src/share/vm/gc_implementation/shared/parGCAllocBuffer.cpp

Wed, 23 Jan 2013 13:02:39 -0500

author
jprovino
date
Wed, 23 Jan 2013 13:02:39 -0500
changeset 4542
db9981fd3124
parent 4130
2e6857353b2c
child 6376
cfd4aac53239
permissions
-rw-r--r--

8005915: Unify SERIALGC and INCLUDE_ALTERNATE_GCS
Summary: Rename INCLUDE_ALTERNATE_GCS to INCLUDE_ALL_GCS and replace SERIALGC with INCLUDE_ALL_GCS.
Reviewed-by: coleenp, stefank

duke@435 1 /*
johnc@3982 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
johnc@3982 26 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
stefank@2314 27 #include "memory/sharedHeap.hpp"
stefank@2314 28 #include "oops/arrayOop.hpp"
stefank@2314 29 #include "oops/oop.inline.hpp"
duke@435 30
duke@435 31 ParGCAllocBuffer::ParGCAllocBuffer(size_t desired_plab_sz_) :
duke@435 32 _word_sz(desired_plab_sz_), _bottom(NULL), _top(NULL),
duke@435 33 _end(NULL), _hard_end(NULL),
duke@435 34 _retained(false), _retained_filler(),
duke@435 35 _allocated(0), _wasted(0)
duke@435 36 {
duke@435 37 assert (min_size() > AlignmentReserve, "Inconsistency!");
coleenp@548 38 // arrayOopDesc::header_size depends on command line initialization.
coleenp@548 39 FillerHeaderSize = align_object_size(arrayOopDesc::header_size(T_INT));
coleenp@548 40 AlignmentReserve = oopDesc::header_size() > MinObjAlignment ? FillerHeaderSize : 0;
duke@435 41 }
duke@435 42
coleenp@548 43 size_t ParGCAllocBuffer::FillerHeaderSize;
duke@435 44
duke@435 45 // If the minimum object size is greater than MinObjAlignment, we can
duke@435 46 // end up with a shard at the end of the buffer that's smaller than
duke@435 47 // the smallest object. We can't allow that because the buffer must
duke@435 48 // look like it's full of objects when we retire it, so we make
duke@435 49 // sure we have enough space for a filler int array object.
coleenp@548 50 size_t ParGCAllocBuffer::AlignmentReserve;
duke@435 51
duke@435 52 void ParGCAllocBuffer::retire(bool end_of_gc, bool retain) {
duke@435 53 assert(!retain || end_of_gc, "Can only retain at GC end.");
duke@435 54 if (_retained) {
duke@435 55 // If the buffer had been retained shorten the previous filler object.
duke@435 56 assert(_retained_filler.end() <= _top, "INVARIANT");
jcoomes@916 57 CollectedHeap::fill_with_object(_retained_filler);
duke@435 58 // Wasted space book-keeping, otherwise (normally) done in invalidate()
duke@435 59 _wasted += _retained_filler.word_size();
duke@435 60 _retained = false;
duke@435 61 }
duke@435 62 assert(!end_of_gc || !_retained, "At this point, end_of_gc ==> !_retained.");
duke@435 63 if (_top < _hard_end) {
jcoomes@916 64 CollectedHeap::fill_with_object(_top, _hard_end);
duke@435 65 if (!retain) {
duke@435 66 invalidate();
duke@435 67 } else {
duke@435 68 // Is there wasted space we'd like to retain for the next GC?
duke@435 69 if (pointer_delta(_end, _top) > FillerHeaderSize) {
duke@435 70 _retained = true;
duke@435 71 _retained_filler = MemRegion(_top, FillerHeaderSize);
duke@435 72 _top = _top + FillerHeaderSize;
duke@435 73 } else {
duke@435 74 invalidate();
duke@435 75 }
duke@435 76 }
duke@435 77 }
duke@435 78 }
duke@435 79
duke@435 80 void ParGCAllocBuffer::flush_stats(PLABStats* stats) {
duke@435 81 assert(ResizePLAB, "Wasted work");
duke@435 82 stats->add_allocated(_allocated);
duke@435 83 stats->add_wasted(_wasted);
duke@435 84 stats->add_unused(pointer_delta(_end, _top));
duke@435 85 }
duke@435 86
duke@435 87 // Compute desired plab size and latch result for later
duke@435 88 // use. This should be called once at the end of parallel
duke@435 89 // scavenge; it clears the sensor accumulators.
