src/share/vm/gc_implementation/parNew/parGCAllocBuffer.cpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 548
ba764ed4b6f2
permissions
-rw-r--r--

Initial load

duke@435 1 /*
duke@435 2 * Copyright 2001-2006 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_parGCAllocBuffer.cpp.incl"
duke@435 27
duke@435 28 ParGCAllocBuffer::ParGCAllocBuffer(size_t desired_plab_sz_) :
duke@435 29 _word_sz(desired_plab_sz_), _bottom(NULL), _top(NULL),
duke@435 30 _end(NULL), _hard_end(NULL),
duke@435 31 _retained(false), _retained_filler(),
duke@435 32 _allocated(0), _wasted(0)
duke@435 33 {
duke@435 34 assert (min_size() > AlignmentReserve, "Inconsistency!");
duke@435 35 }
duke@435 36
duke@435 37 const size_t ParGCAllocBuffer::FillerHeaderSize =
duke@435 38 align_object_size(arrayOopDesc::header_size(T_INT));
duke@435 39
duke@435 40 // If the minimum object size is greater than MinObjAlignment, we can
duke@435 41 // end up with a shard at the end of the buffer that's smaller than
duke@435 42 // the smallest object. We can't allow that because the buffer must
duke@435 43 // look like it's full of objects when we retire it, so we make
duke@435 44 // sure we have enough space for a filler int array object.
duke@435 45 const size_t ParGCAllocBuffer::AlignmentReserve =
duke@435 46 oopDesc::header_size() > MinObjAlignment ? FillerHeaderSize : 0;
duke@435 47
duke@435 48 void ParGCAllocBuffer::retire(bool end_of_gc, bool retain) {
duke@435 49 assert(!retain || end_of_gc, "Can only retain at GC end.");
duke@435 50 if (_retained) {
duke@435 51 // If the buffer had been retained shorten the previous filler object.
duke@435 52 assert(_retained_filler.end() <= _top, "INVARIANT");
duke@435 53 SharedHeap::fill_region_with_object(_retained_filler);
duke@435 54 // Wasted space book-keeping, otherwise (normally) done in invalidate()
duke@435 55 _wasted += _retained_filler.word_size();
duke@435 56 _retained = false;
duke@435 57 }
duke@435 58 assert(!end_of_gc || !_retained, "At this point, end_of_gc ==> !_retained.");
duke@435 59 if (_top < _hard_end) {
duke@435 60 SharedHeap::fill_region_with_object(MemRegion(_top, _hard_end));
duke@435 61 if (!retain) {
duke@435 62 invalidate();
duke@435 63 } else {
duke@435 64 // Is there wasted space we'd like to retain for the next GC?
duke@435 65 if (pointer_delta(_end, _top) > FillerHeaderSize) {
duke@435 66 _retained = true;
duke@435 67 _retained_filler = MemRegion(_top, FillerHeaderSize);
duke@435 68 _top = _top + FillerHeaderSize;
duke@435 69 } else {
duke@435 70 invalidate();
duke@435 71 }
duke@435 72 }
duke@435 73 }
duke@435 74 }
duke@435 75
duke@435 76 void ParGCAllocBuffer::flush_stats(PLABStats* stats) {
duke@435 77 assert(ResizePLAB, "Wasted work");
duke@435 78 stats->add_allocated(_allocated);
duke@435 79 stats->add_wasted(_wasted);
duke@435 80 stats->add_unused(pointer_delta(_end, _top));
duke@435 81 }
duke@435 82
duke@435 83 // Compute desired plab size and latch result for later
duke@435 84 // use. This should be called once at the end of parallel
duke@435 85 // scavenge; it clears the sensor accumulators.
