src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.hpp

Tue, 08 Feb 2011 12:33:19 +0100

author
stefank
date
Tue, 08 Feb 2011 12:33:19 +0100
changeset 2534
e5383553fd4e
parent 2314
f95d63e2154a
child 2783
eda9eb483d29
permissions
-rw-r--r--

7014851: Remove unused parallel compaction code
Summary: Removed.
Reviewed-by: jcoomes, brutisso

duke@435 1 /*
stefank@2534 2 * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/parallelScavenge/objectStartArray.hpp"
stefank@2314 29 #include "gc_implementation/parallelScavenge/parMarkBitMap.hpp"
stefank@2314 30 #include "gc_implementation/parallelScavenge/psCompactionManager.hpp"
stefank@2314 31 #include "gc_implementation/shared/collectorCounters.hpp"
stefank@2314 32 #include "gc_implementation/shared/markSweep.hpp"
stefank@2314 33 #include "gc_implementation/shared/mutableSpace.hpp"
stefank@2314 34 #include "memory/sharedHeap.hpp"
stefank@2314 35 #include "oops/oop.hpp"
stefank@2314 36
duke@435 37 class ParallelScavengeHeap;
duke@435 38 class PSAdaptiveSizePolicy;
duke@435 39 class PSYoungGen;
duke@435 40 class PSOldGen;
duke@435 41 class PSPermGen;
duke@435 42 class ParCompactionManager;
duke@435 43 class ParallelTaskTerminator;
duke@435 44 class PSParallelCompact;
duke@435 45 class GCTaskManager;
duke@435 46 class GCTaskQueue;
duke@435 47 class PreGCValues;
duke@435 48 class MoveAndUpdateClosure;
duke@435 49 class RefProcTaskExecutor;
duke@435 50
jcoomes@917 51 // The SplitInfo class holds the information needed to 'split' a source region
jcoomes@917 52 // so that the live data can be copied to two destination *spaces*. Normally,
jcoomes@917 53 // all the live data in a region is copied to a single destination space (e.g.,
jcoomes@917 54 // everything live in a region in eden is copied entirely into the old gen).
jcoomes@917 55 // However, when the heap is nearly full, all the live data in eden may not fit
jcoomes@917 56 // into the old gen. Copying only some of the regions from eden to old gen
jcoomes@917 57 // requires finding a region that does not contain a partial object (i.e., no
jcoomes@917 58 // live object crosses the region boundary) somewhere near the last object that
jcoomes@917 59 // does fit into the old gen. Since it's not always possible to find such a
jcoomes@917 60 // region, splitting is necessary for predictable behavior.
jcoomes@917 61 //
jcoomes@917 62 // A region is always split at the end of the partial object. This avoids
jcoomes@917 63 // additional tests when calculating the new location of a pointer, which is a
jcoomes@917 64 // very hot code path. The partial object and everything to its left will be
jcoomes@917 65 // copied to another space (call it dest_space_1). The live data to the right
jcoomes@917 66 // of the partial object will be copied either within the space itself, or to a
jcoomes@917 67 // different destination space (distinct from dest_space_1).
jcoomes@917 68 //
jcoomes@917 69 // Split points are identified during the summary phase, when region
jcoomes@917 70 // destinations are computed: data about the split, including the
jcoomes@917 71 // partial_object_size, is recorded in a SplitInfo record and the
jcoomes@917 72 // partial_object_size field in the summary data is set to zero. The zeroing is
jcoomes@917 73 // possible (and necessary) since the partial object will move to a different
jcoomes@917 74 // destination space than anything to its right, thus the partial object should
jcoomes@917 75 // not affect the locations of any objects to its right.
jcoomes@917 76 //
jcoomes@917 77 // The recorded data is used during the compaction phase, but only rarely: when
jcoomes@917 78 // the partial object on the split region will be copied across a destination
jcoomes@917 79 // region boundary. This test is made once each time a region is filled, and is
jcoomes@917 80 // a simple address comparison, so the overhead is negligible (see
jcoomes@917 81 // PSParallelCompact::first_src_addr()).
jcoomes@917 82 //
jcoomes@917 83 // Notes:
jcoomes@917 84 //
jcoomes@917 85 // Only regions with partial objects are split; a region without a partial
jcoomes@917 86 // object does not need any extra bookkeeping.
jcoomes@917 87 //
jcoomes@917 88 // At most one region is split per space, so the amount of data required is
jcoomes@917 89 // constant.
jcoomes@917 90 //
jcoomes@917 91 // A region is split only when the destination space would overflow. Once that
jcoomes@917 92 // happens, the destination space is abandoned and no other data (even from
jcoomes@917 93 // other source spaces) is targeted to that destination space. Abandoning the
jcoomes@917 94 // destination space may leave a somewhat large unused area at the end, if a
jcoomes@917 95 // large object caused the overflow.
jcoomes@917 96 //
jcoomes@917 97 // Future work:
jcoomes@917 98 //
jcoomes@917 99 // More bookkeeping would be required to continue to use the destination space.
jcoomes@917 100 // The most general solution would allow data from regions in two different
jcoomes@917 101 // source spaces to be "joined" in a single destination region. At the very
jcoomes@917 102 // least, additional code would be required in next_src_region() to detect the
jcoomes@917 103 // join and skip to an out-of-order source region. If the join region was also
jcoomes@917 104 // the last destination region to which a split region was copied (the most
jcoomes@917 105 // likely case), then additional work would be needed to get fill_region() to
jcoomes@917 106 // stop iteration and switch to a new source region at the right point. Basic
jcoomes@917 107 // idea would be to use a fake value for the top of the source space. It is
jcoomes@917 108 // doable, if a bit tricky.
jcoomes@917 109 //
jcoomes@917 110 // A simpler (but less general) solution would fill the remainder of the
jcoomes@917 111 // destination region with a dummy object and continue filling the next
jcoomes@917 112 // destination region.
jcoomes@917 113
jcoomes@917 114 class SplitInfo
jcoomes@917 115 {
jcoomes@917 116 public:
jcoomes@917 117 // Return true if this split info is valid (i.e., if a split has been
jcoomes@917 118 // recorded). The very first region cannot have a partial object and thus is
jcoomes@917 119 // never split, so 0 is the 'invalid' value.
jcoomes@917 120 bool is_valid() const { return _src_region_idx > 0; }
jcoomes@917 121
jcoomes@917 122 // Return true if this split holds data for the specified source region.
jcoomes@917 123 inline bool is_split(size_t source_region) const;
jcoomes@917 124
jcoomes@917 125 // The index of the split region, the size of the partial object on that
jcoomes@917 126 // region and the destination of the partial object.
jcoomes@917 127 size_t src_region_idx() const { return _src_region_idx; }
jcoomes@917 128 size_t partial_obj_size() const { return _partial_obj_size; }
jcoomes@917 129 HeapWord* destination() const { return _destination; }
jcoomes@917 130
jcoomes@917 131 // The destination count of the partial object referenced by this split
jcoomes@917 132 // (either 1 or 2). This must be added to the destination count of the
jcoomes@917 133 // remainder of the source region.
jcoomes@917 134 unsigned int destination_count() const { return _destination_count; }
jcoomes@917 135
jcoomes@917 136 // If a word within the partial object will be written to the first word of a
jcoomes@917 137 // destination region, this is the address of the destination region;
jcoomes@917 138 // otherwise this is NULL.
jcoomes@917 139 HeapWord* dest_region_addr() const { return _dest_region_addr; }
jcoomes@917 140
jcoomes@917 141 // If a word within the partial object will be written to the first word of a
jcoomes@917 142 // destination region, this is the address of that word within the partial
jcoomes@917 143 // object; otherwise this is NULL.
jcoomes@917 144 HeapWord* first_src_addr() const { return _first_src_addr; }
jcoomes@917 145
jcoomes@917 146 // Record the data necessary to split the region src_region_idx.
jcoomes@917 147 void record(size_t src_region_idx, size_t partial_obj_size,
jcoomes@917 148 HeapWord* destination);
jcoomes@917 149
jcoomes@917 150 void clear();
jcoomes@917 151
jcoomes@917 152 DEBUG_ONLY(void verify_clear();)
jcoomes@917 153
jcoomes@917 154 private:
jcoomes@917 155 size_t _src_region_idx;
jcoomes@917 156 size_t _partial_obj_size;
jcoomes@917 157 HeapWord* _destination;
jcoomes@917 158 unsigned int _destination_count;
jcoomes@917 159 HeapWord* _dest_region_addr;
jcoomes@917 160 HeapWord* _first_src_addr;
jcoomes@917 161 };
jcoomes@917 162
jcoomes@917 163 inline bool SplitInfo::is_split(size_t region_idx) const
jcoomes@917 164 {
jcoomes@917 165 return _src_region_idx == region_idx && is_valid();
jcoomes@917 166 }
jcoomes@917 167
duke@435 168 class SpaceInfo
duke@435 169 {
duke@435 170 public:
duke@435 171 MutableSpace* space() const { return _space; }
duke@435 172
duke@435 173 // Where the free space will start after the collection. Valid only after the
duke@435 174 // summary phase completes.
duke@435 175 HeapWord* new_top() const { return _new_top; }
duke@435 176
duke@435 177 // Allows new_top to be set.
duke@435 178 HeapWord** new_top_addr() { return &_new_top; }
duke@435 179
duke@435 180 // Where the smallest allowable dense prefix ends (used only for perm gen).
duke@435 181 HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
duke@435 182
duke@435 183 // Where the dense prefix ends, or the compacted region begins.
duke@435 184 HeapWord* dense_prefix() const { return _dense_prefix; }
duke@435 185
duke@435 186 // The start array for the (generation containing the) space, or NULL if there
duke@435 187 // is no start array.
