src/cpu/sparc/vm/assembler_sparc.hpp

Mon, 26 Apr 2010 11:27:21 -0700

author
never
date
Mon, 26 Apr 2010 11:27:21 -0700
changeset 1831
d7f654633cfe
parent 1441
dcf03e02b020
child 1846
befdf73d6b82
child 1858
c640000b7cc1
permissions
-rw-r--r--

6946040: add intrinsic for short and char reverseBytes
Reviewed-by: never, twisti
Contributed-by: Hiroshi Yamauchi <yamauchi@google.com>

duke@435 1 /*
jrose@1100 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 class BiasedLockingCounters;
duke@435 26
duke@435 27 // <sys/trap.h> promises that the system will not use traps 16-31
duke@435 28 #define ST_RESERVED_FOR_USER_0 0x10
duke@435 29
duke@435 30 /* Written: David Ungar 4/19/97 */
duke@435 31
duke@435 32 // Contains all the definitions needed for sparc assembly code generation.
duke@435 33
duke@435 34 // Register aliases for parts of the system:
duke@435 35
duke@435 36 // 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
duke@435 37 // across context switches in V8+ ABI. Of course, there are no 64 bit regs
duke@435 38 // in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
duke@435 39
duke@435 40 // g2-g4 are scratch registers called "application globals". Their
duke@435 41 // meaning is reserved to the "compilation system"--which means us!
duke@435 42 // They are are not supposed to be touched by ordinary C code, although
duke@435 43 // highly-optimized C code might steal them for temps. They are safe
duke@435 44 // across thread switches, and the ABI requires that they be safe
duke@435 45 // across function calls.
duke@435 46 //
duke@435 47 // g1 and g3 are touched by more modules. V8 allows g1 to be clobbered
duke@435 48 // across func calls, and V8+ also allows g5 to be clobbered across
duke@435 49 // func calls. Also, g1 and g5 can get touched while doing shared
duke@435 50 // library loading.
duke@435 51 //
duke@435 52 // We must not touch g7 (it is the thread-self register) and g6 is
duke@435 53 // reserved for certain tools. g0, of course, is always zero.
duke@435 54 //
duke@435 55 // (Sources: SunSoft Compilers Group, thread library engineers.)
duke@435 56
duke@435 57 // %%%% The interpreter should be revisited to reduce global scratch regs.
duke@435 58
duke@435 59 // This global always holds the current JavaThread pointer:
duke@435 60
duke@435 61 REGISTER_DECLARATION(Register, G2_thread , G2);
coleenp@548 62 REGISTER_DECLARATION(Register, G6_heapbase , G6);
duke@435 63
duke@435 64 // The following globals are part of the Java calling convention:
duke@435 65
duke@435 66 REGISTER_DECLARATION(Register, G5_method , G5);
duke@435 67 REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
duke@435 68 REGISTER_DECLARATION(Register, G5_inline_cache_reg , G5_method);
duke@435 69
duke@435 70 // The following globals are used for the new C1 & interpreter calling convention:
duke@435 71 REGISTER_DECLARATION(Register, Gargs , G4); // pointing to the last argument
duke@435 72
duke@435 73 // This local is used to preserve G2_thread in the interpreter and in stubs:
duke@435 74 REGISTER_DECLARATION(Register, L7_thread_cache , L7);
duke@435 75
duke@435 76 // These globals are used as scratch registers in the interpreter:
duke@435 77
duke@435 78 REGISTER_DECLARATION(Register, Gframe_size , G1); // SAME REG as G1_scratch
duke@435 79 REGISTER_DECLARATION(Register, G1_scratch , G1); // also SAME
duke@435 80 REGISTER_DECLARATION(Register, G3_scratch , G3);
duke@435 81 REGISTER_DECLARATION(Register, G4_scratch , G4);
duke@435 82
duke@435 83 // These globals are used as short-lived scratch registers in the compiler:
duke@435 84
duke@435 85 REGISTER_DECLARATION(Register, Gtemp , G5);
duke@435 86
jrose@1145 87 // JSR 292 fixed register usages:
jrose@1145 88 REGISTER_DECLARATION(Register, G5_method_type , G5);
jrose@1145 89 REGISTER_DECLARATION(Register, G3_method_handle , G3);
jrose@1145 90
duke@435 91 // The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
duke@435 92 // because a single patchable "set" instruction (NativeMovConstReg,
duke@435 93 // or NativeMovConstPatching for compiler1) instruction
duke@435 94 // serves to set up either quantity, depending on whether the compiled
duke@435 95 // call site is an inline cache or is megamorphic. See the function
duke@435 96 // CompiledIC::set_to_megamorphic.
duke@435 97 //
jrose@1145 98 // If a inline cache targets an interpreted method, then the
jrose@1145 99 // G5 register will be used twice during the call. First,
jrose@1145 100 // the call site will be patched to load a compiledICHolder
jrose@1145 101 // into G5. (This is an ordered pair of ic_klass, method.)
jrose@1145 102 // The c2i adapter will first check the ic_klass, then load
jrose@1145 103 // G5_method with the method part of the pair just before
jrose@1145 104 // jumping into the interpreter.
duke@435 105 //
duke@435 106 // Note that G5_method is only the method-self for the interpreter,
duke@435 107 // and is logically unrelated to G5_megamorphic_method.
duke@435 108 //
duke@435 109 // Invariants on G2_thread (the JavaThread pointer):
duke@435 110 // - it should not be used for any other purpose anywhere
duke@435 111 // - it must be re-initialized by StubRoutines::call_stub()
duke@435 112 // - it must be preserved around every use of call_VM
duke@435 113
duke@435 114 // We can consider using g2/g3/g4 to cache more values than the
duke@435 115 // JavaThread, such as the card-marking base or perhaps pointers into
duke@435 116 // Eden. It's something of a waste to use them as scratch temporaries,
duke@435 117 // since they are not supposed to be volatile. (Of course, if we find
duke@435 118 // that Java doesn't benefit from application globals, then we can just
duke@435 119 // use them as ordinary temporaries.)
duke@435 120 //
duke@435 121 // Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
duke@435 122 // it makes sense to use them routinely for procedure linkage,
duke@435 123 // whenever the On registers are not applicable. Examples: G5_method,
duke@435 124 // G5_inline_cache_klass, and a double handful of miscellaneous compiler
duke@435 125 // stubs. This means that compiler stubs, etc., should be kept to a
duke@435 126 // maximum of two or three G-register arguments.
duke@435 127
duke@435 128
duke@435 129 // stub frames
duke@435 130
duke@435 131 REGISTER_DECLARATION(Register, Lentry_args , L0); // pointer to args passed to callee (interpreter) not stub itself
duke@435 132
duke@435 133 // Interpreter frames
duke@435 134
duke@435 135 #ifdef CC_INTERP
duke@435 136 REGISTER_DECLARATION(Register, Lstate , L0); // interpreter state object pointer
duke@435 137 REGISTER_DECLARATION(Register, L1_scratch , L1); // scratch
duke@435 138 REGISTER_DECLARATION(Register, Lmirror , L1); // mirror (for native methods only)
duke@435 139 REGISTER_DECLARATION(Register, L2_scratch , L2);
duke@435 140 REGISTER_DECLARATION(Register, L3_scratch , L3);
duke@435 141 REGISTER_DECLARATION(Register, L4_scratch , L4);
duke@435 142 REGISTER_DECLARATION(Register, Lscratch , L5); // C1 uses
duke@435 143 REGISTER_DECLARATION(Register, Lscratch2 , L6); // C1 uses
duke@435 144 REGISTER_DECLARATION(Register, L7_scratch , L7); // constant pool cache
duke@435 145 REGISTER_DECLARATION(Register, O5_savedSP , O5);
duke@435 146 REGISTER_DECLARATION(Register, I5_savedSP , I5); // Saved SP before bumping for locals. This is simply
duke@435 147 // a copy SP, so in 64-bit it's a biased value. The bias
duke@435 148 // is added and removed as needed in the frame code.
duke@435 149 // Interface to signature handler
duke@435 150 REGISTER_DECLARATION(Register, Llocals , L7); // pointer to locals for signature handler
duke@435 151 REGISTER_DECLARATION(Register, Lmethod , L6); // methodOop when calling signature handler
duke@435 152
duke@435 153 #else
duke@435 154 REGISTER_DECLARATION(Register, Lesp , L0); // expression stack pointer
duke@435 155 REGISTER_DECLARATION(Register, Lbcp , L1); // pointer to next bytecode
duke@435 156 REGISTER_DECLARATION(Register, Lmethod , L2);
duke@435 157 REGISTER_DECLARATION(Register, Llocals , L3);
duke@435 158 REGISTER_DECLARATION(Register, Largs , L3); // pointer to locals for signature handler
duke@435 159 // must match Llocals in asm interpreter
duke@435 160 REGISTER_DECLARATION(Register, Lmonitors , L4);
duke@435 161 REGISTER_DECLARATION(Register, Lbyte_code , L5);
duke@435 162 // When calling out from the interpreter we record SP so that we can remove any extra stack
duke@435 163 // space allocated during adapter transitions. This register is only live from the point
duke@435 164 // of the call until we return.
duke@435 165 REGISTER_DECLARATION(Register, Llast_SP , L5);
duke@435 166 REGISTER_DECLARATION(Register, Lscratch , L5);
duke@435 167 REGISTER_DECLARATION(Register, Lscratch2 , L6);
duke@435 168 REGISTER_DECLARATION(Register, LcpoolCache , L6); // constant pool cache
duke@435 169
duke@435 170 REGISTER_DECLARATION(Register, O5_savedSP , O5);
duke@435 171 REGISTER_DECLARATION(Register, I5_savedSP , I5); // Saved SP before bumping for locals. This is simply
duke@435 172 // a copy SP, so in 64-bit it's a biased value. The bias
duke@435 173 // is added and removed as needed in the frame code.
duke@435 174 REGISTER_DECLARATION(Register, IdispatchTables , I4); // Base address of the bytecode dispatch tables
duke@435 175 REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
duke@435 176 REGISTER_DECLARATION(Register, ImethodDataPtr , I2); // Pointer to the current method data
duke@435 177 #endif /* CC_INTERP */
duke@435 178
duke@435 179 // NOTE: Lscratch2 and LcpoolCache point to the same registers in
duke@435 180 // the interpreter code. If Lscratch2 needs to be used for some
duke@435 181 // purpose than LcpoolCache should be restore after that for
duke@435 182 // the interpreter to work right
duke@435 183 // (These assignments must be compatible with L7_thread_cache; see above.)
duke@435 184
duke@435 185 // Since Lbcp points into the middle of the method object,
duke@435 186 // it is temporarily converted into a "bcx" during GC.
duke@435 187
duke@435 188 // Exception processing
duke@435 189 // These registers are passed into exception handlers.
duke@435 190 // All exception handlers require the exception object being thrown.
duke@435 191 // In addition, an nmethod's exception handler must be passed
duke@435 192 // the address of the call site within the nmethod, to allow
duke@435 193 // proper selection of the applicable catch block.
duke@435 194 // (Interpreter frames use their own bcp() for this purpose.)
duke@435 195 //
duke@435 196 // The Oissuing_pc value is not always needed. When jumping to a
duke@435 197 // handler that is known to be interpreted, the Oissuing_pc value can be
duke@435 198 // omitted. An actual catch block in compiled code receives (from its
duke@435 199 // nmethod's exception handler) the thrown exception in the Oexception,
duke@435 200 // but it doesn't need the Oissuing_pc.
duke@435 201 //
duke@435 202 // If an exception handler (either interpreted or compiled)
duke@435 203 // discovers there is no applicable catch block, it updates
duke@435 204 // the Oissuing_pc to the continuation PC of its own caller,
duke@435 205 // pops back to that caller's stack frame, and executes that
duke@435 206 // caller's exception handler. Obviously, this process will
duke@435 207 // iterate until the control stack is popped back to a method
duke@435 208 // containing an applicable catch block. A key invariant is
duke@435 209 // that the Oissuing_pc value is always a value local to
duke@435 210 // the method whose exception handler is currently executing.
duke@435 211 //
duke@435 212 // Note: The issuing PC value is __not__ a raw return address (I7 value).
duke@435 213 // It is a "return pc", the address __following__ the call.
duke@435 214 // Raw return addresses are converted to issuing PCs by frame::pc(),
duke@435 215 // or by stubs. Issuing PCs can be used directly with PC range tables.
duke@435 216 //
duke@435 217 REGISTER_DECLARATION(Register, Oexception , O0); // exception being thrown
duke@435 218 REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
duke@435 219
duke@435 220
duke@435 221 // These must occur after the declarations above
duke@435 222 #ifndef DONT_USE_REGISTER_DEFINES
duke@435 223
duke@435 224 #define Gthread AS_REGISTER(Register, Gthread)
duke@435 225 #define Gmethod AS_REGISTER(Register, Gmethod)
duke@435 226 #define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
duke@435 227 #define Ginline_cache_reg AS_REGISTER(Register, Ginline_cache_reg)
duke@435 228 #define Gargs AS_REGISTER(Register, Gargs)
duke@435 229 #define Lthread_cache AS_REGISTER(Register, Lthread_cache)
duke@435 230 #define Gframe_size AS_REGISTER(Register, Gframe_size)
duke@435 231 #define Gtemp AS_REGISTER(Register, Gtemp)
duke@435 232
duke@435 233 #ifdef CC_INTERP
duke@435 234 #define Lstate AS_REGISTER(Register, Lstate)
duke@435 235 #define Lesp AS_REGISTER(Register, Lesp)
duke@435 236 #define L1_scratch AS_REGISTER(Register, L1_scratch)
duke@435 237 #define Lmirror AS_REGISTER(Register, Lmirror)
duke@435 238 #define L2_scratch AS_REGISTER(Register, L2_scratch)
duke@435 239 #define L3_scratch AS_REGISTER(Register, L3_scratch)
duke@435 240 #define L4_scratch AS_REGISTER(Register, L4_scratch)
duke@435 241 #define Lscratch AS_REGISTER(Register, Lscratch)
duke@435 242 #define Lscratch2 AS_REGISTER(Register, Lscratch2)
duke@435 243 #define L7_scratch AS_REGISTER(Register, L7_scratch)
duke@435 244 #define Ostate AS_REGISTER(Register, Ostate)
duke@435 245 #else
duke@435 246 #define Lesp AS_REGISTER(Register, Lesp)
duke@435 247 #define Lbcp AS_REGISTER(Register, Lbcp)
duke@435 248 #define Lmethod AS_REGISTER(Register, Lmethod)
duke@435 249 #define Llocals AS_REGISTER(Register, Llocals)
duke@435 250 #define Lmonitors AS_REGISTER(Register, Lmonitors)
duke@435 251 #define Lbyte_code AS_REGISTER(Register, Lbyte_code)
duke@435 252 #define Lscratch AS_REGISTER(Register, Lscratch)
duke@435 253 #define Lscratch2 AS_REGISTER(Register, Lscratch2)
duke@435 254 #define LcpoolCache AS_REGISTER(Register, LcpoolCache)
duke@435 255 #endif /* ! CC_INTERP */
duke@435 256
duke@435 257 #define Lentry_args AS_REGISTER(Register, Lentry_args)
duke@435 258 #define I5_savedSP AS_REGISTER(Register, I5_savedSP)
duke@435 259 #define O5_savedSP AS_REGISTER(Register, O5_savedSP)
duke@435 260 #define IdispatchAddress AS_REGISTER(Register, IdispatchAddress)
duke@435 261 #define ImethodDataPtr AS_REGISTER(Register, ImethodDataPtr)
duke@435 262 #define IdispatchTables AS_REGISTER(Register, IdispatchTables)
duke@435 263
duke@435 264 #define Oexception AS_REGISTER(Register, Oexception)
duke@435 265 #define Oissuing_pc AS_REGISTER(Register, Oissuing_pc)
duke@435 266
duke@435 267
duke@435 268 #endif
duke@435 269
duke@435 270 // Address is an abstraction used to represent a memory location.