johnc@4130 90 void PLABStats::adjust_desired_plab_sz(uint no_of_gc_workers) {
duke@435 91 assert(ResizePLAB, "Not set");
duke@435 92 if (_allocated == 0) {
johnc@4067 93 assert(_unused == 0,
johnc@4067 94 err_msg("Inconsistency in PLAB stats: "
johnc@4067 95 "_allocated: "SIZE_FORMAT", "
johnc@4067 96 "_wasted: "SIZE_FORMAT", "
johnc@4067 97 "_unused: "SIZE_FORMAT", "
johnc@4067 98 "_used : "SIZE_FORMAT,
johnc@4067 99 _allocated, _wasted, _unused, _used));
johnc@4067 100
duke@435 101 _allocated = 1;
duke@435 102 }
duke@435 103 double wasted_frac = (double)_unused/(double)_allocated;
duke@435 104 size_t target_refills = (size_t)((wasted_frac*TargetSurvivorRatio)/
duke@435 105 TargetPLABWastePct);
duke@435 106 if (target_refills == 0) {
duke@435 107 target_refills = 1;
duke@435 108 }
duke@435 109 _used = _allocated - _wasted - _unused;
johnc@4130 110 size_t plab_sz = _used/(target_refills*no_of_gc_workers);
duke@435 111 if (PrintPLAB) gclog_or_tty->print(" (plab_sz = %d ", plab_sz);
duke@435 112 // Take historical weighted average
duke@435 113 _filter.sample(plab_sz);
duke@435 114 // Clip from above and below, and align to object boundary
duke@435 115 plab_sz = MAX2(min_size(), (size_t)_filter.average());
duke@435 116 plab_sz = MIN2(max_size(), plab_sz);
duke@435 117 plab_sz = align_object_size(plab_sz);
duke@435 118 // Latch the result
duke@435 119 if (PrintPLAB) gclog_or_tty->print(" desired_plab_sz = %d) ", plab_sz);
johnc@3982 120 _desired_plab_sz = plab_sz;
duke@435 121 // Now clear the accumulators for next round:
duke@435 122 // note this needs to be fixed in the case where we
duke@435 123 // are retaining across scavenges. FIX ME !!! XXX
duke@435 124 _allocated = 0;
duke@435 125 _wasted = 0;
duke@435 126 _unused = 0;
duke@435 127 }
duke@435 128
duke@435 129 #ifndef PRODUCT
duke@435 130 void ParGCAllocBuffer::print() {
duke@435 131 gclog_or_tty->print("parGCAllocBuffer: _bottom: %p _top: %p _end: %p _hard_end: %p"
duke@435 132 "_retained: %c _retained_filler: [%p,%p)\n",
duke@435 133 _bottom, _top, _end, _hard_end,
duke@435 134 "FT"[_retained], _retained_filler.start(), _retained_filler.end());
duke@435 135 }
duke@435 136 #endif // !PRODUCT
duke@435 137
duke@435 138 const size_t ParGCAllocBufferWithBOT::ChunkSizeInWords =
duke@435 139 MIN2(CardTableModRefBS::par_chunk_heapword_alignment(),
duke@435 140 ((size_t)Generation::GenGrain)/HeapWordSize);
duke@435 141 const size_t ParGCAllocBufferWithBOT::ChunkSizeInBytes =
duke@435 142 MIN2(CardTableModRefBS::par_chunk_heapword_alignment() * HeapWordSize,
duke@435 143 (size_t)Generation::GenGrain);
duke@435 144
duke@435 145 ParGCAllocBufferWithBOT::ParGCAllocBufferWithBOT(size_t word_sz,
duke@435 146 BlockOffsetSharedArray* bsa) :
duke@435 147 ParGCAllocBuffer(word_sz),
duke@435 148 _bsa(bsa),
duke@435 149 _bt(bsa, MemRegion(_bottom, _hard_end)),
duke@435 150 _true_end(_hard_end)
duke@435 151 {}
duke@435 152
duke@435 153 // The buffer comes with its own BOT, with a shared (obviously) underlying
duke@435 154 // BlockOffsetSharedArray. We manipulate this BOT in the normal way
duke@435 155 // as we would for any contiguous space. However, on accasion we
duke@435 156 // need to do some buffer surgery at the extremities before we
duke@435 157 // start using the body of the buffer for allocations. Such surgery
duke@435 158 // (as explained elsewhere) is to prevent allocation on a card that
duke@435 159 // is in the process of being walked concurrently by another GC thread.
