src/cpu/x86/vm/stubGenerator_x86_32.cpp

Tue, 07 Oct 2008 11:01:35 -0700

author
trims
date
Tue, 07 Oct 2008 11:01:35 -0700
changeset 815
eb28cf662f56
parent 797
f8199438385b
parent 772
9ee9cf798b59
child 841
67e8b4d06369
permissions
-rw-r--r--

Merge

duke@435 1 /*
xdono@772 2 * Copyright 1999-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_stubGenerator_x86_32.cpp.incl"
duke@435 27
duke@435 28 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 29 // For a more detailed description of the stub routine structure
duke@435 30 // see the comment in stubRoutines.hpp
duke@435 31
duke@435 32 #define __ _masm->
never@739 33 #define a__ ((Assembler*)_masm)->
duke@435 34
duke@435 35 #ifdef PRODUCT
duke@435 36 #define BLOCK_COMMENT(str) /* nothing */
duke@435 37 #else
duke@435 38 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 39 #endif
duke@435 40
duke@435 41 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 42
duke@435 43 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
duke@435 44 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
duke@435 45
duke@435 46 // -------------------------------------------------------------------------------------------------------------------------
duke@435 47 // Stub Code definitions
duke@435 48
duke@435 49 static address handle_unsafe_access() {
duke@435 50 JavaThread* thread = JavaThread::current();
duke@435 51 address pc = thread->saved_exception_pc();
duke@435 52 // pc is the instruction which we must emulate
duke@435 53 // doing a no-op is fine: return garbage from the load
duke@435 54 // therefore, compute npc
duke@435 55 address npc = Assembler::locate_next_instruction(pc);
duke@435 56
duke@435 57 // request an async exception
duke@435 58 thread->set_pending_unsafe_access_error();
duke@435 59
duke@435 60 // return address of next instruction to execute
duke@435 61 return npc;
duke@435 62 }
duke@435 63
duke@435 64 class StubGenerator: public StubCodeGenerator {
duke@435 65 private:
duke@435 66
duke@435 67 #ifdef PRODUCT
duke@435 68 #define inc_counter_np(counter) (0)
duke@435 69 #else
duke@435 70 void inc_counter_np_(int& counter) {
never@739 71 __ incrementl(ExternalAddress((address)&counter));
duke@435 72 }
duke@435 73 #define inc_counter_np(counter) \
duke@435 74 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 75 inc_counter_np_(counter);
duke@435 76 #endif //PRODUCT
duke@435 77
duke@435 78 void inc_copy_counter_np(BasicType t) {
duke@435 79 #ifndef PRODUCT
duke@435 80 switch (t) {
duke@435 81 case T_BYTE: inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
duke@435 82 case T_SHORT: inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
duke@435 83 case T_INT: inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
duke@435 84 case T_LONG: inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
duke@435 85 case T_OBJECT: inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
duke@435 86 }
duke@435 87 ShouldNotReachHere();
duke@435 88 #endif //PRODUCT
duke@435 89 }
duke@435 90
duke@435 91 //------------------------------------------------------------------------------------------------------------------------
duke@435 92 // Call stubs are used to call Java from C
duke@435 93 //
duke@435 94 // [ return_from_Java ] <--- rsp
duke@435 95 // [ argument word n ]
duke@435 96 // ...
duke@435 97 // -N [ argument word 1 ]
duke@435 98 // -7 [ Possible padding for stack alignment ]
duke@435 99 // -6 [ Possible padding for stack alignment ]
duke@435 100 // -5 [ Possible padding for stack alignment ]
duke@435 101 // -4 [ mxcsr save ] <--- rsp_after_call
duke@435 102 // -3 [ saved rbx, ]
duke@435 103 // -2 [ saved rsi ]
duke@435 104 // -1 [ saved rdi ]
duke@435 105 // 0 [ saved rbp, ] <--- rbp,
duke@435 106 // 1 [ return address ]
duke@435 107 // 2 [ ptr. to call wrapper ]
duke@435 108 // 3 [ result ]
duke@435 109 // 4 [ result_type ]
duke@435 110 // 5 [ method ]
duke@435 111 // 6 [ entry_point ]
duke@435 112 // 7 [ parameters ]
duke@435 113 // 8 [ parameter_size ]
duke@435 114 // 9 [ thread ]
duke@435 115
duke@435 116
duke@435 117 address generate_call_stub(address& return_address) {
duke@435 118 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 119 address start = __ pc();
duke@435 120
duke@435 121 // stub code parameters / addresses
duke@435 122 assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
duke@435 123 bool sse_save = false;
duke@435 124 const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
duke@435 125 const int locals_count_in_bytes (4*wordSize);
duke@435 126 const Address mxcsr_save (rbp, -4 * wordSize);
duke@435 127 const Address saved_rbx (rbp, -3 * wordSize);
duke@435 128 const Address saved_rsi (rbp, -2 * wordSize);
duke@435 129 const Address saved_rdi (rbp, -1 * wordSize);
duke@435 130 const Address result (rbp, 3 * wordSize);
duke@435 131 const Address result_type (rbp, 4 * wordSize);
duke@435 132 const Address method (rbp, 5 * wordSize);
duke@435 133 const Address entry_point (rbp, 6 * wordSize);
duke@435 134 const Address parameters (rbp, 7 * wordSize);
duke@435 135 const Address parameter_size(rbp, 8 * wordSize);
duke@435 136 const Address thread (rbp, 9 * wordSize); // same as in generate_catch_exception()!
duke@435 137 sse_save = UseSSE > 0;
duke@435 138
duke@435 139 // stub code
duke@435 140 __ enter();
never@739 141 __ movptr(rcx, parameter_size); // parameter counter
never@739 142 __ shlptr(rcx, Interpreter::logStackElementSize()); // convert parameter count to bytes
never@739 143 __ addptr(rcx, locals_count_in_bytes); // reserve space for register saves
never@739 144 __ subptr(rsp, rcx);
never@739 145 __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack
duke@435 146
duke@435 147 // save rdi, rsi, & rbx, according to C calling conventions
never@739 148 __ movptr(saved_rdi, rdi);
never@739 149 __ movptr(saved_rsi, rsi);
never@739 150 __ movptr(saved_rbx, rbx);
duke@435 151 // save and initialize %mxcsr
duke@435 152 if (sse_save) {
duke@435 153 Label skip_ldmx;
duke@435 154 __ stmxcsr(mxcsr_save);
duke@435 155 __ movl(rax, mxcsr_save);
duke@435 156 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
duke@435 157 ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
duke@435 158 __ cmp32(rax, mxcsr_std);
duke@435 159 __ jcc(Assembler::equal, skip_ldmx);
duke@435 160 __ ldmxcsr(mxcsr_std);
duke@435 161 __ bind(skip_ldmx);
duke@435 162 }
duke@435 163
duke@435 164 // make sure the control word is correct.
duke@435 165 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 166
duke@435 167 #ifdef ASSERT
duke@435 168 // make sure we have no pending exceptions
duke@435 169 { Label L;
never@739 170 __ movptr(rcx, thread);
never@739 171 __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 172 __ jcc(Assembler::equal, L);
duke@435 173 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 174 __ bind(L);
duke@435 175 }
duke@435 176 #endif
duke@435 177
duke@435 178 // pass parameters if any
duke@435 179 BLOCK_COMMENT("pass parameters if any");
duke@435 180 Label parameters_done;
duke@435 181 __ movl(rcx, parameter_size); // parameter counter
duke@435 182 __ testl(rcx, rcx);
duke@435 183 __ jcc(Assembler::zero, parameters_done);
duke@435 184
duke@435 185 // parameter passing loop
duke@435 186
duke@435 187 Label loop;
duke@435 188 // Copy Java parameters in reverse order (receiver last)
duke@435 189 // Note that the argument order is inverted in the process
duke@435 190 // source is rdx[rcx: N-1..0]
duke@435 191 // dest is rsp[rbx: 0..N-1]
duke@435 192
never@739 193 __ movptr(rdx, parameters); // parameter pointer
never@739 194 __ xorptr(rbx, rbx);
duke@435 195
duke@435 196 __ BIND(loop);
duke@435 197 if (TaggedStackInterpreter) {
never@739 198 __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(),
duke@435 199 -2*wordSize)); // get tag
never@739 200 __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
duke@435 201 Interpreter::expr_tag_offset_in_bytes(0)), rax); // store tag
duke@435 202 }
duke@435 203
duke@435 204 // get parameter
never@739 205 __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
never@739 206 __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
duke@435 207 Interpreter::expr_offset_in_bytes(0)), rax); // store parameter
duke@435 208 __ increment(rbx);
duke@435 209 __ decrement(rcx);
duke@435 210 __ jcc(Assembler::notZero, loop);
duke@435 211
duke@435 212 // call Java function
duke@435 213 __ BIND(parameters_done);
never@739 214 __ movptr(rbx, method); // get methodOop
never@739 215 __ movptr(rax, entry_point); // get entry_point
never@739 216 __ mov(rsi, rsp); // set sender sp
duke@435 217 BLOCK_COMMENT("call Java function");
duke@435 218 __ call(rax);
duke@435 219
duke@435 220 BLOCK_COMMENT("call_stub_return_address:");
duke@435 221 return_address = __ pc();
duke@435 222
duke@435 223 Label common_return;
duke@435 224
duke@435 225 __ BIND(common_return);
duke@435 226
duke@435 227 // store result depending on type
duke@435 228 // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
never@739 229 __ movptr(rdi, result);
duke@435 230 Label is_long, is_float, is_double, exit;
duke@435 231 __ movl(rsi, result_type);
duke@435 232 __ cmpl(rsi, T_LONG);
duke@435 233 __ jcc(Assembler::equal, is_long);
duke@435 234 __ cmpl(rsi, T_FLOAT);
duke@435 235 __ jcc(Assembler::equal, is_float);
duke@435 236 __ cmpl(rsi, T_DOUBLE);
duke@435 237 __ jcc(Assembler::equal, is_double);
duke@435 238
duke@435 239 // handle T_INT case
duke@435 240 __ movl(Address(rdi, 0), rax);
duke@435 241 __ BIND(exit);
duke@435 242
duke@435 243 // check that FPU stack is empty
duke@435 244 __ verify_FPU(0, "generate_call_stub");
duke@435 245
duke@435 246 // pop parameters
never@739 247 __ lea(rsp, rsp_after_call);
duke@435 248
duke@435 249 // restore %mxcsr
duke@435 250 if (sse_save) {
duke@435 251 __ ldmxcsr(mxcsr_save);
duke@435 252 }
duke@435 253
duke@435 254 // restore rdi, rsi and rbx,
never@739 255 __ movptr(rbx, saved_rbx);
never@739 256 __ movptr(rsi, saved_rsi);
never@739 257 __ movptr(rdi, saved_rdi);
never@739 258 __ addptr(rsp, 4*wordSize);
duke@435 259
duke@435 260 // return
never@739 261 __ pop(rbp);
duke@435 262 __ ret(0);
duke@435 263
duke@435 264 // handle return types different from T_INT
duke@435 265 __ BIND(is_long);
duke@435 266 __ movl(Address(rdi, 0 * wordSize), rax);
duke@435 267 __ movl(Address(rdi, 1 * wordSize), rdx);
duke@435 268 __ jmp(exit);
duke@435 269
duke@435 270 __ BIND(is_float);
duke@435 271 // interpreter uses xmm0 for return values
duke@435 272 if (UseSSE >= 1) {
duke@435 273 __ movflt(Address(rdi, 0), xmm0);
duke@435 274 } else {
duke@435 275 __ fstp_s(Address(rdi, 0));
duke@435 276 }
duke@435 277 __ jmp(exit);
duke@435 278
duke@435 279 __ BIND(is_double);
duke@435 280 // interpreter uses xmm0 for return values
duke@435 281 if (UseSSE >= 2) {
duke@435 282 __ movdbl(Address(rdi, 0), xmm0);
duke@435 283 } else {
duke@435 284 __ fstp_d(Address(rdi, 0));
duke@435 285 }
duke@435 286 __ jmp(exit);
duke@435 287
duke@435 288 // If we call compiled code directly from the call stub we will
duke@435 289 // need to adjust the return back to the call stub to a specialized
duke@435 290 // piece of code that can handle compiled results and cleaning the fpu
duke@435 291 // stack. compiled code will be set to return here instead of the
duke@435 292 // return above that handles interpreter returns.