duke@435 271 //
duke@435 272 // Note: A register location is represented via a Register, not
duke@435 273 // via an address for efficiency & simplicity reasons.
duke@435 274
duke@435 275 class Address VALUE_OBJ_CLASS_SPEC {
duke@435 276 private:
twisti@1162 277 Register _base; // Base register.
twisti@1162 278 RegisterOrConstant _index_or_disp; // Index register or constant displacement.
twisti@1162 279 RelocationHolder _rspec;
twisti@1162 280
twisti@1162 281 public:
twisti@1162 282 Address() : _base(noreg), _index_or_disp(noreg) {}
twisti@1162 283
twisti@1162 284 Address(Register base, RegisterOrConstant index_or_disp)
twisti@1162 285 : _base(base),
twisti@1162 286 _index_or_disp(index_or_disp) {
twisti@1162 287 }
twisti@1162 288
twisti@1162 289 Address(Register base, Register index)
twisti@1162 290 : _base(base),
twisti@1162 291 _index_or_disp(index) {
twisti@1162 292 }
twisti@1162 293
twisti@1162 294 Address(Register base, int disp)
twisti@1162 295 : _base(base),
twisti@1162 296 _index_or_disp(disp) {
twisti@1162 297 }
twisti@1162 298
twisti@1162 299 #ifdef ASSERT
twisti@1162 300 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
twisti@1162 301 Address(Register base, ByteSize disp)
twisti@1162 302 : _base(base),
twisti@1162 303 _index_or_disp(in_bytes(disp)) {
twisti@1162 304 }
duke@435 305 #endif
twisti@1162 306
twisti@1162 307 // accessors
twisti@1162 308 Register base() const { return _base; }
twisti@1162 309 Register index() const { return _index_or_disp.as_register(); }
twisti@1162 310 int disp() const { return _index_or_disp.as_constant(); }
twisti@1162 311
twisti@1162 312 bool has_index() const { return _index_or_disp.is_register(); }
twisti@1162 313 bool has_disp() const { return _index_or_disp.is_constant(); }
twisti@1162 314
twisti@1162 315 const relocInfo::relocType rtype() { return _rspec.type(); }
twisti@1162 316 const RelocationHolder& rspec() { return _rspec; }
twisti@1162 317
twisti@1162 318 RelocationHolder rspec(int offset) const {
twisti@1162 319 return offset == 0 ? _rspec : _rspec.plus(offset);
twisti@1162 320 }
twisti@1162 321
twisti@1162 322 inline bool is_simm13(int offset = 0); // check disp+offset for overflow
twisti@1162 323
twisti@1162 324 Address plus_disp(int plusdisp) const { // bump disp by a small amount
twisti@1162 325 assert(_index_or_disp.is_constant(), "must have a displacement");
twisti@1162 326 Address a(base(), disp() + plusdisp);
twisti@1162 327 return a;
twisti@1162 328 }
twisti@1162 329
twisti@1162 330 Address after_save() const {
twisti@1162 331 Address a = (*this);
twisti@1162 332 a._base = a._base->after_save();
twisti@1162 333 return a;
twisti@1162 334 }
twisti@1162 335
twisti@1162 336 Address after_restore() const {
twisti@1162 337 Address a = (*this);
twisti@1162 338 a._base = a._base->after_restore();
twisti@1162 339 return a;
twisti@1162 340 }
twisti@1162 341
twisti@1162 342 // Convert the raw encoding form into the form expected by the
twisti@1162 343 // constructor for Address.
twisti@1162 344 static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
twisti@1162 345
twisti@1162 346 friend class Assembler;
twisti@1162 347 };
twisti@1162 348
twisti@1162 349
twisti@1162 350 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
twisti@1162 351 private:
twisti@1162 352 address _address;
twisti@1162 353 RelocationHolder _rspec;
twisti@1162 354
twisti@1162 355 RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
twisti@1162 356 switch (rtype) {
duke@435 357 case relocInfo::external_word_type:
twisti@1162 358 return external_word_Relocation::spec(addr);
duke@435 359 case relocInfo::internal_word_type:
twisti@1162 360 return internal_word_Relocation::spec(addr);
duke@435 361 #ifdef _LP64
duke@435 362 case relocInfo::opt_virtual_call_type:
duke@435 363 return opt_virtual_call_Relocation::spec();
duke@435 364 case relocInfo::static_call_type:
duke@435 365 return static_call_Relocation::spec();
duke@435 366 case relocInfo::runtime_call_type:
duke@435 367 return runtime_call_Relocation::spec();
duke@435 368 #endif
duke@435 369 case relocInfo::none:
duke@435 370 return RelocationHolder();
duke@435 371 default:
duke@435 372 ShouldNotReachHere();
duke@435 373 return RelocationHolder();
duke@435 374 }
duke@435 375 }
duke@435 376
twisti@1162 377 protected:
twisti@1162 378 // creation
twisti@1162 379 AddressLiteral() : _address(NULL), _rspec(NULL) {}
twisti@1162 380
duke@435 381 public:
twisti@1162 382 AddressLiteral(address addr, RelocationHolder const& rspec)
twisti@1162 383 : _address(addr),
twisti@1162 384 _rspec(rspec) {}
twisti@1162 385
twisti@1162 386 // Some constructors to avoid casting at the call site.
twisti@1162 387 AddressLiteral(jobject obj, RelocationHolder const& rspec)
twisti@1162 388 : _address((address) obj),
twisti@1162 389 _rspec(rspec) {}
twisti@1162 390
twisti@1162 391 AddressLiteral(intptr_t value, RelocationHolder const& rspec)
twisti@1162 392 : _address((address) value),
twisti@1162 393 _rspec(rspec) {}
twisti@1162 394
twisti@1162 395 AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 396 : _address((address) addr),
twisti@1162 397 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 398
twisti@1162 399 // Some constructors to avoid casting at the call site.
twisti@1162 400 AddressLiteral(address* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 401 : _address((address) addr),
twisti@1162 402 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 403
twisti@1162 404 AddressLiteral(bool* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 405 : _address((address) addr),
twisti@1162 406 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 407
twisti@1162 408 AddressLiteral(const bool* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 409 : _address((address) addr),
twisti@1162 410 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 411
twisti@1162 412 AddressLiteral(signed char* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 413 : _address((address) addr),
twisti@1162 414 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 415
twisti@1162 416 AddressLiteral(int* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 417 : _address((address) addr),
twisti@1162 418 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 419
twisti@1162 420 AddressLiteral(intptr_t addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 421 : _address((address) addr),
twisti@1162 422 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 423
duke@435 424 #ifdef _LP64
twisti@1162 425 // 32-bit complains about a multiple declaration for int*.
twisti@1162 426 AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 427 : _address((address) addr),
twisti@1162 428 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
duke@435 429 #endif
twisti@1162 430
twisti@1162 431 AddressLiteral(oop addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 432 : _address((address) addr),
twisti@1162 433 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 434
twisti@1162 435 AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 436 : _address((address) addr),
twisti@1162 437 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 438
twisti@1162 439 AddressLiteral(double* addr, relocInfo::relocType rtype = relocInfo::none)
twisti@1162 440 : _address((address) addr),
twisti@1162 441 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
twisti@1162 442
twisti@1162 443 intptr_t value() const { return (intptr_t) _address; }
twisti@1162 444 int low10() const;
twisti@1162 445
twisti@1162 446 const relocInfo::relocType rtype() const { return _rspec.type(); }
twisti@1162 447 const RelocationHolder& rspec() const { return _rspec; }
twisti@1162 448
twisti@1162 449 RelocationHolder rspec(int offset) const {
duke@435 450 return offset == 0 ? _rspec : _rspec.plus(offset);
duke@435 451 }
duke@435 452 };
duke@435 453
duke@435 454
duke@435 455 inline Address RegisterImpl::address_in_saved_window() const {
twisti@1162 456 return (Address(SP, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
duke@435 457 }
duke@435 458
duke@435 459
duke@435 460
duke@435 461 // Argument is an abstraction used to represent an outgoing
duke@435 462 // actual argument or an incoming formal parameter, whether
duke@435 463 // it resides in memory or in a register, in a manner consistent
duke@435 464 // with the SPARC Application Binary Interface, or ABI. This is
duke@435 465 // often referred to as the native or C calling convention.
duke@435 466
duke@435 467 class Argument VALUE_OBJ_CLASS_SPEC {
duke@435 468 private:
duke@435 469 int _number;
duke@435 470 bool _is_in;
duke@435 471
duke@435 472 public:
duke@435 473 #ifdef _LP64
duke@435 474 enum {
duke@435 475 n_register_parameters = 6, // only 6 registers may contain integer parameters
duke@435 476 n_float_register_parameters = 16 // Can have up to 16 floating registers
duke@435 477 };
duke@435 478 #else
duke@435 479 enum {
duke@435 480 n_register_parameters = 6 // only 6 registers may contain integer parameters
duke@435 481 };
duke@435 482 #endif
duke@435 483
duke@435 484 // creation
duke@435 485 Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
duke@435 486
duke@435 487 int number() const { return _number; }
duke@435 488 bool is_in() const { return _is_in; }
duke@435 489 bool is_out() const { return !is_in(); }
duke@435 490
duke@435 491 Argument successor() const { return Argument(number() + 1, is_in()); }
duke@435 492 Argument as_in() const { return Argument(number(), true ); }
duke@435 493 Argument as_out() const { return Argument(number(), false); }
duke@435 494
duke@435 495 // locating register-based arguments:
duke@435 496 bool is_register() const { return _number < n_register_parameters; }
duke@435 497
duke@435 498 #ifdef _LP64
duke@435 499 // locating Floating Point register-based arguments:
duke@435 500 bool is_float_register() const { return _number < n_float_register_parameters; }
duke@435 501
duke@435 502 FloatRegister as_float_register() const {
duke@435 503 assert(is_float_register(), "must be a register argument");
duke@435 504 return as_FloatRegister(( number() *2 ) + 1);
duke@435 505 }
duke@435 506 FloatRegister as_double_register() const {
duke@435 507 assert(is_float_register(), "must be a register argument");
duke@435 508 return as_FloatRegister(( number() *2 ));
duke@435 509 }
duke@435 510 #endif
duke@435 511
duke@435 512 Register as_register() const {
duke@435 513 assert(is_register(), "must be a register argument");
duke@435 514 return is_in() ? as_iRegister(number()) : as_oRegister(number());
duke@435 515 }
duke@435 516
duke@435 517 // locating memory-based arguments
duke@435 518 Address as_address() const {
duke@435 519 assert(!is_register(), "must be a memory argument");
duke@435 520 return address_in_frame();
duke@435 521 }
duke@435 522
duke@435 523 // When applied to a register-based argument, give the corresponding address
duke@435 524 // into the 6-word area "into which callee may store register arguments"
duke@435 525 // (This is a different place than the corresponding register-save area location.)
twisti@1162 526 Address address_in_frame() const;
duke@435 527
duke@435 528 // debugging
duke@435 529 const char* name() const;
duke@435 530
duke@435 531 friend class Assembler;
duke@435 532 };
duke@435 533
duke@435 534
duke@435 535 // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
duke@435 536 // level; i.e., what you write
duke@435 537 // is what you get. The Assembler is generating code into a CodeBuffer.