duke@435 188 ObjectStartArray* start_array() const { return _start_array; }
duke@435 189
jcoomes@917 190 SplitInfo& split_info() { return _split_info; }
jcoomes@917 191
duke@435 192 void set_space(MutableSpace* s) { _space = s; }
duke@435 193 void set_new_top(HeapWord* addr) { _new_top = addr; }
duke@435 194 void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
duke@435 195 void set_dense_prefix(HeapWord* addr) { _dense_prefix = addr; }
duke@435 196 void set_start_array(ObjectStartArray* s) { _start_array = s; }
duke@435 197
jcoomes@917 198 void publish_new_top() const { _space->set_top(_new_top); }
jcoomes@917 199
duke@435 200 private:
duke@435 201 MutableSpace* _space;
duke@435 202 HeapWord* _new_top;
duke@435 203 HeapWord* _min_dense_prefix;
duke@435 204 HeapWord* _dense_prefix;
duke@435 205 ObjectStartArray* _start_array;
jcoomes@917 206 SplitInfo _split_info;
duke@435 207 };
duke@435 208
duke@435 209 class ParallelCompactData
duke@435 210 {
duke@435 211 public:
duke@435 212 // Sizes are in HeapWords, unless indicated otherwise.
jcoomes@810 213 static const size_t Log2RegionSize;
jcoomes@810 214 static const size_t RegionSize;
jcoomes@810 215 static const size_t RegionSizeBytes;
duke@435 216
jcoomes@810 217 // Mask for the bits in a size_t to get an offset within a region.
jcoomes@810 218 static const size_t RegionSizeOffsetMask;
jcoomes@810 219 // Mask for the bits in a pointer to get an offset within a region.
jcoomes@810 220 static const size_t RegionAddrOffsetMask;
jcoomes@810 221 // Mask for the bits in a pointer to get the address of the start of a region.
jcoomes@810 222 static const size_t RegionAddrMask;
duke@435 223
jcoomes@810 224 class RegionData
duke@435 225 {
duke@435 226 public:
jcoomes@810 227 // Destination address of the region.
duke@435 228 HeapWord* destination() const { return _destination; }
duke@435 229
jcoomes@810 230 // The first region containing data destined for this region.
jcoomes@810 231 size_t source_region() const { return _source_region; }
duke@435 232
jcoomes@810 233 // The object (if any) starting in this region and ending in a different
jcoomes@810 234 // region that could not be updated during the main (parallel) compaction
duke@435 235 // phase. This is different from _partial_obj_addr, which is an object that
jcoomes@810 236 // extends onto a source region. However, the two uses do not overlap in
duke@435 237 // time, so the same field is used to save space.
duke@435 238 HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
duke@435 239
jcoomes@810 240 // The starting address of the partial object extending onto the region.
duke@435 241 HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
duke@435 242
jcoomes@810 243 // Size of the partial object extending onto the region (words).
duke@435 244 size_t partial_obj_size() const { return _partial_obj_size; }
duke@435 245
jcoomes@810 246 // Size of live data that lies within this region due to objects that start
jcoomes@810 247 // in this region (words). This does not include the partial object
jcoomes@810 248 // extending onto the region (if any), or the part of an object that extends
jcoomes@810 249 // onto the next region (if any).
duke@435 250 size_t live_obj_size() const { return _dc_and_los & los_mask; }
duke@435 251
jcoomes@810 252 // Total live data that lies within the region (words).
duke@435 253 size_t data_size() const { return partial_obj_size() + live_obj_size(); }
duke@435 254
jcoomes@810 255 // The destination_count is the number of other regions to which data from
jcoomes@810 256 // this region will be copied. At the end of the summary phase, the valid
duke@435 257 // values of destination_count are
duke@435 258 //
jcoomes@810 259 // 0 - data from the region will be compacted completely into itself, or the
jcoomes@810 260 // region is empty. The region can be claimed and then filled.
jcoomes@810 261 // 1 - data from the region will be compacted into 1 other region; some
jcoomes@810 262 // data from the region may also be compacted into the region itself.
jcoomes@810 263 // 2 - data from the region will be copied to 2 other regions.
duke@435 264 //
jcoomes@810 265 // During compaction as regions are emptied, the destination_count is
duke@435 266 // decremented (atomically) and when it reaches 0, it can be claimed and
duke@435 267 // then filled.
duke@435 268 //
jcoomes@810 269 // A region is claimed for processing by atomically changing the
jcoomes@810 270 // destination_count to the claimed value (dc_claimed). After a region has
duke@435 271 // been filled, the destination_count should be set to the completed value
duke@435 272 // (dc_completed).
duke@435 273 inline uint destination_count() const;
duke@435 274 inline uint destination_count_raw() const;
duke@435 275
jcoomes@810 276 // The location of the java heap data that corresponds to this region.
duke@435 277 inline HeapWord* data_location() const;
duke@435 278
jcoomes@810 279 // The highest address referenced by objects in this region.
duke@435 280 inline HeapWord* highest_ref() const;
duke@435 281
jcoomes@810 282 // Whether this region is available to be claimed, has been claimed, or has
duke@435 283 // been completed.
duke@435 284 //
jcoomes@810 285 // Minor subtlety: claimed() returns true if the region is marked
jcoomes@810 286 // completed(), which is desirable since a region must be claimed before it
duke@435 287 // can be completed.
duke@435 288 bool available() const { return _dc_and_los < dc_one; }
duke@435 289 bool claimed() const { return _dc_and_los >= dc_claimed; }
duke@435 290 bool completed() const { return _dc_and_los >= dc_completed; }
duke@435 291
duke@435 292 // These are not atomic.
duke@435 293 void set_destination(HeapWord* addr) { _destination = addr; }
jcoomes@810 294 void set_source_region(size_t region) { _source_region = region; }
duke@435 295 void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
duke@435 296 void set_partial_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
duke@435 297 void set_partial_obj_size(size_t words) {
jcoomes@810 298 _partial_obj_size = (region_sz_t) words;
duke@435 299 }
duke@435 300
duke@435 301 inline void set_destination_count(uint count);
duke@435 302 inline void set_live_obj_size(size_t words);
duke@435 303 inline void set_data_location(HeapWord* addr);
duke@435 304 inline void set_completed();
duke@435 305 inline bool claim_unsafe();
duke@435 306
duke@435 307 // These are atomic.
duke@435 308 inline void add_live_obj(size_t words);
duke@435 309 inline void set_highest_ref(HeapWord* addr);
duke@435 310 inline void decrement_destination_count();
duke@435 311 inline bool claim();
duke@435 312
duke@435 313 private:
jcoomes@810 314 // The type used to represent object sizes within a region.
jcoomes@810 315 typedef uint region_sz_t;
duke@435 316
duke@435 317 // Constants for manipulating the _dc_and_los field, which holds both the
duke@435 318 // destination count and live obj size. The live obj size lives at the
duke@435 319 // least significant end so no masking is necessary when adding.
jcoomes@810 320 static const region_sz_t dc_shift; // Shift amount.
jcoomes@810 321 static const region_sz_t dc_mask; // Mask for destination count.
jcoomes@810 322 static const region_sz_t dc_one; // 1, shifted appropriately.
jcoomes@810 323 static const region_sz_t dc_claimed; // Region has been claimed.
jcoomes@810 324 static const region_sz_t dc_completed; // Region has been completed.
jcoomes@810 325 static const region_sz_t los_mask; // Mask for live obj size.
duke@435 326
jcoomes@810 327 HeapWord* _destination;
jcoomes@810 328 size_t _source_region;
jcoomes@810 329 HeapWord* _partial_obj_addr;
jcoomes@810 330 region_sz_t _partial_obj_size;
jcoomes@810 331 region_sz_t volatile _dc_and_los;
duke@435 332 #ifdef ASSERT
duke@435 333 // These enable optimizations that are only partially implemented. Use
duke@435 334 // debug builds to prevent the code fragments from breaking.
jcoomes@810 335 HeapWord* _data_location;
jcoomes@810 336 HeapWord* _highest_ref;
duke@435 337 #endif // #ifdef ASSERT
duke@435 338
duke@435 339 #ifdef ASSERT
duke@435 340 public:
jcoomes@810 341 uint _pushed; // 0 until region is pushed onto a worker's stack
duke@435 342 private:
duke@435 343 #endif
duke@435 344 };
duke@435 345
duke@435 346 public:
duke@435 347 ParallelCompactData();
duke@435 348 bool initialize(MemRegion covered_region);
duke@435 349
jcoomes@810 350 size_t region_count() const { return _region_count; }
duke@435 351
jcoomes@810 352 // Convert region indices to/from RegionData pointers.
jcoomes@810 353 inline RegionData* region(size_t region_idx) const;
jcoomes@810 354 inline size_t region(const RegionData* const region_ptr) const;
duke@435 355
jcoomes@810 356 // Returns true if the given address is contained within the region
jcoomes@810 357 bool region_contains(size_t region_index, HeapWord* addr);
duke@435 358
duke@435 359 void add_obj(HeapWord* addr, size_t len);
duke@435 360 void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
duke@435 361
jcoomes@810 362 // Fill in the regions covering [beg, end) so that no data moves; i.e., the
jcoomes@810 363 // destination of region n is simply the start of region n. The argument beg
jcoomes@810 364 // must be region-aligned; end need not be.
