src/share/vm/opto/divnode.cpp

Thu, 21 Nov 2013 12:30:35 -0800

author
kvn
date
Thu, 21 Nov 2013 12:30:35 -0800
changeset 6485
da862781b584
parent 4153
b9a9ed0f8eeb
child 6876
710a3c8b516e
child 9614
bb44c0e88235
permissions
-rw-r--r--

Merge

duke@435 1 /*
mikael@4153 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "opto/addnode.hpp"
stefank@2314 28 #include "opto/connode.hpp"
stefank@2314 29 #include "opto/divnode.hpp"
stefank@2314 30 #include "opto/machnode.hpp"
stefank@2314 31 #include "opto/matcher.hpp"
stefank@2314 32 #include "opto/mulnode.hpp"
stefank@2314 33 #include "opto/phaseX.hpp"
stefank@2314 34 #include "opto/subnode.hpp"
stefank@2314 35
duke@435 36 // Portions of code courtesy of Clifford Click
duke@435 37
duke@435 38 // Optimization - Graph Style
duke@435 39
duke@435 40 #include <math.h>
duke@435 41
rasbold@580 42 //----------------------magic_int_divide_constants-----------------------------
rasbold@580 43 // Compute magic multiplier and shift constant for converting a 32 bit divide
rasbold@580 44 // by constant into a multiply/shift/add series. Return false if calculations
rasbold@580 45 // fail.
rasbold@580 46 //
twisti@1040 47 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
rasbold@580 48 // minor type name and parameter changes.
rasbold@580 49 static bool magic_int_divide_constants(jint d, jint &M, jint &s) {
rasbold@580 50 int32_t p;
rasbold@580 51 uint32_t ad, anc, delta, q1, r1, q2, r2, t;
rasbold@580 52 const uint32_t two31 = 0x80000000L; // 2**31.
rasbold@580 53
rasbold@580 54 ad = ABS(d);
rasbold@580 55 if (d == 0 || d == 1) return false;
rasbold@580 56 t = two31 + ((uint32_t)d >> 31);
rasbold@580 57 anc = t - 1 - t%ad; // Absolute value of nc.
rasbold@580 58 p = 31; // Init. p.
rasbold@580 59 q1 = two31/anc; // Init. q1 = 2**p/|nc|.
rasbold@580 60 r1 = two31 - q1*anc; // Init. r1 = rem(2**p, |nc|).
rasbold@580 61 q2 = two31/ad; // Init. q2 = 2**p/|d|.
rasbold@580 62 r2 = two31 - q2*ad; // Init. r2 = rem(2**p, |d|).
rasbold@580 63 do {
rasbold@580 64 p = p + 1;
rasbold@580 65 q1 = 2*q1; // Update q1 = 2**p/|nc|.
rasbold@580 66 r1 = 2*r1; // Update r1 = rem(2**p, |nc|).
rasbold@580 67 if (r1 >= anc) { // (Must be an unsigned
rasbold@580 68 q1 = q1 + 1; // comparison here).
rasbold@580 69 r1 = r1 - anc;
rasbold@580 70 }
rasbold@580 71 q2 = 2*q2; // Update q2 = 2**p/|d|.
rasbold@580 72 r2 = 2*r2; // Update r2 = rem(2**p, |d|).
rasbold@580 73 if (r2 >= ad) { // (Must be an unsigned
rasbold@580 74 q2 = q2 + 1; // comparison here).
rasbold@580 75 r2 = r2 - ad;
rasbold@580 76 }
rasbold@580 77 delta = ad - r2;
rasbold@580 78 } while (q1 < delta || (q1 == delta && r1 == 0));
rasbold@580 79
rasbold@580 80 M = q2 + 1;
rasbold@580 81 if (d < 0) M = -M; // Magic number and
rasbold@580 82 s = p - 32; // shift amount to return.
rasbold@580 83
rasbold@580 84 return true;
rasbold@580 85 }
rasbold@580 86
rasbold@580 87 //--------------------------transform_int_divide-------------------------------
rasbold@580 88 // Convert a division by constant divisor into an alternate Ideal graph.
rasbold@580 89 // Return NULL if no transformation occurs.
rasbold@580 90 static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor ) {
duke@435 91
duke@435 92 // Check for invalid divisors
rasbold@580 93 assert( divisor != 0 && divisor != min_jint,
rasbold@580 94 "bad divisor for transforming to long multiply" );
duke@435 95
duke@435 96 bool d_pos = divisor >= 0;
rasbold@580 97 jint d = d_pos ? divisor : -divisor;
duke@435 98 const int N = 32;
duke@435 99
duke@435 100 // Result
rasbold@580 101 Node *q = NULL;
duke@435 102
duke@435 103 if (d == 1) {
rasbold@580 104 // division by +/- 1
rasbold@580 105 if (!d_pos) {
rasbold@580 106 // Just negate the value
kvn@4115 107 q = new (phase->C) SubINode(phase->intcon(0), dividend);
duke@435 108 }
rasbold@580 109 } else if ( is_power_of_2(d) ) {
rasbold@580 110 // division by +/- a power of 2
duke@435 111
duke@435 112 // See if we can simply do a shift without rounding
duke@435 113 bool needs_rounding = true;
duke@435 114 const Type *dt = phase->type(dividend);
duke@435 115 const TypeInt *dti = dt->isa_int();
rasbold@580 116 if (dti && dti->_lo >= 0) {
rasbold@580 117 // we don't need to round a positive dividend
duke@435 118 needs_rounding = false;
rasbold@580 119 } else if( dividend->Opcode() == Op_AndI ) {
rasbold@580 120 // An AND mask of sufficient size clears the low bits and
rasbold@580 121 // I can avoid rounding.
kvn@835 122 const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int();
kvn@835 123 if( andconi_t && andconi_t->is_con() ) {
kvn@835 124 jint andconi = andconi_t->get_con();
kvn@835 125 if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) {
kvn@1589 126 if( (-andconi) == d ) // Remove AND if it clears bits which will be shifted
kvn@1589 127 dividend = dividend->in(1);
kvn@835 128 needs_rounding = false;
kvn@835 129 }
duke@435 130 }
duke@435 131 }
duke@435 132
duke@435 133 // Add rounding to the shift to handle the sign bit
rasbold@580 134 int l = log2_intptr(d-1)+1;
rasbold@580 135 if (needs_rounding) {
rasbold@580 136 // Divide-by-power-of-2 can be made into a shift, but you have to do
rasbold@580 137 // more math for the rounding. You need to add 0 for positive
rasbold@580 138 // numbers, and "i-1" for negative numbers. Example: i=4, so the
rasbold@580 139 // shift is by 2. You need to add 3 to negative dividends and 0 to
rasbold@580 140 // positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
rasbold@580 141 // (-2+3)>>2 becomes 0, etc.
rasbold@580 142
rasbold@580 143 // Compute 0 or -1, based on sign bit
kvn@4115 144 Node *sign = phase->transform(new (phase->C) RShiftINode(dividend, phase->intcon(N - 1)));
rasbold@580 145 // Mask sign bit to the low sign bits
kvn@4115 146 Node *round = phase->transform(new (phase->C) URShiftINode(sign, phase->intcon(N - l)));
rasbold@580 147 // Round up before shifting
kvn@4115 148 dividend = phase->transform(new (phase->C) AddINode(dividend, round));
duke@435 149 }
duke@435 150
rasbold@580 151 // Shift for division
kvn@4115 152 q = new (phase->C) RShiftINode(dividend, phase->intcon(l));
duke@435 153
rasbold@580 154 if (!d_pos) {
kvn@4115 155 q = new (phase->C) SubINode(phase->intcon(0), phase->transform(q));
rasbold@580 156 }
rasbold@580 157 } else {
rasbold@580 158 // Attempt the jint constant divide -> multiply transform found in
rasbold@580 159 // "Division by Invariant Integers using Multiplication"
rasbold@580 160 // by Granlund and Montgomery
rasbold@580 161 // See also "Hacker's Delight", chapter 10 by Warren.
rasbold@580 162
rasbold@580 163 jint magic_const;
rasbold@580 164 jint shift_const;
rasbold@580 165 if (magic_int_divide_constants(d, magic_const, shift_const)) {
rasbold@580 166 Node *magic = phase->longcon(magic_const);
kvn@4115 167 Node *dividend_long = phase->transform(new (phase->C) ConvI2LNode(dividend));
rasbold@580 168
rasbold@580 169 // Compute the high half of the dividend x magic multiplication
kvn@4115 170 Node *mul_hi = phase->transform(new (phase->C) MulLNode(dividend_long, magic));
rasbold@580 171
rasbold@580 172 if (magic_const < 0) {
kvn@4115 173 mul_hi = phase->transform(new (phase->C) RShiftLNode(mul_hi, phase->intcon(N)));
kvn@4115 174 mul_hi = phase->transform(new (phase->C) ConvL2INode(mul_hi));
rasbold@580 175
rasbold@580 176 // The magic multiplier is too large for a 32 bit constant. We've adjusted
rasbold@580 177 // it down by 2^32, but have to add 1 dividend back in after the multiplication.