duke@435 86 void PLABStats::adjust_desired_plab_sz() {
duke@435 87 assert(ResizePLAB, "Not set");
duke@435 88 if (_allocated == 0) {
duke@435 89 assert(_unused == 0, "Inconsistency in PLAB stats");
duke@435 90 _allocated = 1;
duke@435 91 }
duke@435 92 double wasted_frac = (double)_unused/(double)_allocated;
duke@435 93 size_t target_refills = (size_t)((wasted_frac*TargetSurvivorRatio)/
duke@435 94 TargetPLABWastePct);
duke@435 95 if (target_refills == 0) {
duke@435 96 target_refills = 1;
duke@435 97 }
duke@435 98 _used = _allocated - _wasted - _unused;
duke@435 99 size_t plab_sz = _used/(target_refills*ParallelGCThreads);
duke@435 100 if (PrintPLAB) gclog_or_tty->print(" (plab_sz = %d ", plab_sz);
duke@435 101 // Take historical weighted average
duke@435 102 _filter.sample(plab_sz);
duke@435 103 // Clip from above and below, and align to object boundary
duke@435 104 plab_sz = MAX2(min_size(), (size_t)_filter.average());
duke@435 105 plab_sz = MIN2(max_size(), plab_sz);
duke@435 106 plab_sz = align_object_size(plab_sz);
duke@435 107 // Latch the result
duke@435 108 if (PrintPLAB) gclog_or_tty->print(" desired_plab_sz = %d) ", plab_sz);
duke@435 109 if (ResizePLAB) {
duke@435 110 _desired_plab_sz = plab_sz;
duke@435 111 }
duke@435 112 // Now clear the accumulators for next round:
duke@435 113 // note this needs to be fixed in the case where we
duke@435 114 // are retaining across scavenges. FIX ME !!! XXX
duke@435 115 _allocated = 0;
duke@435 116 _wasted = 0;
duke@435 117 _unused = 0;
duke@435 118 }
duke@435 119
duke@435 120 #ifndef PRODUCT
duke@435 121 void ParGCAllocBuffer::print() {
duke@435 122 gclog_or_tty->print("parGCAllocBuffer: _bottom: %p _top: %p _end: %p _hard_end: %p"
duke@435 123 "_retained: %c _retained_filler: [%p,%p)\n",
duke@435 124 _bottom, _top, _end, _hard_end,
duke@435 125 "FT"[_retained], _retained_filler.start(), _retained_filler.end());
duke@435 126 }
duke@435 127 #endif // !PRODUCT
duke@435 128
duke@435 129 const size_t ParGCAllocBufferWithBOT::ChunkSizeInWords =
duke@435 130 MIN2(CardTableModRefBS::par_chunk_heapword_alignment(),
duke@435 131 ((size_t)Generation::GenGrain)/HeapWordSize);
duke@435 132 const size_t ParGCAllocBufferWithBOT::ChunkSizeInBytes =
duke@435 133 MIN2(CardTableModRefBS::par_chunk_heapword_alignment() * HeapWordSize,
duke@435 134 (size_t)Generation::GenGrain);
duke@435 135
duke@435 136 ParGCAllocBufferWithBOT::ParGCAllocBufferWithBOT(size_t word_sz,
duke@435 137 BlockOffsetSharedArray* bsa) :
duke@435 138 ParGCAllocBuffer(word_sz),
duke@435 139 _bsa(bsa),
duke@435 140 _bt(bsa, MemRegion(_bottom, _hard_end)),
duke@435 141 _true_end(_hard_end)
duke@435 142 {}
duke@435 143
duke@435 144 // The buffer comes with its own BOT, with a shared (obviously) underlying
duke@435 145 // BlockOffsetSharedArray. We manipulate this BOT in the normal way
duke@435 146 // as we would for any contiguous space. However, on accasion we
duke@435 147 // need to do some buffer surgery at the extremities before we
duke@435 148 // start using the body of the buffer for allocations. Such surgery
duke@435 149 // (as explained elsewhere) is to prevent allocation on a card that
duke@435 150 // is in the process of being walked concurrently by another GC thread.
duke@435 151 // When such surgery happens at a point that is far removed (to the
duke@435 152 // right of the current allocation point, top), we use the "contig"
duke@435 153 // parameter below to directly manipulate the shared array without
duke@435 154 // modifying the _next_threshold state in the BOT.
duke@435 155 void ParGCAllocBufferWithBOT::fill_region_with_block(MemRegion mr,
duke@435 156 bool contig) {
duke@435 157 SharedHeap::fill_region_with_object(mr);
duke@435 158 if (contig) {
duke@435 159 _bt.alloc_block(mr.start(), mr.end());
duke@435 160 } else {
duke@435 161 _bt.BlockOffsetArray::alloc_block(mr.start(), mr.end());
duke@435 162 }
duke@435 163 }
duke@435 164
duke@435 165 HeapWord* ParGCAllocBufferWithBOT::allocate_slow(size_t word_sz) {
duke@435 166 HeapWord* res = NULL;
duke@435 167 if (_true_end > _hard_end) {
duke@435 168 assert((HeapWord*)align_size_down(intptr_t(_hard_end),
duke@435 169 ChunkSizeInBytes) == _hard_end,
duke@435 170 "or else _true_end should be equal to _hard_end");
duke@435 171 assert(_retained, "or else _true_end should be equal to _hard_end");
duke@435 172 assert(_retained_filler.end() <= _top, "INVARIANT");
duke@435 173 SharedHeap::fill_region_with_object(_retained_filler);
duke@435 174 if (_top < _hard_end) {
duke@435 175 fill_region_with_block(MemRegion(_top, _hard_end), true);
duke@435 176 }
duke@435 177 HeapWord* next_hard_end = MIN2(_true_end, _hard_end + ChunkSizeInWords);
duke@435 178 _retained_filler = MemRegion(_hard_end, FillerHeaderSize);
duke@435 179 _bt.alloc_block(_retained_filler.start(), _retained_filler.word_size());
duke@435 180 _top = _retained_filler.end();
duke@435 181 _hard_end = next_hard_end;
duke@435 182 _end = _hard_end - AlignmentReserve;
duke@435 183 res = ParGCAllocBuffer::allocate(word_sz);
duke@435 184 if (res != NULL) {
duke@435 185 _bt.alloc_block(res, word_sz);
duke@435 186 }
duke@435 187 }
duke@435 188 return res;
duke@435 189 }
duke@435 190
duke@435 191 void
duke@435 192 ParGCAllocBufferWithBOT::undo_allocation(HeapWord* obj, size_t word_sz) {
duke@435 193 ParGCAllocBuffer::undo_allocation(obj, word_sz);
duke@435 194 // This may back us up beyond the previous threshold, so reset.