duke@435 293
duke@435 294 BLOCK_COMMENT("call_stub_compiled_return:");
never@739 295 StubRoutines::x86::set_call_stub_compiled_return( __ pc());
duke@435 296
duke@435 297 #ifdef COMPILER2
duke@435 298 if (UseSSE >= 2) {
duke@435 299 __ verify_FPU(0, "call_stub_compiled_return");
duke@435 300 } else {
duke@435 301 for (int i = 1; i < 8; i++) {
duke@435 302 __ ffree(i);
duke@435 303 }
duke@435 304
duke@435 305 // UseSSE <= 1 so double result should be left on TOS
duke@435 306 __ movl(rsi, result_type);
duke@435 307 __ cmpl(rsi, T_DOUBLE);
duke@435 308 __ jcc(Assembler::equal, common_return);
duke@435 309 if (UseSSE == 0) {
duke@435 310 // UseSSE == 0 so float result should be left on TOS
duke@435 311 __ cmpl(rsi, T_FLOAT);
duke@435 312 __ jcc(Assembler::equal, common_return);
duke@435 313 }
duke@435 314 __ ffree(0);
duke@435 315 }
duke@435 316 #endif /* COMPILER2 */
duke@435 317 __ jmp(common_return);
duke@435 318
duke@435 319 return start;
duke@435 320 }
duke@435 321
duke@435 322
duke@435 323 //------------------------------------------------------------------------------------------------------------------------
duke@435 324 // Return point for a Java call if there's an exception thrown in Java code.
duke@435 325 // The exception is caught and transformed into a pending exception stored in
duke@435 326 // JavaThread that can be tested from within the VM.
duke@435 327 //
duke@435 328 // Note: Usually the parameters are removed by the callee. In case of an exception
duke@435 329 // crossing an activation frame boundary, that is not the case if the callee
duke@435 330 // is compiled code => need to setup the rsp.
duke@435 331 //
duke@435 332 // rax,: exception oop
duke@435 333
duke@435 334 address generate_catch_exception() {
duke@435 335 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 336 const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
duke@435 337 const Address thread (rbp, 9 * wordSize); // same as in generate_call_stub()!
duke@435 338 address start = __ pc();
duke@435 339
duke@435 340 // get thread directly
never@739 341 __ movptr(rcx, thread);
duke@435 342 #ifdef ASSERT
duke@435 343 // verify that threads correspond
duke@435 344 { Label L;
duke@435 345 __ get_thread(rbx);
never@739 346 __ cmpptr(rbx, rcx);
duke@435 347 __ jcc(Assembler::equal, L);
duke@435 348 __ stop("StubRoutines::catch_exception: threads must correspond");
duke@435 349 __ bind(L);
duke@435 350 }
duke@435 351 #endif
duke@435 352 // set pending exception
duke@435 353 __ verify_oop(rax);
never@739 354 __ movptr(Address(rcx, Thread::pending_exception_offset()), rax );
duke@435 355 __ lea(Address(rcx, Thread::exception_file_offset ()),
duke@435 356 ExternalAddress((address)__FILE__));
duke@435 357 __ movl(Address(rcx, Thread::exception_line_offset ()), __LINE__ );
duke@435 358 // complete return to VM
duke@435 359 assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
duke@435 360 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
duke@435 361
duke@435 362 return start;
duke@435 363 }
duke@435 364
duke@435 365
duke@435 366 //------------------------------------------------------------------------------------------------------------------------
duke@435 367 // Continuation point for runtime calls returning with a pending exception.
duke@435 368 // The pending exception check happened in the runtime or native call stub.
duke@435 369 // The pending exception in Thread is converted into a Java-level exception.
duke@435 370 //
duke@435 371 // Contract with Java-level exception handlers:
duke@435 372 // rax,: exception
duke@435 373 // rdx: throwing pc
duke@435 374 //
duke@435 375 // NOTE: At entry of this stub, exception-pc must be on stack !!
duke@435 376
duke@435 377 address generate_forward_exception() {
duke@435 378 StubCodeMark mark(this, "StubRoutines", "forward exception");
duke@435 379 address start = __ pc();
duke@435 380
duke@435 381 // Upon entry, the sp points to the return address returning into Java
duke@435 382 // (interpreted or compiled) code; i.e., the return address becomes the
duke@435 383 // throwing pc.
duke@435 384 //
duke@435 385 // Arguments pushed before the runtime call are still on the stack but
duke@435 386 // the exception handler will reset the stack pointer -> ignore them.
duke@435 387 // A potential result in registers can be ignored as well.
duke@435 388
duke@435 389 #ifdef ASSERT
duke@435 390 // make sure this code is only executed if there is a pending exception
duke@435 391 { Label L;
duke@435 392 __ get_thread(rcx);
never@739 393 __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 394 __ jcc(Assembler::notEqual, L);
duke@435 395 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 396 __ bind(L);
duke@435 397 }
duke@435 398 #endif
duke@435 399
duke@435 400 // compute exception handler into rbx,
never@739 401 __ movptr(rax, Address(rsp, 0));
duke@435 402 BLOCK_COMMENT("call exception_handler_for_return_address");
duke@435 403 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rax);
never@739 404 __ mov(rbx, rax);
duke@435 405
duke@435 406 // setup rax, & rdx, remove return address & clear pending exception
duke@435 407 __ get_thread(rcx);
never@739 408 __ pop(rdx);
never@739 409 __ movptr(rax, Address(rcx, Thread::pending_exception_offset()));
never@739 410 __ movptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 411
duke@435 412 #ifdef ASSERT
duke@435 413 // make sure exception is set
duke@435 414 { Label L;
never@739 415 __ testptr(rax, rax);
duke@435 416 __ jcc(Assembler::notEqual, L);
duke@435 417 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 418 __ bind(L);
duke@435 419 }
duke@435 420 #endif
duke@435 421
duke@435 422 // continue at exception handler (return address removed)
duke@435 423 // rax,: exception
duke@435 424 // rbx,: exception handler
duke@435 425 // rdx: throwing pc
duke@435 426 __ verify_oop(rax);
duke@435 427 __ jmp(rbx);
duke@435 428
duke@435 429 return start;
duke@435 430 }
duke@435 431
duke@435 432
duke@435 433 //----------------------------------------------------------------------------------------------------
duke@435 434 // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
duke@435 435 //
duke@435 436 // xchg exists as far back as 8086, lock needed for MP only
duke@435 437 // Stack layout immediately after call:
duke@435 438 //
duke@435 439 // 0 [ret addr ] <--- rsp
duke@435 440 // 1 [ ex ]
duke@435 441 // 2 [ dest ]
duke@435 442 //
duke@435 443 // Result: *dest <- ex, return (old *dest)
duke@435 444 //
duke@435 445 // Note: win32 does not currently use this code
duke@435 446
duke@435 447 address generate_atomic_xchg() {
duke@435 448 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 449 address start = __ pc();
duke@435 450
never@739 451 __ push(rdx);
duke@435 452 Address exchange(rsp, 2 * wordSize);
duke@435 453 Address dest_addr(rsp, 3 * wordSize);
duke@435 454 __ movl(rax, exchange);
never@739 455 __ movptr(rdx, dest_addr);
never@739 456 __ xchgl(rax, Address(rdx, 0));
never@739 457 __ pop(rdx);
duke@435 458 __ ret(0);
duke@435 459
duke@435 460 return start;
duke@435 461 }
duke@435 462
duke@435 463 //----------------------------------------------------------------------------------------------------
duke@435 464 // Support for void verify_mxcsr()
duke@435 465 //
duke@435 466 // This routine is used with -Xcheck:jni to verify that native
duke@435 467 // JNI code does not return to Java code without restoring the
duke@435 468 // MXCSR register to our expected state.
duke@435 469
duke@435 470
duke@435 471 address generate_verify_mxcsr() {
duke@435 472 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
duke@435 473 address start = __ pc();
duke@435 474
duke@435 475 const Address mxcsr_save(rsp, 0);
duke@435 476
duke@435 477 if (CheckJNICalls && UseSSE > 0 ) {
duke@435 478 Label ok_ret;
duke@435 479 ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
never@739 480 __ push(rax);
never@739 481 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 482 __ stmxcsr(mxcsr_save);
duke@435 483 __ movl(rax, mxcsr_save);
duke@435 484 __ andl(rax, MXCSR_MASK);
duke@435 485 __ cmp32(rax, mxcsr_std);
duke@435 486 __ jcc(Assembler::equal, ok_ret);
duke@435 487
duke@435 488 __ warn("MXCSR changed by native JNI code.");
duke@435 489
duke@435 490 __ ldmxcsr(mxcsr_std);
duke@435 491
duke@435 492 __ bind(ok_ret);
never@739 493 __ addptr(rsp, wordSize);
never@739 494 __ pop(rax);
duke@435 495 }
duke@435 496
duke@435 497 __ ret(0);
duke@435 498
duke@435 499 return start;
duke@435 500 }
duke@435 501
duke@435 502
duke@435 503 //---------------------------------------------------------------------------
duke@435 504 // Support for void verify_fpu_cntrl_wrd()
duke@435 505 //
duke@435 506 // This routine is used with -Xcheck:jni to verify that native
duke@435 507 // JNI code does not return to Java code without restoring the
duke@435 508 // FP control word to our expected state.
duke@435 509
duke@435 510 address generate_verify_fpu_cntrl_wrd() {
duke@435 511 StubCodeMark mark(this, "StubRoutines", "verify_spcw");
duke@435 512 address start = __ pc();
duke@435 513
duke@435 514 const Address fpu_cntrl_wrd_save(rsp, 0);
duke@435 515
duke@435 516 if (CheckJNICalls) {
duke@435 517 Label ok_ret;
never@739 518 __ push(rax);
never@739 519 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 520 __ fnstcw(fpu_cntrl_wrd_save);
duke@435 521 __ movl(rax, fpu_cntrl_wrd_save);
duke@435 522 __ andl(rax, FPU_CNTRL_WRD_MASK);
duke@435 523 ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
duke@435 524 __ cmp32(rax, fpu_std);
duke@435 525 __ jcc(Assembler::equal, ok_ret);
duke@435 526
duke@435 527 __ warn("Floating point control word changed by native JNI code.");
duke@435 528
duke@435 529 __ fldcw(fpu_std);
duke@435 530
duke@435 531 __ bind(ok_ret);
never@739 532 __ addptr(rsp, wordSize);
never@739 533 __ pop(rax);
duke@435 534 }
duke@435 535
duke@435 536 __ ret(0);
duke@435 537
duke@435 538 return start;
duke@435 539 }
duke@435 540
duke@435 541 //---------------------------------------------------------------------------
duke@435 542 // Wrapper for slow-case handling of double-to-integer conversion
duke@435 543 // d2i or f2i fast case failed either because it is nan or because
duke@435 544 // of under/overflow.
