src/share/vm/memory/allocation.hpp

Thu, 05 Sep 2013 11:04:39 -0700

author
kvn
date
Thu, 05 Sep 2013 11:04:39 -0700
changeset 6462
e2722a66aba7
parent 6461
bdd155477289
parent 5577
faf2631b9334
child 6472
2b8e28fdf503
permissions
-rw-r--r--

Merge

duke@435 1 /*
minqi@5103 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_MEMORY_ALLOCATION_HPP
stefank@2314 26 #define SHARE_VM_MEMORY_ALLOCATION_HPP
stefank@2314 27
stefank@2314 28 #include "runtime/globals.hpp"
stefank@2314 29 #include "utilities/globalDefinitions.hpp"
jprovino@4165 30 #include "utilities/macros.hpp"
stefank@2314 31 #ifdef COMPILER1
stefank@2314 32 #include "c1/c1_globals.hpp"
stefank@2314 33 #endif
stefank@2314 34 #ifdef COMPILER2
stefank@2314 35 #include "opto/c2_globals.hpp"
stefank@2314 36 #endif
stefank@2314 37
zgu@2834 38 #include <new>
zgu@2834 39
duke@435 40 #define ARENA_ALIGN_M1 (((size_t)(ARENA_AMALLOC_ALIGNMENT)) - 1)
duke@435 41 #define ARENA_ALIGN_MASK (~((size_t)ARENA_ALIGN_M1))
duke@435 42 #define ARENA_ALIGN(x) ((((size_t)(x)) + ARENA_ALIGN_M1) & ARENA_ALIGN_MASK)
duke@435 43
zgu@3900 44
zgu@3900 45 // noinline attribute
zgu@3900 46 #ifdef _WINDOWS
zgu@3900 47 #define _NOINLINE_ __declspec(noinline)
zgu@3900 48 #else
zgu@3900 49 #if __GNUC__ < 3 // gcc 2.x does not support noinline attribute
zgu@3900 50 #define _NOINLINE_
zgu@3900 51 #else
zgu@3900 52 #define _NOINLINE_ __attribute__ ((noinline))
zgu@3900 53 #endif
zgu@3900 54 #endif
zgu@3900 55
nloodin@4183 56 class AllocFailStrategy {
nloodin@4183 57 public:
nloodin@4183 58 enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
nloodin@4183 59 };
nloodin@4183 60 typedef AllocFailStrategy::AllocFailEnum AllocFailType;
nloodin@4183 61
duke@435 62 // All classes in the virtual machine must be subclassed
duke@435 63 // by one of the following allocation classes:
duke@435 64 //
duke@435 65 // For objects allocated in the resource area (see resourceArea.hpp).
duke@435 66 // - ResourceObj
duke@435 67 //
duke@435 68 // For objects allocated in the C-heap (managed by: free & malloc).
duke@435 69 // - CHeapObj
duke@435 70 //
duke@435 71 // For objects allocated on the stack.
duke@435 72 // - StackObj
duke@435 73 //
duke@435 74 // For embedded objects.
duke@435 75 // - ValueObj
duke@435 76 //
duke@435 77 // For classes used as name spaces.
duke@435 78 // - AllStatic
duke@435 79 //
coleenp@4037 80 // For classes in Metaspace (class data)
coleenp@4037 81 // - MetaspaceObj
coleenp@4037 82 //
duke@435 83 // The printable subclasses are used for debugging and define virtual
duke@435 84 // member functions for printing. Classes that avoid allocating the
duke@435 85 // vtbl entries in the objects should therefore not be the printable
duke@435 86 // subclasses.
duke@435 87 //
duke@435 88 // The following macros and function should be used to allocate memory
minqi@5103 89 // directly in the resource area or in the C-heap, The _OBJ variants
minqi@5103 90 // of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
minqi@5103 91 // objects which are not inherited from CHeapObj, note constructor and
minqi@5103 92 // destructor are not called. The preferable way to allocate objects
minqi@5103 93 // is using the new operator.
duke@435 94 //
minqi@5103 95 // WARNING: The array variant must only be used for a homogenous array
minqi@5103 96 // where all objects are of the exact type specified. If subtypes are
minqi@5103 97 // stored in the array then must pay attention to calling destructors
minqi@5103 98 // at needed.
minqi@5103 99 //
minqi@5103 100 // NEW_RESOURCE_ARRAY(type, size)
duke@435 101 // NEW_RESOURCE_OBJ(type)
minqi@5103 102 // NEW_C_HEAP_ARRAY(type, size)
minqi@5103 103 // NEW_C_HEAP_OBJ(type, memflags)
minqi@5103 104 // FREE_C_HEAP_ARRAY(type, old, memflags)
minqi@5103 105 // FREE_C_HEAP_OBJ(objname, type, memflags)
duke@435 106 // char* AllocateHeap(size_t size, const char* name);
duke@435 107 // void FreeHeap(void* p);
duke@435 108 //
duke@435 109 // C-heap allocation can be traced using +PrintHeapAllocation.