rasbold@580 178 // This handles the "overflow" case described by Granlund and Montgomery.
kvn@4115 179 mul_hi = phase->transform(new (phase->C) AddINode(dividend, mul_hi));
rasbold@580 180
rasbold@580 181 // Shift over the (adjusted) mulhi
rasbold@580 182 if (shift_const != 0) {
kvn@4115 183 mul_hi = phase->transform(new (phase->C) RShiftINode(mul_hi, phase->intcon(shift_const)));
rasbold@580 184 }
rasbold@580 185 } else {
rasbold@580 186 // No add is required, we can merge the shifts together.
kvn@4115 187 mul_hi = phase->transform(new (phase->C) RShiftLNode(mul_hi, phase->intcon(N + shift_const)));
kvn@4115 188 mul_hi = phase->transform(new (phase->C) ConvL2INode(mul_hi));
rasbold@580 189 }
rasbold@580 190
rasbold@580 191 // Get a 0 or -1 from the sign of the dividend.
rasbold@580 192 Node *addend0 = mul_hi;
kvn@4115 193 Node *addend1 = phase->transform(new (phase->C) RShiftINode(dividend, phase->intcon(N-1)));
rasbold@580 194
rasbold@580 195 // If the divisor is negative, swap the order of the input addends;
rasbold@580 196 // this has the effect of negating the quotient.
rasbold@580 197 if (!d_pos) {
rasbold@580 198 Node *temp = addend0; addend0 = addend1; addend1 = temp;
rasbold@580 199 }
rasbold@580 200
rasbold@580 201 // Adjust the final quotient by subtracting -1 (adding 1)
rasbold@580 202 // from the mul_hi.
kvn@4115 203 q = new (phase->C) SubINode(addend0, addend1);
rasbold@580 204 }
duke@435 205 }
duke@435 206
rasbold@580 207 return q;
rasbold@580 208 }
duke@435 209
rasbold@580 210 //---------------------magic_long_divide_constants-----------------------------
rasbold@580 211 // Compute magic multiplier and shift constant for converting a 64 bit divide
rasbold@580 212 // by constant into a multiply/shift/add series. Return false if calculations
rasbold@580 213 // fail.
rasbold@580 214 //
twisti@1040 215 // Borrowed almost verbatim from Hacker's Delight by Henry S. Warren, Jr. with
rasbold@580 216 // minor type name and parameter changes. Adjusted to 64 bit word width.
rasbold@580 217 static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) {
rasbold@580 218 int64_t p;
rasbold@580 219 uint64_t ad, anc, delta, q1, r1, q2, r2, t;
rasbold@580 220 const uint64_t two63 = 0x8000000000000000LL; // 2**63.
rasbold@580 221
rasbold@580 222 ad = ABS(d);
rasbold@580 223 if (d == 0 || d == 1) return false;
rasbold@580 224 t = two63 + ((uint64_t)d >> 63);
rasbold@580 225 anc = t - 1 - t%ad; // Absolute value of nc.
rasbold@580 226 p = 63; // Init. p.
rasbold@580 227 q1 = two63/anc; // Init. q1 = 2**p/|nc|.
rasbold@580 228 r1 = two63 - q1*anc; // Init. r1 = rem(2**p, |nc|).
rasbold@580 229 q2 = two63/ad; // Init. q2 = 2**p/|d|.
rasbold@580 230 r2 = two63 - q2*ad; // Init. r2 = rem(2**p, |d|).
rasbold@580 231 do {
rasbold@580 232 p = p + 1;
rasbold@580 233 q1 = 2*q1; // Update q1 = 2**p/|nc|.
rasbold@580 234 r1 = 2*r1; // Update r1 = rem(2**p, |nc|).
rasbold@580 235 if (r1 >= anc) { // (Must be an unsigned
rasbold@580 236 q1 = q1 + 1; // comparison here).
rasbold@580 237 r1 = r1 - anc;
rasbold@580 238 }
rasbold@580 239 q2 = 2*q2; // Update q2 = 2**p/|d|.
rasbold@580 240 r2 = 2*r2; // Update r2 = rem(2**p, |d|).
rasbold@580 241 if (r2 >= ad) { // (Must be an unsigned
rasbold@580 242 q2 = q2 + 1; // comparison here).
rasbold@580 243 r2 = r2 - ad;
rasbold@580 244 }
rasbold@580 245 delta = ad - r2;
rasbold@580 246 } while (q1 < delta || (q1 == delta && r1 == 0));
rasbold@580 247
rasbold@580 248 M = q2 + 1;
rasbold@580 249 if (d < 0) M = -M; // Magic number and
rasbold@580 250 s = p - 64; // shift amount to return.
rasbold@580 251
rasbold@580 252 return true;
rasbold@580 253 }
rasbold@580 254
rasbold@580 255 //---------------------long_by_long_mulhi--------------------------------------
rasbold@580 256 // Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication
twisti@1002 257 static Node* long_by_long_mulhi(PhaseGVN* phase, Node* dividend, jlong magic_const) {
rasbold@580 258 // If the architecture supports a 64x64 mulhi, there is
rasbold@580 259 // no need to synthesize it in ideal nodes.
rasbold@580 260 if (Matcher::has_match_rule(Op_MulHiL)) {
twisti@1002 261 Node* v = phase->longcon(magic_const);
kvn@4115 262 return new (phase->C) MulHiLNode(dividend, v);
duke@435 263 }
duke@435 264
twisti@1002 265 // Taken from Hacker's Delight, Fig. 8-2. Multiply high signed.
twisti@1002 266 // (http://www.hackersdelight.org/HDcode/mulhs.c)
twisti@1002 267 //
twisti@1002 268 // int mulhs(int u, int v) {
twisti@1002 269 // unsigned u0, v0, w0;
twisti@1002 270 // int u1, v1, w1, w2, t;
twisti@1002 271 //
twisti@1002 272 // u0 = u & 0xFFFF; u1 = u >> 16;
twisti@1002 273 // v0 = v & 0xFFFF; v1 = v >> 16;
twisti@1002 274 // w0 = u0*v0;
twisti@1002 275 // t = u1*v0 + (w0 >> 16);
twisti@1002 276 // w1 = t & 0xFFFF;
twisti@1002 277 // w2 = t >> 16;
twisti@1002 278 // w1 = u0*v1 + w1;
twisti@1002 279 // return u1*v1 + w2 + (w1 >> 16);
twisti@1002 280 // }
twisti@1002 281 //
twisti@1002 282 // Note: The version above is for 32x32 multiplications, while the
twisti@1002 283 // following inline comments are adapted to 64x64.
twisti@1002 284
rasbold@580 285 const int N = 64;
duke@435 286
kvn@3845 287 // Dummy node to keep intermediate nodes alive during construction
kvn@4115 288 Node* hook = new (phase->C) Node(4);
kvn@3845 289
twisti@1002 290 // u0 = u & 0xFFFFFFFF; u1 = u >> 32;
kvn@4115 291 Node* u0 = phase->transform(new (phase->C) AndLNode(dividend, phase->longcon(0xFFFFFFFF)));
kvn@4115 292 Node* u1 = phase->transform(new (phase->C) RShiftLNode(dividend, phase->intcon(N / 2)));
kvn@3845 293 hook->init_req(0, u0);
kvn@3845 294 hook->init_req(1, u1);
rasbold@580 295
twisti@1002 296 // v0 = v & 0xFFFFFFFF; v1 = v >> 32;
twisti@1002 297 Node* v0 = phase->longcon(magic_const & 0xFFFFFFFF);
twisti@1002 298 Node* v1 = phase->longcon(magic_const >> (N / 2));
rasbold@580 299
twisti@1002 300 // w0 = u0*v0;
kvn@4115 301 Node* w0 = phase->transform(new (phase->C) MulLNode(u0, v0));
rasbold@580 302
twisti@1002 303 // t = u1*v0 + (w0 >> 32);
kvn@4115 304 Node* u1v0 = phase->transform(new (phase->C) MulLNode(u1, v0));
kvn@4115 305 Node* temp = phase->transform(new (phase->C) URShiftLNode(w0, phase->intcon(N / 2)));
kvn@4115 306 Node* t = phase->transform(new (phase->C) AddLNode(u1v0, temp));
kvn@3845 307 hook->init_req(2, t);
rasbold@729 308
twisti@1002 309 // w1 = t & 0xFFFFFFFF;
kvn@4115 310 Node* w1 = phase->transform(new (phase->C) AndLNode(t, phase->longcon(0xFFFFFFFF)));
kvn@3845 311 hook->init_req(3, w1);
rasbold@729 312
twisti@1002 313 // w2 = t >> 32;
kvn@4115 314 Node* w2 = phase->transform(new (phase->C) RShiftLNode(t, phase->intcon(N / 2)));
twisti@1002 315
twisti@1002 316 // w1 = u0*v1 + w1;
kvn@4115 317 Node* u0v1 = phase->transform(new (phase->C) MulLNode(u0, v1));
kvn@4115 318 w1 = phase->transform(new (phase->C) AddLNode(u0v1, w1));
twisti@1002 319
twisti@1002 320 // return u1*v1 + w2 + (w1 >> 32);
kvn@4115 321 Node* u1v1 = phase->transform(new (phase->C) MulLNode(u1, v1));
kvn@4115 322 Node* temp1 = phase->transform(new (phase->C) AddLNode(u1v1, w2));
kvn@4115 323 Node* temp2 = phase->transform(new (phase->C) RShiftLNode(w1, phase->intcon(N / 2)));
twisti@1002 324
kvn@3845 325 // Remove the bogus extra edges used to keep things alive
kvn@3845 326 PhaseIterGVN* igvn = phase->is_IterGVN();
kvn@3845 327 if (igvn != NULL) {
kvn@3845 328 igvn->remove_dead_node(hook);
kvn@3845 329 } else {
kvn@3845 330 for (int i = 0; i < 4; i++) {
kvn@3845 331 hook->set_req(i, NULL);
kvn@3845 332 }
kvn@3845 333 }
kvn@3845 334
kvn@4115 335 return new (phase->C) AddLNode(temp1, temp2);
rasbold@580 336 }
rasbold@580 337
rasbold@580 338
rasbold@580 339 //--------------------------transform_long_divide------------------------------
rasbold@580 340 // Convert a division by constant divisor into an alternate Ideal graph.
