src/share/vm/gc_implementation/shared/mutableNUMASpace.cpp

Wed, 23 Jan 2013 13:02:39 -0500

author
jprovino
date
Wed, 23 Jan 2013 13:02:39 -0500
changeset 4542
db9981fd3124
parent 4299
f34d701e952e
child 4739
ca9580859cf4
permissions
-rw-r--r--

8005915: Unify SERIALGC and INCLUDE_ALTERNATE_GCS
Summary: Rename INCLUDE_ALTERNATE_GCS to INCLUDE_ALL_GCS and replace SERIALGC with INCLUDE_ALL_GCS.
Reviewed-by: coleenp, stefank

duke@435 1
duke@435 2 /*
brutisso@3668 3 * Copyright (c) 2006, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 5 *
duke@435 6 * This code is free software; you can redistribute it and/or modify it
duke@435 7 * under the terms of the GNU General Public License version 2 only, as
duke@435 8 * published by the Free Software Foundation.
duke@435 9 *
duke@435 10 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 13 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 14 * accompanied this code).
duke@435 15 *
duke@435 16 * You should have received a copy of the GNU General Public License version
duke@435 17 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 19 *
trims@1907 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 21 * or visit www.oracle.com if you need additional information or have any
trims@1907 22 * questions.
duke@435 23 *
duke@435 24 */
duke@435 25
stefank@2314 26 #include "precompiled.hpp"
stefank@2314 27 #include "gc_implementation/shared/mutableNUMASpace.hpp"
stefank@2314 28 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 29 #include "memory/sharedHeap.hpp"
stefank@2314 30 #include "oops/oop.inline.hpp"
stefank@4299 31 #include "runtime/thread.inline.hpp"
duke@435 32
iveresov@970 33 MutableNUMASpace::MutableNUMASpace(size_t alignment) : MutableSpace(alignment) {
zgu@3900 34 _lgrp_spaces = new (ResourceObj::C_HEAP, mtGC) GrowableArray<LGRPSpace*>(0, true);
duke@435 35 _page_size = os::vm_page_size();
duke@435 36 _adaptation_cycles = 0;
duke@435 37 _samples_count = 0;
duke@435 38 update_layout(true);
duke@435 39 }
duke@435 40
duke@435 41 MutableNUMASpace::~MutableNUMASpace() {
duke@435 42 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 43 delete lgrp_spaces()->at(i);
duke@435 44 }
duke@435 45 delete lgrp_spaces();
duke@435 46 }
duke@435 47
jmasa@698 48 #ifndef PRODUCT
duke@435 49 void MutableNUMASpace::mangle_unused_area() {
jmasa@698 50 // This method should do nothing.
jmasa@698 51 // It can be called on a numa space during a full compaction.
duke@435 52 }
jmasa@698 53 void MutableNUMASpace::mangle_unused_area_complete() {
jmasa@698 54 // This method should do nothing.
jmasa@698 55 // It can be called on a numa space during a full compaction.
jmasa@698 56 }
jmasa@698 57 void MutableNUMASpace::mangle_region(MemRegion mr) {
jmasa@698 58 // This method should do nothing because numa spaces are not mangled.
jmasa@698 59 }
jmasa@698 60 void MutableNUMASpace::set_top_for_allocations(HeapWord* v) {
jmasa@698 61 assert(false, "Do not mangle MutableNUMASpace's");
jmasa@698 62 }
jmasa@698 63 void MutableNUMASpace::set_top_for_allocations() {
jmasa@698 64 // This method should do nothing.
jmasa@698 65 }
jmasa@698 66 void MutableNUMASpace::check_mangled_unused_area(HeapWord* limit) {
jmasa@698 67 // This method should do nothing.
jmasa@698 68 }
jmasa@698 69 void MutableNUMASpace::check_mangled_unused_area_complete() {
jmasa@698 70 // This method should do nothing.
jmasa@698 71 }
jmasa@698 72 #endif // NOT_PRODUCT
duke@435 73
duke@435 74 // There may be unallocated holes in the middle chunks
duke@435 75 // that should be filled with dead objects to ensure parseability.
duke@435 76 void MutableNUMASpace::ensure_parsability() {
duke@435 77 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 78 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 79 MutableSpace *s = ls->space();
twisti@1040 80 if (s->top() < top()) { // For all spaces preceding the one containing top()
duke@435 81 if (s->free_in_words() > 0) {
brutisso@3668 82 intptr_t cur_top = (intptr_t)s->top();
brutisso@3668 83 size_t words_left_to_fill = pointer_delta(s->end(), s->top());;
brutisso@3668 84 while (words_left_to_fill > 0) {
brutisso@3668 85 size_t words_to_fill = MIN2(words_left_to_fill, CollectedHeap::filler_array_max_size());
brutisso@3668 86 assert(words_to_fill >= CollectedHeap::min_fill_size(),
brutisso@3668 87 err_msg("Remaining size ("SIZE_FORMAT ") is too small to fill (based on " SIZE_FORMAT " and " SIZE_FORMAT ")",
brutisso@3668 88 words_to_fill, words_left_to_fill, CollectedHeap::filler_array_max_size()));
brutisso@3668 89 CollectedHeap::fill_with_object((HeapWord*)cur_top, words_to_fill);
brutisso@3668 90 if (!os::numa_has_static_binding()) {
brutisso@3668 91 size_t touched_words = words_to_fill;
duke@435 92 #ifndef ASSERT
brutisso@3668 93 if (!ZapUnusedHeapArea) {
brutisso@3668 94 touched_words = MIN2((size_t)align_object_size(typeArrayOopDesc::header_size(T_INT)),
brutisso@3668 95 touched_words);
brutisso@3668 96 }
duke@435 97 #endif
brutisso@3668 98 MemRegion invalid;
brutisso@3668 99 HeapWord *crossing_start = (HeapWord*)round_to(cur_top, os::vm_page_size());
brutisso@3668 100 HeapWord *crossing_end = (HeapWord*)round_to(cur_top + touched_words, os::vm_page_size());
brutisso@3668 101 if (crossing_start != crossing_end) {
brutisso@3668 102 // If object header crossed a small page boundary we mark the area
brutisso@3668 103 // as invalid rounding it to a page_size().
