src/cpu/x86/vm/stubGenerator_x86_32.cpp

Thu, 05 Jun 2008 15:57:56 -0700

author
ysr
date
Thu, 05 Jun 2008 15:57:56 -0700
changeset 777
37f87013dfd8
parent 454
a73cc31728fe
child 791
1ee8caae33af
permissions
-rw-r--r--

6711316: Open source the Garbage-First garbage collector
Summary: First mercurial integration of the code for the Garbage-First garbage collector.
Reviewed-by: apetrusenko, iveresov, jmasa, sgoldman, tonyp, ysr

duke@435 1 /*
duke@435 2 * Copyright 1999-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_stubGenerator_x86_32.cpp.incl"
duke@435 27
duke@435 28 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 29 // For a more detailed description of the stub routine structure
duke@435 30 // see the comment in stubRoutines.hpp
duke@435 31
duke@435 32 #define __ _masm->
duke@435 33
duke@435 34 #ifdef PRODUCT
duke@435 35 #define BLOCK_COMMENT(str) /* nothing */
duke@435 36 #else
duke@435 37 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 38 #endif
duke@435 39
duke@435 40 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 41
duke@435 42 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
duke@435 43 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
duke@435 44
duke@435 45 // -------------------------------------------------------------------------------------------------------------------------
duke@435 46 // Stub Code definitions
duke@435 47
duke@435 48 static address handle_unsafe_access() {
duke@435 49 JavaThread* thread = JavaThread::current();
duke@435 50 address pc = thread->saved_exception_pc();
duke@435 51 // pc is the instruction which we must emulate
duke@435 52 // doing a no-op is fine: return garbage from the load
duke@435 53 // therefore, compute npc
duke@435 54 address npc = Assembler::locate_next_instruction(pc);
duke@435 55
duke@435 56 // request an async exception
duke@435 57 thread->set_pending_unsafe_access_error();
duke@435 58
duke@435 59 // return address of next instruction to execute
duke@435 60 return npc;
duke@435 61 }
duke@435 62
duke@435 63 class StubGenerator: public StubCodeGenerator {
duke@435 64 private:
duke@435 65
duke@435 66 #ifdef PRODUCT
duke@435 67 #define inc_counter_np(counter) (0)
duke@435 68 #else
duke@435 69 void inc_counter_np_(int& counter) {
duke@435 70 __ increment(ExternalAddress((address)&counter));
duke@435 71 }
duke@435 72 #define inc_counter_np(counter) \
duke@435 73 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 74 inc_counter_np_(counter);
duke@435 75 #endif //PRODUCT
duke@435 76
duke@435 77 void inc_copy_counter_np(BasicType t) {
duke@435 78 #ifndef PRODUCT
duke@435 79 switch (t) {
duke@435 80 case T_BYTE: inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
duke@435 81 case T_SHORT: inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
duke@435 82 case T_INT: inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
duke@435 83 case T_LONG: inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
duke@435 84 case T_OBJECT: inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
duke@435 85 }
duke@435 86 ShouldNotReachHere();
duke@435 87 #endif //PRODUCT
duke@435 88 }
duke@435 89
duke@435 90 //------------------------------------------------------------------------------------------------------------------------
duke@435 91 // Call stubs are used to call Java from C
duke@435 92 //
duke@435 93 // [ return_from_Java ] <--- rsp
duke@435 94 // [ argument word n ]
duke@435 95 // ...
duke@435 96 // -N [ argument word 1 ]
duke@435 97 // -7 [ Possible padding for stack alignment ]
duke@435 98 // -6 [ Possible padding for stack alignment ]
duke@435 99 // -5 [ Possible padding for stack alignment ]
duke@435 100 // -4 [ mxcsr save ] <--- rsp_after_call
duke@435 101 // -3 [ saved rbx, ]
duke@435 102 // -2 [ saved rsi ]
duke@435 103 // -1 [ saved rdi ]
duke@435 104 // 0 [ saved rbp, ] <--- rbp,
duke@435 105 // 1 [ return address ]
duke@435 106 // 2 [ ptr. to call wrapper ]
duke@435 107 // 3 [ result ]
duke@435 108 // 4 [ result_type ]
duke@435 109 // 5 [ method ]
duke@435 110 // 6 [ entry_point ]
duke@435 111 // 7 [ parameters ]
duke@435 112 // 8 [ parameter_size ]
duke@435 113 // 9 [ thread ]
duke@435 114
duke@435 115
duke@435 116 address generate_call_stub(address& return_address) {
duke@435 117 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 118 address start = __ pc();
duke@435 119
duke@435 120 // stub code parameters / addresses
duke@435 121 assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
duke@435 122 bool sse_save = false;
duke@435 123 const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
duke@435 124 const int locals_count_in_bytes (4*wordSize);
duke@435 125 const Address mxcsr_save (rbp, -4 * wordSize);
duke@435 126 const Address saved_rbx (rbp, -3 * wordSize);
duke@435 127 const Address saved_rsi (rbp, -2 * wordSize);
duke@435 128 const Address saved_rdi (rbp, -1 * wordSize);
duke@435 129 const Address result (rbp, 3 * wordSize);
duke@435 130 const Address result_type (rbp, 4 * wordSize);
duke@435 131 const Address method (rbp, 5 * wordSize);
duke@435 132 const Address entry_point (rbp, 6 * wordSize);
duke@435 133 const Address parameters (rbp, 7 * wordSize);
duke@435 134 const Address parameter_size(rbp, 8 * wordSize);
duke@435 135 const Address thread (rbp, 9 * wordSize); // same as in generate_catch_exception()!
duke@435 136 sse_save = UseSSE > 0;
duke@435 137
duke@435 138 // stub code
duke@435 139 __ enter();
duke@435 140 __ movl(rcx, parameter_size); // parameter counter
duke@435 141 __ shll(rcx, Interpreter::logStackElementSize()); // convert parameter count to bytes
duke@435 142 __ addl(rcx, locals_count_in_bytes); // reserve space for register saves
duke@435 143 __ subl(rsp, rcx);
duke@435 144 __ andl(rsp, -(StackAlignmentInBytes)); // Align stack
duke@435 145
duke@435 146 // save rdi, rsi, & rbx, according to C calling conventions
duke@435 147 __ movl(saved_rdi, rdi);
duke@435 148 __ movl(saved_rsi, rsi);
duke@435 149 __ movl(saved_rbx, rbx);
duke@435 150 // save and initialize %mxcsr
duke@435 151 if (sse_save) {
duke@435 152 Label skip_ldmx;
duke@435 153 __ stmxcsr(mxcsr_save);
duke@435 154 __ movl(rax, mxcsr_save);
duke@435 155 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
duke@435 156 ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
duke@435 157 __ cmp32(rax, mxcsr_std);
duke@435 158 __ jcc(Assembler::equal, skip_ldmx);
duke@435 159 __ ldmxcsr(mxcsr_std);
duke@435 160 __ bind(skip_ldmx);
duke@435 161 }
duke@435 162
duke@435 163 // make sure the control word is correct.
duke@435 164 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 165
duke@435 166 #ifdef ASSERT
duke@435 167 // make sure we have no pending exceptions
duke@435 168 { Label L;
duke@435 169 __ movl(rcx, thread);
duke@435 170 __ cmpl(Address(rcx, Thread::pending_exception_offset()), NULL_WORD);
duke@435 171 __ jcc(Assembler::equal, L);
duke@435 172 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 173 __ bind(L);
duke@435 174 }
duke@435 175 #endif
duke@435 176
duke@435 177 // pass parameters if any
duke@435 178 BLOCK_COMMENT("pass parameters if any");
duke@435 179 Label parameters_done;
duke@435 180 __ movl(rcx, parameter_size); // parameter counter
duke@435 181 __ testl(rcx, rcx);
duke@435 182 __ jcc(Assembler::zero, parameters_done);
duke@435 183
duke@435 184 // parameter passing loop
duke@435 185
duke@435 186 Label loop;
duke@435 187 // Copy Java parameters in reverse order (receiver last)
duke@435 188 // Note that the argument order is inverted in the process
duke@435 189 // source is rdx[rcx: N-1..0]
duke@435 190 // dest is rsp[rbx: 0..N-1]
duke@435 191
duke@435 192 __ movl(rdx, parameters); // parameter pointer
duke@435 193 __ xorl(rbx, rbx);
duke@435 194
duke@435 195 __ BIND(loop);
duke@435 196 if (TaggedStackInterpreter) {
duke@435 197 __ movl(rax, Address(rdx, rcx, Interpreter::stackElementScale(),
duke@435 198 -2*wordSize)); // get tag
duke@435 199 __ movl(Address(rsp, rbx, Interpreter::stackElementScale(),
duke@435 200 Interpreter::expr_tag_offset_in_bytes(0)), rax); // store tag
duke@435 201 }
duke@435 202
duke@435 203 // get parameter
duke@435 204 __ movl(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
duke@435 205 __ movl(Address(rsp, rbx, Interpreter::stackElementScale(),
duke@435 206 Interpreter::expr_offset_in_bytes(0)), rax); // store parameter
duke@435 207 __ increment(rbx);
duke@435 208 __ decrement(rcx);
duke@435 209 __ jcc(Assembler::notZero, loop);
duke@435 210
duke@435 211 // call Java function
duke@435 212 __ BIND(parameters_done);
duke@435 213 __ movl(rbx, method); // get methodOop
duke@435 214 __ movl(rax, entry_point); // get entry_point
duke@435 215 __ movl(rsi, rsp); // set sender sp
duke@435 216 BLOCK_COMMENT("call Java function");
duke@435 217 __ call(rax);
duke@435 218
duke@435 219 BLOCK_COMMENT("call_stub_return_address:");
duke@435 220 return_address = __ pc();
duke@435 221
duke@435 222 Label common_return;
duke@435 223
duke@435 224 __ BIND(common_return);
duke@435 225
duke@435 226 // store result depending on type
duke@435 227 // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
duke@435 228 __ movl(rdi, result);
duke@435 229 Label is_long, is_float, is_double, exit;
duke@435 230 __ movl(rsi, result_type);
duke@435 231 __ cmpl(rsi, T_LONG);
duke@435 232 __ jcc(Assembler::equal, is_long);
duke@435 233 __ cmpl(rsi, T_FLOAT);
duke@435 234 __ jcc(Assembler::equal, is_float);
duke@435 235 __ cmpl(rsi, T_DOUBLE);
duke@435 236 __ jcc(Assembler::equal, is_double);
duke@435 237
duke@435 238 // handle T_INT case
duke@435 239 __ movl(Address(rdi, 0), rax);
duke@435 240 __ BIND(exit);
duke@435 241
duke@435 242 // check that FPU stack is empty
duke@435 243 __ verify_FPU(0, "generate_call_stub");
duke@435 244
duke@435 245 // pop parameters
duke@435 246 __ leal(rsp, rsp_after_call);
duke@435 247
duke@435 248 // restore %mxcsr
duke@435 249 if (sse_save) {
duke@435 250 __ ldmxcsr(mxcsr_save);
duke@435 251 }
duke@435 252
duke@435 253 // restore rdi, rsi and rbx,
duke@435 254 __ movl(rbx, saved_rbx);
duke@435 255 __ movl(rsi, saved_rsi);
duke@435 256 __ movl(rdi, saved_rdi);
duke@435 257 __ addl(rsp, 4*wordSize);
duke@435 258
duke@435 259 // return
duke@435 260 __ popl(rbp);
duke@435 261 __ ret(0);
duke@435 262
duke@435 263 // handle return types different from T_INT
duke@435 264 __ BIND(is_long);
duke@435 265 __ movl(Address(rdi, 0 * wordSize), rax);
duke@435 266 __ movl(Address(rdi, 1 * wordSize), rdx);
duke@435 267 __ jmp(exit);
duke@435 268
duke@435 269 __ BIND(is_float);
duke@435 270 // interpreter uses xmm0 for return values
duke@435 271 if (UseSSE >= 1) {
duke@435 272 __ movflt(Address(rdi, 0), xmm0);
duke@435 273 } else {
duke@435 274 __ fstp_s(Address(rdi, 0));
duke@435 275 }
duke@435 276 __ jmp(exit);
duke@435 277
duke@435 278 __ BIND(is_double);
duke@435 279 // interpreter uses xmm0 for return values
duke@435 280 if (UseSSE >= 2) {
duke@435 281 __ movdbl(Address(rdi, 0), xmm0);
duke@435 282 } else {
duke@435 283 __ fstp_d(Address(rdi, 0));
duke@435 284 }
duke@435 285 __ jmp(exit);
duke@435 286
duke@435 287 // If we call compiled code directly from the call stub we will
duke@435 288 // need to adjust the return back to the call stub to a specialized
duke@435 289 // piece of code that can handle compiled results and cleaning the fpu
duke@435 290 // stack. compiled code will be set to return here instead of the
duke@435 291 // return above that handles interpreter returns.
