src/share/vm/opto/regmask.hpp

Thu, 20 Jun 2013 16:30:44 -0700

author
goetz
date
Thu, 20 Jun 2013 16:30:44 -0700
changeset 6441
d2907f74462e
parent 4585
2c673161698a
child 6876
710a3c8b516e
child 7598
ddce0b7cee93
permissions
-rw-r--r--

8016586: PPC64 (part 3): basic changes for PPC64
Summary: added #includes needed for ppc64 port. Renamed _MODEL_ppc to _MODEL_ppc_32 and renamed corresponding old _ppc files to _ppc_32.
Reviewed-by: dholmes, kvn

duke@435 1 /*
drchase@4585 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_REGMASK_HPP
stefank@2314 26 #define SHARE_VM_OPTO_REGMASK_HPP
stefank@2314 27
stefank@2314 28 #include "code/vmreg.hpp"
stefank@2314 29 #include "libadt/port.hpp"
stefank@2314 30 #include "opto/optoreg.hpp"
stefank@2314 31 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 32 # include "adfiles/adGlobals_x86_32.hpp"
stefank@2314 33 #endif
stefank@2314 34 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 35 # include "adfiles/adGlobals_x86_64.hpp"
stefank@2314 36 #endif
stefank@2314 37 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 38 # include "adfiles/adGlobals_sparc.hpp"
stefank@2314 39 #endif
stefank@2314 40 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 41 # include "adfiles/adGlobals_zero.hpp"
stefank@2314 42 #endif
bobv@2508 43 #ifdef TARGET_ARCH_MODEL_arm
bobv@2508 44 # include "adfiles/adGlobals_arm.hpp"
bobv@2508 45 #endif
goetz@6441 46 #ifdef TARGET_ARCH_MODEL_ppc_32
goetz@6441 47 # include "adfiles/adGlobals_ppc_32.hpp"
goetz@6441 48 #endif
goetz@6441 49 #ifdef TARGET_ARCH_MODEL_ppc_64
goetz@6441 50 # include "adfiles/adGlobals_ppc_64.hpp"
bobv@2508 51 #endif
stefank@2314 52
duke@435 53 // Some fun naming (textual) substitutions:
duke@435 54 //
duke@435 55 // RegMask::get_low_elem() ==> RegMask::find_first_elem()
duke@435 56 // RegMask::Special ==> RegMask::Empty
duke@435 57 // RegMask::_flags ==> RegMask::is_AllStack()
duke@435 58 // RegMask::operator<<=() ==> RegMask::Insert()
duke@435 59 // RegMask::operator>>=() ==> RegMask::Remove()
duke@435 60 // RegMask::Union() ==> RegMask::OR
duke@435 61 // RegMask::Inter() ==> RegMask::AND
duke@435 62 //
duke@435 63 // OptoRegister::RegName ==> OptoReg::Name
duke@435 64 //
duke@435 65 // OptoReg::stack0() ==> _last_Mach_Reg or ZERO in core version
duke@435 66 //
duke@435 67 // numregs in chaitin ==> proper degree in chaitin
duke@435 68
duke@435 69 //-------------Non-zero bit search methods used by RegMask---------------------
duke@435 70 // Find lowest 1, or return 32 if empty
duke@435 71 int find_lowest_bit( uint32 mask );
duke@435 72 // Find highest 1, or return 32 if empty
duke@435 73 int find_hihghest_bit( uint32 mask );
duke@435 74
duke@435 75 //------------------------------RegMask----------------------------------------
duke@435 76 // The ADL file describes how to print the machine-specific registers, as well
duke@435 77 // as any notion of register classes. We provide a register mask, which is
duke@435 78 // just a collection of Register numbers.
duke@435 79
duke@435 80 // The ADLC defines 2 macros, RM_SIZE and FORALL_BODY.
duke@435 81 // RM_SIZE is the size of a register mask in words.
duke@435 82 // FORALL_BODY replicates a BODY macro once per word in the register mask.
duke@435 83 // The usage is somewhat clumsy and limited to the regmask.[h,c]pp files.
duke@435 84 // However, it means the ADLC can redefine the unroll macro and all loops
duke@435 85 // over register masks will be unrolled by the correct amount.