brutisso@3668 104 HeapWord *start = MAX2((HeapWord*)round_down(cur_top, page_size()), s->bottom());
brutisso@3668 105 HeapWord *end = MIN2((HeapWord*)round_to(cur_top + touched_words, page_size()), s->end());
brutisso@3668 106 invalid = MemRegion(start, end);
brutisso@3668 107 }
brutisso@3668 108
brutisso@3668 109 ls->add_invalid_region(invalid);
iveresov@576 110 }
brutisso@3668 111 cur_top = cur_top + (words_to_fill * HeapWordSize);
brutisso@3668 112 words_left_to_fill -= words_to_fill;
duke@435 113 }
duke@435 114 }
duke@435 115 } else {
iveresov@576 116 if (!os::numa_has_static_binding()) {
duke@435 117 #ifdef ASSERT
duke@435 118 MemRegion invalid(s->top(), s->end());
duke@435 119 ls->add_invalid_region(invalid);
iveresov@576 120 #else
iveresov@576 121 if (ZapUnusedHeapArea) {
iveresov@576 122 MemRegion invalid(s->top(), s->end());
iveresov@576 123 ls->add_invalid_region(invalid);
iveresov@579 124 } else {
iveresov@579 125 return;
iveresov@579 126 }
duke@435 127 #endif
iveresov@579 128 } else {
iveresov@579 129 return;
iveresov@576 130 }
duke@435 131 }
duke@435 132 }
duke@435 133 }
duke@435 134
duke@435 135 size_t MutableNUMASpace::used_in_words() const {
duke@435 136 size_t s = 0;
duke@435 137 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 138 s += lgrp_spaces()->at(i)->space()->used_in_words();
duke@435 139 }
duke@435 140 return s;
duke@435 141 }
duke@435 142
duke@435 143 size_t MutableNUMASpace::free_in_words() const {
duke@435 144 size_t s = 0;
duke@435 145 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 146 s += lgrp_spaces()->at(i)->space()->free_in_words();
duke@435 147 }
duke@435 148 return s;
duke@435 149 }
duke@435 150
duke@435 151
duke@435 152 size_t MutableNUMASpace::tlab_capacity(Thread *thr) const {
duke@435 153 guarantee(thr != NULL, "No thread");
duke@435 154 int lgrp_id = thr->lgrp_id();
iveresov@703 155 if (lgrp_id == -1) {
iveresov@703 156 // This case can occur after the topology of the system has
iveresov@703 157 // changed. Thread can change their location, the new home
iveresov@703 158 // group will be determined during the first allocation
iveresov@703 159 // attempt. For now we can safely assume that all spaces
iveresov@703 160 // have equal size because the whole space will be reinitialized.
iveresov@703 161 if (lgrp_spaces()->length() > 0) {
iveresov@703 162 return capacity_in_bytes() / lgrp_spaces()->length();
iveresov@703 163 } else {
iveresov@703 164 assert(false, "There should be at least one locality group");
iveresov@703 165 return 0;
iveresov@703 166 }
iveresov@703 167 }
iveresov@703 168 // That's the normal case, where we know the locality group of the thread.
duke@435 169 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
duke@435 170 if (i == -1) {
duke@435 171 return 0;
duke@435 172 }
duke@435 173 return lgrp_spaces()->at(i)->space()->capacity_in_bytes();
duke@435 174 }
duke@435 175
duke@435 176 size_t MutableNUMASpace::unsafe_max_tlab_alloc(Thread *thr) const {
iveresov@703 177 // Please see the comments for tlab_capacity().
duke@435 178 guarantee(thr != NULL, "No thread");
duke@435 179 int lgrp_id = thr->lgrp_id();
iveresov@703 180 if (lgrp_id == -1) {
iveresov@703 181 if (lgrp_spaces()->length() > 0) {
iveresov@703 182 return free_in_bytes() / lgrp_spaces()->length();
iveresov@703 183 } else {
iveresov@703 184 assert(false, "There should be at least one locality group");
iveresov@703 185 return 0;
iveresov@703 186 }
iveresov@703 187 }
duke@435 188 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
duke@435 189 if (i == -1) {
duke@435 190 return 0;
duke@435 191 }
duke@435 192 return lgrp_spaces()->at(i)->space()->free_in_bytes();
duke@435 193 }
duke@435 194
iveresov@808 195
iveresov@808 196 size_t MutableNUMASpace::capacity_in_words(Thread* thr) const {
iveresov@808 197 guarantee(thr != NULL, "No thread");
iveresov@808 198 int lgrp_id = thr->lgrp_id();
iveresov@808 199 if (lgrp_id == -1) {
iveresov@808 200 if (lgrp_spaces()->length() > 0) {
iveresov@808 201 return capacity_in_words() / lgrp_spaces()->length();
iveresov@808 202 } else {
iveresov@808 203 assert(false, "There should be at least one locality group");
iveresov@808 204 return 0;
iveresov@808 205 }
iveresov@808 206 }
iveresov@808 207 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
iveresov@808 208 if (i == -1) {
iveresov@808 209 return 0;
iveresov@808 210 }
iveresov@808 211 return lgrp_spaces()->at(i)->space()->capacity_in_words();
iveresov@808 212 }
iveresov@808 213
duke@435 214 // Check if the NUMA topology has changed. Add and remove spaces if needed.
duke@435 215 // The update can be forced by setting the force parameter equal to true.
duke@435 216 bool MutableNUMASpace::update_layout(bool force) {
duke@435 217 // Check if the topology had changed.
duke@435 218 bool changed = os::numa_topology_changed();
duke@435 219 if (force || changed) {
duke@435 220 // Compute lgrp intersection. Add/remove spaces.
duke@435 221 int lgrp_limit = (int)os::numa_get_groups_num();
zgu@3900 222 int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtGC);
duke@435 223 int lgrp_num = (int)os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
duke@435 224 assert(lgrp_num > 0, "There should be at least one locality group");
duke@435 225 // Add new spaces for the new nodes
duke@435 226 for (int i = 0; i < lgrp_num; i++) {
duke@435 227 bool found = false;
duke@435 228 for (int j = 0; j < lgrp_spaces()->length(); j++) {
duke@435 229 if (lgrp_spaces()->at(j)->lgrp_id() == lgrp_ids[i]) {
duke@435 230 found = true;
duke@435 231 break;
duke@435 232 }
duke@435 233 }
duke@435 234 if (!found) {
iveresov@970 235 lgrp_spaces()->append(new LGRPSpace(lgrp_ids[i], alignment()));
duke@435 236 }
duke@435 237 }
duke@435 238
duke@435 239 // Remove spaces for the removed nodes.