duke@435 545 // Input: FPU TOS: float value
duke@435 546 // Output: rax, (rdx): integer (long) result
duke@435 547
duke@435 548 address generate_d2i_wrapper(BasicType t, address fcn) {
duke@435 549 StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
duke@435 550 address start = __ pc();
duke@435 551
duke@435 552 // Capture info about frame layout
duke@435 553 enum layout { FPUState_off = 0,
duke@435 554 rbp_off = FPUStateSizeInWords,
duke@435 555 rdi_off,
duke@435 556 rsi_off,
duke@435 557 rcx_off,
duke@435 558 rbx_off,
duke@435 559 saved_argument_off,
duke@435 560 saved_argument_off2, // 2nd half of double
duke@435 561 framesize
duke@435 562 };
duke@435 563
duke@435 564 assert(FPUStateSizeInWords == 27, "update stack layout");
duke@435 565
duke@435 566 // Save outgoing argument to stack across push_FPU_state()
never@739 567 __ subptr(rsp, wordSize * 2);
duke@435 568 __ fstp_d(Address(rsp, 0));
duke@435 569
duke@435 570 // Save CPU & FPU state
never@739 571 __ push(rbx);
never@739 572 __ push(rcx);
never@739 573 __ push(rsi);
never@739 574 __ push(rdi);
never@739 575 __ push(rbp);
duke@435 576 __ push_FPU_state();
duke@435 577
duke@435 578 // push_FPU_state() resets the FP top of stack
duke@435 579 // Load original double into FP top of stack
duke@435 580 __ fld_d(Address(rsp, saved_argument_off * wordSize));
duke@435 581 // Store double into stack as outgoing argument
never@739 582 __ subptr(rsp, wordSize*2);
duke@435 583 __ fst_d(Address(rsp, 0));
duke@435 584
duke@435 585 // Prepare FPU for doing math in C-land
duke@435 586 __ empty_FPU_stack();
duke@435 587 // Call the C code to massage the double. Result in EAX
duke@435 588 if (t == T_INT)
duke@435 589 { BLOCK_COMMENT("SharedRuntime::d2i"); }
duke@435 590 else if (t == T_LONG)
duke@435 591 { BLOCK_COMMENT("SharedRuntime::d2l"); }
duke@435 592 __ call_VM_leaf( fcn, 2 );
duke@435 593
duke@435 594 // Restore CPU & FPU state
duke@435 595 __ pop_FPU_state();
never@739 596 __ pop(rbp);
never@739 597 __ pop(rdi);
never@739 598 __ pop(rsi);
never@739 599 __ pop(rcx);
never@739 600 __ pop(rbx);
never@739 601 __ addptr(rsp, wordSize * 2);
duke@435 602
duke@435 603 __ ret(0);
duke@435 604
duke@435 605 return start;
duke@435 606 }
duke@435 607
duke@435 608
duke@435 609 //---------------------------------------------------------------------------
duke@435 610 // The following routine generates a subroutine to throw an asynchronous
duke@435 611 // UnknownError when an unsafe access gets a fault that could not be
duke@435 612 // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
duke@435 613 address generate_handler_for_unsafe_access() {
duke@435 614 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 615 address start = __ pc();
duke@435 616
never@739 617 __ push(0); // hole for return address-to-be
never@739 618 __ pusha(); // push registers
duke@435 619 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
duke@435 620 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 621 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
never@739 622 __ movptr(next_pc, rax); // stuff next address
never@739 623 __ popa();
duke@435 624 __ ret(0); // jump to next address
duke@435 625
duke@435 626 return start;
duke@435 627 }
duke@435 628
duke@435 629
duke@435 630 //----------------------------------------------------------------------------------------------------
duke@435 631 // Non-destructive plausibility checks for oops
duke@435 632
duke@435 633 address generate_verify_oop() {
duke@435 634 StubCodeMark mark(this, "StubRoutines", "verify_oop");
duke@435 635 address start = __ pc();
duke@435 636
duke@435 637 // Incoming arguments on stack after saving rax,:
duke@435 638 //
duke@435 639 // [tos ]: saved rdx
duke@435 640 // [tos + 1]: saved EFLAGS
duke@435 641 // [tos + 2]: return address
duke@435 642 // [tos + 3]: char* error message
duke@435 643 // [tos + 4]: oop object to verify
duke@435 644 // [tos + 5]: saved rax, - saved by caller and bashed
duke@435 645
duke@435 646 Label exit, error;
never@739 647 __ pushf();
never@739 648 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
never@739 649 __ push(rdx); // save rdx
duke@435 650 // make sure object is 'reasonable'
never@739 651 __ movptr(rax, Address(rsp, 4 * wordSize)); // get object
never@739 652 __ testptr(rax, rax);
duke@435 653 __ jcc(Assembler::zero, exit); // if obj is NULL it is ok
duke@435 654
duke@435 655 // Check if the oop is in the right area of memory
duke@435 656 const int oop_mask = Universe::verify_oop_mask();
duke@435 657 const int oop_bits = Universe::verify_oop_bits();
never@739 658 __ mov(rdx, rax);
never@739 659 __ andptr(rdx, oop_mask);
never@739 660 __ cmpptr(rdx, oop_bits);
duke@435 661 __ jcc(Assembler::notZero, error);
duke@435 662
duke@435 663 // make sure klass is 'reasonable'
never@739 664 __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
never@739 665 __ testptr(rax, rax);
duke@435 666 __ jcc(Assembler::zero, error); // if klass is NULL it is broken
duke@435 667
duke@435 668 // Check if the klass is in the right area of memory
duke@435 669 const int klass_mask = Universe::verify_klass_mask();
duke@435 670 const int klass_bits = Universe::verify_klass_bits();
never@739 671 __ mov(rdx, rax);
never@739 672 __ andptr(rdx, klass_mask);
never@739 673 __ cmpptr(rdx, klass_bits);
duke@435 674 __ jcc(Assembler::notZero, error);
duke@435 675
duke@435 676 // make sure klass' klass is 'reasonable'
never@739 677 __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass' klass
never@739 678 __ testptr(rax, rax);
duke@435 679 __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
duke@435 680
never@739 681 __ mov(rdx, rax);
never@739 682 __ andptr(rdx, klass_mask);
never@739 683 __ cmpptr(rdx, klass_bits);
duke@435 684 __ jcc(Assembler::notZero, error); // if klass not in right area
duke@435 685 // of memory it is broken too.
duke@435 686
duke@435 687 // return if everything seems ok
duke@435 688 __ bind(exit);
never@739 689 __ movptr(rax, Address(rsp, 5 * wordSize)); // get saved rax, back
never@739 690 __ pop(rdx); // restore rdx
never@739 691 __ popf(); // restore EFLAGS
duke@435 692 __ ret(3 * wordSize); // pop arguments
duke@435 693
duke@435 694 // handle errors
duke@435 695 __ bind(error);
never@739 696 __ movptr(rax, Address(rsp, 5 * wordSize)); // get saved rax, back
never@739 697 __ pop(rdx); // get saved rdx back
never@739 698 __ popf(); // get saved EFLAGS off stack -- will be ignored
never@739 699 __ pusha(); // push registers (eip = return address & msg are already pushed)
duke@435 700 BLOCK_COMMENT("call MacroAssembler::debug");
never@739 701 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
never@739 702 __ popa();
duke@435 703 __ ret(3 * wordSize); // pop arguments
duke@435 704 return start;
duke@435 705 }
duke@435 706
duke@435 707 //
duke@435 708 // Generate pre-barrier for array stores
duke@435 709 //
duke@435 710 // Input:
duke@435 711 // start - starting address
duke@435 712 // end - element count
duke@435 713 void gen_write_ref_array_pre_barrier(Register start, Register count) {
duke@435 714 assert_different_registers(start, count);
duke@435 715 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 716 switch (bs->kind()) {
duke@435 717 case BarrierSet::G1SATBCT:
duke@435 718 case BarrierSet::G1SATBCTLogging:
duke@435 719 {
never@739 720 __ pusha(); // push registers
never@739 721 __ push(count);
never@739 722 __ push(start);
ysr@777 723 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre)));
apetrusenko@797 724 __ addptr(rsp, 2*wordSize);
never@739 725 __ popa();
duke@435 726 }
duke@435 727 break;
duke@435 728 case BarrierSet::CardTableModRef:
duke@435 729 case BarrierSet::CardTableExtension:
duke@435 730 case BarrierSet::ModRef:
duke@435 731 break;
duke@435 732 default :
duke@435 733 ShouldNotReachHere();
duke@435 734
duke@435 735 }
duke@435 736 }
duke@435 737
duke@435 738
duke@435 739 //
duke@435 740 // Generate a post-barrier for an array store
duke@435 741 //
duke@435 742 // start - starting address
duke@435 743 // count - element count
duke@435 744 //
duke@435 745 // The two input registers are overwritten.
duke@435 746 //
duke@435 747 void gen_write_ref_array_post_barrier(Register start, Register count) {
duke@435 748 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 749 assert_different_registers(start, count);
duke@435 750 switch (bs->kind()) {
duke@435 751 case BarrierSet::G1SATBCT:
duke@435 752 case BarrierSet::G1SATBCTLogging:
duke@435 753 {
never@739 754 __ pusha(); // push registers
never@739 755 __ push(count);
never@739 756 __ push(start);
ysr@777 757 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post)));
apetrusenko@797 758 __ addptr(rsp, 2*wordSize);
never@739 759 __ popa();
duke@435 760
duke@435 761 }
duke@435 762 break;
duke@435 763
duke@435 764 case BarrierSet::CardTableModRef:
duke@435 765 case BarrierSet::CardTableExtension:
duke@435 766 {
duke@435 767 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 768 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 769
duke@435 770 Label L_loop;
duke@435 771 const Register end = count; // elements count; end == start+count-1
duke@435 772 assert_different_registers(start, end);
duke@435 773
never@739 774 __ lea(end, Address(start, count, Address::times_ptr, -wordSize));
never@739 775 __ shrptr(start, CardTableModRefBS::card_shift);
never@739 776 __ shrptr(end, CardTableModRefBS::card_shift);
never@739 777 __ subptr(end, start); // end --> count
duke@435 778 __ BIND(L_loop);
never@684 779 intptr_t disp = (intptr_t) ct->byte_map_base;
never@684 780 Address cardtable(start, count, Address::times_1, disp);
never@684 781 __ movb(cardtable, 0);
duke@435 782 __ decrement(count);
duke@435 783 __ jcc(Assembler::greaterEqual, L_loop);
duke@435 784 }
duke@435 785 break;
duke@435 786 case BarrierSet::ModRef:
duke@435 787 break;
duke@435 788 default :
duke@435 789 ShouldNotReachHere();
duke@435 790
duke@435 791 }
duke@435 792 }
duke@435 793
duke@435 794 // Copy 64 bytes chunks
duke@435 795 //
duke@435 796 // Inputs:
duke@435 797 // from - source array address
duke@435 798 // to_from - destination array address - from
duke@435 799 // qword_count - 8-bytes element count, negative
duke@435 800 //
duke@435 801 void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
duke@435 802 Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
duke@435 803 // Copy 64-byte chunks
duke@435 804 __ jmpb(L_copy_64_bytes);
duke@435 805 __ align(16);
duke@435 806 __ BIND(L_copy_64_bytes_loop);
duke@435 807 __ movq(mmx0, Address(from, 0));
duke@435 808 __ movq(mmx1, Address(from, 8));
duke@435 809 __ movq(mmx2, Address(from, 16));
duke@435 810 __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
duke@435 811 __ movq(mmx3, Address(from, 24));
duke@435 812 __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
duke@435 813 __ movq(mmx4, Address(from, 32));
duke@435 814 __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
duke@435 815 __ movq(mmx5, Address(from, 40));
duke@435 816 __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
duke@435 817 __ movq(mmx6, Address(from, 48));
duke@435 818 __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
duke@435 819 __ movq(mmx7, Address(from, 56));
duke@435 820 __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
duke@435 821 __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
duke@435 822 __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
never@739 823 __ addptr(from, 64);
duke@435 824 __ BIND(L_copy_64_bytes);
duke@435 825 __ subl(qword_count, 8);
duke@435 826 __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
duke@435 827 __ addl(qword_count, 8);
duke@435 828 __ jccb(Assembler::zero, L_exit);
duke@435 829 //
duke@435 830 // length is too short, just copy qwords
duke@435 831 //
duke@435 832 __ BIND(L_copy_8_bytes);
duke@435 833 __ movq(mmx0, Address(from, 0));
duke@435 834 __ movq(Address(from, to_from, Address::times_1), mmx0);
never@739 835 __ addptr(from, 8);
duke@435 836 __ decrement(qword_count);
duke@435 837 __ jcc(Assembler::greater, L_copy_8_bytes);
duke@435 838 __ BIND(L_exit);
duke@435 839 __ emms();
duke@435 840 }
duke@435 841
duke@435 842 address generate_disjoint_copy(BasicType t, bool aligned,
duke@435 843 Address::ScaleFactor sf,
duke@435 844 address* entry, const char *name) {
duke@435 845 __ align(CodeEntryAlignment);
duke@435 846 StubCodeMark mark(this, "StubRoutines", name);
duke@435 847 address start = __ pc();
duke@435 848
duke@435 849 Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
duke@435 850 Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
duke@435 851
never@739 852 int shift = Address::times_ptr - sf;
duke@435 853
duke@435 854 const Register from = rsi; // source array address
duke@435 855 const Register to = rdi; // destination array address
duke@435 856 const Register count = rcx; // elements count
duke@435 857 const Register to_from = to; // (to - from)
duke@435 858 const Register saved_to = rdx; // saved destination array address
duke@435 859
duke@435 860 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 861 __ push(rsi);
never@739 862 __ push(rdi);
never@739 863 __ movptr(from , Address(rsp, 12+ 4));
never@739 864 __ movptr(to , Address(rsp, 12+ 8));
duke@435 865 __ movl(count, Address(rsp, 12+ 12));
duke@435 866 if (t == T_OBJECT) {
duke@435 867 __ testl(count, count);
duke@435 868 __ jcc(Assembler::zero, L_0_count);
duke@435 869 gen_write_ref_array_pre_barrier(to, count);
never@739 870 __ mov(saved_to, to); // save 'to'
duke@435 871 }
duke@435 872
duke@435 873 *entry = __ pc(); // Entry point from conjoint arraycopy stub.