duke@435 86
duke@435 87 class RegMask VALUE_OBJ_CLASS_SPEC {
duke@435 88 union {
duke@435 89 double _dummy_force_double_alignment[RM_SIZE>>1];
duke@435 90 // Array of Register Mask bits. This array is large enough to cover
duke@435 91 // all the machine registers and all parameters that need to be passed
duke@435 92 // on the stack (stack registers) up to some interesting limit. Methods
duke@435 93 // that need more parameters will NOT be compiled. On Intel, the limit
duke@435 94 // is something like 90+ parameters.
duke@435 95 int _A[RM_SIZE];
duke@435 96 };
duke@435 97
duke@435 98 enum {
duke@435 99 _WordBits = BitsPerInt,
duke@435 100 _LogWordBits = LogBitsPerInt,
duke@435 101 _RM_SIZE = RM_SIZE // local constant, imported, then hidden by #undef
duke@435 102 };
duke@435 103
duke@435 104 public:
duke@435 105 enum { CHUNK_SIZE = RM_SIZE*_WordBits };
duke@435 106
duke@435 107 // SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits.
duke@435 108 // Also, consider the maximum alignment size for a normally allocated
duke@435 109 // value. Since we allocate register pairs but not register quads (at
duke@435 110 // present), this alignment is SlotsPerLong (== 2). A normally
duke@435 111 // aligned allocated register is either a single register, or a pair
duke@435 112 // of adjacent registers, the lower-numbered being even.
duke@435 113 // See also is_aligned_Pairs() below, and the padding added before
duke@435 114 // Matcher::_new_SP to keep allocated pairs aligned properly.
duke@435 115 // If we ever go to quad-word allocations, SlotsPerQuad will become
duke@435 116 // the controlling alignment constraint. Note that this alignment
duke@435 117 // requirement is internal to the allocator, and independent of any
duke@435 118 // particular platform.
kvn@3882 119 enum { SlotsPerLong = 2,
kvn@3882 120 SlotsPerVecS = 1,
kvn@3882 121 SlotsPerVecD = 2,
kvn@3882 122 SlotsPerVecX = 4,
kvn@3882 123 SlotsPerVecY = 8 };
duke@435 124
duke@435 125 // A constructor only used by the ADLC output. All mask fields are filled
duke@435 126 // in directly. Calls to this look something like RM(1,2,3,4);
duke@435 127 RegMask(
duke@435 128 # define BODY(I) int a##I,
duke@435 129 FORALL_BODY
duke@435 130 # undef BODY
duke@435 131 int dummy = 0 ) {
duke@435 132 # define BODY(I) _A[I] = a##I;
duke@435 133 FORALL_BODY
duke@435 134 # undef BODY
duke@435 135 }
duke@435 136
duke@435 137 // Handy copying constructor
duke@435 138 RegMask( RegMask *rm ) {
duke@435 139 # define BODY(I) _A[I] = rm->_A[I];
duke@435 140 FORALL_BODY
duke@435 141 # undef BODY
duke@435 142 }
duke@435 143
duke@435 144 // Construct an empty mask
duke@435 145 RegMask( ) { Clear(); }
duke@435 146
duke@435 147 // Construct a mask with a single bit
duke@435 148 RegMask( OptoReg::Name reg ) { Clear(); Insert(reg); }
duke@435 149
duke@435 150 // Check for register being in mask
duke@435 151 int Member( OptoReg::Name reg ) const {
duke@435 152 assert( reg < CHUNK_SIZE, "" );
duke@435 153 return _A[reg>>_LogWordBits] & (1<<(reg&(_WordBits-1)));
duke@435 154 }
duke@435 155
duke@435 156 // The last bit in the register mask indicates that the mask should repeat
duke@435 157 // indefinitely with ONE bits. Returns TRUE if mask is infinite or
duke@435 158 // unbounded in size. Returns FALSE if mask is finite size.
duke@435 159 int is_AllStack() const { return _A[RM_SIZE-1] >> (_WordBits-1); }
duke@435 160
duke@435 161 // Work around an -xO3 optimization problme in WS6U1. The old way:
duke@435 162 // void set_AllStack() { _A[RM_SIZE-1] |= (1<<(_WordBits-1)); }
duke@435 163 // will cause _A[RM_SIZE-1] to be clobbered, not updated when set_AllStack()
duke@435 164 // follows an Insert() loop, like the one found in init_spill_mask(). Using
duke@435 165 // Insert() instead works because the index into _A in computed instead of
duke@435 166 // constant. See bug 4665841.
duke@435 167 void set_AllStack() { Insert(OptoReg::Name(CHUNK_SIZE-1)); }
duke@435 168
duke@435 169 // Test for being a not-empty mask.