duke@435 240 for (int i = 0; i < lgrp_spaces()->length();) {
duke@435 241 bool found = false;
duke@435 242 for (int j = 0; j < lgrp_num; j++) {
duke@435 243 if (lgrp_spaces()->at(i)->lgrp_id() == lgrp_ids[j]) {
duke@435 244 found = true;
duke@435 245 break;
duke@435 246 }
duke@435 247 }
duke@435 248 if (!found) {
duke@435 249 delete lgrp_spaces()->at(i);
duke@435 250 lgrp_spaces()->remove_at(i);
duke@435 251 } else {
duke@435 252 i++;
duke@435 253 }
duke@435 254 }
duke@435 255
zgu@3900 256 FREE_C_HEAP_ARRAY(int, lgrp_ids, mtGC);
duke@435 257
duke@435 258 if (changed) {
duke@435 259 for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
duke@435 260 thread->set_lgrp_id(-1);
duke@435 261 }
duke@435 262 }
duke@435 263 return true;
duke@435 264 }
duke@435 265 return false;
duke@435 266 }
duke@435 267
duke@435 268 // Bias region towards the first-touching lgrp. Set the right page sizes.
iveresov@576 269 void MutableNUMASpace::bias_region(MemRegion mr, int lgrp_id) {
duke@435 270 HeapWord *start = (HeapWord*)round_to((intptr_t)mr.start(), page_size());
duke@435 271 HeapWord *end = (HeapWord*)round_down((intptr_t)mr.end(), page_size());
duke@435 272 if (end > start) {
duke@435 273 MemRegion aligned_region(start, end);
duke@435 274 assert((intptr_t)aligned_region.start() % page_size() == 0 &&
duke@435 275 (intptr_t)aligned_region.byte_size() % page_size() == 0, "Bad alignment");
duke@435 276 assert(region().contains(aligned_region), "Sanity");
iveresov@576 277 // First we tell the OS which page size we want in the given range. The underlying
iveresov@576 278 // large page can be broken down if we require small pages.
iveresov@576 279 os::realign_memory((char*)aligned_region.start(), aligned_region.byte_size(), page_size());
iveresov@576 280 // Then we uncommit the pages in the range.
iveresov@3363 281 os::free_memory((char*)aligned_region.start(), aligned_region.byte_size(), page_size());
iveresov@576 282 // And make them local/first-touch biased.
iveresov@576 283 os::numa_make_local((char*)aligned_region.start(), aligned_region.byte_size(), lgrp_id);
duke@435 284 }
duke@435 285 }
duke@435 286
duke@435 287 // Free all pages in the region.
duke@435 288 void MutableNUMASpace::free_region(MemRegion mr) {
duke@435 289 HeapWord *start = (HeapWord*)round_to((intptr_t)mr.start(), page_size());
duke@435 290 HeapWord *end = (HeapWord*)round_down((intptr_t)mr.end(), page_size());
duke@435 291 if (end > start) {
duke@435 292 MemRegion aligned_region(start, end);
duke@435 293 assert((intptr_t)aligned_region.start() % page_size() == 0 &&
duke@435 294 (intptr_t)aligned_region.byte_size() % page_size() == 0, "Bad alignment");
duke@435 295 assert(region().contains(aligned_region), "Sanity");
iveresov@3363 296 os::free_memory((char*)aligned_region.start(), aligned_region.byte_size(), page_size());
duke@435 297 }
duke@435 298 }
duke@435 299
duke@435 300 // Update space layout. Perform adaptation.
duke@435 301 void MutableNUMASpace::update() {
duke@435 302 if (update_layout(false)) {
duke@435 303 // If the topology has changed, make all chunks zero-sized.
iveresov@703 304 // And clear the alloc-rate statistics.
iveresov@703 305 // In future we may want to handle this more gracefully in order
iveresov@703 306 // to avoid the reallocation of the pages as much as possible.
duke@435 307 for (int i = 0; i < lgrp_spaces()->length(); i++) {
iveresov@703 308 LGRPSpace *ls = lgrp_spaces()->at(i);
iveresov@703 309 MutableSpace *s = ls->space();
duke@435 310 s->set_end(s->bottom());
duke@435 311 s->set_top(s->bottom());
iveresov@703 312 ls->clear_alloc_rate();
duke@435 313 }
jmasa@698 314 // A NUMA space is never mangled
jmasa@698 315 initialize(region(),
jmasa@698 316 SpaceDecorator::Clear,
jmasa@698 317 SpaceDecorator::DontMangle);
duke@435 318 } else {
duke@435 319 bool should_initialize = false;
iveresov@576 320 if (!os::numa_has_static_binding()) {
iveresov@576 321 for (int i = 0; i < lgrp_spaces()->length(); i++) {
iveresov@576 322 if (!lgrp_spaces()->at(i)->invalid_region().is_empty()) {
iveresov@576 323 should_initialize = true;
iveresov@576 324 break;
iveresov@576 325 }
duke@435 326 }
duke@435 327 }
duke@435 328
duke@435 329 if (should_initialize ||
duke@435 330 (UseAdaptiveNUMAChunkSizing && adaptation_cycles() < samples_count())) {
jmasa@698 331 // A NUMA space is never mangled
jmasa@698 332 initialize(region(),
jmasa@698 333 SpaceDecorator::Clear,
jmasa@698 334 SpaceDecorator::DontMangle);
duke@435 335 }
duke@435 336 }
duke@435 337
duke@435 338 if (NUMAStats) {
duke@435 339 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 340 lgrp_spaces()->at(i)->accumulate_statistics(page_size());
duke@435 341 }
duke@435 342 }
duke@435 343
duke@435 344 scan_pages(NUMAPageScanRate);
duke@435 345 }
duke@435 346
duke@435 347 // Scan pages. Free pages that have smaller size or wrong placement.
duke@435 348 void MutableNUMASpace::scan_pages(size_t page_count)
duke@435 349 {
duke@435 350 size_t pages_per_chunk = page_count / lgrp_spaces()->length();
duke@435 351 if (pages_per_chunk > 0) {
duke@435 352 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 353 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 354 ls->scan_pages(page_size(), pages_per_chunk);
duke@435 355 }
duke@435 356 }
duke@435 357 }
duke@435 358
duke@435 359 // Accumulate statistics about the allocation rate of each lgrp.
duke@435 360 void MutableNUMASpace::accumulate_statistics() {
duke@435 361 if (UseAdaptiveNUMAChunkSizing) {
duke@435 362 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 363 lgrp_spaces()->at(i)->sample();
duke@435 364 }
duke@435 365 increment_samples_count();
duke@435 366 }
duke@435 367
duke@435 368 if (NUMAStats) {
duke@435 369 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 370 lgrp_spaces()->at(i)->accumulate_statistics(page_size());
duke@435 371 }
duke@435 372 }
duke@435 373 }
duke@435 374
duke@435 375 // Get the current size of a chunk.