duke@435 538
duke@435 539 class Assembler : public AbstractAssembler {
duke@435 540 protected:
duke@435 541
duke@435 542 static void print_instruction(int inst);
duke@435 543 static int patched_branch(int dest_pos, int inst, int inst_pos);
duke@435 544 static int branch_destination(int inst, int pos);
duke@435 545
duke@435 546
duke@435 547 friend class AbstractAssembler;
twisti@1162 548 friend class AddressLiteral;
duke@435 549
duke@435 550 // code patchers need various routines like inv_wdisp()
duke@435 551 friend class NativeInstruction;
duke@435 552 friend class NativeGeneralJump;
duke@435 553 friend class Relocation;
duke@435 554 friend class Label;
duke@435 555
duke@435 556 public:
duke@435 557 // op carries format info; see page 62 & 267
duke@435 558
duke@435 559 enum ops {
duke@435 560 call_op = 1, // fmt 1
duke@435 561 branch_op = 0, // also sethi (fmt2)
duke@435 562 arith_op = 2, // fmt 3, arith & misc
duke@435 563 ldst_op = 3 // fmt 3, load/store
duke@435 564 };
duke@435 565
duke@435 566 enum op2s {
duke@435 567 bpr_op2 = 3,
duke@435 568 fb_op2 = 6,
duke@435 569 fbp_op2 = 5,
duke@435 570 br_op2 = 2,
duke@435 571 bp_op2 = 1,
duke@435 572 cb_op2 = 7, // V8
duke@435 573 sethi_op2 = 4
duke@435 574 };
duke@435 575
duke@435 576 enum op3s {
duke@435 577 // selected op3s
duke@435 578 add_op3 = 0x00,
duke@435 579 and_op3 = 0x01,
duke@435 580 or_op3 = 0x02,
duke@435 581 xor_op3 = 0x03,
duke@435 582 sub_op3 = 0x04,
duke@435 583 andn_op3 = 0x05,
duke@435 584 orn_op3 = 0x06,
duke@435 585 xnor_op3 = 0x07,
duke@435 586 addc_op3 = 0x08,
duke@435 587 mulx_op3 = 0x09,
duke@435 588 umul_op3 = 0x0a,
duke@435 589 smul_op3 = 0x0b,
duke@435 590 subc_op3 = 0x0c,
duke@435 591 udivx_op3 = 0x0d,
duke@435 592 udiv_op3 = 0x0e,
duke@435 593 sdiv_op3 = 0x0f,
duke@435 594
duke@435 595 addcc_op3 = 0x10,
duke@435 596 andcc_op3 = 0x11,
duke@435 597 orcc_op3 = 0x12,
duke@435 598 xorcc_op3 = 0x13,
duke@435 599 subcc_op3 = 0x14,
duke@435 600 andncc_op3 = 0x15,
duke@435 601 orncc_op3 = 0x16,
duke@435 602 xnorcc_op3 = 0x17,
duke@435 603 addccc_op3 = 0x18,
duke@435 604 umulcc_op3 = 0x1a,
duke@435 605 smulcc_op3 = 0x1b,
duke@435 606 subccc_op3 = 0x1c,
duke@435 607 udivcc_op3 = 0x1e,
duke@435 608 sdivcc_op3 = 0x1f,
duke@435 609
duke@435 610 taddcc_op3 = 0x20,
duke@435 611 tsubcc_op3 = 0x21,
duke@435 612 taddcctv_op3 = 0x22,
duke@435 613 tsubcctv_op3 = 0x23,
duke@435 614 mulscc_op3 = 0x24,
duke@435 615 sll_op3 = 0x25,
duke@435 616 sllx_op3 = 0x25,
duke@435 617 srl_op3 = 0x26,
duke@435 618 srlx_op3 = 0x26,
duke@435 619 sra_op3 = 0x27,
duke@435 620 srax_op3 = 0x27,
duke@435 621 rdreg_op3 = 0x28,
duke@435 622 membar_op3 = 0x28,
duke@435 623
duke@435 624 flushw_op3 = 0x2b,
duke@435 625 movcc_op3 = 0x2c,
duke@435 626 sdivx_op3 = 0x2d,
duke@435 627 popc_op3 = 0x2e,
duke@435 628 movr_op3 = 0x2f,
duke@435 629
duke@435 630 sir_op3 = 0x30,
duke@435 631 wrreg_op3 = 0x30,
duke@435 632 saved_op3 = 0x31,
duke@435 633
duke@435 634 fpop1_op3 = 0x34,
duke@435 635 fpop2_op3 = 0x35,
duke@435 636 impdep1_op3 = 0x36,
duke@435 637 impdep2_op3 = 0x37,
duke@435 638 jmpl_op3 = 0x38,
duke@435 639 rett_op3 = 0x39,
duke@435 640 trap_op3 = 0x3a,
duke@435 641 flush_op3 = 0x3b,
duke@435 642 save_op3 = 0x3c,
duke@435 643 restore_op3 = 0x3d,
duke@435 644 done_op3 = 0x3e,
duke@435 645 retry_op3 = 0x3e,
duke@435 646
duke@435 647 lduw_op3 = 0x00,
duke@435 648 ldub_op3 = 0x01,
duke@435 649 lduh_op3 = 0x02,
duke@435 650 ldd_op3 = 0x03,
duke@435 651 stw_op3 = 0x04,
duke@435 652 stb_op3 = 0x05,
duke@435 653 sth_op3 = 0x06,
duke@435 654 std_op3 = 0x07,
duke@435 655 ldsw_op3 = 0x08,
duke@435 656 ldsb_op3 = 0x09,
duke@435 657 ldsh_op3 = 0x0a,
duke@435 658 ldx_op3 = 0x0b,
duke@435 659
duke@435 660 ldstub_op3 = 0x0d,
duke@435 661 stx_op3 = 0x0e,
duke@435 662 swap_op3 = 0x0f,
duke@435 663
duke@435 664 stwa_op3 = 0x14,
duke@435 665 stxa_op3 = 0x1e,
duke@435 666
duke@435 667 ldf_op3 = 0x20,
duke@435 668 ldfsr_op3 = 0x21,
duke@435 669 ldqf_op3 = 0x22,
duke@435 670 lddf_op3 = 0x23,
duke@435 671 stf_op3 = 0x24,
duke@435 672 stfsr_op3 = 0x25,
duke@435 673 stqf_op3 = 0x26,
duke@435 674 stdf_op3 = 0x27,
duke@435 675
duke@435 676 prefetch_op3 = 0x2d,
duke@435 677
duke@435 678
duke@435 679 ldc_op3 = 0x30,
duke@435 680 ldcsr_op3 = 0x31,
duke@435 681 lddc_op3 = 0x33,
duke@435 682 stc_op3 = 0x34,
duke@435 683 stcsr_op3 = 0x35,
duke@435 684 stdcq_op3 = 0x36,
duke@435 685 stdc_op3 = 0x37,
duke@435 686
duke@435 687 casa_op3 = 0x3c,
duke@435 688 casxa_op3 = 0x3e,
duke@435 689
duke@435 690 alt_bit_op3 = 0x10,
duke@435 691 cc_bit_op3 = 0x10
duke@435 692 };
duke@435 693
duke@435 694 enum opfs {
duke@435 695 // selected opfs
duke@435 696 fmovs_opf = 0x01,
duke@435 697 fmovd_opf = 0x02,
duke@435 698
duke@435 699 fnegs_opf = 0x05,
duke@435 700 fnegd_opf = 0x06,
duke@435 701
duke@435 702 fadds_opf = 0x41,
duke@435 703 faddd_opf = 0x42,
duke@435 704 fsubs_opf = 0x45,
duke@435 705 fsubd_opf = 0x46,
duke@435 706
duke@435 707 fmuls_opf = 0x49,
duke@435 708 fmuld_opf = 0x4a,
duke@435 709 fdivs_opf = 0x4d,
duke@435 710 fdivd_opf = 0x4e,
duke@435 711
duke@435 712 fcmps_opf = 0x51,
duke@435 713 fcmpd_opf = 0x52,
duke@435 714
duke@435 715 fstox_opf = 0x81,
duke@435 716 fdtox_opf = 0x82,
duke@435 717 fxtos_opf = 0x84,
duke@435 718 fxtod_opf = 0x88,
duke@435 719 fitos_opf = 0xc4,
duke@435 720 fdtos_opf = 0xc6,
duke@435 721 fitod_opf = 0xc8,
duke@435 722 fstod_opf = 0xc9,
duke@435 723 fstoi_opf = 0xd1,
duke@435 724 fdtoi_opf = 0xd2
duke@435 725 };
duke@435 726
duke@435 727 enum RCondition { rc_z = 1, rc_lez = 2, rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7 };
duke@435 728
duke@435 729 enum Condition {
duke@435 730 // for FBfcc & FBPfcc instruction
duke@435 731 f_never = 0,
duke@435 732 f_notEqual = 1,
duke@435 733 f_notZero = 1,
duke@435 734 f_lessOrGreater = 2,
duke@435 735 f_unorderedOrLess = 3,
duke@435 736 f_less = 4,
duke@435 737 f_unorderedOrGreater = 5,
duke@435 738 f_greater = 6,
duke@435 739 f_unordered = 7,
duke@435 740 f_always = 8,
duke@435 741 f_equal = 9,
duke@435 742 f_zero = 9,
duke@435 743 f_unorderedOrEqual = 10,
duke@435 744 f_greaterOrEqual = 11,
duke@435 745 f_unorderedOrGreaterOrEqual = 12,
duke@435 746 f_lessOrEqual = 13,
duke@435 747 f_unorderedOrLessOrEqual = 14,
duke@435 748 f_ordered = 15,
duke@435 749
duke@435 750 // V8 coproc, pp 123 v8 manual
duke@435 751
duke@435 752 cp_always = 8,
duke@435 753 cp_never = 0,
duke@435 754 cp_3 = 7,
duke@435 755 cp_2 = 6,
duke@435 756 cp_2or3 = 5,
duke@435 757 cp_1 = 4,
duke@435 758 cp_1or3 = 3,
duke@435 759 cp_1or2 = 2,
duke@435 760 cp_1or2or3 = 1,
duke@435 761 cp_0 = 9,
duke@435 762 cp_0or3 = 10,
duke@435 763 cp_0or2 = 11,
duke@435 764 cp_0or2or3 = 12,
duke@435 765 cp_0or1 = 13,
duke@435 766 cp_0or1or3 = 14,
duke@435 767 cp_0or1or2 = 15,
duke@435 768
duke@435 769
duke@435 770 // for integers
duke@435 771
duke@435 772 never = 0,
duke@435 773 equal = 1,
duke@435 774 zero = 1,
duke@435 775 lessEqual = 2,
duke@435 776 less = 3,
duke@435 777 lessEqualUnsigned = 4,
duke@435 778 lessUnsigned = 5,
duke@435 779 carrySet = 5,
duke@435 780 negative = 6,
duke@435 781 overflowSet = 7,
duke@435 782 always = 8,
duke@435 783 notEqual = 9,
duke@435 784 notZero = 9,
duke@435 785 greater = 10,
duke@435 786 greaterEqual = 11,
duke@435 787 greaterUnsigned = 12,
duke@435 788 greaterEqualUnsigned = 13,
duke@435 789 carryClear = 13,
duke@435 790 positive = 14,
duke@435 791 overflowClear = 15
duke@435 792 };
duke@435 793
duke@435 794 enum CC {
duke@435 795 icc = 0, xcc = 2,
duke@435 796 // ptr_cc is the correct condition code for a pointer or intptr_t:
duke@435 797 ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
duke@435 798 fcc0 = 0, fcc1 = 1, fcc2 = 2, fcc3 = 3
duke@435 799 };
duke@435 800
duke@435 801 enum PrefetchFcn {
duke@435 802 severalReads = 0, oneRead = 1, severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
duke@435 803 };
duke@435 804
duke@435 805 public:
duke@435 806 // Helper functions for groups of instructions
duke@435 807
duke@435 808 enum Predict { pt = 1, pn = 0 }; // pt = predict taken
duke@435 809
duke@435 810 enum Membar_mask_bits { // page 184, v9
duke@435 811 StoreStore = 1 << 3,
duke@435 812 LoadStore = 1 << 2,
duke@435 813 StoreLoad = 1 << 1,
duke@435 814 LoadLoad = 1 << 0,
duke@435 815
duke@435 816 Sync = 1 << 6,
duke@435 817 MemIssue = 1 << 5,
duke@435 818 Lookaside = 1 << 4
duke@435 819 };
duke@435 820
duke@435 821 // test if x is within signed immediate range for nbits
duke@435 822 static bool is_simm(int x, int nbits) { return -( 1 << nbits-1 ) <= x && x < ( 1 << nbits-1 ); }
duke@435 823
duke@435 824 // test if -4096 <= x <= 4095
duke@435 825 static bool is_simm13(int x) { return is_simm(x, 13); }
duke@435 826
duke@435 827 enum ASIs { // page 72, v9
duke@435 828 ASI_PRIMARY = 0x80,
duke@435 829 ASI_PRIMARY_LITTLE = 0x88
duke@435 830 // add more from book as needed
duke@435 831 };
duke@435 832
duke@435 833 protected:
duke@435 834 // helpers
duke@435 835
duke@435 836 // x is supposed to fit in a field "nbits" wide
duke@435 837 // and be sign-extended. Check the range.