duke@435 874 BLOCK_COMMENT("Entry:");
duke@435 875
never@739 876 __ subptr(to, from); // to --> to_from
duke@435 877 __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
duke@435 878 __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
duke@435 879 if (!aligned && (t == T_BYTE || t == T_SHORT)) {
duke@435 880 // align source address at 4 bytes address boundary
duke@435 881 if (t == T_BYTE) {
duke@435 882 // One byte misalignment happens only for byte arrays
duke@435 883 __ testl(from, 1);
duke@435 884 __ jccb(Assembler::zero, L_skip_align1);
duke@435 885 __ movb(rax, Address(from, 0));
duke@435 886 __ movb(Address(from, to_from, Address::times_1, 0), rax);
duke@435 887 __ increment(from);
duke@435 888 __ decrement(count);
duke@435 889 __ BIND(L_skip_align1);
duke@435 890 }
duke@435 891 // Two bytes misalignment happens only for byte and short (char) arrays
duke@435 892 __ testl(from, 2);
duke@435 893 __ jccb(Assembler::zero, L_skip_align2);
duke@435 894 __ movw(rax, Address(from, 0));
duke@435 895 __ movw(Address(from, to_from, Address::times_1, 0), rax);
never@739 896 __ addptr(from, 2);
duke@435 897 __ subl(count, 1<<(shift-1));
duke@435 898 __ BIND(L_skip_align2);
duke@435 899 }
duke@435 900 if (!VM_Version::supports_mmx()) {
never@739 901 __ mov(rax, count); // save 'count'
never@739 902 __ shrl(count, shift); // bytes count
never@739 903 __ addptr(to_from, from);// restore 'to'
never@739 904 __ rep_mov();
never@739 905 __ subptr(to_from, from);// restore 'to_from'
never@739 906 __ mov(count, rax); // restore 'count'
duke@435 907 __ jmpb(L_copy_2_bytes); // all dwords were copied
duke@435 908 } else {
duke@435 909 // align to 8 bytes, we know we are 4 byte aligned to start
never@739 910 __ testptr(from, 4);
duke@435 911 __ jccb(Assembler::zero, L_copy_64_bytes);
duke@435 912 __ movl(rax, Address(from, 0));
duke@435 913 __ movl(Address(from, to_from, Address::times_1, 0), rax);
never@739 914 __ addptr(from, 4);
duke@435 915 __ subl(count, 1<<shift);
duke@435 916 __ BIND(L_copy_64_bytes);
never@739 917 __ mov(rax, count);
duke@435 918 __ shrl(rax, shift+1); // 8 bytes chunk count
duke@435 919 //
duke@435 920 // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
duke@435 921 //
duke@435 922 mmx_copy_forward(from, to_from, rax);
duke@435 923 }
duke@435 924 // copy tailing dword
duke@435 925 __ BIND(L_copy_4_bytes);
duke@435 926 __ testl(count, 1<<shift);
duke@435 927 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 928 __ movl(rax, Address(from, 0));
duke@435 929 __ movl(Address(from, to_from, Address::times_1, 0), rax);
duke@435 930 if (t == T_BYTE || t == T_SHORT) {
never@739 931 __ addptr(from, 4);
duke@435 932 __ BIND(L_copy_2_bytes);
duke@435 933 // copy tailing word
duke@435 934 __ testl(count, 1<<(shift-1));
duke@435 935 __ jccb(Assembler::zero, L_copy_byte);
duke@435 936 __ movw(rax, Address(from, 0));
duke@435 937 __ movw(Address(from, to_from, Address::times_1, 0), rax);
duke@435 938 if (t == T_BYTE) {
never@739 939 __ addptr(from, 2);
duke@435 940 __ BIND(L_copy_byte);
duke@435 941 // copy tailing byte
duke@435 942 __ testl(count, 1);
duke@435 943 __ jccb(Assembler::zero, L_exit);
duke@435 944 __ movb(rax, Address(from, 0));
duke@435 945 __ movb(Address(from, to_from, Address::times_1, 0), rax);
duke@435 946 __ BIND(L_exit);
duke@435 947 } else {
duke@435 948 __ BIND(L_copy_byte);
duke@435 949 }
duke@435 950 } else {
duke@435 951 __ BIND(L_copy_2_bytes);
duke@435 952 }
duke@435 953
duke@435 954 if (t == T_OBJECT) {
duke@435 955 __ movl(count, Address(rsp, 12+12)); // reread 'count'
never@739 956 __ mov(to, saved_to); // restore 'to'
duke@435 957 gen_write_ref_array_post_barrier(to, count);
duke@435 958 __ BIND(L_0_count);
duke@435 959 }
duke@435 960 inc_copy_counter_np(t);
never@739 961 __ pop(rdi);
never@739 962 __ pop(rsi);
duke@435 963 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 964 __ xorptr(rax, rax); // return 0
duke@435 965 __ ret(0);
duke@435 966 return start;
duke@435 967 }
duke@435 968
duke@435 969
duke@435 970 address generate_conjoint_copy(BasicType t, bool aligned,
duke@435 971 Address::ScaleFactor sf,
duke@435 972 address nooverlap_target,
duke@435 973 address* entry, const char *name) {
duke@435 974 __ align(CodeEntryAlignment);
duke@435 975 StubCodeMark mark(this, "StubRoutines", name);
duke@435 976 address start = __ pc();
duke@435 977
duke@435 978 Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
duke@435 979 Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
duke@435 980
never@739 981 int shift = Address::times_ptr - sf;
duke@435 982
duke@435 983 const Register src = rax; // source array address
duke@435 984 const Register dst = rdx; // destination array address
duke@435 985 const Register from = rsi; // source array address
duke@435 986 const Register to = rdi; // destination array address
duke@435 987 const Register count = rcx; // elements count
duke@435 988 const Register end = rax; // array end address
duke@435 989
duke@435 990 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 991 __ push(rsi);
never@739 992 __ push(rdi);
never@739 993 __ movptr(src , Address(rsp, 12+ 4)); // from
never@739 994 __ movptr(dst , Address(rsp, 12+ 8)); // to
never@739 995 __ movl2ptr(count, Address(rsp, 12+12)); // count
duke@435 996 if (t == T_OBJECT) {
duke@435 997 gen_write_ref_array_pre_barrier(dst, count);
duke@435 998 }
duke@435 999
duke@435 1000 if (entry != NULL) {
duke@435 1001 *entry = __ pc(); // Entry point from generic arraycopy stub.
duke@435 1002 BLOCK_COMMENT("Entry:");
duke@435 1003 }
duke@435 1004
duke@435 1005 if (t == T_OBJECT) {
duke@435 1006 __ testl(count, count);
duke@435 1007 __ jcc(Assembler::zero, L_0_count);
duke@435 1008 }
never@739 1009 __ mov(from, src);
never@739 1010 __ mov(to , dst);
duke@435 1011
duke@435 1012 // arrays overlap test
duke@435 1013 RuntimeAddress nooverlap(nooverlap_target);
never@739 1014 __ cmpptr(dst, src);
never@739 1015 __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
duke@435 1016 __ jump_cc(Assembler::belowEqual, nooverlap);
never@739 1017 __ cmpptr(dst, end);
duke@435 1018 __ jump_cc(Assembler::aboveEqual, nooverlap);
duke@435 1019
duke@435 1020 // copy from high to low
duke@435 1021 __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
duke@435 1022 __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
duke@435 1023 if (t == T_BYTE || t == T_SHORT) {
duke@435 1024 // Align the end of destination array at 4 bytes address boundary
never@739 1025 __ lea(end, Address(dst, count, sf, 0));
duke@435 1026 if (t == T_BYTE) {
duke@435 1027 // One byte misalignment happens only for byte arrays
duke@435 1028 __ testl(end, 1);
duke@435 1029 __ jccb(Assembler::zero, L_skip_align1);
duke@435 1030 __ decrement(count);
duke@435 1031 __ movb(rdx, Address(from, count, sf, 0));
duke@435 1032 __ movb(Address(to, count, sf, 0), rdx);
duke@435 1033 __ BIND(L_skip_align1);
duke@435 1034 }
duke@435 1035 // Two bytes misalignment happens only for byte and short (char) arrays
duke@435 1036 __ testl(end, 2);
duke@435 1037 __ jccb(Assembler::zero, L_skip_align2);
never@739 1038 __ subptr(count, 1<<(shift-1));
duke@435 1039 __ movw(rdx, Address(from, count, sf, 0));
duke@435 1040 __ movw(Address(to, count, sf, 0), rdx);
duke@435 1041 __ BIND(L_skip_align2);
duke@435 1042 __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
duke@435 1043 __ jcc(Assembler::below, L_copy_4_bytes);
duke@435 1044 }
duke@435 1045
duke@435 1046 if (!VM_Version::supports_mmx()) {
duke@435 1047 __ std();
never@739 1048 __ mov(rax, count); // Save 'count'
never@739 1049 __ mov(rdx, to); // Save 'to'
never@739 1050 __ lea(rsi, Address(from, count, sf, -4));
never@739 1051 __ lea(rdi, Address(to , count, sf, -4));
never@739 1052 __ shrptr(count, shift); // bytes count
never@739 1053 __ rep_mov();
duke@435 1054 __ cld();
never@739 1055 __ mov(count, rax); // restore 'count'
duke@435 1056 __ andl(count, (1<<shift)-1); // mask the number of rest elements
never@739 1057 __ movptr(from, Address(rsp, 12+4)); // reread 'from'
never@739 1058 __ mov(to, rdx); // restore 'to'
duke@435 1059 __ jmpb(L_copy_2_bytes); // all dword were copied
duke@435 1060 } else {
duke@435 1061 // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
never@739 1062 __ testptr(end, 4);
duke@435 1063 __ jccb(Assembler::zero, L_copy_8_bytes);
duke@435 1064 __ subl(count, 1<<shift);
duke@435 1065 __ movl(rdx, Address(from, count, sf, 0));
duke@435 1066 __ movl(Address(to, count, sf, 0), rdx);
duke@435 1067 __ jmpb(L_copy_8_bytes);
duke@435 1068
duke@435 1069 __ align(16);
duke@435 1070 // Move 8 bytes
duke@435 1071 __ BIND(L_copy_8_bytes_loop);
duke@435 1072 __ movq(mmx0, Address(from, count, sf, 0));
duke@435 1073 __ movq(Address(to, count, sf, 0), mmx0);
duke@435 1074 __ BIND(L_copy_8_bytes);
duke@435 1075 __ subl(count, 2<<shift);
duke@435 1076 __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
duke@435 1077 __ addl(count, 2<<shift);
duke@435 1078 __ emms();
duke@435 1079 }
duke@435 1080 __ BIND(L_copy_4_bytes);
duke@435 1081 // copy prefix qword
duke@435 1082 __ testl(count, 1<<shift);
duke@435 1083 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1084 __ movl(rdx, Address(from, count, sf, -4));
duke@435 1085 __ movl(Address(to, count, sf, -4), rdx);
duke@435 1086
duke@435 1087 if (t == T_BYTE || t == T_SHORT) {
duke@435 1088 __ subl(count, (1<<shift));
duke@435 1089 __ BIND(L_copy_2_bytes);
duke@435 1090 // copy prefix dword
duke@435 1091 __ testl(count, 1<<(shift-1));
duke@435 1092 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1093 __ movw(rdx, Address(from, count, sf, -2));
duke@435 1094 __ movw(Address(to, count, sf, -2), rdx);
duke@435 1095 if (t == T_BYTE) {
duke@435 1096 __ subl(count, 1<<(shift-1));
duke@435 1097 __ BIND(L_copy_byte);
duke@435 1098 // copy prefix byte
duke@435 1099 __ testl(count, 1);
duke@435 1100 __ jccb(Assembler::zero, L_exit);
duke@435 1101 __ movb(rdx, Address(from, 0));
duke@435 1102 __ movb(Address(to, 0), rdx);
duke@435 1103 __ BIND(L_exit);
duke@435 1104 } else {
duke@435 1105 __ BIND(L_copy_byte);
duke@435 1106 }
duke@435 1107 } else {
duke@435 1108 __ BIND(L_copy_2_bytes);
duke@435 1109 }
duke@435 1110 if (t == T_OBJECT) {
never@739 1111 __ movl2ptr(count, Address(rsp, 12+12)); // reread count
duke@435 1112 gen_write_ref_array_post_barrier(to, count);
duke@435 1113 __ BIND(L_0_count);
duke@435 1114 }
duke@435 1115 inc_copy_counter_np(t);
never@739 1116 __ pop(rdi);
never@739 1117 __ pop(rsi);
duke@435 1118 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 1119 __ xorptr(rax, rax); // return 0
duke@435 1120 __ ret(0);
duke@435 1121 return start;
duke@435 1122 }
duke@435 1123
duke@435 1124
duke@435 1125 address generate_disjoint_long_copy(address* entry, const char *name) {
duke@435 1126 __ align(CodeEntryAlignment);
duke@435 1127 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1128 address start = __ pc();
duke@435 1129
duke@435 1130 Label L_copy_8_bytes, L_copy_8_bytes_loop;
duke@435 1131 const Register from = rax; // source array address
duke@435 1132 const Register to = rdx; // destination array address
duke@435 1133 const Register count = rcx; // elements count
duke@435 1134 const Register to_from = rdx; // (to - from)
duke@435 1135
duke@435 1136 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1137 __ movptr(from , Address(rsp, 8+0)); // from
never@739 1138 __ movptr(to , Address(rsp, 8+4)); // to
never@739 1139 __ movl2ptr(count, Address(rsp, 8+8)); // count
duke@435 1140
duke@435 1141 *entry = __ pc(); // Entry point from conjoint arraycopy stub.