duke@435 365 void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
duke@435 366
jcoomes@917 367 HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
jcoomes@917 368 HeapWord* destination, HeapWord* target_end,
jcoomes@917 369 HeapWord** target_next);
jcoomes@917 370 bool summarize(SplitInfo& split_info,
duke@435 371 HeapWord* source_beg, HeapWord* source_end,
jcoomes@917 372 HeapWord** source_next,
jcoomes@917 373 HeapWord* target_beg, HeapWord* target_end,
jcoomes@917 374 HeapWord** target_next);
duke@435 375
duke@435 376 void clear();
jcoomes@810 377 void clear_range(size_t beg_region, size_t end_region);
duke@435 378 void clear_range(HeapWord* beg, HeapWord* end) {
jcoomes@810 379 clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
duke@435 380 }
duke@435 381
jcoomes@810 382 // Return the number of words between addr and the start of the region
duke@435 383 // containing addr.
jcoomes@810 384 inline size_t region_offset(const HeapWord* addr) const;
duke@435 385
jcoomes@810 386 // Convert addresses to/from a region index or region pointer.
jcoomes@810 387 inline size_t addr_to_region_idx(const HeapWord* addr) const;
jcoomes@810 388 inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
jcoomes@810 389 inline HeapWord* region_to_addr(size_t region) const;
jcoomes@810 390 inline HeapWord* region_to_addr(size_t region, size_t offset) const;
jcoomes@810 391 inline HeapWord* region_to_addr(const RegionData* region) const;
duke@435 392
jcoomes@810 393 inline HeapWord* region_align_down(HeapWord* addr) const;
jcoomes@810 394 inline HeapWord* region_align_up(HeapWord* addr) const;
jcoomes@810 395 inline bool is_region_aligned(HeapWord* addr) const;
duke@435 396
duke@435 397 // Return the address one past the end of the partial object.
jcoomes@810 398 HeapWord* partial_obj_end(size_t region_idx) const;
duke@435 399
duke@435 400 // Return the new location of the object p after the
duke@435 401 // the compaction.
duke@435 402 HeapWord* calc_new_pointer(HeapWord* addr);
duke@435 403
duke@435 404 HeapWord* calc_new_pointer(oop p) {
duke@435 405 return calc_new_pointer((HeapWord*) p);
duke@435 406 }
duke@435 407
duke@435 408 // Return the updated address for the given klass
duke@435 409 klassOop calc_new_klass(klassOop);
duke@435 410
duke@435 411 #ifdef ASSERT
duke@435 412 void verify_clear(const PSVirtualSpace* vspace);
duke@435 413 void verify_clear();
duke@435 414 #endif // #ifdef ASSERT
duke@435 415
duke@435 416 private:
jcoomes@810 417 bool initialize_region_data(size_t region_size);
duke@435 418 PSVirtualSpace* create_vspace(size_t count, size_t element_size);
duke@435 419
duke@435 420 private:
duke@435 421 HeapWord* _region_start;
duke@435 422 #ifdef ASSERT
duke@435 423 HeapWord* _region_end;
duke@435 424 #endif // #ifdef ASSERT
duke@435 425
jcoomes@810 426 PSVirtualSpace* _region_vspace;
jcoomes@810 427 RegionData* _region_data;
jcoomes@810 428 size_t _region_count;
duke@435 429 };
duke@435 430
duke@435 431 inline uint
jcoomes@810 432 ParallelCompactData::RegionData::destination_count_raw() const
duke@435 433 {
duke@435 434 return _dc_and_los & dc_mask;
duke@435 435 }
duke@435 436
duke@435 437 inline uint
jcoomes@810 438 ParallelCompactData::RegionData::destination_count() const
duke@435 439 {
duke@435 440 return destination_count_raw() >> dc_shift;
duke@435 441 }
duke@435 442
duke@435 443 inline void
jcoomes@810 444 ParallelCompactData::RegionData::set_destination_count(uint count)
duke@435 445 {
duke@435 446 assert(count <= (dc_completed >> dc_shift), "count too large");
jcoomes@810 447 const region_sz_t live_sz = (region_sz_t) live_obj_size();
duke@435 448 _dc_and_los = (count << dc_shift) | live_sz;
duke@435 449 }
duke@435 450
jcoomes@810 451 inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
duke@435 452 {
duke@435 453 assert(words <= los_mask, "would overflow");
jcoomes@810 454 _dc_and_los = destination_count_raw() | (region_sz_t)words;
duke@435 455 }
duke@435 456
jcoomes@810 457 inline void ParallelCompactData::RegionData::decrement_destination_count()
duke@435 458 {
duke@435 459 assert(_dc_and_los < dc_claimed, "already claimed");
duke@435 460 assert(_dc_and_los >= dc_one, "count would go negative");
duke@435 461 Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
duke@435 462 }
duke@435 463
jcoomes@810 464 inline HeapWord* ParallelCompactData::RegionData::data_location() const
duke@435 465 {
duke@435 466 DEBUG_ONLY(return _data_location;)
duke@435 467 NOT_DEBUG(return NULL;)
duke@435 468 }
duke@435 469
jcoomes@810 470 inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
duke@435 471 {
duke@435 472 DEBUG_ONLY(return _highest_ref;)
duke@435 473 NOT_DEBUG(return NULL;)
duke@435 474 }
duke@435 475
jcoomes@810 476 inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
duke@435 477 {
duke@435 478 DEBUG_ONLY(_data_location = addr;)
duke@435 479 }
duke@435 480
jcoomes@810 481 inline void ParallelCompactData::RegionData::set_completed()
duke@435 482 {
duke@435 483 assert(claimed(), "must be claimed first");
jcoomes@810 484 _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
duke@435 485 }
duke@435 486
jcoomes@810 487 // MT-unsafe claiming of a region. Should only be used during single threaded
duke@435 488 // execution.
jcoomes@810 489 inline bool ParallelCompactData::RegionData::claim_unsafe()
duke@435 490 {
duke@435 491 if (available()) {
duke@435 492 _dc_and_los |= dc_claimed;
duke@435 493 return true;
duke@435 494 }
duke@435 495 return false;
duke@435 496 }
duke@435 497
jcoomes@810 498 inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
duke@435 499 {
duke@435 500 assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
duke@435 501 Atomic::add((int) words, (volatile int*) &_dc_and_los);
duke@435 502 }
duke@435 503
jcoomes@810 504 inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
duke@435 505 {
duke@435 506 #ifdef ASSERT
duke@435 507 HeapWord* tmp = _highest_ref;
duke@435 508 while (addr > tmp) {
duke@435 509 tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
duke@435 510 }
duke@435 511 #endif // #ifdef ASSERT
duke@435 512 }
duke@435 513
jcoomes@810 514 inline bool ParallelCompactData::RegionData::claim()
duke@435 515 {
duke@435 516 const int los = (int) live_obj_size();
duke@435 517 const int old = Atomic::cmpxchg(dc_claimed | los,
duke@435 518 (volatile int*) &_dc_and_los, los);
duke@435 519 return old == los;
duke@435 520 }
duke@435 521
jcoomes@810 522 inline ParallelCompactData::RegionData*
jcoomes@810 523 ParallelCompactData::region(size_t region_idx) const
duke@435 524 {
jcoomes@810 525 assert(region_idx <= region_count(), "bad arg");
jcoomes@810 526 return _region_data + region_idx;
duke@435 527 }
duke@435 528
duke@435 529 inline size_t
jcoomes@810 530 ParallelCompactData::region(const RegionData* const region_ptr) const
duke@435 531 {
jcoomes@810 532 assert(region_ptr >= _region_data, "bad arg");
jcoomes@810 533 assert(region_ptr <= _region_data + region_count(), "bad arg");
jcoomes@810 534 return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
duke@435 535 }
duke@435 536
duke@435 537 inline size_t
jcoomes@810 538 ParallelCompactData::region_offset(const HeapWord* addr) const
duke@435 539 {
duke@435 540 assert(addr >= _region_start, "bad addr");
duke@435 541 assert(addr <= _region_end, "bad addr");
jcoomes@810 542 return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
duke@435 543 }
duke@435 544
duke@435 545 inline size_t
jcoomes@810 546 ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
duke@435 547 {
duke@435 548 assert(addr >= _region_start, "bad addr");
duke@435 549 assert(addr <= _region_end, "bad addr");
jcoomes@810 550 return pointer_delta(addr, _region_start) >> Log2RegionSize;
duke@435 551 }
duke@435 552
jcoomes@810 553 inline ParallelCompactData::RegionData*
jcoomes@810 554 ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
duke@435 555 {
jcoomes@810 556 return region(addr_to_region_idx(addr));
duke@435 557 }
duke@435 558
duke@435 559 inline HeapWord*
jcoomes@810 560 ParallelCompactData::region_to_addr(size_t region) const
duke@435 561 {
jcoomes@810 562 assert(region <= _region_count, "region out of range");
jcoomes@810 563 return _region_start + (region << Log2RegionSize);
duke@435 564 }
duke@435 565
duke@435 566 inline HeapWord*
jcoomes@810 567 ParallelCompactData::region_to_addr(const RegionData* region) const
duke@435 568 {
jcoomes@810 569 return region_to_addr(pointer_delta(region, _region_data,
jcoomes@810 570 sizeof(RegionData)));
duke@435 571 }
duke@435 572
duke@435 573 inline HeapWord*
jcoomes@810 574 ParallelCompactData::region_to_addr(size_t region, size_t offset) const
duke@435 575 {
jcoomes@810 576 assert(region <= _region_count, "region out of range");
jcoomes@810 577 assert(offset < RegionSize, "offset too big"); // This may be too strict.