duke@435 292
duke@435 293 BLOCK_COMMENT("call_stub_compiled_return:");
duke@435 294 StubRoutines::i486::set_call_stub_compiled_return( __ pc());
duke@435 295
duke@435 296 #ifdef COMPILER2
duke@435 297 if (UseSSE >= 2) {
duke@435 298 __ verify_FPU(0, "call_stub_compiled_return");
duke@435 299 } else {
duke@435 300 for (int i = 1; i < 8; i++) {
duke@435 301 __ ffree(i);
duke@435 302 }
duke@435 303
duke@435 304 // UseSSE <= 1 so double result should be left on TOS
duke@435 305 __ movl(rsi, result_type);
duke@435 306 __ cmpl(rsi, T_DOUBLE);
duke@435 307 __ jcc(Assembler::equal, common_return);
duke@435 308 if (UseSSE == 0) {
duke@435 309 // UseSSE == 0 so float result should be left on TOS
duke@435 310 __ cmpl(rsi, T_FLOAT);
duke@435 311 __ jcc(Assembler::equal, common_return);
duke@435 312 }
duke@435 313 __ ffree(0);
duke@435 314 }
duke@435 315 #endif /* COMPILER2 */
duke@435 316 __ jmp(common_return);
duke@435 317
duke@435 318 return start;
duke@435 319 }
duke@435 320
duke@435 321
duke@435 322 //------------------------------------------------------------------------------------------------------------------------
duke@435 323 // Return point for a Java call if there's an exception thrown in Java code.
duke@435 324 // The exception is caught and transformed into a pending exception stored in
duke@435 325 // JavaThread that can be tested from within the VM.
duke@435 326 //
duke@435 327 // Note: Usually the parameters are removed by the callee. In case of an exception
duke@435 328 // crossing an activation frame boundary, that is not the case if the callee
duke@435 329 // is compiled code => need to setup the rsp.
duke@435 330 //
duke@435 331 // rax,: exception oop
duke@435 332
duke@435 333 address generate_catch_exception() {
duke@435 334 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 335 const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
duke@435 336 const Address thread (rbp, 9 * wordSize); // same as in generate_call_stub()!
duke@435 337 address start = __ pc();
duke@435 338
duke@435 339 // get thread directly
duke@435 340 __ movl(rcx, thread);
duke@435 341 #ifdef ASSERT
duke@435 342 // verify that threads correspond
duke@435 343 { Label L;
duke@435 344 __ get_thread(rbx);
duke@435 345 __ cmpl(rbx, rcx);
duke@435 346 __ jcc(Assembler::equal, L);
duke@435 347 __ stop("StubRoutines::catch_exception: threads must correspond");
duke@435 348 __ bind(L);
duke@435 349 }
duke@435 350 #endif
duke@435 351 // set pending exception
duke@435 352 __ verify_oop(rax);
duke@435 353 __ movl(Address(rcx, Thread::pending_exception_offset()), rax );
duke@435 354 __ lea(Address(rcx, Thread::exception_file_offset ()),
duke@435 355 ExternalAddress((address)__FILE__));
duke@435 356 __ movl(Address(rcx, Thread::exception_line_offset ()), __LINE__ );
duke@435 357 // complete return to VM
duke@435 358 assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
duke@435 359 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
duke@435 360
duke@435 361 return start;
duke@435 362 }
duke@435 363
duke@435 364
duke@435 365 //------------------------------------------------------------------------------------------------------------------------
duke@435 366 // Continuation point for runtime calls returning with a pending exception.
duke@435 367 // The pending exception check happened in the runtime or native call stub.
duke@435 368 // The pending exception in Thread is converted into a Java-level exception.
duke@435 369 //
duke@435 370 // Contract with Java-level exception handlers:
duke@435 371 // rax,: exception
duke@435 372 // rdx: throwing pc
duke@435 373 //
duke@435 374 // NOTE: At entry of this stub, exception-pc must be on stack !!
duke@435 375
duke@435 376 address generate_forward_exception() {
duke@435 377 StubCodeMark mark(this, "StubRoutines", "forward exception");
duke@435 378 address start = __ pc();
duke@435 379
duke@435 380 // Upon entry, the sp points to the return address returning into Java
duke@435 381 // (interpreted or compiled) code; i.e., the return address becomes the
duke@435 382 // throwing pc.
duke@435 383 //
duke@435 384 // Arguments pushed before the runtime call are still on the stack but
duke@435 385 // the exception handler will reset the stack pointer -> ignore them.
duke@435 386 // A potential result in registers can be ignored as well.
duke@435 387
duke@435 388 #ifdef ASSERT
duke@435 389 // make sure this code is only executed if there is a pending exception
duke@435 390 { Label L;
duke@435 391 __ get_thread(rcx);
duke@435 392 __ cmpl(Address(rcx, Thread::pending_exception_offset()), NULL_WORD);
duke@435 393 __ jcc(Assembler::notEqual, L);
duke@435 394 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 395 __ bind(L);
duke@435 396 }
duke@435 397 #endif
duke@435 398
duke@435 399 // compute exception handler into rbx,
duke@435 400 __ movl(rax, Address(rsp, 0));
duke@435 401 BLOCK_COMMENT("call exception_handler_for_return_address");
duke@435 402 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rax);
duke@435 403 __ movl(rbx, rax);
duke@435 404
duke@435 405 // setup rax, & rdx, remove return address & clear pending exception
duke@435 406 __ get_thread(rcx);
duke@435 407 __ popl(rdx);
duke@435 408 __ movl(rax, Address(rcx, Thread::pending_exception_offset()));
duke@435 409 __ movl(Address(rcx, Thread::pending_exception_offset()), NULL_WORD);
duke@435 410
duke@435 411 #ifdef ASSERT
duke@435 412 // make sure exception is set
duke@435 413 { Label L;
duke@435 414 __ testl(rax, rax);
duke@435 415 __ jcc(Assembler::notEqual, L);
duke@435 416 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 417 __ bind(L);
duke@435 418 }
duke@435 419 #endif
duke@435 420
duke@435 421 // continue at exception handler (return address removed)
duke@435 422 // rax,: exception
duke@435 423 // rbx,: exception handler
duke@435 424 // rdx: throwing pc
duke@435 425 __ verify_oop(rax);
duke@435 426 __ jmp(rbx);
duke@435 427
duke@435 428 return start;
duke@435 429 }
duke@435 430
duke@435 431
duke@435 432 //----------------------------------------------------------------------------------------------------
duke@435 433 // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
duke@435 434 //
duke@435 435 // xchg exists as far back as 8086, lock needed for MP only
duke@435 436 // Stack layout immediately after call:
duke@435 437 //
duke@435 438 // 0 [ret addr ] <--- rsp
duke@435 439 // 1 [ ex ]
duke@435 440 // 2 [ dest ]
duke@435 441 //
duke@435 442 // Result: *dest <- ex, return (old *dest)
duke@435 443 //
duke@435 444 // Note: win32 does not currently use this code
duke@435 445
duke@435 446 address generate_atomic_xchg() {
duke@435 447 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 448 address start = __ pc();
duke@435 449
duke@435 450 __ pushl(rdx);
duke@435 451 Address exchange(rsp, 2 * wordSize);
duke@435 452 Address dest_addr(rsp, 3 * wordSize);
duke@435 453 __ movl(rax, exchange);
duke@435 454 __ movl(rdx, dest_addr);
duke@435 455 __ xchg(rax, Address(rdx, 0));
duke@435 456 __ popl(rdx);
duke@435 457 __ ret(0);
duke@435 458
duke@435 459 return start;
duke@435 460 }
duke@435 461
duke@435 462 //----------------------------------------------------------------------------------------------------
duke@435 463 // Support for void verify_mxcsr()
duke@435 464 //
duke@435 465 // This routine is used with -Xcheck:jni to verify that native
duke@435 466 // JNI code does not return to Java code without restoring the
duke@435 467 // MXCSR register to our expected state.
duke@435 468
duke@435 469
duke@435 470 address generate_verify_mxcsr() {
duke@435 471 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
duke@435 472 address start = __ pc();
duke@435 473
duke@435 474 const Address mxcsr_save(rsp, 0);
duke@435 475
duke@435 476 if (CheckJNICalls && UseSSE > 0 ) {
duke@435 477 Label ok_ret;
duke@435 478 ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
duke@435 479 __ pushl(rax);
duke@435 480 __ subl(rsp, wordSize); // allocate a temp location
duke@435 481 __ stmxcsr(mxcsr_save);
duke@435 482 __ movl(rax, mxcsr_save);
duke@435 483 __ andl(rax, MXCSR_MASK);
duke@435 484 __ cmp32(rax, mxcsr_std);
duke@435 485 __ jcc(Assembler::equal, ok_ret);
duke@435 486
duke@435 487 __ warn("MXCSR changed by native JNI code.");
duke@435 488
duke@435 489 __ ldmxcsr(mxcsr_std);
duke@435 490
duke@435 491 __ bind(ok_ret);
duke@435 492 __ addl(rsp, wordSize);
duke@435 493 __ popl(rax);
duke@435 494 }
duke@435 495
duke@435 496 __ ret(0);
duke@435 497
duke@435 498 return start;
duke@435 499 }
duke@435 500
duke@435 501
duke@435 502 //---------------------------------------------------------------------------
duke@435 503 // Support for void verify_fpu_cntrl_wrd()
duke@435 504 //
duke@435 505 // This routine is used with -Xcheck:jni to verify that native
duke@435 506 // JNI code does not return to Java code without restoring the
duke@435 507 // FP control word to our expected state.
duke@435 508
duke@435 509 address generate_verify_fpu_cntrl_wrd() {
duke@435 510 StubCodeMark mark(this, "StubRoutines", "verify_spcw");
duke@435 511 address start = __ pc();
duke@435 512
duke@435 513 const Address fpu_cntrl_wrd_save(rsp, 0);
duke@435 514
duke@435 515 if (CheckJNICalls) {
duke@435 516 Label ok_ret;
duke@435 517 __ pushl(rax);
duke@435 518 __ subl(rsp, wordSize); // allocate a temp location
duke@435 519 __ fnstcw(fpu_cntrl_wrd_save);
duke@435 520 __ movl(rax, fpu_cntrl_wrd_save);
duke@435 521 __ andl(rax, FPU_CNTRL_WRD_MASK);
duke@435 522 ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
duke@435 523 __ cmp32(rax, fpu_std);
duke@435 524 __ jcc(Assembler::equal, ok_ret);
duke@435 525
duke@435 526 __ warn("Floating point control word changed by native JNI code.");
duke@435 527
duke@435 528 __ fldcw(fpu_std);
duke@435 529
duke@435 530 __ bind(ok_ret);
duke@435 531 __ addl(rsp, wordSize);
duke@435 532 __ popl(rax);
duke@435 533 }
duke@435 534
duke@435 535 __ ret(0);
duke@435 536
duke@435 537 return start;
duke@435 538 }
duke@435 539
duke@435 540 //---------------------------------------------------------------------------
duke@435 541 // Wrapper for slow-case handling of double-to-integer conversion
duke@435 542 // d2i or f2i fast case failed either because it is nan or because
duke@435 543 // of under/overflow.