duke@435 1142 BLOCK_COMMENT("Entry:");
duke@435 1143
never@739 1144 __ subptr(to, from); // to --> to_from
duke@435 1145 if (VM_Version::supports_mmx()) {
duke@435 1146 mmx_copy_forward(from, to_from, count);
duke@435 1147 } else {
duke@435 1148 __ jmpb(L_copy_8_bytes);
duke@435 1149 __ align(16);
duke@435 1150 __ BIND(L_copy_8_bytes_loop);
duke@435 1151 __ fild_d(Address(from, 0));
duke@435 1152 __ fistp_d(Address(from, to_from, Address::times_1));
never@739 1153 __ addptr(from, 8);
duke@435 1154 __ BIND(L_copy_8_bytes);
duke@435 1155 __ decrement(count);
duke@435 1156 __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
duke@435 1157 }
duke@435 1158 inc_copy_counter_np(T_LONG);
duke@435 1159 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 1160 __ xorptr(rax, rax); // return 0
duke@435 1161 __ ret(0);
duke@435 1162 return start;
duke@435 1163 }
duke@435 1164
duke@435 1165 address generate_conjoint_long_copy(address nooverlap_target,
duke@435 1166 address* entry, const char *name) {
duke@435 1167 __ align(CodeEntryAlignment);
duke@435 1168 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1169 address start = __ pc();
duke@435 1170
duke@435 1171 Label L_copy_8_bytes, L_copy_8_bytes_loop;
duke@435 1172 const Register from = rax; // source array address
duke@435 1173 const Register to = rdx; // destination array address
duke@435 1174 const Register count = rcx; // elements count
duke@435 1175 const Register end_from = rax; // source array end address
duke@435 1176
duke@435 1177 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1178 __ movptr(from , Address(rsp, 8+0)); // from
never@739 1179 __ movptr(to , Address(rsp, 8+4)); // to
never@739 1180 __ movl2ptr(count, Address(rsp, 8+8)); // count
duke@435 1181
duke@435 1182 *entry = __ pc(); // Entry point from generic arraycopy stub.
duke@435 1183 BLOCK_COMMENT("Entry:");
duke@435 1184
duke@435 1185 // arrays overlap test
never@739 1186 __ cmpptr(to, from);
duke@435 1187 RuntimeAddress nooverlap(nooverlap_target);
duke@435 1188 __ jump_cc(Assembler::belowEqual, nooverlap);
never@739 1189 __ lea(end_from, Address(from, count, Address::times_8, 0));
never@739 1190 __ cmpptr(to, end_from);
never@739 1191 __ movptr(from, Address(rsp, 8)); // from
duke@435 1192 __ jump_cc(Assembler::aboveEqual, nooverlap);
duke@435 1193
duke@435 1194 __ jmpb(L_copy_8_bytes);
duke@435 1195
duke@435 1196 __ align(16);
duke@435 1197 __ BIND(L_copy_8_bytes_loop);
duke@435 1198 if (VM_Version::supports_mmx()) {
duke@435 1199 __ movq(mmx0, Address(from, count, Address::times_8));
duke@435 1200 __ movq(Address(to, count, Address::times_8), mmx0);
duke@435 1201 } else {
duke@435 1202 __ fild_d(Address(from, count, Address::times_8));
duke@435 1203 __ fistp_d(Address(to, count, Address::times_8));
duke@435 1204 }
duke@435 1205 __ BIND(L_copy_8_bytes);
duke@435 1206 __ decrement(count);
duke@435 1207 __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
duke@435 1208
duke@435 1209 if (VM_Version::supports_mmx()) {
duke@435 1210 __ emms();
duke@435 1211 }
duke@435 1212 inc_copy_counter_np(T_LONG);
duke@435 1213 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 1214 __ xorptr(rax, rax); // return 0
duke@435 1215 __ ret(0);
duke@435 1216 return start;
duke@435 1217 }
duke@435 1218
duke@435 1219
duke@435 1220 // Helper for generating a dynamic type check.
duke@435 1221 // The sub_klass must be one of {rbx, rdx, rsi}.
duke@435 1222 // The temp is killed.
duke@435 1223 void generate_type_check(Register sub_klass,
duke@435 1224 Address& super_check_offset_addr,
duke@435 1225 Address& super_klass_addr,
duke@435 1226 Register temp,
duke@435 1227 Label* L_success_ptr, Label* L_failure_ptr) {
duke@435 1228 BLOCK_COMMENT("type_check:");
duke@435 1229
duke@435 1230 Label L_fallthrough;
duke@435 1231 bool fall_through_on_success = (L_success_ptr == NULL);
duke@435 1232 if (fall_through_on_success) {
duke@435 1233 L_success_ptr = &L_fallthrough;
duke@435 1234 } else {
duke@435 1235 L_failure_ptr = &L_fallthrough;
duke@435 1236 }
duke@435 1237 Label& L_success = *L_success_ptr;
duke@435 1238 Label& L_failure = *L_failure_ptr;
duke@435 1239
duke@435 1240 assert_different_registers(sub_klass, temp);
duke@435 1241
duke@435 1242 // a couple of useful fields in sub_klass:
duke@435 1243 int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 1244 Klass::secondary_supers_offset_in_bytes());
duke@435 1245 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 1246 Klass::secondary_super_cache_offset_in_bytes());
duke@435 1247 Address secondary_supers_addr(sub_klass, ss_offset);
duke@435 1248 Address super_cache_addr( sub_klass, sc_offset);
duke@435 1249
duke@435 1250 // if the pointers are equal, we are done (e.g., String[] elements)
never@739 1251 __ cmpptr(sub_klass, super_klass_addr);
duke@435 1252 __ jcc(Assembler::equal, L_success);
duke@435 1253
duke@435 1254 // check the supertype display:
never@739 1255 __ movl2ptr(temp, super_check_offset_addr);
duke@435 1256 Address super_check_addr(sub_klass, temp, Address::times_1, 0);
never@739 1257 __ movptr(temp, super_check_addr); // load displayed supertype
never@739 1258 __ cmpptr(temp, super_klass_addr); // test the super type
duke@435 1259 __ jcc(Assembler::equal, L_success);
duke@435 1260
duke@435 1261 // if it was a primary super, we can just fail immediately
duke@435 1262 __ cmpl(super_check_offset_addr, sc_offset);
duke@435 1263 __ jcc(Assembler::notEqual, L_failure);
duke@435 1264
duke@435 1265 // Now do a linear scan of the secondary super-klass chain.
duke@435 1266 // This code is rarely used, so simplicity is a virtue here.
duke@435 1267 inc_counter_np(SharedRuntime::_partial_subtype_ctr);
duke@435 1268 {
duke@435 1269 // The repne_scan instruction uses fixed registers, which we must spill.
duke@435 1270 // (We need a couple more temps in any case.)
never@739 1271 __ push(rax);
never@739 1272 __ push(rcx);
never@739 1273 __ push(rdi);
duke@435 1274 assert_different_registers(sub_klass, rax, rcx, rdi);
duke@435 1275
never@739 1276 __ movptr(rdi, secondary_supers_addr);
duke@435 1277 // Load the array length.
duke@435 1278 __ movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
duke@435 1279 // Skip to start of data.
never@739 1280 __ addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
duke@435 1281 // Scan rcx words at [edi] for occurance of rax,
duke@435 1282 // Set NZ/Z based on last compare
never@739 1283 __ movptr(rax, super_klass_addr);
duke@435 1284 __ repne_scan();
duke@435 1285
duke@435 1286 // Unspill the temp. registers:
never@739 1287 __ pop(rdi);
never@739 1288 __ pop(rcx);
never@739 1289 __ pop(rax);
duke@435 1290 }
duke@435 1291 __ jcc(Assembler::notEqual, L_failure);
duke@435 1292
duke@435 1293 // Success. Cache the super we found and proceed in triumph.
never@739 1294 __ movptr(temp, super_klass_addr); // note: rax, is dead
never@739 1295 __ movptr(super_cache_addr, temp);
duke@435 1296
duke@435 1297 if (!fall_through_on_success)
duke@435 1298 __ jmp(L_success);
duke@435 1299
duke@435 1300 // Fall through on failure!
duke@435 1301 __ bind(L_fallthrough);
duke@435 1302 }
duke@435 1303
duke@435 1304 //
duke@435 1305 // Generate checkcasting array copy stub
duke@435 1306 //
duke@435 1307 // Input:
duke@435 1308 // 4(rsp) - source array address
duke@435 1309 // 8(rsp) - destination array address
duke@435 1310 // 12(rsp) - element count, can be zero
duke@435 1311 // 16(rsp) - size_t ckoff (super_check_offset)
duke@435 1312 // 20(rsp) - oop ckval (super_klass)
duke@435 1313 //
duke@435 1314 // Output:
duke@435 1315 // rax, == 0 - success
duke@435 1316 // rax, == -1^K - failure, where K is partial transfer count
duke@435 1317 //
duke@435 1318 address generate_checkcast_copy(const char *name, address* entry) {
duke@435 1319 __ align(CodeEntryAlignment);
duke@435 1320 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1321 address start = __ pc();
duke@435 1322
duke@435 1323 Label L_load_element, L_store_element, L_do_card_marks, L_done;
duke@435 1324
duke@435 1325 // register use:
duke@435 1326 // rax, rdx, rcx -- loop control (end_from, end_to, count)
duke@435 1327 // rdi, rsi -- element access (oop, klass)
duke@435 1328 // rbx, -- temp
duke@435 1329 const Register from = rax; // source array address
duke@435 1330 const Register to = rdx; // destination array address
duke@435 1331 const Register length = rcx; // elements count
duke@435 1332 const Register elem = rdi; // each oop copied
duke@435 1333 const Register elem_klass = rsi; // each elem._klass (sub_klass)
duke@435 1334 const Register temp = rbx; // lone remaining temp
duke@435 1335
duke@435 1336 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1337
never@739 1338 __ push(rsi);
never@739 1339 __ push(rdi);
never@739 1340 __ push(rbx);
duke@435 1341
duke@435 1342 Address from_arg(rsp, 16+ 4); // from
duke@435 1343 Address to_arg(rsp, 16+ 8); // to
duke@435 1344 Address length_arg(rsp, 16+12); // elements count
duke@435 1345 Address ckoff_arg(rsp, 16+16); // super_check_offset
duke@435 1346 Address ckval_arg(rsp, 16+20); // super_klass
duke@435 1347
duke@435 1348 // Load up:
never@739 1349 __ movptr(from, from_arg);
never@739 1350 __ movptr(to, to_arg);
never@739 1351 __ movl2ptr(length, length_arg);
duke@435 1352
duke@435 1353 *entry = __ pc(); // Entry point from generic arraycopy stub.
duke@435 1354 BLOCK_COMMENT("Entry:");
duke@435 1355
duke@435 1356 //---------------------------------------------------------------
duke@435 1357 // Assembler stub will be used for this call to arraycopy
duke@435 1358 // if the two arrays are subtypes of Object[] but the
duke@435 1359 // destination array type is not equal to or a supertype
duke@435 1360 // of the source type. Each element must be separately
duke@435 1361 // checked.
duke@435 1362
duke@435 1363 // Loop-invariant addresses. They are exclusive end pointers.
never@739 1364 Address end_from_addr(from, length, Address::times_ptr, 0);
never@739 1365 Address end_to_addr(to, length, Address::times_ptr, 0);
duke@435 1366
duke@435 1367 Register end_from = from; // re-use
duke@435 1368 Register end_to = to; // re-use
duke@435 1369 Register count = length; // re-use
duke@435 1370
duke@435 1371 // Loop-variant addresses. They assume post-incremented count < 0.
never@739 1372 Address from_element_addr(end_from, count, Address::times_ptr, 0);
never@739 1373 Address to_element_addr(end_to, count, Address::times_ptr, 0);
duke@435 1374 Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
duke@435 1375
duke@435 1376 // Copy from low to high addresses, indexed from the end of each array.
ysr@777 1377 gen_write_ref_array_pre_barrier(to, count);
never@739 1378 __ lea(end_from, end_from_addr);
never@739 1379 __ lea(end_to, end_to_addr);
duke@435 1380 assert(length == count, ""); // else fix next line:
never@739 1381 __ negptr(count); // negate and test the length
duke@435 1382 __ jccb(Assembler::notZero, L_load_element);
duke@435 1383
duke@435 1384 // Empty array: Nothing to do.
never@739 1385 __ xorptr(rax, rax); // return 0 on (trivial) success
duke@435 1386 __ jmp(L_done);
duke@435 1387
duke@435 1388 // ======== begin loop ========
duke@435 1389 // (Loop is rotated; its entry is L_load_element.)
duke@435 1390 // Loop control:
duke@435 1391 // for (count = -count; count != 0; count++)
duke@435 1392 // Base pointers src, dst are biased by 8*count,to last element.