duke@435 170 int is_NotEmpty( ) const {
duke@435 171 int tmp = 0;
duke@435 172 # define BODY(I) tmp |= _A[I];
duke@435 173 FORALL_BODY
duke@435 174 # undef BODY
duke@435 175 return tmp;
duke@435 176 }
duke@435 177
duke@435 178 // Find lowest-numbered register from mask, or BAD if mask is empty.
duke@435 179 OptoReg::Name find_first_elem() const {
duke@435 180 int base, bits;
duke@435 181 # define BODY(I) if( (bits = _A[I]) != 0 ) base = I<<_LogWordBits; else
duke@435 182 FORALL_BODY
duke@435 183 # undef BODY
duke@435 184 { base = OptoReg::Bad; bits = 1<<0; }
duke@435 185 return OptoReg::Name(base + find_lowest_bit(bits));
duke@435 186 }
duke@435 187 // Get highest-numbered register from mask, or BAD if mask is empty.
duke@435 188 OptoReg::Name find_last_elem() const {
duke@435 189 int base, bits;
duke@435 190 # define BODY(I) if( (bits = _A[RM_SIZE-1-I]) != 0 ) base = (RM_SIZE-1-I)<<_LogWordBits; else
duke@435 191 FORALL_BODY
duke@435 192 # undef BODY
duke@435 193 { base = OptoReg::Bad; bits = 1<<0; }
duke@435 194 return OptoReg::Name(base + find_hihghest_bit(bits));
duke@435 195 }
duke@435 196
duke@435 197 // Find the lowest-numbered register pair in the mask. Return the
duke@435 198 // HIGHEST register number in the pair, or BAD if no pairs.
duke@435 199 // Assert that the mask contains only bit pairs.
duke@435 200 OptoReg::Name find_first_pair() const;
duke@435 201
duke@435 202 // Clear out partial bits; leave only aligned adjacent bit pairs.
kvn@3882 203 void clear_to_pairs();
duke@435 204 // Smear out partial bits; leave only aligned adjacent bit pairs.
kvn@3882 205 void smear_to_pairs();
duke@435 206 // Verify that the mask contains only aligned adjacent bit pairs
kvn@3882 207 void verify_pairs() const { assert( is_aligned_pairs(), "mask is not aligned, adjacent pairs" ); }
duke@435 208 // Test that the mask contains only aligned adjacent bit pairs
kvn@3882 209 bool is_aligned_pairs() const;
duke@435 210
duke@435 211 // mask is a pair of misaligned registers
kvn@3882 212 bool is_misaligned_pair() const { return Size()==2 && !is_aligned_pairs(); }
duke@435 213 // Test for single register
duke@435 214 int is_bound1() const;
duke@435 215 // Test for a single adjacent pair
kvn@3882 216 int is_bound_pair() const;
kvn@3882 217 // Test for a single adjacent set of ideal register's size.
kvn@3882 218 int is_bound(uint ireg) const {
kvn@3882 219 if (is_vector(ireg)) {
kvn@3882 220 if (is_bound_set(num_registers(ireg)))
kvn@3882 221 return true;
kvn@3882 222 } else if (is_bound1() || is_bound_pair()) {
kvn@3882 223 return true;
kvn@3882 224 }
kvn@3882 225 return false;
kvn@3882 226 }
kvn@3882 227
kvn@3882 228 // Find the lowest-numbered register set in the mask. Return the
kvn@3882 229 // HIGHEST register number in the set, or BAD if no sets.
kvn@3882 230 // Assert that the mask contains only bit sets.
drchase@4585 231 OptoReg::Name find_first_set(const int size) const;
kvn@3882 232
kvn@3882 233 // Clear out partial bits; leave only aligned adjacent bit sets of size.
drchase@4585 234 void clear_to_sets(const int size);
kvn@3882 235 // Smear out partial bits to aligned adjacent bit sets.
drchase@4585 236 void smear_to_sets(const int size);
kvn@3882 237 // Verify that the mask contains only aligned adjacent bit sets
kvn@3882 238 void verify_sets(int size) const { assert(is_aligned_sets(size), "mask is not aligned, adjacent sets"); }
kvn@3882 239 // Test that the mask contains only aligned adjacent bit sets
drchase@4585 240 bool is_aligned_sets(const int size) const;
kvn@3882 241
kvn@3882 242 // mask is a set of misaligned registers
kvn@3882 243 bool is_misaligned_set(int size) const { return (int)Size()==size && !is_aligned_sets(size);}
kvn@3882 244
kvn@3882 245 // Test for a single adjacent set
drchase@4585 246 int is_bound_set(const int size) const;
kvn@3882 247
kvn@3882 248 static bool is_vector(uint ireg);
kvn@3882 249 static int num_registers(uint ireg);
duke@435 250
duke@435 251 // Fast overlap test. Non-zero if any registers in common.