jcoomes@810 578 return region_to_addr(region) + offset;
duke@435 579 }
duke@435 580
duke@435 581 inline HeapWord*
jcoomes@810 582 ParallelCompactData::region_align_down(HeapWord* addr) const
duke@435 583 {
duke@435 584 assert(addr >= _region_start, "bad addr");
jcoomes@810 585 assert(addr < _region_end + RegionSize, "bad addr");
jcoomes@810 586 return (HeapWord*)(size_t(addr) & RegionAddrMask);
duke@435 587 }
duke@435 588
duke@435 589 inline HeapWord*
jcoomes@810 590 ParallelCompactData::region_align_up(HeapWord* addr) const
duke@435 591 {
duke@435 592 assert(addr >= _region_start, "bad addr");
duke@435 593 assert(addr <= _region_end, "bad addr");
jcoomes@810 594 return region_align_down(addr + RegionSizeOffsetMask);
duke@435 595 }
duke@435 596
duke@435 597 inline bool
jcoomes@810 598 ParallelCompactData::is_region_aligned(HeapWord* addr) const
duke@435 599 {
jcoomes@810 600 return region_offset(addr) == 0;
duke@435 601 }
duke@435 602
duke@435 603 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
duke@435 604 // do_addr() method.
duke@435 605 //
duke@435 606 // The closure is initialized with the number of heap words to process
duke@435 607 // (words_remaining()), and becomes 'full' when it reaches 0. The do_addr()
duke@435 608 // methods in subclasses should update the total as words are processed. Since
duke@435 609 // only one subclass actually uses this mechanism to terminate iteration, the
duke@435 610 // default initial value is > 0. The implementation is here and not in the
duke@435 611 // single subclass that uses it to avoid making is_full() virtual, and thus
duke@435 612 // adding a virtual call per live object.
duke@435 613
duke@435 614 class ParMarkBitMapClosure: public StackObj {
duke@435 615 public:
duke@435 616 typedef ParMarkBitMap::idx_t idx_t;
duke@435 617 typedef ParMarkBitMap::IterationStatus IterationStatus;
duke@435 618
duke@435 619 public:
duke@435 620 inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
duke@435 621 size_t words = max_uintx);
duke@435 622
duke@435 623 inline ParCompactionManager* compaction_manager() const;
duke@435 624 inline ParMarkBitMap* bitmap() const;
duke@435 625 inline size_t words_remaining() const;
duke@435 626 inline bool is_full() const;
duke@435 627 inline HeapWord* source() const;
duke@435 628
duke@435 629 inline void set_source(HeapWord* addr);
duke@435 630
duke@435 631 virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
duke@435 632
duke@435 633 protected:
duke@435 634 inline void decrement_words_remaining(size_t words);
duke@435 635
duke@435 636 private:
duke@435 637 ParMarkBitMap* const _bitmap;
duke@435 638 ParCompactionManager* const _compaction_manager;
duke@435 639 DEBUG_ONLY(const size_t _initial_words_remaining;) // Useful in debugger.
duke@435 640 size_t _words_remaining; // Words left to copy.
duke@435 641
duke@435 642 protected:
duke@435 643 HeapWord* _source; // Next addr that would be read.
duke@435 644 };
duke@435 645
duke@435 646 inline
duke@435 647 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
duke@435 648 ParCompactionManager* cm,
duke@435 649 size_t words):
duke@435 650 _bitmap(bitmap), _compaction_manager(cm)
duke@435 651 #ifdef ASSERT
duke@435 652 , _initial_words_remaining(words)
duke@435 653 #endif
duke@435 654 {
duke@435 655 _words_remaining = words;
duke@435 656 _source = NULL;
duke@435 657 }
duke@435 658
duke@435 659 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
duke@435 660 return _compaction_manager;
duke@435 661 }
duke@435 662
duke@435 663 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
duke@435 664 return _bitmap;
duke@435 665 }
duke@435 666
duke@435 667 inline size_t ParMarkBitMapClosure::words_remaining() const {
duke@435 668 return _words_remaining;
duke@435 669 }
duke@435 670
duke@435 671 inline bool ParMarkBitMapClosure::is_full() const {
duke@435 672 return words_remaining() == 0;
duke@435 673 }
duke@435 674
duke@435 675 inline HeapWord* ParMarkBitMapClosure::source() const {
duke@435 676 return _source;
duke@435 677 }
duke@435 678
duke@435 679 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
duke@435 680 _source = addr;
duke@435 681 }
duke@435 682
duke@435 683 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
duke@435 684 assert(_words_remaining >= words, "processed too many words");
duke@435 685 _words_remaining -= words;
duke@435 686 }
duke@435 687
jcoomes@810 688 // The UseParallelOldGC collector is a stop-the-world garbage collector that
jcoomes@810 689 // does parts of the collection using parallel threads. The collection includes
jcoomes@810 690 // the tenured generation and the young generation. The permanent generation is
jcoomes@810 691 // collected at the same time as the other two generations but the permanent
jcoomes@810 692 // generation is collect by a single GC thread. The permanent generation is
jcoomes@810 693 // collected serially because of the requirement that during the processing of a
jcoomes@810 694 // klass AAA, any objects reference by AAA must already have been processed.
jcoomes@810 695 // This requirement is enforced by a left (lower address) to right (higher
jcoomes@810 696 // address) sliding compaction.
jmasa@698 697 //
jmasa@698 698 // There are four phases of the collection.
jmasa@698 699 //
jmasa@698 700 // - marking phase
jmasa@698 701 // - summary phase
jmasa@698 702 // - compacting phase
jmasa@698 703 // - clean up phase
jmasa@698 704 //
jmasa@698 705 // Roughly speaking these phases correspond, respectively, to
jmasa@698 706 // - mark all the live objects
jmasa@698 707 // - calculate the destination of each object at the end of the collection
jmasa@698 708 // - move the objects to their destination
jmasa@698 709 // - update some references and reinitialize some variables
jmasa@698 710 //
jcoomes@810 711 // These three phases are invoked in PSParallelCompact::invoke_no_policy(). The
jcoomes@810 712 // marking phase is implemented in PSParallelCompact::marking_phase() and does a
jcoomes@810 713 // complete marking of the heap. The summary phase is implemented in
jcoomes@810 714 // PSParallelCompact::summary_phase(). The move and update phase is implemented
jcoomes@810 715 // in PSParallelCompact::compact().
jmasa@698 716 //
jcoomes@810 717 // A space that is being collected is divided into regions and with each region
jcoomes@810 718 // is associated an object of type ParallelCompactData. Each region is of a
jcoomes@810 719 // fixed size and typically will contain more than 1 object and may have parts
jcoomes@810 720 // of objects at the front and back of the region.
jmasa@698 721 //
jcoomes@810 722 // region -----+---------------------+----------
jmasa@698 723 // objects covered [ AAA )[ BBB )[ CCC )[ DDD )
jmasa@698 724 //
jcoomes@810 725 // The marking phase does a complete marking of all live objects in the heap.
jcoomes@810 726 // The marking also compiles the size of the data for all live objects covered
jcoomes@810 727 // by the region. This size includes the part of any live object spanning onto
jcoomes@810 728 // the region (part of AAA if it is live) from the front, all live objects
jcoomes@810 729 // contained in the region (BBB and/or CCC if they are live), and the part of
jcoomes@810 730 // any live objects covered by the region that extends off the region (part of
jcoomes@810 731 // DDD if it is live). The marking phase uses multiple GC threads and marking
jcoomes@810 732 // is done in a bit array of type ParMarkBitMap. The marking of the bit map is
jcoomes@810 733 // done atomically as is the accumulation of the size of the live objects
jcoomes@810 734 // covered by a region.
jmasa@698 735 //
jcoomes@810 736 // The summary phase calculates the total live data to the left of each region
jcoomes@810 737 // XXX. Based on that total and the bottom of the space, it can calculate the
jcoomes@810 738 // starting location of the live data in XXX. The summary phase calculates for
jcoomes@810 739 // each region XXX quantites such as
jmasa@698 740 //
jcoomes@810 741 // - the amount of live data at the beginning of a region from an object
jcoomes@810 742 // entering the region.
jcoomes@810 743 // - the location of the first live data on the region
jcoomes@810 744 // - a count of the number of regions receiving live data from XXX.
jmasa@698 745 //
jmasa@698 746 // See ParallelCompactData for precise details. The summary phase also
jcoomes@810 747 // calculates the dense prefix for the compaction. The dense prefix is a
jcoomes@810 748 // portion at the beginning of the space that is not moved. The objects in the
jcoomes@810 749 // dense prefix do need to have their object references updated. See method
jcoomes@810 750 // summarize_dense_prefix().
jmasa@698 751 //
jmasa@698 752 // The summary phase is done using 1 GC thread.
jmasa@698 753 //
jcoomes@810 754 // The compaction phase moves objects to their new location and updates all
jcoomes@810 755 // references in the object.
jmasa@698 756 //
jcoomes@810 757 // A current exception is that objects that cross a region boundary are moved
jcoomes@810 758 // but do not have their references updated. References are not updated because
jcoomes@810 759 // it cannot easily be determined if the klass pointer KKK for the object AAA
jcoomes@810 760 // has been updated. KKK likely resides in a region to the left of the region
jcoomes@810 761 // containing AAA. These AAA's have there references updated at the end in a
jcoomes@810 762 // clean up phase. See the method PSParallelCompact::update_deferred_objects().
jcoomes@810 763 // An alternate strategy is being investigated for this deferral of updating.
jmasa@698 764 //
jcoomes@810 765 // Compaction is done on a region basis. A region that is ready to be filled is
jcoomes@810 766 // put on a ready list and GC threads take region off the list and fill them. A
jcoomes@810 767 // region is ready to be filled if it empty of live objects. Such a region may
jcoomes@810 768 // have been initially empty (only contained dead objects) or may have had all
jcoomes@810 769 // its live objects copied out already. A region that compacts into itself is
jcoomes@810 770 // also ready for filling. The ready list is initially filled with empty
jcoomes@810 771 // regions and regions compacting into themselves. There is always at least 1
jcoomes@810 772 // region that can be put on the ready list. The regions are atomically added
jcoomes@810 773 // and removed from the ready list.