duke@435 1393 __ align(16);
duke@435 1394
duke@435 1395 __ BIND(L_store_element);
never@739 1396 __ movptr(to_element_addr, elem); // store the oop
duke@435 1397 __ increment(count); // increment the count toward zero
duke@435 1398 __ jccb(Assembler::zero, L_do_card_marks);
duke@435 1399
duke@435 1400 // ======== loop entry is here ========
duke@435 1401 __ BIND(L_load_element);
never@739 1402 __ movptr(elem, from_element_addr); // load the oop
never@739 1403 __ testptr(elem, elem);
duke@435 1404 __ jccb(Assembler::zero, L_store_element);
duke@435 1405
duke@435 1406 // (Could do a trick here: Remember last successful non-null
duke@435 1407 // element stored and make a quick oop equality check on it.)
duke@435 1408
never@739 1409 __ movptr(elem_klass, elem_klass_addr); // query the object klass
duke@435 1410 generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
duke@435 1411 &L_store_element, NULL);
duke@435 1412 // (On fall-through, we have failed the element type check.)
duke@435 1413 // ======== end loop ========
duke@435 1414
duke@435 1415 // It was a real error; we must depend on the caller to finish the job.
rasbold@454 1416 // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
rasbold@454 1417 // Emit GC store barriers for the oops we have copied (length_arg + count),
duke@435 1418 // and report their number to the caller.
duke@435 1419 __ addl(count, length_arg); // transfers = (length - remaining)
never@739 1420 __ movl2ptr(rax, count); // save the value
never@739 1421 __ notptr(rax); // report (-1^K) to caller
never@739 1422 __ movptr(to, to_arg); // reload
duke@435 1423 assert_different_registers(to, count, rax);
duke@435 1424 gen_write_ref_array_post_barrier(to, count);
duke@435 1425 __ jmpb(L_done);
duke@435 1426
duke@435 1427 // Come here on success only.
duke@435 1428 __ BIND(L_do_card_marks);
never@739 1429 __ movl2ptr(count, length_arg);
never@739 1430 __ movptr(to, to_arg); // reload
duke@435 1431 gen_write_ref_array_post_barrier(to, count);
never@739 1432 __ xorptr(rax, rax); // return 0 on success
duke@435 1433
duke@435 1434 // Common exit point (success or failure).
duke@435 1435 __ BIND(L_done);
never@739 1436 __ pop(rbx);
never@739 1437 __ pop(rdi);
never@739 1438 __ pop(rsi);
duke@435 1439 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
duke@435 1440 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1441 __ ret(0);
duke@435 1442
duke@435 1443 return start;
duke@435 1444 }
duke@435 1445
duke@435 1446 //
duke@435 1447 // Generate 'unsafe' array copy stub
duke@435 1448 // Though just as safe as the other stubs, it takes an unscaled
duke@435 1449 // size_t argument instead of an element count.
duke@435 1450 //
duke@435 1451 // Input:
duke@435 1452 // 4(rsp) - source array address
duke@435 1453 // 8(rsp) - destination array address
duke@435 1454 // 12(rsp) - byte count, can be zero
duke@435 1455 //
duke@435 1456 // Output:
duke@435 1457 // rax, == 0 - success
duke@435 1458 // rax, == -1 - need to call System.arraycopy
duke@435 1459 //
duke@435 1460 // Examines the alignment of the operands and dispatches
duke@435 1461 // to a long, int, short, or byte copy loop.
duke@435 1462 //
duke@435 1463 address generate_unsafe_copy(const char *name,
duke@435 1464 address byte_copy_entry,
duke@435 1465 address short_copy_entry,
duke@435 1466 address int_copy_entry,
duke@435 1467 address long_copy_entry) {
duke@435 1468
duke@435 1469 Label L_long_aligned, L_int_aligned, L_short_aligned;
duke@435 1470
duke@435 1471 __ align(CodeEntryAlignment);
duke@435 1472 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1473 address start = __ pc();
duke@435 1474
duke@435 1475 const Register from = rax; // source array address
duke@435 1476 const Register to = rdx; // destination array address
duke@435 1477 const Register count = rcx; // elements count
duke@435 1478
duke@435 1479 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1480 __ push(rsi);
never@739 1481 __ push(rdi);
duke@435 1482 Address from_arg(rsp, 12+ 4); // from
duke@435 1483 Address to_arg(rsp, 12+ 8); // to
duke@435 1484 Address count_arg(rsp, 12+12); // byte count
duke@435 1485
duke@435 1486 // Load up:
never@739 1487 __ movptr(from , from_arg);
never@739 1488 __ movptr(to , to_arg);
never@739 1489 __ movl2ptr(count, count_arg);
duke@435 1490
duke@435 1491 // bump this on entry, not on exit:
duke@435 1492 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
duke@435 1493
duke@435 1494 const Register bits = rsi;
never@739 1495 __ mov(bits, from);
never@739 1496 __ orptr(bits, to);
never@739 1497 __ orptr(bits, count);
duke@435 1498
duke@435 1499 __ testl(bits, BytesPerLong-1);
duke@435 1500 __ jccb(Assembler::zero, L_long_aligned);
duke@435 1501
duke@435 1502 __ testl(bits, BytesPerInt-1);
duke@435 1503 __ jccb(Assembler::zero, L_int_aligned);
duke@435 1504
duke@435 1505 __ testl(bits, BytesPerShort-1);
duke@435 1506 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
duke@435 1507
duke@435 1508 __ BIND(L_short_aligned);
never@739 1509 __ shrptr(count, LogBytesPerShort); // size => short_count
duke@435 1510 __ movl(count_arg, count); // update 'count'
duke@435 1511 __ jump(RuntimeAddress(short_copy_entry));
duke@435 1512
duke@435 1513 __ BIND(L_int_aligned);
never@739 1514 __ shrptr(count, LogBytesPerInt); // size => int_count
duke@435 1515 __ movl(count_arg, count); // update 'count'
duke@435 1516 __ jump(RuntimeAddress(int_copy_entry));
duke@435 1517
duke@435 1518 __ BIND(L_long_aligned);
never@739 1519 __ shrptr(count, LogBytesPerLong); // size => qword_count
duke@435 1520 __ movl(count_arg, count); // update 'count'
never@739 1521 __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
never@739 1522 __ pop(rsi);
duke@435 1523 __ jump(RuntimeAddress(long_copy_entry));
duke@435 1524
duke@435 1525 return start;
duke@435 1526 }
duke@435 1527
duke@435 1528
duke@435 1529 // Perform range checks on the proposed arraycopy.
duke@435 1530 // Smashes src_pos and dst_pos. (Uses them up for temps.)
duke@435 1531 void arraycopy_range_checks(Register src,
duke@435 1532 Register src_pos,
duke@435 1533 Register dst,
duke@435 1534 Register dst_pos,
duke@435 1535 Address& length,
duke@435 1536 Label& L_failed) {
duke@435 1537 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 1538 const Register src_end = src_pos; // source array end position
duke@435 1539 const Register dst_end = dst_pos; // destination array end position
duke@435 1540 __ addl(src_end, length); // src_pos + length
duke@435 1541 __ addl(dst_end, length); // dst_pos + length
duke@435 1542
duke@435 1543 // if (src_pos + length > arrayOop(src)->length() ) FAIL;
duke@435 1544 __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
duke@435 1545 __ jcc(Assembler::above, L_failed);
duke@435 1546
duke@435 1547 // if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
duke@435 1548 __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
duke@435 1549 __ jcc(Assembler::above, L_failed);
duke@435 1550
duke@435 1551 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 1552 }
duke@435 1553
duke@435 1554
duke@435 1555 //
duke@435 1556 // Generate generic array copy stubs
duke@435 1557 //
duke@435 1558 // Input:
duke@435 1559 // 4(rsp) - src oop
duke@435 1560 // 8(rsp) - src_pos
duke@435 1561 // 12(rsp) - dst oop
duke@435 1562 // 16(rsp) - dst_pos
duke@435 1563 // 20(rsp) - element count
duke@435 1564 //
duke@435 1565 // Output:
duke@435 1566 // rax, == 0 - success
duke@435 1567 // rax, == -1^K - failure, where K is partial transfer count
duke@435 1568 //
duke@435 1569 address generate_generic_copy(const char *name,
duke@435 1570 address entry_jbyte_arraycopy,
duke@435 1571 address entry_jshort_arraycopy,
duke@435 1572 address entry_jint_arraycopy,
duke@435 1573 address entry_oop_arraycopy,
duke@435 1574 address entry_jlong_arraycopy,
duke@435 1575 address entry_checkcast_arraycopy) {
duke@435 1576 Label L_failed, L_failed_0, L_objArray;
duke@435 1577
duke@435 1578 { int modulus = CodeEntryAlignment;
duke@435 1579 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
duke@435 1580 int advance = target - (__ offset() % modulus);
duke@435 1581 if (advance < 0) advance += modulus;
duke@435 1582 if (advance > 0) __ nop(advance);
duke@435 1583 }
duke@435 1584 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1585
duke@435 1586 // Short-hop target to L_failed. Makes for denser prologue code.
duke@435 1587 __ BIND(L_failed_0);
duke@435 1588 __ jmp(L_failed);
duke@435 1589 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
duke@435 1590
duke@435 1591 __ align(CodeEntryAlignment);
duke@435 1592 address start = __ pc();
duke@435 1593
duke@435 1594 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1595 __ push(rsi);
never@739 1596 __ push(rdi);
duke@435 1597
duke@435 1598 // bump this on entry, not on exit:
duke@435 1599 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
duke@435 1600
duke@435 1601 // Input values
duke@435 1602 Address SRC (rsp, 12+ 4);
duke@435 1603 Address SRC_POS (rsp, 12+ 8);
duke@435 1604 Address DST (rsp, 12+12);
duke@435 1605 Address DST_POS (rsp, 12+16);
duke@435 1606 Address LENGTH (rsp, 12+20);
duke@435 1607
duke@435 1608 //-----------------------------------------------------------------------
duke@435 1609 // Assembler stub will be used for this call to arraycopy
duke@435 1610 // if the following conditions are met:
duke@435 1611 //
duke@435 1612 // (1) src and dst must not be null.
duke@435 1613 // (2) src_pos must not be negative.
duke@435 1614 // (3) dst_pos must not be negative.
duke@435 1615 // (4) length must not be negative.
duke@435 1616 // (5) src klass and dst klass should be the same and not NULL.
duke@435 1617 // (6) src and dst should be arrays.
duke@435 1618 // (7) src_pos + length must not exceed length of src.
duke@435 1619 // (8) dst_pos + length must not exceed length of dst.
duke@435 1620 //
duke@435 1621
duke@435 1622 const Register src = rax; // source array oop
duke@435 1623 const Register src_pos = rsi;
duke@435 1624 const Register dst = rdx; // destination array oop
duke@435 1625 const Register dst_pos = rdi;
duke@435 1626 const Register length = rcx; // transfer count
duke@435 1627
duke@435 1628 // if (src == NULL) return -1;
never@739 1629 __ movptr(src, SRC); // src oop
never@739 1630 __ testptr(src, src);
duke@435 1631 __ jccb(Assembler::zero, L_failed_0);
duke@435 1632
duke@435 1633 // if (src_pos < 0) return -1;
never@739 1634 __ movl2ptr(src_pos, SRC_POS); // src_pos
duke@435 1635 __ testl(src_pos, src_pos);
duke@435 1636 __ jccb(Assembler::negative, L_failed_0);
duke@435 1637
duke@435 1638 // if (dst == NULL) return -1;
never@739 1639 __ movptr(dst, DST); // dst oop
never@739 1640 __ testptr(dst, dst);
duke@435 1641 __ jccb(Assembler::zero, L_failed_0);
duke@435 1642
duke@435 1643 // if (dst_pos < 0) return -1;
never@739 1644 __ movl2ptr(dst_pos, DST_POS); // dst_pos
duke@435 1645 __ testl(dst_pos, dst_pos);
duke@435 1646 __ jccb(Assembler::negative, L_failed_0);
duke@435 1647
duke@435 1648 // if (length < 0) return -1;
never@739 1649 __ movl2ptr(length, LENGTH); // length
duke@435 1650 __ testl(length, length);
duke@435 1651 __ jccb(Assembler::negative, L_failed_0);
duke@435 1652
duke@435 1653 // if (src->klass() == NULL) return -1;
duke@435 1654 Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
duke@435 1655 Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
duke@435 1656 const Register rcx_src_klass = rcx; // array klass
never@739 1657 __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
duke@435 1658
duke@435 1659 #ifdef ASSERT
duke@435 1660 // assert(src->klass() != NULL);
duke@435 1661 BLOCK_COMMENT("assert klasses not null");
duke@435 1662 { Label L1, L2;
never@739 1663 __ testptr(rcx_src_klass, rcx_src_klass);
duke@435 1664 __ jccb(Assembler::notZero, L2); // it is broken if klass is NULL
duke@435 1665 __ bind(L1);
duke@435 1666 __ stop("broken null klass");
duke@435 1667 __ bind(L2);
never@739 1668 __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
duke@435 1669 __ jccb(Assembler::equal, L1); // this would be broken also
duke@435 1670 BLOCK_COMMENT("assert done");
duke@435 1671 }
duke@435 1672 #endif //ASSERT
duke@435 1673
duke@435 1674 // Load layout helper (32-bits)
duke@435 1675 //
duke@435 1676 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 1677 // 32 30 24 16 8 2 0
duke@435 1678 //
duke@435 1679 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 1680 //
duke@435 1681
duke@435 1682 int lh_offset = klassOopDesc::header_size() * HeapWordSize +
duke@435 1683 Klass::layout_helper_offset_in_bytes();
duke@435 1684 Address src_klass_lh_addr(rcx_src_klass, lh_offset);
duke@435 1685
duke@435 1686 // Handle objArrays completely differently...
