst_case_pad, 0, nblocks * sizeof(int));
poonam@6339 356
kvn@3049 357 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
kvn@3049 358 DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
kvn@3049 359
kvn@3049 360 bool has_short_branch_candidate = false;
duke@435 361
duke@435 362 // Initialize the sizes to 0
duke@435 363 code_size = 0; // Size in bytes of generated code
duke@435 364 stub_size = 0; // Size in bytes of all stub entries
duke@435 365 // Size in bytes of all relocation entries, including those in local stubs.
duke@435 366 // Start with 2-bytes of reloc info for the unvalidated entry point
duke@435 367 reloc_size = 1; // Number of relocation entries
duke@435 368
duke@435 369 // Make three passes. The first computes pessimistic blk_starts,
kvn@3049 370 // relative jmp_offset and reloc_size information. The second performs
twisti@2350 371 // short branch substitution using the pessimistic sizing. The
twisti@2350 372 // third inserts nops where needed.
duke@435 373
duke@435 374 // Step one, perform a pessimistic sizing pass.
kvn@3049 375 uint last_call_adr = max_uint;
kvn@3049 376 uint last_avoid_back_to_back_adr = max_uint;
duke@435 377 uint nop_size = (new (this) MachNopNode())->size(_regalloc);
kvn@3049 378 for (uint i = 0; i < nblocks; i++) { // For all blocks
adlertz@5539 379 Block* block = _cfg->get_block(i);
duke@435 380
kvn@3049 381 // During short branch replacement, we store the relative (to blk_starts)
kvn@3049 382 // offset of jump in jmp_offset, rather than the absolute offset of jump.
kvn@3049 383 // This is so that we do not need to recompute sizes of all nodes when
kvn@3049 384 // we compute correct blk_starts in our next sizing pass.
kvn@3049 385 jmp_offset[i] = 0;
kvn@3049 386 jmp_size[i] = 0;
kvn@3049 387 jmp_nidx[i] = -1;
kvn@3049 388 DEBUG_ONLY( jmp_target[i] = 0; )
kvn@3049 389 DEBUG_ONLY( jmp_rule[i] = 0; )
kvn@3049 390
duke@435 391 // Sum all instruction sizes to compute block size
adlertz@5635 392 uint last_inst = block->number_of_nodes();
duke@435 393 uint blk_size = 0;
kvn@3049 394 for (uint j = 0; j < last_inst; j++) {
adlertz@5635 395 Node* nj = block->get_node(j);
duke@435 396 // Handle machine instruction nodes
kvn@3049 397 if (nj->is_Mach()) {
duke@435 398 MachNode *mach = nj->as_Mach();
duke@435 399 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
duke@435 400 reloc_size += mach->reloc();
dlong@5000 401 if (mach->is_MachCall()) {
goetz@6517 402 // add size information for trampoline stub
goetz@6517 403 // class CallStubImpl is platform-specific and defined in the *.ad files.
goetz@6517 404 stub_size += CallStubImpl::size_call_trampoline();
goetz@6517 405 reloc_size += CallStubImpl::reloc_call_trampoline();
goetz@6517 406
duke@435 407 MachCallNode *mcall = mach->as_MachCall();
duke@435 408 // This destination address is NOT PC-relative
duke@435 409
duke@435 410 mcall->method_set((intptr_t)mcall->entry_point());
duke@435 411
dlong@5000 412 if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
dlong@5000 413 stub_size += CompiledStaticCall::to_interp_stub_size();
dlong@5000 414 reloc_size += CompiledStaticCall::reloc_to_interp_stub();
duke@435 415 }
duke@435 416 } else if (mach->is_MachSafePoint()) {
duke@435 417 // If call/safepoint are adjacent, account for possible
duke@435 418 // nop to disambiguate the two safepoints.
kvn@3049 419 // ScheduleAndBundle() can rearrange nodes in a block,
kvn@3049 420 // check for all offsets inside this block.
kvn@3049 421 if (last_call_adr >= blk_starts[i]) {
duke@435 422 blk_size += nop_size;
duke@435 423 }
duke@435 424 }
iveresov@6620 425 if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
kvn@3049 426 // Nop is inserted between "avoid back to back" instructions.
kvn@3049 427 // ScheduleAndBundle() can rearrange nodes in a block,
kvn@3049 428 // check for all offsets inside this block.
kvn@3049 429 if (last_avoid_back_to_back_adr >= blk_starts[i]) {
kvn@3049 430 blk_size += nop_size;
kvn@3049 431 }
kvn@3049 432 }
kvn@3049 433 if (mach->may_be_short_branch()) {
kvn@3051 434 if (!nj->is_MachBranch()) {
kvn@3049 435 #ifndef PRODUCT
kvn@3049 436 nj->dump(3);
kvn@3049 437 #endif
kvn@3049 438 Unimplemented();
kvn@3049 439 }
kvn@3049 440 assert(jmp_nidx[i] == -1, "block should have only one branch");
kvn@3049 441 jmp_offset[i] = blk_size;
kvn@3055 442 jmp_size[i] = nj->size(_regalloc);
kvn@3049 443 jmp_nidx[i] = j;
kvn@3049 444 has_short_branch_candidate = true;
kvn@3049 445 }
duke@435 446 }
kvn@3055 447 blk_size += nj->size(_regalloc);
duke@435 448 // Remember end of call offset
kvn@3040 449 if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
kvn@3049 450 last_call_adr = blk_starts[i]+blk_size;
kvn@3049 451 }
kvn@3049 452 // Remember end of avoid_back_to_back offset
iveresov@6620 453 if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
kvn@3049 454 last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
duke@435 455 }
duke@435 456 }
duke@435 457
duke@435 458 // When the next block starts a loop, we may insert pad NOP
duke@435 459 // instructions. Since we cannot know our future alignment,
duke@435 460 // assume the worst.
adlertz@5539 461 if (i < nblocks - 1) {
adlertz@5539 462 Block* nb = _cfg->get_block(i + 1);
duke@435 463 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
kvn@3049 464 if (max_loop_pad > 0) {
duke@435 465 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
rasbold@4874 466 // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
rasbold@4874 467 // If either is the last instruction in this block, bump by
rasbold@4874 468 // max_loop_pad in lock-step with blk_size, so sizing
rasbold@4874 469 // calculations in subsequent blocks still can conservatively
rasbold@4874 470 // detect that it may the last instruction in this block.
rasbold@4874 471 if (last_call_adr == blk_starts[i]+blk_size) {
rasbold@4874 472 last_call_adr += max_loop_pad;
rasbold@4874 473 }
rasbold@4874 474 if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
rasbold@4874 475 last_avoid_back_to_back_adr += max_loop_pad;
rasbold@4874 476 }
duke@435 477 blk_size += max_loop_pad;
poonam@6339 478 block_worst_case_pad[i + 1] = max_loop_pad;
duke@435 479 }
duke@435 480 }
duke@435 481
duke@435 482 // Save block size; update total method size
duke@435 483 blk_starts[i+1] = blk_starts[i]+blk_size;
duke@435 484 }
duke@435 485
duke@435 486 // Step two, replace eligible long jumps.
kvn@3049 487 bool progress = true;
kvn@3049 488 uint last_may_be_short_branch_adr = max_uint;
kvn@3049 489 while (has_short_branch_candidate && progress) {
kvn@3049 490 progress = false;
kvn@3049 491 has_short_branch_candidate = false;
kvn@3049 492 int adjust_block_start = 0;
kvn@3049 493 for (uint i = 0; i < nblocks; i++) {
adlertz@5539 494 Block* block = _cfg->get_block(i);
kvn@3049 495 int idx = jmp_nidx[i];
adlertz@5635 496 MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
kvn@3049 497 if (mach != NULL && mach->may_be_short_branch()) {
kvn@3049 498 #ifdef ASSERT
kvn@3051 499 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
kvn@3049 500 int j;
kvn@3049 501 // Find the branch; ignore trailing NOPs.
adlertz@5635 502 for (j = block->number_of_nodes()-1; j>=0; j--) {
adlertz@5635 503 Node* n = block->get_node(j);
kvn@3049 504 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
kvn@3049 505 break;
kvn@3049 506 }
adlertz@5635 507 assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
kvn@3049 508 #endif
kvn@3049 509 int br_size = jmp_size[i];
kvn@3049 510 int br_offs = blk_starts[i] + jmp_offset[i];
kvn@3049 511
duke@435 512 // This requires the TRUE branch target be in succs[0]
adlertz@5539 513 uint bnum = block->non_connector_successor(0)->_pre_order;
kvn@3049 514 int offset = blk_starts[bnum] - br_offs;
kvn@3049 515 if (bnum > i) { // adjust following block's offset
kvn@3049 516 offset -= adjust_block_start;
kvn@3049 517 }
poonam@6339 518
poonam@6339 519 // This block can be a loop header, account for the padding
poonam@6339 520 // in the previous block.
poonam@6339 521 int block_padding = block_worst_case_pad[i];
poonam@6339 522 assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
kvn@3049 523 // In the following code a nop could be inserted before
kvn@3049 524 // the branch which will increase the backward distance.
poonam@6339 525 bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
poonam@6339 526 assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
poonam@6339 527
kvn@3049 528 if (needs_padding && offset <= 0)
kvn@3049 529 offset -= nop_size;
kvn@3049 530
kvn@3049 531 if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
kvn@3049 532 // We've got a winner. Replace this branch.
kvn@3051 533 MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
kvn@3049 534
kvn@3049 535 // Update the jmp_size.
kvn@3049 536 int new_size = replacement->size(_regalloc);
kvn@3049 537 int diff = br_size - new_size;
kvn@3049 538 assert(diff >= (int)nop_size, "short_branch size should be smaller");
iveresov@6620 539 // Conservatively take into account padding between
kvn@3049 540 // avoid_back_to_back branches. Previous branch could be
kvn@3049 541 // converted into avoid_back_to_back branch during next
kvn@3049 542 // rounds.
iveresov@6620 543 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
kvn@3049 544 jmp_offset[i] += nop_size;
kvn@3049 545 diff -= nop_size;
duke@435 546 }
kvn@3049 547 adjust_block_start += diff;
adlertz@5635 548 block->map_node(replacement, idx);
bharadwaj@4315 549 mach->subsume_by(replacement, C);
kvn@3049 550 mach = replacement;
kvn@3049 551 progress = true;
kvn@3049 552
kvn@3049 553 jmp_size[i] = new_size;
kvn@3049 554 DEBUG_ONLY( jmp_target[i] = bnum; );
kvn@3049 555 DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
duke@435 556 } else {
kvn@3049 557 // The jump distance is not short, try again during next iteration.
kvn@3049 558 has_short_branch_candidate = true;
duke@435 559 }
kvn@3049 560 } // (mach->may_be_short_branch())
kvn@3049 561 if (mach != NULL && (mach->may_be_short_branch() ||
iveresov@6620 562 mach->avoid_back_to_back(MachNode::AVOID_AFTER))) {
kvn@3049 563 last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
duke@435 564 }
kvn@3049 565 blk_starts[i+1] -= adjust_block_start;
duke@435 566 }
duke@435 567 }
duke@435 568
kvn@3049 569 #ifdef ASSERT
kvn@3049 570 for (uint i = 0; i < nblocks; i++) { // For all blocks
kvn@3049 571 if (jmp_target[i] != 0) {
kvn@3049 572 int br_size = jmp_size[i];
kvn@3049 573 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
kvn@3049 574 if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
kvn@3049 575 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
kvn@3049 576 }
kvn@3049 577 assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
kvn@3049 578 }
kvn@3049 579 }
kvn@3049 580 #endif
kvn@3049 581
kvn@3055 582 // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
kvn@3049 583 // after ScheduleAndBundle().
kvn@3049 584
kvn@3049 585 // ------------------
kvn@3049 586 // Compute size for code buffer
kvn@3049 587 code_size = blk_starts[nblocks];
kvn@3049 588
kvn@3049 589 // Relocation records
kvn@3049 590 reloc_size += 1; // Relo entry for exception handler
kvn@3049 591
kvn@3049 592 // Adjust reloc_size to number of record of relocation info
kvn@3049 593 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
kvn@3049 594 // a relocation index.
kvn@3049 595 // The CodeBuffer will expand the locs array if this estimate is too low.
kvn@3049 596 reloc_size *= 10 / sizeof(relocInfo);
kvn@3049 597 }
kvn@3049 598
duke@435 599 //------------------------------FillLocArray-----------------------------------
duke@435 600 // Create a bit of debug info and append it to the array. The mapping is from
duke@435 601 // Java local or expression stack to constant, register or stack-slot. For
duke@435 602 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
duke@435 603 // entry has been taken care of and caller should skip it).
duke@435 604 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
duke@435 605 // This should never have accepted Bad before
duke@435 606 assert(OptoReg::is_valid(regnum), "location must be valid");
duke@435 607 return (OptoReg::is_reg(regnum))
duke@435 608 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
duke@435 609 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum)));
duke@435 610 }
duke@435 611
kvn@498 612
kvn@498 613 ObjectValue*
kvn@498 614 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
kvn@498 615 for (int i = 0; i < objs->length(); i++) {
kvn@498 616 assert(objs->at(i)->is_object(), "corrupt object cache");
kvn@498 617 ObjectValue* sv = (ObjectValue*) objs->at(i);
kvn@498 618 if (sv->id() == id) {
kvn@498 619 return sv;
kvn@498 620 }
kvn@498 621 }
kvn@498 622 // Otherwise..
kvn@498 623 return NULL;
kvn@498 624 }
kvn@498 625
kvn@498 626 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
kvn@498 627 ObjectValue* sv ) {
kvn@498 628 assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
kvn@498 629 objs->append(sv);
kvn@498 630 }
kvn@498 631
kvn@498 632
kvn@498 633 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
kvn@498 634 GrowableArray<ScopeValue*> *array,
kvn@498 635 GrowableArray<ScopeValue*> *objs ) {
duke@435 636 assert( local, "use _top instead of null" );
duke@435 637 if (array->length() != idx) {
duke@435 638 assert(array->length() == idx + 1, "Unexpected array count");
duke@435 639 // Old functionality:
duke@435 640 // return
duke@435 641 // New functionality:
duke@435 642 // Assert if the local is not top. In product mode let the new node
duke@435 643 // override the old entry.
duke@435 644 assert(local == top(), "LocArray collision");
duke@435 645 if (local == top()) {
duke@435 646 return;
duke@435 647 }
duke@435 648 array->pop();
duke@435 649 }
duke@435 650 const Type *t = local->bottom_type();
duke@435 651
kvn@498 652 // Is it a safepoint scalar object node?
kvn@498 653 if (local->is_SafePointScalarObject()) {
kvn@498 654 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
kvn@498 655
kvn@498 656 ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
kvn@498 657 if (sv == NULL) {
kvn@498 658 ciKlass* cik = t->is_oopptr()->klass();
kvn@498 659 assert(cik->is_instance_klass() ||
kvn@498 660 cik->is_array_klass(), "Not supported allocation.");
kvn@498 661 sv = new ObjectValue(spobj->_idx,
coleenp@4037 662 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
kvn@498 663 Compile::set_sv_for_object_node(objs, sv);
kvn@498 664
kvn@5626 665 uint first_ind = spobj->first_index(sfpt->jvms());
kvn@498 666 for (uint i = 0; i < spobj->n_fields(); i++) {
kvn@498 667 Node* fld_node = sfpt->in(first_ind+i);
kvn@498 668 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
kvn@498 669 }
kvn@498 670 }
kvn@498 671 array->append(sv);
kvn@498 672 return;
kvn@498 673 }
kvn@498 674
duke@435 675 // Grab the register number for the local
duke@435 676 OptoReg::Name regnum = _regalloc->get_reg_first(local);
duke@435 677 if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
duke@435 678 // Record the double as two float registers.
duke@435 679 // The register mask for such a value always specifies two adjacent
duke@435 680 // float registers, with the lower register number even.
duke@435 681 // Normally, the allocation of high and low words to these registers
duke@435 682 // is irrelevant, because nearly all operations on register pairs
duke@435 683 // (e.g., StoreD) treat them as a single unit.
duke@435 684 // Here, we assume in addition that the words in these two registers
duke@435 685 // stored "naturally" (by operations like StoreD and double stores
duke@435 686 // within the interpreter) such that the lower-numbered register
duke@435 687 // is written to the lower memory address. This may seem like
duke@435 688 // a machine dependency, but it is not--it is a requirement on
duke@435 689 // the author of the <arch>.ad file to ensure that, for every
duke@435 690 // even/odd double-register pair to which a double may be allocated,
duke@435 691 // the word in the even single-register is stored to the first
duke@435 692 // memory word. (Note that register numbers are completely
duke@435 693 // arbitrary, and are not tied to any machine-level encodings.)