duke@435 544 // Input: FPU TOS: float value
duke@435 545 // Output: rax, (rdx): integer (long) result
duke@435 546
duke@435 547 address generate_d2i_wrapper(BasicType t, address fcn) {
duke@435 548 StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
duke@435 549 address start = __ pc();
duke@435 550
duke@435 551 // Capture info about frame layout
duke@435 552 enum layout { FPUState_off = 0,
duke@435 553 rbp_off = FPUStateSizeInWords,
duke@435 554 rdi_off,
duke@435 555 rsi_off,
duke@435 556 rcx_off,
duke@435 557 rbx_off,
duke@435 558 saved_argument_off,
duke@435 559 saved_argument_off2, // 2nd half of double
duke@435 560 framesize
duke@435 561 };
duke@435 562
duke@435 563 assert(FPUStateSizeInWords == 27, "update stack layout");
duke@435 564
duke@435 565 // Save outgoing argument to stack across push_FPU_state()
duke@435 566 __ subl(rsp, wordSize * 2);
duke@435 567 __ fstp_d(Address(rsp, 0));
duke@435 568
duke@435 569 // Save CPU & FPU state
duke@435 570 __ pushl(rbx);
duke@435 571 __ pushl(rcx);
duke@435 572 __ pushl(rsi);
duke@435 573 __ pushl(rdi);
duke@435 574 __ pushl(rbp);
duke@435 575 __ push_FPU_state();
duke@435 576
duke@435 577 // push_FPU_state() resets the FP top of stack
duke@435 578 // Load original double into FP top of stack
duke@435 579 __ fld_d(Address(rsp, saved_argument_off * wordSize));
duke@435 580 // Store double into stack as outgoing argument
duke@435 581 __ subl(rsp, wordSize*2);
duke@435 582 __ fst_d(Address(rsp, 0));
duke@435 583
duke@435 584 // Prepare FPU for doing math in C-land
duke@435 585 __ empty_FPU_stack();
duke@435 586 // Call the C code to massage the double. Result in EAX
duke@435 587 if (t == T_INT)
duke@435 588 { BLOCK_COMMENT("SharedRuntime::d2i"); }
duke@435 589 else if (t == T_LONG)
duke@435 590 { BLOCK_COMMENT("SharedRuntime::d2l"); }
duke@435 591 __ call_VM_leaf( fcn, 2 );
duke@435 592
duke@435 593 // Restore CPU & FPU state
duke@435 594 __ pop_FPU_state();
duke@435 595 __ popl(rbp);
duke@435 596 __ popl(rdi);
duke@435 597 __ popl(rsi);
duke@435 598 __ popl(rcx);
duke@435 599 __ popl(rbx);
duke@435 600 __ addl(rsp, wordSize * 2);
duke@435 601
duke@435 602 __ ret(0);
duke@435 603
duke@435 604 return start;
duke@435 605 }
duke@435 606
duke@435 607
duke@435 608 //---------------------------------------------------------------------------
duke@435 609 // The following routine generates a subroutine to throw an asynchronous
duke@435 610 // UnknownError when an unsafe access gets a fault that could not be
duke@435 611 // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
duke@435 612 address generate_handler_for_unsafe_access() {
duke@435 613 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 614 address start = __ pc();
duke@435 615
duke@435 616 __ pushl(0); // hole for return address-to-be
duke@435 617 __ pushad(); // push registers
duke@435 618 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
duke@435 619 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 620 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
duke@435 621 __ movl(next_pc, rax); // stuff next address
duke@435 622 __ popad();
duke@435 623 __ ret(0); // jump to next address
duke@435 624
duke@435 625 return start;
duke@435 626 }
duke@435 627
duke@435 628
duke@435 629 //----------------------------------------------------------------------------------------------------
duke@435 630 // Non-destructive plausibility checks for oops
duke@435 631
duke@435 632 address generate_verify_oop() {
duke@435 633 StubCodeMark mark(this, "StubRoutines", "verify_oop");
duke@435 634 address start = __ pc();
duke@435 635
duke@435 636 // Incoming arguments on stack after saving rax,:
duke@435 637 //
duke@435 638 // [tos ]: saved rdx
duke@435 639 // [tos + 1]: saved EFLAGS
duke@435 640 // [tos + 2]: return address
duke@435 641 // [tos + 3]: char* error message
duke@435 642 // [tos + 4]: oop object to verify
duke@435 643 // [tos + 5]: saved rax, - saved by caller and bashed
duke@435 644
duke@435 645 Label exit, error;
duke@435 646 __ pushfd();
duke@435 647 __ increment(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
duke@435 648 __ pushl(rdx); // save rdx
duke@435 649 // make sure object is 'reasonable'
duke@435 650 __ movl(rax, Address(rsp, 4 * wordSize)); // get object
duke@435 651 __ testl(rax, rax);
duke@435 652 __ jcc(Assembler::zero, exit); // if obj is NULL it is ok
duke@435 653
duke@435 654 // Check if the oop is in the right area of memory
duke@435 655 const int oop_mask = Universe::verify_oop_mask();
duke@435 656 const int oop_bits = Universe::verify_oop_bits();
duke@435 657 __ movl(rdx, rax);
duke@435 658 __ andl(rdx, oop_mask);
duke@435 659 __ cmpl(rdx, oop_bits);
duke@435 660 __ jcc(Assembler::notZero, error);
duke@435 661
duke@435 662 // make sure klass is 'reasonable'
duke@435 663 __ movl(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
duke@435 664 __ testl(rax, rax);
duke@435 665 __ jcc(Assembler::zero, error); // if klass is NULL it is broken
duke@435 666
duke@435 667 // Check if the klass is in the right area of memory
duke@435 668 const int klass_mask = Universe::verify_klass_mask();
duke@435 669 const int klass_bits = Universe::verify_klass_bits();
duke@435 670 __ movl(rdx, rax);
duke@435 671 __ andl(rdx, klass_mask);
duke@435 672 __ cmpl(rdx, klass_bits);
duke@435 673 __ jcc(Assembler::notZero, error);
duke@435 674
duke@435 675 // make sure klass' klass is 'reasonable'
duke@435 676 __ movl(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass' klass
duke@435 677 __ testl(rax, rax);
duke@435 678 __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
duke@435 679
duke@435 680 __ movl(rdx, rax);
duke@435 681 __ andl(rdx, klass_mask);
duke@435 682 __ cmpl(rdx, klass_bits);
duke@435 683 __ jcc(Assembler::notZero, error); // if klass not in right area
duke@435 684 // of memory it is broken too.
duke@435 685
duke@435 686 // return if everything seems ok
duke@435 687 __ bind(exit);
duke@435 688 __ movl(rax, Address(rsp, 5 * wordSize)); // get saved rax, back
duke@435 689 __ popl(rdx); // restore rdx
duke@435 690 __ popfd(); // restore EFLAGS
duke@435 691 __ ret(3 * wordSize); // pop arguments
duke@435 692
duke@435 693 // handle errors
duke@435 694 __ bind(error);
duke@435 695 __ movl(rax, Address(rsp, 5 * wordSize)); // get saved rax, back
duke@435 696 __ popl(rdx); // get saved rdx back
duke@435 697 __ popfd(); // get saved EFLAGS off stack -- will be ignored
duke@435 698 __ pushad(); // push registers (eip = return address & msg are already pushed)
duke@435 699 BLOCK_COMMENT("call MacroAssembler::debug");
duke@435 700 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug)));
duke@435 701 __ popad();
duke@435 702 __ ret(3 * wordSize); // pop arguments
duke@435 703 return start;
duke@435 704 }
duke@435 705
duke@435 706 //
duke@435 707 // Generate pre-barrier for array stores
duke@435 708 //
duke@435 709 // Input:
duke@435 710 // start - starting address
duke@435 711 // end - element count
duke@435 712 void gen_write_ref_array_pre_barrier(Register start, Register count) {
duke@435 713 assert_different_registers(start, count);
duke@435 714 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 715 switch (bs->kind()) {
duke@435 716 case BarrierSet::G1SATBCT:
duke@435 717 case BarrierSet::G1SATBCTLogging:
duke@435 718 {
duke@435 719 __ pushad(); // push registers
duke@435 720 __ pushl(count);
duke@435 721 __ pushl(start);
ysr@777 722 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre)));
ysr@777 723 __ addl(rsp, wordSize * 2);
duke@435 724 __ popad();
duke@435 725 }
duke@435 726 break;
duke@435 727 case BarrierSet::CardTableModRef:
duke@435 728 case BarrierSet::CardTableExtension:
duke@435 729 case BarrierSet::ModRef:
duke@435 730 break;
duke@435 731 default :
duke@435 732 ShouldNotReachHere();
duke@435 733
duke@435 734 }
duke@435 735 }
duke@435 736
duke@435 737
duke@435 738 //
duke@435 739 // Generate a post-barrier for an array store
duke@435 740 //
duke@435 741 // start - starting address
duke@435 742 // count - element count
duke@435 743 //
duke@435 744 // The two input registers are overwritten.
duke@435 745 //
duke@435 746 void gen_write_ref_array_post_barrier(Register start, Register count) {
duke@435 747 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 748 assert_different_registers(start, count);
duke@435 749 switch (bs->kind()) {
duke@435 750 case BarrierSet::G1SATBCT:
duke@435 751 case BarrierSet::G1SATBCTLogging:
duke@435 752 {
duke@435 753 __ pushad(); // push registers
duke@435 754 __ pushl(count);
duke@435 755 __ pushl(start);
ysr@777 756 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post)));
ysr@777 757 __ addl(rsp, wordSize * 2);
duke@435 758 __ popad();
duke@435 759
duke@435 760 }
duke@435 761 break;
duke@435 762
duke@435 763 case BarrierSet::CardTableModRef:
duke@435 764 case BarrierSet::CardTableExtension:
duke@435 765 {
duke@435 766 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 767 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 768
duke@435 769 Label L_loop;
duke@435 770 const Register end = count; // elements count; end == start+count-1
duke@435 771 assert_different_registers(start, end);
duke@435 772
duke@435 773 __ leal(end, Address(start, count, Address::times_4, -4));
duke@435 774 __ shrl(start, CardTableModRefBS::card_shift);
duke@435 775 __ shrl(end, CardTableModRefBS::card_shift);
duke@435 776 __ subl(end, start); // end --> count
duke@435 777 __ BIND(L_loop);
duke@435 778 ExternalAddress base((address)ct->byte_map_base);
duke@435 779 Address index(start, count, Address::times_1, 0);
duke@435 780 __ movbyte(ArrayAddress(base, index), 0);
duke@435 781 __ decrement(count);
duke@435 782 __ jcc(Assembler::greaterEqual, L_loop);
duke@435 783 }
duke@435 784 break;
duke@435 785 case BarrierSet::ModRef:
duke@435 786 break;
duke@435 787 default :
duke@435 788 ShouldNotReachHere();
duke@435 789
duke@435 790 }
duke@435 791 }
duke@435 792
duke@435 793 // Copy 64 bytes chunks
duke@435 794 //
duke@435 795 // Inputs:
duke@435 796 // from - source array address
duke@435 797 // to_from - destination array address - from
duke@435 798 // qword_count - 8-bytes element count, negative
duke@435 799 //
duke@435 800 void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
duke@435 801 Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
duke@435 802 // Copy 64-byte chunks
duke@435 803 __ jmpb(L_copy_64_bytes);
duke@435 804 __ align(16);
duke@435 805 __ BIND(L_copy_64_bytes_loop);
duke@435 806 __ movq(mmx0, Address(from, 0));
duke@435 807 __ movq(mmx1, Address(from, 8));
duke@435 808 __ movq(mmx2, Address(from, 16));
duke@435 809 __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
duke@435 810 __ movq(mmx3, Address(from, 24));
duke@435 811 __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
duke@435 812 __ movq(mmx4, Address(from, 32));
duke@435 813 __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
duke@435 814 __ movq(mmx5, Address(from, 40));
duke@435 815 __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
duke@435 816 __ movq(mmx6, Address(from, 48));
duke@435 817 __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
duke@435 818 __ movq(mmx7, Address(from, 56));
duke@435 819 __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
duke@435 820 __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
duke@435 821 __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
duke@435 822 __ addl(from, 64);
duke@435 823 __ BIND(L_copy_64_bytes);
duke@435 824 __ subl(qword_count, 8);
duke@435 825 __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
duke@435 826 __ addl(qword_count, 8);
duke@435 827 __ jccb(Assembler::zero, L_exit);
duke@435 828 //
duke@435 829 // length is too short, just copy qwords
duke@435 830 //
duke@435 831 __ BIND(L_copy_8_bytes);
duke@435 832 __ movq(mmx0, Address(from, 0));
duke@435 833 __ movq(Address(from, to_from, Address::times_1), mmx0);
duke@435 834 __ addl(from, 8);
duke@435 835 __ decrement(qword_count);
duke@435 836 __ jcc(Assembler::greater, L_copy_8_bytes);
duke@435 837 __ BIND(L_exit);
duke@435 838 __ emms();
duke@435 839 }
duke@435 840
duke@435 841 address generate_disjoint_copy(BasicType t, bool aligned,
duke@435 842 Address::ScaleFactor sf,
duke@435 843 address* entry, const char *name) {
duke@435 844 __ align(CodeEntryAlignment);
duke@435 845 StubCodeMark mark(this, "StubRoutines", name);
duke@435 846 address start = __ pc();
duke@435 847
duke@435 848 Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
duke@435 849 Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
duke@435 850
duke@435 851 int shift = Address::times_4 - sf;
duke@435 852
duke@435 853 const Register from = rsi; // source array address
duke@435 854 const Register to = rdi; // destination array address
duke@435 855 const Register count = rcx; // elements count
duke@435 856 const Register to_from = to; // (to - from)
duke@435 857 const Register saved_to = rdx; // saved destination array address
duke@435 858
duke@435 859 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 860 __ pushl(rsi);
duke@435 861 __ pushl(rdi);
duke@435 862 __ movl(from , Address(rsp, 12+ 4));
duke@435 863 __ movl(to , Address(rsp, 12+ 8));
duke@435 864 __ movl(count, Address(rsp, 12+ 12));
duke@435 865 if (t == T_OBJECT) {
duke@435 866 __ testl(count, count);
duke@435 867 __ jcc(Assembler::zero, L_0_count);
duke@435 868 gen_write_ref_array_pre_barrier(to, count);
duke@435 869 __ movl(saved_to, to); // save 'to'
duke@435 870 }
duke@435 871
duke@435 872 *entry = __ pc(); // Entry point from conjoint arraycopy stub.