rasbold@580 341 // Return NULL if no transformation occurs.
rasbold@580 342 static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divisor ) {
rasbold@580 343 // Check for invalid divisors
rasbold@580 344 assert( divisor != 0L && divisor != min_jlong,
rasbold@580 345 "bad divisor for transforming to long multiply" );
rasbold@580 346
rasbold@580 347 bool d_pos = divisor >= 0;
rasbold@580 348 jlong d = d_pos ? divisor : -divisor;
rasbold@580 349 const int N = 64;
rasbold@580 350
rasbold@580 351 // Result
rasbold@580 352 Node *q = NULL;
rasbold@580 353
rasbold@580 354 if (d == 1) {
rasbold@580 355 // division by +/- 1
rasbold@580 356 if (!d_pos) {
rasbold@580 357 // Just negate the value
kvn@4115 358 q = new (phase->C) SubLNode(phase->longcon(0), dividend);
rasbold@580 359 }
rasbold@580 360 } else if ( is_power_of_2_long(d) ) {
rasbold@580 361
rasbold@580 362 // division by +/- a power of 2
rasbold@580 363
rasbold@580 364 // See if we can simply do a shift without rounding
rasbold@580 365 bool needs_rounding = true;
rasbold@580 366 const Type *dt = phase->type(dividend);
rasbold@580 367 const TypeLong *dtl = dt->isa_long();
rasbold@580 368
rasbold@580 369 if (dtl && dtl->_lo > 0) {
rasbold@580 370 // we don't need to round a positive dividend
rasbold@580 371 needs_rounding = false;
rasbold@580 372 } else if( dividend->Opcode() == Op_AndL ) {
rasbold@580 373 // An AND mask of sufficient size clears the low bits and
rasbold@580 374 // I can avoid rounding.
kvn@835 375 const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long();
kvn@835 376 if( andconl_t && andconl_t->is_con() ) {
kvn@835 377 jlong andconl = andconl_t->get_con();
kvn@835 378 if( andconl < 0 && is_power_of_2_long(-andconl) && (-andconl) >= d ) {
kvn@1589 379 if( (-andconl) == d ) // Remove AND if it clears bits which will be shifted
kvn@1589 380 dividend = dividend->in(1);
kvn@835 381 needs_rounding = false;
kvn@835 382 }
rasbold@580 383 }
rasbold@580 384 }
rasbold@580 385
rasbold@580 386 // Add rounding to the shift to handle the sign bit
rasbold@580 387 int l = log2_long(d-1)+1;
rasbold@580 388 if (needs_rounding) {
rasbold@580 389 // Divide-by-power-of-2 can be made into a shift, but you have to do
rasbold@580 390 // more math for the rounding. You need to add 0 for positive
rasbold@580 391 // numbers, and "i-1" for negative numbers. Example: i=4, so the
rasbold@580 392 // shift is by 2. You need to add 3 to negative dividends and 0 to
rasbold@580 393 // positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
rasbold@580 394 // (-2+3)>>2 becomes 0, etc.
rasbold@580 395
rasbold@580 396 // Compute 0 or -1, based on sign bit
kvn@4115 397 Node *sign = phase->transform(new (phase->C) RShiftLNode(dividend, phase->intcon(N - 1)));
rasbold@580 398 // Mask sign bit to the low sign bits
kvn@4115 399 Node *round = phase->transform(new (phase->C) URShiftLNode(sign, phase->intcon(N - l)));
rasbold@580 400 // Round up before shifting
kvn@4115 401 dividend = phase->transform(new (phase->C) AddLNode(dividend, round));
rasbold@580 402 }
rasbold@580 403
rasbold@580 404 // Shift for division
kvn@4115 405 q = new (phase->C) RShiftLNode(dividend, phase->intcon(l));
rasbold@580 406
rasbold@580 407 if (!d_pos) {
kvn@4115 408 q = new (phase->C) SubLNode(phase->longcon(0), phase->transform(q));
rasbold@580 409 }
kvn@2269 410 } else if ( !Matcher::use_asm_for_ldiv_by_con(d) ) { // Use hardware DIV instruction when
kvn@2269 411 // it is faster than code generated below.
rasbold@580 412 // Attempt the jlong constant divide -> multiply transform found in
rasbold@580 413 // "Division by Invariant Integers using Multiplication"
rasbold@580 414 // by Granlund and Montgomery
rasbold@580 415 // See also "Hacker's Delight", chapter 10 by Warren.
rasbold@580 416
rasbold@580 417 jlong magic_const;
rasbold@580 418 jint shift_const;
rasbold@580 419 if (magic_long_divide_constants(d, magic_const, shift_const)) {
rasbold@580 420 // Compute the high half of the dividend x magic multiplication
rasbold@580 421 Node *mul_hi = phase->transform(long_by_long_mulhi(phase, dividend, magic_const));
rasbold@580 422
rasbold@580 423 // The high half of the 128-bit multiply is computed.
rasbold@580 424 if (magic_const < 0) {
rasbold@580 425 // The magic multiplier is too large for a 64 bit constant. We've adjusted
rasbold@580 426 // it down by 2^64, but have to add 1 dividend back in after the multiplication.
rasbold@580 427 // This handles the "overflow" case described by Granlund and Montgomery.
kvn@4115 428 mul_hi = phase->transform(new (phase->C) AddLNode(dividend, mul_hi));
rasbold@580 429 }
rasbold@580 430
rasbold@580 431 // Shift over the (adjusted) mulhi
rasbold@580 432 if (shift_const != 0) {
kvn@4115 433 mul_hi = phase->transform(new (phase->C) RShiftLNode(mul_hi, phase->intcon(shift_const)));
rasbold@580 434 }
rasbold@580 435
rasbold@580 436 // Get a 0 or -1 from the sign of the dividend.
rasbold@580 437 Node *addend0 = mul_hi;
kvn@4115 438 Node *addend1 = phase->transform(new (phase->C) RShiftLNode(dividend, phase->intcon(N-1)));
rasbold@580 439
rasbold@580 440 // If the divisor is negative, swap the order of the input addends;
rasbold@580 441 // this has the effect of negating the quotient.
rasbold@580 442 if (!d_pos) {
rasbold@580 443 Node *temp = addend0; addend0 = addend1; addend1 = temp;
rasbold@580 444 }
rasbold@580 445
rasbold@580 446 // Adjust the final quotient by subtracting -1 (adding 1)
rasbold@580 447 // from the mul_hi.
kvn@4115 448 q = new (phase->C) SubLNode(addend0, addend1);
rasbold@580 449 }
duke@435 450 }
duke@435 451
rasbold@580 452 return q;
duke@435 453 }
duke@435 454
duke@435 455 //=============================================================================
duke@435 456 //------------------------------Identity---------------------------------------
duke@435 457 // If the divisor is 1, we are an identity on the dividend.