duke@435 160 // When such surgery happens at a point that is far removed (to the
duke@435 161 // right of the current allocation point, top), we use the "contig"
duke@435 162 // parameter below to directly manipulate the shared array without
duke@435 163 // modifying the _next_threshold state in the BOT.
duke@435 164 void ParGCAllocBufferWithBOT::fill_region_with_block(MemRegion mr,
duke@435 165 bool contig) {
jcoomes@916 166 CollectedHeap::fill_with_object(mr);
duke@435 167 if (contig) {
duke@435 168 _bt.alloc_block(mr.start(), mr.end());
duke@435 169 } else {
duke@435 170 _bt.BlockOffsetArray::alloc_block(mr.start(), mr.end());
duke@435 171 }
duke@435 172 }
duke@435 173
duke@435 174 HeapWord* ParGCAllocBufferWithBOT::allocate_slow(size_t word_sz) {
duke@435 175 HeapWord* res = NULL;
duke@435 176 if (_true_end > _hard_end) {
duke@435 177 assert((HeapWord*)align_size_down(intptr_t(_hard_end),
duke@435 178 ChunkSizeInBytes) == _hard_end,
duke@435 179 "or else _true_end should be equal to _hard_end");
duke@435 180 assert(_retained, "or else _true_end should be equal to _hard_end");
duke@435 181 assert(_retained_filler.end() <= _top, "INVARIANT");
jcoomes@916 182 CollectedHeap::fill_with_object(_retained_filler);
duke@435 183 if (_top < _hard_end) {
duke@435 184 fill_region_with_block(MemRegion(_top, _hard_end), true);
duke@435 185 }
duke@435 186 HeapWord* next_hard_end = MIN2(_true_end, _hard_end + ChunkSizeInWords);
duke@435 187 _retained_filler = MemRegion(_hard_end, FillerHeaderSize);
duke@435 188 _bt.alloc_block(_retained_filler.start(), _retained_filler.word_size());
duke@435 189 _top = _retained_filler.end();
duke@435 190 _hard_end = next_hard_end;
duke@435 191 _end = _hard_end - AlignmentReserve;
duke@435 192 res = ParGCAllocBuffer::allocate(word_sz);
duke@435 193 if (res != NULL) {
duke@435 194 _bt.alloc_block(res, word_sz);
duke@435 195 }
duke@435 196 }
duke@435 197 return res;
duke@435 198 }
duke@435 199
duke@435 200 void
duke@435 201 ParGCAllocBufferWithBOT::undo_allocation(HeapWord* obj, size_t word_sz) {
duke@435 202 ParGCAllocBuffer::undo_allocation(obj, word_sz);
duke@435 203 // This may back us up beyond the previous threshold, so reset.
duke@435 204 _bt.set_region(MemRegion(_top, _hard_end));
duke@435 205 _bt.initialize_threshold();
duke@435 206 }
duke@435 207
duke@435 208 void ParGCAllocBufferWithBOT::retire(bool end_of_gc, bool retain) {
duke@435 209 assert(!retain || end_of_gc, "Can only retain at GC end.");
duke@435 210 if (_retained) {
duke@435 211 // We're about to make the retained_filler into a block.