duke@435 694 #ifdef _LP64
duke@435 695 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
duke@435 696 array->append(new ConstantIntValue(0));
duke@435 697 array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
duke@435 698 } else if ( t->base() == Type::Long ) {
duke@435 699 array->append(new ConstantIntValue(0));
duke@435 700 array->append(new_loc_value( _regalloc, regnum, Location::lng ));
duke@435 701 } else if ( t->base() == Type::RawPtr ) {
duke@435 702 // jsr/ret return address which must be restored into a the full
duke@435 703 // width 64-bit stack slot.
duke@435 704 array->append(new_loc_value( _regalloc, regnum, Location::lng ));
duke@435 705 }
duke@435 706 #else //_LP64
duke@435 707 #ifdef SPARC
duke@435 708 if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
duke@435 709 // For SPARC we have to swap high and low words for
duke@435 710 // long values stored in a single-register (g0-g7).
duke@435 711 array->append(new_loc_value( _regalloc, regnum , Location::normal ));
duke@435 712 array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
duke@435 713 } else
duke@435 714 #endif //SPARC
duke@435 715 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
duke@435 716 // Repack the double/long as two jints.
duke@435 717 // The convention the interpreter uses is that the second local
duke@435 718 // holds the first raw word of the native double representation.
duke@435 719 // This is actually reasonable, since locals and stack arrays
duke@435 720 // grow downwards in all implementations.
duke@435 721 // (If, on some machine, the interpreter's Java locals or stack
duke@435 722 // were to grow upwards, the embedded doubles would be word-swapped.)
duke@435 723 array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
duke@435 724 array->append(new_loc_value( _regalloc, regnum , Location::normal ));
duke@435 725 }
duke@435 726 #endif //_LP64
duke@435 727 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
duke@435 728 OptoReg::is_reg(regnum) ) {
kvn@1709 729 array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
duke@435 730 ? Location::float_in_dbl : Location::normal ));
duke@435 731 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
duke@435 732 array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
duke@435 733 ? Location::int_in_long : Location::normal ));
kvn@766 734 } else if( t->base() == Type::NarrowOop ) {
kvn@766 735 array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
duke@435 736 } else {
duke@435 737 array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
duke@435 738 }
duke@435 739 return;
duke@435 740 }
duke@435 741
duke@435 742 // No register. It must be constant data.
duke@435 743 switch (t->base()) {
duke@435 744 case Type::Half: // Second half of a double
duke@435 745 ShouldNotReachHere(); // Caller should skip 2nd halves
duke@435 746 break;
duke@435 747 case Type::AnyPtr:
duke@435 748 array->append(new ConstantOopWriteValue(NULL));
duke@435 749 break;
duke@435 750 case Type::AryPtr:
coleenp@4037 751 case Type::InstPtr: // fall through
jrose@1424 752 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
duke@435 753 break;
kvn@766 754 case Type::NarrowOop:
kvn@766 755 if (t == TypeNarrowOop::NULL_PTR) {
kvn@766 756 array->append(new ConstantOopWriteValue(NULL));
kvn@766 757 } else {
jrose@1424 758 array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
kvn@766 759 }
kvn@766 760 break;
duke@435 761 case Type::Int:
duke@435 762 array->append(new ConstantIntValue(t->is_int()->get_con()));
duke@435 763 break;
duke@435 764 case Type::RawPtr:
duke@435 765 // A return address (T_ADDRESS).
duke@435 766 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
duke@435 767 #ifdef _LP64
duke@435 768 // Must be restored to the full-width 64-bit stack slot.
duke@435 769 array->append(new ConstantLongValue(t->is_ptr()->get_con()));
duke@435 770 #else
duke@435 771 array->append(new ConstantIntValue(t->is_ptr()->get_con()));
duke@435 772 #endif
duke@435 773 break;
duke@435 774 case Type::FloatCon: {
duke@435 775 float f = t->is_float_constant()->getf();
duke@435 776 array->append(new ConstantIntValue(jint_cast(f)));
duke@435 777 break;
duke@435 778 }
duke@435 779 case Type::DoubleCon: {
duke@435 780 jdouble d = t->is_double_constant()->getd();
duke@435 781 #ifdef _LP64
duke@435 782 array->append(new ConstantIntValue(0));
duke@435 783 array->append(new ConstantDoubleValue(d));
duke@435 784 #else
duke@435 785 // Repack the double as two jints.
duke@435 786 // The convention the interpreter uses is that the second local
duke@435 787 // holds the first raw word of the native double representation.
duke@435 788 // This is actually reasonable, since locals and stack arrays
duke@435 789 // grow downwards in all implementations.
duke@435 790 // (If, on some machine, the interpreter's Java locals or stack
duke@435 791 // were to grow upwards, the embedded doubles would be word-swapped.)
roland@7003 792 jlong_accessor acc;
roland@7003 793 acc.long_value = jlong_cast(d);
thartmann@7001 794 array->append(new ConstantIntValue(acc.words[1]));
thartmann@7001 795 array->append(new ConstantIntValue(acc.words[0]));
duke@435 796 #endif
duke@435 797 break;
duke@435 798 }
duke@435 799 case Type::Long: {
duke@435 800 jlong d = t->is_long()->get_con();
duke@435 801 #ifdef _LP64
duke@435 802 array->append(new ConstantIntValue(0));
duke@435 803 array->append(new ConstantLongValue(d));
duke@435 804 #else
duke@435 805 // Repack the long as two jints.
duke@435 806 // The convention the interpreter uses is that the second local
duke@435 807 // holds the first raw word of the native double representation.
duke@435 808 // This is actually reasonable, since locals and stack arrays
duke@435 809 // grow downwards in all implementations.
duke@435 810 // (If, on some machine, the interpreter's Java locals or stack
duke@435 811 // were to grow upwards, the embedded doubles would be word-swapped.)
roland@7003 812 jlong_accessor acc;
roland@7003 813 acc.long_value = d;
thartmann@7001 814 array->append(new ConstantIntValue(acc.words[1]));
thartmann@7001 815 array->append(new ConstantIntValue(acc.words[0]));
duke@435 816 #endif
duke@435 817 break;
duke@435 818 }
duke@435 819 case Type::Top: // Add an illegal value here
duke@435 820 array->append(new LocationValue(Location()));
duke@435 821 break;
duke@435 822 default:
duke@435 823 ShouldNotReachHere();
duke@435 824 break;
duke@435 825 }
duke@435 826 }
duke@435 827
duke@435 828 // Determine if this node starts a bundle
duke@435 829 bool Compile::starts_bundle(const Node *n) const {
duke@435 830 return (_node_bundling_limit > n->_idx &&
duke@435 831 _node_bundling_base[n->_idx].starts_bundle());
duke@435 832 }
duke@435 833
duke@435 834 //--------------------------Process_OopMap_Node--------------------------------
duke@435 835 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
duke@435 836
duke@435 837 // Handle special safepoint nodes for synchronization
duke@435 838 MachSafePointNode *sfn = mach->as_MachSafePoint();
duke@435 839 MachCallNode *mcall;
duke@435 840
duke@435 841 #ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 842 assert( is_node_getting_a_safepoint(mach), "logic does not match; false negative");
duke@435 843 #endif
duke@435 844
duke@435 845 int safepoint_pc_offset = current_offset;
twisti@1572 846 bool is_method_handle_invoke = false;
kvn@1688 847 bool return_oop = false;
duke@435 848
duke@435 849 // Add the safepoint in the DebugInfoRecorder
duke@435 850 if( !mach->is_MachCall() ) {
duke@435 851 mcall = NULL;
fujie@9138 852 #ifdef MIPS
zhaixiang@9462 853 // safepoint_pc_offset should point to tha last instruction in safePoint.
zhaixiang@9462 854 // In X86 and sparc, their safePoints only contain one instruction.
zhaixiang@9462 855 // However, we should add current_offset with the size of safePoint in MIPS.
zhaixiang@9462 856 // 0x2d6ff22c: lw s2, 0x14(s2)
zhaixiang@9462 857 // last_pd->pc_offset()=308, pc_offset=304, bci=64
zhaixiang@9462 858 // last_pd->pc_offset()=312, pc_offset=312, bci=64
zhaixiang@9462 859 // src/hotspot/share/code/debugInfoRec.cpp:295, assert(last_pd->pc_offset() == pc_offset, "must be last pc")
zhaixiang@9462 860 //
zhaixiang@9462 861 // ;; Safepoint:
zhaixiang@9462 862 // ---> pc_offset=304
zhaixiang@9462 863 // 0x2d6ff230: lui at, 0x2b7a ; OopMap{s2=Oop s5=Oop t4=Oop off=308}
zhaixiang@9462 864 // ;*goto
zhaixiang@9462 865 // ; - java.util.Hashtable::get@64 (line 353)
zhaixiang@9462 866 // ---> last_pd(308)
zhaixiang@9462 867 // 0x2d6ff234: lw at, 0xffffc100(at) ;*goto
zhaixiang@9462 868 // ; - java.util.Hashtable::get@64 (line 353)
zhaixiang@9462 869 // ; {poll}
zhaixiang@9462 870 // 0x2d6ff238: addiu s0, zero, 0x0
aoqi@1 871 safepoint_pc_offset += sfn->size(_regalloc) - 4;
aoqi@1 872 #endif
duke@435 873 debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
duke@435 874 } else {
duke@435 875 mcall = mach->as_MachCall();
twisti@1572 876
twisti@1572 877 // Is the call a MethodHandle call?
twisti@1700 878 if (mcall->is_MachCallJava()) {
twisti@1700 879 if (mcall->as_MachCallJava()->_method_handle_invoke) {
twisti@1700 880 assert(has_method_handle_invokes(), "must have been set during call generation");
twisti@1700 881 is_method_handle_invoke = true;
twisti@1700 882 }
twisti@1700 883 }
twisti@1572 884
kvn@1688 885 // Check if a call returns an object.
drchase@7161 886 if (mcall->returns_pointer()) {
kvn@1688 887 return_oop = true;
kvn@1688 888 }
duke@435 889 safepoint_pc_offset += mcall->ret_addr_offset();
duke@435 890 debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
duke@435 891 }
duke@435 892
duke@435 893 // Loop over the JVMState list to add scope information
duke@435 894 // Do not skip safepoints with a NULL method, they need monitor info
duke@435 895 JVMState* youngest_jvms = sfn->jvms();
duke@435 896 int max_depth = youngest_jvms->depth();
duke@435 897
kvn@498 898 // Allocate the object pool for scalar-replaced objects -- the map from
kvn@498 899 // small-integer keys (which can be recorded in the local and ostack
kvn@498 900 // arrays) to descriptions of the object state.
kvn@498 901 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
kvn@498 902
duke@435 903 // Visit scopes from oldest to youngest.
duke@435 904 for (int depth = 1; depth <= max_depth; depth++) {
duke@435 905 JVMState* jvms = youngest_jvms->of_depth(depth);
duke@435 906 int idx;
duke@435 907 ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
duke@435 908 // Safepoints that do not have method() set only provide oop-map and monitor info
duke@435 909 // to support GC; these do not support deoptimization.
duke@435 910 int num_locs = (method == NULL) ? 0 : jvms->loc_size();
duke@435 911 int num_exps = (method == NULL) ? 0 : jvms->stk_size();
duke@435 912 int num_mon = jvms->nof_monitors();
duke@435 913 assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
duke@435 914 "JVMS local count must match that of the method");
duke@435 915
duke@435 916 // Add Local and Expression Stack Information
duke@435 917
duke@435 918 // Insert locals into the locarray
duke@435 919 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
duke@435 920 for( idx = 0; idx < num_locs; idx++ ) {
kvn@498 921 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
duke@435 922 }
duke@435 923
duke@435 924 // Insert expression stack entries into the exparray
duke@435 925 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
duke@435 926 for( idx = 0; idx < num_exps; idx++ ) {
kvn@498 927 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs );
duke@435 928 }
duke@435 929
duke@435 930 // Add in mappings of the monitors
duke@435 931 assert( !method ||
duke@435 932 !method->is_synchronized() ||
duke@435 933 method->is_native() ||
duke@435 934 num_mon > 0 ||
duke@435 935 !GenerateSynchronizationCode,
duke@435 936 "monitors must always exist for synchronized methods");
duke@435 937
duke@435 938 // Build the growable array of ScopeValues for exp stack
duke@435 939 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
duke@435 940
duke@435 941 // Loop over monitors and insert into array
kvn@5626 942 for (idx = 0; idx < num_mon; idx++) {
duke@435 943 // Grab the node that defines this monitor
kvn@895 944 Node* box_node = sfn->monitor_box(jvms, idx);
kvn@895 945 Node* obj_node = sfn->monitor_obj(jvms, idx);
duke@435 946
duke@435 947 // Create ScopeValue for object
duke@435 948 ScopeValue *scval = NULL;
kvn@498 949
kvn@5626 950 if (obj_node->is_SafePointScalarObject()) {
kvn@498 951 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
kvn@498 952 scval = Compile::sv_for_node_id(objs, spobj->_idx);
kvn@498 953 if (scval == NULL) {
kvn@5626 954 const Type *t = spobj->bottom_type();
kvn@498 955 ciKlass* cik = t->is_oopptr()->klass();
kvn@498 956 assert(cik->is_instance_klass() ||
kvn@498 957 cik->is_array_klass(), "Not supported allocation.");
kvn@498 958 ObjectValue* sv = new ObjectValue(spobj->_idx,
coleenp@4037 959 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
kvn@498 960 Compile::set_sv_for_object_node(objs, sv);
kvn@498 961
kvn@5626 962 uint first_ind = spobj->first_index(youngest_jvms);
kvn@498 963 for (uint i = 0; i < spobj->n_fields(); i++) {
kvn@498 964 Node* fld_node = sfn->in(first_ind+i);
kvn@498 965 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
kvn@498 966 }
kvn@498 967 scval = sv;
kvn@498 968 }
kvn@5626 969 } else if (!obj_node->is_Con()) {
duke@435 970 OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
kvn@766 971 if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
kvn@766 972 scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
kvn@766 973 } else {
kvn@766 974 scval = new_loc_value( _regalloc, obj_reg, Location::oop );
kvn@766 975 }
duke@435 976 } else {
kvn@5111 977 const TypePtr *tp = obj_node->get_ptr_type();
kvn@2931 978 scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
duke@435 979 }
duke@435 980
kvn@3406 981 OptoReg::Name box_reg = BoxLockNode::reg(box_node);
kvn@501 982 Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
kvn@3406 983 bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
kvn@3406 984 monarray->append(new MonitorValue(scval, basic_lock, eliminated));
duke@435 985 }
duke@435 986
kvn@498 987 // We dump the object pool first, since deoptimization reads it in first.
kvn@498 988 debug_info()->dump_object_pool(objs);
kvn@498 989
duke@435 990 // Build first class objects to pass to scope
duke@435 991 DebugToken *locvals = debug_info()->create_scope_values(locarray);
duke@435 992 DebugToken *expvals = debug_info()->create_scope_values(exparray);
duke@435 993 DebugToken *monvals = debug_info()->create_monitor_values(monarray);
duke@435 994
duke@435 995 // Make method available for all Safepoints
duke@435 996 ciMethod* scope_method = method ? method : _method;
duke@435 997 // Describe the scope here
duke@435 998 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
twisti@1570 999 assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
kvn@498 1000 // Now we can describe the scope.
kvn@1688 1001 debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
duke@435 1002 } // End jvms loop
duke@435 1003
duke@435 1004 // Mark the end of the scope set.
duke@435 1005 debug_info()->end_safepoint(safepoint_pc_offset);
duke@435 1006 }
duke@435 1007
duke@435 1008
duke@435 1009
duke@435 1010 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
duke@435 1011 class NonSafepointEmitter {
duke@435 1012 Compile* C;
duke@435 1013 JVMState* _pending_jvms;
duke@435 1014 int _pending_offset;
duke@435 1015
duke@435 1016 void emit_non_safepoint();
duke@435 1017
duke@435 1018 public:
duke@435 1019 NonSafepointEmitter(Compile* compile) {
duke@435 1020 this->C = compile;
duke@435 1021 _pending_jvms = NULL;
duke@435 1022 _pending_offset = 0;
duke@435 1023 }
duke@435 1024
duke@435 1025 void observe_instruction(Node* n, int pc_offset) {
duke@435 1026 if (!C->debug_info()->recording_non_safepoints()) return;
duke@435 1027
duke@435 1028 Node_Notes* nn = C->node_notes_at(n->_idx);
duke@435 1029 if (nn == NULL || nn->jvms() == NULL) return;
duke@435 1030 if (_pending_jvms != NULL &&
duke@435 1031 _pending_jvms->same_calls_as(nn->jvms())) {
duke@435 1032 // Repeated JVMS? Stretch it up here.