duke@435 458 Node *DivINode::Identity( PhaseTransform *phase ) {
duke@435 459 return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
duke@435 460 }
duke@435 461
duke@435 462 //------------------------------Idealize---------------------------------------
duke@435 463 // Divides can be changed to multiplies and/or shifts
duke@435 464 Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 465 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
kvn@740 466 // Don't bother trying to transform a dead node
kvn@740 467 if( in(0) && in(0)->is_top() ) return NULL;
duke@435 468
duke@435 469 const Type *t = phase->type( in(2) );
duke@435 470 if( t == TypeInt::ONE ) // Identity?
duke@435 471 return NULL; // Skip it
duke@435 472
duke@435 473 const TypeInt *ti = t->isa_int();
duke@435 474 if( !ti ) return NULL;
duke@435 475 if( !ti->is_con() ) return NULL;
rasbold@580 476 jint i = ti->get_con(); // Get divisor
duke@435 477
duke@435 478 if (i == 0) return NULL; // Dividing by zero constant does not idealize
duke@435 479
duke@435 480 set_req(0,NULL); // Dividing by a not-zero constant; no faulting
duke@435 481
duke@435 482 // Dividing by MININT does not optimize as a power-of-2 shift.
duke@435 483 if( i == min_jint ) return NULL;
duke@435 484
rasbold@580 485 return transform_int_divide( phase, in(1), i );
duke@435 486 }
duke@435 487
duke@435 488 //------------------------------Value------------------------------------------
duke@435 489 // A DivINode divides its inputs. The third input is a Control input, used to
duke@435 490 // prevent hoisting the divide above an unsafe test.
duke@435 491 const Type *DivINode::Value( PhaseTransform *phase ) const {
duke@435 492 // Either input is TOP ==> the result is TOP
duke@435 493 const Type *t1 = phase->type( in(1) );
duke@435 494 const Type *t2 = phase->type( in(2) );
duke@435 495 if( t1 == Type::TOP ) return Type::TOP;
duke@435 496 if( t2 == Type::TOP ) return Type::TOP;
duke@435 497
duke@435 498 // x/x == 1 since we always generate the dynamic divisor check for 0.
duke@435 499 if( phase->eqv( in(1), in(2) ) )
duke@435 500 return TypeInt::ONE;
duke@435 501
duke@435 502 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 503 const Type *bot = bottom_type();
duke@435 504 if( (t1 == bot) || (t2 == bot) ||
duke@435 505 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 506 return bot;
duke@435 507
duke@435 508 // Divide the two numbers. We approximate.
duke@435 509 // If divisor is a constant and not zero
duke@435 510 const TypeInt *i1 = t1->is_int();
duke@435 511 const TypeInt *i2 = t2->is_int();
duke@435 512 int widen = MAX2(i1->_widen, i2->_widen);
duke@435 513
duke@435 514 if( i2->is_con() && i2->get_con() != 0 ) {
duke@435 515 int32 d = i2->get_con(); // Divisor
duke@435 516 jint lo, hi;
duke@435 517 if( d >= 0 ) {
duke@435 518 lo = i1->_lo/d;
duke@435 519 hi = i1->_hi/d;
duke@435 520 } else {
duke@435 521 if( d == -1 && i1->_lo == min_jint ) {
duke@435 522 // 'min_jint/-1' throws arithmetic exception during compilation
duke@435 523 lo = min_jint;
duke@435 524 // do not support holes, 'hi' must go to either min_jint or max_jint:
duke@435 525 // [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint]
duke@435 526 hi = i1->_hi == min_jint ? min_jint : max_jint;
duke@435 527 } else {
duke@435 528 lo = i1->_hi/d;
duke@435 529 hi = i1->_lo/d;
duke@435 530 }
duke@435 531 }
duke@435 532 return TypeInt::make(lo, hi, widen);
duke@435 533 }
duke@435 534
duke@435 535 // If the dividend is a constant
duke@435 536 if( i1->is_con() ) {
duke@435 537 int32 d = i1->get_con();
duke@435 538 if( d < 0 ) {
duke@435 539 if( d == min_jint ) {
duke@435 540 // (-min_jint) == min_jint == (min_jint / -1)
duke@435 541 return TypeInt::make(min_jint, max_jint/2 + 1, widen);
duke@435 542 } else {
duke@435 543 return TypeInt::make(d, -d, widen);
duke@435 544 }
duke@435 545 }
duke@435 546 return TypeInt::make(-d, d, widen);
duke@435 547 }
duke@435 548
duke@435 549 // Otherwise we give up all hope
duke@435 550 return TypeInt::INT;
duke@435 551 }
duke@435 552
duke@435 553
duke@435 554 //=============================================================================
duke@435 555 //------------------------------Identity---------------------------------------
duke@435 556 // If the divisor is 1, we are an identity on the dividend.
duke@435 557 Node *DivLNode::Identity( PhaseTransform *phase ) {
duke@435 558 return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
duke@435 559 }
duke@435 560
duke@435 561 //------------------------------Idealize---------------------------------------
duke@435 562 // Dividing by a power of 2 is a shift.
duke@435 563 Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
duke@435 564 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
kvn@740 565 // Don't bother trying to transform a dead node
kvn@740 566 if( in(0) && in(0)->is_top() ) return NULL;
duke@435 567
duke@435 568 const Type *t = phase->type( in(2) );
rasbold@580 569 if( t == TypeLong::ONE ) // Identity?
duke@435 570 return NULL; // Skip it
duke@435 571
rasbold@580 572 const TypeLong *tl = t->isa_long();
rasbold@580 573 if( !tl ) return NULL;
rasbold@580 574 if( !tl->is_con() ) return NULL;
rasbold@580 575 jlong l = tl->get_con(); // Get divisor
rasbold@580 576
rasbold@580 577 if (l == 0) return NULL; // Dividing by zero constant does not idealize
rasbold@580 578
rasbold@580 579 set_req(0,NULL); // Dividing by a not-zero constant; no faulting
duke@435 580
kvn@2269 581 // Dividing by MINLONG does not optimize as a power-of-2 shift.
rasbold@580 582 if( l == min_jlong ) return NULL;
duke@435 583
rasbold@580 584 return transform_long_divide( phase, in(1), l );
duke@435 585 }
duke@435 586
duke@435 587 //------------------------------Value------------------------------------------
duke@435 588 // A DivLNode divides its inputs. The third input is a Control input, used to
duke@435 589 // prevent hoisting the divide above an unsafe test.
duke@435 590 const Type *DivLNode::Value( PhaseTransform *phase ) const {
duke@435 591 // Either input is TOP ==> the result is TOP
duke@435 592 const Type *t1 = phase->type( in(1) );
duke@435 593 const Type *t2 = phase->type( in(2) );
duke@435 594 if( t1 == Type::TOP ) return Type::TOP;
duke@435 595 if( t2 == Type::TOP ) return Type::TOP;
duke@435 596
duke@435 597 // x/x == 1 since we always generate the dynamic divisor check for 0.
duke@435 598 if( phase->eqv( in(1), in(2) ) )
duke@435 599 return TypeLong::ONE;
duke@435 600
duke@435 601 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 602 const Type *bot = bottom_type();
duke@435 603 if( (t1 == bot) || (t2 == bot) ||
duke@435 604 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 605 return bot;
duke@435 606
duke@435 607 // Divide the two numbers. We approximate.
duke@435 608 // If divisor is a constant and not zero
duke@435 609 const TypeLong *i1 = t1->is_long();
duke@435 610 const TypeLong *i2 = t2->is_long();
duke@435 611 int widen = MAX2(i1->_widen, i2->_widen);
duke@435 612
duke@435 613 if( i2->is_con() && i2->get_con() != 0 ) {
duke@435 614 jlong d = i2->get_con(); // Divisor
duke@435 615 jlong lo, hi;
duke@435 616 if( d >= 0 ) {
duke@435 617 lo = i1->_lo/d;
duke@435 618 hi = i1->_hi/d;
duke@435 619 } else {
duke@435 620 if( d == CONST64(-1) && i1->_lo == min_jlong ) {
duke@435 621 // 'min_jlong/-1' throws arithmetic exception during compilation
duke@435 622 lo = min_jlong;
duke@435 623 // do not support holes, 'hi' must go to either min_jlong or max_jlong:
duke@435 624 // [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong]
duke@435 625 hi = i1->_hi == min_jlong ? min_jlong : max_jlong;
duke@435 626 } else {
duke@435 627 lo = i1->_hi/d;
duke@435 628 hi = i1->_lo/d;
duke@435 629 }
duke@435 630 }
duke@435 631 return TypeLong::make(lo, hi, widen);
duke@435 632 }
duke@435 633
duke@435 634 // If the dividend is a constant
duke@435 635 if( i1->is_con() ) {
duke@435 636 jlong d = i1->get_con();
duke@435 637 if( d < 0 ) {
duke@435 638 if( d == min_jlong ) {
duke@435 639 // (-min_jlong) == min_jlong == (min_jlong / -1)
duke@435 640 return TypeLong::make(min_jlong, max_jlong/2 + 1, widen);
duke@435 641 } else {
duke@435 642 return TypeLong::make(d, -d, widen);
duke@435 643 }
duke@435 644 }
duke@435 645 return TypeLong::make(-d, d, widen);
duke@435 646 }
duke@435 647
duke@435 648 // Otherwise we give up all hope
duke@435 649 return TypeLong::LONG;
duke@435 650 }
duke@435 651
duke@435 652
duke@435 653 //=============================================================================
duke@435 654 //------------------------------Value------------------------------------------
duke@435 655 // An DivFNode divides its inputs. The third input is a Control input, used to
duke@435 656 // prevent hoisting the divide above an unsafe test.