duke@435 376 // This function computes the size of the chunk based on the
duke@435 377 // difference between chunk ends. This allows it to work correctly in
duke@435 378 // case the whole space is resized and during the process of adaptive
duke@435 379 // chunk resizing.
duke@435 380 size_t MutableNUMASpace::current_chunk_size(int i) {
duke@435 381 HeapWord *cur_end, *prev_end;
duke@435 382 if (i == 0) {
duke@435 383 prev_end = bottom();
duke@435 384 } else {
duke@435 385 prev_end = lgrp_spaces()->at(i - 1)->space()->end();
duke@435 386 }
duke@435 387 if (i == lgrp_spaces()->length() - 1) {
duke@435 388 cur_end = end();
duke@435 389 } else {
duke@435 390 cur_end = lgrp_spaces()->at(i)->space()->end();
duke@435 391 }
duke@435 392 if (cur_end > prev_end) {
duke@435 393 return pointer_delta(cur_end, prev_end, sizeof(char));
duke@435 394 }
duke@435 395 return 0;
duke@435 396 }
duke@435 397
duke@435 398 // Return the default chunk size by equally diving the space.
duke@435 399 // page_size() aligned.
duke@435 400 size_t MutableNUMASpace::default_chunk_size() {
duke@435 401 return base_space_size() / lgrp_spaces()->length() * page_size();
duke@435 402 }
duke@435 403
duke@435 404 // Produce a new chunk size. page_size() aligned.
iveresov@826 405 // This function is expected to be called on sequence of i's from 0 to
iveresov@826 406 // lgrp_spaces()->length().
duke@435 407 size_t MutableNUMASpace::adaptive_chunk_size(int i, size_t limit) {
duke@435 408 size_t pages_available = base_space_size();
duke@435 409 for (int j = 0; j < i; j++) {
duke@435 410 pages_available -= round_down(current_chunk_size(j), page_size()) / page_size();
duke@435 411 }
duke@435 412 pages_available -= lgrp_spaces()->length() - i - 1;
duke@435 413 assert(pages_available > 0, "No pages left");
duke@435 414 float alloc_rate = 0;
duke@435 415 for (int j = i; j < lgrp_spaces()->length(); j++) {
duke@435 416 alloc_rate += lgrp_spaces()->at(j)->alloc_rate()->average();
duke@435 417 }
duke@435 418 size_t chunk_size = 0;
duke@435 419 if (alloc_rate > 0) {
duke@435 420 LGRPSpace *ls = lgrp_spaces()->at(i);
iveresov@826 421 chunk_size = (size_t)(ls->alloc_rate()->average() / alloc_rate * pages_available) * page_size();
duke@435 422 }
duke@435 423 chunk_size = MAX2(chunk_size, page_size());
duke@435 424
duke@435 425 if (limit > 0) {
duke@435 426 limit = round_down(limit, page_size());
duke@435 427 if (chunk_size > current_chunk_size(i)) {
iveresov@897 428 size_t upper_bound = pages_available * page_size();
iveresov@897 429 if (upper_bound > limit &&
iveresov@897 430 current_chunk_size(i) < upper_bound - limit) {
iveresov@897 431 // The resulting upper bound should not exceed the available
iveresov@897 432 // amount of memory (pages_available * page_size()).
iveresov@897 433 upper_bound = current_chunk_size(i) + limit;
iveresov@897 434 }
iveresov@897 435 chunk_size = MIN2(chunk_size, upper_bound);
duke@435 436 } else {
iveresov@897 437 size_t lower_bound = page_size();
iveresov@897 438 if (current_chunk_size(i) > limit) { // lower_bound shouldn't underflow.
iveresov@897 439 lower_bound = current_chunk_size(i) - limit;
iveresov@897 440 }
iveresov@897 441 chunk_size = MAX2(chunk_size, lower_bound);
duke@435 442 }
duke@435 443 }
duke@435 444 assert(chunk_size <= pages_available * page_size(), "Chunk size out of range");
duke@435 445 return chunk_size;
duke@435 446 }
duke@435 447
duke@435 448
duke@435 449 // Return the bottom_region and the top_region. Align them to page_size() boundary.
duke@435 450 // |------------------new_region---------------------------------|
duke@435 451 // |----bottom_region--|---intersection---|------top_region------|
duke@435 452 void MutableNUMASpace::select_tails(MemRegion new_region, MemRegion intersection,
duke@435 453 MemRegion* bottom_region, MemRegion *top_region) {
duke@435 454 // Is there bottom?
duke@435 455 if (new_region.start() < intersection.start()) { // Yes
duke@435 456 // Try to coalesce small pages into a large one.
iveresov@970 457 if (UseLargePages && page_size() >= alignment()) {
iveresov@970 458 HeapWord* p = (HeapWord*)round_to((intptr_t) intersection.start(), alignment());
duke@435 459 if (new_region.contains(p)
iveresov@970 460 && pointer_delta(p, new_region.start(), sizeof(char)) >= alignment()) {
duke@435 461 if (intersection.contains(p)) {
duke@435 462 intersection = MemRegion(p, intersection.end());
duke@435 463 } else {
duke@435 464 intersection = MemRegion(p, p);
duke@435 465 }
duke@435 466 }
duke@435 467 }
duke@435 468 *bottom_region = MemRegion(new_region.start(), intersection.start());
duke@435 469 } else {
duke@435 470 *bottom_region = MemRegion();
duke@435 471 }
duke@435 472
duke@435 473 // Is there top?
duke@435 474 if (intersection.end() < new_region.end()) { // Yes
duke@435 475 // Try to coalesce small pages into a large one.
iveresov@970 476 if (UseLargePages && page_size() >= alignment()) {
iveresov@970 477 HeapWord* p = (HeapWord*)round_down((intptr_t) intersection.end(), alignment());
duke@435 478 if (new_region.contains(p)
iveresov@970 479 && pointer_delta(new_region.end(), p, sizeof(char)) >= alignment()) {
duke@435 480 if (intersection.contains(p)) {
duke@435 481 intersection = MemRegion(intersection.start(), p);
duke@435 482 } else {
duke@435 483 intersection = MemRegion(p, p);
duke@435 484 }
duke@435 485 }
duke@435 486 }
duke@435 487 *top_region = MemRegion(intersection.end(), new_region.end());
duke@435 488 } else {
duke@435 489 *top_region = MemRegion();
duke@435 490 }
duke@435 491 }
duke@435 492
duke@435 493 // Try to merge the invalid region with the bottom or top region by decreasing
duke@435 494 // the intersection area. Return the invalid_region aligned to the page_size()
duke@435 495 // boundary if it's inside the intersection. Return non-empty invalid_region
duke@435 496 // if it lies inside the intersection (also page-aligned).