duke@435 195 _bt.set_region(MemRegion(_top, _hard_end));
duke@435 196 _bt.initialize_threshold();
duke@435 197 }
duke@435 198
duke@435 199 void ParGCAllocBufferWithBOT::retire(bool end_of_gc, bool retain) {
duke@435 200 assert(!retain || end_of_gc, "Can only retain at GC end.");
duke@435 201 if (_retained) {
duke@435 202 // We're about to make the retained_filler into a block.
duke@435 203 _bt.BlockOffsetArray::alloc_block(_retained_filler.start(),
duke@435 204 _retained_filler.end());
duke@435 205 }
duke@435 206 // Reset _hard_end to _true_end (and update _end)
duke@435 207 if (retain && _hard_end != NULL) {
duke@435 208 assert(_hard_end <= _true_end, "Invariant.");
duke@435 209 _hard_end = _true_end;
duke@435 210 _end = MAX2(_top, _hard_end - AlignmentReserve);
duke@435 211 assert(_end <= _hard_end, "Invariant.");
duke@435 212 }
duke@435 213 _true_end = _hard_end;
duke@435 214 HeapWord* pre_top = _top;
duke@435 215
duke@435 216 ParGCAllocBuffer::retire(end_of_gc, retain);
duke@435 217 // Now any old _retained_filler is cut back to size, the free part is
duke@435 218 // filled with a filler object, and top is past the header of that
duke@435 219 // object.
duke@435 220
duke@435 221 if (retain && _top < _end) {
duke@435 222 assert(end_of_gc && retain, "Or else retain should be false.");
duke@435 223 // If the lab does not start on a card boundary, we don't want to
duke@435 224 // allocate onto that card, since that might lead to concurrent
duke@435 225 // allocation and card scanning, which we don't support. So we fill
duke@435 226 // the first card with a garbage object.
duke@435 227 size_t first_card_index = _bsa->index_for(pre_top);
duke@435 228 HeapWord* first_card_start = _bsa->address_for_index(first_card_index);
duke@435 229 if (first_card_start < pre_top) {
duke@435 230 HeapWord* second_card_start =
duke@435 231 _bsa->address_for_index(first_card_index + 1);
duke@435 232
duke@435 233 // Ensure enough room to fill with the smallest block
duke@435 234 second_card_start = MAX2(second_card_start, pre_top + AlignmentReserve);
duke@435 235
duke@435 236 // If the end is already in the first card, don't go beyond it!
duke@435 237 // Or if the remainder is too small for a filler object, gobble it up.
duke@435 238 if (_hard_end < second_card_start ||
duke@435 239 pointer_delta(_hard_end, second_card_start) < AlignmentReserve) {
duke@435 240 second_card_start = _hard_end;
duke@435 241 }
duke@435 242 if (pre_top < second_card_start) {
duke@435 243 MemRegion first_card_suffix(pre_top, second_card_start);
duke@435 244 fill_region_with_block(first_card_suffix, true);
duke@435 245 }
duke@435 246 pre_top = second_card_start;
duke@435 247 _top = pre_top;
duke@435 248 _end = MAX2(_top, _hard_end - AlignmentReserve);
duke@435 249 }
duke@435 250
duke@435 251 // If the lab does not end on a card boundary, we don't want to
duke@435 252 // allocate onto that card, since that might lead to concurrent
duke@435 253 // allocation and card scanning, which we don't support. So we fill
duke@435 254 // the last card with a garbage object.
duke@435 255 size_t last_card_index = _bsa->index_for(_hard_end);
duke@435 256 HeapWord* last_card_start = _bsa->address_for_index(last_card_index);
duke@435 257 if (last_card_start < _hard_end) {
duke@435 258
duke@435 259 // Ensure enough room to fill with the smallest block
duke@435 260 last_card_start = MIN2(last_card_start, _hard_end - AlignmentReserve);
duke@435 261
duke@435 262 // If the top is already in the last card, don't go back beyond it!