duke@435 212 _bt.BlockOffsetArray::alloc_block(_retained_filler.start(),
duke@435 213 _retained_filler.end());
duke@435 214 }
duke@435 215 // Reset _hard_end to _true_end (and update _end)
duke@435 216 if (retain && _hard_end != NULL) {
duke@435 217 assert(_hard_end <= _true_end, "Invariant.");
duke@435 218 _hard_end = _true_end;
duke@435 219 _end = MAX2(_top, _hard_end - AlignmentReserve);
duke@435 220 assert(_end <= _hard_end, "Invariant.");
duke@435 221 }
duke@435 222 _true_end = _hard_end;
duke@435 223 HeapWord* pre_top = _top;
duke@435 224
duke@435 225 ParGCAllocBuffer::retire(end_of_gc, retain);
duke@435 226 // Now any old _retained_filler is cut back to size, the free part is
duke@435 227 // filled with a filler object, and top is past the header of that
duke@435 228 // object.
duke@435 229
duke@435 230 if (retain && _top < _end) {
duke@435 231 assert(end_of_gc && retain, "Or else retain should be false.");
duke@435 232 // If the lab does not start on a card boundary, we don't want to
duke@435 233 // allocate onto that card, since that might lead to concurrent
duke@435 234 // allocation and card scanning, which we don't support. So we fill
duke@435 235 // the first card with a garbage object.
duke@435 236 size_t first_card_index = _bsa->index_for(pre_top);
duke@435 237 HeapWord* first_card_start = _bsa->address_for_index(first_card_index);
duke@435 238 if (first_card_start < pre_top) {
duke@435 239 HeapWord* second_card_start =
jmasa@736 240 _bsa->inc_by_region_size(first_card_start);
duke@435 241
duke@435 242 // Ensure enough room to fill with the smallest block
duke@435 243 second_card_start = MAX2(second_card_start, pre_top + AlignmentReserve);
duke@435 244
duke@435 245 // If the end is already in the first card, don't go beyond it!
duke@435 246 // Or if the remainder is too small for a filler object, gobble it up.
duke@435 247 if (_hard_end < second_card_start ||
duke@435 248 pointer_delta(_hard_end, second_card_start) < AlignmentReserve) {
duke@435 249 second_card_start = _hard_end;
duke@435 250 }
duke@435 251 if (pre_top < second_card_start) {
duke@435 252 MemRegion first_card_suffix(pre_top, second_card_start);
duke@435 253 fill_region_with_block(first_card_suffix, true);
duke@435 254 }
duke@435 255 pre_top = second_card_start;
duke@435 256 _top = pre_top;
duke@435 257 _end = MAX2(_top, _hard_end - AlignmentReserve);
duke@435 258 }
duke@435 259
duke@435 260 // If the lab does not end on a card boundary, we don't want to
duke@435 261 // allocate onto that card, since that might lead to concurrent
duke@435 262 // allocation and card scanning, which we don't support. So we fill
duke@435 263 // the last card with a garbage object.
duke@435 264 size_t last_card_index = _bsa->index_for(_hard_end);
duke@435 265 HeapWord* last_card_start = _bsa->address_for_index(last_card_index);
duke@435 266 if (last_card_start < _hard_end) {
duke@435 267
duke@435 268 // Ensure enough room to fill with the smallest block
duke@435 269 last_card_start = MIN2(last_card_start, _hard_end - AlignmentReserve);
duke@435 270
duke@435 271 // If the top is already in the last card, don't go back beyond it!
duke@435 272 // Or if the remainder is too small for a filler object, gobble it up.