duke@435 1033 _pending_offset = pc_offset;
duke@435 1034 } else {
duke@435 1035 if (_pending_jvms != NULL &&
duke@435 1036 _pending_offset < pc_offset) {
duke@435 1037 emit_non_safepoint();
duke@435 1038 }
duke@435 1039 _pending_jvms = NULL;
duke@435 1040 if (pc_offset > C->debug_info()->last_pc_offset()) {
duke@435 1041 // This is the only way _pending_jvms can become non-NULL:
duke@435 1042 _pending_jvms = nn->jvms();
duke@435 1043 _pending_offset = pc_offset;
duke@435 1044 }
duke@435 1045 }
duke@435 1046 }
duke@435 1047
duke@435 1048 // Stay out of the way of real safepoints:
duke@435 1049 void observe_safepoint(JVMState* jvms, int pc_offset) {
duke@435 1050 if (_pending_jvms != NULL &&
duke@435 1051 !_pending_jvms->same_calls_as(jvms) &&
duke@435 1052 _pending_offset < pc_offset) {
duke@435 1053 emit_non_safepoint();
duke@435 1054 }
duke@435 1055 _pending_jvms = NULL;
duke@435 1056 }
duke@435 1057
duke@435 1058 void flush_at_end() {
duke@435 1059 if (_pending_jvms != NULL) {
duke@435 1060 emit_non_safepoint();
duke@435 1061 }
duke@435 1062 _pending_jvms = NULL;
duke@435 1063 }
duke@435 1064 };
duke@435 1065
duke@435 1066 void NonSafepointEmitter::emit_non_safepoint() {
duke@435 1067 JVMState* youngest_jvms = _pending_jvms;
duke@435 1068 int pc_offset = _pending_offset;
duke@435 1069
duke@435 1070 // Clear it now:
duke@435 1071 _pending_jvms = NULL;
duke@435 1072
duke@435 1073 DebugInformationRecorder* debug_info = C->debug_info();
duke@435 1074 assert(debug_info->recording_non_safepoints(), "sanity");
duke@435 1075
duke@435 1076 debug_info->add_non_safepoint(pc_offset);
duke@435 1077 int max_depth = youngest_jvms->depth();
duke@435 1078
duke@435 1079 // Visit scopes from oldest to youngest.
duke@435 1080 for (int depth = 1; depth <= max_depth; depth++) {
duke@435 1081 JVMState* jvms = youngest_jvms->of_depth(depth);
duke@435 1082 ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
cfang@1335 1083 assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
cfang@1335 1084 debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
duke@435 1085 }
duke@435 1086
duke@435 1087 // Mark the end of the scope set.
duke@435 1088 debug_info->end_non_safepoint(pc_offset);
duke@435 1089 }
duke@435 1090
kvn@3049 1091 //------------------------------init_buffer------------------------------------
kvn@3049 1092 CodeBuffer* Compile::init_buffer(uint* blk_starts) {
duke@435 1093
duke@435 1094 // Set the initially allocated size
duke@435 1095 int code_req = initial_code_capacity;
duke@435 1096 int locs_req = initial_locs_capacity;
duke@435 1097 int stub_req = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
duke@435 1098 int const_req = initial_const_capacity;
duke@435 1099
duke@435 1100 int pad_req = NativeCall::instruction_size;
duke@435 1101 // The extra spacing after the code is necessary on some platforms.
duke@435 1102 // Sometimes we need to patch in a jump after the last instruction,
duke@435 1103 // if the nmethod has been deoptimized. (See 4932387, 4894843.)
duke@435 1104
duke@435 1105 // Compute the byte offset where we can store the deopt pc.
duke@435 1106 if (fixed_slots() != 0) {
duke@435 1107 _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
duke@435 1108 }
duke@435 1109
duke@435 1110 // Compute prolog code size
duke@435 1111 _method_size = 0;
duke@435 1112 _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
goetz@6453 1113 #if defined(IA64) && !defined(AIX)
duke@435 1114 if (save_argument_registers()) {
duke@435 1115 // 4815101: this is a stub with implicit and unknown precision fp args.
duke@435 1116 // The usual spill mechanism can only generate stfd's in this case, which
duke@435 1117 // doesn't work if the fp reg to spill contains a single-precision denorm.
duke@435 1118 // Instead, we hack around the normal spill mechanism using stfspill's and
duke@435 1119 // ldffill's in the MachProlog and MachEpilog emit methods. We allocate
duke@435 1120 // space here for the fp arg regs (f8-f15) we're going to thusly spill.
duke@435 1121 //
duke@435 1122 // If we ever implement 16-byte 'registers' == stack slots, we can
duke@435 1123 // get rid of this hack and have SpillCopy generate stfspill/ldffill
duke@435 1124 // instead of stfd/stfs/ldfd/ldfs.
duke@435 1125 _frame_slots += 8*(16/BytesPerInt);
duke@435 1126 }
duke@435 1127 #endif
kvn@3049 1128 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
duke@435 1129
twisti@2350 1130 if (has_mach_constant_base_node()) {
goetz@6484 1131 uint add_size = 0;
twisti@2350 1132 // Fill the constant table.
kvn@3049 1133 // Note: This must happen before shorten_branches.
adlertz@5539 1134 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
adlertz@5539 1135 Block* b = _cfg->get_block(i);
twisti@2350 1136
adlertz@5635 1137 for (uint j = 0; j < b->number_of_nodes(); j++) {
adlertz@5635 1138 Node* n = b->get_node(j);
twisti@2350 1139
twisti@2350 1140 // If the node is a MachConstantNode evaluate the constant
twisti@2350 1141 // value section.
twisti@2350 1142 if (n->is_MachConstant()) {
twisti@2350 1143 MachConstantNode* machcon = n->as_MachConstant();
twisti@2350 1144 machcon->eval_constant(C);
goetz@6484 1145 } else if (n->is_Mach()) {
goetz@6484 1146 // On Power there are more nodes that issue constants.
goetz@6484 1147 add_size += (n->as_Mach()->ins_num_consts() * 8);
twisti@2350 1148 }
twisti@2350 1149 }
twisti@2350 1150 }
twisti@2350 1151
twisti@2350 1152 // Calculate the offsets of the constants and the size of the
twisti@2350 1153 // constant table (including the padding to the next section).
twisti@2350 1154 constant_table().calculate_offsets_and_size();
goetz@6484 1155 const_req = constant_table().size() + add_size;
twisti@2350 1156 }
twisti@2350 1157
twisti@2350 1158 // Initialize the space for the BufferBlob used to find and verify
twisti@2350 1159 // instruction size in MachNode::emit_size()
twisti@2350 1160 init_scratch_buffer_blob(const_req);
kvn@3049 1161 if (failing()) return NULL; // Out of memory
kvn@3049 1162
kvn@3049 1163 // Pre-compute the length of blocks and replace
kvn@3049 1164 // long branches with short if machine supports it.
kvn@3049 1165 shorten_branches(blk_starts, code_req, locs_req, stub_req);
duke@435 1166
duke@435 1167 // nmethod and CodeBuffer count stubs & constants as part of method's code.
goetz@6517 1168 // class HandlerImpl is platform-specific and defined in the *.ad files.
goetz@6517 1169 int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler
goetz@6517 1170 int deopt_handler_req = HandlerImpl::size_deopt_handler() + MAX_stubs_size; // add marginal slop for handler
duke@435 1171 stub_req += MAX_stubs_size; // ensure per-stub margin
duke@435 1172 code_req += MAX_inst_size; // ensure per-instruction margin
twisti@1700 1173
duke@435 1174 if (StressCodeBuffers)
duke@435 1175 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion
twisti@1700 1176
twisti@1700 1177 int total_req =
twisti@2350 1178 const_req +
twisti@1700 1179 code_req +
twisti@1700 1180 pad_req +
twisti@1700 1181 stub_req +
twisti@1700 1182 exception_handler_req +
twisti@2350 1183 deopt_handler_req; // deopt handler
twisti@1700 1184
twisti@1700 1185 if (has_method_handle_invokes())
twisti@1700 1186 total_req += deopt_handler_req; // deopt MH handler
twisti@1700 1187
duke@435 1188 CodeBuffer* cb = code_buffer();
duke@435 1189 cb->initialize(total_req, locs_req);
duke@435 1190
duke@435 1191 // Have we run out of code space?
kvn@1637 1192 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
neliasso@4952 1193 C->record_failure("CodeCache is full");
kvn@3049 1194 return NULL;
duke@435 1195 }
duke@435 1196 // Configure the code buffer.
duke@435 1197 cb->initialize_consts_size(const_req);
duke@435 1198 cb->initialize_stubs_size(stub_req);
duke@435 1199 cb->initialize_oop_recorder(env()->oop_recorder());
duke@435 1200
duke@435 1201 // fill in the nop array for bundling computations
duke@435 1202 MachNode *_nop_list[Bundle::_nop_count];
duke@435 1203 Bundle::initialize_nops(_nop_list, this);
duke@435 1204
kvn@3049 1205 return cb;
kvn@3049 1206 }
kvn@3049 1207
kvn@3049 1208 //------------------------------fill_buffer------------------------------------
kvn@3049 1209 void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
kvn@3055 1210 // blk_starts[] contains offsets calculated during short branches processing,
kvn@3055 1211 // offsets should not be increased during following steps.
kvn@3055 1212
kvn@3055 1213 // Compute the size of first NumberOfLoopInstrToAlign instructions at head
kvn@3055 1214 // of a loop. It is used to determine the padding for loop alignment.
kvn@3055 1215 compute_loop_first_inst_sizes();
kvn@3049 1216
duke@435 1217 // Create oopmap set.
duke@435 1218 _oop_map_set = new OopMapSet();
duke@435 1219
duke@435 1220 // !!!!! This preserves old handling of oopmaps for now
duke@435 1221 debug_info()->set_oopmaps(_oop_map_set);
duke@435 1222
adlertz@5539 1223 uint nblocks = _cfg->number_of_blocks();
duke@435 1224 // Count and start of implicit null check instructions
duke@435 1225 uint inct_cnt = 0;
kvn@3055 1226 uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
duke@435 1227
duke@435 1228 // Count and start of calls
kvn@3055 1229 uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
duke@435 1230
duke@435 1231 uint return_offset = 0;
kvn@1294 1232 int nop_size = (new (this) MachNopNode())->size(_regalloc);
duke@435 1233
duke@435 1234 int previous_offset = 0;
duke@435 1235 int current_offset = 0;
duke@435 1236 int last_call_offset = -1;
kvn@3049 1237 int last_avoid_back_to_back_offset = -1;
kvn@3055 1238 #ifdef ASSERT
kvn@3055 1239 uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
kvn@3055 1240 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
kvn@3055 1241 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks);
kvn@3055 1242 uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks);
kvn@3049 1243 #endif
kvn@3055 1244
duke@435 1245 // Create an array of unused labels, one for each basic block, if printing is enabled
duke@435 1246 #ifndef PRODUCT
duke@435 1247 int *node_offsets = NULL;
kvn@3049 1248 uint node_offset_limit = unique();
kvn@3049 1249
kvn@3049 1250 if (print_assembly())
duke@435 1251 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit);
duke@435 1252 #endif
duke@435 1253
duke@435 1254 NonSafepointEmitter non_safepoints(this); // emit non-safepoints lazily
duke@435 1255
twisti@2350 1256 // Emit the constant table.
twisti@2350 1257 if (has_mach_constant_base_node()) {
twisti@2350 1258 constant_table().emit(*cb);
twisti@2350 1259 }
twisti@2350 1260
kvn@3049 1261 // Create an array of labels, one for each basic block
kvn@3055 1262 Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
kvn@3055 1263 for (uint i=0; i <= nblocks; i++) {
kvn@3049 1264 blk_labels[i].init();
kvn@3049 1265 }
kvn@3049 1266
duke@435 1267 // ------------------
duke@435 1268 // Now fill in the code buffer
duke@435 1269 Node *delay_slot = NULL;
duke@435 1270
adlertz@5539 1271 for (uint i = 0; i < nblocks; i++) {
adlertz@5539 1272 Block* block = _cfg->get_block(i);
adlertz@5539 1273 Node* head = block->head();
duke@435 1274
duke@435 1275 // If this block needs to start aligned (i.e, can be reached other
duke@435 1276 // than by falling-thru from the previous block), then force the
duke@435 1277 // start of a new bundle.
adlertz@5539 1278 if (Pipeline::requires_bundling() && starts_bundle(head)) {
duke@435 1279 cb->flush_bundle(true);
adlertz@5539 1280 }
duke@435 1281
kvn@3049 1282 #ifdef ASSERT
adlertz@5539 1283 if (!block->is_connector()) {
kvn@3049 1284 stringStream st;
adlertz@5539 1285 block->dump_head(_cfg, &st);
kvn@3049 1286 MacroAssembler(cb).block_comment(st.as_string());
kvn@3049 1287 }
kvn@3055 1288 jmp_target[i] = 0;
kvn@3055 1289 jmp_offset[i] = 0;
kvn@3055 1290 jmp_size[i] = 0;
kvn@3055 1291 jmp_rule[i] = 0;
kvn@3049 1292 #endif
kvn@3055 1293 int blk_offset = current_offset;
kvn@3049 1294
duke@435 1295 // Define the label at the beginning of the basic block
adlertz@5539 1296 MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
adlertz@5539 1297
adlertz@5635 1298 uint last_inst = block->number_of_nodes();
duke@435 1299
duke@435 1300 // Emit block normally, except for last instruction.
duke@435 1301 // Emit means "dump code bits into code buffer".
kvn@3049 1302 for (uint j = 0; j<last_inst; j++) {
duke@435 1303
duke@435 1304 // Get the node
adlertz@5635 1305 Node* n = block->get_node(j);
duke@435 1306
duke@435 1307 // See if delay slots are supported
duke@435 1308 if (valid_bundle_info(n) &&
duke@435 1309 node_bundling(n)->used_in_unconditional_delay()) {
duke@435 1310 assert(delay_slot == NULL, "no use of delay slot node");
duke@435 1311 assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
duke@435 1312
duke@435 1313 delay_slot = n;
duke@435 1314 continue;
duke@435 1315 }
duke@435 1316
duke@435 1317 // If this starts a new instruction group, then flush the current one
duke@435 1318 // (but allow split bundles)
kvn@3049 1319 if (Pipeline::requires_bundling() && starts_bundle(n))
duke@435 1320 cb->flush_bundle(false);
duke@435 1321
duke@435 1322 // The following logic is duplicated in the code ifdeffed for
twisti@1040 1323 // ENABLE_ZAP_DEAD_LOCALS which appears above in this file. It
duke@435 1324 // should be factored out. Or maybe dispersed to the nodes?
duke@435 1325
duke@435 1326 // Special handling for SafePoint/Call Nodes
duke@435 1327 bool is_mcall = false;
kvn@3049 1328 if (n->is_Mach()) {
duke@435 1329 MachNode *mach = n->as_Mach();
duke@435 1330 is_mcall = n->is_MachCall();
duke@435 1331 bool is_sfn = n->is_MachSafePoint();
duke@435 1332
duke@435 1333 // If this requires all previous instructions be flushed, then do so
kvn@3049 1334 if (is_sfn || is_mcall || mach->alignment_required() != 1) {
duke@435 1335 cb->flush_bundle(true);
twisti@2103 1336 current_offset = cb->insts_size();
duke@435 1337 }
duke@435 1338
kvn@3049 1339 // A padding may be needed again since a previous instruction
kvn@3049 1340 // could be moved to delay slot.
kvn@3049 1341
duke@435 1342 // align the instruction if necessary
duke@435 1343 int padding = mach->compute_padding(current_offset);
duke@435 1344 // Make sure safepoint node for polling is distinct from a call's
duke@435 1345 // return by adding a nop if needed.
kvn@3049 1346 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
duke@435 1347 padding = nop_size;
duke@435 1348 }
iveresov@6620 1349 if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) &&
kvn@3049 1350 current_offset == last_avoid_back_to_back_offset) {
kvn@3049 1351 // Avoid back to back some instructions.