duke@435 657 const Type *DivFNode::Value( PhaseTransform *phase ) const {
duke@435 658 // Either input is TOP ==> the result is TOP
duke@435 659 const Type *t1 = phase->type( in(1) );
duke@435 660 const Type *t2 = phase->type( in(2) );
duke@435 661 if( t1 == Type::TOP ) return Type::TOP;
duke@435 662 if( t2 == Type::TOP ) return Type::TOP;
duke@435 663
duke@435 664 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 665 const Type *bot = bottom_type();
duke@435 666 if( (t1 == bot) || (t2 == bot) ||
duke@435 667 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 668 return bot;
duke@435 669
duke@435 670 // x/x == 1, we ignore 0/0.
duke@435 671 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
jrose@566 672 // Does not work for variables because of NaN's
duke@435 673 if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon)
duke@435 674 if (!g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) // could be negative ZERO or NaN
duke@435 675 return TypeF::ONE;
duke@435 676
duke@435 677 if( t2 == TypeF::ONE )
duke@435 678 return t1;
duke@435 679
duke@435 680 // If divisor is a constant and not zero, divide them numbers
duke@435 681 if( t1->base() == Type::FloatCon &&
duke@435 682 t2->base() == Type::FloatCon &&
duke@435 683 t2->getf() != 0.0 ) // could be negative zero
duke@435 684 return TypeF::make( t1->getf()/t2->getf() );
duke@435 685
duke@435 686 // If the dividend is a constant zero
duke@435 687 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
duke@435 688 // Test TypeF::ZERO is not sufficient as it could be negative zero
duke@435 689
duke@435 690 if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
duke@435 691 return TypeF::ZERO;
duke@435 692
duke@435 693 // Otherwise we give up all hope
duke@435 694 return Type::FLOAT;
duke@435 695 }
duke@435 696
duke@435 697 //------------------------------isA_Copy---------------------------------------
duke@435 698 // Dividing by self is 1.
duke@435 699 // If the divisor is 1, we are an identity on the dividend.
duke@435 700 Node *DivFNode::Identity( PhaseTransform *phase ) {
duke@435 701 return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
duke@435 702 }
duke@435 703
duke@435 704
duke@435 705 //------------------------------Idealize---------------------------------------
duke@435 706 Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 707 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
kvn@740 708 // Don't bother trying to transform a dead node
kvn@740 709 if( in(0) && in(0)->is_top() ) return NULL;
duke@435 710
duke@435 711 const Type *t2 = phase->type( in(2) );
duke@435 712 if( t2 == TypeF::ONE ) // Identity?
duke@435 713 return NULL; // Skip it
duke@435 714
duke@435 715 const TypeF *tf = t2->isa_float_constant();
duke@435 716 if( !tf ) return NULL;
duke@435 717 if( tf->base() != Type::FloatCon ) return NULL;
duke@435 718
duke@435 719 // Check for out of range values
duke@435 720 if( tf->is_nan() || !tf->is_finite() ) return NULL;
duke@435 721
duke@435 722 // Get the value
duke@435 723 float f = tf->getf();
duke@435 724 int exp;
duke@435 725
duke@435 726 // Only for special case of dividing by a power of 2
duke@435 727 if( frexp((double)f, &exp) != 0.5 ) return NULL;
duke@435 728
duke@435 729 // Limit the range of acceptable exponents
duke@435 730 if( exp < -126 || exp > 126 ) return NULL;
duke@435 731
duke@435 732 // Compute the reciprocal
duke@435 733 float reciprocal = ((float)1.0) / f;
duke@435 734
duke@435 735 assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
duke@435 736
duke@435 737 // return multiplication by the reciprocal
kvn@4115 738 return (new (phase->C) MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
duke@435 739 }
duke@435 740
duke@435 741 //=============================================================================
duke@435 742 //------------------------------Value------------------------------------------
duke@435 743 // An DivDNode divides its inputs. The third input is a Control input, used to
jrose@566 744 // prevent hoisting the divide above an unsafe test.
duke@435 745 const Type *DivDNode::Value( PhaseTransform *phase ) const {
duke@435 746 // Either input is TOP ==> the result is TOP
duke@435 747 const Type *t1 = phase->type( in(1) );
duke@435 748 const Type *t2 = phase->type( in(2) );
duke@435 749 if( t1 == Type::TOP ) return Type::TOP;
duke@435 750 if( t2 == Type::TOP ) return Type::TOP;
duke@435 751
duke@435 752 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 753 const Type *bot = bottom_type();
duke@435 754 if( (t1 == bot) || (t2 == bot) ||
duke@435 755 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 756 return bot;
duke@435 757
duke@435 758 // x/x == 1, we ignore 0/0.
duke@435 759 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
duke@435 760 // Does not work for variables because of NaN's
duke@435 761 if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon)
duke@435 762 if (!g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) // could be negative ZERO or NaN
duke@435 763 return TypeD::ONE;
duke@435 764
duke@435 765 if( t2 == TypeD::ONE )
duke@435 766 return t1;
duke@435 767
rasbold@839 768 #if defined(IA32)
rasbold@839 769 if (!phase->C->method()->is_strict())
rasbold@839 770 // Can't trust native compilers to properly fold strict double
rasbold@839 771 // division with round-to-zero on this platform.
rasbold@839 772 #endif
rasbold@839 773 {
rasbold@839 774 // If divisor is a constant and not zero, divide them numbers
rasbold@839 775 if( t1->base() == Type::DoubleCon &&
rasbold@839 776 t2->base() == Type::DoubleCon &&
rasbold@839 777 t2->getd() != 0.0 ) // could be negative zero
rasbold@839 778 return TypeD::make( t1->getd()/t2->getd() );
rasbold@839 779 }
duke@435 780
duke@435 781 // If the dividend is a constant zero
duke@435 782 // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
duke@435 783 // Test TypeF::ZERO is not sufficient as it could be negative zero
duke@435 784 if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
duke@435 785 return TypeD::ZERO;
duke@435 786
duke@435 787 // Otherwise we give up all hope
duke@435 788 return Type::DOUBLE;
duke@435 789 }
duke@435 790
duke@435 791
duke@435 792 //------------------------------isA_Copy---------------------------------------
duke@435 793 // Dividing by self is 1.
duke@435 794 // If the divisor is 1, we are an identity on the dividend.
duke@435 795 Node *DivDNode::Identity( PhaseTransform *phase ) {
duke@435 796 return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
duke@435 797 }
duke@435 798
duke@435 799 //------------------------------Idealize---------------------------------------
duke@435 800 Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 801 if (in(0) && remove_dead_region(phase, can_reshape)) return this;
kvn@740 802 // Don't bother trying to transform a dead node
kvn@740 803 if( in(0) && in(0)->is_top() ) return NULL;
duke@435 804
duke@435 805 const Type *t2 = phase->type( in(2) );
duke@435 806 if( t2 == TypeD::ONE ) // Identity?
duke@435 807 return NULL; // Skip it
duke@435 808
duke@435 809 const TypeD *td = t2->isa_double_constant();
duke@435 810 if( !td ) return NULL;
duke@435 811 if( td->base() != Type::DoubleCon ) return NULL;
duke@435 812
duke@435 813 // Check for out of range values
duke@435 814 if( td->is_nan() || !td->is_finite() ) return NULL;
duke@435 815
duke@435 816 // Get the value
duke@435 817 double d = td->getd();
duke@435 818 int exp;
duke@435 819
duke@435 820 // Only for special case of dividing by a power of 2
duke@435 821 if( frexp(d, &exp) != 0.5 ) return NULL;
duke@435 822
duke@435 823 // Limit the range of acceptable exponents
duke@435 824 if( exp < -1021 || exp > 1022 ) return NULL;
duke@435 825
duke@435 826 // Compute the reciprocal
duke@435 827 double reciprocal = 1.0 / d;
duke@435 828
duke@435 829 assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
duke@435 830
duke@435 831 // return multiplication by the reciprocal
kvn@4115 832 return (new (phase->C) MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
duke@435 833 }
duke@435 834
duke@435 835 //=============================================================================
duke@435 836 //------------------------------Idealize---------------------------------------
duke@435 837 Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 838 // Check for dead control input
kvn@740 839 if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
kvn@740 840 // Don't bother trying to transform a dead node
kvn@740 841 if( in(0) && in(0)->is_top() ) return NULL;
duke@435 842
duke@435 843 // Get the modulus
duke@435 844 const Type *t = phase->type( in(2) );
duke@435 845 if( t == Type::TOP ) return NULL;
duke@435 846 const TypeInt *ti = t->is_int();
duke@435 847
duke@435 848 // Check for useless control input
duke@435 849 // Check for excluding mod-zero case
duke@435 850 if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) {
duke@435 851 set_req(0, NULL); // Yank control input
duke@435 852 return this;
duke@435 853 }
duke@435 854
duke@435 855 // See if we are MOD'ing by 2^k or 2^k-1.