duke@435 497 // |------------------new_region---------------------------------|
duke@435 498 // |----------------|-------invalid---|--------------------------|
duke@435 499 // |----bottom_region--|---intersection---|------top_region------|
duke@435 500 void MutableNUMASpace::merge_regions(MemRegion new_region, MemRegion* intersection,
duke@435 501 MemRegion *invalid_region) {
duke@435 502 if (intersection->start() >= invalid_region->start() && intersection->contains(invalid_region->end())) {
duke@435 503 *intersection = MemRegion(invalid_region->end(), intersection->end());
duke@435 504 *invalid_region = MemRegion();
duke@435 505 } else
duke@435 506 if (intersection->end() <= invalid_region->end() && intersection->contains(invalid_region->start())) {
duke@435 507 *intersection = MemRegion(intersection->start(), invalid_region->start());
duke@435 508 *invalid_region = MemRegion();
duke@435 509 } else
duke@435 510 if (intersection->equals(*invalid_region) || invalid_region->contains(*intersection)) {
duke@435 511 *intersection = MemRegion(new_region.start(), new_region.start());
duke@435 512 *invalid_region = MemRegion();
duke@435 513 } else
duke@435 514 if (intersection->contains(invalid_region)) {
duke@435 515 // That's the only case we have to make an additional bias_region() call.
duke@435 516 HeapWord* start = invalid_region->start();
duke@435 517 HeapWord* end = invalid_region->end();
iveresov@970 518 if (UseLargePages && page_size() >= alignment()) {
iveresov@970 519 HeapWord *p = (HeapWord*)round_down((intptr_t) start, alignment());
duke@435 520 if (new_region.contains(p)) {
duke@435 521 start = p;
duke@435 522 }
iveresov@970 523 p = (HeapWord*)round_to((intptr_t) end, alignment());
duke@435 524 if (new_region.contains(end)) {
duke@435 525 end = p;
duke@435 526 }
duke@435 527 }
duke@435 528 if (intersection->start() > start) {
duke@435 529 *intersection = MemRegion(start, intersection->end());
duke@435 530 }
duke@435 531 if (intersection->end() < end) {
duke@435 532 *intersection = MemRegion(intersection->start(), end);
duke@435 533 }
duke@435 534 *invalid_region = MemRegion(start, end);
duke@435 535 }
duke@435 536 }
duke@435 537
jmasa@698 538 void MutableNUMASpace::initialize(MemRegion mr,
jmasa@698 539 bool clear_space,
iveresov@970 540 bool mangle_space,
iveresov@970 541 bool setup_pages) {
duke@435 542 assert(clear_space, "Reallocation will destory data!");
duke@435 543 assert(lgrp_spaces()->length() > 0, "There should be at least one space");
duke@435 544
duke@435 545 MemRegion old_region = region(), new_region;
duke@435 546 set_bottom(mr.start());
duke@435 547 set_end(mr.end());
jmasa@698 548 // Must always clear the space
jmasa@698 549 clear(SpaceDecorator::DontMangle);
duke@435 550
duke@435 551 // Compute chunk sizes
duke@435 552 size_t prev_page_size = page_size();
iveresov@970 553 set_page_size(UseLargePages ? alignment() : os::vm_page_size());
duke@435 554 HeapWord* rounded_bottom = (HeapWord*)round_to((intptr_t) bottom(), page_size());
duke@435 555 HeapWord* rounded_end = (HeapWord*)round_down((intptr_t) end(), page_size());
duke@435 556 size_t base_space_size_pages = pointer_delta(rounded_end, rounded_bottom, sizeof(char)) / page_size();
duke@435 557
duke@435 558 // Try small pages if the chunk size is too small
duke@435 559 if (base_space_size_pages / lgrp_spaces()->length() == 0
duke@435 560 && page_size() > (size_t)os::vm_page_size()) {
duke@435 561 set_page_size(os::vm_page_size());
duke@435 562 rounded_bottom = (HeapWord*)round_to((intptr_t) bottom(), page_size());
duke@435 563 rounded_end = (HeapWord*)round_down((intptr_t) end(), page_size());
duke@435 564 base_space_size_pages = pointer_delta(rounded_end, rounded_bottom, sizeof(char)) / page_size();
duke@435 565 }
duke@435 566 guarantee(base_space_size_pages / lgrp_spaces()->length() > 0, "Space too small");
duke@435 567 set_base_space_size(base_space_size_pages);
duke@435 568
duke@435 569 // Handle space resize
duke@435 570 MemRegion top_region, bottom_region;
duke@435 571 if (!old_region.equals(region())) {
duke@435 572 new_region = MemRegion(rounded_bottom, rounded_end);
duke@435 573 MemRegion intersection = new_region.intersection(old_region);
duke@435 574 if (intersection.start() == NULL ||
duke@435 575 intersection.end() == NULL ||
duke@435 576 prev_page_size > page_size()) { // If the page size got smaller we have to change
duke@435 577 // the page size preference for the whole space.
duke@435 578 intersection = MemRegion(new_region.start(), new_region.start());
duke@435 579 }
duke@435 580 select_tails(new_region, intersection, &bottom_region, &top_region);
iveresov@576 581 bias_region(bottom_region, lgrp_spaces()->at(0)->lgrp_id());
iveresov@576 582 bias_region(top_region, lgrp_spaces()->at(lgrp_spaces()->length() - 1)->lgrp_id());
duke@435 583 }
duke@435 584
duke@435 585 // Check if the space layout has changed significantly?
duke@435 586 // This happens when the space has been resized so that either head or tail
duke@435 587 // chunk became less than a page.