duke@435 252 int overlap( const RegMask &rm ) const {
duke@435 253 return
duke@435 254 # define BODY(I) (_A[I] & rm._A[I]) |
duke@435 255 FORALL_BODY
duke@435 256 # undef BODY
duke@435 257 0 ;
duke@435 258 }
duke@435 259
duke@435 260 // Special test for register pressure based splitting
duke@435 261 // UP means register only, Register plus stack, or stack only is DOWN
duke@435 262 bool is_UP() const;
duke@435 263
duke@435 264 // Clear a register mask
duke@435 265 void Clear( ) {
duke@435 266 # define BODY(I) _A[I] = 0;
duke@435 267 FORALL_BODY
duke@435 268 # undef BODY
duke@435 269 }
duke@435 270
duke@435 271 // Fill a register mask with 1's
duke@435 272 void Set_All( ) {
duke@435 273 # define BODY(I) _A[I] = -1;
duke@435 274 FORALL_BODY
duke@435 275 # undef BODY
duke@435 276 }
duke@435 277
duke@435 278 // Insert register into mask
duke@435 279 void Insert( OptoReg::Name reg ) {
duke@435 280 assert( reg < CHUNK_SIZE, "" );
duke@435 281 _A[reg>>_LogWordBits] |= (1<<(reg&(_WordBits-1)));
duke@435 282 }
duke@435 283
duke@435 284 // Remove register from mask
duke@435 285 void Remove( OptoReg::Name reg ) {
duke@435 286 assert( reg < CHUNK_SIZE, "" );
duke@435 287 _A[reg>>_LogWordBits] &= ~(1<<(reg&(_WordBits-1)));
duke@435 288 }
duke@435 289
duke@435 290 // OR 'rm' into 'this'
duke@435 291 void OR( const RegMask &rm ) {
duke@435 292 # define BODY(I) this->_A[I] |= rm._A[I];
duke@435 293 FORALL_BODY
duke@435 294 # undef BODY
duke@435 295 }
duke@435 296
duke@435 297 // AND 'rm' into 'this'
duke@435 298 void AND( const RegMask &rm ) {
duke@435 299 # define BODY(I) this->_A[I] &= rm._A[I];
duke@435 300 FORALL_BODY
duke@435 301 # undef BODY
duke@435 302 }
duke@435 303
duke@435 304 // Subtract 'rm' from 'this'
duke@435 305 void SUBTRACT( const RegMask &rm ) {
duke@435 306 # define BODY(I) _A[I] &= ~rm._A[I];
duke@435 307 FORALL_BODY
duke@435 308 # undef BODY
duke@435 309 }
duke@435 310
duke@435 311 // Compute size of register mask: number of bits
duke@435 312 uint Size() const;
duke@435 313
duke@435 314 #ifndef PRODUCT
duke@435 315 void print() const { dump(); }
kvn@4478 316 void dump(outputStream *st = tty) const; // Print a mask
duke@435 317 #endif
duke@435 318
duke@435 319 static const RegMask Empty; // Common empty mask
duke@435 320
duke@435 321 static bool can_represent(OptoReg::Name reg) {
duke@435 322 // NOTE: -1 in computation reflects the usage of the last
kvn@3882 323 // bit of the regmask as an infinite stack flag and
kvn@3882 324 // -7 is to keep mask aligned for largest value (VecY).
duke@435 325 return (int)reg < (int)(CHUNK_SIZE-1);
duke@435 326 }
kvn@3882 327 static bool can_represent_arg(OptoReg::Name reg) {
kvn@3882 328 // NOTE: -SlotsPerVecY in computation reflects the need
kvn@3882 329 // to keep mask aligned for largest value (VecY).
kvn@3882 330 return (int)reg < (int)(CHUNK_SIZE-SlotsPerVecY);
kvn@3882 331 }
duke@435 332 };
duke@435 333
duke@435 334 // Do not use this constant directly in client code!
duke@435 335 #undef RM_SIZE
stefank@2314 336
stefank@2314 337 #endif // SHARE_VM_OPTO_REGMASK_HPP

mercurial