jcoomes@810 774
duke@435 775 class PSParallelCompact : AllStatic {
duke@435 776 public:
duke@435 777 // Convenient access to type names.
duke@435 778 typedef ParMarkBitMap::idx_t idx_t;
jcoomes@810 779 typedef ParallelCompactData::RegionData RegionData;
duke@435 780
duke@435 781 typedef enum {
duke@435 782 perm_space_id, old_space_id, eden_space_id,
duke@435 783 from_space_id, to_space_id, last_space_id
duke@435 784 } SpaceId;
duke@435 785
duke@435 786 public:
coleenp@548 787 // Inline closure decls
duke@435 788 //
duke@435 789 class IsAliveClosure: public BoolObjectClosure {
duke@435 790 public:
coleenp@548 791 virtual void do_object(oop p);
coleenp@548 792 virtual bool do_object_b(oop p);
duke@435 793 };
duke@435 794
duke@435 795 class KeepAliveClosure: public OopClosure {
coleenp@548 796 private:
coleenp@548 797 ParCompactionManager* _compaction_manager;
coleenp@548 798 protected:
coleenp@548 799 template <class T> inline void do_oop_work(T* p);
coleenp@548 800 public:
coleenp@548 801 KeepAliveClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
coleenp@548 802 virtual void do_oop(oop* p);
coleenp@548 803 virtual void do_oop(narrowOop* p);
coleenp@548 804 };
coleenp@548 805
coleenp@548 806 // Current unused
coleenp@548 807 class FollowRootClosure: public OopsInGenClosure {
coleenp@548 808 private:
duke@435 809 ParCompactionManager* _compaction_manager;
duke@435 810 public:
coleenp@548 811 FollowRootClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
coleenp@548 812 virtual void do_oop(oop* p);
coleenp@548 813 virtual void do_oop(narrowOop* p);
jrose@1424 814 };
duke@435 815
duke@435 816 class FollowStackClosure: public VoidClosure {
coleenp@548 817 private:
duke@435 818 ParCompactionManager* _compaction_manager;
duke@435 819 public:
coleenp@548 820 FollowStackClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
coleenp@548 821 virtual void do_void();
duke@435 822 };
duke@435 823
duke@435 824 class AdjustPointerClosure: public OopsInGenClosure {
coleenp@548 825 private:
duke@435 826 bool _is_root;
duke@435 827 public:
coleenp@548 828 AdjustPointerClosure(bool is_root) : _is_root(is_root) { }
coleenp@548 829 virtual void do_oop(oop* p);
coleenp@548 830 virtual void do_oop(narrowOop* p);
jrose@1424 831 // do not walk from thread stacks to the code cache on this phase
jrose@1424 832 virtual void do_code_blob(CodeBlob* cb) const { }
duke@435 833 };
duke@435 834
duke@435 835 // Closure for verifying update of pointers. Does not
duke@435 836 // have any side effects.
duke@435 837 class VerifyUpdateClosure: public ParMarkBitMapClosure {
duke@435 838 const MutableSpace* _space; // Is this ever used?
duke@435 839
duke@435 840 public:
duke@435 841 VerifyUpdateClosure(ParCompactionManager* cm, const MutableSpace* sp) :
duke@435 842 ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm), _space(sp)
duke@435 843 { }
duke@435 844
duke@435 845 virtual IterationStatus do_addr(HeapWord* addr, size_t words);
duke@435 846
duke@435 847 const MutableSpace* space() { return _space; }
duke@435 848 };
duke@435 849
duke@435 850 // Closure for updating objects altered for debug checking
duke@435 851 class ResetObjectsClosure: public ParMarkBitMapClosure {
duke@435 852 public:
duke@435 853 ResetObjectsClosure(ParCompactionManager* cm):
duke@435 854 ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm)
duke@435 855 { }
duke@435 856
duke@435 857 virtual IterationStatus do_addr(HeapWord* addr, size_t words);
duke@435 858 };
duke@435 859
duke@435 860 friend class KeepAliveClosure;
duke@435 861 friend class FollowStackClosure;
duke@435 862 friend class AdjustPointerClosure;
duke@435 863 friend class FollowRootClosure;
duke@435 864 friend class instanceKlassKlass;
duke@435 865 friend class RefProcTaskProxy;
duke@435 866
duke@435 867 private:
duke@435 868 static elapsedTimer _accumulated_time;
duke@435 869 static unsigned int _total_invocations;
duke@435 870 static unsigned int _maximum_compaction_gc_num;
duke@435 871 static jlong _time_of_last_gc; // ms
duke@435 872 static CollectorCounters* _counters;
duke@435 873 static ParMarkBitMap _mark_bitmap;
duke@435 874 static ParallelCompactData _summary_data;
duke@435 875 static IsAliveClosure _is_alive_closure;
duke@435 876 static SpaceInfo _space_info[last_space_id];
duke@435 877 static bool _print_phases;
duke@435 878 static AdjustPointerClosure _adjust_root_pointer_closure;
duke@435 879 static AdjustPointerClosure _adjust_pointer_closure;
duke@435 880
duke@435 881 // Reference processing (used in ...follow_contents)
duke@435 882 static ReferenceProcessor* _ref_processor;
duke@435 883
duke@435 884 // Updated location of intArrayKlassObj.
duke@435 885 static klassOop _updated_int_array_klass_obj;
duke@435 886
duke@435 887 // Values computed at initialization and used by dead_wood_limiter().
duke@435 888 static double _dwl_mean;
duke@435 889 static double _dwl_std_dev;
duke@435 890 static double _dwl_first_term;
duke@435 891 static double _dwl_adjustment;
duke@435 892 #ifdef ASSERT
duke@435 893 static bool _dwl_initialized;
duke@435 894 #endif // #ifdef ASSERT
duke@435 895
duke@435 896 private:
duke@435 897 // Closure accessors
coleenp@548 898 static OopClosure* adjust_pointer_closure() { return (OopClosure*)&_adjust_pointer_closure; }
duke@435 899 static OopClosure* adjust_root_pointer_closure() { return (OopClosure*)&_adjust_root_pointer_closure; }
coleenp@548 900 static BoolObjectClosure* is_alive_closure() { return (BoolObjectClosure*)&_is_alive_closure; }
duke@435 901
duke@435 902 static void initialize_space_info();
duke@435 903
duke@435 904 // Return true if details about individual phases should be printed.
duke@435 905 static inline bool print_phases();
duke@435 906
duke@435 907 // Clear the marking bitmap and summary data that cover the specified space.
duke@435 908 static void clear_data_covering_space(SpaceId id);
duke@435 909
duke@435 910 static void pre_compact(PreGCValues* pre_gc_values);
duke@435 911 static void post_compact();
duke@435 912
duke@435 913 // Mark live objects
duke@435 914 static void marking_phase(ParCompactionManager* cm,
duke@435 915 bool maximum_heap_compaction);
ysr@1376 916 static void follow_weak_klass_links();
ysr@1376 917 static void follow_mdo_weak_refs();
duke@435 918
coleenp@548 919 template <class T> static inline void adjust_pointer(T* p, bool is_root);
duke@435 920 static void adjust_root_pointer(oop* p) { adjust_pointer(p, true); }
duke@435 921
coleenp@548 922 template <class T>
coleenp@548 923 static inline void follow_root(ParCompactionManager* cm, T* p);
duke@435 924
duke@435 925 // Compute the dense prefix for the designated space. This is an experimental
duke@435 926 // implementation currently not used in production.
duke@435 927 static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
duke@435 928 bool maximum_compaction);
duke@435 929
duke@435 930 // Methods used to compute the dense prefix.
duke@435 931
duke@435 932 // Compute the value of the normal distribution at x = density. The mean and
duke@435 933 // standard deviation are values saved by initialize_dead_wood_limiter().
duke@435 934 static inline double normal_distribution(double density);
duke@435 935
duke@435 936 // Initialize the static vars used by dead_wood_limiter().
duke@435 937 static void initialize_dead_wood_limiter();
duke@435 938
duke@435 939 // Return the percentage of space that can be treated as "dead wood" (i.e.,
duke@435 940 // not reclaimed).
duke@435 941 static double dead_wood_limiter(double density, size_t min_percent);
duke@435 942
jcoomes@810 943 // Find the first (left-most) region in the range [beg, end) that has at least
duke@435 944 // dead_words of dead space to the left. The argument beg must be the first
jcoomes@810 945 // region in the space that is not completely live.
jcoomes@810 946 static RegionData* dead_wood_limit_region(const RegionData* beg,
jcoomes@810 947 const RegionData* end,
jcoomes@810 948 size_t dead_words);
duke@435 949
jcoomes@810 950 // Return a pointer to the first region in the range [beg, end) that is not
duke@435 951 // completely full.
jcoomes@810 952 static RegionData* first_dead_space_region(const RegionData* beg,
jcoomes@810 953 const RegionData* end);
duke@435 954
duke@435 955 // Return a value indicating the benefit or 'yield' if the compacted region
duke@435 956 // were to start (or equivalently if the dense prefix were to end) at the
jcoomes@810 957 // candidate region. Higher values are better.
duke@435 958 //
duke@435 959 // The value is based on the amount of space reclaimed vs. the costs of (a)
duke@435 960 // updating references in the dense prefix plus (b) copying objects and
duke@435 961 // updating references in the compacted region.