duke@435 838
duke@435 839 static void assert_signed_range(intptr_t x, int nbits) {
duke@435 840 assert( nbits == 32
duke@435 841 || -(1 << nbits-1) <= x && x < ( 1 << nbits-1),
duke@435 842 "value out of range");
duke@435 843 }
duke@435 844
duke@435 845 static void assert_signed_word_disp_range(intptr_t x, int nbits) {
duke@435 846 assert( (x & 3) == 0, "not word aligned");
duke@435 847 assert_signed_range(x, nbits + 2);
duke@435 848 }
duke@435 849
duke@435 850 static void assert_unsigned_const(int x, int nbits) {
duke@435 851 assert( juint(x) < juint(1 << nbits), "unsigned constant out of range");
duke@435 852 }
duke@435 853
duke@435 854 // fields: note bits numbered from LSB = 0,
duke@435 855 // fields known by inclusive bit range
duke@435 856
duke@435 857 static int fmask(juint hi_bit, juint lo_bit) {
duke@435 858 assert( hi_bit >= lo_bit && 0 <= lo_bit && hi_bit < 32, "bad bits");
duke@435 859 return (1 << ( hi_bit-lo_bit + 1 )) - 1;
duke@435 860 }
duke@435 861
duke@435 862 // inverse of u_field
duke@435 863
duke@435 864 static int inv_u_field(int x, int hi_bit, int lo_bit) {
duke@435 865 juint r = juint(x) >> lo_bit;
duke@435 866 r &= fmask( hi_bit, lo_bit);
duke@435 867 return int(r);
duke@435 868 }
duke@435 869
duke@435 870
duke@435 871 // signed version: extract from field and sign-extend
duke@435 872
duke@435 873 static int inv_s_field(int x, int hi_bit, int lo_bit) {
duke@435 874 int sign_shift = 31 - hi_bit;
duke@435 875 return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
duke@435 876 }
duke@435 877
duke@435 878 // given a field that ranges from hi_bit to lo_bit (inclusive,
duke@435 879 // LSB = 0), and an unsigned value for the field,
duke@435 880 // shift it into the field
duke@435 881
duke@435 882 #ifdef ASSERT
duke@435 883 static int u_field(int x, int hi_bit, int lo_bit) {
duke@435 884 assert( ( x & ~fmask(hi_bit, lo_bit)) == 0,
duke@435 885 "value out of range");
duke@435 886 int r = x << lo_bit;
duke@435 887 assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
duke@435 888 return r;
duke@435 889 }
duke@435 890 #else
duke@435 891 // make sure this is inlined as it will reduce code size significantly
duke@435 892 #define u_field(x, hi_bit, lo_bit) ((x) << (lo_bit))
duke@435 893 #endif
duke@435 894
duke@435 895 static int inv_op( int x ) { return inv_u_field(x, 31, 30); }
duke@435 896 static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
duke@435 897 static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
duke@435 898 static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
duke@435 899
duke@435 900 static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
duke@435 901
duke@435 902 static Register inv_rd( int x ) { return as_Register(inv_u_field(x, 29, 25)); }
duke@435 903 static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
duke@435 904 static Register inv_rs2( int x ) { return as_Register(inv_u_field(x, 4, 0)); }
duke@435 905
duke@435 906 static int op( int x) { return u_field(x, 31, 30); }
duke@435 907 static int rd( Register r) { return u_field(r->encoding(), 29, 25); }
duke@435 908 static int fcn( int x) { return u_field(x, 29, 25); }
duke@435 909 static int op3( int x) { return u_field(x, 24, 19); }
duke@435 910 static int rs1( Register r) { return u_field(r->encoding(), 18, 14); }
duke@435 911 static int rs2( Register r) { return u_field(r->encoding(), 4, 0); }
duke@435 912 static int annul( bool a) { return u_field(a ? 1 : 0, 29, 29); }
duke@435 913 static int cond( int x) { return u_field(x, 28, 25); }
duke@435 914 static int cond_mov( int x) { return u_field(x, 17, 14); }
duke@435 915 static int rcond( RCondition x) { return u_field(x, 12, 10); }
duke@435 916 static int op2( int x) { return u_field(x, 24, 22); }
duke@435 917 static int predict( bool p) { return u_field(p ? 1 : 0, 19, 19); }
duke@435 918 static int branchcc( CC fcca) { return u_field(fcca, 21, 20); }
duke@435 919 static int cmpcc( CC fcca) { return u_field(fcca, 26, 25); }
duke@435 920 static int imm_asi( int x) { return u_field(x, 12, 5); }
duke@435 921 static int immed( bool i) { return u_field(i ? 1 : 0, 13, 13); }
duke@435 922 static int opf_low6( int w) { return u_field(w, 10, 5); }
duke@435 923 static int opf_low5( int w) { return u_field(w, 9, 5); }
duke@435 924 static int trapcc( CC cc) { return u_field(cc, 12, 11); }
duke@435 925 static int sx( int i) { return u_field(i, 12, 12); } // shift x=1 means 64-bit
duke@435 926 static int opf( int x) { return u_field(x, 13, 5); }
duke@435 927
duke@435 928 static int opf_cc( CC c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
duke@435 929 static int mov_cc( CC c, bool useFloat ) { return u_field(useFloat ? 0 : 1, 18, 18) | u_field(c, 12, 11); }
duke@435 930
duke@435 931 static int fd( FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
duke@435 932 static int fs1(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
duke@435 933 static int fs2(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 4, 0); };
duke@435 934
duke@435 935 // some float instructions use this encoding on the op3 field
duke@435 936 static int alt_op3(int op, FloatRegisterImpl::Width w) {
duke@435 937 int r;
duke@435 938 switch(w) {
duke@435 939 case FloatRegisterImpl::S: r = op + 0; break;
duke@435 940 case FloatRegisterImpl::D: r = op + 3; break;
duke@435 941 case FloatRegisterImpl::Q: r = op + 2; break;
duke@435 942 default: ShouldNotReachHere(); break;
duke@435 943 }
duke@435 944 return op3(r);
duke@435 945 }
duke@435 946
duke@435 947
duke@435 948 // compute inverse of simm
duke@435 949 static int inv_simm(int x, int nbits) {
duke@435 950 return (int)(x << (32 - nbits)) >> (32 - nbits);
duke@435 951 }
duke@435 952
duke@435 953 static int inv_simm13( int x ) { return inv_simm(x, 13); }
duke@435 954
duke@435 955 // signed immediate, in low bits, nbits long
duke@435 956 static int simm(int x, int nbits) {
duke@435 957 assert_signed_range(x, nbits);
duke@435 958 return x & (( 1 << nbits ) - 1);
duke@435 959 }
duke@435 960
duke@435 961 // compute inverse of wdisp16
duke@435 962 static intptr_t inv_wdisp16(int x, intptr_t pos) {
duke@435 963 int lo = x & (( 1 << 14 ) - 1);
duke@435 964 int hi = (x >> 20) & 3;
duke@435 965 if (hi >= 2) hi |= ~1;
duke@435 966 return (((hi << 14) | lo) << 2) + pos;
duke@435 967 }
duke@435 968
duke@435 969 // word offset, 14 bits at LSend, 2 bits at B21, B20
duke@435 970 static int wdisp16(intptr_t x, intptr_t off) {
duke@435 971 intptr_t xx = x - off;
duke@435 972 assert_signed_word_disp_range(xx, 16);
duke@435 973 int r = (xx >> 2) & ((1 << 14) - 1)
duke@435 974 | ( ( (xx>>(2+14)) & 3 ) << 20 );
duke@435 975 assert( inv_wdisp16(r, off) == x, "inverse is not inverse");
duke@435 976 return r;
duke@435 977 }
duke@435 978
duke@435 979
duke@435 980 // word displacement in low-order nbits bits
duke@435 981
duke@435 982 static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
duke@435 983 int pre_sign_extend = x & (( 1 << nbits ) - 1);
duke@435 984 int r = pre_sign_extend >= ( 1 << (nbits-1) )
duke@435 985 ? pre_sign_extend | ~(( 1 << nbits ) - 1)
duke@435 986 : pre_sign_extend;
duke@435 987 return (r << 2) + pos;
duke@435 988 }
duke@435 989
duke@435 990 static int wdisp( intptr_t x, intptr_t off, int nbits ) {
duke@435 991 intptr_t xx = x - off;
duke@435 992 assert_signed_word_disp_range(xx, nbits);
duke@435 993 int r = (xx >> 2) & (( 1 << nbits ) - 1);
duke@435 994 assert( inv_wdisp( r, off, nbits ) == x, "inverse not inverse");
duke@435 995 return r;
duke@435 996 }
duke@435 997
duke@435 998
duke@435 999 // Extract the top 32 bits in a 64 bit word
duke@435 1000 static int32_t hi32( int64_t x ) {
duke@435 1001 int32_t r = int32_t( (uint64_t)x >> 32 );
duke@435 1002 return r;
duke@435 1003 }
duke@435 1004
duke@435 1005 // given a sethi instruction, extract the constant, left-justified
duke@435 1006 static int inv_hi22( int x ) {
duke@435 1007 return x << 10;
duke@435 1008 }
duke@435 1009
duke@435 1010 // create an imm22 field, given a 32-bit left-justified constant
duke@435 1011 static int hi22( int x ) {
duke@435 1012 int r = int( juint(x) >> 10 );
duke@435 1013 assert( (r & ~((1 << 22) - 1)) == 0, "just checkin'");
duke@435 1014 return r;
duke@435 1015 }
duke@435 1016
duke@435 1017 // create a low10 __value__ (not a field) for a given a 32-bit constant
duke@435 1018 static int low10( int x ) {
duke@435 1019 return x & ((1 << 10) - 1);
duke@435 1020 }
duke@435 1021
duke@435 1022 // instruction only in v9
duke@435 1023 static void v9_only() { assert( VM_Version::v9_instructions_work(), "This instruction only works on SPARC V9"); }
duke@435 1024
duke@435 1025 // instruction only in v8
duke@435 1026 static void v8_only() { assert( VM_Version::v8_instructions_work(), "This instruction only works on SPARC V8"); }
duke@435 1027
duke@435 1028 // instruction deprecated in v9
duke@435 1029 static void v9_dep() { } // do nothing for now
duke@435 1030
duke@435 1031 // some float instructions only exist for single prec. on v8
duke@435 1032 static void v8_s_only(FloatRegisterImpl::Width w) { if (w != FloatRegisterImpl::S) v9_only(); }
duke@435 1033
duke@435 1034 // v8 has no CC field
duke@435 1035 static void v8_no_cc(CC cc) { if (cc) v9_only(); }
duke@435 1036
duke@435 1037 protected:
duke@435 1038 // Simple delay-slot scheme:
duke@435 1039 // In order to check the programmer, the assembler keeps track of deley slots.
duke@435 1040 // It forbids CTIs in delay slots (conservative, but should be OK).
duke@435 1041 // Also, when putting an instruction into a delay slot, you must say
duke@435 1042 // asm->delayed()->add(...), in order to check that you don't omit
duke@435 1043 // delay-slot instructions.
duke@435 1044 // To implement this, we use a simple FSA
duke@435 1045
duke@435 1046 #ifdef ASSERT
duke@435 1047 #define CHECK_DELAY
duke@435 1048 #endif
duke@435 1049 #ifdef CHECK_DELAY
duke@435 1050 enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
duke@435 1051 #endif
duke@435 1052
duke@435 1053 public:
duke@435 1054 // Tells assembler next instruction must NOT be in delay slot.
duke@435 1055 // Use at start of multinstruction macros.
duke@435 1056 void assert_not_delayed() {
duke@435 1057 // This is a separate overloading to avoid creation of string constants
duke@435 1058 // in non-asserted code--with some compilers this pollutes the object code.
duke@435 1059 #ifdef CHECK_DELAY
duke@435 1060 assert_not_delayed("next instruction should not be a delay slot");
duke@435 1061 #endif
duke@435 1062 }
duke@435 1063 void assert_not_delayed(const char* msg) {
duke@435 1064 #ifdef CHECK_DELAY
duke@435 1065 assert_msg ( delay_state == no_delay, msg);
duke@435 1066 #endif
duke@435 1067 }
duke@435 1068
duke@435 1069 protected:
duke@435 1070 // Delay slot helpers
duke@435 1071 // cti is called when emitting control-transfer instruction,
duke@435 1072 // BEFORE doing the emitting.
duke@435 1073 // Only effective when assertion-checking is enabled.
duke@435 1074 void cti() {
duke@435 1075 #ifdef CHECK_DELAY
duke@435 1076 assert_not_delayed("cti should not be in delay slot");
duke@435 1077 #endif
duke@435 1078 }
duke@435 1079
duke@435 1080 // called when emitting cti with a delay slot, AFTER emitting
duke@435 1081 void has_delay_slot() {
duke@435 1082 #ifdef CHECK_DELAY
duke@435 1083 assert_not_delayed("just checking");
duke@435 1084 delay_state = at_delay_slot;
duke@435 1085 #endif
duke@435 1086 }
duke@435 1087
duke@435 1088 public:
duke@435 1089 // Tells assembler you know that next instruction is delayed
duke@435 1090 Assembler* delayed() {
duke@435 1091 #ifdef CHECK_DELAY
duke@435 1092 assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
duke@435 1093 delay_state = filling_delay_slot;
duke@435 1094 #endif
duke@435 1095 return this;
duke@435 1096 }
duke@435 1097
duke@435 1098 void flush() {
duke@435 1099 #ifdef CHECK_DELAY
duke@435 1100 assert ( delay_state == no_delay, "ending code with a delay slot");
duke@435 1101 #endif
duke@435 1102 AbstractAssembler::flush();
duke@435 1103 }
duke@435 1104
duke@435 1105 inline void emit_long(int); // shadows AbstractAssembler::emit_long
duke@435 1106 inline void emit_data(int x) { emit_long(x); }
duke@435 1107 inline void emit_data(int, RelocationHolder const&);
duke@435 1108 inline void emit_data(int, relocInfo::relocType rtype);
duke@435 1109 // helper for above fcns
duke@435 1110 inline void check_delay();
duke@435 1111
duke@435 1112
duke@435 1113 public:
duke@435 1114 // instructions, refer to page numbers in the SPARC Architecture Manual, V9
duke@435 1115
duke@435 1116 // pp 135 (addc was addx in v8)
duke@435 1117
twisti@1162 1118 inline void add(Register s1, Register s2, Register d );
twisti@1162 1119 inline void add(Register s1, int simm13a, Register d, relocInfo::relocType rtype = relocInfo::none);
twisti@1162 1120 inline void add(Register s1, int simm13a, Register d, RelocationHolder const& rspec);
twisti@1162 1121 inline void add(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
twisti@1162 1122 inline void add(const Address& a, Register d, int offset = 0) { add( a.base(), a.disp() + offset, d, a.rspec(offset)); }
duke@435 1123
duke@435 1124 void addcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1125 void addcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1126 void addc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1127 void addc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1128 void addccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1129 void addccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1130
duke@435 1131 // pp 136
duke@435 1132
duke@435 1133 inline void bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1134 inline void bpr( RCondition c, bool a, Predict p, Register s1, Label& L);
duke@435 1135
duke@435 1136 protected: // use MacroAssembler::br instead
duke@435 1137
duke@435 1138 // pp 138
duke@435 1139
duke@435 1140 inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1141 inline void fb( Condition c, bool a, Label& L );
duke@435 1142
duke@435 1143 // pp 141
duke@435 1144
duke@435 1145 inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1146 inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
duke@435 1147
duke@435 1148 public:
duke@435 1149
duke@435 1150 // pp 144
duke@435 1151
duke@435 1152 inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1153 inline void br( Condition c, bool a, Label& L );
duke@435 1154
duke@435 1155 // pp 146
duke@435 1156
duke@435 1157 inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1158 inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
duke@435 1159
duke@435 1160 // pp 121 (V8)
duke@435 1161
duke@435 1162 inline void cb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1163 inline void cb( Condition c, bool a, Label& L );
duke@435 1164
duke@435 1165 // pp 149
duke@435 1166
duke@435 1167 inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 1168 inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 1169
duke@435 1170 // pp 150
duke@435 1171
duke@435 1172 // These instructions compare the contents of s2 with the contents of
duke@435 1173 // memory at address in s1. If the values are equal, the contents of memory
duke@435 1174 // at address s1 is swapped with the data in d. If the values are not equal,
duke@435 1175 // the the contents of memory at s1 is loaded into d, without the swap.
duke@435 1176
duke@435 1177 void casa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
duke@435 1178 void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
duke@435 1179
duke@435 1180 // pp 152
duke@435 1181
duke@435 1182 void udiv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | rs2(s2)); }
duke@435 1183 void udiv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1184 void sdiv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | rs2(s2)); }
duke@435 1185 void sdiv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1186 void udivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
duke@435 1187 void udivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1188 void sdivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
duke@435 1189 void sdivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1190
duke@435 1191 // pp 155
duke@435 1192
duke@435 1193 void done() { v9_only(); cti(); emit_long( op(arith_op) | fcn(0) | op3(done_op3) ); }
duke@435 1194 void retry() { v9_only(); cti(); emit_long( op(arith_op) | fcn(1) | op3(retry_op3) ); }
duke@435 1195
duke@435 1196 // pp 156
duke@435 1197
duke@435 1198 void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
duke@435 1199 void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
duke@435 1200
duke@435 1201 // pp 157
duke@435 1202
duke@435 1203 void fcmp( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc); emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
duke@435 1204 void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc); emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
duke@435 1205
duke@435 1206 // pp 159
duke@435 1207
duke@435 1208 void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
duke@435 1209 void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
duke@435 1210
duke@435 1211 // pp 160
duke@435 1212
duke@435 1213 void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
duke@435 1214
duke@435 1215 // pp 161
duke@435 1216
duke@435 1217 void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, w)); }
duke@435 1218 void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, w)); }
duke@435 1219
duke@435 1220 // pp 162
duke@435 1221
duke@435 1222 void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
duke@435 1223
duke@435 1224 void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
duke@435 1225
duke@435 1226 // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fnegs is the only instruction available
duke@435 1227 // on v8 to do negation of single, double and quad precision floats.
duke@435 1228
duke@435 1229 void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x05) | fs2(sd, w)); }
duke@435 1230
duke@435 1231 void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
duke@435 1232
duke@435 1233 // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fabss is the only instruction available
duke@435 1234 // on v8 to do abs operation on single/double/quad precision floats.