duke@435 1687 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 1688 __ cmpl(src_klass_lh_addr, objArray_lh);
duke@435 1689 __ jcc(Assembler::equal, L_objArray);
duke@435 1690
duke@435 1691 // if (src->klass() != dst->klass()) return -1;
never@739 1692 __ cmpptr(rcx_src_klass, dst_klass_addr);
duke@435 1693 __ jccb(Assembler::notEqual, L_failed_0);
duke@435 1694
duke@435 1695 const Register rcx_lh = rcx; // layout helper
duke@435 1696 assert(rcx_lh == rcx_src_klass, "known alias");
duke@435 1697 __ movl(rcx_lh, src_klass_lh_addr);
duke@435 1698
duke@435 1699 // if (!src->is_Array()) return -1;
duke@435 1700 __ cmpl(rcx_lh, Klass::_lh_neutral_value);
duke@435 1701 __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
duke@435 1702
duke@435 1703 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 1704 #ifdef ASSERT
duke@435 1705 { Label L;
duke@435 1706 __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
duke@435 1707 __ jcc(Assembler::greaterEqual, L); // signed cmp
duke@435 1708 __ stop("must be a primitive array");
duke@435 1709 __ bind(L);
duke@435 1710 }
duke@435 1711 #endif
duke@435 1712
duke@435 1713 assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
duke@435 1714 arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
duke@435 1715
duke@435 1716 // typeArrayKlass
duke@435 1717 //
duke@435 1718 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 1719 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 1720 //
duke@435 1721 const Register rsi_offset = rsi; // array offset
duke@435 1722 const Register src_array = src; // src array offset
duke@435 1723 const Register dst_array = dst; // dst array offset
duke@435 1724 const Register rdi_elsize = rdi; // log2 element size
duke@435 1725
never@739 1726 __ mov(rsi_offset, rcx_lh);
never@739 1727 __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
never@739 1728 __ andptr(rsi_offset, Klass::_lh_header_size_mask); // array_offset
never@739 1729 __ addptr(src_array, rsi_offset); // src array offset
never@739 1730 __ addptr(dst_array, rsi_offset); // dst array offset
never@739 1731 __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
duke@435 1732
duke@435 1733 // next registers should be set before the jump to corresponding stub
duke@435 1734 const Register from = src; // source array address
duke@435 1735 const Register to = dst; // destination array address
duke@435 1736 const Register count = rcx; // elements count
duke@435 1737 // some of them should be duplicated on stack
duke@435 1738 #define FROM Address(rsp, 12+ 4)
duke@435 1739 #define TO Address(rsp, 12+ 8) // Not used now
duke@435 1740 #define COUNT Address(rsp, 12+12) // Only for oop arraycopy
duke@435 1741
duke@435 1742 BLOCK_COMMENT("scale indexes to element size");
never@739 1743 __ movl2ptr(rsi, SRC_POS); // src_pos
never@739 1744 __ shlptr(rsi); // src_pos << rcx (log2 elsize)
duke@435 1745 assert(src_array == from, "");
never@739 1746 __ addptr(from, rsi); // from = src_array + SRC_POS << log2 elsize
never@739 1747 __ movl2ptr(rdi, DST_POS); // dst_pos
never@739 1748 __ shlptr(rdi); // dst_pos << rcx (log2 elsize)
duke@435 1749 assert(dst_array == to, "");
never@739 1750 __ addptr(to, rdi); // to = dst_array + DST_POS << log2 elsize
never@739 1751 __ movptr(FROM, from); // src_addr
never@739 1752 __ mov(rdi_elsize, rcx_lh); // log2 elsize
never@739 1753 __ movl2ptr(count, LENGTH); // elements count
duke@435 1754
duke@435 1755 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 1756 __ cmpl(rdi_elsize, 0);
duke@435 1757
duke@435 1758 __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
duke@435 1759 __ cmpl(rdi_elsize, LogBytesPerShort);
duke@435 1760 __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
duke@435 1761 __ cmpl(rdi_elsize, LogBytesPerInt);
duke@435 1762 __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
duke@435 1763 #ifdef ASSERT
duke@435 1764 __ cmpl(rdi_elsize, LogBytesPerLong);
duke@435 1765 __ jccb(Assembler::notEqual, L_failed);
duke@435 1766 #endif
never@739 1767 __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
never@739 1768 __ pop(rsi);
duke@435 1769 __ jump(RuntimeAddress(entry_jlong_arraycopy));
duke@435 1770
duke@435 1771 __ BIND(L_failed);
never@739 1772 __ xorptr(rax, rax);
never@739 1773 __ notptr(rax); // return -1
never@739 1774 __ pop(rdi);
never@739 1775 __ pop(rsi);
duke@435 1776 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1777 __ ret(0);
duke@435 1778
duke@435 1779 // objArrayKlass
duke@435 1780 __ BIND(L_objArray);
duke@435 1781 // live at this point: rcx_src_klass, src[_pos], dst[_pos]
duke@435 1782
duke@435 1783 Label L_plain_copy, L_checkcast_copy;
duke@435 1784 // test array classes for subtyping
never@739 1785 __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
duke@435 1786 __ jccb(Assembler::notEqual, L_checkcast_copy);
duke@435 1787
duke@435 1788 // Identically typed arrays can be copied without element-wise checks.
duke@435 1789 assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
duke@435 1790 arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
duke@435 1791
duke@435 1792 __ BIND(L_plain_copy);
never@739 1793 __ movl2ptr(count, LENGTH); // elements count
never@739 1794 __ movl2ptr(src_pos, SRC_POS); // reload src_pos
never@739 1795 __ lea(from, Address(src, src_pos, Address::times_ptr,
never@739 1796 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
never@739 1797 __ movl2ptr(dst_pos, DST_POS); // reload dst_pos
never@739 1798 __ lea(to, Address(dst, dst_pos, Address::times_ptr,
never@739 1799 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
never@739 1800 __ movptr(FROM, from); // src_addr
never@739 1801 __ movptr(TO, to); // dst_addr
duke@435 1802 __ movl(COUNT, count); // count
duke@435 1803 __ jump(RuntimeAddress(entry_oop_arraycopy));
duke@435 1804
duke@435 1805 __ BIND(L_checkcast_copy);
duke@435 1806 // live at this point: rcx_src_klass, dst[_pos], src[_pos]
duke@435 1807 {
duke@435 1808 // Handy offsets:
duke@435 1809 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 1810 objArrayKlass::element_klass_offset_in_bytes());
duke@435 1811 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 1812 Klass::super_check_offset_offset_in_bytes());
duke@435 1813
duke@435 1814 Register rsi_dst_klass = rsi;
duke@435 1815 Register rdi_temp = rdi;
duke@435 1816 assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
duke@435 1817 assert(rdi_temp == dst_pos, "expected alias w/ dst_pos");
duke@435 1818 Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
duke@435 1819
duke@435 1820 // Before looking at dst.length, make sure dst is also an objArray.
never@739 1821 __ movptr(rsi_dst_klass, dst_klass_addr);
duke@435 1822 __ cmpl(dst_klass_lh_addr, objArray_lh);
duke@435 1823 __ jccb(Assembler::notEqual, L_failed);
duke@435 1824
duke@435 1825 // It is safe to examine both src.length and dst.length.
never@739 1826 __ movl2ptr(src_pos, SRC_POS); // reload rsi
duke@435 1827 arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
duke@435 1828 // (Now src_pos and dst_pos are killed, but not src and dst.)
duke@435 1829
duke@435 1830 // We'll need this temp (don't forget to pop it after the type check).
never@739 1831 __ push(rbx);
duke@435 1832 Register rbx_src_klass = rbx;
duke@435 1833
never@739 1834 __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
never@739 1835 __ movptr(rsi_dst_klass, dst_klass_addr);
duke@435 1836 Address super_check_offset_addr(rsi_dst_klass, sco_offset);
duke@435 1837 Label L_fail_array_check;
duke@435 1838 generate_type_check(rbx_src_klass,
duke@435 1839 super_check_offset_addr, dst_klass_addr,
duke@435 1840 rdi_temp, NULL, &L_fail_array_check);
duke@435 1841 // (On fall-through, we have passed the array type check.)
never@739 1842 __ pop(rbx);
duke@435 1843 __ jmp(L_plain_copy);
duke@435 1844
duke@435 1845 __ BIND(L_fail_array_check);
duke@435 1846 // Reshuffle arguments so we can call checkcast_arraycopy:
duke@435 1847
duke@435 1848 // match initial saves for checkcast_arraycopy
never@739 1849 // push(rsi); // already done; see above
never@739 1850 // push(rdi); // already done; see above
never@739 1851 // push(rbx); // already done; see above
duke@435 1852
duke@435 1853 // Marshal outgoing arguments now, freeing registers.
duke@435 1854 Address from_arg(rsp, 16+ 4); // from
duke@435 1855 Address to_arg(rsp, 16+ 8); // to
duke@435 1856 Address length_arg(rsp, 16+12); // elements count
duke@435 1857 Address ckoff_arg(rsp, 16+16); // super_check_offset
duke@435 1858 Address ckval_arg(rsp, 16+20); // super_klass
duke@435 1859
duke@435 1860 Address SRC_POS_arg(rsp, 16+ 8);
duke@435 1861 Address DST_POS_arg(rsp, 16+16);
duke@435 1862 Address LENGTH_arg(rsp, 16+20);
duke@435 1863 // push rbx, changed the incoming offsets (why not just use rbp,??)
duke@435 1864 // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
duke@435 1865
never@739 1866 __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
never@739 1867 __ movl2ptr(length, LENGTH_arg); // reload elements count
never@739 1868 __ movl2ptr(src_pos, SRC_POS_arg); // reload src_pos
never@739 1869 __ movl2ptr(dst_pos, DST_POS_arg); // reload dst_pos
duke@435 1870
never@739 1871 __ movptr(ckval_arg, rbx); // destination element type
duke@435 1872 __ movl(rbx, Address(rbx, sco_offset));
duke@435 1873 __ movl(ckoff_arg, rbx); // corresponding class check offset
duke@435 1874
duke@435 1875 __ movl(length_arg, length); // outgoing length argument
duke@435 1876
never@739 1877 __ lea(from, Address(src, src_pos, Address::times_ptr,
duke@435 1878 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 1879 __ movptr(from_arg, from);
duke@435 1880
never@739 1881 __ lea(to, Address(dst, dst_pos, Address::times_ptr,
duke@435 1882 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 1883 __ movptr(to_arg, to);
duke@435 1884 __ jump(RuntimeAddress(entry_checkcast_arraycopy));
duke@435 1885 }
duke@435 1886
duke@435 1887 return start;
duke@435 1888 }
duke@435 1889
duke@435 1890 void generate_arraycopy_stubs() {
duke@435 1891 address entry;
duke@435 1892 address entry_jbyte_arraycopy;
duke@435 1893 address entry_jshort_arraycopy;
duke@435 1894 address entry_jint_arraycopy;
duke@435 1895 address entry_oop_arraycopy;
duke@435 1896 address entry_jlong_arraycopy;
duke@435 1897 address entry_checkcast_arraycopy;
duke@435 1898
duke@435 1899 StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
duke@435 1900 generate_disjoint_copy(T_BYTE, true, Address::times_1, &entry,
duke@435 1901 "arrayof_jbyte_disjoint_arraycopy");
duke@435 1902 StubRoutines::_arrayof_jbyte_arraycopy =
duke@435 1903 generate_conjoint_copy(T_BYTE, true, Address::times_1, entry,
duke@435 1904 NULL, "arrayof_jbyte_arraycopy");
duke@435 1905 StubRoutines::_jbyte_disjoint_arraycopy =
duke@435 1906 generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
duke@435 1907 "jbyte_disjoint_arraycopy");
duke@435 1908 StubRoutines::_jbyte_arraycopy =
duke@435 1909 generate_conjoint_copy(T_BYTE, false, Address::times_1, entry,
duke@435 1910 &entry_jbyte_arraycopy, "jbyte_arraycopy");
duke@435 1911
duke@435 1912 StubRoutines::_arrayof_jshort_disjoint_arraycopy =
duke@435 1913 generate_disjoint_copy(T_SHORT, true, Address::times_2, &entry,
duke@435 1914 "arrayof_jshort_disjoint_arraycopy");
duke@435 1915 StubRoutines::_arrayof_jshort_arraycopy =
duke@435 1916 generate_conjoint_copy(T_SHORT, true, Address::times_2, entry,
duke@435 1917 NULL, "arrayof_jshort_arraycopy");
duke@435 1918 StubRoutines::_jshort_disjoint_arraycopy =
duke@435 1919 generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
duke@435 1920 "jshort_disjoint_arraycopy");
duke@435 1921 StubRoutines::_jshort_arraycopy =
duke@435 1922 generate_conjoint_copy(T_SHORT, false, Address::times_2, entry,
duke@435 1923 &entry_jshort_arraycopy, "jshort_arraycopy");
duke@435 1924
duke@435 1925 // Next arrays are always aligned on 4 bytes at least.