duke@435 110 // malloc and free should therefore never called directly.
duke@435 111
duke@435 112 // Base class for objects allocated in the C-heap.
duke@435 113
duke@435 114 // In non product mode we introduce a super class for all allocation classes
duke@435 115 // that supports printing.
duke@435 116 // We avoid the superclass in product mode since some C++ compilers add
duke@435 117 // a word overhead for empty super classes.
duke@435 118
duke@435 119 #ifdef PRODUCT
duke@435 120 #define ALLOCATION_SUPER_CLASS_SPEC
duke@435 121 #else
duke@435 122 #define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
duke@435 123 class AllocatedObj {
duke@435 124 public:
duke@435 125 // Printing support
duke@435 126 void print() const;
duke@435 127 void print_value() const;
duke@435 128
duke@435 129 virtual void print_on(outputStream* st) const;
duke@435 130 virtual void print_value_on(outputStream* st) const;
duke@435 131 };
duke@435 132 #endif
duke@435 133
zgu@3900 134
zgu@3900 135 /*
zgu@3900 136 * MemoryType bitmap layout:
zgu@3900 137 * | 16 15 14 13 12 11 10 09 | 08 07 06 05 | 04 03 02 01 |
zgu@3900 138 * | memory type | object | reserved |
zgu@3900 139 * | | type | |
zgu@3900 140 */
zgu@3900 141 enum MemoryType {
zgu@3900 142 // Memory type by sub systems. It occupies lower byte.
zgu@3900 143 mtNone = 0x0000, // undefined
zgu@3900 144 mtClass = 0x0100, // memory class for Java classes
zgu@3900 145 mtThread = 0x0200, // memory for thread objects
zgu@3900 146 mtThreadStack = 0x0300,
zgu@3900 147 mtCode = 0x0400, // memory for generated code
zgu@3900 148 mtGC = 0x0500, // memory for GC
zgu@3900 149 mtCompiler = 0x0600, // memory for compiler
zgu@3900 150 mtInternal = 0x0700, // memory used by VM, but does not belong to
zgu@3900 151 // any of above categories, and not used for
zgu@3900 152 // native memory tracking
zgu@3900 153 mtOther = 0x0800, // memory not used by VM
zgu@3900 154 mtSymbol = 0x0900, // symbol
zgu@3900 155 mtNMT = 0x0A00, // memory used by native memory tracking
zgu@3900 156 mtChunk = 0x0B00, // chunk that holds content of arenas
zgu@3900 157 mtJavaHeap = 0x0C00, // Java heap
zgu@4193 158 mtClassShared = 0x0D00, // class data sharing
ctornqvi@4512 159 mtTest = 0x0E00, // Test type for verifying NMT
sla@5237 160 mtTracing = 0x0F00, // memory used for Tracing
sla@5237 161 mt_number_of_types = 0x000F, // number of memory types (mtDontTrack
zgu@4193 162 // is not included as validate type)
ctornqvi@4512 163 mtDontTrack = 0x0F00, // memory we do not or cannot track
zgu@3900 164 mt_masks = 0x7F00,
zgu@3900 165
zgu@3900 166 // object type mask
zgu@3900 167 otArena = 0x0010, // an arena object
zgu@3900 168 otNMTRecorder = 0x0020, // memory recorder object
zgu@3900 169 ot_masks = 0x00F0
zgu@3900 170 };
zgu@3900 171
zgu@3900 172 #define IS_MEMORY_TYPE(flags, type) ((flags & mt_masks) == type)
zgu@3900 173 #define HAS_VALID_MEMORY_TYPE(flags)((flags & mt_masks) != mtNone)
zgu@3900 174 #define FLAGS_TO_MEMORY_TYPE(flags) (flags & mt_masks)
zgu@3900 175
zgu@3900 176 #define IS_ARENA_OBJ(flags) ((flags & ot_masks) == otArena)
zgu@3900 177 #define IS_NMT_RECORDER(flags) ((flags & ot_masks) == otNMTRecorder)
zgu@3900 178 #define NMT_CAN_TRACK(flags) (!IS_NMT_RECORDER(flags) && !(IS_MEMORY_TYPE(flags, mtDontTrack)))
zgu@3900 179
zgu@3900 180 typedef unsigned short MEMFLAGS;
zgu@3900 181
jprovino@4165 182 #if INCLUDE_NMT
jprovino@4165 183
zgu@3900 184 extern bool NMT_track_callsite;
zgu@3900 185
jprovino@4165 186 #else
jprovino@4165 187