jcoomes@810 962 static inline double reclaimed_ratio(const RegionData* const candidate,
duke@435 963 HeapWord* const bottom,
duke@435 964 HeapWord* const top,
duke@435 965 HeapWord* const new_top);
duke@435 966
duke@435 967 // Compute the dense prefix for the designated space.
duke@435 968 static HeapWord* compute_dense_prefix(const SpaceId id,
duke@435 969 bool maximum_compaction);
duke@435 970
jcoomes@810 971 // Return true if dead space crosses onto the specified Region; bit must be
jcoomes@810 972 // the bit index corresponding to the first word of the Region.
jcoomes@810 973 static inline bool dead_space_crosses_boundary(const RegionData* region,
duke@435 974 idx_t bit);
duke@435 975
duke@435 976 // Summary phase utility routine to fill dead space (if any) at the dense
duke@435 977 // prefix boundary. Should only be called if the the dense prefix is
duke@435 978 // non-empty.
duke@435 979 static void fill_dense_prefix_end(SpaceId id);
duke@435 980
jcoomes@917 981 // Clear the summary data source_region field for the specified addresses.
jcoomes@917 982 static void clear_source_region(HeapWord* beg_addr, HeapWord* end_addr);
jcoomes@917 983
jcoomes@918 984 #ifndef PRODUCT
jcoomes@918 985 // Routines to provoke splitting a young gen space (ParallelOldGCSplitALot).
jcoomes@918 986
jcoomes@918 987 // Fill the region [start, start + words) with live object(s). Only usable
jcoomes@918 988 // for the old and permanent generations.
jcoomes@918 989 static void fill_with_live_objects(SpaceId id, HeapWord* const start,
jcoomes@918 990 size_t words);
jcoomes@918 991 // Include the new objects in the summary data.
jcoomes@918 992 static void summarize_new_objects(SpaceId id, HeapWord* start);
jcoomes@918 993
jcoomes@931 994 // Add live objects to a survivor space since it's rare that both survivors
jcoomes@931 995 // are non-empty.
jcoomes@931 996 static void provoke_split_fill_survivor(SpaceId id);
jcoomes@931 997
jcoomes@918 998 // Add live objects and/or choose the dense prefix to provoke splitting.
jcoomes@918 999 static void provoke_split(bool & maximum_compaction);
jcoomes@918 1000 #endif
jcoomes@918 1001
duke@435 1002 static void summarize_spaces_quick();
duke@435 1003 static void summarize_space(SpaceId id, bool maximum_compaction);
duke@435 1004 static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
duke@435 1005
duke@435 1006 // Adjust addresses in roots. Does not adjust addresses in heap.
duke@435 1007 static void adjust_roots();
duke@435 1008
duke@435 1009 // Serial code executed in preparation for the compaction phase.
duke@435 1010 static void compact_prologue();
duke@435 1011
duke@435 1012 // Move objects to new locations.
duke@435 1013 static void compact_perm(ParCompactionManager* cm);
duke@435 1014 static void compact();
duke@435 1015
jcoomes@810 1016 // Add available regions to the stack and draining tasks to the task queue.
jcoomes@810 1017 static void enqueue_region_draining_tasks(GCTaskQueue* q,
jcoomes@810 1018 uint parallel_gc_threads);
duke@435 1019
duke@435 1020 // Add dense prefix update tasks to the task queue.
duke@435 1021 static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
duke@435 1022 uint parallel_gc_threads);
duke@435 1023
jcoomes@810 1024 // Add region stealing tasks to the task queue.
jcoomes@810 1025 static void enqueue_region_stealing_tasks(
duke@435 1026 GCTaskQueue* q,
duke@435 1027 ParallelTaskTerminator* terminator_ptr,
duke@435 1028 uint parallel_gc_threads);
duke@435 1029
duke@435 1030 // For debugging only - compacts the old gen serially
duke@435 1031 static void compact_serial(ParCompactionManager* cm);
duke@435 1032
duke@435 1033 // If objects are left in eden after a collection, try to move the boundary
duke@435 1034 // and absorb them into the old gen. Returns true if eden was emptied.
duke@435 1035 static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
duke@435 1036 PSYoungGen* young_gen,
duke@435 1037 PSOldGen* old_gen);
duke@435 1038
duke@435 1039 // Reset time since last full gc
duke@435 1040 static void reset_millis_since_last_gc();
duke@435 1041
duke@435 1042 protected:
duke@435 1043 #ifdef VALIDATE_MARK_SWEEP
coleenp@548 1044 static GrowableArray<void*>* _root_refs_stack;
duke@435 1045 static GrowableArray<oop> * _live_oops;
duke@435 1046 static GrowableArray<oop> * _live_oops_moved_to;
duke@435 1047 static GrowableArray<size_t>* _live_oops_size;
duke@435 1048 static size_t _live_oops_index;
duke@435 1049 static size_t _live_oops_index_at_perm;
coleenp@548 1050 static GrowableArray<void*>* _other_refs_stack;
coleenp@548 1051 static GrowableArray<void*>* _adjusted_pointers;
duke@435 1052 static bool _pointer_tracking;
duke@435 1053 static bool _root_tracking;
duke@435 1054
duke@435 1055 // The following arrays are saved since the time of the last GC and
duke@435 1056 // assist in tracking down problems where someone has done an errant
duke@435 1057 // store into the heap, usually to an oop that wasn't properly
duke@435 1058 // handleized across a GC. If we crash or otherwise fail before the
duke@435 1059 // next GC, we can query these arrays to find out the object we had
duke@435 1060 // intended to do the store to (assuming it is still alive) and the
duke@435 1061 // offset within that object. Covered under RecordMarkSweepCompaction.
duke@435 1062 static GrowableArray<HeapWord*> * _cur_gc_live_oops;
duke@435 1063 static GrowableArray<HeapWord*> * _cur_gc_live_oops_moved_to;
duke@435 1064 static GrowableArray<size_t>* _cur_gc_live_oops_size;
duke@435 1065 static GrowableArray<HeapWord*> * _last_gc_live_oops;
duke@435 1066 static GrowableArray<HeapWord*> * _last_gc_live_oops_moved_to;
duke@435 1067 static GrowableArray<size_t>* _last_gc_live_oops_size;
duke@435 1068 #endif
duke@435 1069
duke@435 1070 public:
duke@435 1071 class MarkAndPushClosure: public OopClosure {
coleenp@548 1072 private:
duke@435 1073 ParCompactionManager* _compaction_manager;
duke@435 1074 public:
coleenp@548 1075 MarkAndPushClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
coleenp@548 1076 virtual void do_oop(oop* p);
coleenp@548 1077 virtual void do_oop(narrowOop* p);
duke@435 1078 };
duke@435 1079
duke@435 1080 PSParallelCompact();
duke@435 1081
duke@435 1082 // Convenient accessor for Universe::heap().
duke@435 1083 static ParallelScavengeHeap* gc_heap() {
duke@435 1084 return (ParallelScavengeHeap*)Universe::heap();
duke@435 1085 }
duke@435 1086
duke@435 1087 static void invoke(bool maximum_heap_compaction);
duke@435 1088 static void invoke_no_policy(bool maximum_heap_compaction);
duke@435 1089
duke@435 1090 static void post_initialize();
duke@435 1091 // Perform initialization for PSParallelCompact that requires
duke@435 1092 // allocations. This should be called during the VM initialization
duke@435 1093 // at a pointer where it would be appropriate to return a JNI_ENOMEM
duke@435 1094 // in the event of a failure.
duke@435 1095 static bool initialize();
duke@435 1096
duke@435 1097 // Public accessors
duke@435 1098 static elapsedTimer* accumulated_time() { return &_accumulated_time; }
duke@435 1099 static unsigned int total_invocations() { return _total_invocations; }
duke@435 1100 static CollectorCounters* counters() { return _counters; }
duke@435 1101
duke@435 1102 // Used to add tasks
duke@435 1103 static GCTaskManager* const gc_task_manager();
duke@435 1104 static klassOop updated_int_array_klass_obj() {
duke@435 1105 return _updated_int_array_klass_obj;
duke@435 1106 }
duke@435 1107
duke@435 1108 // Marking support
duke@435 1109 static inline bool mark_obj(oop obj);
coleenp@548 1110 // Check mark and maybe push on marking stack
coleenp@548 1111 template <class T> static inline void mark_and_push(ParCompactionManager* cm,
coleenp@548 1112 T* p);
duke@435 1113
duke@435 1114 // Compaction support.
duke@435 1115 // Return true if p is in the range [beg_addr, end_addr).
duke@435 1116 static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
duke@435 1117 static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
duke@435 1118
duke@435 1119 // Convenience wrappers for per-space data kept in _space_info.
duke@435 1120 static inline MutableSpace* space(SpaceId space_id);
duke@435 1121 static inline HeapWord* new_top(SpaceId space_id);
duke@435 1122 static inline HeapWord* dense_prefix(SpaceId space_id);
duke@435 1123 static inline ObjectStartArray* start_array(SpaceId space_id);
duke@435 1124
duke@435 1125 // Return true if the klass should be updated.
duke@435 1126 static inline bool should_update_klass(klassOop k);
duke@435 1127
duke@435 1128 // Move and update the live objects in the specified space.
duke@435 1129 static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
duke@435 1130
jcoomes@810 1131 // Process the end of the given region range in the dense prefix.
duke@435 1132 // This includes saving any object not updated.