duke@435 856 if( !ti->is_con() ) return NULL;
duke@435 857 jint con = ti->get_con();
duke@435 858
kvn@4115 859 Node *hook = new (phase->C) Node(1);
duke@435 860
duke@435 861 // First, special check for modulo 2^k-1
duke@435 862 if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
duke@435 863 uint k = exact_log2(con+1); // Extract k
duke@435 864
duke@435 865 // Basic algorithm by David Detlefs. See fastmod_int.java for gory details.
duke@435 866 static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
duke@435 867 int trip_count = 1;
duke@435 868 if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
duke@435 869
duke@435 870 // If the unroll factor is not too large, and if conditional moves are
duke@435 871 // ok, then use this case
duke@435 872 if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
duke@435 873 Node *x = in(1); // Value being mod'd
duke@435 874 Node *divisor = in(2); // Also is mask
duke@435 875
duke@435 876 hook->init_req(0, x); // Add a use to x to prevent him from dying
duke@435 877 // Generate code to reduce X rapidly to nearly 2^k-1.
duke@435 878 for( int i = 0; i < trip_count; i++ ) {
kvn@4115 879 Node *xl = phase->transform( new (phase->C) AndINode(x,divisor) );
kvn@4115 880 Node *xh = phase->transform( new (phase->C) RShiftINode(x,phase->intcon(k)) ); // Must be signed
kvn@4115 881 x = phase->transform( new (phase->C) AddINode(xh,xl) );
rasbold@580 882 hook->set_req(0, x);
duke@435 883 }
duke@435 884
duke@435 885 // Generate sign-fixup code. Was original value positive?
duke@435 886 // int hack_res = (i >= 0) ? divisor : 1;
kvn@4115 887 Node *cmp1 = phase->transform( new (phase->C) CmpINode( in(1), phase->intcon(0) ) );
kvn@4115 888 Node *bol1 = phase->transform( new (phase->C) BoolNode( cmp1, BoolTest::ge ) );
kvn@4115 889 Node *cmov1= phase->transform( new (phase->C) CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
duke@435 890 // if( x >= hack_res ) x -= divisor;
kvn@4115 891 Node *sub = phase->transform( new (phase->C) SubINode( x, divisor ) );
kvn@4115 892 Node *cmp2 = phase->transform( new (phase->C) CmpINode( x, cmov1 ) );
kvn@4115 893 Node *bol2 = phase->transform( new (phase->C) BoolNode( cmp2, BoolTest::ge ) );
duke@435 894 // Convention is to not transform the return value of an Ideal
duke@435 895 // since Ideal is expected to return a modified 'this' or a new node.
kvn@4115 896 Node *cmov2= new (phase->C) CMoveINode(bol2, x, sub, TypeInt::INT);
duke@435 897 // cmov2 is now the mod
duke@435 898
duke@435 899 // Now remove the bogus extra edges used to keep things alive
duke@435 900 if (can_reshape) {
duke@435 901 phase->is_IterGVN()->remove_dead_node(hook);
duke@435 902 } else {
duke@435 903 hook->set_req(0, NULL); // Just yank bogus edge during Parse phase
duke@435 904 }
duke@435 905 return cmov2;
duke@435 906 }
duke@435 907 }
duke@435 908
duke@435 909 // Fell thru, the unroll case is not appropriate. Transform the modulo
duke@435 910 // into a long multiply/int multiply/subtract case
duke@435 911
duke@435 912 // Cannot handle mod 0, and min_jint isn't handled by the transform
duke@435 913 if( con == 0 || con == min_jint ) return NULL;
duke@435 914
duke@435 915 // Get the absolute value of the constant; at this point, we can use this
duke@435 916 jint pos_con = (con >= 0) ? con : -con;
duke@435 917
duke@435 918 // integer Mod 1 is always 0
kvn@4115 919 if( pos_con == 1 ) return new (phase->C) ConINode(TypeInt::ZERO);
duke@435 920
duke@435 921 int log2_con = -1;
duke@435 922
duke@435 923 // If this is a power of two, they maybe we can mask it
duke@435 924 if( is_power_of_2(pos_con) ) {
duke@435 925 log2_con = log2_intptr((intptr_t)pos_con);
duke@435 926
duke@435 927 const Type *dt = phase->type(in(1));
duke@435 928 const TypeInt *dti = dt->isa_int();
duke@435 929
duke@435 930 // See if this can be masked, if the dividend is non-negative
duke@435 931 if( dti && dti->_lo >= 0 )
kvn@4115 932 return ( new (phase->C) AndINode( in(1), phase->intcon( pos_con-1 ) ) );
duke@435 933 }
duke@435 934
duke@435 935 // Save in(1) so that it cannot be changed or deleted
duke@435 936 hook->init_req(0, in(1));
duke@435 937
duke@435 938 // Divide using the transform from DivI to MulL
rasbold@580 939 Node *result = transform_int_divide( phase, in(1), pos_con );
rasbold@580 940 if (result != NULL) {
rasbold@580 941 Node *divide = phase->transform(result);
duke@435 942
rasbold@580 943 // Re-multiply, using a shift if this is a power of two
rasbold@580 944 Node *mult = NULL;
duke@435 945
rasbold@580 946 if( log2_con >= 0 )
kvn@4115 947 mult = phase->transform( new (phase->C) LShiftINode( divide, phase->intcon( log2_con ) ) );
rasbold@580 948 else
kvn@4115 949 mult = phase->transform( new (phase->C) MulINode( divide, phase->intcon( pos_con ) ) );
duke@435 950
rasbold@580 951 // Finally, subtract the multiplied divided value from the original
kvn@4115 952 result = new (phase->C) SubINode( in(1), mult );
rasbold@580 953 }
duke@435 954
duke@435 955 // Now remove the bogus extra edges used to keep things alive
duke@435 956 if (can_reshape) {
duke@435 957 phase->is_IterGVN()->remove_dead_node(hook);
duke@435 958 } else {
duke@435 959 hook->set_req(0, NULL); // Just yank bogus edge during Parse phase
duke@435 960 }
duke@435 961
duke@435 962 // return the value
duke@435 963 return result;
duke@435 964 }
duke@435 965
duke@435 966 //------------------------------Value------------------------------------------
duke@435 967 const Type *ModINode::Value( PhaseTransform *phase ) const {
duke@435 968 // Either input is TOP ==> the result is TOP
duke@435 969 const Type *t1 = phase->type( in(1) );
duke@435 970 const Type *t2 = phase->type( in(2) );
duke@435 971 if( t1 == Type::TOP ) return Type::TOP;
duke@435 972 if( t2 == Type::TOP ) return Type::TOP;
duke@435 973
duke@435 974 // We always generate the dynamic check for 0.
duke@435 975 // 0 MOD X is 0
duke@435 976 if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
duke@435 977 // X MOD X is 0
duke@435 978 if( phase->eqv( in(1), in(2) ) ) return TypeInt::ZERO;
duke@435 979
duke@435 980 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 981 const Type *bot = bottom_type();
duke@435 982 if( (t1 == bot) || (t2 == bot) ||
duke@435 983 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 984 return bot;
duke@435 985
duke@435 986 const TypeInt *i1 = t1->is_int();
duke@435 987 const TypeInt *i2 = t2->is_int();
duke@435 988 if( !i1->is_con() || !i2->is_con() ) {
duke@435 989 if( i1->_lo >= 0 && i2->_lo >= 0 )
duke@435 990 return TypeInt::POS;
duke@435 991 // If both numbers are not constants, we know little.
duke@435 992 return TypeInt::INT;
duke@435 993 }
duke@435 994 // Mod by zero? Throw exception at runtime!
duke@435 995 if( !i2->get_con() ) return TypeInt::POS;
duke@435 996
duke@435 997 // We must be modulo'ing 2 float constants.
duke@435 998 // Check for min_jint % '-1', result is defined to be '0'.