duke@435 1235
duke@435 1236 void fabs( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x09) | fs2(sd, w)); }
duke@435 1237
duke@435 1238 // pp 163
duke@435 1239
duke@435 1240 void fmul( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x48 + w) | fs2(s2, w)); }
duke@435 1241 void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
duke@435 1242 void fdiv( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x4c + w) | fs2(s2, w)); }
duke@435 1243
duke@435 1244 // pp 164
duke@435 1245
duke@435 1246 void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
duke@435 1247
duke@435 1248 // pp 165
duke@435 1249
duke@435 1250 inline void flush( Register s1, Register s2 );
duke@435 1251 inline void flush( Register s1, int simm13a);
duke@435 1252
duke@435 1253 // pp 167
duke@435 1254
duke@435 1255 void flushw() { v9_only(); emit_long( op(arith_op) | op3(flushw_op3) ); }
duke@435 1256
duke@435 1257 // pp 168
duke@435 1258
duke@435 1259 void illtrap( int const22a) { if (const22a != 0) v9_only(); emit_long( op(branch_op) | u_field(const22a, 21, 0) ); }
duke@435 1260 // v8 unimp == illtrap(0)
duke@435 1261
duke@435 1262 // pp 169
duke@435 1263
duke@435 1264 void impdep1( int id1, int const19a ) { v9_only(); emit_long( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
duke@435 1265 void impdep2( int id1, int const19a ) { v9_only(); emit_long( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
duke@435 1266
duke@435 1267 // pp 149 (v8)
duke@435 1268
duke@435 1269 void cpop1( int opc, int cr1, int cr2, int crd ) { v8_only(); emit_long( op(arith_op) | fcn(crd) | op3(impdep1_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
duke@435 1270 void cpop2( int opc, int cr1, int cr2, int crd ) { v8_only(); emit_long( op(arith_op) | fcn(crd) | op3(impdep2_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
duke@435 1271
duke@435 1272 // pp 170
duke@435 1273
duke@435 1274 void jmpl( Register s1, Register s2, Register d );
duke@435 1275 void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1276
duke@435 1277 // 171
duke@435 1278
twisti@1441 1279 inline void ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d);
twisti@1162 1280 inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
twisti@1162 1281 inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
twisti@1162 1282
twisti@1162 1283 inline void ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
duke@435 1284
duke@435 1285
duke@435 1286 inline void ldfsr( Register s1, Register s2 );
duke@435 1287 inline void ldfsr( Register s1, int simm13a);
duke@435 1288 inline void ldxfsr( Register s1, Register s2 );
duke@435 1289 inline void ldxfsr( Register s1, int simm13a);
duke@435 1290
duke@435 1291 // pp 94 (v8)
duke@435 1292
duke@435 1293 inline void ldc( Register s1, Register s2, int crd );
duke@435 1294 inline void ldc( Register s1, int simm13a, int crd);
duke@435 1295 inline void lddc( Register s1, Register s2, int crd );
duke@435 1296 inline void lddc( Register s1, int simm13a, int crd);
duke@435 1297 inline void ldcsr( Register s1, Register s2, int crd );
duke@435 1298 inline void ldcsr( Register s1, int simm13a, int crd);
duke@435 1299
duke@435 1300
duke@435 1301 // 173
duke@435 1302
duke@435 1303 void ldfa( FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1304 void ldfa( FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1305
duke@435 1306 // pp 175, lduw is ld on v8
duke@435 1307
duke@435 1308 inline void ldsb( Register s1, Register s2, Register d );
duke@435 1309 inline void ldsb( Register s1, int simm13a, Register d);
duke@435 1310 inline void ldsh( Register s1, Register s2, Register d );
duke@435 1311 inline void ldsh( Register s1, int simm13a, Register d);
duke@435 1312 inline void ldsw( Register s1, Register s2, Register d );
duke@435 1313 inline void ldsw( Register s1, int simm13a, Register d);
duke@435 1314 inline void ldub( Register s1, Register s2, Register d );
duke@435 1315 inline void ldub( Register s1, int simm13a, Register d);
duke@435 1316 inline void lduh( Register s1, Register s2, Register d );
duke@435 1317 inline void lduh( Register s1, int simm13a, Register d);
duke@435 1318 inline void lduw( Register s1, Register s2, Register d );
duke@435 1319 inline void lduw( Register s1, int simm13a, Register d);
duke@435 1320 inline void ldx( Register s1, Register s2, Register d );
duke@435 1321 inline void ldx( Register s1, int simm13a, Register d);
duke@435 1322 inline void ld( Register s1, Register s2, Register d );
duke@435 1323 inline void ld( Register s1, int simm13a, Register d);
duke@435 1324 inline void ldd( Register s1, Register s2, Register d );
duke@435 1325 inline void ldd( Register s1, int simm13a, Register d);
duke@435 1326
twisti@1162 1327 #ifdef ASSERT
twisti@1162 1328 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
twisti@1162 1329 inline void ld( Register s1, ByteSize simm13a, Register d);
twisti@1162 1330 #endif
twisti@1162 1331
twisti@1162 1332 inline void ldsb(const Address& a, Register d, int offset = 0);
twisti@1162 1333 inline void ldsh(const Address& a, Register d, int offset = 0);
twisti@1162 1334 inline void ldsw(const Address& a, Register d, int offset = 0);
twisti@1162 1335 inline void ldub(const Address& a, Register d, int offset = 0);
twisti@1162 1336 inline void lduh(const Address& a, Register d, int offset = 0);
twisti@1162 1337 inline void lduw(const Address& a, Register d, int offset = 0);
twisti@1162 1338 inline void ldx( const Address& a, Register d, int offset = 0);
twisti@1162 1339 inline void ld( const Address& a, Register d, int offset = 0);
twisti@1162 1340 inline void ldd( const Address& a, Register d, int offset = 0);
duke@435 1341
jrose@1100 1342 inline void ldub( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1343 inline void ldsb( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1344 inline void lduh( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1345 inline void ldsh( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1346 inline void lduw( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1347 inline void ldsw( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1348 inline void ldx( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1349 inline void ld( Register s1, RegisterOrConstant s2, Register d );
jrose@1100 1350 inline void ldd( Register s1, RegisterOrConstant s2, Register d );
jrose@1057 1351
duke@435 1352 // pp 177
duke@435 1353
duke@435 1354 void ldsba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1355 void ldsba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1356 void ldsha( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1357 void ldsha( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1358 void ldswa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1359 void ldswa( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1360 void lduba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1361 void lduba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1362 void lduha( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1363 void lduha( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1364 void lduwa( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1365 void lduwa( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1366 void ldxa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1367 void ldxa( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1368 void ldda( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1369 void ldda( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1370
duke@435 1371 // pp 179
duke@435 1372
duke@435 1373 inline void ldstub( Register s1, Register s2, Register d );
duke@435 1374 inline void ldstub( Register s1, int simm13a, Register d);
duke@435 1375
duke@435 1376 // pp 180
duke@435 1377
duke@435 1378 void ldstuba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1379 void ldstuba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1380
duke@435 1381 // pp 181
duke@435 1382
duke@435 1383 void and3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1384 void and3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1385 void andcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1386 void andcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1387 void andn( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1388 void andn( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1389 void andncc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1390 void andncc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1391 void or3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1392 void or3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1393 void orcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1394 void orcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1395 void orn( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1396 void orn( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1397 void orncc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1398 void orncc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1399 void xor3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1400 void xor3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1401 void xorcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1402 void xorcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1403 void xnor( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1404 void xnor( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1405 void xnorcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1406 void xnorcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1407
duke@435 1408 // pp 183
duke@435 1409
duke@435 1410 void membar( Membar_mask_bits const7a ) { v9_only(); emit_long( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
duke@435 1411
duke@435 1412 // pp 185
duke@435 1413
duke@435 1414 void fmov( FloatRegisterImpl::Width w, Condition c, bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
duke@435 1415
duke@435 1416 // pp 189
duke@435 1417
duke@435 1418 void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1, FloatRegister s2, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
duke@435 1419
duke@435 1420 // pp 191
duke@435 1421
duke@435 1422 void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
duke@435 1423 void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
duke@435 1424
duke@435 1425 // pp 195
duke@435 1426
duke@435 1427 void movr( RCondition c, Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
duke@435 1428 void movr( RCondition c, Register s1, int simm10a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
duke@435 1429
duke@435 1430 // pp 196
duke@435 1431
duke@435 1432 void mulx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1433 void mulx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1434 void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1435 void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1436 void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1437 void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1438
duke@435 1439 // pp 197
duke@435 1440
duke@435 1441 void umul( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1442 void umul( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1443 void smul( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1444 void smul( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1445 void umulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1446 void umulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1447 void smulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1448 void smulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1449
duke@435 1450 // pp 199
duke@435 1451
duke@435 1452 void mulscc( Register s1, Register s2, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1453 void mulscc( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1454
duke@435 1455 // pp 201
duke@435 1456
duke@435 1457 void nop() { emit_long( op(branch_op) | op2(sethi_op2) ); }
duke@435 1458
duke@435 1459
duke@435 1460 // pp 202
duke@435 1461
duke@435 1462 void popc( Register s, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
duke@435 1463 void popc( int simm13a, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
duke@435 1464
duke@435 1465 // pp 203
duke@435 1466
duke@435 1467 void prefetch( Register s1, Register s2, PrefetchFcn f);
duke@435 1468 void prefetch( Register s1, int simm13a, PrefetchFcn f);
duke@435 1469 void prefetcha( Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1470 void prefetcha( Register s1, int simm13a, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1471
duke@435 1472 inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
duke@435 1473
duke@435 1474 // pp 208
duke@435 1475
duke@435 1476 // not implementing read privileged register
duke@435 1477
duke@435 1478 inline void rdy( Register d) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
duke@435 1479 inline void rdccr( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
duke@435 1480 inline void rdasi( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
duke@435 1481 inline void rdtick( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
duke@435 1482 inline void rdpc( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
duke@435 1483 inline void rdfprs( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
duke@435 1484
duke@435 1485 // pp 213
duke@435 1486
duke@435 1487 inline void rett( Register s1, Register s2);
duke@435 1488 inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
duke@435 1489
duke@435 1490 // pp 214
duke@435 1491
duke@435 1492 void save( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
ysr@777 1493 void save( Register s1, int simm13a, Register d ) {
ysr@777 1494 // make sure frame is at least large enough for the register save area
ysr@777 1495 assert(-simm13a >= 16 * wordSize, "frame too small");
ysr@777 1496 emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
ysr@777 1497 }
duke@435 1498
duke@435 1499 void restore( Register s1 = G0, Register s2 = G0, Register d = G0 ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1500 void restore( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1501
duke@435 1502 // pp 216
duke@435 1503
duke@435 1504 void saved() { v9_only(); emit_long( op(arith_op) | fcn(0) | op3(saved_op3)); }
duke@435 1505 void restored() { v9_only(); emit_long( op(arith_op) | fcn(1) | op3(saved_op3)); }
duke@435 1506
duke@435 1507 // pp 217
duke@435 1508
duke@435 1509 inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1510 // pp 218
duke@435 1511
duke@435 1512 void sll( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
duke@435 1513 void sll( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
duke@435 1514 void srl( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
duke@435 1515 void srl( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
duke@435 1516 void sra( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
duke@435 1517 void sra( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
duke@435 1518
duke@435 1519 void sllx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
duke@435 1520 void sllx( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
duke@435 1521 void srlx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
duke@435 1522 void srlx( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
duke@435 1523 void srax( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
duke@435 1524 void srax( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
duke@435 1525
duke@435 1526 // pp 220
duke@435 1527
duke@435 1528 void sir( int simm13a ) { emit_long( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
duke@435 1529
duke@435 1530 // pp 221
duke@435 1531
duke@435 1532 void stbar() { emit_long( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
duke@435 1533
duke@435 1534 // pp 222
duke@435 1535
twisti@1441 1536 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2);
twisti@1441 1537 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
duke@435 1538 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
duke@435 1539 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
duke@435 1540
duke@435 1541 inline void stfsr( Register s1, Register s2 );
duke@435 1542 inline void stfsr( Register s1, int simm13a);
duke@435 1543 inline void stxfsr( Register s1, Register s2 );
duke@435 1544 inline void stxfsr( Register s1, int simm13a);
duke@435 1545
duke@435 1546 // pp 224
duke@435 1547
duke@435 1548 void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1549 void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1550
duke@435 1551 // p 226
duke@435 1552
duke@435 1553 inline void stb( Register d, Register s1, Register s2 );
duke@435 1554 inline void stb( Register d, Register s1, int simm13a);
duke@435 1555 inline void sth( Register d, Register s1, Register s2 );
duke@435 1556 inline void sth( Register d, Register s1, int simm13a);
duke@435 1557 inline void stw( Register d, Register s1, Register s2 );
duke@435 1558 inline void stw( Register d, Register s1, int simm13a);
duke@435 1559 inline void st( Register d, Register s1, Register s2 );
duke@435 1560 inline void st( Register d, Register s1, int simm13a);
duke@435 1561 inline void stx( Register d, Register s1, Register s2 );
duke@435 1562 inline void stx( Register d, Register s1, int simm13a);
duke@435 1563 inline void std( Register d, Register s1, Register s2 );
duke@435 1564 inline void std( Register d, Register s1, int simm13a);
duke@435 1565
twisti@1162 1566 #ifdef ASSERT
twisti@1162 1567 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
twisti@1162 1568 inline void st( Register d, Register s1, ByteSize simm13a);
twisti@1162 1569 #endif
twisti@1162 1570
duke@435 1571 inline void stb( Register d, const Address& a, int offset = 0 );
duke@435 1572 inline void sth( Register d, const Address& a, int offset = 0 );
duke@435 1573 inline void stw( Register d, const Address& a, int offset = 0 );
duke@435 1574 inline void stx( Register d, const Address& a, int offset = 0 );
duke@435 1575 inline void st( Register d, const Address& a, int offset = 0 );
duke@435 1576 inline void std( Register d, const Address& a, int offset = 0 );
duke@435 1577
jrose@1100 1578 inline void stb( Register d, Register s1, RegisterOrConstant s2 );
jrose@1100 1579 inline void sth( Register d, Register s1, RegisterOrConstant s2 );
jrose@1100 1580 inline void stw( Register d, Register s1, RegisterOrConstant s2 );
jrose@1100 1581 inline void stx( Register d, Register s1, RegisterOrConstant s2 );
jrose@1100 1582 inline void std( Register d, Register s1, RegisterOrConstant s2 );
jrose@1100 1583 inline void st( Register d, Register s1, RegisterOrConstant s2 );
jrose@1057 1584
duke@435 1585 // pp 177
duke@435 1586
duke@435 1587 void stba( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1588 void stba( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1589 void stha( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1590 void stha( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1591 void stwa( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1592 void stwa( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1593 void stxa( Register d, Register s1, Register s2, int ia ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1594 void stxa( Register d, Register s1, int simm13a ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1595 void stda( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1596 void stda( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1597
duke@435 1598 // pp 97 (v8)
duke@435 1599
duke@435 1600 inline void stc( int crd, Register s1, Register s2 );
duke@435 1601 inline void stc( int crd, Register s1, int simm13a);
duke@435 1602 inline void stdc( int crd, Register s1, Register s2 );
duke@435 1603 inline void stdc( int crd, Register s1, int simm13a);
duke@435 1604 inline void stcsr( int crd, Register s1, Register s2 );
duke@435 1605 inline void stcsr( int crd, Register s1, int simm13a);
duke@435 1606 inline void stdcq( int crd, Register s1, Register s2 );
duke@435 1607 inline void stdcq( int crd, Register s1, int simm13a);
duke@435 1608
duke@435 1609 // pp 230
duke@435 1610
duke@435 1611 void sub( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1612 void sub( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1613 void subcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1614 void subcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1615 void subc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1616 void subc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1617 void subccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1618 void subccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1619
duke@435 1620 // pp 231
duke@435 1621
duke@435 1622 inline void swap( Register s1, Register s2, Register d );
duke@435 1623 inline void swap( Register s1, int simm13a, Register d);
duke@435 1624 inline void swap( Address& a, Register d, int offset = 0 );
duke@435 1625
duke@435 1626 // pp 232
duke@435 1627
duke@435 1628 void swapa( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
duke@435 1629 void swapa( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1630
duke@435 1631 // pp 234, note op in book is wrong, see pp 268
duke@435 1632
duke@435 1633 void taddcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1634 void taddcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1635 void taddcctv( Register s1, Register s2, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1636 void taddcctv( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1637
duke@435 1638 // pp 235
duke@435 1639
duke@435 1640 void tsubcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | rs2(s2) ); }
duke@435 1641 void tsubcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1642 void tsubcctv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | rs2(s2) ); }
duke@435 1643 void tsubcctv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1644
duke@435 1645 // pp 237
duke@435 1646
duke@435 1647 void trap( Condition c, CC cc, Register s1, Register s2 ) { v8_no_cc(cc); emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
duke@435 1648 void trap( Condition c, CC cc, Register s1, int trapa ) { v8_no_cc(cc); emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
duke@435 1649 // simple uncond. trap
duke@435 1650 void trap( int trapa ) { trap( always, icc, G0, trapa ); }
duke@435 1651
duke@435 1652 // pp 239 omit write priv register for now
duke@435 1653
duke@435 1654 inline void wry( Register d) { v9_dep(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
duke@435 1655 inline void wrccr(Register s) { v9_only(); emit_long( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
duke@435 1656 inline void wrccr(Register s, int simm13a) { v9_only(); emit_long( op(arith_op) |
duke@435 1657 rs1(s) |
duke@435 1658 op3(wrreg_op3) |
duke@435 1659 u_field(2, 29, 25) |
duke@435 1660 u_field(1, 13, 13) |
duke@435 1661 simm(simm13a, 13)); }
duke@435 1662 inline void wrasi( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
duke@435 1663 inline void wrfprs( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
duke@435 1664
ysr@777 1665 // For a given register condition, return the appropriate condition code
ysr@777 1666 // Condition (the one you would use to get the same effect after "tst" on
ysr@777 1667 // the target register.)