jprovino@4165 188 const bool NMT_track_callsite = false;
jprovino@4165 189
jprovino@4165 190 #endif // INCLUDE_NMT
jprovino@4165 191
zgu@3900 192 // debug build does not inline
drchase@4942 193 #if defined(_NMT_NOINLINE_)
zgu@3900 194 #define CURRENT_PC (NMT_track_callsite ? os::get_caller_pc(1) : 0)
zgu@3900 195 #define CALLER_PC (NMT_track_callsite ? os::get_caller_pc(2) : 0)
zgu@3900 196 #define CALLER_CALLER_PC (NMT_track_callsite ? os::get_caller_pc(3) : 0)
zgu@3900 197 #else
zgu@3900 198 #define CURRENT_PC (NMT_track_callsite? os::get_caller_pc(0) : 0)
zgu@3900 199 #define CALLER_PC (NMT_track_callsite ? os::get_caller_pc(1) : 0)
zgu@3900 200 #define CALLER_CALLER_PC (NMT_track_callsite ? os::get_caller_pc(2) : 0)
zgu@3900 201 #endif
zgu@3900 202
zgu@3900 203
zgu@3900 204
zgu@3900 205 template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
duke@435 206 public:
zgu@3900 207 _NOINLINE_ void* operator new(size_t size, address caller_pc = 0);
zgu@3900 208 _NOINLINE_ void* operator new (size_t size, const std::nothrow_t& nothrow_constant,
zgu@3900 209 address caller_pc = 0);
minqi@5103 210 _NOINLINE_ void* operator new [](size_t size, address caller_pc = 0);
minqi@5103 211 _NOINLINE_ void* operator new [](size_t size, const std::nothrow_t& nothrow_constant,
minqi@5103 212 address caller_pc = 0);
duke@435 213 void operator delete(void* p);
minqi@5103 214 void operator delete [] (void* p);
duke@435 215 };
duke@435 216
duke@435 217 // Base class for objects allocated on the stack only.
duke@435 218 // Calling new or delete will result in fatal error.
duke@435 219
duke@435 220 class StackObj ALLOCATION_SUPER_CLASS_SPEC {
brutisso@4370 221 private:
duke@435 222 void* operator new(size_t size);
goetz@6461 223 void* operator new [](size_t size);
goetz@6461 224 #ifdef __IBMCPP__
goetz@6461 225 public:
goetz@6461 226 #endif
duke@435 227 void operator delete(void* p);
minqi@5103 228 void operator delete [](void* p);
duke@435 229 };
duke@435 230
duke@435 231 // Base class for objects used as value objects.
duke@435 232 // Calling new or delete will result in fatal error.
duke@435 233 //
duke@435 234 // Portability note: Certain compilers (e.g. gcc) will
duke@435 235 // always make classes bigger if it has a superclass, even
duke@435 236 // if the superclass does not have any virtual methods or
duke@435 237 // instance fields. The HotSpot implementation relies on this
duke@435 238 // not to happen. So never make a ValueObj class a direct subclass
duke@435 239 // of this object, but use the VALUE_OBJ_CLASS_SPEC class instead, e.g.,
duke@435 240 // like this:
duke@435 241 //
duke@435 242 // class A VALUE_OBJ_CLASS_SPEC {
duke@435 243 // ...
duke@435 244 // }
duke@435 245 //
duke@435 246 // With gcc and possible other compilers the VALUE_OBJ_CLASS_SPEC can
duke@435 247 // be defined as a an empty string "".
duke@435 248 //
duke@435 249 class _ValueObj {
brutisso@4370 250 private:
duke@435 251 void* operator new(size_t size);
minqi@5103 252 void operator delete(void* p);
minqi@5103 253 void* operator new [](size_t size);
minqi@5103 254 void operator delete [](void* p);
duke@435 255 };
duke@435 256
coleenp@4037 257
coleenp@4037 258 // Base class for objects stored in Metaspace.
coleenp@4037 259 // Calling delete will result in fatal error.
coleenp@4037 260 //
coleenp@4037 261 // Do not inherit from something with a vptr because this class does
coleenp@4037 262 // not introduce one. This class is used to allocate both shared read-only
coleenp@4037 263 // and shared read-write classes.