duke@435 873 BLOCK_COMMENT("Entry:");
duke@435 874
duke@435 875 __ subl(to, from); // to --> to_from
duke@435 876 __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
duke@435 877 __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
duke@435 878 if (!aligned && (t == T_BYTE || t == T_SHORT)) {
duke@435 879 // align source address at 4 bytes address boundary
duke@435 880 if (t == T_BYTE) {
duke@435 881 // One byte misalignment happens only for byte arrays
duke@435 882 __ testl(from, 1);
duke@435 883 __ jccb(Assembler::zero, L_skip_align1);
duke@435 884 __ movb(rax, Address(from, 0));
duke@435 885 __ movb(Address(from, to_from, Address::times_1, 0), rax);
duke@435 886 __ increment(from);
duke@435 887 __ decrement(count);
duke@435 888 __ BIND(L_skip_align1);
duke@435 889 }
duke@435 890 // Two bytes misalignment happens only for byte and short (char) arrays
duke@435 891 __ testl(from, 2);
duke@435 892 __ jccb(Assembler::zero, L_skip_align2);
duke@435 893 __ movw(rax, Address(from, 0));
duke@435 894 __ movw(Address(from, to_from, Address::times_1, 0), rax);
duke@435 895 __ addl(from, 2);
duke@435 896 __ subl(count, 1<<(shift-1));
duke@435 897 __ BIND(L_skip_align2);
duke@435 898 }
duke@435 899 if (!VM_Version::supports_mmx()) {
duke@435 900 __ movl(rax, count); // save 'count'
duke@435 901 __ shrl(count, shift); // bytes count
duke@435 902 __ addl(to_from, from); // restore 'to'
duke@435 903 __ rep_movl();
duke@435 904 __ subl(to_from, from); // restore 'to_from'
duke@435 905 __ movl(count, rax); // restore 'count'
duke@435 906 __ jmpb(L_copy_2_bytes); // all dwords were copied
duke@435 907 } else {
duke@435 908 // align to 8 bytes, we know we are 4 byte aligned to start
duke@435 909 __ testl(from, 4);
duke@435 910 __ jccb(Assembler::zero, L_copy_64_bytes);
duke@435 911 __ movl(rax, Address(from, 0));
duke@435 912 __ movl(Address(from, to_from, Address::times_1, 0), rax);
duke@435 913 __ addl(from, 4);
duke@435 914 __ subl(count, 1<<shift);
duke@435 915 __ BIND(L_copy_64_bytes);
duke@435 916 __ movl(rax, count);
duke@435 917 __ shrl(rax, shift+1); // 8 bytes chunk count
duke@435 918 //
duke@435 919 // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
duke@435 920 //
duke@435 921 mmx_copy_forward(from, to_from, rax);
duke@435 922 }
duke@435 923 // copy tailing dword
duke@435 924 __ BIND(L_copy_4_bytes);
duke@435 925 __ testl(count, 1<<shift);
duke@435 926 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 927 __ movl(rax, Address(from, 0));
duke@435 928 __ movl(Address(from, to_from, Address::times_1, 0), rax);
duke@435 929 if (t == T_BYTE || t == T_SHORT) {
duke@435 930 __ addl(from, 4);
duke@435 931 __ BIND(L_copy_2_bytes);
duke@435 932 // copy tailing word
duke@435 933 __ testl(count, 1<<(shift-1));
duke@435 934 __ jccb(Assembler::zero, L_copy_byte);
duke@435 935 __ movw(rax, Address(from, 0));
duke@435 936 __ movw(Address(from, to_from, Address::times_1, 0), rax);
duke@435 937 if (t == T_BYTE) {
duke@435 938 __ addl(from, 2);
duke@435 939 __ BIND(L_copy_byte);
duke@435 940 // copy tailing byte
duke@435 941 __ testl(count, 1);
duke@435 942 __ jccb(Assembler::zero, L_exit);
duke@435 943 __ movb(rax, Address(from, 0));
duke@435 944 __ movb(Address(from, to_from, Address::times_1, 0), rax);
duke@435 945 __ BIND(L_exit);
duke@435 946 } else {
duke@435 947 __ BIND(L_copy_byte);
duke@435 948 }
duke@435 949 } else {
duke@435 950 __ BIND(L_copy_2_bytes);
duke@435 951 }
duke@435 952
duke@435 953 if (t == T_OBJECT) {
duke@435 954 __ movl(count, Address(rsp, 12+12)); // reread 'count'
duke@435 955 __ movl(to, saved_to); // restore 'to'
duke@435 956 gen_write_ref_array_post_barrier(to, count);
duke@435 957 __ BIND(L_0_count);
duke@435 958 }
duke@435 959 inc_copy_counter_np(t);
duke@435 960 __ popl(rdi);
duke@435 961 __ popl(rsi);
duke@435 962 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 963 __ xorl(rax, rax); // return 0
duke@435 964 __ ret(0);
duke@435 965 return start;
duke@435 966 }
duke@435 967
duke@435 968
duke@435 969 address generate_conjoint_copy(BasicType t, bool aligned,
duke@435 970 Address::ScaleFactor sf,
duke@435 971 address nooverlap_target,
duke@435 972 address* entry, const char *name) {
duke@435 973 __ align(CodeEntryAlignment);
duke@435 974 StubCodeMark mark(this, "StubRoutines", name);
duke@435 975 address start = __ pc();
duke@435 976
duke@435 977 Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
duke@435 978 Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
duke@435 979
duke@435 980 int shift = Address::times_4 - sf;
duke@435 981
duke@435 982 const Register src = rax; // source array address
duke@435 983 const Register dst = rdx; // destination array address
duke@435 984 const Register from = rsi; // source array address
duke@435 985 const Register to = rdi; // destination array address
duke@435 986 const Register count = rcx; // elements count
duke@435 987 const Register end = rax; // array end address
duke@435 988
duke@435 989 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 990 __ pushl(rsi);
duke@435 991 __ pushl(rdi);
duke@435 992 __ movl(src , Address(rsp, 12+ 4)); // from
duke@435 993 __ movl(dst , Address(rsp, 12+ 8)); // to
duke@435 994 __ movl(count, Address(rsp, 12+12)); // count
duke@435 995 if (t == T_OBJECT) {
duke@435 996 gen_write_ref_array_pre_barrier(dst, count);
duke@435 997 }
duke@435 998
duke@435 999 if (entry != NULL) {
duke@435 1000 *entry = __ pc(); // Entry point from generic arraycopy stub.
duke@435 1001 BLOCK_COMMENT("Entry:");
duke@435 1002 }
duke@435 1003
duke@435 1004 if (t == T_OBJECT) {
duke@435 1005 __ testl(count, count);
duke@435 1006 __ jcc(Assembler::zero, L_0_count);
duke@435 1007 }
duke@435 1008 __ movl(from, src);
duke@435 1009 __ movl(to , dst);
duke@435 1010
duke@435 1011 // arrays overlap test
duke@435 1012 RuntimeAddress nooverlap(nooverlap_target);
duke@435 1013 __ cmpl(dst, src);
duke@435 1014 __ leal(end, Address(src, count, sf, 0)); // src + count * elem_size
duke@435 1015 __ jump_cc(Assembler::belowEqual, nooverlap);
duke@435 1016 __ cmpl(dst, end);
duke@435 1017 __ jump_cc(Assembler::aboveEqual, nooverlap);
duke@435 1018
duke@435 1019 // copy from high to low
duke@435 1020 __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
duke@435 1021 __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
duke@435 1022 if (t == T_BYTE || t == T_SHORT) {
duke@435 1023 // Align the end of destination array at 4 bytes address boundary
duke@435 1024 __ leal(end, Address(dst, count, sf, 0));
duke@435 1025 if (t == T_BYTE) {
duke@435 1026 // One byte misalignment happens only for byte arrays
duke@435 1027 __ testl(end, 1);
duke@435 1028 __ jccb(Assembler::zero, L_skip_align1);
duke@435 1029 __ decrement(count);
duke@435 1030 __ movb(rdx, Address(from, count, sf, 0));
duke@435 1031 __ movb(Address(to, count, sf, 0), rdx);
duke@435 1032 __ BIND(L_skip_align1);
duke@435 1033 }
duke@435 1034 // Two bytes misalignment happens only for byte and short (char) arrays
duke@435 1035 __ testl(end, 2);
duke@435 1036 __ jccb(Assembler::zero, L_skip_align2);
duke@435 1037 __ subl(count, 1<<(shift-1));
duke@435 1038 __ movw(rdx, Address(from, count, sf, 0));
duke@435 1039 __ movw(Address(to, count, sf, 0), rdx);
duke@435 1040 __ BIND(L_skip_align2);
duke@435 1041 __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
duke@435 1042 __ jcc(Assembler::below, L_copy_4_bytes);
duke@435 1043 }
duke@435 1044
duke@435 1045 if (!VM_Version::supports_mmx()) {
duke@435 1046 __ std();
duke@435 1047 __ movl(rax, count); // Save 'count'
duke@435 1048 __ movl(rdx, to); // Save 'to'
duke@435 1049 __ leal(rsi, Address(from, count, sf, -4));
duke@435 1050 __ leal(rdi, Address(to , count, sf, -4));
duke@435 1051 __ shrl(count, shift); // bytes count
duke@435 1052 __ rep_movl();
duke@435 1053 __ cld();
duke@435 1054 __ movl(count, rax); // restore 'count'
duke@435 1055 __ andl(count, (1<<shift)-1); // mask the number of rest elements
duke@435 1056 __ movl(from, Address(rsp, 12+4)); // reread 'from'
duke@435 1057 __ movl(to, rdx); // restore 'to'
duke@435 1058 __ jmpb(L_copy_2_bytes); // all dword were copied
duke@435 1059 } else {
duke@435 1060 // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
duke@435 1061 __ testl(end, 4);
duke@435 1062 __ jccb(Assembler::zero, L_copy_8_bytes);
duke@435 1063 __ subl(count, 1<<shift);
duke@435 1064 __ movl(rdx, Address(from, count, sf, 0));
duke@435 1065 __ movl(Address(to, count, sf, 0), rdx);
duke@435 1066 __ jmpb(L_copy_8_bytes);
duke@435 1067
duke@435 1068 __ align(16);
duke@435 1069 // Move 8 bytes
duke@435 1070 __ BIND(L_copy_8_bytes_loop);
duke@435 1071 __ movq(mmx0, Address(from, count, sf, 0));
duke@435 1072 __ movq(Address(to, count, sf, 0), mmx0);
duke@435 1073 __ BIND(L_copy_8_bytes);
duke@435 1074 __ subl(count, 2<<shift);
duke@435 1075 __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
duke@435 1076 __ addl(count, 2<<shift);
duke@435 1077 __ emms();
duke@435 1078 }
duke@435 1079 __ BIND(L_copy_4_bytes);
duke@435 1080 // copy prefix qword
duke@435 1081 __ testl(count, 1<<shift);
duke@435 1082 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1083 __ movl(rdx, Address(from, count, sf, -4));
duke@435 1084 __ movl(Address(to, count, sf, -4), rdx);
duke@435 1085
duke@435 1086 if (t == T_BYTE || t == T_SHORT) {
duke@435 1087 __ subl(count, (1<<shift));
duke@435 1088 __ BIND(L_copy_2_bytes);
duke@435 1089 // copy prefix dword
duke@435 1090 __ testl(count, 1<<(shift-1));
duke@435 1091 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1092 __ movw(rdx, Address(from, count, sf, -2));
duke@435 1093 __ movw(Address(to, count, sf, -2), rdx);
duke@435 1094 if (t == T_BYTE) {
duke@435 1095 __ subl(count, 1<<(shift-1));
duke@435 1096 __ BIND(L_copy_byte);
duke@435 1097 // copy prefix byte
duke@435 1098 __ testl(count, 1);
duke@435 1099 __ jccb(Assembler::zero, L_exit);
duke@435 1100 __ movb(rdx, Address(from, 0));
duke@435 1101 __ movb(Address(to, 0), rdx);
duke@435 1102 __ BIND(L_exit);
duke@435 1103 } else {
duke@435 1104 __ BIND(L_copy_byte);
duke@435 1105 }
duke@435 1106 } else {
duke@435 1107 __ BIND(L_copy_2_bytes);
duke@435 1108 }
duke@435 1109 if (t == T_OBJECT) {
duke@435 1110 __ movl(count, Address(rsp, 12+12)); // reread count
duke@435 1111 gen_write_ref_array_post_barrier(to, count);
duke@435 1112 __ BIND(L_0_count);
duke@435 1113 }
duke@435 1114 inc_copy_counter_np(t);
duke@435 1115 __ popl(rdi);
duke@435 1116 __ popl(rsi);
duke@435 1117 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1118 __ xorl(rax, rax); // return 0
duke@435 1119 __ ret(0);
duke@435 1120 return start;
duke@435 1121 }
duke@435 1122
duke@435 1123
duke@435 1124 address generate_disjoint_long_copy(address* entry, const char *name) {
duke@435 1125 __ align(CodeEntryAlignment);
duke@435 1126 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1127 address start = __ pc();
duke@435 1128
duke@435 1129 Label L_copy_8_bytes, L_copy_8_bytes_loop;
duke@435 1130 const Register from = rax; // source array address
duke@435 1131 const Register to = rdx; // destination array address
duke@435 1132 const Register count = rcx; // elements count
duke@435 1133 const Register to_from = rdx; // (to - from)
duke@435 1134
duke@435 1135 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1136 __ movl(from , Address(rsp, 8+0)); // from
duke@435 1137 __ movl(to , Address(rsp, 8+4)); // to
duke@435 1138 __ movl(count, Address(rsp, 8+8)); // count
duke@435 1139
duke@435 1140 *entry = __ pc(); // Entry point from conjoint arraycopy stub.