ysr@777 1668 Assembler::Condition reg_cond_to_cc_cond(RCondition in);
ysr@777 1669
duke@435 1670
duke@435 1671 // Creation
duke@435 1672 Assembler(CodeBuffer* code) : AbstractAssembler(code) {
duke@435 1673 #ifdef CHECK_DELAY
duke@435 1674 delay_state = no_delay;
duke@435 1675 #endif
duke@435 1676 }
duke@435 1677
duke@435 1678 // Testing
duke@435 1679 #ifndef PRODUCT
duke@435 1680 void test_v9();
duke@435 1681 void test_v8_onlys();
duke@435 1682 #endif
duke@435 1683 };
duke@435 1684
duke@435 1685
duke@435 1686 class RegistersForDebugging : public StackObj {
duke@435 1687 public:
duke@435 1688 intptr_t i[8], l[8], o[8], g[8];
duke@435 1689 float f[32];
duke@435 1690 double d[32];
duke@435 1691
duke@435 1692 void print(outputStream* s);
duke@435 1693
duke@435 1694 static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
duke@435 1695 static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
duke@435 1696 static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
duke@435 1697 static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
duke@435 1698 static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
duke@435 1699 static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
duke@435 1700
duke@435 1701 // gen asm code to save regs
duke@435 1702 static void save_registers(MacroAssembler* a);
duke@435 1703
duke@435 1704 // restore global registers in case C code disturbed them
duke@435 1705 static void restore_registers(MacroAssembler* a, Register r);
ysr@777 1706
ysr@777 1707
duke@435 1708 };
duke@435 1709
duke@435 1710
duke@435 1711 // MacroAssembler extends Assembler by a few frequently used macros.
duke@435 1712 //
duke@435 1713 // Most of the standard SPARC synthetic ops are defined here.
duke@435 1714 // Instructions for which a 'better' code sequence exists depending
duke@435 1715 // on arguments should also go in here.
duke@435 1716
duke@435 1717 #define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
duke@435 1718 #define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
twisti@1162 1719 #define JUMP(a, temp, off) jump(a, temp, off, __FILE__, __LINE__)
twisti@1162 1720 #define JUMPL(a, temp, d, off) jumpl(a, temp, d, off, __FILE__, __LINE__)
duke@435 1721
duke@435 1722
duke@435 1723 class MacroAssembler: public Assembler {
duke@435 1724 protected:
duke@435 1725 // Support for VM calls
duke@435 1726 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
duke@435 1727 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1728 // additional registers when doing a VM call).
duke@435 1729 #ifdef CC_INTERP
duke@435 1730 #define VIRTUAL
duke@435 1731 #else
duke@435 1732 #define VIRTUAL virtual
duke@435 1733 #endif
duke@435 1734
duke@435 1735 VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
duke@435 1736
duke@435 1737 //
duke@435 1738 // It is imperative that all calls into the VM are handled via the call_VM macros.
duke@435 1739 // They make sure that the stack linkage is setup correctly. call_VM's correspond
duke@435 1740 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
duke@435 1741 //
duke@435 1742 // This is the base routine called by the different versions of call_VM. The interpreter
duke@435 1743 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1744 // additional registers when doing a VM call).
duke@435 1745 //
duke@435 1746 // A non-volatile java_thread_cache register should be specified so
duke@435 1747 // that the G2_thread value can be preserved across the call.
duke@435 1748 // (If java_thread_cache is noreg, then a slow get_thread call
duke@435 1749 // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
duke@435 1750 // thread.
duke@435 1751 //
duke@435 1752 // If no last_java_sp is specified (noreg) than SP will be used instead.
duke@435 1753
duke@435 1754 virtual void call_VM_base(
duke@435 1755 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
duke@435 1756 Register java_thread_cache, // the thread if computed before ; use noreg otherwise
duke@435 1757 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
duke@435 1758 address entry_point, // the entry point
duke@435 1759 int number_of_arguments, // the number of arguments (w/o thread) to pop after call
duke@435 1760 bool check_exception=true // flag which indicates if exception should be checked
duke@435 1761 );
duke@435 1762
duke@435 1763 // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
duke@435 1764 // The implementation is only non-empty for the InterpreterMacroAssembler,
duke@435 1765 // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
duke@435 1766 virtual void check_and_handle_popframe(Register scratch_reg);
duke@435 1767 virtual void check_and_handle_earlyret(Register scratch_reg);
duke@435 1768
duke@435 1769 public:
duke@435 1770 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
duke@435 1771
duke@435 1772 // Support for NULL-checks
duke@435 1773 //
duke@435 1774 // Generates code that causes a NULL OS exception if the content of reg is NULL.
duke@435 1775 // If the accessed location is M[reg + offset] and the offset is known, provide the
duke@435 1776 // offset. No explicit code generation is needed if the offset is within a certain
duke@435 1777 // range (0 <= offset <= page_size).
duke@435 1778 //
duke@435 1779 // %%%%%% Currently not done for SPARC
duke@435 1780
duke@435 1781 void null_check(Register reg, int offset = -1);
duke@435 1782 static bool needs_explicit_null_check(intptr_t offset);
duke@435 1783
duke@435 1784 // support for delayed instructions
duke@435 1785 MacroAssembler* delayed() { Assembler::delayed(); return this; }
duke@435 1786
duke@435 1787 // branches that use right instruction for v8 vs. v9
duke@435 1788 inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1789 inline void br( Condition c, bool a, Predict p, Label& L );
duke@435 1790 inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1791 inline void fb( Condition c, bool a, Predict p, Label& L );
duke@435 1792
duke@435 1793 // compares register with zero and branches (V9 and V8 instructions)
duke@435 1794 void br_zero( Condition c, bool a, Predict p, Register s1, Label& L);
duke@435 1795 // Compares a pointer register with zero and branches on (not)null.
duke@435 1796 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
duke@435 1797 void br_null ( Register s1, bool a, Predict p, Label& L );
duke@435 1798 void br_notnull( Register s1, bool a, Predict p, Label& L );
duke@435 1799
ysr@777 1800 // These versions will do the most efficient thing on v8 and v9. Perhaps
ysr@777 1801 // this is what the routine above was meant to do, but it didn't (and
ysr@777 1802 // didn't cover both target address kinds.)
ysr@777 1803 void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
ysr@777 1804 void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, Label& L);
ysr@777 1805
duke@435 1806 inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1807 inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
duke@435 1808
duke@435 1809 // Branch that tests xcc in LP64 and icc in !LP64
duke@435 1810 inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1811 inline void brx( Condition c, bool a, Predict p, Label& L );
duke@435 1812
duke@435 1813 // unconditional short branch
duke@435 1814 inline void ba( bool a, Label& L );
duke@435 1815
duke@435 1816 // Branch that tests fp condition codes
duke@435 1817 inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1818 inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
duke@435 1819
duke@435 1820 // get PC the best way
duke@435 1821 inline int get_pc( Register d );
duke@435 1822
duke@435 1823 // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
duke@435 1824 inline void cmp( Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
duke@435 1825 inline void cmp( Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }
duke@435 1826
duke@435 1827 inline void jmp( Register s1, Register s2 );
duke@435 1828 inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1829
duke@435 1830 inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 1831 inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 1832 inline void callr( Register s1, Register s2 );
duke@435 1833 inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1834
duke@435 1835 // Emits nothing on V8
duke@435 1836 inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
duke@435 1837 inline void iprefetch( Label& L);
duke@435 1838
duke@435 1839 inline void tst( Register s ) { orcc( G0, s, G0 ); }
duke@435 1840
duke@435 1841 #ifdef PRODUCT
duke@435 1842 inline void ret( bool trace = TraceJumps ) { if (trace) {
duke@435 1843 mov(I7, O7); // traceable register
duke@435 1844 JMP(O7, 2 * BytesPerInstWord);
duke@435 1845 } else {
duke@435 1846 jmpl( I7, 2 * BytesPerInstWord, G0 );
duke@435 1847 }
duke@435 1848 }
duke@435 1849
duke@435 1850 inline void retl( bool trace = TraceJumps ) { if (trace) JMP(O7, 2 * BytesPerInstWord);
duke@435 1851 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
duke@435 1852 #else
duke@435 1853 void ret( bool trace = TraceJumps );
duke@435 1854 void retl( bool trace = TraceJumps );
duke@435 1855 #endif /* PRODUCT */
duke@435 1856
duke@435 1857 // Required platform-specific helpers for Label::patch_instructions.
duke@435 1858 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
duke@435 1859 void pd_patch_instruction(address branch, address target);
duke@435 1860 #ifndef PRODUCT
duke@435 1861 static void pd_print_patched_instruction(address branch);
duke@435 1862 #endif
duke@435 1863
duke@435 1864 // sethi Macro handles optimizations and relocations
twisti@1162 1865 private:
twisti@1162 1866 void internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable);
twisti@1162 1867 public:
twisti@1162 1868 void sethi(const AddressLiteral& addrlit, Register d);
twisti@1162 1869 void patchable_sethi(const AddressLiteral& addrlit, Register d);
duke@435 1870
duke@435 1871 // compute the size of a sethi/set
duke@435 1872 static int size_of_sethi( address a, bool worst_case = false );
duke@435 1873 static int worst_case_size_of_set();
duke@435 1874
duke@435 1875 // set may be either setsw or setuw (high 32 bits may be zero or sign)
twisti@1162 1876 private:
twisti@1162 1877 void internal_set(const AddressLiteral& al, Register d, bool ForceRelocatable);
twisti@1162 1878 public:
twisti@1162 1879 void set(const AddressLiteral& addrlit, Register d);
twisti@1162 1880 void set(intptr_t value, Register d);
twisti@1162 1881 void set(address addr, Register d, RelocationHolder const& rspec);
twisti@1162 1882 void patchable_set(const AddressLiteral& addrlit, Register d);
twisti@1162 1883 void patchable_set(intptr_t value, Register d);
twisti@1162 1884 void set64(jlong value, Register d, Register tmp);
duke@435 1885
duke@435 1886 // sign-extend 32 to 64
duke@435 1887 inline void signx( Register s, Register d ) { sra( s, G0, d); }
duke@435 1888 inline void signx( Register d ) { sra( d, G0, d); }
duke@435 1889
duke@435 1890 inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
duke@435 1891 inline void not1( Register d ) { xnor( d, G0, d ); }
duke@435 1892
duke@435 1893 inline void neg( Register s, Register d ) { sub( G0, s, d ); }
duke@435 1894 inline void neg( Register d ) { sub( G0, d, d ); }
duke@435 1895
duke@435 1896 inline void cas( Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
duke@435 1897 inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
duke@435 1898 // Functions for isolating 64 bit atomic swaps for LP64
duke@435 1899 // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
duke@435 1900 inline void cas_ptr( Register s1, Register s2, Register d) {
duke@435 1901 #ifdef _LP64
duke@435 1902 casx( s1, s2, d );
duke@435 1903 #else
duke@435 1904 cas( s1, s2, d );
duke@435 1905 #endif
duke@435 1906 }
duke@435 1907
duke@435 1908 // Functions for isolating 64 bit shifts for LP64
duke@435 1909 inline void sll_ptr( Register s1, Register s2, Register d );
duke@435 1910 inline void sll_ptr( Register s1, int imm6a, Register d );
jrose@1100 1911 inline void sll_ptr( Register s1, RegisterOrConstant s2, Register d );
duke@435 1912 inline void srl_ptr( Register s1, Register s2, Register d );
duke@435 1913 inline void srl_ptr( Register s1, int imm6a, Register d );
duke@435 1914
duke@435 1915 // little-endian
duke@435 1916 inline void casl( Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
duke@435 1917 inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }
duke@435 1918
duke@435 1919 inline void inc( Register d, int const13 = 1 ) { add( d, const13, d); }
duke@435 1920 inline void inccc( Register d, int const13 = 1 ) { addcc( d, const13, d); }
duke@435 1921
duke@435 1922 inline void dec( Register d, int const13 = 1 ) { sub( d, const13, d); }
duke@435 1923 inline void deccc( Register d, int const13 = 1 ) { subcc( d, const13, d); }
duke@435 1924
duke@435 1925 inline void btst( Register s1, Register s2 ) { andcc( s1, s2, G0 ); }
duke@435 1926 inline void btst( int simm13a, Register s ) { andcc( s, simm13a, G0 ); }
duke@435 1927
duke@435 1928 inline void bset( Register s1, Register s2 ) { or3( s1, s2, s2 ); }
duke@435 1929 inline void bset( int simm13a, Register s ) { or3( s, simm13a, s ); }
duke@435 1930
duke@435 1931 inline void bclr( Register s1, Register s2 ) { andn( s1, s2, s2 ); }
duke@435 1932 inline void bclr( int simm13a, Register s ) { andn( s, simm13a, s ); }
duke@435 1933
duke@435 1934 inline void btog( Register s1, Register s2 ) { xor3( s1, s2, s2 ); }
duke@435 1935 inline void btog( int simm13a, Register s ) { xor3( s, simm13a, s ); }
duke@435 1936
duke@435 1937 inline void clr( Register d ) { or3( G0, G0, d ); }
duke@435 1938
duke@435 1939 inline void clrb( Register s1, Register s2);
duke@435 1940 inline void clrh( Register s1, Register s2);
duke@435 1941 inline void clr( Register s1, Register s2);
duke@435 1942 inline void clrx( Register s1, Register s2);
duke@435 1943
duke@435 1944 inline void clrb( Register s1, int simm13a);
duke@435 1945 inline void clrh( Register s1, int simm13a);
duke@435 1946 inline void clr( Register s1, int simm13a);
duke@435 1947 inline void clrx( Register s1, int simm13a);
duke@435 1948
duke@435 1949 // copy & clear upper word
duke@435 1950 inline void clruw( Register s, Register d ) { srl( s, G0, d); }
duke@435 1951 // clear upper word
duke@435 1952 inline void clruwu( Register d ) { srl( d, G0, d); }
duke@435 1953
duke@435 1954 // membar psuedo instruction. takes into account target memory model.