duke@435 999 if( i1->get_con() == min_jint && i2->get_con() == -1 )
duke@435 1000 return TypeInt::ZERO;
duke@435 1001
duke@435 1002 return TypeInt::make( i1->get_con() % i2->get_con() );
duke@435 1003 }
duke@435 1004
duke@435 1005
duke@435 1006 //=============================================================================
duke@435 1007 //------------------------------Idealize---------------------------------------
duke@435 1008 Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1009 // Check for dead control input
kvn@740 1010 if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
kvn@740 1011 // Don't bother trying to transform a dead node
kvn@740 1012 if( in(0) && in(0)->is_top() ) return NULL;
duke@435 1013
duke@435 1014 // Get the modulus
duke@435 1015 const Type *t = phase->type( in(2) );
duke@435 1016 if( t == Type::TOP ) return NULL;
rasbold@580 1017 const TypeLong *tl = t->is_long();
duke@435 1018
duke@435 1019 // Check for useless control input
duke@435 1020 // Check for excluding mod-zero case
rasbold@580 1021 if( in(0) && (tl->_hi < 0 || tl->_lo > 0) ) {
duke@435 1022 set_req(0, NULL); // Yank control input
duke@435 1023 return this;
duke@435 1024 }
duke@435 1025
duke@435 1026 // See if we are MOD'ing by 2^k or 2^k-1.
rasbold@580 1027 if( !tl->is_con() ) return NULL;
rasbold@580 1028 jlong con = tl->get_con();
rasbold@580 1029
kvn@4115 1030 Node *hook = new (phase->C) Node(1);
duke@435 1031
duke@435 1032 // Expand mod
rasbold@580 1033 if( con >= 0 && con < max_jlong && is_power_of_2_long(con+1) ) {
twisti@1003 1034 uint k = exact_log2_long(con+1); // Extract k
rasbold@580 1035
duke@435 1036 // Basic algorithm by David Detlefs. See fastmod_long.java for gory details.
duke@435 1037 // Used to help a popular random number generator which does a long-mod
duke@435 1038 // of 2^31-1 and shows up in SpecJBB and SciMark.
duke@435 1039 static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
duke@435 1040 int trip_count = 1;
duke@435 1041 if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
duke@435 1042
rasbold@580 1043 // If the unroll factor is not too large, and if conditional moves are
rasbold@580 1044 // ok, then use this case
rasbold@580 1045 if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
rasbold@580 1046 Node *x = in(1); // Value being mod'd
rasbold@580 1047 Node *divisor = in(2); // Also is mask
duke@435 1048
rasbold@580 1049 hook->init_req(0, x); // Add a use to x to prevent him from dying
rasbold@580 1050 // Generate code to reduce X rapidly to nearly 2^k-1.
rasbold@580 1051 for( int i = 0; i < trip_count; i++ ) {
kvn@4115 1052 Node *xl = phase->transform( new (phase->C) AndLNode(x,divisor) );
kvn@4115 1053 Node *xh = phase->transform( new (phase->C) RShiftLNode(x,phase->intcon(k)) ); // Must be signed
kvn@4115 1054 x = phase->transform( new (phase->C) AddLNode(xh,xl) );
duke@435 1055 hook->set_req(0, x); // Add a use to x to prevent him from dying
rasbold@580 1056 }
rasbold@580 1057
rasbold@580 1058 // Generate sign-fixup code. Was original value positive?
rasbold@580 1059 // long hack_res = (i >= 0) ? divisor : CONST64(1);
kvn@4115 1060 Node *cmp1 = phase->transform( new (phase->C) CmpLNode( in(1), phase->longcon(0) ) );
kvn@4115 1061 Node *bol1 = phase->transform( new (phase->C) BoolNode( cmp1, BoolTest::ge ) );
kvn@4115 1062 Node *cmov1= phase->transform( new (phase->C) CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
rasbold@580 1063 // if( x >= hack_res ) x -= divisor;
kvn@4115 1064 Node *sub = phase->transform( new (phase->C) SubLNode( x, divisor ) );
kvn@4115 1065 Node *cmp2 = phase->transform( new (phase->C) CmpLNode( x, cmov1 ) );
kvn@4115 1066 Node *bol2 = phase->transform( new (phase->C) BoolNode( cmp2, BoolTest::ge ) );
rasbold@580 1067 // Convention is to not transform the return value of an Ideal
rasbold@580 1068 // since Ideal is expected to return a modified 'this' or a new node.
kvn@4115 1069 Node *cmov2= new (phase->C) CMoveLNode(bol2, x, sub, TypeLong::LONG);
rasbold@580 1070 // cmov2 is now the mod
rasbold@580 1071
rasbold@580 1072 // Now remove the bogus extra edges used to keep things alive
rasbold@580 1073 if (can_reshape) {
rasbold@580 1074 phase->is_IterGVN()->remove_dead_node(hook);
rasbold@580 1075 } else {
rasbold@580 1076 hook->set_req(0, NULL); // Just yank bogus edge during Parse phase
rasbold@580 1077 }
rasbold@580 1078 return cmov2;
duke@435 1079 }
rasbold@580 1080 }
duke@435 1081
rasbold@580 1082 // Fell thru, the unroll case is not appropriate. Transform the modulo
rasbold@580 1083 // into a long multiply/int multiply/subtract case
rasbold@580 1084
kvn@2269 1085 // Cannot handle mod 0, and min_jlong isn't handled by the transform
rasbold@580 1086 if( con == 0 || con == min_jlong ) return NULL;
rasbold@580 1087
rasbold@580 1088 // Get the absolute value of the constant; at this point, we can use this
rasbold@580 1089 jlong pos_con = (con >= 0) ? con : -con;
rasbold@580 1090
rasbold@580 1091 // integer Mod 1 is always 0
kvn@4115 1092 if( pos_con == 1 ) return new (phase->C) ConLNode(TypeLong::ZERO);
rasbold@580 1093
rasbold@580 1094 int log2_con = -1;
rasbold@580 1095
twisti@1040 1096 // If this is a power of two, then maybe we can mask it
rasbold@580 1097 if( is_power_of_2_long(pos_con) ) {
kvn@2269 1098 log2_con = exact_log2_long(pos_con);
rasbold@580 1099
rasbold@580 1100 const Type *dt = phase->type(in(1));
rasbold@580 1101 const TypeLong *dtl = dt->isa_long();
rasbold@580 1102
rasbold@580 1103 // See if this can be masked, if the dividend is non-negative
rasbold@580 1104 if( dtl && dtl->_lo >= 0 )
kvn@4115 1105 return ( new (phase->C) AndLNode( in(1), phase->longcon( pos_con-1 ) ) );
duke@435 1106 }
rasbold@580 1107
rasbold@580 1108 // Save in(1) so that it cannot be changed or deleted
rasbold@580 1109 hook->init_req(0, in(1));
rasbold@580 1110
kvn@2269 1111 // Divide using the transform from DivL to MulL
rasbold@580 1112 Node *result = transform_long_divide( phase, in(1), pos_con );
rasbold@580 1113 if (result != NULL) {
rasbold@580 1114 Node *divide = phase->transform(result);
rasbold@580 1115
rasbold@580 1116 // Re-multiply, using a shift if this is a power of two
rasbold@580 1117 Node *mult = NULL;
rasbold@580 1118
rasbold@580 1119 if( log2_con >= 0 )
kvn@4115 1120 mult = phase->transform( new (phase->C) LShiftLNode( divide, phase->intcon( log2_con ) ) );
rasbold@580 1121 else
kvn@4115 1122 mult = phase->transform( new (phase->C) MulLNode( divide, phase->longcon( pos_con ) ) );
rasbold@580 1123
rasbold@580 1124 // Finally, subtract the multiplied divided value from the original
kvn@4115 1125 result = new (phase->C) SubLNode( in(1), mult );
rasbold@580 1126 }
rasbold@580 1127
rasbold@580 1128 // Now remove the bogus extra edges used to keep things alive
rasbold@580 1129 if (can_reshape) {
rasbold@580 1130 phase->is_IterGVN()->remove_dead_node(hook);
rasbold@580 1131 } else {
rasbold@580 1132 hook->set_req(0, NULL); // Just yank bogus edge during Parse phase
rasbold@580 1133 }
rasbold@580 1134
rasbold@580 1135 // return the value
rasbold@580 1136 return result;
duke@435 1137 }
duke@435 1138
duke@435 1139 //------------------------------Value------------------------------------------
duke@435 1140 const Type *ModLNode::Value( PhaseTransform *phase ) const {
duke@435 1141 // Either input is TOP ==> the result is TOP
duke@435 1142 const Type *t1 = phase->type( in(1) );
duke@435 1143 const Type *t2 = phase->type( in(2) );
duke@435 1144 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1145 if( t2 == Type::TOP ) return Type::TOP;
duke@435 1146
duke@435 1147 // We always generate the dynamic check for 0.