kvn@3049 1352 padding = nop_size;
duke@435 1353 }
kvn@3055 1354
kvn@3055 1355 if(padding > 0) {
kvn@3055 1356 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
kvn@3055 1357 int nops_cnt = padding / nop_size;
kvn@3055 1358 MachNode *nop = new (this) MachNopNode(nops_cnt);
adlertz@5635 1359 block->insert_node(nop, j++);
kvn@3055 1360 last_inst++;
adlertz@5539 1361 _cfg->map_node_to_block(nop, block);
kvn@3055 1362 nop->emit(*cb, _regalloc);
kvn@3055 1363 cb->flush_bundle(true);
kvn@3055 1364 current_offset = cb->insts_size();
kvn@3055 1365 }
kvn@3055 1366
duke@435 1367 // Remember the start of the last call in a basic block
duke@435 1368 if (is_mcall) {
duke@435 1369 MachCallNode *mcall = mach->as_MachCall();
duke@435 1370
duke@435 1371 // This destination address is NOT PC-relative
duke@435 1372 mcall->method_set((intptr_t)mcall->entry_point());
duke@435 1373
duke@435 1374 // Save the return address
adlertz@5539 1375 call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
duke@435 1376
kvn@3040 1377 if (mcall->is_MachCallLeaf()) {
duke@435 1378 is_mcall = false;
duke@435 1379 is_sfn = false;
duke@435 1380 }
duke@435 1381 }
duke@435 1382
duke@435 1383 // sfn will be valid whenever mcall is valid now because of inheritance
kvn@3049 1384 if (is_sfn || is_mcall) {
duke@435 1385
duke@435 1386 // Handle special safepoint nodes for synchronization
kvn@3049 1387 if (!is_mcall) {
duke@435 1388 MachSafePointNode *sfn = mach->as_MachSafePoint();
duke@435 1389 // !!!!! Stubs only need an oopmap right now, so bail out
kvn@3049 1390 if (sfn->jvms()->method() == NULL) {
duke@435 1391 // Write the oopmap directly to the code blob??!!
duke@435 1392 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 1393 assert( !is_node_getting_a_safepoint(sfn), "logic does not match; false positive");
duke@435 1394 # endif
duke@435 1395 continue;
duke@435 1396 }
duke@435 1397 } // End synchronization
duke@435 1398
duke@435 1399 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
duke@435 1400 current_offset);
duke@435 1401 Process_OopMap_Node(mach, current_offset);
duke@435 1402 } // End if safepoint
duke@435 1403
duke@435 1404 // If this is a null check, then add the start of the previous instruction to the list
duke@435 1405 else if( mach->is_MachNullCheck() ) {
duke@435 1406 inct_starts[inct_cnt++] = previous_offset;
duke@435 1407 }
duke@435 1408
duke@435 1409 // If this is a branch, then fill in the label with the target BB's label
kvn@3051 1410 else if (mach->is_MachBranch()) {
kvn@3051 1411 // This requires the TRUE branch target be in succs[0]
adlertz@5539 1412 uint block_num = block->non_connector_successor(0)->_pre_order;
kvn@3055 1413
kvn@3055 1414 // Try to replace long branch if delay slot is not used,
kvn@3055 1415 // it is mostly for back branches since forward branch's
kvn@3055 1416 // distance is not updated yet.
kvn@3055 1417 bool delay_slot_is_used = valid_bundle_info(n) &&
kvn@3055 1418 node_bundling(n)->use_unconditional_delay();
kvn@3055 1419 if (!delay_slot_is_used && mach->may_be_short_branch()) {
kvn@3055 1420 assert(delay_slot == NULL, "not expecting delay slot node");
kvn@3055 1421 int br_size = n->size(_regalloc);
kvn@3055 1422 int offset = blk_starts[block_num] - current_offset;
kvn@3055 1423 if (block_num >= i) {
kvn@3055 1424 // Current and following block's offset are not
goetz@6484 1425 // finalized yet, adjust distance by the difference
kvn@3055 1426 // between calculated and final offsets of current block.
kvn@3055 1427 offset -= (blk_starts[i] - blk_offset);
kvn@3055 1428 }
kvn@3055 1429 // In the following code a nop could be inserted before
kvn@3055 1430 // the branch which will increase the backward distance.
kvn@3055 1431 bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
kvn@3055 1432 if (needs_padding && offset <= 0)
kvn@3055 1433 offset -= nop_size;
kvn@3055 1434
kvn@3055 1435 if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
kvn@3055 1436 // We've got a winner. Replace this branch.
kvn@3055 1437 MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
kvn@3055 1438
kvn@3055 1439 // Update the jmp_size.
kvn@3055 1440 int new_size = replacement->size(_regalloc);
kvn@3055 1441 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
kvn@3055 1442 // Insert padding between avoid_back_to_back branches.
iveresov@6620 1443 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
kvn@3055 1444 MachNode *nop = new (this) MachNopNode();
adlertz@5635 1445 block->insert_node(nop, j++);
adlertz@5539 1446 _cfg->map_node_to_block(nop, block);
kvn@3055 1447 last_inst++;
kvn@3055 1448 nop->emit(*cb, _regalloc);
kvn@3055 1449 cb->flush_bundle(true);
kvn@3055 1450 current_offset = cb->insts_size();
kvn@3055 1451 }
kvn@3055 1452 #ifdef ASSERT
kvn@3055 1453 jmp_target[i] = block_num;
kvn@3055 1454 jmp_offset[i] = current_offset - blk_offset;
kvn@3055 1455 jmp_size[i] = new_size;
kvn@3055 1456 jmp_rule[i] = mach->rule();
kvn@3055 1457 #endif
adlertz@5635 1458 block->map_node(replacement, j);
bharadwaj@4315 1459 mach->subsume_by(replacement, C);
kvn@3055 1460 n = replacement;
kvn@3055 1461 mach = replacement;
kvn@3055 1462 }
kvn@3055 1463 }
kvn@3051 1464 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
kvn@3051 1465 } else if (mach->ideal_Opcode() == Op_Jump) {
adlertz@5539 1466 for (uint h = 0; h < block->_num_succs; h++) {
adlertz@5539 1467 Block* succs_block = block->_succs[h];
kvn@3051 1468 for (uint j = 1; j < succs_block->num_preds(); j++) {
kvn@3051 1469 Node* jpn = succs_block->pred(j);
kvn@3051 1470 if (jpn->is_JumpProj() && jpn->in(0) == mach) {
kvn@3051 1471 uint block_num = succs_block->non_connector()->_pre_order;
kvn@3051 1472 Label *blkLabel = &blk_labels[block_num];
kvn@3051 1473 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
duke@435 1474 }
duke@435 1475 }
duke@435 1476 }
duke@435 1477 }
duke@435 1478 #ifdef ASSERT
twisti@1040 1479 // Check that oop-store precedes the card-mark
kvn@3049 1480 else if (mach->ideal_Opcode() == Op_StoreCM) {
duke@435 1481 uint storeCM_idx = j;
never@2780 1482 int count = 0;
never@2780 1483 for (uint prec = mach->req(); prec < mach->len(); prec++) {
never@2780 1484 Node *oop_store = mach->in(prec); // Precedence edge
never@2780 1485 if (oop_store == NULL) continue;
never@2780 1486 count++;
never@2780 1487 uint i4;
adlertz@5539 1488 for (i4 = 0; i4 < last_inst; ++i4) {
adlertz@5635 1489 if (block->get_node(i4) == oop_store) {
adlertz@5539 1490 break;
adlertz@5539 1491 }
never@2780 1492 }
never@2780 1493 // Note: This test can provide a false failure if other precedence
never@2780 1494 // edges have been added to the storeCMNode.
adlertz@5539 1495 assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
duke@435 1496 }
never@2780 1497 assert(count > 0, "storeCM expects at least one precedence edge");
duke@435 1498 }
duke@435 1499 #endif
kvn@3049 1500 else if (!n->is_Proj()) {
twisti@1040 1501 // Remember the beginning of the previous instruction, in case
duke@435 1502 // it's followed by a flag-kill and a null-check. Happens on
duke@435 1503 // Intel all the time, with add-to-memory kind of opcodes.
duke@435 1504 previous_offset = current_offset;
duke@435 1505 }
goetz@6490 1506
goetz@6490 1507 // Not an else-if!
goetz@6490 1508 // If this is a trap based cmp then add its offset to the list.
goetz@6490 1509 if (mach->is_TrapBasedCheckNode()) {
goetz@6490 1510 inct_starts[inct_cnt++] = current_offset;
goetz@6490 1511 }
duke@435 1512 }
duke@435 1513
duke@435 1514 // Verify that there is sufficient space remaining
duke@435 1515 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
kvn@1637 1516 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
neliasso@4952 1517 C->record_failure("CodeCache is full");
duke@435 1518 return;
duke@435 1519 }
duke@435 1520
duke@435 1521 // Save the offset for the listing
duke@435 1522 #ifndef PRODUCT
kvn@3049 1523 if (node_offsets && n->_idx < node_offset_limit)
twisti@2103 1524 node_offsets[n->_idx] = cb->insts_size();
duke@435 1525 #endif
duke@435 1526
duke@435 1527 // "Normal" instruction case
kvn@3049 1528 DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
duke@435 1529 n->emit(*cb, _regalloc);
twisti@2103 1530 current_offset = cb->insts_size();
fujie@9138 1531 #ifdef MIPS
aoqi@8023 1532 if (!n->is_Proj()) {
aoqi@8023 1533 // For MIPS, the first instruction of the previous node (usually a instruction sequence) sometime
aoqi@8023 1534 // is not the instruction which access memory. adjust is needed. previous_offset points to the
aoqi@8023 1535 // instruction which access memory. Instruction size is 4. cb->insts_size() and
aoqi@8023 1536 // cb->insts()->end() are the location of current instruction.
aoqi@8023 1537 int adjust = 4;
aoqi@8023 1538 NativeInstruction* inst = (NativeInstruction*) (cb->insts()->end() - 4);
aoqi@8023 1539 if (inst->is_sync()) {
aoqi@8023 1540 // a sync may be the last instruction, see store_B_immI_enc_sync
aoqi@8023 1541 adjust += 4;
aoqi@8023 1542 inst = (NativeInstruction*) (cb->insts()->end() - 8);
aoqi@8023 1543 }
aoqi@8023 1544 previous_offset = current_offset - adjust;
aoqi@8023 1545 }
aoqi@8023 1546 #endif
kvn@3049 1547
vkempik@8427 1548 // Above we only verified that there is enough space in the instruction section.
vkempik@8427 1549 // However, the instruction may emit stubs that cause code buffer expansion.
vkempik@8427 1550 // Bail out here if expansion failed due to a lack of code cache space.
vkempik@8427 1551 if (failing()) {
vkempik@8427 1552 return;
vkempik@8427 1553 }
vkempik@8427 1554
kvn@3049 1555 #ifdef ASSERT
kvn@3055 1556 if (n->size(_regalloc) < (current_offset-instr_offset)) {
kvn@3049 1557 n->dump();
kvn@3055 1558 assert(false, "wrong size of mach node");
kvn@3049 1559 }
kvn@3049 1560 #endif
duke@435 1561 non_safepoints.observe_instruction(n, current_offset);
duke@435 1562
duke@435 1563 // mcall is last "call" that can be a safepoint
duke@435 1564 // record it so we can see if a poll will directly follow it
duke@435 1565 // in which case we'll need a pad to make the PcDesc sites unique
duke@435 1566 // see 5010568. This can be slightly inaccurate but conservative
duke@435 1567 // in the case that return address is not actually at current_offset.
duke@435 1568 // This is a small price to pay.
duke@435 1569
duke@435 1570 if (is_mcall) {
duke@435 1571 last_call_offset = current_offset;
duke@435 1572 }
duke@435 1573
iveresov@6620 1574 if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
kvn@3049 1575 // Avoid back to back some instructions.
kvn@3049 1576 last_avoid_back_to_back_offset = current_offset;
kvn@3049 1577 }
kvn@3049 1578
duke@435 1579 // See if this instruction has a delay slot
kvn@3049 1580 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
duke@435 1581 assert(delay_slot != NULL, "expecting delay slot node");
duke@435 1582
duke@435 1583 // Back up 1 instruction
twisti@2103 1584 cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
duke@435 1585
duke@435 1586 // Save the offset for the listing
duke@435 1587 #ifndef PRODUCT
kvn@3049 1588 if (node_offsets && delay_slot->_idx < node_offset_limit)
twisti@2103 1589 node_offsets[delay_slot->_idx] = cb->insts_size();
duke@435 1590 #endif
duke@435 1591
duke@435 1592 // Support a SafePoint in the delay slot
kvn@3049 1593 if (delay_slot->is_MachSafePoint()) {
duke@435 1594 MachNode *mach = delay_slot->as_Mach();
duke@435 1595 // !!!!! Stubs only need an oopmap right now, so bail out
kvn@3049 1596 if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
duke@435 1597 // Write the oopmap directly to the code blob??!!
duke@435 1598 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 1599 assert( !is_node_getting_a_safepoint(mach), "logic does not match; false positive");
duke@435 1600 # endif
duke@435 1601 delay_slot = NULL;
duke@435 1602 continue;
duke@435 1603 }
duke@435 1604
duke@435 1605 int adjusted_offset = current_offset - Pipeline::instr_unit_size();
duke@435 1606 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
duke@435 1607 adjusted_offset);
duke@435 1608 // Generate an OopMap entry
duke@435 1609 Process_OopMap_Node(mach, adjusted_offset);
duke@435 1610 }
duke@435 1611
duke@435 1612 // Insert the delay slot instruction
duke@435 1613 delay_slot->emit(*cb, _regalloc);
duke@435 1614
duke@435 1615 // Don't reuse it
duke@435 1616 delay_slot = NULL;
duke@435 1617 }
duke@435 1618
duke@435 1619 } // End for all instructions in block
kvn@3055 1620
rasbold@853 1621 // If the next block is the top of a loop, pad this block out to align
rasbold@853 1622 // the loop top a little. Helps prevent pipe stalls at loop back branches.
kvn@3055 1623 if (i < nblocks-1) {
adlertz@5539 1624 Block *nb = _cfg->get_block(i + 1);
kvn@3055 1625 int padding = nb->alignment_padding(current_offset);
kvn@3055 1626 if( padding > 0 ) {
kvn@3055 1627 MachNode *nop = new (this) MachNopNode(padding / nop_size);
adlertz@5635 1628 block->insert_node(nop, block->number_of_nodes());
adlertz@5539 1629 _cfg->map_node_to_block(nop, block);
kvn@3055 1630 nop->emit(*cb, _regalloc);
kvn@3055 1631 current_offset = cb->insts_size();
kvn@3055 1632 }
duke@435 1633 }
kvn@3055 1634 // Verify that the distance for generated before forward
kvn@3055 1635 // short branches is still valid.
rasbold@4874 1636 guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
rasbold@4874 1637
rasbold@4874 1638 // Save new block start offset
rasbold@4874 1639 blk_starts[i] = blk_offset;
duke@435 1640 } // End of for all blocks
kvn@3055 1641 blk_starts[nblocks] = current_offset;
duke@435 1642
duke@435 1643 non_safepoints.flush_at_end();
duke@435 1644
duke@435 1645 // Offset too large?
duke@435 1646 if (failing()) return;
duke@435 1647
duke@435 1648 // Define a pseudo-label at the end of the code
kvn@3055 1649 MacroAssembler(cb).bind( blk_labels[nblocks] );
duke@435 1650
duke@435 1651 // Compute the size of the first block
duke@435 1652 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
duke@435 1653
twisti@2103 1654 assert(cb->insts_size() < 500000, "method is unreasonably large");
duke@435 1655
kvn@3055 1656 #ifdef ASSERT
kvn@3055 1657 for (uint i = 0; i < nblocks; i++) { // For all blocks
kvn@3055 1658 if (jmp_target[i] != 0) {
kvn@3055 1659 int br_size = jmp_size[i];
kvn@3055 1660 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
kvn@3055 1661 if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
kvn@3055 1662 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
kvn@3055 1663 assert(false, "Displacement too large for short jmp");
kvn@3055 1664 }
kvn@3055 1665 }
kvn@3055 1666 }
kvn@3055 1667 #endif
kvn@3055 1668
duke@435 1669 #ifndef PRODUCT
duke@435 1670 // Information on the size of the method, without the extraneous code
twisti@2103 1671 Scheduling::increment_method_size(cb->insts_size());
duke@435 1672 #endif
duke@435 1673
duke@435 1674 // ------------------
duke@435 1675 // Fill in exception table entries.