coleenp@4037 264 //
coleenp@4037 265
coleenp@4037 266 class ClassLoaderData;
coleenp@4037 267
coleenp@4037 268 class MetaspaceObj {
coleenp@4037 269 public:
coleenp@4295 270 bool is_metaspace_object() const; // more specific test but slower
coleenp@4037 271 bool is_shared() const;
coleenp@4037 272 void print_address_on(outputStream* st) const; // nonvirtual address printing
coleenp@4037 273
iklam@5208 274 #define METASPACE_OBJ_TYPES_DO(f) \
iklam@5208 275 f(Unknown) \
iklam@5208 276 f(Class) \
iklam@5208 277 f(Symbol) \
iklam@5208 278 f(TypeArrayU1) \
iklam@5208 279 f(TypeArrayU2) \
iklam@5208 280 f(TypeArrayU4) \
iklam@5208 281 f(TypeArrayU8) \
iklam@5208 282 f(TypeArrayOther) \
iklam@5208 283 f(Method) \
iklam@5208 284 f(ConstMethod) \
iklam@5208 285 f(MethodData) \
iklam@5208 286 f(ConstantPool) \
iklam@5208 287 f(ConstantPoolCache) \
iklam@5208 288 f(Annotation) \
iklam@5208 289 f(MethodCounters)
iklam@5208 290
iklam@5208 291 #define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
iklam@5208 292 #define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
iklam@5208 293
iklam@5208 294 enum Type {
iklam@5208 295 // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
iklam@5208 296 METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
iklam@5208 297 _number_of_types
iklam@5208 298 };
iklam@5208 299
iklam@5208 300 static const char * type_name(Type type) {
iklam@5208 301 switch(type) {
iklam@5208 302 METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
iklam@5208 303 default:
iklam@5208 304 ShouldNotReachHere();
iklam@5208 305 return NULL;
iklam@5208 306 }
iklam@5208 307 }
iklam@5208 308
iklam@5208 309 static MetaspaceObj::Type array_type(size_t elem_size) {
iklam@5208 310 switch (elem_size) {
iklam@5208 311 case 1: return TypeArrayU1Type;
iklam@5208 312 case 2: return TypeArrayU2Type;
iklam@5208 313 case 4: return TypeArrayU4Type;
iklam@5208 314 case 8: return TypeArrayU8Type;
iklam@5208 315 default:
iklam@5208 316 return TypeArrayOtherType;
iklam@5208 317 }
iklam@5208 318 }
iklam@5208 319
coleenp@4037 320 void* operator new(size_t size, ClassLoaderData* loader_data,
iklam@5208 321 size_t word_size, bool read_only,
iklam@5208 322 Type type, Thread* thread);
coleenp@4037 323 // can't use TRAPS from this header file.
coleenp@4037 324 void operator delete(void* p) { ShouldNotCallThis(); }
coleenp@4037 325 };
coleenp@4037 326
duke@435 327 // Base class for classes that constitute name spaces.
duke@435 328
duke@435 329 class AllStatic {
duke@435 330 public:
duke@435 331 AllStatic() { ShouldNotCallThis(); }
duke@435 332 ~AllStatic() { ShouldNotCallThis(); }
duke@435 333 };
duke@435 334
duke@435 335
duke@435 336 //------------------------------Chunk------------------------------------------
duke@435 337 // Linked list of raw memory chunks
zgu@3900 338 class Chunk: CHeapObj<mtChunk> {
never@3138 339 friend class VMStructs;
never@3138 340
duke@435 341 protected:
duke@435 342 Chunk* _next; // Next Chunk in list
duke@435 343 const size_t _len; // Size of this Chunk
duke@435 344 public:
hseigel@5241 345 void* operator new(size_t size, AllocFailType alloc_failmode, size_t length);
duke@435 346 void operator delete(void* p);
duke@435 347 Chunk(size_t length);
duke@435 348
duke@435 349 enum {
duke@435 350 // default sizes; make them slightly smaller than 2**k to guard against
duke@435 351 // buddy-system style malloc implementations
duke@435 352 #ifdef _LP64
duke@435 353 slack = 40, // [RGV] Not sure if this is right, but make it
duke@435 354 // a multiple of 8.
duke@435 355 #else
duke@435 356 slack = 20, // suspected sizeof(Chunk) + internal malloc headers
duke@435 357 #endif
duke@435 358
iklam@5368 359 tiny_size = 256 - slack, // Size of first chunk (tiny)
iklam@5368 360 init_size = 1*K - slack, // Size of first chunk (normal aka small)
duke@435 361 medium_size= 10*K - slack, // Size of medium-sized chunk
duke@435 362 size = 32*K - slack, // Default size of an Arena chunk (following the first)
duke@435 363 non_pool_size = init_size + 32 // An initial size which is not one of above
duke@435 364 };
duke@435 365
duke@435 366 void chop(); // Chop this chunk
duke@435 367 void next_chop(); // Chop next chunk
duke@435 368 static size_t aligned_overhead_size(void) { return ARENA_ALIGN(sizeof(Chunk)); }
coleenp@4037 369 static size_t aligned_overhead_size(size_t byte_size) { return ARENA_ALIGN(byte_size); }
duke@435 370
duke@435 371 size_t length() const { return _len; }