duke@435 263 // Or if the remainder is too small for a filler object, gobble it up.
duke@435 264 if (_top > last_card_start ||
duke@435 265 pointer_delta(last_card_start, _top) < AlignmentReserve) {
duke@435 266 last_card_start = _top;
duke@435 267 }
duke@435 268 if (last_card_start < _hard_end) {
duke@435 269 MemRegion last_card_prefix(last_card_start, _hard_end);
duke@435 270 fill_region_with_block(last_card_prefix, false);
duke@435 271 }
duke@435 272 _hard_end = last_card_start;
duke@435 273 _end = MAX2(_top, _hard_end - AlignmentReserve);
duke@435 274 _true_end = _hard_end;
duke@435 275 assert(_end <= _hard_end, "Invariant.");
duke@435 276 }
duke@435 277
duke@435 278 // At this point:
duke@435 279 // 1) we had a filler object from the original top to hard_end.
duke@435 280 // 2) We've filled in any partial cards at the front and back.
duke@435 281 if (pre_top < _hard_end) {
duke@435 282 // Now we can reset the _bt to do allocation in the given area.
duke@435 283 MemRegion new_filler(pre_top, _hard_end);
duke@435 284 fill_region_with_block(new_filler, false);
duke@435 285 _top = pre_top + ParGCAllocBuffer::FillerHeaderSize;
duke@435 286 // If there's no space left, don't retain.
duke@435 287 if (_top >= _end) {
duke@435 288 _retained = false;
duke@435 289 invalidate();
duke@435 290 return;
duke@435 291 }
duke@435 292 _retained_filler = MemRegion(pre_top, _top);
duke@435 293 _bt.set_region(MemRegion(_top, _hard_end));
duke@435 294 _bt.initialize_threshold();
duke@435 295 assert(_bt.threshold() > _top, "initialize_threshold failed!");
duke@435 296
duke@435 297 // There may be other reasons for queries into the middle of the
duke@435 298 // filler object. When such queries are done in parallel with
duke@435 299 // allocation, bad things can happen, if the query involves object
duke@435 300 // iteration. So we ensure that such queries do not involve object
duke@435 301 // iteration, by putting another filler object on the boundaries of
duke@435 302 // such queries. One such is the object spanning a parallel card
duke@435 303 // chunk boundary.
duke@435 304
duke@435 305 // "chunk_boundary" is the address of the first chunk boundary less
duke@435 306 // than "hard_end".
duke@435 307 HeapWord* chunk_boundary =
duke@435 308 (HeapWord*)align_size_down(intptr_t(_hard_end-1), ChunkSizeInBytes);
duke@435 309 assert(chunk_boundary < _hard_end, "Or else above did not work.");
duke@435 310 assert(pointer_delta(_true_end, chunk_boundary) >= AlignmentReserve,
duke@435 311 "Consequence of last card handling above.");
duke@435 312
duke@435 313 if (_top <= chunk_boundary) {
duke@435 314 assert(_true_end == _hard_end, "Invariant.");
duke@435 315 while (_top <= chunk_boundary) {
duke@435 316 assert(pointer_delta(_hard_end, chunk_boundary) >= AlignmentReserve,
duke@435 317 "Consequence of last card handling above.");
duke@435 318 MemRegion chunk_portion(chunk_boundary, _hard_end);
duke@435 319 _bt.BlockOffsetArray::alloc_block(chunk_portion.start(),
duke@435 320 chunk_portion.end());
duke@435 321 SharedHeap::fill_region_with_object(chunk_portion);
duke@435 322 _hard_end = chunk_portion.start();
duke@435 323 chunk_boundary -= ChunkSizeInWords;
duke@435 324 }
duke@435 325 _end = _hard_end - AlignmentReserve;
duke@435 326 assert(_top <= _end, "Invariant.");
duke@435 327 // Now reset the initial filler chunk so it doesn't overlap with
duke@435 328 // the one(s) inserted above.
duke@435 329 MemRegion new_filler(pre_top, _hard_end);
duke@435 330 fill_region_with_block(new_filler, false);
duke@435 331 }
duke@435 332 } else {
duke@435 333 _retained = false;
duke@435 334 invalidate();
duke@435 335 }
duke@435 336 } else {
duke@435 337 assert(!end_of_gc ||
duke@435 338 (!_retained && _true_end == _hard_end), "Checking.");
duke@435 339 }
duke@435 340 assert(_end <= _hard_end, "Invariant.");
duke@435 341 assert(_top < _end || _top == _hard_end, "Invariant");
duke@435 342 }

mercurial