duke@435 1676 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
duke@435 1677
duke@435 1678 // Only java methods have exception handlers and deopt handlers
goetz@6517 1679 // class HandlerImpl is platform-specific and defined in the *.ad files.
duke@435 1680 if (_method) {
duke@435 1681 // Emit the exception handler code.
goetz@6517 1682 _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb));
vkempik@8427 1683 if (failing()) {
vkempik@8427 1684 return; // CodeBuffer::expand failed
vkempik@8427 1685 }
duke@435 1686 // Emit the deopt handler code.
goetz@6517 1687 _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb));
twisti@1700 1688
twisti@1700 1689 // Emit the MethodHandle deopt handler code (if required).
vkempik@8427 1690 if (has_method_handle_invokes() && !failing()) {
twisti@1700 1691 // We can use the same code as for the normal deopt handler, we
twisti@1700 1692 // just need a different entry point address.
goetz@6517 1693 _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb));
twisti@1700 1694 }
duke@435 1695 }
duke@435 1696
duke@435 1697 // One last check for failed CodeBuffer::expand:
kvn@1637 1698 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
neliasso@4952 1699 C->record_failure("CodeCache is full");
duke@435 1700 return;
duke@435 1701 }
duke@435 1702
duke@435 1703 #ifndef PRODUCT
duke@435 1704 // Dump the assembly code, including basic-block numbers
duke@435 1705 if (print_assembly()) {
duke@435 1706 ttyLocker ttyl; // keep the following output all in one block
duke@435 1707 if (!VMThread::should_terminate()) { // test this under the tty lock
duke@435 1708 // This output goes directly to the tty, not the compiler log.
duke@435 1709 // To enable tools to match it up with the compilation activity,
duke@435 1710 // be sure to tag this tty output with the compile ID.
duke@435 1711 if (xtty != NULL) {
duke@435 1712 xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
duke@435 1713 is_osr_compilation() ? " compile_kind='osr'" :
duke@435 1714 "");
duke@435 1715 }
duke@435 1716 if (method() != NULL) {
coleenp@4037 1717 method()->print_metadata();
jiefu@9996 1718 } else if (stub_name() != NULL) {
jiefu@9996 1719 tty->print_cr("Generating RuntimeStub - %s", stub_name());
duke@435 1720 }
duke@435 1721 dump_asm(node_offsets, node_offset_limit);
duke@435 1722 if (xtty != NULL) {
duke@435 1723 xtty->tail("opto_assembly");
duke@435 1724 }
duke@435 1725 }
duke@435 1726 }
duke@435 1727 #endif
duke@435 1728
duke@435 1729 }
duke@435 1730
duke@435 1731 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
duke@435 1732 _inc_table.set_size(cnt);
duke@435 1733
duke@435 1734 uint inct_cnt = 0;
adlertz@5539 1735 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
adlertz@5539 1736 Block* block = _cfg->get_block(i);
duke@435 1737 Node *n = NULL;
duke@435 1738 int j;
duke@435 1739
duke@435 1740 // Find the branch; ignore trailing NOPs.
adlertz@5635 1741 for (j = block->number_of_nodes() - 1; j >= 0; j--) {
adlertz@5635 1742 n = block->get_node(j);
adlertz@5539 1743 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
duke@435 1744 break;
adlertz@5539 1745 }
duke@435 1746 }
duke@435 1747
duke@435 1748 // If we didn't find anything, continue
adlertz@5539 1749 if (j < 0) {
adlertz@5539 1750 continue;
adlertz@5539 1751 }
duke@435 1752
duke@435 1753 // Compute ExceptionHandlerTable subtable entry and add it
duke@435 1754 // (skip empty blocks)
adlertz@5539 1755 if (n->is_Catch()) {
duke@435 1756
duke@435 1757 // Get the offset of the return from the call
adlertz@5539 1758 uint call_return = call_returns[block->_pre_order];
duke@435 1759 #ifdef ASSERT
duke@435 1760 assert( call_return > 0, "no call seen for this basic block" );
adlertz@5635 1761 while (block->get_node(--j)->is_MachProj()) ;
adlertz@5635 1762 assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
duke@435 1763 #endif
duke@435 1764 // last instruction is a CatchNode, find it's CatchProjNodes
adlertz@5539 1765 int nof_succs = block->_num_succs;
duke@435 1766 // allocate space
duke@435 1767 GrowableArray<intptr_t> handler_bcis(nof_succs);
duke@435 1768 GrowableArray<intptr_t> handler_pcos(nof_succs);
duke@435 1769 // iterate through all successors
duke@435 1770 for (int j = 0; j < nof_succs; j++) {
adlertz@5539 1771 Block* s = block->_succs[j];
duke@435 1772 bool found_p = false;
adlertz@5539 1773 for (uint k = 1; k < s->num_preds(); k++) {
adlertz@5539 1774 Node* pk = s->pred(k);
adlertz@5539 1775 if (pk->is_CatchProj() && pk->in(0) == n) {
duke@435 1776 const CatchProjNode* p = pk->as_CatchProj();
duke@435 1777 found_p = true;
duke@435 1778 // add the corresponding handler bci & pco information
adlertz@5539 1779 if (p->_con != CatchProjNode::fall_through_index) {
duke@435 1780 // p leads to an exception handler (and is not fall through)
adlertz@5539 1781 assert(s == _cfg->get_block(s->_pre_order), "bad numbering");
duke@435 1782 // no duplicates, please
adlertz@5539 1783 if (!handler_bcis.contains(p->handler_bci())) {
duke@435 1784 uint block_num = s->non_connector()->_pre_order;
duke@435 1785 handler_bcis.append(p->handler_bci());
duke@435 1786 handler_pcos.append(blk_labels[block_num].loc_pos());
duke@435 1787 }
duke@435 1788 }
duke@435 1789 }
duke@435 1790 }
duke@435 1791 assert(found_p, "no matching predecessor found");
duke@435 1792 // Note: Due to empty block removal, one block may have
duke@435 1793 // several CatchProj inputs, from the same Catch.
duke@435 1794 }
duke@435 1795
duke@435 1796 // Set the offset of the return from the call
duke@435 1797 _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
duke@435 1798 continue;
duke@435 1799 }
duke@435 1800
duke@435 1801 // Handle implicit null exception table updates
adlertz@5539 1802 if (n->is_MachNullCheck()) {
adlertz@5539 1803 uint block_num = block->non_connector_successor(0)->_pre_order;
adlertz@5539 1804 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
duke@435 1805 continue;
duke@435 1806 }
goetz@6490 1807 // Handle implicit exception table updates: trap instructions.
goetz@6490 1808 if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
goetz@6490 1809 uint block_num = block->non_connector_successor(0)->_pre_order;
goetz@6490 1810 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
goetz@6490 1811 continue;
goetz@6490 1812 }
duke@435 1813 } // End of for all blocks fill in exception table entries
duke@435 1814 }
duke@435 1815
duke@435 1816 // Static Variables
duke@435 1817 #ifndef PRODUCT
duke@435 1818 uint Scheduling::_total_nop_size = 0;
duke@435 1819 uint Scheduling::_total_method_size = 0;
duke@435 1820 uint Scheduling::_total_branches = 0;
duke@435 1821 uint Scheduling::_total_unconditional_delays = 0;
duke@435 1822 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
duke@435 1823 #endif
duke@435 1824
duke@435 1825 // Initializer for class Scheduling
duke@435 1826
duke@435 1827 Scheduling::Scheduling(Arena *arena, Compile &compile)
duke@435 1828 : _arena(arena),
duke@435 1829 _cfg(compile.cfg()),
duke@435 1830 _regalloc(compile.regalloc()),
duke@435 1831 _reg_node(arena),
duke@435 1832 _bundle_instr_count(0),
duke@435 1833 _bundle_cycle_number(0),
duke@435 1834 _scheduled(arena),
duke@435 1835 _available(arena),
duke@435 1836 _next_node(NULL),
duke@435 1837 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
duke@435 1838 _pinch_free_list(arena)
duke@435 1839 #ifndef PRODUCT
duke@435 1840 , _branches(0)
duke@435 1841 , _unconditional_delays(0)
duke@435 1842 #endif
duke@435 1843 {
duke@435 1844 // Create a MachNopNode
duke@435 1845 _nop = new (&compile) MachNopNode();
duke@435 1846
duke@435 1847 // Now that the nops are in the array, save the count
duke@435 1848 // (but allow entries for the nops)
duke@435 1849 _node_bundling_limit = compile.unique();
duke@435 1850 uint node_max = _regalloc->node_regs_max_index();
duke@435 1851
duke@435 1852 compile.set_node_bundling_limit(_node_bundling_limit);
duke@435 1853
twisti@1040 1854 // This one is persistent within the Compile class
duke@435 1855 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
duke@435 1856
duke@435 1857 // Allocate space for fixed-size arrays
duke@435 1858 _node_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
duke@435 1859 _uses = NEW_ARENA_ARRAY(arena, short, node_max);
duke@435 1860 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
duke@435 1861
duke@435 1862 // Clear the arrays
duke@435 1863 memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
duke@435 1864 memset(_node_latency, 0, node_max * sizeof(unsigned short));
duke@435 1865 memset(_uses, 0, node_max * sizeof(short));
duke@435 1866 memset(_current_latency, 0, node_max * sizeof(unsigned short));
duke@435 1867
duke@435 1868 // Clear the bundling information
adlertz@5539 1869 memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
duke@435 1870
duke@435 1871 // Get the last node
adlertz@5539 1872 Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
adlertz@5539 1873
adlertz@5635 1874 _next_node = block->get_node(block->number_of_nodes() - 1);
duke@435 1875 }
duke@435 1876
duke@435 1877 #ifndef PRODUCT
duke@435 1878 // Scheduling destructor
duke@435 1879 Scheduling::~Scheduling() {
duke@435 1880 _total_branches += _branches;
duke@435 1881 _total_unconditional_delays += _unconditional_delays;
duke@435 1882 }
duke@435 1883 #endif
duke@435 1884
duke@435 1885 // Step ahead "i" cycles
duke@435 1886 void Scheduling::step(uint i) {
duke@435 1887
duke@435 1888 Bundle *bundle = node_bundling(_next_node);
duke@435 1889 bundle->set_starts_bundle();
duke@435 1890
duke@435 1891 // Update the bundle record, but leave the flags information alone
duke@435 1892 if (_bundle_instr_count > 0) {
duke@435 1893 bundle->set_instr_count(_bundle_instr_count);
duke@435 1894 bundle->set_resources_used(_bundle_use.resourcesUsed());
duke@435 1895 }
duke@435 1896
duke@435 1897 // Update the state information
duke@435 1898 _bundle_instr_count = 0;
duke@435 1899 _bundle_cycle_number += i;
duke@435 1900 _bundle_use.step(i);
duke@435 1901 }
duke@435 1902
duke@435 1903 void Scheduling::step_and_clear() {
duke@435 1904 Bundle *bundle = node_bundling(_next_node);
duke@435 1905 bundle->set_starts_bundle();
duke@435 1906
duke@435 1907 // Update the bundle record
duke@435 1908 if (_bundle_instr_count > 0) {
duke@435 1909 bundle->set_instr_count(_bundle_instr_count);
duke@435 1910 bundle->set_resources_used(_bundle_use.resourcesUsed());
duke@435 1911
duke@435 1912 _bundle_cycle_number += 1;
duke@435 1913 }
duke@435 1914
duke@435 1915 // Clear the bundling information
duke@435 1916 _bundle_instr_count = 0;
duke@435 1917 _bundle_use.reset();
duke@435 1918
duke@435 1919 memcpy(_bundle_use_elements,
duke@435 1920 Pipeline_Use::elaborated_elements,
duke@435 1921 sizeof(Pipeline_Use::elaborated_elements));
duke@435 1922 }
duke@435 1923
duke@435 1924 // Perform instruction scheduling and bundling over the sequence of
duke@435 1925 // instructions in backwards order.
duke@435 1926 void Compile::ScheduleAndBundle() {
duke@435 1927
duke@435 1928 // Don't optimize this if it isn't a method
duke@435 1929 if (!_method)
duke@435 1930 return;
duke@435 1931
duke@435 1932 // Don't optimize this if scheduling is disabled
duke@435 1933 if (!do_scheduling())
duke@435 1934 return;
duke@435 1935
kvn@4103 1936 // Scheduling code works only with pairs (8 bytes) maximum.
kvn@4103 1937 if (max_vector_size() > 8)
kvn@4103 1938 return;
kvn@4007 1939
duke@435 1940 NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
duke@435 1941
duke@435 1942 // Create a data structure for all the scheduling information
duke@435 1943 Scheduling scheduling(Thread::current()->resource_area(), *this);
duke@435 1944
duke@435 1945 // Walk backwards over each basic block, computing the needed alignment
duke@435 1946 // Walk over all the basic blocks
duke@435 1947 scheduling.DoScheduling();
duke@435 1948 }
duke@435 1949
duke@435 1950 // Compute the latency of all the instructions. This is fairly simple,
duke@435 1951 // because we already have a legal ordering. Walk over the instructions
duke@435 1952 // from first to last, and compute the latency of the instruction based
twisti@1040 1953 // on the latency of the preceding instruction(s).
duke@435 1954 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
duke@435 1955 #ifndef PRODUCT
duke@435 1956 if (_cfg->C->trace_opto_output())
duke@435 1957 tty->print("# -> ComputeLocalLatenciesForward\n");
duke@435 1958 #endif
duke@435 1959
duke@435 1960 // Walk over all the schedulable instructions
duke@435 1961 for( uint j=_bb_start; j < _bb_end; j++ ) {
duke@435 1962
duke@435 1963 // This is a kludge, forcing all latency calculations to start at 1.