duke@435 372 Chunk* next() const { return _next; }
duke@435 373 void set_next(Chunk* n) { _next = n; }
duke@435 374 // Boundaries of data area (possibly unused)
duke@435 375 char* bottom() const { return ((char*) this) + aligned_overhead_size(); }
duke@435 376 char* top() const { return bottom() + _len; }
duke@435 377 bool contains(char* p) const { return bottom() <= p && p <= top(); }
duke@435 378
duke@435 379 // Start the chunk_pool cleaner task
duke@435 380 static void start_chunk_pool_cleaner_task();
bobv@2036 381
bobv@2036 382 static void clean_chunk_pool();
duke@435 383 };
duke@435 384
duke@435 385 //------------------------------Arena------------------------------------------
duke@435 386 // Fast allocation of memory
zgu@3900 387 class Arena : public CHeapObj<mtNone|otArena> {
duke@435 388 protected:
duke@435 389 friend class ResourceMark;
duke@435 390 friend class HandleMark;
duke@435 391 friend class NoHandleMark;
never@3138 392 friend class VMStructs;
never@3138 393
duke@435 394 Chunk *_first; // First chunk
duke@435 395 Chunk *_chunk; // current chunk
duke@435 396 char *_hwm, *_max; // High water mark and max in current chunk
nloodin@4183 397 // Get a new Chunk of at least size x
nloodin@4183 398 void* grow(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
zgu@3900 399 size_t _size_in_bytes; // Size of arena (used for native memory tracking)
zgu@3900 400
kvn@2557 401 NOT_PRODUCT(static julong _bytes_allocated;) // total #bytes allocated since start
duke@435 402 friend class AllocStats;
duke@435 403 debug_only(void* malloc(size_t size);)
duke@435 404 debug_only(void* internal_malloc_4(size_t x);)
kvn@2557 405 NOT_PRODUCT(void inc_bytes_allocated(size_t x);)
kamg@2589 406
kamg@2589 407 void signal_out_of_memory(size_t request, const char* whence) const;
kamg@2589 408
hseigel@5241 409 bool check_for_overflow(size_t request, const char* whence,
hseigel@5241 410 AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) const {
kamg@2589 411 if (UINTPTR_MAX - request < (uintptr_t)_hwm) {
hseigel@5241 412 if (alloc_failmode == AllocFailStrategy::RETURN_NULL) {
hseigel@5241 413 return false;
hseigel@5241 414 }
kamg@2589 415 signal_out_of_memory(request, whence);
kamg@2589 416 }
hseigel@5241 417 return true;
kamg@2589 418 }
kamg@2589 419
duke@435 420 public:
duke@435 421 Arena();
duke@435 422 Arena(size_t init_size);
duke@435 423 ~Arena();
duke@435 424 void destruct_contents();
duke@435 425 char* hwm() const { return _hwm; }
duke@435 426
zgu@3900 427 // new operators
zgu@3900 428 void* operator new (size_t size);
zgu@3900 429 void* operator new (size_t size, const std::nothrow_t& nothrow_constant);
zgu@3900 430
zgu@3900 431 // dynamic memory type tagging
zgu@3900 432 void* operator new(size_t size, MEMFLAGS flags);
zgu@3900 433 void* operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags);
zgu@3900 434 void operator delete(void* p);
zgu@3900 435
duke@435 436 // Fast allocate in the arena. Common case is: pointer test + increment.
nloodin@4183 437 void* Amalloc(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
duke@435 438 assert(is_power_of_2(ARENA_AMALLOC_ALIGNMENT) , "should be a power of 2");
duke@435 439 x = ARENA_ALIGN(x);
duke@435 440 debug_only(if (UseMallocOnly) return malloc(x);)
hseigel@5241 441 if (!check_for_overflow(x, "Arena::Amalloc", alloc_failmode))
hseigel@5241 442 return NULL;
kvn@2557 443 NOT_PRODUCT(inc_bytes_allocated(x);)
duke@435 444 if (_hwm + x > _max) {
nloodin@4183 445 return grow(x, alloc_failmode);
duke@435 446 } else {
duke@435 447 char *old = _hwm;
duke@435 448 _hwm += x;
duke@435 449 return old;
duke@435 450 }
duke@435 451 }
duke@435 452 // Further assume size is padded out to words
nloodin@4183 453 void *Amalloc_4(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
duke@435 454 assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
duke@435 455 debug_only(if (UseMallocOnly) return malloc(x);)
hseigel@5241 456 if (!check_for_overflow(x, "Arena::Amalloc_4", alloc_failmode))
hseigel@5241 457 return NULL;
kvn@2557 458 NOT_PRODUCT(inc_bytes_allocated(x);)
duke@435 459 if (_hwm + x > _max) {
nloodin@4183 460 return grow(x, alloc_failmode);
duke@435 461 } else {
duke@435 462 char *old = _hwm;
duke@435 463 _hwm += x;
duke@435 464 return old;
duke@435 465 }
duke@435 466 }
duke@435 467
duke@435 468 // Allocate with 'double' alignment. It is 8 bytes on sparc.
duke@435 469 // In other cases Amalloc_D() should be the same as Amalloc_4().