duke@435 1141 BLOCK_COMMENT("Entry:");
duke@435 1142
duke@435 1143 __ subl(to, from); // to --> to_from
duke@435 1144 if (VM_Version::supports_mmx()) {
duke@435 1145 mmx_copy_forward(from, to_from, count);
duke@435 1146 } else {
duke@435 1147 __ jmpb(L_copy_8_bytes);
duke@435 1148 __ align(16);
duke@435 1149 __ BIND(L_copy_8_bytes_loop);
duke@435 1150 __ fild_d(Address(from, 0));
duke@435 1151 __ fistp_d(Address(from, to_from, Address::times_1));
duke@435 1152 __ addl(from, 8);
duke@435 1153 __ BIND(L_copy_8_bytes);
duke@435 1154 __ decrement(count);
duke@435 1155 __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
duke@435 1156 }
duke@435 1157 inc_copy_counter_np(T_LONG);
duke@435 1158 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1159 __ xorl(rax, rax); // return 0
duke@435 1160 __ ret(0);
duke@435 1161 return start;
duke@435 1162 }
duke@435 1163
duke@435 1164 address generate_conjoint_long_copy(address nooverlap_target,
duke@435 1165 address* entry, const char *name) {
duke@435 1166 __ align(CodeEntryAlignment);
duke@435 1167 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1168 address start = __ pc();
duke@435 1169
duke@435 1170 Label L_copy_8_bytes, L_copy_8_bytes_loop;
duke@435 1171 const Register from = rax; // source array address
duke@435 1172 const Register to = rdx; // destination array address
duke@435 1173 const Register count = rcx; // elements count
duke@435 1174 const Register end_from = rax; // source array end address
duke@435 1175
duke@435 1176 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1177 __ movl(from , Address(rsp, 8+0)); // from
duke@435 1178 __ movl(to , Address(rsp, 8+4)); // to
duke@435 1179 __ movl(count, Address(rsp, 8+8)); // count
duke@435 1180
duke@435 1181 *entry = __ pc(); // Entry point from generic arraycopy stub.
duke@435 1182 BLOCK_COMMENT("Entry:");
duke@435 1183
duke@435 1184 // arrays overlap test
duke@435 1185 __ cmpl(to, from);
duke@435 1186 RuntimeAddress nooverlap(nooverlap_target);
duke@435 1187 __ jump_cc(Assembler::belowEqual, nooverlap);
duke@435 1188 __ leal(end_from, Address(from, count, Address::times_8, 0));
duke@435 1189 __ cmpl(to, end_from);
duke@435 1190 __ movl(from, Address(rsp, 8)); // from
duke@435 1191 __ jump_cc(Assembler::aboveEqual, nooverlap);
duke@435 1192
duke@435 1193 __ jmpb(L_copy_8_bytes);
duke@435 1194
duke@435 1195 __ align(16);
duke@435 1196 __ BIND(L_copy_8_bytes_loop);
duke@435 1197 if (VM_Version::supports_mmx()) {
duke@435 1198 __ movq(mmx0, Address(from, count, Address::times_8));
duke@435 1199 __ movq(Address(to, count, Address::times_8), mmx0);
duke@435 1200 } else {
duke@435 1201 __ fild_d(Address(from, count, Address::times_8));
duke@435 1202 __ fistp_d(Address(to, count, Address::times_8));
duke@435 1203 }
duke@435 1204 __ BIND(L_copy_8_bytes);
duke@435 1205 __ decrement(count);
duke@435 1206 __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
duke@435 1207
duke@435 1208 if (VM_Version::supports_mmx()) {
duke@435 1209 __ emms();
duke@435 1210 }
duke@435 1211 inc_copy_counter_np(T_LONG);
duke@435 1212 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1213 __ xorl(rax, rax); // return 0
duke@435 1214 __ ret(0);
duke@435 1215 return start;
duke@435 1216 }
duke@435 1217
duke@435 1218
duke@435 1219 // Helper for generating a dynamic type check.
duke@435 1220 // The sub_klass must be one of {rbx, rdx, rsi}.
duke@435 1221 // The temp is killed.
duke@435 1222 void generate_type_check(Register sub_klass,
duke@435 1223 Address& super_check_offset_addr,
duke@435 1224 Address& super_klass_addr,
duke@435 1225 Register temp,
duke@435 1226 Label* L_success_ptr, Label* L_failure_ptr) {
duke@435 1227 BLOCK_COMMENT("type_check:");
duke@435 1228
duke@435 1229 Label L_fallthrough;
duke@435 1230 bool fall_through_on_success = (L_success_ptr == NULL);
duke@435 1231 if (fall_through_on_success) {
duke@435 1232 L_success_ptr = &L_fallthrough;
duke@435 1233 } else {
duke@435 1234 L_failure_ptr = &L_fallthrough;
duke@435 1235 }
duke@435 1236 Label& L_success = *L_success_ptr;
duke@435 1237 Label& L_failure = *L_failure_ptr;
duke@435 1238
duke@435 1239 assert_different_registers(sub_klass, temp);
duke@435 1240
duke@435 1241 // a couple of useful fields in sub_klass:
duke@435 1242 int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 1243 Klass::secondary_supers_offset_in_bytes());
duke@435 1244 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 1245 Klass::secondary_super_cache_offset_in_bytes());
duke@435 1246 Address secondary_supers_addr(sub_klass, ss_offset);
duke@435 1247 Address super_cache_addr( sub_klass, sc_offset);
duke@435 1248
duke@435 1249 // if the pointers are equal, we are done (e.g., String[] elements)
duke@435 1250 __ cmpl(sub_klass, super_klass_addr);
duke@435 1251 __ jcc(Assembler::equal, L_success);
duke@435 1252
duke@435 1253 // check the supertype display:
duke@435 1254 __ movl(temp, super_check_offset_addr);
duke@435 1255 Address super_check_addr(sub_klass, temp, Address::times_1, 0);
duke@435 1256 __ movl(temp, super_check_addr); // load displayed supertype
duke@435 1257 __ cmpl(temp, super_klass_addr); // test the super type
duke@435 1258 __ jcc(Assembler::equal, L_success);
duke@435 1259
duke@435 1260 // if it was a primary super, we can just fail immediately
duke@435 1261 __ cmpl(super_check_offset_addr, sc_offset);
duke@435 1262 __ jcc(Assembler::notEqual, L_failure);
duke@435 1263
duke@435 1264 // Now do a linear scan of the secondary super-klass chain.
duke@435 1265 // This code is rarely used, so simplicity is a virtue here.
duke@435 1266 inc_counter_np(SharedRuntime::_partial_subtype_ctr);
duke@435 1267 {
duke@435 1268 // The repne_scan instruction uses fixed registers, which we must spill.
duke@435 1269 // (We need a couple more temps in any case.)
duke@435 1270 __ pushl(rax);
duke@435 1271 __ pushl(rcx);
duke@435 1272 __ pushl(rdi);
duke@435 1273 assert_different_registers(sub_klass, rax, rcx, rdi);
duke@435 1274
duke@435 1275 __ movl(rdi, secondary_supers_addr);
duke@435 1276 // Load the array length.
duke@435 1277 __ movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
duke@435 1278 // Skip to start of data.
duke@435 1279 __ addl(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
duke@435 1280 // Scan rcx words at [edi] for occurance of rax,
duke@435 1281 // Set NZ/Z based on last compare
duke@435 1282 __ movl(rax, super_klass_addr);
duke@435 1283 __ repne_scan();
duke@435 1284
duke@435 1285 // Unspill the temp. registers:
duke@435 1286 __ popl(rdi);
duke@435 1287 __ popl(rcx);
duke@435 1288 __ popl(rax);
duke@435 1289 }
duke@435 1290 __ jcc(Assembler::notEqual, L_failure);
duke@435 1291
duke@435 1292 // Success. Cache the super we found and proceed in triumph.
duke@435 1293 __ movl(temp, super_klass_addr); // note: rax, is dead
duke@435 1294 __ movl(super_cache_addr, temp);
duke@435 1295
duke@435 1296 if (!fall_through_on_success)
duke@435 1297 __ jmp(L_success);
duke@435 1298
duke@435 1299 // Fall through on failure!
duke@435 1300 __ bind(L_fallthrough);
duke@435 1301 }
duke@435 1302
duke@435 1303 //
duke@435 1304 // Generate checkcasting array copy stub
duke@435 1305 //
duke@435 1306 // Input:
duke@435 1307 // 4(rsp) - source array address
duke@435 1308 // 8(rsp) - destination array address
duke@435 1309 // 12(rsp) - element count, can be zero
duke@435 1310 // 16(rsp) - size_t ckoff (super_check_offset)
duke@435 1311 // 20(rsp) - oop ckval (super_klass)
duke@435 1312 //
duke@435 1313 // Output:
duke@435 1314 // rax, == 0 - success
duke@435 1315 // rax, == -1^K - failure, where K is partial transfer count
duke@435 1316 //
duke@435 1317 address generate_checkcast_copy(const char *name, address* entry) {
duke@435 1318 __ align(CodeEntryAlignment);
duke@435 1319 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1320 address start = __ pc();
duke@435 1321
duke@435 1322 Label L_load_element, L_store_element, L_do_card_marks, L_done;
duke@435 1323
duke@435 1324 // register use:
duke@435 1325 // rax, rdx, rcx -- loop control (end_from, end_to, count)
duke@435 1326 // rdi, rsi -- element access (oop, klass)
duke@435 1327 // rbx, -- temp
duke@435 1328 const Register from = rax; // source array address
duke@435 1329 const Register to = rdx; // destination array address
duke@435 1330 const Register length = rcx; // elements count
duke@435 1331 const Register elem = rdi; // each oop copied
duke@435 1332 const Register elem_klass = rsi; // each elem._klass (sub_klass)
duke@435 1333 const Register temp = rbx; // lone remaining temp
duke@435 1334
duke@435 1335 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1336
duke@435 1337 __ pushl(rsi);
duke@435 1338 __ pushl(rdi);
duke@435 1339 __ pushl(rbx);
duke@435 1340
duke@435 1341 Address from_arg(rsp, 16+ 4); // from
duke@435 1342 Address to_arg(rsp, 16+ 8); // to
duke@435 1343 Address length_arg(rsp, 16+12); // elements count
duke@435 1344 Address ckoff_arg(rsp, 16+16); // super_check_offset
duke@435 1345 Address ckval_arg(rsp, 16+20); // super_klass
duke@435 1346
duke@435 1347 // Load up:
duke@435 1348 __ movl(from, from_arg);
duke@435 1349 __ movl(to, to_arg);
duke@435 1350 __ movl(length, length_arg);
duke@435 1351
duke@435 1352 *entry = __ pc(); // Entry point from generic arraycopy stub.
duke@435 1353 BLOCK_COMMENT("Entry:");
duke@435 1354
duke@435 1355 //---------------------------------------------------------------
duke@435 1356 // Assembler stub will be used for this call to arraycopy
duke@435 1357 // if the two arrays are subtypes of Object[] but the
duke@435 1358 // destination array type is not equal to or a supertype
duke@435 1359 // of the source type. Each element must be separately
duke@435 1360 // checked.
duke@435 1361
duke@435 1362 // Loop-invariant addresses. They are exclusive end pointers.
duke@435 1363 Address end_from_addr(from, length, Address::times_4, 0);
duke@435 1364 Address end_to_addr(to, length, Address::times_4, 0);
duke@435 1365
duke@435 1366 Register end_from = from; // re-use
duke@435 1367 Register end_to = to; // re-use
duke@435 1368 Register count = length; // re-use
duke@435 1369
duke@435 1370 // Loop-variant addresses. They assume post-incremented count < 0.
duke@435 1371 Address from_element_addr(end_from, count, Address::times_4, 0);
duke@435 1372 Address to_element_addr(end_to, count, Address::times_4, 0);
duke@435 1373 Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
duke@435 1374
duke@435 1375 // Copy from low to high addresses, indexed from the end of each array.
ysr@777 1376 gen_write_ref_array_pre_barrier(to, count);
duke@435 1377 __ leal(end_from, end_from_addr);
duke@435 1378 __ leal(end_to, end_to_addr);
duke@435 1379 assert(length == count, ""); // else fix next line:
duke@435 1380 __ negl(count); // negate and test the length
duke@435 1381 __ jccb(Assembler::notZero, L_load_element);
duke@435 1382
duke@435 1383 // Empty array: Nothing to do.
duke@435 1384 __ xorl(rax, rax); // return 0 on (trivial) success
duke@435 1385 __ jmp(L_done);
duke@435 1386
duke@435 1387 // ======== begin loop ========
duke@435 1388 // (Loop is rotated; its entry is L_load_element.)
duke@435 1389 // Loop control:
duke@435 1390 // for (count = -count; count != 0; count++)
duke@435 1391 // Base pointers src, dst are biased by 8*count,to last element.