jcoomes@810 1133 static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
jcoomes@810 1134 size_t region_start_index,
jcoomes@810 1135 size_t region_end_index,
jcoomes@810 1136 idx_t exiting_object_offset,
jcoomes@810 1137 idx_t region_offset_start,
jcoomes@810 1138 idx_t region_offset_end);
duke@435 1139
jcoomes@810 1140 // Update a region in the dense prefix. For each live object
jcoomes@810 1141 // in the region, update it's interior references. For each
duke@435 1142 // dead object, fill it with deadwood. Dead space at the end
jcoomes@810 1143 // of a region range will be filled to the start of the next
jcoomes@810 1144 // live object regardless of the region_index_end. None of the
duke@435 1145 // objects in the dense prefix move and dead space is dead
duke@435 1146 // (holds only dead objects that don't need any processing), so
duke@435 1147 // dead space can be filled in any order.
duke@435 1148 static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
duke@435 1149 SpaceId space_id,
jcoomes@810 1150 size_t region_index_start,
jcoomes@810 1151 size_t region_index_end);
duke@435 1152
duke@435 1153 // Return the address of the count + 1st live word in the range [beg, end).
duke@435 1154 static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
duke@435 1155
duke@435 1156 // Return the address of the word to be copied to dest_addr, which must be
jcoomes@810 1157 // aligned to a region boundary.
duke@435 1158 static HeapWord* first_src_addr(HeapWord* const dest_addr,
jcoomes@917 1159 SpaceId src_space_id,
jcoomes@810 1160 size_t src_region_idx);
duke@435 1161
jcoomes@810 1162 // Determine the next source region, set closure.source() to the start of the
jcoomes@810 1163 // new region return the region index. Parameter end_addr is the address one
duke@435 1164 // beyond the end of source range just processed. If necessary, switch to a
duke@435 1165 // new source space and set src_space_id (in-out parameter) and src_space_top
duke@435 1166 // (out parameter) accordingly.
jcoomes@810 1167 static size_t next_src_region(MoveAndUpdateClosure& closure,
jcoomes@810 1168 SpaceId& src_space_id,
jcoomes@810 1169 HeapWord*& src_space_top,
jcoomes@810 1170 HeapWord* end_addr);
duke@435 1171
jcoomes@810 1172 // Decrement the destination count for each non-empty source region in the
jcoomes@930 1173 // range [beg_region, region(region_align_up(end_addr))). If the destination
jcoomes@930 1174 // count for a region goes to 0 and it needs to be filled, enqueue it.
duke@435 1175 static void decrement_destination_counts(ParCompactionManager* cm,
jcoomes@930 1176 SpaceId src_space_id,
jcoomes@810 1177 size_t beg_region,
duke@435 1178 HeapWord* end_addr);
duke@435 1179
jcoomes@810 1180 // Fill a region, copying objects from one or more source regions.
jcoomes@810 1181 static void fill_region(ParCompactionManager* cm, size_t region_idx);
jcoomes@810 1182 static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
jcoomes@810 1183 fill_region(cm, region);
duke@435 1184 }
duke@435 1185
duke@435 1186 // Update the deferred objects in the space.
duke@435 1187 static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
duke@435 1188
duke@435 1189 // Mark pointer and follow contents.
coleenp@548 1190 template <class T>
coleenp@548 1191 static inline void mark_and_follow(ParCompactionManager* cm, T* p);
duke@435 1192
duke@435 1193 static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
duke@435 1194 static ParallelCompactData& summary_data() { return _summary_data; }
duke@435 1195
coleenp@548 1196 static inline void adjust_pointer(oop* p) { adjust_pointer(p, false); }
coleenp@548 1197 static inline void adjust_pointer(narrowOop* p) { adjust_pointer(p, false); }
coleenp@548 1198
duke@435 1199 // Reference Processing
duke@435 1200 static ReferenceProcessor* const ref_processor() { return _ref_processor; }
duke@435 1201
duke@435 1202 // Return the SpaceId for the given address.
duke@435 1203 static SpaceId space_id(HeapWord* addr);
duke@435 1204
duke@435 1205 // Time since last full gc (in milliseconds).
duke@435 1206 static jlong millis_since_last_gc();
duke@435 1207
duke@435 1208 #ifdef VALIDATE_MARK_SWEEP
coleenp@548 1209 static void track_adjusted_pointer(void* p, bool isroot);
coleenp@548 1210 static void check_adjust_pointer(void* p);
duke@435 1211 static void track_interior_pointers(oop obj);
duke@435 1212 static void check_interior_pointers();
duke@435 1213
duke@435 1214 static void reset_live_oop_tracking(bool at_perm);
duke@435 1215 static void register_live_oop(oop p, size_t size);
duke@435 1216 static void validate_live_oop(oop p, size_t size);
duke@435 1217 static void live_oop_moved_to(HeapWord* q, size_t size, HeapWord* compaction_top);
duke@435 1218 static void compaction_complete();
duke@435 1219
duke@435 1220 // Querying operation of RecordMarkSweepCompaction results.
duke@435 1221 // Finds and prints the current base oop and offset for a word
duke@435 1222 // within an oop that was live during the last GC. Helpful for
duke@435 1223 // tracking down heap stomps.
duke@435 1224 static void print_new_location_of_heap_address(HeapWord* q);
duke@435 1225 #endif // #ifdef VALIDATE_MARK_SWEEP
duke@435 1226
duke@435 1227 // Call backs for class unloading
duke@435 1228 // Update subklass/sibling/implementor links at end of marking.
duke@435 1229 static void revisit_weak_klass_link(ParCompactionManager* cm, Klass* k);
duke@435 1230
ysr@1376 1231 // Clear unmarked oops in MDOs at the end of marking.
ysr@1376 1232 static void revisit_mdo(ParCompactionManager* cm, DataLayout* p);
ysr@1376 1233
duke@435 1234 #ifndef PRODUCT
duke@435 1235 // Debugging support.
duke@435 1236 static const char* space_names[last_space_id];
jcoomes@810 1237 static void print_region_ranges();
duke@435 1238 static void print_dense_prefix_stats(const char* const algorithm,
duke@435 1239 const SpaceId id,
duke@435 1240 const bool maximum_compaction,
duke@435 1241 HeapWord* const addr);
jcoomes@917 1242 static void summary_phase_msg(SpaceId dst_space_id,
jcoomes@917 1243 HeapWord* dst_beg, HeapWord* dst_end,
jcoomes@917 1244 SpaceId src_space_id,
jcoomes@917 1245 HeapWord* src_beg, HeapWord* src_end);
duke@435 1246 #endif // #ifndef PRODUCT
duke@435 1247
duke@435 1248 #ifdef ASSERT
jcoomes@930 1249 // Sanity check the new location of a word in the heap.
jcoomes@930 1250 static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
jcoomes@810 1251 // Verify that all the regions have been emptied.
duke@435 1252 static void verify_complete(SpaceId space_id);
duke@435 1253 #endif // #ifdef ASSERT
duke@435 1254 };
duke@435 1255
coleenp@548 1256 inline bool PSParallelCompact::mark_obj(oop obj) {
duke@435 1257 const int obj_size = obj->size();
duke@435 1258 if (mark_bitmap()->mark_obj(obj, obj_size)) {
duke@435 1259 _summary_data.add_obj(obj, obj_size);
duke@435 1260 return true;
duke@435 1261 } else {
duke@435 1262 return false;
duke@435 1263 }
duke@435 1264 }
duke@435 1265
coleenp@548 1266 template <class T>
coleenp@548 1267 inline void PSParallelCompact::follow_root(ParCompactionManager* cm, T* p) {
coleenp@548 1268 assert(!Universe::heap()->is_in_reserved(p),
coleenp@548 1269 "roots shouldn't be things within the heap");
coleenp@548 1270 #ifdef VALIDATE_MARK_SWEEP
coleenp@548 1271 if (ValidateMarkSweep) {
coleenp@548 1272 guarantee(!_root_refs_stack->contains(p), "should only be in here once");
coleenp@548 1273 _root_refs_stack->push(p);
coleenp@548 1274 }
coleenp@548 1275 #endif
coleenp@548 1276 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 1277 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 1278 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
coleenp@548 1279 if (mark_bitmap()->is_unmarked(obj)) {
coleenp@548 1280 if (mark_obj(obj)) {
coleenp@548 1281 obj->follow_contents(cm);
coleenp@548 1282 }
coleenp@548 1283 }
coleenp@548 1284 }
jcoomes@1746 1285 cm->follow_marking_stacks();
coleenp@548 1286 }
coleenp@548 1287
coleenp@548 1288 template <class T>
coleenp@548 1289 inline void PSParallelCompact::mark_and_follow(ParCompactionManager* cm,
coleenp@548 1290 T* p) {
coleenp@548 1291 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 1292 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 1293 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
coleenp@548 1294 if (mark_bitmap()->is_unmarked(obj)) {
coleenp@548 1295 if (mark_obj(obj)) {
coleenp@548 1296 obj->follow_contents(cm);
coleenp@548 1297 }
coleenp@548 1298 }
coleenp@548 1299 }
coleenp@548 1300 }
coleenp@548 1301
coleenp@548 1302 template <class T>
coleenp@548 1303 inline void PSParallelCompact::mark_and_push(ParCompactionManager* cm, T* p) {
coleenp@548 1304 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 1305 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 1306 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
jcoomes@1993 1307 if (mark_bitmap()->is_unmarked(obj) && mark_obj(obj)) {
jcoomes@1993 1308 cm->push(obj);
coleenp@548 1309 }
coleenp@548 1310 }
coleenp@548 1311 }
coleenp@548 1312
coleenp@548 1313 template <class T>
coleenp@548 1314 inline void PSParallelCompact::adjust_pointer(T* p, bool isroot) {
coleenp@548 1315 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 1316 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 1317 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
coleenp@548 1318 oop new_obj = (oop)summary_data().calc_new_pointer(obj);
coleenp@548 1319 assert(new_obj != NULL || // is forwarding ptr?