duke@435 1964 // Used to allow latency 0 to force an instruction to the beginning
duke@435 1965 // of the bb
duke@435 1966 uint latency = 1;
adlertz@5635 1967 Node *use = bb->get_node(j);
duke@435 1968 uint nlen = use->len();
duke@435 1969
duke@435 1970 // Walk over all the inputs
duke@435 1971 for ( uint k=0; k < nlen; k++ ) {
duke@435 1972 Node *def = use->in(k);
duke@435 1973 if (!def)
duke@435 1974 continue;
duke@435 1975
duke@435 1976 uint l = _node_latency[def->_idx] + use->latency(k);
duke@435 1977 if (latency < l)
duke@435 1978 latency = l;
duke@435 1979 }
duke@435 1980
duke@435 1981 _node_latency[use->_idx] = latency;
duke@435 1982
duke@435 1983 #ifndef PRODUCT
duke@435 1984 if (_cfg->C->trace_opto_output()) {
duke@435 1985 tty->print("# latency %4d: ", latency);
duke@435 1986 use->dump();
duke@435 1987 }
duke@435 1988 #endif
duke@435 1989 }
duke@435 1990
duke@435 1991 #ifndef PRODUCT
duke@435 1992 if (_cfg->C->trace_opto_output())
duke@435 1993 tty->print("# <- ComputeLocalLatenciesForward\n");
duke@435 1994 #endif
duke@435 1995
duke@435 1996 } // end ComputeLocalLatenciesForward
duke@435 1997
duke@435 1998 // See if this node fits into the present instruction bundle
duke@435 1999 bool Scheduling::NodeFitsInBundle(Node *n) {
duke@435 2000 uint n_idx = n->_idx;
duke@435 2001
duke@435 2002 // If this is the unconditional delay instruction, then it fits
duke@435 2003 if (n == _unconditional_delay_slot) {
duke@435 2004 #ifndef PRODUCT
duke@435 2005 if (_cfg->C->trace_opto_output())
duke@435 2006 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
duke@435 2007 #endif
duke@435 2008 return (true);
duke@435 2009 }
duke@435 2010
duke@435 2011 // If the node cannot be scheduled this cycle, skip it
duke@435 2012 if (_current_latency[n_idx] > _bundle_cycle_number) {
duke@435 2013 #ifndef PRODUCT
duke@435 2014 if (_cfg->C->trace_opto_output())
duke@435 2015 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
duke@435 2016 n->_idx, _current_latency[n_idx], _bundle_cycle_number);
duke@435 2017 #endif
duke@435 2018 return (false);
duke@435 2019 }
duke@435 2020
duke@435 2021 const Pipeline *node_pipeline = n->pipeline();
duke@435 2022
duke@435 2023 uint instruction_count = node_pipeline->instructionCount();
duke@435 2024 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
duke@435 2025 instruction_count = 0;
duke@435 2026 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
duke@435 2027 instruction_count++;
duke@435 2028
duke@435 2029 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
duke@435 2030 #ifndef PRODUCT
duke@435 2031 if (_cfg->C->trace_opto_output())
duke@435 2032 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
duke@435 2033 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
duke@435 2034 #endif
duke@435 2035 return (false);
duke@435 2036 }
duke@435 2037
duke@435 2038 // Don't allow non-machine nodes to be handled this way
duke@435 2039 if (!n->is_Mach() && instruction_count == 0)
duke@435 2040 return (false);
duke@435 2041
duke@435 2042 // See if there is any overlap
duke@435 2043 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
duke@435 2044
duke@435 2045 if (delay > 0) {
duke@435 2046 #ifndef PRODUCT
duke@435 2047 if (_cfg->C->trace_opto_output())
duke@435 2048 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
duke@435 2049 #endif
duke@435 2050 return false;
duke@435 2051 }
duke@435 2052
duke@435 2053 #ifndef PRODUCT
duke@435 2054 if (_cfg->C->trace_opto_output())
duke@435 2055 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx);
duke@435 2056 #endif
duke@435 2057
duke@435 2058 return true;
duke@435 2059 }
duke@435 2060
duke@435 2061 Node * Scheduling::ChooseNodeToBundle() {
duke@435 2062 uint siz = _available.size();
duke@435 2063
duke@435 2064 if (siz == 0) {
duke@435 2065
duke@435 2066 #ifndef PRODUCT
duke@435 2067 if (_cfg->C->trace_opto_output())
duke@435 2068 tty->print("# ChooseNodeToBundle: NULL\n");
duke@435 2069 #endif
duke@435 2070 return (NULL);
duke@435 2071 }
duke@435 2072
duke@435 2073 // Fast path, if only 1 instruction in the bundle
duke@435 2074 if (siz == 1) {
duke@435 2075 #ifndef PRODUCT
duke@435 2076 if (_cfg->C->trace_opto_output()) {
duke@435 2077 tty->print("# ChooseNodeToBundle (only 1): ");
duke@435 2078 _available[0]->dump();
duke@435 2079 }
duke@435 2080 #endif
duke@435 2081 return (_available[0]);
duke@435 2082 }
duke@435 2083
duke@435 2084 // Don't bother, if the bundle is already full
duke@435 2085 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
duke@435 2086 for ( uint i = 0; i < siz; i++ ) {
duke@435 2087 Node *n = _available[i];
duke@435 2088
duke@435 2089 // Skip projections, we'll handle them another way
duke@435 2090 if (n->is_Proj())
duke@435 2091 continue;
duke@435 2092
duke@435 2093 // This presupposed that instructions are inserted into the
duke@435 2094 // available list in a legality order; i.e. instructions that
duke@435 2095 // must be inserted first are at the head of the list
duke@435 2096 if (NodeFitsInBundle(n)) {
duke@435 2097 #ifndef PRODUCT
duke@435 2098 if (_cfg->C->trace_opto_output()) {
duke@435 2099 tty->print("# ChooseNodeToBundle: ");
duke@435 2100 n->dump();
duke@435 2101 }
duke@435 2102 #endif
duke@435 2103 return (n);
duke@435 2104 }
duke@435 2105 }
duke@435 2106 }
duke@435 2107
duke@435 2108 // Nothing fits in this bundle, choose the highest priority
duke@435 2109 #ifndef PRODUCT
duke@435 2110 if (_cfg->C->trace_opto_output()) {
duke@435 2111 tty->print("# ChooseNodeToBundle: ");
duke@435 2112 _available[0]->dump();
duke@435 2113 }
duke@435 2114 #endif
duke@435 2115
duke@435 2116 return _available[0];
duke@435 2117 }
duke@435 2118
duke@435 2119 void Scheduling::AddNodeToAvailableList(Node *n) {
duke@435 2120 assert( !n->is_Proj(), "projections never directly made available" );
duke@435 2121 #ifndef PRODUCT
duke@435 2122 if (_cfg->C->trace_opto_output()) {
duke@435 2123 tty->print("# AddNodeToAvailableList: ");
duke@435 2124 n->dump();
duke@435 2125 }
duke@435 2126 #endif
duke@435 2127
duke@435 2128 int latency = _current_latency[n->_idx];
duke@435 2129
duke@435 2130 // Insert in latency order (insertion sort)
duke@435 2131 uint i;
duke@435 2132 for ( i=0; i < _available.size(); i++ )
duke@435 2133 if (_current_latency[_available[i]->_idx] > latency)
duke@435 2134 break;
duke@435 2135
duke@435 2136 // Special Check for compares following branches
duke@435 2137 if( n->is_Mach() && _scheduled.size() > 0 ) {
duke@435 2138 int op = n->as_Mach()->ideal_Opcode();
duke@435 2139 Node *last = _scheduled[0];
duke@435 2140 if( last->is_MachIf() && last->in(1) == n &&
duke@435 2141 ( op == Op_CmpI ||
duke@435 2142 op == Op_CmpU ||
thartmann@8797 2143 op == Op_CmpUL ||
duke@435 2144 op == Op_CmpP ||
duke@435 2145 op == Op_CmpF ||
duke@435 2146 op == Op_CmpD ||
duke@435 2147 op == Op_CmpL ) ) {
duke@435 2148
duke@435 2149 // Recalculate position, moving to front of same latency
duke@435 2150 for ( i=0 ; i < _available.size(); i++ )
duke@435 2151 if (_current_latency[_available[i]->_idx] >= latency)
duke@435 2152 break;
duke@435 2153 }
duke@435 2154 }
duke@435 2155
duke@435 2156 // Insert the node in the available list
duke@435 2157 _available.insert(i, n);
duke@435 2158
duke@435 2159 #ifndef PRODUCT
duke@435 2160 if (_cfg->C->trace_opto_output())
duke@435 2161 dump_available();
duke@435 2162 #endif
duke@435 2163 }
duke@435 2164
duke@435 2165 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
duke@435 2166 for ( uint i=0; i < n->len(); i++ ) {
duke@435 2167 Node *def = n->in(i);
duke@435 2168 if (!def) continue;
duke@435 2169 if( def->is_Proj() ) // If this is a machine projection, then
duke@435 2170 def = def->in(0); // propagate usage thru to the base instruction
duke@435 2171
adlertz@5509 2172 if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
duke@435 2173 continue;
adlertz@5509 2174 }
duke@435 2175
duke@435 2176 // Compute the latency
duke@435 2177 uint l = _bundle_cycle_number + n->latency(i);
duke@435 2178 if (_current_latency[def->_idx] < l)
duke@435 2179 _current_latency[def->_idx] = l;
duke@435 2180
duke@435 2181 // If this does not have uses then schedule it
duke@435 2182 if ((--_uses[def->_idx]) == 0)
duke@435 2183 AddNodeToAvailableList(def);
duke@435 2184 }
duke@435 2185 }
duke@435 2186
duke@435 2187 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
duke@435 2188 #ifndef PRODUCT
duke@435 2189 if (_cfg->C->trace_opto_output()) {
duke@435 2190 tty->print("# AddNodeToBundle: ");
duke@435 2191 n->dump();
duke@435 2192 }
duke@435 2193 #endif
duke@435 2194
duke@435 2195 // Remove this from the available list
duke@435 2196 uint i;
duke@435 2197 for (i = 0; i < _available.size(); i++)
duke@435 2198 if (_available[i] == n)
duke@435 2199 break;
duke@435 2200 assert(i < _available.size(), "entry in _available list not found");
duke@435 2201 _available.remove(i);
duke@435 2202
duke@435 2203 // See if this fits in the current bundle
duke@435 2204 const Pipeline *node_pipeline = n->pipeline();
duke@435 2205 const Pipeline_Use& node_usage = node_pipeline->resourceUse();
duke@435 2206
duke@435 2207 // Check for instructions to be placed in the delay slot. We
duke@435 2208 // do this before we actually schedule the current instruction,
duke@435 2209 // because the delay slot follows the current instruction.
duke@435 2210 if (Pipeline::_branch_has_delay_slot &&
duke@435 2211 node_pipeline->hasBranchDelay() &&
duke@435 2212 !_unconditional_delay_slot) {
duke@435 2213
duke@435 2214 uint siz = _available.size();
duke@435 2215
duke@435 2216 // Conditional branches can support an instruction that
twisti@1040 2217 // is unconditionally executed and not dependent by the
duke@435 2218 // branch, OR a conditionally executed instruction if
duke@435 2219 // the branch is taken. In practice, this means that
duke@435 2220 // the first instruction at the branch target is
duke@435 2221 // copied to the delay slot, and the branch goes to
duke@435 2222 // the instruction after that at the branch target
kvn@3051 2223 if ( n->is_MachBranch() ) {
duke@435 2224
duke@435 2225 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
duke@435 2226 assert( !n->is_Catch(), "should not look for delay slot for Catch" );
duke@435 2227
duke@435 2228 #ifndef PRODUCT
duke@435 2229 _branches++;
duke@435 2230 #endif
duke@435 2231
duke@435 2232 // At least 1 instruction is on the available list
twisti@1040 2233 // that is not dependent on the branch
duke@435 2234 for (uint i = 0; i < siz; i++) {
duke@435 2235 Node *d = _available[i];
duke@435 2236 const Pipeline *avail_pipeline = d->pipeline();
duke@435 2237
duke@435 2238 // Don't allow safepoints in the branch shadow, that will
duke@435 2239 // cause a number of difficulties
duke@435 2240 if ( avail_pipeline->instructionCount() == 1 &&
duke@435 2241 !avail_pipeline->hasMultipleBundles() &&
duke@435 2242 !avail_pipeline->hasBranchDelay() &&
duke@435 2243 Pipeline::instr_has_unit_size() &&
duke@435 2244 d->size(_regalloc) == Pipeline::instr_unit_size() &&
duke@435 2245 NodeFitsInBundle(d) &&
duke@435 2246 !node_bundling(d)->used_in_delay()) {
duke@435 2247
duke@435 2248 if (d->is_Mach() && !d->is_MachSafePoint()) {
duke@435 2249 // A node that fits in the delay slot was found, so we need to
duke@435 2250 // set the appropriate bits in the bundle pipeline information so
duke@435 2251 // that it correctly indicates resource usage. Later, when we
duke@435 2252 // attempt to add this instruction to the bundle, we will skip
duke@435 2253 // setting the resource usage.
duke@435 2254 _unconditional_delay_slot = d;
duke@435 2255 node_bundling(n)->set_use_unconditional_delay();
duke@435 2256 node_bundling(d)->set_used_in_unconditional_delay();
duke@435 2257 _bundle_use.add_usage(avail_pipeline->resourceUse());
duke@435 2258 _current_latency[d->_idx] = _bundle_cycle_number;
duke@435 2259 _next_node = d;
duke@435 2260 ++_bundle_instr_count;
duke@435 2261 #ifndef PRODUCT
duke@435 2262 _unconditional_delays++;
duke@435 2263 #endif
duke@435 2264 break;
duke@435 2265 }
duke@435 2266 }
duke@435 2267 }
duke@435 2268 }
duke@435 2269
duke@435 2270 // No delay slot, add a nop to the usage
duke@435 2271 if (!_unconditional_delay_slot) {
duke@435 2272 // See if adding an instruction in the delay slot will overflow
duke@435 2273 // the bundle.
duke@435 2274 if (!NodeFitsInBundle(_nop)) {
duke@435 2275 #ifndef PRODUCT
duke@435 2276 if (_cfg->C->trace_opto_output())
duke@435 2277 tty->print("# *** STEP(1 instruction for delay slot) ***\n");
duke@435 2278 #endif
duke@435 2279 step(1);
duke@435 2280 }
duke@435 2281
duke@435 2282 _bundle_use.add_usage(_nop->pipeline()->resourceUse());
duke@435 2283 _next_node = _nop;
duke@435 2284 ++_bundle_instr_count;
duke@435 2285 }
duke@435 2286
duke@435 2287 // See if the instruction in the delay slot requires a
duke@435 2288 // step of the bundles
duke@435 2289 if (!NodeFitsInBundle(n)) {
duke@435 2290 #ifndef PRODUCT
duke@435 2291 if (_cfg->C->trace_opto_output())
duke@435 2292 tty->print("# *** STEP(branch won't fit) ***\n");
duke@435 2293 #endif
duke@435 2294 // Update the state information
duke@435 2295 _bundle_instr_count = 0;
duke@435 2296 _bundle_cycle_number += 1;
duke@435 2297 _bundle_use.step(1);
duke@435 2298 }
duke@435 2299 }
duke@435 2300
duke@435 2301 // Get the number of instructions
duke@435 2302 uint instruction_count = node_pipeline->instructionCount();
duke@435 2303 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
duke@435 2304 instruction_count = 0;
duke@435 2305
duke@435 2306 // Compute the latency information
duke@435 2307 uint delay = 0;
duke@435 2308
duke@435 2309 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
duke@435 2310 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
duke@435 2311 if (relative_latency < 0)
duke@435 2312 relative_latency = 0;
duke@435 2313
duke@435 2314 delay = _bundle_use.full_latency(relative_latency, node_usage);
duke@435 2315
duke@435 2316 // Does not fit in this bundle, start a new one
duke@435 2317 if (delay > 0) {
duke@435 2318 step(delay);
duke@435 2319
duke@435 2320 #ifndef PRODUCT
duke@435 2321 if (_cfg->C->trace_opto_output())
duke@435 2322 tty->print("# *** STEP(%d) ***\n", delay);
duke@435 2323 #endif
duke@435 2324 }
duke@435 2325 }
duke@435 2326
duke@435 2327 // If this was placed in the delay slot, ignore it
duke@435 2328 if (n != _unconditional_delay_slot) {
duke@435 2329
duke@435 2330 if (delay == 0) {
duke@435 2331 if (node_pipeline->hasMultipleBundles()) {
duke@435 2332 #ifndef PRODUCT
duke@435 2333 if (_cfg->C->trace_opto_output())
duke@435 2334 tty->print("# *** STEP(multiple instructions) ***\n");
duke@435 2335 #endif
duke@435 2336 step(1);
duke@435 2337 }
duke@435 2338
duke@435 2339 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
duke@435 2340 #ifndef PRODUCT
duke@435 2341 if (_cfg->C->trace_opto_output())
duke@435 2342 tty->print("# *** STEP(%d >= %d instructions) ***\n",
duke@435 2343 instruction_count + _bundle_instr_count,
duke@435 2344 Pipeline::_max_instrs_per_cycle);
duke@435 2345 #endif
duke@435 2346 step(1);
duke@435 2347 }
duke@435 2348 }
duke@435 2349
duke@435 2350 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
duke@435 2351 _bundle_instr_count++;
duke@435 2352
duke@435 2353 // Set the node's latency
duke@435 2354 _current_latency[n->_idx] = _bundle_cycle_number;
duke@435 2355
duke@435 2356 // Now merge the functional unit information
duke@435 2357 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
duke@435 2358 _bundle_use.add_usage(node_usage);
duke@435 2359
duke@435 2360 // Increment the number of instructions in this bundle
duke@435 2361 _bundle_instr_count += instruction_count;
duke@435 2362
duke@435 2363 // Remember this node for later
duke@435 2364 if (n->is_Mach())
duke@435 2365 _next_node = n;
duke@435 2366 }
duke@435 2367
duke@435 2368 // It's possible to have a BoxLock in the graph and in the _bbs mapping but
duke@435 2369 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks.
duke@435 2370 // 'Schedule' them (basically ignore in the schedule) but do not insert them
duke@435 2371 // into the block. All other scheduled nodes get put in the schedule here.
duke@435 2372 int op = n->Opcode();
duke@435 2373 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
duke@435 2374 (op != Op_Node && // Not an unused antidepedence node and
duke@435 2375 // not an unallocated boxlock
duke@435 2376 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
duke@435 2377
duke@435 2378 // Push any trailing projections
adlertz@5635 2379 if( bb->get_node(bb->number_of_nodes()-1) != n ) {
duke@435 2380 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 2381 Node *foi = n->fast_out(i);
duke@435 2382 if( foi->is_Proj() )
duke@435 2383 _scheduled.push(foi);
duke@435 2384 }
duke@435 2385 }
duke@435 2386
duke@435 2387 // Put the instruction in the schedule list
duke@435 2388 _scheduled.push(n);
duke@435 2389 }
duke@435 2390
duke@435 2391 #ifndef PRODUCT
duke@435 2392 if (_cfg->C->trace_opto_output())
duke@435 2393 dump_available();
duke@435 2394 #endif
duke@435 2395
duke@435 2396 // Walk all the definitions, decrementing use counts, and
duke@435 2397 // if a definition has a 0 use count, place it in the available list.