nloodin@4183 470 void* Amalloc_D(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
duke@435 471 assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
duke@435 472 debug_only(if (UseMallocOnly) return malloc(x);)
duke@435 473 #if defined(SPARC) && !defined(_LP64)
duke@435 474 #define DALIGN_M1 7
duke@435 475 size_t delta = (((size_t)_hwm + DALIGN_M1) & ~DALIGN_M1) - (size_t)_hwm;
duke@435 476 x += delta;
duke@435 477 #endif
hseigel@5241 478 if (!check_for_overflow(x, "Arena::Amalloc_D", alloc_failmode))
hseigel@5241 479 return NULL;
kvn@2557 480 NOT_PRODUCT(inc_bytes_allocated(x);)
duke@435 481 if (_hwm + x > _max) {
nloodin@4183 482 return grow(x, alloc_failmode); // grow() returns a result aligned >= 8 bytes.
duke@435 483 } else {
duke@435 484 char *old = _hwm;
duke@435 485 _hwm += x;
duke@435 486 #if defined(SPARC) && !defined(_LP64)
duke@435 487 old += delta; // align to 8-bytes
duke@435 488 #endif
duke@435 489 return old;
duke@435 490 }
duke@435 491 }
duke@435 492
duke@435 493 // Fast delete in area. Common case is: NOP (except for storage reclaimed)
duke@435 494 void Afree(void *ptr, size_t size) {
duke@435 495 #ifdef ASSERT
duke@435 496 if (ZapResourceArea) memset(ptr, badResourceValue, size); // zap freed memory
duke@435 497 if (UseMallocOnly) return;
duke@435 498 #endif
duke@435 499 if (((char*)ptr) + size == _hwm) _hwm = (char*)ptr;
duke@435 500 }
duke@435 501
nloodin@4183 502 void *Arealloc( void *old_ptr, size_t old_size, size_t new_size,
nloodin@4183 503 AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
duke@435 504
duke@435 505 // Move contents of this arena into an empty arena
duke@435 506 Arena *move_contents(Arena *empty_arena);
duke@435 507
duke@435 508 // Determine if pointer belongs to this Arena or not.
duke@435 509 bool contains( const void *ptr ) const;
duke@435 510
duke@435 511 // Total of all chunks in use (not thread-safe)
duke@435 512 size_t used() const;
duke@435 513
duke@435 514 // Total # of bytes used
zgu@3900 515 size_t size_in_bytes() const { return _size_in_bytes; };
zgu@3900 516 void set_size_in_bytes(size_t size);
zgu@3900 517
duke@435 518 static void free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) PRODUCT_RETURN;
duke@435 519 static void free_all(char** start, char** end) PRODUCT_RETURN;
duke@435 520
zgu@3900 521 // how many arena instances
zgu@3900 522 NOT_PRODUCT(static volatile jint _instance_count;)
duke@435 523 private:
duke@435 524 // Reset this Arena to empty, access will trigger grow if necessary
duke@435 525 void reset(void) {
duke@435 526 _first = _chunk = NULL;
duke@435 527 _hwm = _max = NULL;
zgu@3900 528 set_size_in_bytes(0);
duke@435 529 }
duke@435 530 };
duke@435 531
duke@435 532 // One of the following macros must be used when allocating
duke@435 533 // an array or object from an arena
jcoomes@2191 534 #define NEW_ARENA_ARRAY(arena, type, size) \
jcoomes@2191 535 (type*) (arena)->Amalloc((size) * sizeof(type))
duke@435 536
jcoomes@2191 537 #define REALLOC_ARENA_ARRAY(arena, type, old, old_size, new_size) \
jcoomes@2191 538 (type*) (arena)->Arealloc((char*)(old), (old_size) * sizeof(type), \
jcoomes@2191 539 (new_size) * sizeof(type) )
duke@435 540
jcoomes@2191 541 #define FREE_ARENA_ARRAY(arena, type, old, size) \
jcoomes@2191 542 (arena)->Afree((char*)(old), (size) * sizeof(type))
duke@435 543
jcoomes@2191 544 #define NEW_ARENA_OBJ(arena, type) \
duke@435 545 NEW_ARENA_ARRAY(arena, type, 1)
duke@435 546
duke@435 547
duke@435 548 //%note allocation_1
nloodin@4183 549 extern char* resource_allocate_bytes(size_t size,
nloodin@4183 550 AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
nloodin@4183 551 extern char* resource_allocate_bytes(Thread* thread, size_t size,
nloodin@4183 552 AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
nloodin@4183 553 extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
nloodin@4183 554 AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
duke@435 555 extern void resource_free_bytes( char *old, size_t size );
duke@435 556
duke@435 557 //----------------------------------------------------------------------
duke@435 558 // Base class for objects allocated in the resource area per default.
duke@435 559 // Optionally, objects may be allocated on the C heap with
duke@435 560 // new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
duke@435 561 // ResourceObj's can be allocated within other objects, but don't use
duke@435 562 // new or delete (allocation_type is unknown). If new is used to allocate,
duke@435 563 // use delete to deallocate.
duke@435 564 class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
duke@435 565 public:
kvn@2040 566 enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
kvn@2043 567 static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
duke@435 568 #ifdef ASSERT
duke@435 569 private:
kvn@2040 570 // When this object is allocated on stack the new() operator is not
kvn@2040 571 // called but garbage on stack may look like a valid allocation_type.