duke@435 1955 inline void membar( Assembler::Membar_mask_bits const7a );
duke@435 1956
duke@435 1957 // returns if membar generates anything.
duke@435 1958 inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
duke@435 1959
duke@435 1960 // mov pseudo instructions
duke@435 1961 inline void mov( Register s, Register d) {
duke@435 1962 if ( s != d ) or3( G0, s, d);
duke@435 1963 else assert_not_delayed(); // Put something useful in the delay slot!
duke@435 1964 }
duke@435 1965
duke@435 1966 inline void mov_or_nop( Register s, Register d) {
duke@435 1967 if ( s != d ) or3( G0, s, d);
duke@435 1968 else nop();
duke@435 1969 }
duke@435 1970
duke@435 1971 inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }
duke@435 1972
duke@435 1973 // address pseudos: make these names unlike instruction names to avoid confusion
duke@435 1974 inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
twisti@1162 1975 inline void load_contents(AddressLiteral& addrlit, Register d, int offset = 0);
twisti@1162 1976 inline void load_ptr_contents(AddressLiteral& addrlit, Register d, int offset = 0);
twisti@1162 1977 inline void store_contents(Register s, AddressLiteral& addrlit, Register temp, int offset = 0);
twisti@1162 1978 inline void store_ptr_contents(Register s, AddressLiteral& addrlit, Register temp, int offset = 0);
twisti@1162 1979 inline void jumpl_to(AddressLiteral& addrlit, Register temp, Register d, int offset = 0);
twisti@1162 1980 inline void jump_to(AddressLiteral& addrlit, Register temp, int offset = 0);
twisti@1162 1981 inline void jump_indirect_to(Address& a, Register temp, int ld_offset = 0, int jmp_offset = 0);
duke@435 1982
duke@435 1983 // ring buffer traceable jumps
duke@435 1984
duke@435 1985 void jmp2( Register r1, Register r2, const char* file, int line );
duke@435 1986 void jmp ( Register r1, int offset, const char* file, int line );
duke@435 1987
twisti@1162 1988 void jumpl(AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line);
twisti@1162 1989 void jump (AddressLiteral& addrlit, Register temp, int offset, const char* file, int line);
duke@435 1990
duke@435 1991
duke@435 1992 // argument pseudos:
duke@435 1993
duke@435 1994 inline void load_argument( Argument& a, Register d );
duke@435 1995 inline void store_argument( Register s, Argument& a );
duke@435 1996 inline void store_ptr_argument( Register s, Argument& a );
duke@435 1997 inline void store_float_argument( FloatRegister s, Argument& a );
duke@435 1998 inline void store_double_argument( FloatRegister s, Argument& a );
duke@435 1999 inline void store_long_argument( Register s, Argument& a );
duke@435 2000
duke@435 2001 // handy macros:
duke@435 2002
duke@435 2003 inline void round_to( Register r, int modulus ) {
duke@435 2004 assert_not_delayed();
duke@435 2005 inc( r, modulus - 1 );
duke@435 2006 and3( r, -modulus, r );
duke@435 2007 }
duke@435 2008
duke@435 2009 // --------------------------------------------------
duke@435 2010
duke@435 2011 // Functions for isolating 64 bit loads for LP64
duke@435 2012 // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
duke@435 2013 // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
twisti@1162 2014 inline void ld_ptr(Register s1, Register s2, Register d);
twisti@1162 2015 inline void ld_ptr(Register s1, int simm13a, Register d);
twisti@1162 2016 inline void ld_ptr(Register s1, RegisterOrConstant s2, Register d);
twisti@1162 2017 inline void ld_ptr(const Address& a, Register d, int offset = 0);
twisti@1162 2018 inline void st_ptr(Register d, Register s1, Register s2);
twisti@1162 2019 inline void st_ptr(Register d, Register s1, int simm13a);
twisti@1162 2020 inline void st_ptr(Register d, Register s1, RegisterOrConstant s2);
twisti@1162 2021 inline void st_ptr(Register d, const Address& a, int offset = 0);
twisti@1162 2022
twisti@1162 2023 #ifdef ASSERT
twisti@1162 2024 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
twisti@1162 2025 inline void ld_ptr(Register s1, ByteSize simm13a, Register d);
twisti@1162 2026 inline void st_ptr(Register d, Register s1, ByteSize simm13a);
twisti@1162 2027 #endif
duke@435 2028
duke@435 2029 // ld_long will perform ld for 32 bit VM's and ldx for 64 bit VM's
duke@435 2030 // st_long will perform st for 32 bit VM's and stx for 64 bit VM's
twisti@1162 2031 inline void ld_long(Register s1, Register s2, Register d);
twisti@1162 2032 inline void ld_long(Register s1, int simm13a, Register d);
twisti@1162 2033 inline void ld_long(Register s1, RegisterOrConstant s2, Register d);
twisti@1162 2034 inline void ld_long(const Address& a, Register d, int offset = 0);
twisti@1162 2035 inline void st_long(Register d, Register s1, Register s2);
twisti@1162 2036 inline void st_long(Register d, Register s1, int simm13a);
twisti@1162 2037 inline void st_long(Register d, Register s1, RegisterOrConstant s2);
twisti@1162 2038 inline void st_long(Register d, const Address& a, int offset = 0);
jrose@1057 2039
jrose@1058 2040 // Helpers for address formation.
jrose@1058 2041 // They update the dest in place, whether it is a register or constant.
jrose@1058 2042 // They emit no code at all if src is a constant zero.
jrose@1058 2043 // If dest is a constant and src is a register, the temp argument
jrose@1058 2044 // is required, and becomes the result.
jrose@1058 2045 // If dest is a register and src is a non-simm13 constant,
jrose@1058 2046 // the temp argument is required, and is used to materialize the constant.
jrose@1100 2047 void regcon_inc_ptr( RegisterOrConstant& dest, RegisterOrConstant src,
jrose@1058 2048 Register temp = noreg );
jrose@1100 2049 void regcon_sll_ptr( RegisterOrConstant& dest, RegisterOrConstant src,
jrose@1058 2050 Register temp = noreg );
twisti@1441 2051
twisti@1441 2052 RegisterOrConstant ensure_simm13_or_reg(RegisterOrConstant roc, Register Rtemp) {
twisti@1441 2053 guarantee(Rtemp != noreg, "constant offset overflow");
twisti@1441 2054 if (is_simm13(roc.constant_or_zero()))
twisti@1441 2055 return roc; // register or short constant
twisti@1441 2056 set(roc.as_constant(), Rtemp);
twisti@1441 2057 return RegisterOrConstant(Rtemp);
jrose@1058 2058 }
jrose@1058 2059
duke@435 2060 // --------------------------------------------------
duke@435 2061
duke@435 2062 public:
duke@435 2063 // traps as per trap.h (SPARC ABI?)
duke@435 2064
duke@435 2065 void breakpoint_trap();
duke@435 2066 void breakpoint_trap(Condition c, CC cc = icc);
duke@435 2067 void flush_windows_trap();
duke@435 2068 void clean_windows_trap();
duke@435 2069 void get_psr_trap();
duke@435 2070 void set_psr_trap();
duke@435 2071
duke@435 2072 // V8/V9 flush_windows
duke@435 2073 void flush_windows();
duke@435 2074
duke@435 2075 // Support for serializing memory accesses between threads
duke@435 2076 void serialize_memory(Register thread, Register tmp1, Register tmp2);
duke@435 2077
duke@435 2078 // Stack frame creation/removal
duke@435 2079 void enter();
duke@435 2080 void leave();
duke@435 2081
duke@435 2082 // V8/V9 integer multiply
duke@435 2083 void mult(Register s1, Register s2, Register d);
duke@435 2084 void mult(Register s1, int simm13a, Register d);
duke@435 2085
duke@435 2086 // V8/V9 read and write of condition codes.
duke@435 2087 void read_ccr(Register d);
duke@435 2088 void write_ccr(Register s);
duke@435 2089
duke@435 2090 // Manipulation of C++ bools
duke@435 2091 // These are idioms to flag the need for care with accessing bools but on
duke@435 2092 // this platform we assume byte size
duke@435 2093
twisti@1162 2094 inline void stbool(Register d, const Address& a) { stb(d, a); }
twisti@1162 2095 inline void ldbool(const Address& a, Register d) { ldsb(a, d); }
duke@435 2096 inline void tstbool( Register s ) { tst(s); }
duke@435 2097 inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }
duke@435 2098
coleenp@548 2099 // klass oop manipulations if compressed
kvn@599 2100 void load_klass(Register src_oop, Register klass);
kvn@599 2101 void store_klass(Register klass, Register dst_oop);
coleenp@602 2102 void store_klass_gap(Register s, Register dst_oop);
coleenp@548 2103
coleenp@548 2104 // oop manipulations
twisti@1162 2105 void load_heap_oop(const Address& s, Register d);
coleenp@548 2106 void load_heap_oop(Register s1, Register s2, Register d);
coleenp@548 2107 void load_heap_oop(Register s1, int simm13a, Register d);
coleenp@548 2108 void store_heap_oop(Register d, Register s1, Register s2);
coleenp@548 2109 void store_heap_oop(Register d, Register s1, int simm13a);
coleenp@548 2110 void store_heap_oop(Register d, const Address& a, int offset = 0);
coleenp@548 2111
coleenp@548 2112 void encode_heap_oop(Register src, Register dst);
coleenp@548 2113 void encode_heap_oop(Register r) {
coleenp@548 2114 encode_heap_oop(r, r);
coleenp@548 2115 }
coleenp@548 2116 void decode_heap_oop(Register src, Register dst);
coleenp@548 2117 void decode_heap_oop(Register r) {
coleenp@548 2118 decode_heap_oop(r, r);
coleenp@548 2119 }
coleenp@548 2120 void encode_heap_oop_not_null(Register r);
coleenp@548 2121 void decode_heap_oop_not_null(Register r);
kvn@559 2122 void encode_heap_oop_not_null(Register src, Register dst);
kvn@559 2123 void decode_heap_oop_not_null(Register src, Register dst);
coleenp@548 2124
duke@435 2125 // Support for managing the JavaThread pointer (i.e.; the reference to
duke@435 2126 // thread-local information).
duke@435 2127 void get_thread(); // load G2_thread
duke@435 2128 void verify_thread(); // verify G2_thread contents
duke@435 2129 void save_thread (const Register threache); // save to cache
duke@435 2130 void restore_thread(const Register thread_cache); // restore from cache
duke@435 2131
duke@435 2132 // Support for last Java frame (but use call_VM instead where possible)
duke@435 2133 void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
duke@435 2134 void reset_last_Java_frame(void);
duke@435 2135
duke@435 2136 // Call into the VM.
duke@435 2137 // Passes the thread pointer (in O0) as a prepended argument.
duke@435 2138 // Makes sure oop return values are visible to the GC.
duke@435 2139 void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
duke@435 2140 void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
duke@435 2141 void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
duke@435 2142 void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
duke@435 2143
duke@435 2144 // these overloadings are not presently used on SPARC:
duke@435 2145 void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
duke@435 2146 void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
duke@435 2147 void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
duke@435 2148 void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
duke@435 2149
duke@435 2150 void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
duke@435 2151 void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
duke@435 2152 void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
duke@435 2153 void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
duke@435 2154
duke@435 2155 void get_vm_result (Register oop_result);
duke@435 2156 void get_vm_result_2(Register oop_result);
duke@435 2157
duke@435 2158 // vm result is currently getting hijacked to for oop preservation
duke@435 2159 void set_vm_result(Register oop_result);
duke@435 2160
duke@435 2161 // if call_VM_base was called with check_exceptions=false, then call
duke@435 2162 // check_and_forward_exception to handle exceptions when it is safe
duke@435 2163 void check_and_forward_exception(Register scratch_reg);
duke@435 2164
duke@435 2165 private:
duke@435 2166 // For V8
duke@435 2167 void read_ccr_trap(Register ccr_save);
duke@435 2168 void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);
duke@435 2169
duke@435 2170 #ifdef ASSERT
duke@435 2171 // For V8 debugging. Uses V8 instruction sequence and checks
duke@435 2172 // result with V9 insturctions rdccr and wrccr.
duke@435 2173 // Uses Gscatch and Gscatch2
duke@435 2174 void read_ccr_v8_assert(Register ccr_save);
duke@435 2175 void write_ccr_v8_assert(Register ccr_save);
duke@435 2176 #endif // ASSERT
duke@435 2177
duke@435 2178 public:
ysr@777 2179
ysr@777 2180 // Write to card table for - register is destroyed afterwards.
ysr@777 2181 void card_table_write(jbyte* byte_map_base, Register tmp, Register obj);
ysr@777 2182
ysr@777 2183 void card_write_barrier_post(Register store_addr, Register new_val, Register tmp);
ysr@777 2184
ysr@777 2185 #ifndef SERIALGC
ysr@777 2186 // Array store and offset
ysr@777 2187 void g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs);
ysr@777 2188
ysr@777 2189 void g1_write_barrier_post(Register store_addr, Register new_val, Register tmp);
ysr@777 2190
ysr@777 2191 // May do filtering, depending on the boolean arguments.