duke@435 1926 StubRoutines::_jint_disjoint_arraycopy =
duke@435 1927 generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
duke@435 1928 "jint_disjoint_arraycopy");
duke@435 1929 StubRoutines::_jint_arraycopy =
duke@435 1930 generate_conjoint_copy(T_INT, true, Address::times_4, entry,
duke@435 1931 &entry_jint_arraycopy, "jint_arraycopy");
duke@435 1932
duke@435 1933 StubRoutines::_oop_disjoint_arraycopy =
never@739 1934 generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
duke@435 1935 "oop_disjoint_arraycopy");
duke@435 1936 StubRoutines::_oop_arraycopy =
never@739 1937 generate_conjoint_copy(T_OBJECT, true, Address::times_ptr, entry,
duke@435 1938 &entry_oop_arraycopy, "oop_arraycopy");
duke@435 1939
duke@435 1940 StubRoutines::_jlong_disjoint_arraycopy =
duke@435 1941 generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
duke@435 1942 StubRoutines::_jlong_arraycopy =
duke@435 1943 generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
duke@435 1944 "jlong_arraycopy");
duke@435 1945
duke@435 1946 StubRoutines::_arrayof_jint_disjoint_arraycopy =
duke@435 1947 StubRoutines::_jint_disjoint_arraycopy;
duke@435 1948 StubRoutines::_arrayof_oop_disjoint_arraycopy =
duke@435 1949 StubRoutines::_oop_disjoint_arraycopy;
duke@435 1950 StubRoutines::_arrayof_jlong_disjoint_arraycopy =
duke@435 1951 StubRoutines::_jlong_disjoint_arraycopy;
duke@435 1952
duke@435 1953 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 1954 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
duke@435 1955 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 1956
duke@435 1957 StubRoutines::_checkcast_arraycopy =
duke@435 1958 generate_checkcast_copy("checkcast_arraycopy",
duke@435 1959 &entry_checkcast_arraycopy);
duke@435 1960
duke@435 1961 StubRoutines::_unsafe_arraycopy =
duke@435 1962 generate_unsafe_copy("unsafe_arraycopy",
duke@435 1963 entry_jbyte_arraycopy,
duke@435 1964 entry_jshort_arraycopy,
duke@435 1965 entry_jint_arraycopy,
duke@435 1966 entry_jlong_arraycopy);
duke@435 1967
duke@435 1968 StubRoutines::_generic_arraycopy =
duke@435 1969 generate_generic_copy("generic_arraycopy",
duke@435 1970 entry_jbyte_arraycopy,
duke@435 1971 entry_jshort_arraycopy,
duke@435 1972 entry_jint_arraycopy,
duke@435 1973 entry_oop_arraycopy,
duke@435 1974 entry_jlong_arraycopy,
duke@435 1975 entry_checkcast_arraycopy);
duke@435 1976 }
duke@435 1977
duke@435 1978 public:
duke@435 1979 // Information about frame layout at time of blocking runtime call.
duke@435 1980 // Note that we only have to preserve callee-saved registers since
duke@435 1981 // the compilers are responsible for supplying a continuation point
duke@435 1982 // if they expect all registers to be preserved.
duke@435 1983 enum layout {
duke@435 1984 thread_off, // last_java_sp
duke@435 1985 rbp_off, // callee saved register
duke@435 1986 ret_pc,
duke@435 1987 framesize
duke@435 1988 };
duke@435 1989
duke@435 1990 private:
duke@435 1991
duke@435 1992 #undef __
duke@435 1993 #define __ masm->
duke@435 1994
duke@435 1995 //------------------------------------------------------------------------------------------------------------------------
duke@435 1996 // Continuation point for throwing of implicit exceptions that are not handled in
duke@435 1997 // the current activation. Fabricates an exception oop and initiates normal
duke@435 1998 // exception dispatching in this frame.
duke@435 1999 //
duke@435 2000 // Previously the compiler (c2) allowed for callee save registers on Java calls.
duke@435 2001 // This is no longer true after adapter frames were removed but could possibly
duke@435 2002 // be brought back in the future if the interpreter code was reworked and it
duke@435 2003 // was deemed worthwhile. The comment below was left to describe what must
duke@435 2004 // happen here if callee saves were resurrected. As it stands now this stub
duke@435 2005 // could actually be a vanilla BufferBlob and have now oopMap at all.
duke@435 2006 // Since it doesn't make much difference we've chosen to leave it the
duke@435 2007 // way it was in the callee save days and keep the comment.
duke@435 2008
duke@435 2009 // If we need to preserve callee-saved values we need a callee-saved oop map and
duke@435 2010 // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
duke@435 2011 // If the compiler needs all registers to be preserved between the fault
duke@435 2012 // point and the exception handler then it must assume responsibility for that in
duke@435 2013 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 2014 // continuation_for_implicit_division_by_zero_exception. All other implicit
duke@435 2015 // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
duke@435 2016 // either at call sites or otherwise assume that stack unwinding will be initiated,
duke@435 2017 // so caller saved registers were assumed volatile in the compiler.
duke@435 2018 address generate_throw_exception(const char* name, address runtime_entry,
duke@435 2019 bool restore_saved_exception_pc) {
duke@435 2020
duke@435 2021 int insts_size = 256;
duke@435 2022 int locs_size = 32;
duke@435 2023
duke@435 2024 CodeBuffer code(name, insts_size, locs_size);
duke@435 2025 OopMapSet* oop_maps = new OopMapSet();
duke@435 2026 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 2027
duke@435 2028 address start = __ pc();
duke@435 2029
duke@435 2030 // This is an inlined and slightly modified version of call_VM
duke@435 2031 // which has the ability to fetch the return PC out of
duke@435 2032 // thread-local storage and also sets up last_Java_sp slightly
duke@435 2033 // differently than the real call_VM
duke@435 2034 Register java_thread = rbx;
duke@435 2035 __ get_thread(java_thread);
duke@435 2036 if (restore_saved_exception_pc) {
never@739 2037 __ movptr(rax, Address(java_thread, in_bytes(JavaThread::saved_exception_pc_offset())));
never@739 2038 __ push(rax);
duke@435 2039 }
duke@435 2040
duke@435 2041 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2042
duke@435 2043 // pc and rbp, already pushed
never@739 2044 __ subptr(rsp, (framesize-2) * wordSize); // prolog
duke@435 2045
duke@435 2046 // Frame is now completed as far as size and linkage.
duke@435 2047
duke@435 2048 int frame_complete = __ pc() - start;
duke@435 2049
duke@435 2050 // push java thread (becomes first argument of C function)
never@739 2051 __ movptr(Address(rsp, thread_off * wordSize), java_thread);
duke@435 2052
duke@435 2053 // Set up last_Java_sp and last_Java_fp
duke@435 2054 __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
duke@435 2055
duke@435 2056 // Call runtime
duke@435 2057 BLOCK_COMMENT("call runtime_entry");
duke@435 2058 __ call(RuntimeAddress(runtime_entry));
duke@435 2059 // Generate oop map
duke@435 2060 OopMap* map = new OopMap(framesize, 0);
duke@435 2061 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 2062
duke@435 2063 // restore the thread (cannot use the pushed argument since arguments
duke@435 2064 // may be overwritten by C code generated by an optimizing compiler);
duke@435 2065 // however can use the register value directly if it is callee saved.
duke@435 2066 __ get_thread(java_thread);
duke@435 2067
duke@435 2068 __ reset_last_Java_frame(java_thread, true, false);
duke@435 2069
duke@435 2070 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2071
duke@435 2072 // check for pending exceptions
duke@435 2073 #ifdef ASSERT
duke@435 2074 Label L;
never@739 2075 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 2076 __ jcc(Assembler::notEqual, L);
duke@435 2077 __ should_not_reach_here();
duke@435 2078 __ bind(L);
duke@435 2079 #endif /* ASSERT */
duke@435 2080 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2081
duke@435 2082
duke@435 2083 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
duke@435 2084 return stub->entry_point();
duke@435 2085 }
duke@435 2086
duke@435 2087
duke@435 2088 void create_control_words() {
duke@435 2089 // Round to nearest, 53-bit mode, exceptions masked
duke@435 2090 StubRoutines::_fpu_cntrl_wrd_std = 0x027F;
duke@435 2091 // Round to zero, 53-bit mode, exception mased
duke@435 2092 StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
duke@435 2093 // Round to nearest, 24-bit mode, exceptions masked
duke@435 2094 StubRoutines::_fpu_cntrl_wrd_24 = 0x007F;
duke@435 2095 // Round to nearest, 64-bit mode, exceptions masked
duke@435 2096 StubRoutines::_fpu_cntrl_wrd_64 = 0x037F;
duke@435 2097 // Round to nearest, 64-bit mode, exceptions masked
duke@435 2098 StubRoutines::_mxcsr_std = 0x1F80;
duke@435 2099 // Note: the following two constants are 80-bit values
duke@435 2100 // layout is critical for correct loading by FPU.
duke@435 2101 // Bias for strict fp multiply/divide
duke@435 2102 StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
duke@435 2103 StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
duke@435 2104 StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
duke@435 2105 // Un-Bias for strict fp multiply/divide
duke@435 2106 StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
duke@435 2107 StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
duke@435 2108 StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
duke@435 2109 }
duke@435 2110
duke@435 2111 //---------------------------------------------------------------------------
duke@435 2112 // Initialization
duke@435 2113
duke@435 2114 void generate_initial() {
duke@435 2115 // Generates all stubs and initializes the entry points
duke@435 2116
duke@435 2117 //------------------------------------------------------------------------------------------------------------------------
duke@435 2118 // entry points that exist in all platforms
duke@435 2119 // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
duke@435 2120 // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
duke@435 2121 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 2122
duke@435 2123 StubRoutines::_call_stub_entry =
duke@435 2124 generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 2125 // is referenced by megamorphic call
duke@435 2126 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 2127
duke@435 2128 // These are currently used by Solaris/Intel
duke@435 2129 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 2130
duke@435 2131 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 2132 generate_handler_for_unsafe_access();
duke@435 2133
duke@435 2134 // platform dependent
duke@435 2135 create_control_words();
duke@435 2136
never@739 2137 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
never@739 2138 StubRoutines::x86::_verify_fpu_cntrl_wrd_entry = generate_verify_fpu_cntrl_wrd();
duke@435 2139 StubRoutines::_d2i_wrapper = generate_d2i_wrapper(T_INT,
duke@435 2140 CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
duke@435 2141 StubRoutines::_d2l_wrapper = generate_d2i_wrapper(T_LONG,
duke@435 2142 CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
duke@435 2143 }
duke@435 2144
duke@435 2145
duke@435 2146 void generate_all() {
duke@435 2147 // Generates all stubs and initializes the entry points
duke@435 2148
duke@435 2149 // These entry points require SharedInfo::stack0 to be set up in non-core builds
duke@435 2150 // and need to be relocatable, so they each fabricate a RuntimeStub internally.
duke@435 2151 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError), false);
dcubed@451 2152 StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError), false);
duke@435 2153 StubRoutines::_throw_ArithmeticException_entry = generate_throw_exception("ArithmeticException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException), true);
duke@435 2154 StubRoutines::_throw_NullPointerException_entry = generate_throw_exception("NullPointerException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
duke@435 2155 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
duke@435 2156 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false);
duke@435 2157
duke@435 2158 //------------------------------------------------------------------------------------------------------------------------
duke@435 2159 // entry points that are platform specific
duke@435 2160
duke@435 2161 // support for verify_oop (must happen after universe_init)
duke@435 2162 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
duke@435 2163
duke@435 2164 // arraycopy stubs used by compilers
duke@435 2165 generate_arraycopy_stubs();
duke@435 2166 }
duke@435 2167
duke@435 2168
duke@435 2169 public:
duke@435 2170 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 2171 if (all) {
duke@435 2172 generate_all();
duke@435 2173 } else {
duke@435 2174 generate_initial();
duke@435 2175 }
duke@435 2176 }
duke@435 2177 }; // end class declaration
duke@435 2178
duke@435 2179
duke@435 2180 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 2181 StubGenerator g(code, all);
duke@435 2182 }

mercurial