duke@435 2398 DecrementUseCounts(n,bb);
duke@435 2399 }
duke@435 2400
duke@435 2401 // This method sets the use count within a basic block. We will ignore all
duke@435 2402 // uses outside the current basic block. As we are doing a backwards walk,
duke@435 2403 // any node we reach that has a use count of 0 may be scheduled. This also
duke@435 2404 // avoids the problem of cyclic references from phi nodes, as long as phi
duke@435 2405 // nodes are at the front of the basic block. This method also initializes
duke@435 2406 // the available list to the set of instructions that have no uses within this
duke@435 2407 // basic block.
duke@435 2408 void Scheduling::ComputeUseCount(const Block *bb) {
duke@435 2409 #ifndef PRODUCT
duke@435 2410 if (_cfg->C->trace_opto_output())
duke@435 2411 tty->print("# -> ComputeUseCount\n");
duke@435 2412 #endif
duke@435 2413
duke@435 2414 // Clear the list of available and scheduled instructions, just in case
duke@435 2415 _available.clear();
duke@435 2416 _scheduled.clear();
duke@435 2417
duke@435 2418 // No delay slot specified
duke@435 2419 _unconditional_delay_slot = NULL;
duke@435 2420
duke@435 2421 #ifdef ASSERT
adlertz@5635 2422 for( uint i=0; i < bb->number_of_nodes(); i++ )
adlertz@5635 2423 assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
duke@435 2424 #endif
duke@435 2425
duke@435 2426 // Force the _uses count to never go to zero for unscheduable pieces
duke@435 2427 // of the block
duke@435 2428 for( uint k = 0; k < _bb_start; k++ )
adlertz@5635 2429 _uses[bb->get_node(k)->_idx] = 1;
adlertz@5635 2430 for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
adlertz@5635 2431 _uses[bb->get_node(l)->_idx] = 1;
duke@435 2432
duke@435 2433 // Iterate backwards over the instructions in the block. Don't count the
duke@435 2434 // branch projections at end or the block header instructions.
duke@435 2435 for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
adlertz@5635 2436 Node *n = bb->get_node(j);
duke@435 2437 if( n->is_Proj() ) continue; // Projections handled another way
duke@435 2438
duke@435 2439 // Account for all uses
duke@435 2440 for ( uint k = 0; k < n->len(); k++ ) {
duke@435 2441 Node *inp = n->in(k);
duke@435 2442 if (!inp) continue;
duke@435 2443 assert(inp != n, "no cycles allowed" );
adlertz@5509 2444 if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
adlertz@5509 2445 if (inp->is_Proj()) { // Skip through Proj's
duke@435 2446 inp = inp->in(0);
adlertz@5509 2447 }
duke@435 2448 ++_uses[inp->_idx]; // Count 1 block-local use
duke@435 2449 }
duke@435 2450 }
duke@435 2451
duke@435 2452 // If this instruction has a 0 use count, then it is available
duke@435 2453 if (!_uses[n->_idx]) {
duke@435 2454 _current_latency[n->_idx] = _bundle_cycle_number;
duke@435 2455 AddNodeToAvailableList(n);
duke@435 2456 }
duke@435 2457
duke@435 2458 #ifndef PRODUCT
duke@435 2459 if (_cfg->C->trace_opto_output()) {
duke@435 2460 tty->print("# uses: %3d: ", _uses[n->_idx]);
duke@435 2461 n->dump();
duke@435 2462 }
duke@435 2463 #endif
duke@435 2464 }
duke@435 2465
duke@435 2466 #ifndef PRODUCT
duke@435 2467 if (_cfg->C->trace_opto_output())
duke@435 2468 tty->print("# <- ComputeUseCount\n");
duke@435 2469 #endif
duke@435 2470 }
duke@435 2471
duke@435 2472 // This routine performs scheduling on each basic block in reverse order,
duke@435 2473 // using instruction latencies and taking into account function unit
duke@435 2474 // availability.
duke@435 2475 void Scheduling::DoScheduling() {
duke@435 2476 #ifndef PRODUCT
duke@435 2477 if (_cfg->C->trace_opto_output())
duke@435 2478 tty->print("# -> DoScheduling\n");
duke@435 2479 #endif
duke@435 2480
duke@435 2481 Block *succ_bb = NULL;
duke@435 2482 Block *bb;
duke@435 2483
duke@435 2484 // Walk over all the basic blocks in reverse order
adlertz@5539 2485 for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
adlertz@5539 2486 bb = _cfg->get_block(i);
duke@435 2487
duke@435 2488 #ifndef PRODUCT
duke@435 2489 if (_cfg->C->trace_opto_output()) {
duke@435 2490 tty->print("# Schedule BB#%03d (initial)\n", i);
adlertz@5635 2491 for (uint j = 0; j < bb->number_of_nodes(); j++) {
adlertz@5635 2492 bb->get_node(j)->dump();
adlertz@5539 2493 }
duke@435 2494 }
duke@435 2495 #endif
duke@435 2496
duke@435 2497 // On the head node, skip processing
adlertz@5539 2498 if (bb == _cfg->get_root_block()) {
duke@435 2499 continue;
adlertz@5539 2500 }
duke@435 2501
duke@435 2502 // Skip empty, connector blocks
duke@435 2503 if (bb->is_connector())
duke@435 2504 continue;
duke@435 2505
duke@435 2506 // If the following block is not the sole successor of
duke@435 2507 // this one, then reset the pipeline information
duke@435 2508 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
duke@435 2509 #ifndef PRODUCT
duke@435 2510 if (_cfg->C->trace_opto_output()) {
duke@435 2511 tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
duke@435 2512 _next_node->_idx, _bundle_instr_count);
duke@435 2513 }
duke@435 2514 #endif
duke@435 2515 step_and_clear();
duke@435 2516 }
duke@435 2517
duke@435 2518 // Leave untouched the starting instruction, any Phis, a CreateEx node
adlertz@5635 2519 // or Top. bb->get_node(_bb_start) is the first schedulable instruction.
adlertz@5635 2520 _bb_end = bb->number_of_nodes()-1;
duke@435 2521 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
adlertz@5635 2522 Node *n = bb->get_node(_bb_start);
duke@435 2523 // Things not matched, like Phinodes and ProjNodes don't get scheduled.
duke@435 2524 // Also, MachIdealNodes do not get scheduled
duke@435 2525 if( !n->is_Mach() ) continue; // Skip non-machine nodes
duke@435 2526 MachNode *mach = n->as_Mach();
duke@435 2527 int iop = mach->ideal_Opcode();
duke@435 2528 if( iop == Op_CreateEx ) continue; // CreateEx is pinned
duke@435 2529 if( iop == Op_Con ) continue; // Do not schedule Top
duke@435 2530 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes
duke@435 2531 mach->pipeline() == MachNode::pipeline_class() &&
iveresov@7570 2532 !n->is_SpillCopy() && !n->is_MachMerge() ) // Breakpoints, Prolog, etc
duke@435 2533 continue;
duke@435 2534 break; // Funny loop structure to be sure...
duke@435 2535 }
duke@435 2536 // Compute last "interesting" instruction in block - last instruction we
duke@435 2537 // might schedule. _bb_end points just after last schedulable inst. We
duke@435 2538 // normally schedule conditional branches (despite them being forced last
duke@435 2539 // in the block), because they have delay slots we can fill. Calls all
duke@435 2540 // have their delay slots filled in the template expansions, so we don't
duke@435 2541 // bother scheduling them.
adlertz@5635 2542 Node *last = bb->get_node(_bb_end);
kvn@3049 2543 // Ignore trailing NOPs.
kvn@3049 2544 while (_bb_end > 0 && last->is_Mach() &&
kvn@3049 2545 last->as_Mach()->ideal_Opcode() == Op_Con) {
adlertz@5635 2546 last = bb->get_node(--_bb_end);
kvn@3049 2547 }
kvn@3049 2548 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
duke@435 2549 if( last->is_Catch() ||
kvn@1142 2550 // Exclude unreachable path case when Halt node is in a separate block.
kvn@1142 2551 (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
duke@435 2552 // There must be a prior call. Skip it.
adlertz@5635 2553 while( !bb->get_node(--_bb_end)->is_MachCall() ) {
adlertz@5635 2554 assert( bb->get_node(_bb_end)->is_MachProj(), "skipping projections after expected call" );
duke@435 2555 }
duke@435 2556 } else if( last->is_MachNullCheck() ) {
duke@435 2557 // Backup so the last null-checked memory instruction is
duke@435 2558 // outside the schedulable range. Skip over the nullcheck,
duke@435 2559 // projection, and the memory nodes.
duke@435 2560 Node *mem = last->in(1);
duke@435 2561 do {
duke@435 2562 _bb_end--;
adlertz@5635 2563 } while (mem != bb->get_node(_bb_end));
duke@435 2564 } else {
duke@435 2565 // Set _bb_end to point after last schedulable inst.
duke@435 2566 _bb_end++;
duke@435 2567 }
duke@435 2568
duke@435 2569 assert( _bb_start <= _bb_end, "inverted block ends" );
duke@435 2570
duke@435 2571 // Compute the register antidependencies for the basic block
duke@435 2572 ComputeRegisterAntidependencies(bb);
duke@435 2573 if (_cfg->C->failing()) return; // too many D-U pinch points
duke@435 2574
duke@435 2575 // Compute intra-bb latencies for the nodes
duke@435 2576 ComputeLocalLatenciesForward(bb);
duke@435 2577
duke@435 2578 // Compute the usage within the block, and set the list of all nodes
duke@435 2579 // in the block that have no uses within the block.
duke@435 2580 ComputeUseCount(bb);
duke@435 2581
duke@435 2582 // Schedule the remaining instructions in the block
duke@435 2583 while ( _available.size() > 0 ) {
duke@435 2584 Node *n = ChooseNodeToBundle();
morris@4770 2585 guarantee(n != NULL, "no nodes available");
duke@435 2586 AddNodeToBundle(n,bb);
duke@435 2587 }
duke@435 2588
duke@435 2589 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
duke@435 2590 #ifdef ASSERT
duke@435 2591 for( uint l = _bb_start; l < _bb_end; l++ ) {
adlertz@5635 2592 Node *n = bb->get_node(l);
duke@435 2593 uint m;
duke@435 2594 for( m = 0; m < _bb_end-_bb_start; m++ )
duke@435 2595 if( _scheduled[m] == n )
duke@435 2596 break;
duke@435 2597 assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
duke@435 2598 }
duke@435 2599 #endif
duke@435 2600
duke@435 2601 // Now copy the instructions (in reverse order) back to the block
duke@435 2602 for ( uint k = _bb_start; k < _bb_end; k++ )
adlertz@5635 2603 bb->map_node(_scheduled[_bb_end-k-1], k);
duke@435 2604
duke@435 2605 #ifndef PRODUCT
duke@435 2606 if (_cfg->C->trace_opto_output()) {
duke@435 2607 tty->print("# Schedule BB#%03d (final)\n", i);
duke@435 2608 uint current = 0;
adlertz@5635 2609 for (uint j = 0; j < bb->number_of_nodes(); j++) {
adlertz@5635 2610 Node *n = bb->get_node(j);
duke@435 2611 if( valid_bundle_info(n) ) {
duke@435 2612 Bundle *bundle = node_bundling(n);
duke@435 2613 if (bundle->instr_count() > 0 || bundle->flags() > 0) {
duke@435 2614 tty->print("*** Bundle: ");
duke@435 2615 bundle->dump();
duke@435 2616 }
duke@435 2617 n->dump();
duke@435 2618 }
duke@435 2619 }
duke@435 2620 }
duke@435 2621 #endif
duke@435 2622 #ifdef ASSERT
duke@435 2623 verify_good_schedule(bb,"after block local scheduling");
duke@435 2624 #endif
duke@435 2625 }
duke@435 2626
duke@435 2627 #ifndef PRODUCT
duke@435 2628 if (_cfg->C->trace_opto_output())
duke@435 2629 tty->print("# <- DoScheduling\n");
duke@435 2630 #endif
duke@435 2631
duke@435 2632 // Record final node-bundling array location
duke@435 2633 _regalloc->C->set_node_bundling_base(_node_bundling_base);
duke@435 2634
duke@435 2635 } // end DoScheduling
duke@435 2636
duke@435 2637 // Verify that no live-range used in the block is killed in the block by a
duke@435 2638 // wrong DEF. This doesn't verify live-ranges that span blocks.
duke@435 2639
duke@435 2640 // Check for edge existence. Used to avoid adding redundant precedence edges.
duke@435 2641 static bool edge_from_to( Node *from, Node *to ) {
duke@435 2642 for( uint i=0; i<from->len(); i++ )
duke@435 2643 if( from->in(i) == to )
duke@435 2644 return true;
duke@435 2645 return false;
duke@435 2646 }
duke@435 2647
duke@435 2648 #ifdef ASSERT
duke@435 2649 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
duke@435 2650 // Check for bad kills
duke@435 2651 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
duke@435 2652 Node *prior_use = _reg_node[def];
duke@435 2653 if( prior_use && !edge_from_to(prior_use,n) ) {
duke@435 2654 tty->print("%s = ",OptoReg::as_VMReg(def)->name());
duke@435 2655 n->dump();
duke@435 2656 tty->print_cr("...");
duke@435 2657 prior_use->dump();
jcoomes@1845 2658 assert(edge_from_to(prior_use,n),msg);
duke@435 2659 }
duke@435 2660 _reg_node.map(def,NULL); // Kill live USEs
duke@435 2661 }
duke@435 2662 }
duke@435 2663
duke@435 2664 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
duke@435 2665
duke@435 2666 // Zap to something reasonable for the verify code
duke@435 2667 _reg_node.clear();
duke@435 2668
duke@435 2669 // Walk over the block backwards. Check to make sure each DEF doesn't
duke@435 2670 // kill a live value (other than the one it's supposed to). Add each
duke@435 2671 // USE to the live set.
adlertz@5635 2672 for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
adlertz@5635 2673 Node *n = b->get_node(i);
duke@435 2674 int n_op = n->Opcode();
duke@435 2675 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
duke@435 2676 // Fat-proj kills a slew of registers
duke@435 2677 RegMask rm = n->out_RegMask();// Make local copy
duke@435 2678 while( rm.is_NotEmpty() ) {
duke@435 2679 OptoReg::Name kill = rm.find_first_elem();
duke@435 2680 rm.Remove(kill);
duke@435 2681 verify_do_def( n, kill, msg );
duke@435 2682 }
duke@435 2683 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
duke@435 2684 // Get DEF'd registers the normal way
duke@435 2685 verify_do_def( n, _regalloc->get_reg_first(n), msg );
duke@435 2686 verify_do_def( n, _regalloc->get_reg_second(n), msg );
duke@435 2687 }
duke@435 2688
duke@435 2689 // Now make all USEs live
duke@435 2690 for( uint i=1; i<n->req(); i++ ) {
duke@435 2691 Node *def = n->in(i);
duke@435 2692 assert(def != 0, "input edge required");
duke@435 2693 OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
duke@435 2694 OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
duke@435 2695 if( OptoReg::is_valid(reg_lo) ) {
jcoomes@1845 2696 assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
duke@435 2697 _reg_node.map(reg_lo,n);
duke@435 2698 }
duke@435 2699 if( OptoReg::is_valid(reg_hi) ) {
jcoomes@1845 2700 assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
duke@435 2701 _reg_node.map(reg_hi,n);
duke@435 2702 }
duke@435 2703 }
duke@435 2704
duke@435 2705 }
duke@435 2706
duke@435 2707 // Zap to something reasonable for the Antidependence code
duke@435 2708 _reg_node.clear();
duke@435 2709 }
duke@435 2710 #endif
duke@435 2711
duke@435 2712 // Conditionally add precedence edges. Avoid putting edges on Projs.