ysr@777 2192 void g1_card_table_write(jbyte* byte_map_base,
ysr@777 2193 Register tmp, Register obj, Register new_val,
ysr@777 2194 bool region_filter, bool null_filter);
ysr@777 2195 #endif // SERIALGC
duke@435 2196
duke@435 2197 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 2198 void push_fTOS();
duke@435 2199
duke@435 2200 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 2201 void pop_fTOS();
duke@435 2202
duke@435 2203 void empty_FPU_stack();
duke@435 2204
duke@435 2205 void push_IU_state();
duke@435 2206 void pop_IU_state();
duke@435 2207
duke@435 2208 void push_FPU_state();
duke@435 2209 void pop_FPU_state();
duke@435 2210
duke@435 2211 void push_CPU_state();
duke@435 2212 void pop_CPU_state();
duke@435 2213
coleenp@548 2214 // if heap base register is used - reinit it with the correct value
coleenp@548 2215 void reinit_heapbase();
coleenp@548 2216
duke@435 2217 // Debugging
duke@435 2218 void _verify_oop(Register reg, const char * msg, const char * file, int line);
duke@435 2219 void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
duke@435 2220
duke@435 2221 #define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
duke@435 2222 #define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
duke@435 2223
duke@435 2224 // only if +VerifyOops
duke@435 2225 void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
duke@435 2226 // only if +VerifyFPU
duke@435 2227 void stop(const char* msg); // prints msg, dumps registers and stops execution
duke@435 2228 void warn(const char* msg); // prints msg, but don't stop
duke@435 2229 void untested(const char* what = "");
duke@435 2230 void unimplemented(const char* what = "") { char* b = new char[1024]; sprintf(b, "unimplemented: %s", what); stop(b); }
duke@435 2231 void should_not_reach_here() { stop("should not reach here"); }
duke@435 2232 void print_CPU_state();
duke@435 2233
duke@435 2234 // oops in code
twisti@1162 2235 AddressLiteral allocate_oop_address(jobject obj); // allocate_index
twisti@1162 2236 AddressLiteral constant_oop_address(jobject obj); // find_index
twisti@1162 2237 inline void set_oop (jobject obj, Register d); // uses allocate_oop_address
twisti@1162 2238 inline void set_oop_constant (jobject obj, Register d); // uses constant_oop_address
twisti@1162 2239 inline void set_oop (AddressLiteral& obj_addr, Register d); // same as load_address
duke@435 2240
kvn@599 2241 void set_narrow_oop( jobject obj, Register d );
kvn@599 2242
duke@435 2243 // nop padding
duke@435 2244 void align(int modulus);
duke@435 2245
duke@435 2246 // declare a safepoint
duke@435 2247 void safepoint();
duke@435 2248
duke@435 2249 // factor out part of stop into subroutine to save space
duke@435 2250 void stop_subroutine();
duke@435 2251 // factor out part of verify_oop into subroutine to save space
duke@435 2252 void verify_oop_subroutine();
duke@435 2253
duke@435 2254 // side-door communication with signalHandler in os_solaris.cpp
duke@435 2255 static address _verify_oop_implicit_branch[3];
duke@435 2256
duke@435 2257 #ifndef PRODUCT
duke@435 2258 static void test();
duke@435 2259 #endif
duke@435 2260
duke@435 2261 // convert an incoming arglist to varargs format; put the pointer in d
duke@435 2262 void set_varargs( Argument a, Register d );
duke@435 2263
duke@435 2264 int total_frame_size_in_bytes(int extraWords);
duke@435 2265
duke@435 2266 // used when extraWords known statically
duke@435 2267 void save_frame(int extraWords);
duke@435 2268 void save_frame_c1(int size_in_bytes);
duke@435 2269 // make a frame, and simultaneously pass up one or two register value
duke@435 2270 // into the new register window
duke@435 2271 void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
duke@435 2272
duke@435 2273 // give no. (outgoing) params, calc # of words will need on frame
duke@435 2274 void calc_mem_param_words(Register Rparam_words, Register Rresult);
duke@435 2275
duke@435 2276 // used to calculate frame size dynamically
duke@435 2277 // result is in bytes and must be negated for save inst
duke@435 2278 void calc_frame_size(Register extraWords, Register resultReg);
duke@435 2279
duke@435 2280 // calc and also save
duke@435 2281 void calc_frame_size_and_save(Register extraWords, Register resultReg);
duke@435 2282
duke@435 2283 static void debug(char* msg, RegistersForDebugging* outWindow);
duke@435 2284
duke@435 2285 // implementations of bytecodes used by both interpreter and compiler
duke@435 2286
duke@435 2287 void lcmp( Register Ra_hi, Register Ra_low,
duke@435 2288 Register Rb_hi, Register Rb_low,
duke@435 2289 Register Rresult);
duke@435 2290
duke@435 2291 void lneg( Register Rhi, Register Rlow );
duke@435 2292
duke@435 2293 void lshl( Register Rin_high, Register Rin_low, Register Rcount,
duke@435 2294 Register Rout_high, Register Rout_low, Register Rtemp );
duke@435 2295
duke@435 2296 void lshr( Register Rin_high, Register Rin_low, Register Rcount,
duke@435 2297 Register Rout_high, Register Rout_low, Register Rtemp );
duke@435 2298
duke@435 2299 void lushr( Register Rin_high, Register Rin_low, Register Rcount,
duke@435 2300 Register Rout_high, Register Rout_low, Register Rtemp );
duke@435 2301
duke@435 2302 #ifdef _LP64
duke@435 2303 void lcmp( Register Ra, Register Rb, Register Rresult);
duke@435 2304 #endif
duke@435 2305
duke@435 2306 void float_cmp( bool is_float, int unordered_result,
duke@435 2307 FloatRegister Fa, FloatRegister Fb,
duke@435 2308 Register Rresult);
duke@435 2309
duke@435 2310 void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
duke@435 2311 void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
duke@435 2312 void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
duke@435 2313 void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
duke@435 2314
duke@435 2315 void save_all_globals_into_locals();
duke@435 2316 void restore_globals_from_locals();
duke@435 2317
duke@435 2318 void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
duke@435 2319 address lock_addr=0, bool use_call_vm=false);
duke@435 2320 void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
duke@435 2321 address lock_addr=0, bool use_call_vm=false);
duke@435 2322 void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;
duke@435 2323
duke@435 2324 // These set the icc condition code to equal if the lock succeeded
duke@435 2325 // and notEqual if it failed and requires a slow case
kvn@855 2326 void compiler_lock_object(Register Roop, Register Rmark, Register Rbox,
kvn@855 2327 Register Rscratch,
kvn@855 2328 BiasedLockingCounters* counters = NULL,
kvn@855 2329 bool try_bias = UseBiasedLocking);
kvn@855 2330 void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox,
kvn@855 2331 Register Rscratch,
kvn@855 2332 bool try_bias = UseBiasedLocking);
duke@435 2333
duke@435 2334 // Biased locking support
duke@435 2335 // Upon entry, lock_reg must point to the lock record on the stack,
duke@435 2336 // obj_reg must contain the target object, and mark_reg must contain
duke@435 2337 // the target object's header.
duke@435 2338 // Destroys mark_reg if an attempt is made to bias an anonymously
duke@435 2339 // biased lock. In this case a failure will go either to the slow
duke@435 2340 // case or fall through with the notEqual condition code set with
duke@435 2341 // the expectation that the slow case in the runtime will be called.
duke@435 2342 // In the fall-through case where the CAS-based lock is done,
duke@435 2343 // mark_reg is not destroyed.
duke@435 2344 void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
duke@435 2345 Label& done, Label* slow_case = NULL,
duke@435 2346 BiasedLockingCounters* counters = NULL);
duke@435 2347 // Upon entry, the base register of mark_addr must contain the oop.
duke@435 2348 // Destroys temp_reg.
duke@435 2349
duke@435 2350 // If allow_delay_slot_filling is set to true, the next instruction
duke@435 2351 // emitted after this one will go in an annulled delay slot if the
duke@435 2352 // biased locking exit case failed.
duke@435 2353 void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
duke@435 2354
duke@435 2355 // allocation
duke@435 2356 void eden_allocate(
duke@435 2357 Register obj, // result: pointer to object after successful allocation
duke@435 2358 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 2359 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 2360 Register t1, // temp register
duke@435 2361 Register t2, // temp register
duke@435 2362 Label& slow_case // continuation point if fast allocation fails
duke@435 2363 );
duke@435 2364 void tlab_allocate(
duke@435 2365 Register obj, // result: pointer to object after successful allocation
duke@435 2366 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 2367 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 2368 Register t1, // temp register
duke@435 2369 Label& slow_case // continuation point if fast allocation fails
duke@435 2370 );
duke@435 2371 void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
duke@435 2372
jrose@1058 2373 // interface method calling
jrose@1058 2374 void lookup_interface_method(Register recv_klass,
jrose@1058 2375 Register intf_klass,
jrose@1100 2376 RegisterOrConstant itable_index,
jrose@1058 2377 Register method_result,
jrose@1058 2378 Register temp_reg, Register temp2_reg,
jrose@1058 2379 Label& no_such_interface);
jrose@1058 2380
jrose@1079 2381 // Test sub_klass against super_klass, with fast and slow paths.
jrose@1079 2382
jrose@1079 2383 // The fast path produces a tri-state answer: yes / no / maybe-slow.
jrose@1079 2384 // One of the three labels can be NULL, meaning take the fall-through.
jrose@1079 2385 // If super_check_offset is -1, the value is loaded up from super_klass.
jrose@1079 2386 // No registers are killed, except temp_reg and temp2_reg.
jrose@1079 2387 // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
jrose@1079 2388 void check_klass_subtype_fast_path(Register sub_klass,
jrose@1079 2389 Register super_klass,
jrose@1079 2390 Register temp_reg,
jrose@1079 2391 Register temp2_reg,
jrose@1079 2392 Label* L_success,
jrose@1079 2393 Label* L_failure,
jrose@1079 2394 Label* L_slow_path,
jrose@1100 2395 RegisterOrConstant super_check_offset = RegisterOrConstant(-1),
jrose@1079 2396 Register instanceof_hack = noreg);
jrose@1079 2397
jrose@1079 2398 // The rest of the type check; must be wired to a corresponding fast path.
jrose@1079 2399 // It does not repeat the fast path logic, so don't use it standalone.
jrose@1079 2400 // The temp_reg can be noreg, if no temps are available.
jrose@1079 2401 // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
jrose@1079 2402 // Updates the sub's secondary super cache as necessary.
jrose@1079 2403 void check_klass_subtype_slow_path(Register sub_klass,
jrose@1079 2404 Register super_klass,
jrose@1079 2405 Register temp_reg,
jrose@1079 2406 Register temp2_reg,
jrose@1079 2407 Register temp3_reg,
jrose@1079 2408 Register temp4_reg,
jrose@1079 2409 Label* L_success,
jrose@1079 2410 Label* L_failure);
jrose@1079 2411
jrose@1079 2412 // Simplified, combined version, good for typical uses.
jrose@1079 2413 // Falls through on failure.
jrose@1079 2414 void check_klass_subtype(Register sub_klass,
jrose@1079 2415 Register super_klass,
jrose@1079 2416 Register temp_reg,
jrose@1079 2417 Register temp2_reg,
jrose@1079 2418 Label& L_success);
jrose@1079 2419
jrose@1145 2420 // method handles (JSR 292)
jrose@1145 2421 void check_method_handle_type(Register mtype_reg, Register mh_reg,
jrose@1145 2422 Register temp_reg,
jrose@1145 2423 Label& wrong_method_type);
jrose@1145 2424 void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
jrose@1145 2425 // offset relative to Gargs of argument at tos[arg_slot].
jrose@1145 2426 // (arg_slot == 0 means the last argument, not the first).
jrose@1145 2427 RegisterOrConstant argument_offset(RegisterOrConstant arg_slot,
jrose@1145 2428 int extra_slot_offset = 0);
jrose@1145 2429
jrose@1079 2430
duke@435 2431 // Stack overflow checking
duke@435 2432
duke@435 2433 // Note: this clobbers G3_scratch
duke@435 2434 void bang_stack_with_offset(int offset) {
duke@435 2435 // stack grows down, caller passes positive offset
duke@435 2436 assert(offset > 0, "must bang with negative offset");
duke@435 2437 set((-offset)+STACK_BIAS, G3_scratch);
duke@435 2438 st(G0, SP, G3_scratch);
duke@435 2439 }
duke@435 2440
duke@435 2441 // Writes to stack successive pages until offset reached to check for
duke@435 2442 // stack overflow + shadow pages. Clobbers tsp and scratch registers.
duke@435 2443 void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
duke@435 2444
jrose@1100 2445 virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset);
jrose@1057 2446
duke@435 2447 void verify_tlab();
duke@435 2448
duke@435 2449 Condition negate_condition(Condition cond);
duke@435 2450
duke@435 2451 // Helper functions for statistics gathering.
duke@435 2452 // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
duke@435 2453 void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
duke@435 2454 // Unconditional increment.
twisti@1162 2455 void inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2);
twisti@1162 2456 void inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2);
duke@435 2457
kvn@1421 2458 // Compare char[] arrays aligned to 4 bytes.
kvn@1421 2459 void char_arrays_equals(Register ary1, Register ary2,
kvn@1421 2460 Register limit, Register result,
kvn@1421 2461 Register chr1, Register chr2, Label& Ldone);
kvn@1421 2462
duke@435 2463 #undef VIRTUAL
duke@435 2464
duke@435 2465 };
duke@435 2466
duke@435 2467 /**
duke@435 2468 * class SkipIfEqual:
duke@435 2469 *
duke@435 2470 * Instantiating this class will result in assembly code being output that will
duke@435 2471 * jump around any code emitted between the creation of the instance and it's
duke@435 2472 * automatic destruction at the end of a scope block, depending on the value of
duke@435 2473 * the flag passed to the constructor, which will be checked at run-time.
duke@435 2474 */
duke@435 2475 class SkipIfEqual : public StackObj {
duke@435 2476 private:
duke@435 2477 MacroAssembler* _masm;
duke@435 2478 Label _label;
duke@435 2479
duke@435 2480 public:
duke@435 2481 // 'temp' is a temp register that this object can use (and trash)
duke@435 2482 SkipIfEqual(MacroAssembler*, Register temp,
duke@435 2483 const bool* flag_addr, Assembler::Condition condition);
duke@435 2484 ~SkipIfEqual();
duke@435 2485 };
duke@435 2486
duke@435 2487 #ifdef ASSERT
duke@435 2488 // On RISC, there's no benefit to verifying instruction boundaries.
duke@435 2489 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
duke@435 2490 #endif

mercurial