kvn@2040 572 // Store negated 'this' pointer when new() is called to distinguish cases.
kvn@2357 573 // Use second array's element for verification value to distinguish garbage.
kvn@2357 574 uintptr_t _allocation_t[2];
kvn@2357 575 bool is_type_set() const;
duke@435 576 public:
kvn@2043 577 allocation_type get_allocation_type() const;
kvn@2043 578 bool allocated_on_stack() const { return get_allocation_type() == STACK_OR_EMBEDDED; }
kvn@2043 579 bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
kvn@2043 580 bool allocated_on_C_heap() const { return get_allocation_type() == C_HEAP; }
kvn@2043 581 bool allocated_on_arena() const { return get_allocation_type() == ARENA; }
kvn@2040 582 ResourceObj(); // default construtor
kvn@2040 583 ResourceObj(const ResourceObj& r); // default copy construtor
kvn@2040 584 ResourceObj& operator=(const ResourceObj& r); // default copy assignment
kvn@2040 585 ~ResourceObj();
duke@435 586 #endif // ASSERT
duke@435 587
duke@435 588 public:
zgu@3900 589 void* operator new(size_t size, allocation_type type, MEMFLAGS flags);
minqi@5103 590 void* operator new [](size_t size, allocation_type type, MEMFLAGS flags);
nloodin@4183 591 void* operator new(size_t size, const std::nothrow_t& nothrow_constant,
nloodin@4183 592 allocation_type type, MEMFLAGS flags);
minqi@5103 593 void* operator new [](size_t size, const std::nothrow_t& nothrow_constant,
minqi@5103 594 allocation_type type, MEMFLAGS flags);
minqi@5103 595
duke@435 596 void* operator new(size_t size, Arena *arena) {
duke@435 597 address res = (address)arena->Amalloc(size);
kvn@2040 598 DEBUG_ONLY(set_allocation_type(res, ARENA);)
duke@435 599 return res;
duke@435 600 }
minqi@5103 601
minqi@5103 602 void* operator new [](size_t size, Arena *arena) {
minqi@5103 603 address res = (address)arena->Amalloc(size);
minqi@5103 604 DEBUG_ONLY(set_allocation_type(res, ARENA);)
minqi@5103 605 return res;
minqi@5103 606 }
minqi@5103 607
duke@435 608 void* operator new(size_t size) {
duke@435 609 address res = (address)resource_allocate_bytes(size);
kvn@2040 610 DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
duke@435 611 return res;
duke@435 612 }
nloodin@4183 613
nloodin@4183 614 void* operator new(size_t size, const std::nothrow_t& nothrow_constant) {
nloodin@4183 615 address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
nloodin@4183 616 DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
nloodin@4183 617 return res;
nloodin@4183 618 }
nloodin@4183 619
minqi@5103 620 void* operator new [](size_t size) {
minqi@5103 621 address res = (address)resource_allocate_bytes(size);
minqi@5103 622 DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
minqi@5103 623 return res;
minqi@5103 624 }
minqi@5103 625
minqi@5103 626 void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) {
minqi@5103 627 address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
minqi@5103 628 DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
minqi@5103 629 return res;
minqi@5103 630 }
minqi@5103 631
duke@435 632 void operator delete(void* p);
minqi@5103 633 void operator delete [](void* p);
duke@435 634 };
duke@435 635
duke@435 636 // One of the following macros must be used when allocating an array
duke@435 637 // or object to determine whether it should reside in the C heap on in
duke@435 638 // the resource area.