duke@435 2713 static void add_prec_edge_from_to( Node *from, Node *to ) {
duke@435 2714 if( from->is_Proj() ) { // Put precedence edge on Proj's input
duke@435 2715 assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
duke@435 2716 from = from->in(0);
duke@435 2717 }
duke@435 2718 if( from != to && // No cycles (for things like LD L0,[L0+4] )
duke@435 2719 !edge_from_to( from, to ) ) // Avoid duplicate edge
duke@435 2720 from->add_prec(to);
duke@435 2721 }
duke@435 2722
duke@435 2723 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
duke@435 2724 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
duke@435 2725 return;
duke@435 2726
duke@435 2727 Node *pinch = _reg_node[def_reg]; // Get pinch point
adlertz@5509 2728 if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
duke@435 2729 is_def ) { // Check for a true def (not a kill)
duke@435 2730 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
duke@435 2731 return;
duke@435 2732 }
duke@435 2733
duke@435 2734 Node *kill = def; // Rename 'def' to more descriptive 'kill'
kevinw@9325 2735 debug_only( def = (Node*)((intptr_t)0xdeadbeef); )
duke@435 2736
duke@435 2737 // After some number of kills there _may_ be a later def
duke@435 2738 Node *later_def = NULL;
duke@435 2739
duke@435 2740 // Finding a kill requires a real pinch-point.
duke@435 2741 // Check for not already having a pinch-point.
duke@435 2742 // Pinch points are Op_Node's.
duke@435 2743 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
duke@435 2744 later_def = pinch; // Must be def/kill as optimistic pinch-point
duke@435 2745 if ( _pinch_free_list.size() > 0) {
duke@435 2746 pinch = _pinch_free_list.pop();
duke@435 2747 } else {
kvn@4115 2748 pinch = new (_cfg->C) Node(1); // Pinch point to-be
duke@435 2749 }
duke@435 2750 if (pinch->_idx >= _regalloc->node_regs_max_index()) {
duke@435 2751 _cfg->C->record_method_not_compilable("too many D-U pinch points");
duke@435 2752 return;
duke@435 2753 }
adlertz@5509 2754 _cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init)
duke@435 2755 _reg_node.map(def_reg,pinch); // Record pinch-point
duke@435 2756 //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
duke@435 2757 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
duke@435 2758 pinch->init_req(0, _cfg->C->top()); // set not NULL for the next call
duke@435 2759 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
duke@435 2760 later_def = NULL; // and no later def
duke@435 2761 }
duke@435 2762 pinch->set_req(0,later_def); // Hook later def so we can find it
duke@435 2763 } else { // Else have valid pinch point
duke@435 2764 if( pinch->in(0) ) // If there is a later-def
duke@435 2765 later_def = pinch->in(0); // Get it
duke@435 2766 }
duke@435 2767
duke@435 2768 // Add output-dependence edge from later def to kill
duke@435 2769 if( later_def ) // If there is some original def
duke@435 2770 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
duke@435 2771
duke@435 2772 // See if current kill is also a use, and so is forced to be the pinch-point.
duke@435 2773 if( pinch->Opcode() == Op_Node ) {
duke@435 2774 Node *uses = kill->is_Proj() ? kill->in(0) : kill;
duke@435 2775 for( uint i=1; i<uses->req(); i++ ) {
duke@435 2776 if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
duke@435 2777 _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
duke@435 2778 // Yes, found a use/kill pinch-point
duke@435 2779 pinch->set_req(0,NULL); //
duke@435 2780 pinch->replace_by(kill); // Move anti-dep edges up
duke@435 2781 pinch = kill;
duke@435 2782 _reg_node.map(def_reg,pinch);
duke@435 2783 return;
duke@435 2784 }
duke@435 2785 }
duke@435 2786 }
duke@435 2787
duke@435 2788 // Add edge from kill to pinch-point
duke@435 2789 add_prec_edge_from_to(kill,pinch);
duke@435 2790 }
duke@435 2791
duke@435 2792 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
duke@435 2793 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
duke@435 2794 return;
duke@435 2795 Node *pinch = _reg_node[use_reg]; // Get pinch point
duke@435 2796 // Check for no later def_reg/kill in block
adlertz@5509 2797 if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
duke@435 2798 // Use has to be block-local as well
adlertz@5509 2799 _cfg->get_block_for_node(use) == b) {
duke@435 2800 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
duke@435 2801 pinch->req() == 1 ) { // pinch not yet in block?
duke@435 2802 pinch->del_req(0); // yank pointer to later-def, also set flag
duke@435 2803 // Insert the pinch-point in the block just after the last use
adlertz@5635 2804 b->insert_node(pinch, b->find_node(use) + 1);
duke@435 2805 _bb_end++; // Increase size scheduled region in block
duke@435 2806 }
duke@435 2807
duke@435 2808 add_prec_edge_from_to(pinch,use);
duke@435 2809 }
duke@435 2810 }
duke@435 2811
duke@435 2812 // We insert antidependences between the reads and following write of
duke@435 2813 // allocated registers to prevent illegal code motion. Hopefully, the
duke@435 2814 // number of added references should be fairly small, especially as we
duke@435 2815 // are only adding references within the current basic block.
duke@435 2816 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
duke@435 2817
duke@435 2818 #ifdef ASSERT
duke@435 2819 verify_good_schedule(b,"before block local scheduling");
duke@435 2820 #endif
duke@435 2821
duke@435 2822 // A valid schedule, for each register independently, is an endless cycle
duke@435 2823 // of: a def, then some uses (connected to the def by true dependencies),
duke@435 2824 // then some kills (defs with no uses), finally the cycle repeats with a new
duke@435 2825 // def. The uses are allowed to float relative to each other, as are the
duke@435 2826 // kills. No use is allowed to slide past a kill (or def). This requires
duke@435 2827 // antidependencies between all uses of a single def and all kills that
duke@435 2828 // follow, up to the next def. More edges are redundant, because later defs
duke@435 2829 // & kills are already serialized with true or antidependencies. To keep
duke@435 2830 // the edge count down, we add a 'pinch point' node if there's more than
duke@435 2831 // one use or more than one kill/def.
duke@435 2832
duke@435 2833 // We add dependencies in one bottom-up pass.
duke@435 2834
duke@435 2835 // For each instruction we handle it's DEFs/KILLs, then it's USEs.
duke@435 2836
duke@435 2837 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
duke@435 2838 // register. If not, we record the DEF/KILL in _reg_node, the
duke@435 2839 // register-to-def mapping. If there is a prior DEF/KILL, we insert a
duke@435 2840 // "pinch point", a new Node that's in the graph but not in the block.
duke@435 2841 // We put edges from the prior and current DEF/KILLs to the pinch point.
duke@435 2842 // We put the pinch point in _reg_node. If there's already a pinch point
duke@435 2843 // we merely add an edge from the current DEF/KILL to the pinch point.
duke@435 2844
duke@435 2845 // After doing the DEF/KILLs, we handle USEs. For each used register, we
duke@435 2846 // put an edge from the pinch point to the USE.
duke@435 2847
duke@435 2848 // To be expedient, the _reg_node array is pre-allocated for the whole
duke@435 2849 // compilation. _reg_node is lazily initialized; it either contains a NULL,
duke@435 2850 // or a valid def/kill/pinch-point, or a leftover node from some prior
duke@435 2851 // block. Leftover node from some prior block is treated like a NULL (no
duke@435 2852 // prior def, so no anti-dependence needed). Valid def is distinguished by
duke@435 2853 // it being in the current block.
duke@435 2854 bool fat_proj_seen = false;
duke@435 2855 uint last_safept = _bb_end-1;
adlertz@5635 2856 Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
duke@435 2857 Node* last_safept_node = end_node;
duke@435 2858 for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
adlertz@5635 2859 Node *n = b->get_node(i);
duke@435 2860 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges
kvn@3040 2861 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
duke@435 2862 // Fat-proj kills a slew of registers
duke@435 2863 // This can add edges to 'n' and obscure whether or not it was a def,
duke@435 2864 // hence the is_def flag.
duke@435 2865 fat_proj_seen = true;
duke@435 2866 RegMask rm = n->out_RegMask();// Make local copy
duke@435 2867 while( rm.is_NotEmpty() ) {
duke@435 2868 OptoReg::Name kill = rm.find_first_elem();
duke@435 2869 rm.Remove(kill);
duke@435 2870 anti_do_def( b, n, kill, is_def );
duke@435 2871 }
duke@435 2872 } else {
duke@435 2873 // Get DEF'd registers the normal way
duke@435 2874 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
duke@435 2875 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
duke@435 2876 }
duke@435 2877
kvn@3049 2878 // Kill projections on a branch should appear to occur on the
kvn@3049 2879 // branch, not afterwards, so grab the masks from the projections
kvn@3049 2880 // and process them.
kvn@3051 2881 if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
kvn@3049 2882 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@3049 2883 Node* use = n->fast_out(i);
kvn@3049 2884 if (use->is_Proj()) {
kvn@3049 2885 RegMask rm = use->out_RegMask();// Make local copy
kvn@3049 2886 while( rm.is_NotEmpty() ) {
kvn@3049 2887 OptoReg::Name kill = rm.find_first_elem();
kvn@3049 2888 rm.Remove(kill);
kvn@3049 2889 anti_do_def( b, n, kill, false );
kvn@3049 2890 }
kvn@3049 2891 }
kvn@3049 2892 }
kvn@3049 2893 }
kvn@3049 2894
duke@435 2895 // Check each register used by this instruction for a following DEF/KILL
duke@435 2896 // that must occur afterward and requires an anti-dependence edge.
duke@435 2897 for( uint j=0; j<n->req(); j++ ) {
duke@435 2898 Node *def = n->in(j);
duke@435 2899 if( def ) {
kvn@3040 2900 assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
duke@435 2901 anti_do_use( b, n, _regalloc->get_reg_first(def) );
duke@435 2902 anti_do_use( b, n, _regalloc->get_reg_second(def) );
duke@435 2903 }
duke@435 2904 }
duke@435 2905 // Do not allow defs of new derived values to float above GC
duke@435 2906 // points unless the base is definitely available at the GC point.
duke@435 2907
adlertz@5635 2908 Node *m = b->get_node(i);
duke@435 2909
duke@435 2910 // Add precedence edge from following safepoint to use of derived pointer
duke@435 2911 if( last_safept_node != end_node &&
duke@435 2912 m != last_safept_node) {
duke@435 2913 for (uint k = 1; k < m->req(); k++) {
duke@435 2914 const Type *t = m->in(k)->bottom_type();
duke@435 2915 if( t->isa_oop_ptr() &&
duke@435 2916 t->is_ptr()->offset() != 0 ) {
duke@435 2917 last_safept_node->add_prec( m );
duke@435 2918 break;
duke@435 2919 }
duke@435 2920 }
duke@435 2921 }
duke@435 2922
duke@435 2923 if( n->jvms() ) { // Precedence edge from derived to safept
duke@435 2924 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
adlertz@5635 2925 if( b->get_node(last_safept) != last_safept_node ) {
duke@435 2926 last_safept = b->find_node(last_safept_node);
duke@435 2927 }
duke@435 2928 for( uint j=last_safept; j > i; j-- ) {
adlertz@5635 2929 Node *mach = b->get_node(j);
duke@435 2930 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
duke@435 2931 mach->add_prec( n );
duke@435 2932 }
duke@435 2933 last_safept = i;
duke@435 2934 last_safept_node = m;
duke@435 2935 }
duke@435 2936 }
duke@435 2937
duke@435 2938 if (fat_proj_seen) {
duke@435 2939 // Garbage collect pinch nodes that were not consumed.
duke@435 2940 // They are usually created by a fat kill MachProj for a call.
duke@435 2941 garbage_collect_pinch_nodes();
duke@435 2942 }
duke@435 2943 }
duke@435 2944
duke@435 2945 // Garbage collect pinch nodes for reuse by other blocks.
duke@435 2946 //
duke@435 2947 // The block scheduler's insertion of anti-dependence
duke@435 2948 // edges creates many pinch nodes when the block contains
duke@435 2949 // 2 or more Calls. A pinch node is used to prevent a
duke@435 2950 // combinatorial explosion of edges. If a set of kills for a
duke@435 2951 // register is anti-dependent on a set of uses (or defs), rather
duke@435 2952 // than adding an edge in the graph between each pair of kill
duke@435 2953 // and use (or def), a pinch is inserted between them:
duke@435 2954 //
duke@435 2955 // use1 use2 use3
duke@435 2956 // \ | /
duke@435 2957 // \ | /
duke@435 2958 // pinch
duke@435 2959 // / | \
duke@435 2960 // / | \
duke@435 2961 // kill1 kill2 kill3
duke@435 2962 //
duke@435 2963 // One pinch node is created per register killed when
duke@435 2964 // the second call is encountered during a backwards pass
duke@435 2965 // over the block. Most of these pinch nodes are never
duke@435 2966 // wired into the graph because the register is never
duke@435 2967 // used or def'ed in the block.
duke@435 2968 //
duke@435 2969 void Scheduling::garbage_collect_pinch_nodes() {
duke@435 2970 #ifndef PRODUCT
duke@435 2971 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
duke@435 2972 #endif
duke@435 2973 int trace_cnt = 0;
duke@435 2974 for (uint k = 0; k < _reg_node.Size(); k++) {
duke@435 2975 Node* pinch = _reg_node[k];
adlertz@5509 2976 if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
duke@435 2977 // no predecence input edges
duke@435 2978 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
duke@435 2979 cleanup_pinch(pinch);
duke@435 2980 _pinch_free_list.push(pinch);
duke@435 2981 _reg_node.map(k, NULL);
duke@435 2982 #ifndef PRODUCT
duke@435 2983 if (_cfg->C->trace_opto_output()) {
duke@435 2984 trace_cnt++;
duke@435 2985 if (trace_cnt > 40) {
duke@435 2986 tty->print("\n");
duke@435 2987 trace_cnt = 0;
duke@435 2988 }
duke@435 2989 tty->print(" %d", pinch->_idx);
duke@435 2990 }
duke@435 2991 #endif
duke@435 2992 }
duke@435 2993 }
duke@435 2994 #ifndef PRODUCT
duke@435 2995 if (_cfg->C->trace_opto_output()) tty->print("\n");
duke@435 2996 #endif
duke@435 2997 }
duke@435 2998
duke@435 2999 // Clean up a pinch node for reuse.
duke@435 3000 void Scheduling::cleanup_pinch( Node *pinch ) {
duke@435 3001 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
duke@435 3002
duke@435 3003 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
duke@435 3004 Node* use = pinch->last_out(i);
duke@435 3005 uint uses_found = 0;
duke@435 3006 for (uint j = use->req(); j < use->len(); j++) {
duke@435 3007 if (use->in(j) == pinch) {
duke@435 3008 use->rm_prec(j);
duke@435 3009 uses_found++;
duke@435 3010 }
duke@435 3011 }
duke@435 3012 assert(uses_found > 0, "must be a precedence edge");
duke@435 3013 i -= uses_found; // we deleted 1 or more copies of this edge
duke@435 3014 }
duke@435 3015 // May have a later_def entry
duke@435 3016 pinch->set_req(0, NULL);
duke@435 3017 }
duke@435 3018
duke@435 3019 #ifndef PRODUCT
duke@435 3020
duke@435 3021 void Scheduling::dump_available() const {
duke@435 3022 tty->print("#Availist ");
duke@435 3023 for (uint i = 0; i < _available.size(); i++)
duke@435 3024 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
duke@435 3025 tty->cr();
duke@435 3026 }
duke@435 3027
duke@435 3028 // Print Scheduling Statistics
duke@435 3029 void Scheduling::print_statistics() {
duke@435 3030 // Print the size added by nops for bundling
duke@435 3031 tty->print("Nops added %d bytes to total of %d bytes",
duke@435 3032 _total_nop_size, _total_method_size);
duke@435 3033 if (_total_method_size > 0)
duke@435 3034 tty->print(", for %.2f%%",
duke@435 3035 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
duke@435 3036 tty->print("\n");
duke@435 3037
duke@435 3038 // Print the number of branch shadows filled
duke@435 3039 if (Pipeline::_branch_has_delay_slot) {
duke@435 3040 tty->print("Of %d branches, %d had unconditional delay slots filled",
duke@435 3041 _total_branches, _total_unconditional_delays);
duke@435 3042 if (_total_branches > 0)
duke@435 3043 tty->print(", for %.2f%%",
duke@435 3044 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
duke@435 3045 tty->print("\n");
duke@435 3046 }
duke@435 3047
duke@435 3048 uint total_instructions = 0, total_bundles = 0;
duke@435 3049
duke@435 3050 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
duke@435 3051 uint bundle_count = _total_instructions_per_bundle[i];
duke@435 3052 total_instructions += bundle_count * i;
duke@435 3053 total_bundles += bundle_count;
duke@435 3054 }
duke@435 3055
duke@435 3056 if (total_bundles > 0)
duke@435 3057 tty->print("Average ILP (excluding nops) is %.2f\n",
duke@435 3058 ((double)total_instructions) / ((double)total_bundles));
duke@435 3059 }
duke@435 3060 #endif

mercurial