duke@435 588 bool layout_valid = UseAdaptiveNUMAChunkSizing &&
duke@435 589 current_chunk_size(0) > page_size() &&
duke@435 590 current_chunk_size(lgrp_spaces()->length() - 1) > page_size();
duke@435 591
duke@435 592
duke@435 593 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 594 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 595 MutableSpace *s = ls->space();
duke@435 596 old_region = s->region();
duke@435 597
duke@435 598 size_t chunk_byte_size = 0, old_chunk_byte_size = 0;
duke@435 599 if (i < lgrp_spaces()->length() - 1) {
duke@435 600 if (!UseAdaptiveNUMAChunkSizing ||
duke@435 601 (UseAdaptiveNUMAChunkSizing && NUMAChunkResizeWeight == 0) ||
duke@435 602 samples_count() < AdaptiveSizePolicyReadyThreshold) {
duke@435 603 // No adaptation. Divide the space equally.
duke@435 604 chunk_byte_size = default_chunk_size();
duke@435 605 } else
duke@435 606 if (!layout_valid || NUMASpaceResizeRate == 0) {
duke@435 607 // Fast adaptation. If no space resize rate is set, resize
duke@435 608 // the chunks instantly.
duke@435 609 chunk_byte_size = adaptive_chunk_size(i, 0);
duke@435 610 } else {
duke@435 611 // Slow adaptation. Resize the chunks moving no more than
duke@435 612 // NUMASpaceResizeRate bytes per collection.
duke@435 613 size_t limit = NUMASpaceResizeRate /
duke@435 614 (lgrp_spaces()->length() * (lgrp_spaces()->length() + 1) / 2);
duke@435 615 chunk_byte_size = adaptive_chunk_size(i, MAX2(limit * (i + 1), page_size()));
duke@435 616 }
duke@435 617
duke@435 618 assert(chunk_byte_size >= page_size(), "Chunk size too small");
duke@435 619 assert(chunk_byte_size <= capacity_in_bytes(), "Sanity check");
duke@435 620 }
duke@435 621
duke@435 622 if (i == 0) { // Bottom chunk
duke@435 623 if (i != lgrp_spaces()->length() - 1) {
duke@435 624 new_region = MemRegion(bottom(), rounded_bottom + (chunk_byte_size >> LogHeapWordSize));
duke@435 625 } else {
duke@435 626 new_region = MemRegion(bottom(), end());
duke@435 627 }
duke@435 628 } else
duke@435 629 if (i < lgrp_spaces()->length() - 1) { // Middle chunks
duke@435 630 MutableSpace *ps = lgrp_spaces()->at(i - 1)->space();
duke@435 631 new_region = MemRegion(ps->end(),
duke@435 632 ps->end() + (chunk_byte_size >> LogHeapWordSize));
duke@435 633 } else { // Top chunk
duke@435 634 MutableSpace *ps = lgrp_spaces()->at(i - 1)->space();
duke@435 635 new_region = MemRegion(ps->end(), end());
duke@435 636 }
duke@435 637 guarantee(region().contains(new_region), "Region invariant");
duke@435 638
duke@435 639
duke@435 640 // The general case:
duke@435 641 // |---------------------|--invalid---|--------------------------|
duke@435 642 // |------------------new_region---------------------------------|
duke@435 643 // |----bottom_region--|---intersection---|------top_region------|
duke@435 644 // |----old_region----|
duke@435 645 // The intersection part has all pages in place we don't need to migrate them.
duke@435 646 // Pages for the top and bottom part should be freed and then reallocated.
duke@435 647
duke@435 648 MemRegion intersection = old_region.intersection(new_region);
duke@435 649
duke@435 650 if (intersection.start() == NULL || intersection.end() == NULL) {
duke@435 651 intersection = MemRegion(new_region.start(), new_region.start());
duke@435 652 }
duke@435 653
iveresov@576 654 if (!os::numa_has_static_binding()) {
iveresov@576 655 MemRegion invalid_region = ls->invalid_region().intersection(new_region);
iveresov@576 656 // Invalid region is a range of memory that could've possibly
iveresov@576 657 // been allocated on the other node. That's relevant only on Solaris where
iveresov@576 658 // there is no static memory binding.
iveresov@576 659 if (!invalid_region.is_empty()) {
iveresov@576 660 merge_regions(new_region, &intersection, &invalid_region);
iveresov@576 661 free_region(invalid_region);
iveresov@576 662 ls->set_invalid_region(MemRegion());
iveresov@576 663 }
duke@435 664 }
iveresov@576 665
duke@435 666 select_tails(new_region, intersection, &bottom_region, &top_region);
iveresov@576 667
iveresov@576 668 if (!os::numa_has_static_binding()) {
iveresov@576 669 // If that's a system with the first-touch policy then it's enough
iveresov@576 670 // to free the pages.
iveresov@576 671 free_region(bottom_region);
iveresov@576 672 free_region(top_region);
iveresov@576 673 } else {
iveresov@576 674 // In a system with static binding we have to change the bias whenever
iveresov@576 675 // we reshape the heap.
iveresov@576 676 bias_region(bottom_region, ls->lgrp_id());
iveresov@576 677 bias_region(top_region, ls->lgrp_id());
iveresov@576 678 }
duke@435 679
jmasa@698 680 // Clear space (set top = bottom) but never mangle.
iveresov@970 681 s->initialize(new_region, SpaceDecorator::Clear, SpaceDecorator::DontMangle, MutableSpace::DontSetupPages);
duke@435 682
duke@435 683 set_adaptation_cycles(samples_count());
duke@435 684 }
duke@435 685 }
duke@435 686
duke@435 687 // Set the top of the whole space.
duke@435 688 // Mark the the holes in chunks below the top() as invalid.
duke@435 689 void MutableNUMASpace::set_top(HeapWord* value) {
duke@435 690 bool found_top = false;
iveresov@625 691 for (int i = 0; i < lgrp_spaces()->length();) {
duke@435 692 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 693 MutableSpace *s = ls->space();
duke@435 694 HeapWord *top = MAX2((HeapWord*)round_down((intptr_t)s->top(), page_size()), s->bottom());
duke@435 695
duke@435 696 if (s->contains(value)) {
iveresov@625 697 // Check if setting the chunk's top to a given value would create a hole less than
iveresov@625 698 // a minimal object; assuming that's not the last chunk in which case we don't care.
iveresov@625 699 if (i < lgrp_spaces()->length() - 1) {
iveresov@625 700 size_t remainder = pointer_delta(s->end(), value);
jcoomes@916 701 const size_t min_fill_size = CollectedHeap::min_fill_size();
jcoomes@916 702 if (remainder < min_fill_size && remainder > 0) {
jcoomes@916 703 // Add a minimum size filler object; it will cross the chunk boundary.