duke@435 1392 __ align(16);
duke@435 1393
duke@435 1394 __ BIND(L_store_element);
duke@435 1395 __ movl(to_element_addr, elem); // store the oop
duke@435 1396 __ increment(count); // increment the count toward zero
duke@435 1397 __ jccb(Assembler::zero, L_do_card_marks);
duke@435 1398
duke@435 1399 // ======== loop entry is here ========
duke@435 1400 __ BIND(L_load_element);
duke@435 1401 __ movl(elem, from_element_addr); // load the oop
duke@435 1402 __ testl(elem, elem);
duke@435 1403 __ jccb(Assembler::zero, L_store_element);
duke@435 1404
duke@435 1405 // (Could do a trick here: Remember last successful non-null
duke@435 1406 // element stored and make a quick oop equality check on it.)
duke@435 1407
duke@435 1408 __ movl(elem_klass, elem_klass_addr); // query the object klass
duke@435 1409 generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
duke@435 1410 &L_store_element, NULL);
duke@435 1411 // (On fall-through, we have failed the element type check.)
duke@435 1412 // ======== end loop ========
duke@435 1413
duke@435 1414 // It was a real error; we must depend on the caller to finish the job.
rasbold@454 1415 // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
rasbold@454 1416 // Emit GC store barriers for the oops we have copied (length_arg + count),
duke@435 1417 // and report their number to the caller.
duke@435 1418 __ addl(count, length_arg); // transfers = (length - remaining)
duke@435 1419 __ movl(rax, count); // save the value
duke@435 1420 __ notl(rax); // report (-1^K) to caller
duke@435 1421 __ movl(to, to_arg); // reload
duke@435 1422 assert_different_registers(to, count, rax);
duke@435 1423 gen_write_ref_array_post_barrier(to, count);
duke@435 1424 __ jmpb(L_done);
duke@435 1425
duke@435 1426 // Come here on success only.
duke@435 1427 __ BIND(L_do_card_marks);
duke@435 1428 __ movl(count, length_arg);
rasbold@454 1429 __ movl(to, to_arg); // reload
duke@435 1430 gen_write_ref_array_post_barrier(to, count);
duke@435 1431 __ xorl(rax, rax); // return 0 on success
duke@435 1432
duke@435 1433 // Common exit point (success or failure).
duke@435 1434 __ BIND(L_done);
duke@435 1435 __ popl(rbx);
duke@435 1436 __ popl(rdi);
duke@435 1437 __ popl(rsi);
duke@435 1438 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
duke@435 1439 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1440 __ ret(0);
duke@435 1441
duke@435 1442 return start;
duke@435 1443 }
duke@435 1444
duke@435 1445 //
duke@435 1446 // Generate 'unsafe' array copy stub
duke@435 1447 // Though just as safe as the other stubs, it takes an unscaled
duke@435 1448 // size_t argument instead of an element count.
duke@435 1449 //
duke@435 1450 // Input:
duke@435 1451 // 4(rsp) - source array address
duke@435 1452 // 8(rsp) - destination array address
duke@435 1453 // 12(rsp) - byte count, can be zero
duke@435 1454 //
duke@435 1455 // Output:
duke@435 1456 // rax, == 0 - success
duke@435 1457 // rax, == -1 - need to call System.arraycopy
duke@435 1458 //
duke@435 1459 // Examines the alignment of the operands and dispatches
duke@435 1460 // to a long, int, short, or byte copy loop.
duke@435 1461 //
duke@435 1462 address generate_unsafe_copy(const char *name,
duke@435 1463 address byte_copy_entry,
duke@435 1464 address short_copy_entry,
duke@435 1465 address int_copy_entry,
duke@435 1466 address long_copy_entry) {
duke@435 1467
duke@435 1468 Label L_long_aligned, L_int_aligned, L_short_aligned;
duke@435 1469
duke@435 1470 __ align(CodeEntryAlignment);
duke@435 1471 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1472 address start = __ pc();
duke@435 1473
duke@435 1474 const Register from = rax; // source array address
duke@435 1475 const Register to = rdx; // destination array address
duke@435 1476 const Register count = rcx; // elements count
duke@435 1477
duke@435 1478 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1479 __ pushl(rsi);
duke@435 1480 __ pushl(rdi);
duke@435 1481 Address from_arg(rsp, 12+ 4); // from
duke@435 1482 Address to_arg(rsp, 12+ 8); // to
duke@435 1483 Address count_arg(rsp, 12+12); // byte count
duke@435 1484
duke@435 1485 // Load up:
duke@435 1486 __ movl(from , from_arg);
duke@435 1487 __ movl(to , to_arg);
duke@435 1488 __ movl(count, count_arg);
duke@435 1489
duke@435 1490 // bump this on entry, not on exit:
duke@435 1491 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
duke@435 1492
duke@435 1493 const Register bits = rsi;
duke@435 1494 __ movl(bits, from);
duke@435 1495 __ orl(bits, to);
duke@435 1496 __ orl(bits, count);
duke@435 1497
duke@435 1498 __ testl(bits, BytesPerLong-1);
duke@435 1499 __ jccb(Assembler::zero, L_long_aligned);
duke@435 1500
duke@435 1501 __ testl(bits, BytesPerInt-1);
duke@435 1502 __ jccb(Assembler::zero, L_int_aligned);
duke@435 1503
duke@435 1504 __ testl(bits, BytesPerShort-1);
duke@435 1505 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
duke@435 1506
duke@435 1507 __ BIND(L_short_aligned);
duke@435 1508 __ shrl(count, LogBytesPerShort); // size => short_count
duke@435 1509 __ movl(count_arg, count); // update 'count'
duke@435 1510 __ jump(RuntimeAddress(short_copy_entry));
duke@435 1511
duke@435 1512 __ BIND(L_int_aligned);
duke@435 1513 __ shrl(count, LogBytesPerInt); // size => int_count
duke@435 1514 __ movl(count_arg, count); // update 'count'
duke@435 1515 __ jump(RuntimeAddress(int_copy_entry));
duke@435 1516
duke@435 1517 __ BIND(L_long_aligned);
duke@435 1518 __ shrl(count, LogBytesPerLong); // size => qword_count
duke@435 1519 __ movl(count_arg, count); // update 'count'
duke@435 1520 __ popl(rdi); // Do pops here since jlong_arraycopy stub does not do it.
duke@435 1521 __ popl(rsi);
duke@435 1522 __ jump(RuntimeAddress(long_copy_entry));
duke@435 1523
duke@435 1524 return start;
duke@435 1525 }
duke@435 1526
duke@435 1527
duke@435 1528 // Perform range checks on the proposed arraycopy.
duke@435 1529 // Smashes src_pos and dst_pos. (Uses them up for temps.)
duke@435 1530 void arraycopy_range_checks(Register src,
duke@435 1531 Register src_pos,
duke@435 1532 Register dst,
duke@435 1533 Register dst_pos,
duke@435 1534 Address& length,
duke@435 1535 Label& L_failed) {
duke@435 1536 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 1537 const Register src_end = src_pos; // source array end position
duke@435 1538 const Register dst_end = dst_pos; // destination array end position
duke@435 1539 __ addl(src_end, length); // src_pos + length
duke@435 1540 __ addl(dst_end, length); // dst_pos + length
duke@435 1541
duke@435 1542 // if (src_pos + length > arrayOop(src)->length() ) FAIL;
duke@435 1543 __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
duke@435 1544 __ jcc(Assembler::above, L_failed);
duke@435 1545
duke@435 1546 // if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
duke@435 1547 __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
duke@435 1548 __ jcc(Assembler::above, L_failed);
duke@435 1549
duke@435 1550 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 1551 }
duke@435 1552
duke@435 1553
duke@435 1554 //
duke@435 1555 // Generate generic array copy stubs
duke@435 1556 //
duke@435 1557 // Input:
duke@435 1558 // 4(rsp) - src oop
duke@435 1559 // 8(rsp) - src_pos
duke@435 1560 // 12(rsp) - dst oop
duke@435 1561 // 16(rsp) - dst_pos
duke@435 1562 // 20(rsp) - element count
duke@435 1563 //
duke@435 1564 // Output:
duke@435 1565 // rax, == 0 - success
duke@435 1566 // rax, == -1^K - failure, where K is partial transfer count
duke@435 1567 //
duke@435 1568 address generate_generic_copy(const char *name,
duke@435 1569 address entry_jbyte_arraycopy,
duke@435 1570 address entry_jshort_arraycopy,
duke@435 1571 address entry_jint_arraycopy,
duke@435 1572 address entry_oop_arraycopy,
duke@435 1573 address entry_jlong_arraycopy,
duke@435 1574 address entry_checkcast_arraycopy) {
duke@435 1575 Label L_failed, L_failed_0, L_objArray;
duke@435 1576
duke@435 1577 { int modulus = CodeEntryAlignment;
duke@435 1578 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
duke@435 1579 int advance = target - (__ offset() % modulus);
duke@435 1580 if (advance < 0) advance += modulus;
duke@435 1581 if (advance > 0) __ nop(advance);
duke@435 1582 }
duke@435 1583 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1584
duke@435 1585 // Short-hop target to L_failed. Makes for denser prologue code.
duke@435 1586 __ BIND(L_failed_0);
duke@435 1587 __ jmp(L_failed);
duke@435 1588 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
duke@435 1589
duke@435 1590 __ align(CodeEntryAlignment);
duke@435 1591 address start = __ pc();
duke@435 1592
duke@435 1593 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1594 __ pushl(rsi);
duke@435 1595 __ pushl(rdi);
duke@435 1596
duke@435 1597 // bump this on entry, not on exit:
duke@435 1598 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
duke@435 1599
duke@435 1600 // Input values
duke@435 1601 Address SRC (rsp, 12+ 4);
duke@435 1602 Address SRC_POS (rsp, 12+ 8);
duke@435 1603 Address DST (rsp, 12+12);
duke@435 1604 Address DST_POS (rsp, 12+16);
duke@435 1605 Address LENGTH (rsp, 12+20);
duke@435 1606
duke@435 1607 //-----------------------------------------------------------------------
duke@435 1608 // Assembler stub will be used for this call to arraycopy
duke@435 1609 // if the following conditions are met:
duke@435 1610 //
duke@435 1611 // (1) src and dst must not be null.
duke@435 1612 // (2) src_pos must not be negative.
duke@435 1613 // (3) dst_pos must not be negative.
duke@435 1614 // (4) length must not be negative.
duke@435 1615 // (5) src klass and dst klass should be the same and not NULL.
duke@435 1616 // (6) src and dst should be arrays.
duke@435 1617 // (7) src_pos + length must not exceed length of src.
duke@435 1618 // (8) dst_pos + length must not exceed length of dst.
duke@435 1619 //
duke@435 1620
duke@435 1621 const Register src = rax; // source array oop
duke@435 1622 const Register src_pos = rsi;
duke@435 1623 const Register dst = rdx; // destination array oop
duke@435 1624 const Register dst_pos = rdi;
duke@435 1625 const Register length = rcx; // transfer count
duke@435 1626
duke@435 1627 // if (src == NULL) return -1;
duke@435 1628 __ movl(src, SRC); // src oop
duke@435 1629 __ testl(src, src);
duke@435 1630 __ jccb(Assembler::zero, L_failed_0);
duke@435 1631
duke@435 1632 // if (src_pos < 0) return -1;
duke@435 1633 __ movl(src_pos, SRC_POS); // src_pos
duke@435 1634 __ testl(src_pos, src_pos);
duke@435 1635 __ jccb(Assembler::negative, L_failed_0);
duke@435 1636
duke@435 1637 // if (dst == NULL) return -1;
duke@435 1638 __ movl(dst, DST); // dst oop
duke@435 1639 __ testl(dst, dst);
duke@435 1640 __ jccb(Assembler::zero, L_failed_0);
duke@435 1641
duke@435 1642 // if (dst_pos < 0) return -1;
duke@435 1643 __ movl(dst_pos, DST_POS); // dst_pos
duke@435 1644 __ testl(dst_pos, dst_pos);
duke@435 1645 __ jccb(Assembler::negative, L_failed_0);
duke@435 1646
duke@435 1647 // if (length < 0) return -1;
duke@435 1648 __ movl(length, LENGTH); // length
duke@435 1649 __ testl(length, length);
duke@435 1650 __ jccb(Assembler::negative, L_failed_0);
duke@435 1651
duke@435 1652 // if (src->klass() == NULL) return -1;
duke@435 1653 Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
duke@435 1654 Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
duke@435 1655 const Register rcx_src_klass = rcx; // array klass
duke@435 1656 __ movl(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
duke@435 1657
duke@435 1658 #ifdef ASSERT
duke@435 1659 // assert(src->klass() != NULL);
duke@435 1660 BLOCK_COMMENT("assert klasses not null");
duke@435 1661 { Label L1, L2;
duke@435 1662 __ testl(rcx_src_klass, rcx_src_klass);
duke@435 1663 __ jccb(Assembler::notZero, L2); // it is broken if klass is NULL
duke@435 1664 __ bind(L1);
duke@435 1665 __ stop("broken null klass");
duke@435 1666 __ bind(L2);
duke@435 1667 __ cmpl(dst_klass_addr, 0);
duke@435 1668 __ jccb(Assembler::equal, L1); // this would be broken also
duke@435 1669 BLOCK_COMMENT("assert done");
duke@435 1670 }
duke@435 1671 #endif //ASSERT
duke@435 1672
duke@435 1673 // Load layout helper (32-bits)
duke@435 1674 //
duke@435 1675 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 1676 // 32 30 24 16 8 2 0
duke@435 1677 //
duke@435 1678 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 1679 //
duke@435 1680
duke@435 1681 int lh_offset = klassOopDesc::header_size() * HeapWordSize +
duke@435 1682 Klass::layout_helper_offset_in_bytes();
duke@435 1683 Address src_klass_lh_addr(rcx_src_klass, lh_offset);
duke@435 1684
duke@435 1685 // Handle objArrays completely differently...