duke@435 1148 // 0 MOD X is 0
duke@435 1149 if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
duke@435 1150 // X MOD X is 0
duke@435 1151 if( phase->eqv( in(1), in(2) ) ) return TypeLong::ZERO;
duke@435 1152
duke@435 1153 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 1154 const Type *bot = bottom_type();
duke@435 1155 if( (t1 == bot) || (t2 == bot) ||
duke@435 1156 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 1157 return bot;
duke@435 1158
duke@435 1159 const TypeLong *i1 = t1->is_long();
duke@435 1160 const TypeLong *i2 = t2->is_long();
duke@435 1161 if( !i1->is_con() || !i2->is_con() ) {
duke@435 1162 if( i1->_lo >= CONST64(0) && i2->_lo >= CONST64(0) )
duke@435 1163 return TypeLong::POS;
duke@435 1164 // If both numbers are not constants, we know little.
duke@435 1165 return TypeLong::LONG;
duke@435 1166 }
duke@435 1167 // Mod by zero? Throw exception at runtime!
duke@435 1168 if( !i2->get_con() ) return TypeLong::POS;
duke@435 1169
duke@435 1170 // We must be modulo'ing 2 float constants.
duke@435 1171 // Check for min_jint % '-1', result is defined to be '0'.
duke@435 1172 if( i1->get_con() == min_jlong && i2->get_con() == -1 )
duke@435 1173 return TypeLong::ZERO;
duke@435 1174
duke@435 1175 return TypeLong::make( i1->get_con() % i2->get_con() );
duke@435 1176 }
duke@435 1177
duke@435 1178
duke@435 1179 //=============================================================================
duke@435 1180 //------------------------------Value------------------------------------------
duke@435 1181 const Type *ModFNode::Value( PhaseTransform *phase ) const {
duke@435 1182 // Either input is TOP ==> the result is TOP
duke@435 1183 const Type *t1 = phase->type( in(1) );
duke@435 1184 const Type *t2 = phase->type( in(2) );
duke@435 1185 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1186 if( t2 == Type::TOP ) return Type::TOP;
duke@435 1187
duke@435 1188 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 1189 const Type *bot = bottom_type();
duke@435 1190 if( (t1 == bot) || (t2 == bot) ||
duke@435 1191 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 1192 return bot;
duke@435 1193
jrose@566 1194 // If either number is not a constant, we know nothing.
jrose@566 1195 if ((t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon)) {
jrose@566 1196 return Type::FLOAT; // note: x%x can be either NaN or 0
jrose@566 1197 }
jrose@566 1198
jrose@566 1199 float f1 = t1->getf();
jrose@566 1200 float f2 = t2->getf();
jrose@566 1201 jint x1 = jint_cast(f1); // note: *(int*)&f1, not just (int)f1
jrose@566 1202 jint x2 = jint_cast(f2);
jrose@566 1203
duke@435 1204 // If either is a NaN, return an input NaN
jrose@566 1205 if (g_isnan(f1)) return t1;
jrose@566 1206 if (g_isnan(f2)) return t2;
duke@435 1207
jrose@566 1208 // If an operand is infinity or the divisor is +/- zero, punt.
jrose@566 1209 if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jint)
duke@435 1210 return Type::FLOAT;
duke@435 1211
duke@435 1212 // We must be modulo'ing 2 float constants.
duke@435 1213 // Make sure that the sign of the fmod is equal to the sign of the dividend
jrose@566 1214 jint xr = jint_cast(fmod(f1, f2));
jrose@566 1215 if ((x1 ^ xr) < 0) {
jrose@566 1216 xr ^= min_jint;
duke@435 1217 }
jrose@566 1218
jrose@566 1219 return TypeF::make(jfloat_cast(xr));
duke@435 1220 }
duke@435 1221
duke@435 1222
duke@435 1223 //=============================================================================
duke@435 1224 //------------------------------Value------------------------------------------
duke@435 1225 const Type *ModDNode::Value( PhaseTransform *phase ) const {
duke@435 1226 // Either input is TOP ==> the result is TOP
duke@435 1227 const Type *t1 = phase->type( in(1) );
duke@435 1228 const Type *t2 = phase->type( in(2) );
duke@435 1229 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1230 if( t2 == Type::TOP ) return Type::TOP;
duke@435 1231
duke@435 1232 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 1233 const Type *bot = bottom_type();
duke@435 1234 if( (t1 == bot) || (t2 == bot) ||
duke@435 1235 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 1236 return bot;
duke@435 1237
jrose@566 1238 // If either number is not a constant, we know nothing.
jrose@566 1239 if ((t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon)) {
jrose@566 1240 return Type::DOUBLE; // note: x%x can be either NaN or 0
duke@435 1241 }
duke@435 1242
jrose@566 1243 double f1 = t1->getd();
jrose@566 1244 double f2 = t2->getd();
jrose@566 1245 jlong x1 = jlong_cast(f1); // note: *(long*)&f1, not just (long)f1
jrose@566 1246 jlong x2 = jlong_cast(f2);
duke@435 1247
jrose@566 1248 // If either is a NaN, return an input NaN
jrose@566 1249 if (g_isnan(f1)) return t1;
jrose@566 1250 if (g_isnan(f2)) return t2;
duke@435 1251
jrose@566 1252 // If an operand is infinity or the divisor is +/- zero, punt.
jrose@566 1253 if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jlong)
duke@435 1254 return Type::DOUBLE;
duke@435 1255
duke@435 1256 // We must be modulo'ing 2 double constants.
jrose@566 1257 // Make sure that the sign of the fmod is equal to the sign of the dividend
jrose@566 1258 jlong xr = jlong_cast(fmod(f1, f2));
jrose@566 1259 if ((x1 ^ xr) < 0) {
jrose@566 1260 xr ^= min_jlong;
jrose@566 1261 }
jrose@566 1262
jrose@566 1263 return TypeD::make(jdouble_cast(xr));
duke@435 1264 }
duke@435 1265
duke@435 1266 //=============================================================================
duke@435 1267
duke@435 1268 DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
duke@435 1269 init_req(0, c);
duke@435 1270 init_req(1, dividend);
duke@435 1271 init_req(2, divisor);
duke@435 1272 }
duke@435 1273
duke@435 1274 //------------------------------make------------------------------------------
duke@435 1275 DivModINode* DivModINode::make(Compile* C, Node* div_or_mod) {
duke@435 1276 Node* n = div_or_mod;
duke@435 1277 assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
duke@435 1278 "only div or mod input pattern accepted");
duke@435 1279
kvn@4115 1280 DivModINode* divmod = new (C) DivModINode(n->in(0), n->in(1), n->in(2));
kvn@4115 1281 Node* dproj = new (C) ProjNode(divmod, DivModNode::div_proj_num);
kvn@4115 1282 Node* mproj = new (C) ProjNode(divmod, DivModNode::mod_proj_num);
duke@435 1283 return divmod;
duke@435 1284 }
duke@435 1285
duke@435 1286 //------------------------------make------------------------------------------
duke@435 1287 DivModLNode* DivModLNode::make(Compile* C, Node* div_or_mod) {
duke@435 1288 Node* n = div_or_mod;
duke@435 1289 assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
duke@435 1290 "only div or mod input pattern accepted");
duke@435 1291
kvn@4115 1292 DivModLNode* divmod = new (C) DivModLNode(n->in(0), n->in(1), n->in(2));
kvn@4115 1293 Node* dproj = new (C) ProjNode(divmod, DivModNode::div_proj_num);
kvn@4115 1294 Node* mproj = new (C) ProjNode(divmod, DivModNode::mod_proj_num);
duke@435 1295 return divmod;
duke@435 1296 }
duke@435 1297
duke@435 1298 //------------------------------match------------------------------------------
duke@435 1299 // return result(s) along with their RegMask info
duke@435 1300 Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) {
duke@435 1301 uint ideal_reg = proj->ideal_reg();
duke@435 1302 RegMask rm;
duke@435 1303 if (proj->_con == div_proj_num) {
duke@435 1304 rm = match->divI_proj_mask();
duke@435 1305 } else {
duke@435 1306 assert(proj->_con == mod_proj_num, "must be div or mod projection");
duke@435 1307 rm = match->modI_proj_mask();
duke@435 1308 }
kvn@4115 1309 return new (match->C)MachProjNode(this, proj->_con, rm, ideal_reg);
duke@435 1310 }
duke@435 1311
duke@435 1312
duke@435 1313 //------------------------------match------------------------------------------
duke@435 1314 // return result(s) along with their RegMask info
duke@435 1315 Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) {
duke@435 1316 uint ideal_reg = proj->ideal_reg();
duke@435 1317 RegMask rm;
duke@435 1318 if (proj->_con == div_proj_num) {
duke@435 1319 rm = match->divL_proj_mask();
duke@435 1320 } else {
duke@435 1321 assert(proj->_con == mod_proj_num, "must be div or mod projection");
duke@435 1322 rm = match->modL_proj_mask();
duke@435 1323 }
kvn@4115 1324 return new (match->C)MachProjNode(this, proj->_con, rm, ideal_reg);
duke@435 1325 }

mercurial