jcoomes@916 704 CollectedHeap::fill_with_object(value, min_fill_size);
jcoomes@916 705 value += min_fill_size;
iveresov@625 706 assert(!s->contains(value), "Should be in the next chunk");
iveresov@625 707 // Restart the loop from the same chunk, since the value has moved
iveresov@625 708 // to the next one.
iveresov@625 709 continue;
iveresov@625 710 }
iveresov@625 711 }
iveresov@625 712
iveresov@576 713 if (!os::numa_has_static_binding() && top < value && top < s->end()) {
duke@435 714 ls->add_invalid_region(MemRegion(top, value));
duke@435 715 }
duke@435 716 s->set_top(value);
duke@435 717 found_top = true;
duke@435 718 } else {
duke@435 719 if (found_top) {
duke@435 720 s->set_top(s->bottom());
duke@435 721 } else {
iveresov@576 722 if (!os::numa_has_static_binding() && top < s->end()) {
iveresov@576 723 ls->add_invalid_region(MemRegion(top, s->end()));
iveresov@576 724 }
iveresov@576 725 s->set_top(s->end());
duke@435 726 }
duke@435 727 }
iveresov@625 728 i++;
duke@435 729 }
duke@435 730 MutableSpace::set_top(value);
duke@435 731 }
duke@435 732
jmasa@698 733 void MutableNUMASpace::clear(bool mangle_space) {
duke@435 734 MutableSpace::set_top(bottom());
duke@435 735 for (int i = 0; i < lgrp_spaces()->length(); i++) {
jmasa@698 736 // Never mangle NUMA spaces because the mangling will
jmasa@698 737 // bind the memory to a possibly unwanted lgroup.
jmasa@698 738 lgrp_spaces()->at(i)->space()->clear(SpaceDecorator::DontMangle);
duke@435 739 }
duke@435 740 }
duke@435 741
iveresov@576 742 /*
iveresov@576 743 Linux supports static memory binding, therefore the most part of the
iveresov@576 744 logic dealing with the possible invalid page allocation is effectively
iveresov@576 745 disabled. Besides there is no notion of the home node in Linux. A
iveresov@576 746 thread is allowed to migrate freely. Although the scheduler is rather
iveresov@576 747 reluctant to move threads between the nodes. We check for the current
iveresov@576 748 node every allocation. And with a high probability a thread stays on
iveresov@576 749 the same node for some time allowing local access to recently allocated
iveresov@576 750 objects.
iveresov@576 751 */
iveresov@576 752
duke@435 753 HeapWord* MutableNUMASpace::allocate(size_t size) {
iveresov@576 754 Thread* thr = Thread::current();
iveresov@576 755 int lgrp_id = thr->lgrp_id();
iveresov@576 756 if (lgrp_id == -1 || !os::numa_has_group_homing()) {
duke@435 757 lgrp_id = os::numa_get_group_id();
iveresov@576 758 thr->set_lgrp_id(lgrp_id);
duke@435 759 }
duke@435 760
duke@435 761 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
duke@435 762
duke@435 763 // It is possible that a new CPU has been hotplugged and
duke@435 764 // we haven't reshaped the space accordingly.
duke@435 765 if (i == -1) {
duke@435 766 i = os::random() % lgrp_spaces()->length();
duke@435 767 }
duke@435 768
iveresov@808 769 LGRPSpace* ls = lgrp_spaces()->at(i);
iveresov@808 770 MutableSpace *s = ls->space();
duke@435 771 HeapWord *p = s->allocate(size);
duke@435 772
iveresov@579 773 if (p != NULL) {
iveresov@579 774 size_t remainder = s->free_in_words();
kvn@1926 775 if (remainder < CollectedHeap::min_fill_size() && remainder > 0) {
iveresov@579 776 s->set_top(s->top() - size);
iveresov@579 777 p = NULL;
iveresov@579 778 }
duke@435 779 }
duke@435 780 if (p != NULL) {
duke@435 781 if (top() < s->top()) { // Keep _top updated.
duke@435 782 MutableSpace::set_top(s->top());
duke@435 783 }
duke@435 784 }
iveresov@576 785 // Make the page allocation happen here if there is no static binding..
iveresov@576 786 if (p != NULL && !os::numa_has_static_binding()) {
duke@435 787 for (HeapWord *i = p; i < p + size; i += os::vm_page_size() >> LogHeapWordSize) {
duke@435 788 *(int*)i = 0;
duke@435 789 }
duke@435 790 }
iveresov@808 791 if (p == NULL) {
iveresov@808 792 ls->set_allocation_failed();
iveresov@808 793 }
duke@435 794 return p;
duke@435 795 }
duke@435 796
duke@435 797 // This version is lock-free.
duke@435 798 HeapWord* MutableNUMASpace::cas_allocate(size_t size) {
iveresov@576 799 Thread* thr = Thread::current();
iveresov@576 800 int lgrp_id = thr->lgrp_id();
iveresov@576 801 if (lgrp_id == -1 || !os::numa_has_group_homing()) {
duke@435 802 lgrp_id = os::numa_get_group_id();
iveresov@576 803 thr->set_lgrp_id(lgrp_id);
duke@435 804 }
duke@435 805
duke@435 806 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
duke@435 807 // It is possible that a new CPU has been hotplugged and
duke@435 808 // we haven't reshaped the space accordingly.
duke@435 809 if (i == -1) {
duke@435 810 i = os::random() % lgrp_spaces()->length();
duke@435 811 }
iveresov@808 812 LGRPSpace *ls = lgrp_spaces()->at(i);
iveresov@808 813 MutableSpace *s = ls->space();
duke@435 814 HeapWord *p = s->cas_allocate(size);
iveresov@579 815 if (p != NULL) {
iveresov@625 816 size_t remainder = pointer_delta(s->end(), p + size);
kvn@1926 817 if (remainder < CollectedHeap::min_fill_size() && remainder > 0) {
iveresov@579 818 if (s->cas_deallocate(p, size)) {
iveresov@579 819 // We were the last to allocate and created a fragment less than
iveresov@579 820 // a minimal object.
iveresov@579 821 p = NULL;
iveresov@625 822 } else {
iveresov@625 823 guarantee(false, "Deallocation should always succeed");
iveresov@579 824 }
duke@435 825 }
duke@435 826 }
duke@435 827 if (p != NULL) {
duke@435 828 HeapWord* cur_top, *cur_chunk_top = p + size;
duke@435 829 while ((cur_top = top()) < cur_chunk_top) { // Keep _top updated.