duke@435 1686 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 1687 __ cmpl(src_klass_lh_addr, objArray_lh);
duke@435 1688 __ jcc(Assembler::equal, L_objArray);
duke@435 1689
duke@435 1690 // if (src->klass() != dst->klass()) return -1;
duke@435 1691 __ cmpl(rcx_src_klass, dst_klass_addr);
duke@435 1692 __ jccb(Assembler::notEqual, L_failed_0);
duke@435 1693
duke@435 1694 const Register rcx_lh = rcx; // layout helper
duke@435 1695 assert(rcx_lh == rcx_src_klass, "known alias");
duke@435 1696 __ movl(rcx_lh, src_klass_lh_addr);
duke@435 1697
duke@435 1698 // if (!src->is_Array()) return -1;
duke@435 1699 __ cmpl(rcx_lh, Klass::_lh_neutral_value);
duke@435 1700 __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
duke@435 1701
duke@435 1702 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 1703 #ifdef ASSERT
duke@435 1704 { Label L;
duke@435 1705 __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
duke@435 1706 __ jcc(Assembler::greaterEqual, L); // signed cmp
duke@435 1707 __ stop("must be a primitive array");
duke@435 1708 __ bind(L);
duke@435 1709 }
duke@435 1710 #endif
duke@435 1711
duke@435 1712 assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
duke@435 1713 arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
duke@435 1714
duke@435 1715 // typeArrayKlass
duke@435 1716 //
duke@435 1717 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 1718 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 1719 //
duke@435 1720 const Register rsi_offset = rsi; // array offset
duke@435 1721 const Register src_array = src; // src array offset
duke@435 1722 const Register dst_array = dst; // dst array offset
duke@435 1723 const Register rdi_elsize = rdi; // log2 element size
duke@435 1724
duke@435 1725 __ movl(rsi_offset, rcx_lh);
duke@435 1726 __ shrl(rsi_offset, Klass::_lh_header_size_shift);
duke@435 1727 __ andl(rsi_offset, Klass::_lh_header_size_mask); // array_offset
duke@435 1728 __ addl(src_array, rsi_offset); // src array offset
duke@435 1729 __ addl(dst_array, rsi_offset); // dst array offset
duke@435 1730 __ andl(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
duke@435 1731
duke@435 1732 // next registers should be set before the jump to corresponding stub
duke@435 1733 const Register from = src; // source array address
duke@435 1734 const Register to = dst; // destination array address
duke@435 1735 const Register count = rcx; // elements count
duke@435 1736 // some of them should be duplicated on stack
duke@435 1737 #define FROM Address(rsp, 12+ 4)
duke@435 1738 #define TO Address(rsp, 12+ 8) // Not used now
duke@435 1739 #define COUNT Address(rsp, 12+12) // Only for oop arraycopy
duke@435 1740
duke@435 1741 BLOCK_COMMENT("scale indexes to element size");
duke@435 1742 __ movl(rsi, SRC_POS); // src_pos
duke@435 1743 __ shll(rsi); // src_pos << rcx (log2 elsize)
duke@435 1744 assert(src_array == from, "");
duke@435 1745 __ addl(from, rsi); // from = src_array + SRC_POS << log2 elsize
duke@435 1746 __ movl(rdi, DST_POS); // dst_pos
duke@435 1747 __ shll(rdi); // dst_pos << rcx (log2 elsize)
duke@435 1748 assert(dst_array == to, "");
duke@435 1749 __ addl(to, rdi); // to = dst_array + DST_POS << log2 elsize
duke@435 1750 __ movl(FROM, from); // src_addr
duke@435 1751 __ movl(rdi_elsize, rcx_lh); // log2 elsize
duke@435 1752 __ movl(count, LENGTH); // elements count
duke@435 1753
duke@435 1754 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 1755 __ cmpl(rdi_elsize, 0);
duke@435 1756
duke@435 1757 __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
duke@435 1758 __ cmpl(rdi_elsize, LogBytesPerShort);
duke@435 1759 __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
duke@435 1760 __ cmpl(rdi_elsize, LogBytesPerInt);
duke@435 1761 __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
duke@435 1762 #ifdef ASSERT
duke@435 1763 __ cmpl(rdi_elsize, LogBytesPerLong);
duke@435 1764 __ jccb(Assembler::notEqual, L_failed);
duke@435 1765 #endif
duke@435 1766 __ popl(rdi); // Do pops here since jlong_arraycopy stub does not do it.
duke@435 1767 __ popl(rsi);
duke@435 1768 __ jump(RuntimeAddress(entry_jlong_arraycopy));
duke@435 1769
duke@435 1770 __ BIND(L_failed);
duke@435 1771 __ xorl(rax, rax);
duke@435 1772 __ notl(rax); // return -1
duke@435 1773 __ popl(rdi);
duke@435 1774 __ popl(rsi);
duke@435 1775 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1776 __ ret(0);
duke@435 1777
duke@435 1778 // objArrayKlass
duke@435 1779 __ BIND(L_objArray);
duke@435 1780 // live at this point: rcx_src_klass, src[_pos], dst[_pos]
duke@435 1781
duke@435 1782 Label L_plain_copy, L_checkcast_copy;
duke@435 1783 // test array classes for subtyping
duke@435 1784 __ cmpl(rcx_src_klass, dst_klass_addr); // usual case is exact equality
duke@435 1785 __ jccb(Assembler::notEqual, L_checkcast_copy);
duke@435 1786
duke@435 1787 // Identically typed arrays can be copied without element-wise checks.
duke@435 1788 assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
duke@435 1789 arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
duke@435 1790
duke@435 1791 __ BIND(L_plain_copy);
duke@435 1792 __ movl(count, LENGTH); // elements count
duke@435 1793 __ movl(src_pos, SRC_POS); // reload src_pos
duke@435 1794 __ leal(from, Address(src, src_pos, Address::times_4,
duke@435 1795 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
duke@435 1796 __ movl(dst_pos, DST_POS); // reload dst_pos
duke@435 1797 __ leal(to, Address(dst, dst_pos, Address::times_4,
duke@435 1798 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
duke@435 1799 __ movl(FROM, from); // src_addr
duke@435 1800 __ movl(TO, to); // dst_addr
duke@435 1801 __ movl(COUNT, count); // count
duke@435 1802 __ jump(RuntimeAddress(entry_oop_arraycopy));
duke@435 1803
duke@435 1804 __ BIND(L_checkcast_copy);
duke@435 1805 // live at this point: rcx_src_klass, dst[_pos], src[_pos]
duke@435 1806 {
duke@435 1807 // Handy offsets:
duke@435 1808 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 1809 objArrayKlass::element_klass_offset_in_bytes());
duke@435 1810 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 1811 Klass::super_check_offset_offset_in_bytes());
duke@435 1812
duke@435 1813 Register rsi_dst_klass = rsi;
duke@435 1814 Register rdi_temp = rdi;
duke@435 1815 assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
duke@435 1816 assert(rdi_temp == dst_pos, "expected alias w/ dst_pos");
duke@435 1817 Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
duke@435 1818
duke@435 1819 // Before looking at dst.length, make sure dst is also an objArray.
duke@435 1820 __ movl(rsi_dst_klass, dst_klass_addr);
duke@435 1821 __ cmpl(dst_klass_lh_addr, objArray_lh);
duke@435 1822 __ jccb(Assembler::notEqual, L_failed);
duke@435 1823
duke@435 1824 // It is safe to examine both src.length and dst.length.
duke@435 1825 __ movl(src_pos, SRC_POS); // reload rsi
duke@435 1826 arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
duke@435 1827 // (Now src_pos and dst_pos are killed, but not src and dst.)
duke@435 1828
duke@435 1829 // We'll need this temp (don't forget to pop it after the type check).
duke@435 1830 __ pushl(rbx);
duke@435 1831 Register rbx_src_klass = rbx;
duke@435 1832
duke@435 1833 __ movl(rbx_src_klass, rcx_src_klass); // spill away from rcx
duke@435 1834 __ movl(rsi_dst_klass, dst_klass_addr);
duke@435 1835 Address super_check_offset_addr(rsi_dst_klass, sco_offset);
duke@435 1836 Label L_fail_array_check;
duke@435 1837 generate_type_check(rbx_src_klass,
duke@435 1838 super_check_offset_addr, dst_klass_addr,
duke@435 1839 rdi_temp, NULL, &L_fail_array_check);
duke@435 1840 // (On fall-through, we have passed the array type check.)
duke@435 1841 __ popl(rbx);
duke@435 1842 __ jmp(L_plain_copy);
duke@435 1843
duke@435 1844 __ BIND(L_fail_array_check);
duke@435 1845 // Reshuffle arguments so we can call checkcast_arraycopy:
duke@435 1846
duke@435 1847 // match initial saves for checkcast_arraycopy
duke@435 1848 // pushl(rsi); // already done; see above
duke@435 1849 // pushl(rdi); // already done; see above
duke@435 1850 // pushl(rbx); // already done; see above
duke@435 1851
duke@435 1852 // Marshal outgoing arguments now, freeing registers.
duke@435 1853 Address from_arg(rsp, 16+ 4); // from
duke@435 1854 Address to_arg(rsp, 16+ 8); // to
duke@435 1855 Address length_arg(rsp, 16+12); // elements count
duke@435 1856 Address ckoff_arg(rsp, 16+16); // super_check_offset
duke@435 1857 Address ckval_arg(rsp, 16+20); // super_klass
duke@435 1858
duke@435 1859 Address SRC_POS_arg(rsp, 16+ 8);
duke@435 1860 Address DST_POS_arg(rsp, 16+16);
duke@435 1861 Address LENGTH_arg(rsp, 16+20);
duke@435 1862 // push rbx, changed the incoming offsets (why not just use rbp,??)
duke@435 1863 // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
duke@435 1864
duke@435 1865 __ movl(rbx, Address(rsi_dst_klass, ek_offset));
duke@435 1866 __ movl(length, LENGTH_arg); // reload elements count
duke@435 1867 __ movl(src_pos, SRC_POS_arg); // reload src_pos
duke@435 1868 __ movl(dst_pos, DST_POS_arg); // reload dst_pos
duke@435 1869
duke@435 1870 __ movl(ckval_arg, rbx); // destination element type
duke@435 1871 __ movl(rbx, Address(rbx, sco_offset));
duke@435 1872 __ movl(ckoff_arg, rbx); // corresponding class check offset
duke@435 1873
duke@435 1874 __ movl(length_arg, length); // outgoing length argument
duke@435 1875
duke@435 1876 __ leal(from, Address(src, src_pos, Address::times_4,
duke@435 1877 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
duke@435 1878 __ movl(from_arg, from);
duke@435 1879
duke@435 1880 __ leal(to, Address(dst, dst_pos, Address::times_4,
duke@435 1881 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
duke@435 1882 __ movl(to_arg, to);
duke@435 1883 __ jump(RuntimeAddress(entry_checkcast_arraycopy));
duke@435 1884 }
duke@435 1885
duke@435 1886 return start;
duke@435 1887 }
duke@435 1888
duke@435 1889 void generate_arraycopy_stubs() {
duke@435 1890 address entry;
duke@435 1891 address entry_jbyte_arraycopy;
duke@435 1892 address entry_jshort_arraycopy;
duke@435 1893 address entry_jint_arraycopy;
duke@435 1894 address entry_oop_arraycopy;
duke@435 1895 address entry_jlong_arraycopy;
duke@435 1896 address entry_checkcast_arraycopy;
duke@435 1897
duke@435 1898 StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
duke@435 1899 generate_disjoint_copy(T_BYTE, true, Address::times_1, &entry,
duke@435 1900 "arrayof_jbyte_disjoint_arraycopy");
duke@435 1901 StubRoutines::_arrayof_jbyte_arraycopy =
duke@435 1902 generate_conjoint_copy(T_BYTE, true, Address::times_1, entry,
duke@435 1903 NULL, "arrayof_jbyte_arraycopy");
duke@435 1904 StubRoutines::_jbyte_disjoint_arraycopy =
duke@435 1905 generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
duke@435 1906 "jbyte_disjoint_arraycopy");
duke@435 1907 StubRoutines::_jbyte_arraycopy =
duke@435 1908 generate_conjoint_copy(T_BYTE, false, Address::times_1, entry,
duke@435 1909 &entry_jbyte_arraycopy, "jbyte_arraycopy");
duke@435 1910
duke@435 1911 StubRoutines::_arrayof_jshort_disjoint_arraycopy =
duke@435 1912 generate_disjoint_copy(T_SHORT, true, Address::times_2, &entry,
duke@435 1913 "arrayof_jshort_disjoint_arraycopy");
duke@435 1914 StubRoutines::_arrayof_jshort_arraycopy =
duke@435 1915 generate_conjoint_copy(T_SHORT, true, Address::times_2, entry,
duke@435 1916 NULL, "arrayof_jshort_arraycopy");
duke@435 1917 StubRoutines::_jshort_disjoint_arraycopy =
duke@435 1918 generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
duke@435 1919 "jshort_disjoint_arraycopy");
duke@435 1920 StubRoutines::_jshort_arraycopy =
duke@435 1921 generate_conjoint_copy(T_SHORT, false, Address::times_2, entry,
duke@435 1922 &entry_jshort_arraycopy, "jshort_arraycopy");
duke@435 1923
duke@435 1924 // Next arrays are always aligned on 4 bytes at least.