coleenp@548 1320 obj->is_shared(), // never forwarded?
coleenp@548 1321 "should be forwarded");
coleenp@548 1322 // Just always do the update unconditionally?
coleenp@548 1323 if (new_obj != NULL) {
coleenp@548 1324 assert(Universe::heap()->is_in_reserved(new_obj),
coleenp@548 1325 "should be in object space");
coleenp@548 1326 oopDesc::encode_store_heap_oop_not_null(p, new_obj);
coleenp@548 1327 }
coleenp@548 1328 }
coleenp@548 1329 VALIDATE_MARK_SWEEP_ONLY(track_adjusted_pointer(p, isroot));
coleenp@548 1330 }
coleenp@548 1331
coleenp@548 1332 template <class T>
coleenp@548 1333 inline void PSParallelCompact::KeepAliveClosure::do_oop_work(T* p) {
coleenp@548 1334 #ifdef VALIDATE_MARK_SWEEP
coleenp@548 1335 if (ValidateMarkSweep) {
coleenp@548 1336 if (!Universe::heap()->is_in_reserved(p)) {
coleenp@548 1337 _root_refs_stack->push(p);
coleenp@548 1338 } else {
coleenp@548 1339 _other_refs_stack->push(p);
coleenp@548 1340 }
coleenp@548 1341 }
coleenp@548 1342 #endif
coleenp@548 1343 mark_and_push(_compaction_manager, p);
coleenp@548 1344 }
coleenp@548 1345
coleenp@548 1346 inline bool PSParallelCompact::print_phases() {
duke@435 1347 return _print_phases;
duke@435 1348 }
duke@435 1349
coleenp@548 1350 inline double PSParallelCompact::normal_distribution(double density) {
duke@435 1351 assert(_dwl_initialized, "uninitialized");
duke@435 1352 const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
duke@435 1353 return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
duke@435 1354 }
duke@435 1355
duke@435 1356 inline bool
jcoomes@810 1357 PSParallelCompact::dead_space_crosses_boundary(const RegionData* region,
duke@435 1358 idx_t bit)
duke@435 1359 {
jcoomes@810 1360 assert(bit > 0, "cannot call this for the first bit/region");
jcoomes@810 1361 assert(_summary_data.region_to_addr(region) == _mark_bitmap.bit_to_addr(bit),
duke@435 1362 "sanity check");
duke@435 1363
duke@435 1364 // Dead space crosses the boundary if (1) a partial object does not extend
jcoomes@810 1365 // onto the region, (2) an object does not start at the beginning of the
jcoomes@810 1366 // region, and (3) an object does not end at the end of the prior region.
jcoomes@810 1367 return region->partial_obj_size() == 0 &&
duke@435 1368 !_mark_bitmap.is_obj_beg(bit) &&
duke@435 1369 !_mark_bitmap.is_obj_end(bit - 1);
duke@435 1370 }
duke@435 1371
duke@435 1372 inline bool
duke@435 1373 PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
duke@435 1374 return p >= beg_addr && p < end_addr;
duke@435 1375 }
duke@435 1376
duke@435 1377 inline bool
duke@435 1378 PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
duke@435 1379 return is_in((HeapWord*)p, beg_addr, end_addr);
duke@435 1380 }
duke@435 1381
duke@435 1382 inline MutableSpace* PSParallelCompact::space(SpaceId id) {
duke@435 1383 assert(id < last_space_id, "id out of range");
duke@435 1384 return _space_info[id].space();
duke@435 1385 }
duke@435 1386
duke@435 1387 inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
duke@435 1388 assert(id < last_space_id, "id out of range");
duke@435 1389 return _space_info[id].new_top();
duke@435 1390 }
duke@435 1391
duke@435 1392 inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
duke@435 1393 assert(id < last_space_id, "id out of range");
duke@435 1394 return _space_info[id].dense_prefix();
duke@435 1395 }
duke@435 1396
duke@435 1397 inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
duke@435 1398 assert(id < last_space_id, "id out of range");
duke@435 1399 return _space_info[id].start_array();
duke@435 1400 }
duke@435 1401
duke@435 1402 inline bool PSParallelCompact::should_update_klass(klassOop k) {
duke@435 1403 return ((HeapWord*) k) >= dense_prefix(perm_space_id);
duke@435 1404 }
duke@435 1405
jcoomes@930 1406 #ifdef ASSERT
jcoomes@930 1407 inline void
jcoomes@930 1408 PSParallelCompact::check_new_location(HeapWord* old_addr, HeapWord* new_addr)
jcoomes@930 1409 {
jcoomes@930 1410 assert(old_addr >= new_addr || space_id(old_addr) != space_id(new_addr),
jcoomes@930 1411 "must move left or to a different space");
kvn@1926 1412 assert(is_object_aligned((intptr_t)old_addr) && is_object_aligned((intptr_t)new_addr),
kvn@1926 1413 "checking alignment");
jcoomes@930 1414 }
jcoomes@930 1415 #endif // ASSERT
jcoomes@930 1416
duke@435 1417 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
duke@435 1418 public:
duke@435 1419 inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
duke@435 1420 ObjectStartArray* start_array,
duke@435 1421 HeapWord* destination, size_t words);
duke@435 1422
duke@435 1423 // Accessors.
duke@435 1424 HeapWord* destination() const { return _destination; }
duke@435 1425
duke@435 1426 // If the object will fit (size <= words_remaining()), copy it to the current
duke@435 1427 // destination, update the interior oops and the start array and return either
duke@435 1428 // full (if the closure is full) or incomplete. If the object will not fit,
duke@435 1429 // return would_overflow.
duke@435 1430 virtual IterationStatus do_addr(HeapWord* addr, size_t size);
duke@435 1431
duke@435 1432 // Copy enough words to fill this closure, starting at source(). Interior
duke@435 1433 // oops and the start array are not updated. Return full.
duke@435 1434 IterationStatus copy_until_full();
duke@435 1435
duke@435 1436 // Copy enough words to fill this closure or to the end of an object,
duke@435 1437 // whichever is smaller, starting at source(). Interior oops and the start
duke@435 1438 // array are not updated.
duke@435 1439 void copy_partial_obj();
duke@435 1440
duke@435 1441 protected:
duke@435 1442 // Update variables to indicate that word_count words were processed.
duke@435 1443 inline void update_state(size_t word_count);
duke@435 1444
duke@435 1445 protected:
duke@435 1446 ObjectStartArray* const _start_array;
duke@435 1447 HeapWord* _destination; // Next addr to be written.
duke@435 1448 };
duke@435 1449
duke@435 1450 inline
duke@435 1451 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
duke@435 1452 ParCompactionManager* cm,
duke@435 1453 ObjectStartArray* start_array,
duke@435 1454 HeapWord* destination,
duke@435 1455 size_t words) :
duke@435 1456 ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
duke@435 1457 {
duke@435 1458 _destination = destination;
duke@435 1459 }
duke@435 1460
duke@435 1461 inline void MoveAndUpdateClosure::update_state(size_t words)
duke@435 1462 {
duke@435 1463 decrement_words_remaining(words);
duke@435 1464 _source += words;
duke@435 1465 _destination += words;
duke@435 1466 }
duke@435 1467
duke@435 1468 class UpdateOnlyClosure: public ParMarkBitMapClosure {
duke@435 1469 private:
duke@435 1470 const PSParallelCompact::SpaceId _space_id;
duke@435 1471 ObjectStartArray* const _start_array;
duke@435 1472
duke@435 1473 public:
duke@435 1474 UpdateOnlyClosure(ParMarkBitMap* mbm,
duke@435 1475 ParCompactionManager* cm,
duke@435 1476 PSParallelCompact::SpaceId space_id);
duke@435 1477
duke@435 1478 // Update the object.
duke@435 1479 virtual IterationStatus do_addr(HeapWord* addr, size_t words);
duke@435 1480
duke@435 1481 inline void do_addr(HeapWord* addr);
duke@435 1482 };
duke@435 1483
coleenp@548 1484 inline void UpdateOnlyClosure::do_addr(HeapWord* addr)
coleenp@548 1485 {
duke@435 1486 _start_array->allocate_block(addr);
duke@435 1487 oop(addr)->update_contents(compaction_manager());
duke@435 1488 }
duke@435 1489
jcoomes@916 1490 class FillClosure: public ParMarkBitMapClosure
jcoomes@916 1491 {
jcoomes@916 1492 public:
coleenp@548 1493 FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
duke@435 1494 ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
jcoomes@916 1495 _start_array(PSParallelCompact::start_array(space_id))
jcoomes@916 1496 {
jcoomes@916 1497 assert(space_id == PSParallelCompact::perm_space_id ||
jcoomes@916 1498 space_id == PSParallelCompact::old_space_id,
duke@435 1499 "cannot use FillClosure in the young gen");
duke@435 1500 }
duke@435 1501
duke@435 1502 virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
jcoomes@916 1503 CollectedHeap::fill_with_objects(addr, size);
jcoomes@916 1504 HeapWord* const end = addr + size;
jcoomes@916 1505 do {
jcoomes@916 1506 _start_array->allocate_block(addr);
jcoomes@916 1507 addr += oop(addr)->size();
jcoomes@916 1508 } while (addr < end);
duke@435 1509 return ParMarkBitMap::incomplete;
duke@435 1510 }
duke@435 1511
duke@435 1512 private:
jcoomes@916 1513 ObjectStartArray* const _start_array;
duke@435 1514 };
stefank@2314 1515
stefank@2314 1516 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP

mercurial