duke@435 639
duke@435 640 #define NEW_RESOURCE_ARRAY(type, size)\
duke@435 641 (type*) resource_allocate_bytes((size) * sizeof(type))
duke@435 642
hseigel@4987 643 #define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
hseigel@4987 644 (type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
hseigel@4987 645
duke@435 646 #define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
duke@435 647 (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
duke@435 648
mgronlun@5269 649 #define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
mgronlun@5269 650 (type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
mgronlun@5269 651
duke@435 652 #define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
mgronlun@5269 653 (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))
mgronlun@5269 654
mgronlun@5269 655 #define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
mgronlun@5269 656 (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
mgronlun@5269 657 (new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
duke@435 658
duke@435 659 #define FREE_RESOURCE_ARRAY(type, old, size)\
duke@435 660 resource_free_bytes((char*)(old), (size) * sizeof(type))
duke@435 661
duke@435 662 #define FREE_FAST(old)\
duke@435 663 /* nop */
duke@435 664
duke@435 665 #define NEW_RESOURCE_OBJ(type)\
duke@435 666 NEW_RESOURCE_ARRAY(type, 1)
duke@435 667
mgronlun@5269 668 #define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
mgronlun@5269 669 NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)
mgronlun@5269 670
mgronlun@5269 671 #define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
dsimms@5577 672 (type*) AllocateHeap((size) * sizeof(type), memflags, pc, allocfail)
mgronlun@5269 673
mgronlun@5269 674 #define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
mgronlun@5269 675 (type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
mgronlun@5269 676
zgu@3900 677 #define NEW_C_HEAP_ARRAY(type, size, memflags)\
zgu@3900 678 (type*) (AllocateHeap((size) * sizeof(type), memflags))
duke@435 679
mgronlun@5269 680 #define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
dsimms@5577 681 NEW_C_HEAP_ARRAY3(type, (size), memflags, pc, AllocFailStrategy::RETURN_NULL)
mgronlun@5269 682
mgronlun@5269 683 #define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
dsimms@5577 684 NEW_C_HEAP_ARRAY3(type, (size), memflags, (address)0, AllocFailStrategy::RETURN_NULL)
mgronlun@5269 685
zgu@3900 686 #define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
dsimms@5577 687 (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags))
duke@435 688
mgronlun@5269 689 #define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
dsimms@5577 690 (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))
mgronlun@5269 691
minqi@5103 692 #define FREE_C_HEAP_ARRAY(type, old, memflags) \
zgu@3900 693 FreeHeap((char*)(old), memflags)
duke@435 694
minqi@5103 695 // allocate type in heap without calling ctor
minqi@5103 696 #define NEW_C_HEAP_OBJ(type, memflags)\
minqi@5103 697 NEW_C_HEAP_ARRAY(type, 1, memflags)
duke@435 698
mgronlun@5269 699 #define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
mgronlun@5269 700 NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)
mgronlun@5269 701
minqi@5103 702 // deallocate obj of type in heap without calling dtor
minqi@5103 703 #define FREE_C_HEAP_OBJ(objname, memflags)\
minqi@5103 704 FreeHeap((char*)objname, memflags);
duke@435 705
duke@435 706 // for statistics
duke@435 707 #ifndef PRODUCT
duke@435 708 class AllocStats : StackObj {
kvn@2557 709 julong start_mallocs, start_frees;
kvn@2557 710 julong start_malloc_bytes, start_mfree_bytes, start_res_bytes;
duke@435 711 public:
duke@435 712 AllocStats();
duke@435 713
kvn@2557 714 julong num_mallocs(); // since creation of receiver
kvn@2557 715 julong alloc_bytes();
kvn@2557 716 julong num_frees();
kvn@2557 717 julong free_bytes();
kvn@2557 718 julong resource_bytes();
duke@435 719 void print();
duke@435 720 };
duke@435 721 #endif
duke@435 722
duke@435 723
duke@435 724 //------------------------------ReallocMark---------------------------------
duke@435 725 // Code which uses REALLOC_RESOURCE_ARRAY should check an associated
duke@435 726 // ReallocMark, which is declared in the same scope as the reallocated
duke@435 727 // pointer. Any operation that could __potentially__ cause a reallocation
duke@435 728 // should check the ReallocMark.
duke@435 729 class ReallocMark: public StackObj {
duke@435 730 protected:
duke@435 731 NOT_PRODUCT(int _nesting;)
duke@435 732
duke@435 733 public:
duke@435 734 ReallocMark() PRODUCT_RETURN;
duke@435 735 void check() PRODUCT_RETURN;
duke@435 736 };
stefank@2314 737
brutisso@4901 738 // Helper class to allocate arrays that may become large.
brutisso@4901 739 // Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
brutisso@4901 740 // and uses mapped memory for larger allocations.
brutisso@4901 741 // Most OS mallocs do something similar but Solaris malloc does not revert
brutisso@4901 742 // to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
brutisso@4901 743 // is set so that we always use malloc except for Solaris where we set the
brutisso@4901 744 // limit to get mapped memory.
brutisso@4901 745 template <class E, MEMFLAGS F>
brutisso@5278 746 class ArrayAllocator VALUE_OBJ_CLASS_SPEC {
brutisso@4901 747 char* _addr;
brutisso@4901 748 bool _use_malloc;
brutisso@4901 749 size_t _size;
brutisso@5278 750 bool _free_in_destructor;
brutisso@4901 751 public:
brutisso@5278 752 ArrayAllocator(bool free_in_destructor = true) :
brutisso@5278 753 _addr(NULL), _use_malloc(false), _size(0), _free_in_destructor(free_in_destructor) { }
brutisso@5278 754
brutisso@5278 755 ~ArrayAllocator() {
brutisso@5278 756 if (_free_in_destructor) {
brutisso@5278 757 free();
brutisso@5278 758 }
brutisso@5278 759 }
brutisso@5278 760
brutisso@4901 761 E* allocate(size_t length);
brutisso@4901 762 void free();
brutisso@4901 763 };
brutisso@4901 764
stefank@2314 765 #endif // SHARE_VM_MEMORY_ALLOCATION_HPP

mercurial