duke@435 273 if (_top > last_card_start ||
duke@435 274 pointer_delta(last_card_start, _top) < AlignmentReserve) {
duke@435 275 last_card_start = _top;
duke@435 276 }
duke@435 277 if (last_card_start < _hard_end) {
duke@435 278 MemRegion last_card_prefix(last_card_start, _hard_end);
duke@435 279 fill_region_with_block(last_card_prefix, false);
duke@435 280 }
duke@435 281 _hard_end = last_card_start;
duke@435 282 _end = MAX2(_top, _hard_end - AlignmentReserve);
duke@435 283 _true_end = _hard_end;
duke@435 284 assert(_end <= _hard_end, "Invariant.");
duke@435 285 }
duke@435 286
duke@435 287 // At this point:
duke@435 288 // 1) we had a filler object from the original top to hard_end.
duke@435 289 // 2) We've filled in any partial cards at the front and back.
duke@435 290 if (pre_top < _hard_end) {
duke@435 291 // Now we can reset the _bt to do allocation in the given area.
duke@435 292 MemRegion new_filler(pre_top, _hard_end);
duke@435 293 fill_region_with_block(new_filler, false);
duke@435 294 _top = pre_top + ParGCAllocBuffer::FillerHeaderSize;
duke@435 295 // If there's no space left, don't retain.
duke@435 296 if (_top >= _end) {
duke@435 297 _retained = false;
duke@435 298 invalidate();
duke@435 299 return;
duke@435 300 }
duke@435 301 _retained_filler = MemRegion(pre_top, _top);
duke@435 302 _bt.set_region(MemRegion(_top, _hard_end));
duke@435 303 _bt.initialize_threshold();
duke@435 304 assert(_bt.threshold() > _top, "initialize_threshold failed!");
duke@435 305
duke@435 306 // There may be other reasons for queries into the middle of the
duke@435 307 // filler object. When such queries are done in parallel with
duke@435 308 // allocation, bad things can happen, if the query involves object
duke@435 309 // iteration. So we ensure that such queries do not involve object
duke@435 310 // iteration, by putting another filler object on the boundaries of
duke@435 311 // such queries. One such is the object spanning a parallel card
duke@435 312 // chunk boundary.
duke@435 313
duke@435 314 // "chunk_boundary" is the address of the first chunk boundary less
duke@435 315 // than "hard_end".
duke@435 316 HeapWord* chunk_boundary =
duke@435 317 (HeapWord*)align_size_down(intptr_t(_hard_end-1), ChunkSizeInBytes);
duke@435 318 assert(chunk_boundary < _hard_end, "Or else above did not work.");
duke@435 319 assert(pointer_delta(_true_end, chunk_boundary) >= AlignmentReserve,
duke@435 320 "Consequence of last card handling above.");
duke@435 321
duke@435 322 if (_top <= chunk_boundary) {
duke@435 323 assert(_true_end == _hard_end, "Invariant.");
duke@435 324 while (_top <= chunk_boundary) {
duke@435 325 assert(pointer_delta(_hard_end, chunk_boundary) >= AlignmentReserve,
duke@435 326 "Consequence of last card handling above.");
jcoomes@916 327 _bt.BlockOffsetArray::alloc_block(chunk_boundary, _hard_end);
jcoomes@916 328 CollectedHeap::fill_with_object(chunk_boundary, _hard_end);
jcoomes@916 329 _hard_end = chunk_boundary;
duke@435 330 chunk_boundary -= ChunkSizeInWords;
duke@435 331 }
duke@435 332 _end = _hard_end - AlignmentReserve;
duke@435 333 assert(_top <= _end, "Invariant.");
duke@435 334 // Now reset the initial filler chunk so it doesn't overlap with
duke@435 335 // the one(s) inserted above.
duke@435 336 MemRegion new_filler(pre_top, _hard_end);
duke@435 337 fill_region_with_block(new_filler, false);
duke@435 338 }
duke@435 339 } else {
duke@435 340 _retained = false;
duke@435 341 invalidate();
duke@435 342 }
duke@435 343 } else {
duke@435 344 assert(!end_of_gc ||
duke@435 345 (!_retained && _true_end == _hard_end), "Checking.");
duke@435 346 }
duke@435 347 assert(_end <= _hard_end, "Invariant.");
duke@435 348 assert(_top < _end || _top == _hard_end, "Invariant");
duke@435 349 }

mercurial