duke@435 1925 StubRoutines::_jint_disjoint_arraycopy =
duke@435 1926 generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
duke@435 1927 "jint_disjoint_arraycopy");
duke@435 1928 StubRoutines::_jint_arraycopy =
duke@435 1929 generate_conjoint_copy(T_INT, true, Address::times_4, entry,
duke@435 1930 &entry_jint_arraycopy, "jint_arraycopy");
duke@435 1931
duke@435 1932 StubRoutines::_oop_disjoint_arraycopy =
duke@435 1933 generate_disjoint_copy(T_OBJECT, true, Address::times_4, &entry,
duke@435 1934 "oop_disjoint_arraycopy");
duke@435 1935 StubRoutines::_oop_arraycopy =
duke@435 1936 generate_conjoint_copy(T_OBJECT, true, Address::times_4, entry,
duke@435 1937 &entry_oop_arraycopy, "oop_arraycopy");
duke@435 1938
duke@435 1939 StubRoutines::_jlong_disjoint_arraycopy =
duke@435 1940 generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
duke@435 1941 StubRoutines::_jlong_arraycopy =
duke@435 1942 generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
duke@435 1943 "jlong_arraycopy");
duke@435 1944
duke@435 1945 StubRoutines::_arrayof_jint_disjoint_arraycopy =
duke@435 1946 StubRoutines::_jint_disjoint_arraycopy;
duke@435 1947 StubRoutines::_arrayof_oop_disjoint_arraycopy =
duke@435 1948 StubRoutines::_oop_disjoint_arraycopy;
duke@435 1949 StubRoutines::_arrayof_jlong_disjoint_arraycopy =
duke@435 1950 StubRoutines::_jlong_disjoint_arraycopy;
duke@435 1951
duke@435 1952 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 1953 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
duke@435 1954 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 1955
duke@435 1956 StubRoutines::_checkcast_arraycopy =
duke@435 1957 generate_checkcast_copy("checkcast_arraycopy",
duke@435 1958 &entry_checkcast_arraycopy);
duke@435 1959
duke@435 1960 StubRoutines::_unsafe_arraycopy =
duke@435 1961 generate_unsafe_copy("unsafe_arraycopy",
duke@435 1962 entry_jbyte_arraycopy,
duke@435 1963 entry_jshort_arraycopy,
duke@435 1964 entry_jint_arraycopy,
duke@435 1965 entry_jlong_arraycopy);
duke@435 1966
duke@435 1967 StubRoutines::_generic_arraycopy =
duke@435 1968 generate_generic_copy("generic_arraycopy",
duke@435 1969 entry_jbyte_arraycopy,
duke@435 1970 entry_jshort_arraycopy,
duke@435 1971 entry_jint_arraycopy,
duke@435 1972 entry_oop_arraycopy,
duke@435 1973 entry_jlong_arraycopy,
duke@435 1974 entry_checkcast_arraycopy);
duke@435 1975 }
duke@435 1976
duke@435 1977 public:
duke@435 1978 // Information about frame layout at time of blocking runtime call.
duke@435 1979 // Note that we only have to preserve callee-saved registers since
duke@435 1980 // the compilers are responsible for supplying a continuation point
duke@435 1981 // if they expect all registers to be preserved.
duke@435 1982 enum layout {
duke@435 1983 thread_off, // last_java_sp
duke@435 1984 rbp_off, // callee saved register
duke@435 1985 ret_pc,
duke@435 1986 framesize
duke@435 1987 };
duke@435 1988
duke@435 1989 private:
duke@435 1990
duke@435 1991 #undef __
duke@435 1992 #define __ masm->
duke@435 1993
duke@435 1994 //------------------------------------------------------------------------------------------------------------------------
duke@435 1995 // Continuation point for throwing of implicit exceptions that are not handled in
duke@435 1996 // the current activation. Fabricates an exception oop and initiates normal
duke@435 1997 // exception dispatching in this frame.
duke@435 1998 //
duke@435 1999 // Previously the compiler (c2) allowed for callee save registers on Java calls.
duke@435 2000 // This is no longer true after adapter frames were removed but could possibly
duke@435 2001 // be brought back in the future if the interpreter code was reworked and it
duke@435 2002 // was deemed worthwhile. The comment below was left to describe what must
duke@435 2003 // happen here if callee saves were resurrected. As it stands now this stub
duke@435 2004 // could actually be a vanilla BufferBlob and have now oopMap at all.
duke@435 2005 // Since it doesn't make much difference we've chosen to leave it the
duke@435 2006 // way it was in the callee save days and keep the comment.
duke@435 2007
duke@435 2008 // If we need to preserve callee-saved values we need a callee-saved oop map and
duke@435 2009 // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
duke@435 2010 // If the compiler needs all registers to be preserved between the fault
duke@435 2011 // point and the exception handler then it must assume responsibility for that in
duke@435 2012 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 2013 // continuation_for_implicit_division_by_zero_exception. All other implicit
duke@435 2014 // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
duke@435 2015 // either at call sites or otherwise assume that stack unwinding will be initiated,
duke@435 2016 // so caller saved registers were assumed volatile in the compiler.
duke@435 2017 address generate_throw_exception(const char* name, address runtime_entry,
duke@435 2018 bool restore_saved_exception_pc) {
duke@435 2019
duke@435 2020 int insts_size = 256;
duke@435 2021 int locs_size = 32;
duke@435 2022
duke@435 2023 CodeBuffer code(name, insts_size, locs_size);
duke@435 2024 OopMapSet* oop_maps = new OopMapSet();
duke@435 2025 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 2026
duke@435 2027 address start = __ pc();
duke@435 2028
duke@435 2029 // This is an inlined and slightly modified version of call_VM
duke@435 2030 // which has the ability to fetch the return PC out of
duke@435 2031 // thread-local storage and also sets up last_Java_sp slightly
duke@435 2032 // differently than the real call_VM
duke@435 2033 Register java_thread = rbx;
duke@435 2034 __ get_thread(java_thread);
duke@435 2035 if (restore_saved_exception_pc) {
duke@435 2036 __ movl(rax, Address(java_thread, in_bytes(JavaThread::saved_exception_pc_offset())));
duke@435 2037 __ pushl(rax);
duke@435 2038 }
duke@435 2039
duke@435 2040 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2041
duke@435 2042 // pc and rbp, already pushed
duke@435 2043 __ subl(rsp, (framesize-2) * wordSize); // prolog
duke@435 2044
duke@435 2045 // Frame is now completed as far as size and linkage.
duke@435 2046
duke@435 2047 int frame_complete = __ pc() - start;
duke@435 2048
duke@435 2049 // push java thread (becomes first argument of C function)
duke@435 2050 __ movl(Address(rsp, thread_off * wordSize), java_thread);
duke@435 2051
duke@435 2052 // Set up last_Java_sp and last_Java_fp
duke@435 2053 __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
duke@435 2054
duke@435 2055 // Call runtime
duke@435 2056 BLOCK_COMMENT("call runtime_entry");
duke@435 2057 __ call(RuntimeAddress(runtime_entry));
duke@435 2058 // Generate oop map
duke@435 2059 OopMap* map = new OopMap(framesize, 0);
duke@435 2060 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 2061
duke@435 2062 // restore the thread (cannot use the pushed argument since arguments
duke@435 2063 // may be overwritten by C code generated by an optimizing compiler);
duke@435 2064 // however can use the register value directly if it is callee saved.
duke@435 2065 __ get_thread(java_thread);
duke@435 2066
duke@435 2067 __ reset_last_Java_frame(java_thread, true, false);
duke@435 2068
duke@435 2069 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2070
duke@435 2071 // check for pending exceptions
duke@435 2072 #ifdef ASSERT
duke@435 2073 Label L;
duke@435 2074 __ cmpl(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
duke@435 2075 __ jcc(Assembler::notEqual, L);
duke@435 2076 __ should_not_reach_here();
duke@435 2077 __ bind(L);
duke@435 2078 #endif /* ASSERT */
duke@435 2079 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2080
duke@435 2081
duke@435 2082 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
duke@435 2083 return stub->entry_point();
duke@435 2084 }
duke@435 2085
duke@435 2086
duke@435 2087 void create_control_words() {
duke@435 2088 // Round to nearest, 53-bit mode, exceptions masked
duke@435 2089 StubRoutines::_fpu_cntrl_wrd_std = 0x027F;
duke@435 2090 // Round to zero, 53-bit mode, exception mased
duke@435 2091 StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
duke@435 2092 // Round to nearest, 24-bit mode, exceptions masked
duke@435 2093 StubRoutines::_fpu_cntrl_wrd_24 = 0x007F;
duke@435 2094 // Round to nearest, 64-bit mode, exceptions masked
duke@435 2095 StubRoutines::_fpu_cntrl_wrd_64 = 0x037F;
duke@435 2096 // Round to nearest, 64-bit mode, exceptions masked
duke@435 2097 StubRoutines::_mxcsr_std = 0x1F80;
duke@435 2098 // Note: the following two constants are 80-bit values
duke@435 2099 // layout is critical for correct loading by FPU.
duke@435 2100 // Bias for strict fp multiply/divide
duke@435 2101 StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
duke@435 2102 StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
duke@435 2103 StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
duke@435 2104 // Un-Bias for strict fp multiply/divide
duke@435 2105 StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
duke@435 2106 StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
duke@435 2107 StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
duke@435 2108 }
duke@435 2109
duke@435 2110 //---------------------------------------------------------------------------
duke@435 2111 // Initialization
duke@435 2112
duke@435 2113 void generate_initial() {
duke@435 2114 // Generates all stubs and initializes the entry points
duke@435 2115
duke@435 2116 //------------------------------------------------------------------------------------------------------------------------
duke@435 2117 // entry points that exist in all platforms
duke@435 2118 // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
duke@435 2119 // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
duke@435 2120 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 2121
duke@435 2122 StubRoutines::_call_stub_entry =
duke@435 2123 generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 2124 // is referenced by megamorphic call
duke@435 2125 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 2126
duke@435 2127 // These are currently used by Solaris/Intel
duke@435 2128 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 2129
duke@435 2130 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 2131 generate_handler_for_unsafe_access();
duke@435 2132
duke@435 2133 // platform dependent
duke@435 2134 create_control_words();
duke@435 2135
duke@435 2136 StubRoutines::i486::_verify_mxcsr_entry = generate_verify_mxcsr();
duke@435 2137 StubRoutines::i486::_verify_fpu_cntrl_wrd_entry = generate_verify_fpu_cntrl_wrd();
duke@435 2138 StubRoutines::_d2i_wrapper = generate_d2i_wrapper(T_INT,
duke@435 2139 CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
duke@435 2140 StubRoutines::_d2l_wrapper = generate_d2i_wrapper(T_LONG,
duke@435 2141 CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
duke@435 2142 }
duke@435 2143
duke@435 2144
duke@435 2145 void generate_all() {
duke@435 2146 // Generates all stubs and initializes the entry points
duke@435 2147
duke@435 2148 // These entry points require SharedInfo::stack0 to be set up in non-core builds
duke@435 2149 // and need to be relocatable, so they each fabricate a RuntimeStub internally.
duke@435 2150 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError), false);
dcubed@451 2151 StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError), false);
duke@435 2152 StubRoutines::_throw_ArithmeticException_entry = generate_throw_exception("ArithmeticException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException), true);
duke@435 2153 StubRoutines::_throw_NullPointerException_entry = generate_throw_exception("NullPointerException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
duke@435 2154 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
duke@435 2155 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false);
duke@435 2156
duke@435 2157 //------------------------------------------------------------------------------------------------------------------------
duke@435 2158 // entry points that are platform specific
duke@435 2159
duke@435 2160 // support for verify_oop (must happen after universe_init)
duke@435 2161 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
duke@435 2162
duke@435 2163 // arraycopy stubs used by compilers
duke@435 2164 generate_arraycopy_stubs();
duke@435 2165 }
duke@435 2166
duke@435 2167
duke@435 2168 public:
duke@435 2169 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 2170 if (all) {
duke@435 2171 generate_all();
duke@435 2172 } else {
duke@435 2173 generate_initial();
duke@435 2174 }
duke@435 2175 }
duke@435 2176 }; // end class declaration
duke@435 2177
duke@435 2178
duke@435 2179 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 2180 StubGenerator g(code, all);
duke@435 2181 }

mercurial