duke@435 830 if (Atomic::cmpxchg_ptr(cur_chunk_top, top_addr(), cur_top) == cur_top) {
duke@435 831 break;
duke@435 832 }
duke@435 833 }
duke@435 834 }
duke@435 835
iveresov@576 836 // Make the page allocation happen here if there is no static binding.
iveresov@576 837 if (p != NULL && !os::numa_has_static_binding() ) {
duke@435 838 for (HeapWord *i = p; i < p + size; i += os::vm_page_size() >> LogHeapWordSize) {
duke@435 839 *(int*)i = 0;
duke@435 840 }
duke@435 841 }
iveresov@808 842 if (p == NULL) {
iveresov@808 843 ls->set_allocation_failed();
iveresov@808 844 }
duke@435 845 return p;
duke@435 846 }
duke@435 847
duke@435 848 void MutableNUMASpace::print_short_on(outputStream* st) const {
duke@435 849 MutableSpace::print_short_on(st);
duke@435 850 st->print(" (");
duke@435 851 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 852 st->print("lgrp %d: ", lgrp_spaces()->at(i)->lgrp_id());
duke@435 853 lgrp_spaces()->at(i)->space()->print_short_on(st);
duke@435 854 if (i < lgrp_spaces()->length() - 1) {
duke@435 855 st->print(", ");
duke@435 856 }
duke@435 857 }
duke@435 858 st->print(")");
duke@435 859 }
duke@435 860
duke@435 861 void MutableNUMASpace::print_on(outputStream* st) const {
duke@435 862 MutableSpace::print_on(st);
duke@435 863 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 864 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 865 st->print(" lgrp %d", ls->lgrp_id());
duke@435 866 ls->space()->print_on(st);
duke@435 867 if (NUMAStats) {
iveresov@579 868 for (int i = 0; i < lgrp_spaces()->length(); i++) {
iveresov@579 869 lgrp_spaces()->at(i)->accumulate_statistics(page_size());
iveresov@579 870 }
duke@435 871 st->print(" local/remote/unbiased/uncommitted: %dK/%dK/%dK/%dK, large/small pages: %d/%d\n",
duke@435 872 ls->space_stats()->_local_space / K,
duke@435 873 ls->space_stats()->_remote_space / K,
duke@435 874 ls->space_stats()->_unbiased_space / K,
duke@435 875 ls->space_stats()->_uncommited_space / K,
duke@435 876 ls->space_stats()->_large_pages,
duke@435 877 ls->space_stats()->_small_pages);
duke@435 878 }
duke@435 879 }
duke@435 880 }
duke@435 881
brutisso@3711 882 void MutableNUMASpace::verify() {
iveresov@625 883 // This can be called after setting an arbitary value to the space's top,
iveresov@625 884 // so an object can cross the chunk boundary. We ensure the parsablity
iveresov@625 885 // of the space and just walk the objects in linear fashion.
iveresov@625 886 ensure_parsability();
brutisso@3711 887 MutableSpace::verify();
duke@435 888 }
duke@435 889
duke@435 890 // Scan pages and gather stats about page placement and size.
duke@435 891 void MutableNUMASpace::LGRPSpace::accumulate_statistics(size_t page_size) {
duke@435 892 clear_space_stats();
duke@435 893 char *start = (char*)round_to((intptr_t) space()->bottom(), page_size);
duke@435 894 char* end = (char*)round_down((intptr_t) space()->end(), page_size);
duke@435 895 if (start < end) {
duke@435 896 for (char *p = start; p < end;) {
duke@435 897 os::page_info info;
duke@435 898 if (os::get_page_info(p, &info)) {
duke@435 899 if (info.size > 0) {
duke@435 900 if (info.size > (size_t)os::vm_page_size()) {
duke@435 901 space_stats()->_large_pages++;
duke@435 902 } else {
duke@435 903 space_stats()->_small_pages++;
duke@435 904 }
duke@435 905 if (info.lgrp_id == lgrp_id()) {
duke@435 906 space_stats()->_local_space += info.size;
duke@435 907 } else {
duke@435 908 space_stats()->_remote_space += info.size;
duke@435 909 }
duke@435 910 p += info.size;
duke@435 911 } else {
duke@435 912 p += os::vm_page_size();
duke@435 913 space_stats()->_uncommited_space += os::vm_page_size();
duke@435 914 }
duke@435 915 } else {
duke@435 916 return;
duke@435 917 }
duke@435 918 }
duke@435 919 }
duke@435 920 space_stats()->_unbiased_space = pointer_delta(start, space()->bottom(), sizeof(char)) +
duke@435 921 pointer_delta(space()->end(), end, sizeof(char));
duke@435 922
duke@435 923 }
duke@435 924
duke@435 925 // Scan page_count pages and verify if they have the right size and right placement.
duke@435 926 // If invalid pages are found they are freed in hope that subsequent reallocation
duke@435 927 // will be more successful.
duke@435 928 void MutableNUMASpace::LGRPSpace::scan_pages(size_t page_size, size_t page_count)
duke@435 929 {
duke@435 930 char* range_start = (char*)round_to((intptr_t) space()->bottom(), page_size);
duke@435 931 char* range_end = (char*)round_down((intptr_t) space()->end(), page_size);
duke@435 932
duke@435 933 if (range_start > last_page_scanned() || last_page_scanned() >= range_end) {
duke@435 934 set_last_page_scanned(range_start);
duke@435 935 }
duke@435 936
duke@435 937 char *scan_start = last_page_scanned();
duke@435 938 char* scan_end = MIN2(scan_start + page_size * page_count, range_end);
duke@435 939
duke@435 940 os::page_info page_expected, page_found;
duke@435 941 page_expected.size = page_size;
duke@435 942 page_expected.lgrp_id = lgrp_id();
duke@435 943
duke@435 944 char *s = scan_start;
duke@435 945 while (s < scan_end) {
duke@435 946 char *e = os::scan_pages(s, (char*)scan_end, &page_expected, &page_found);
duke@435 947 if (e == NULL) {
duke@435 948 break;
duke@435 949 }
duke@435 950 if (e != scan_end) {
duke@435 951 if ((page_expected.size != page_size || page_expected.lgrp_id != lgrp_id())
duke@435 952 && page_expected.size != 0) {
iveresov@3363 953 os::free_memory(s, pointer_delta(e, s, sizeof(char)), page_size);
duke@435 954 }
duke@435 955 page_expected = page_found;
duke@435 956 }
duke@435 957 s = e;
duke@435 958 }
duke@435 959
duke@435 960 set_last_page_scanned(scan_end);
duke@435 961 }

mercurial